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Abstract

This paper presents a new implementation technique for priority search queues. This
abstract data type is an amazing blend of finite maps and priority queues. Our implemen-
tation supports logarithmic access to a binding with a given key and constant access to
a binding with the minimum value. Priority search queues can be used, for instance, to
give a simple, purely functional implementation of Dijkstra’s single source shortest-path
algorithm.

A non-technical concern of the paper is to foster abstract data types and views. Priority
search queues have been largely ignored by the functional programming community and
we believe that they deserve to be known better. Views prove their worth both in defining a
convenient interface to the abstract data type and in providing a readable implementation.

1 Introduction

The aim of this paper is threefold:
First, we would like to advertise priority search queues, a useful abstract data

type that has been largely ignored by the functional programming community and
that deserves to be known better. Priority search queues are an amazing blend of
finite maps (or dictionaries) and priority queues, that is, they support both dictio-
nary operations (for instance, accessing a binding with a given key) and priority
queue operations (for instance, accessing a binding with the minimum value). We
give two simple applications that demonstrate their usefulness: a purely functional
implementation of Dijkstra’s single-source shortest path algorithm and an efficient
implementation of the first-fit heuristics for the bin packing problem.

Second, we describe a simple implementation technique for the abstract data
type. The standard implementation of priority search queues, McCreight’s priority
search trees (1985), combines binary search trees and heaps. Unfortunately, bal-
anced search trees and heaps do not go well together. Rotations that are typically
used to maintain balance destroy the heap property and restoring the property
takes Θ(h) time where h is the height of the tree. Consequently, in order to attain
overall logarithmic time bounds the underlying balancing scheme must guarantee
that the number of rotations per update is bounded by a constant. We show that it
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is possible to weaken the heap property so that rotations become constant time op-
erations without sacrificing the running time of the priority queue methods. Thus,
we can freely choose an underlying balancing scheme—we illustrate our approach
using Adams’s weight-balanced trees (1993).

Third, we would like to promote the use of views. Views have been introduced
by Wadler (1987) to relieve the tension between pattern matching and abstraction.
Briefly, views allow any type (in particular, any abstract data type) to be viewed
as a free data type. We have found views not only useful for providing a convenient
interface to an abstract data type but also extremely helpful in the implementation
itself. The use of views made the code substantially clearer.

The remainder of this paper is structured as follows. Section 2 briefly reviews the
concept of views. Section 3 introduces the abstract data type priority search queue

and Section 4 illustrates its use. Section 5 provides a simple implementation based
on unbalanced trees. Section 6 then shows how to augment the basic implementation
by a balancing scheme. Section 7 analyses the running time of so-called range
queries. Finally, Section 8 reviews related work and Section 9 concludes. Auxiliary
types and functions that are used in the implementation are listed in Appendix A.

2 Preliminaries: views

The code in this paper is given in Haskell 98 (Peyton Jones & Hughes, 1999)
augmented by the concept of views (Burton et al., 1996; Okasaki, 1998b). This
section briefly reviews Okasaki’s proposal for views (1998b).

A view allows any type to be viewed as a free data type. A view declaration for
a type T consists of an anonymous data type, the view type, and an anonymous
function, the view transformation, that shows how to map elements of T to the
view type. Here is a simple example that defines a minimum view on lists:

view (Ord a) ⇒ [a ] = Empty | Min a [a ] where
[ ] → Empty
a1 : Empty → Min a1 [ ]
a1 : Min a2 as
| a1 6 a2 → Min a1 (a2 : as)
| otherwise → Min a2 (a1 : as).

This declaration introduces two constructors, Empty and Min, that henceforth can
be used to pattern match elements of type [a ], where the context ‘(Ord a) ⇒’
restricts a to instances of Ord . The minimum view allows any list to be viewed as
an ordered list. The following definition of selection sort nicely illustrates the use
of views:

selection-sort :: (Ord a) ⇒ [a ] → [a ]
selection-sort Empty = [ ]
selection-sort (Min a as) = a : selection-sort as.

The view constructors can be freely mixed with ordinary data type constructors.
In fact, the view transformation of the minimum view already illustrates nested
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patterns. A type can even have multiple views. However, view constructors may
only appear in patterns—with the notable exception of the view transformation
itself.

View declarations can be implemented by a simple source to source translation:
each view is expanded into a data type and a function. For the minimum view we
obtain:

data Min-View a = Empty | Min a [a ]

min-view :: (Ord a) ⇒ [a ] → Min-View a
min-view x1 = case x1 of

[ ] → Empty
a1 : x2 → case min-view x2 of

Empty → Min a1 [ ]
Min a2 as
| a1 6 a2 → Min a1 (a2 : as)
| otherwise → Min a2 (a1 : as).

The function is invoked whenever constructors of the view appear in patterns.
In our example, the view constructors appear in the view transformation itself.
Consequently, it is expanded into a recursive function. Selection sort becomes:

selection-sort x = case minView x of
Empty → [ ]
Min a as → a : selection-sort as.

For a precise definition of the semantics we refer the interested reader to Okasaki’s
paper (1998b)—the proposal is for Standard ML but it can be easily adapted to
Haskell 98.

3 Priority search queues

The abstract data type priority search queue is conceptually a finite map that sup-
ports efficient access to the binding with the minimum value, where a binding is
an argument-value pair and a finite map is a finite set of bindings. For empha-
sis, we call the arguments keys and the associated values priorities. Bindings are
represented by the following data type:

data k 7→ p = k 7→ p

key :: (k 7→ p) → k
key (k 7→ p) = k

prio :: (k 7→ p) → p
prio (k 7→ p) = p.

Note that we use ‘ 7→’ both as a type constructor and as a value constructor. The
functions key and prio provide access to the key and to the priority of a binding. Like
the type of bindings, the abstract data type of priority search queues is parametric
in the types of keys and priorities:

data PSQ k p.
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Most operations on priority search queues require that both k and p are totally
ordered. This condition is expressed in Haskell by the context ‘(Ord k ,Ord p) ⇒’.
However, in the rest of this section we will omit the context to reduce clutter.

Priority search queues support both finite map and priority queue operations
plus so-called range queries.

Constructors and insertion
∅ :: PSQ k p
{·} :: (k 7→ p) → PSQ k p
insert :: (k 7→ p) → PSQ k p → PSQ k p
from-ord-list :: [k 7→ p ] → PSQ k p

The constructor ∅ represents the empty queue; {b} creates a queue that contains
b as the single binding; insert b q inserts binding b into q (if the queue contains a
binding with the same key, then the old binding is overwritten); and from-ord-list
converts a list of bindings into a queue with the precondition that the list is sorted
into increasing order by key.

Destructors and deletion
view PSQ k p = Empty | Min (k 7→ p) (PSQ k p)
delete :: k → PSQ k p → PSQ k p

A queue is destructed using the patterns Empty and Min b q introduced by the view
declaration. The function delete removes a binding with the given key (the queue is
left unchanged if it does not contain a binding with the key). The constructors of the
minimum view have the following meaning: if a queue pattern matches Empty, then
it is empty; otherwise it matches Min b q where b is the binding with the minimum
priority and q is the remaining queue. Thus, using the view we can effectively treat
a priority search queue as a list of bindings ordered by priority.

Observers
lookup :: k → PSQ k p → Maybe p
to-ord-list :: PSQ k p → [k 7→ p ]
at-most :: p → PSQ k p → [k 7→ p ]
at-most-range :: p → (k , k) → PSQ k p → [k 7→ p ]

The function lookup finds the priority associated with a given key: the call lookup k q
returns Nothing if the queue does not contain the key k ; otherwise it yields Just p
where p is the priority associated with k . The function to-ord-list converts a queue
into a list of bindings ordered by key. Priority search queues not only support
dictionary and priority queue operations. As a little extra they also allow for so-
called range queries: at-most pt q returns a list of bindings ordered by key whose
priorities are at most pt ; at-most-range pt (kl , kr ) q returns a list of bindings ordered
by key whose priorities are at most pt and whose keys lie between kl and kr . If we
interpret keys and priorities as x- and y-coordinates, then at-most-range implements
a 1 1

2 -dimensional query. It is only 1 1
2 -dimensional, because we can only specify semi-

infinite ranges for the y-coordinate.



A Simple Implementation Technique for Priority Search Queues 5

Modifier

adjust :: (p → p) → k → PSQ k p → PSQ k p

The function adjust changes a binding for the given key by applying the function
to its priority (the queue is left unchanged if it does not contain a binding with the
key).

4 Applications

4.1 Single-source shortest path

Dijkstra’s algorithm for the single-source shortest-paths problem serves as a nice
example for the use of priority search queues. The algorithm maintains a queue
that maps each vertex to its estimated distance from the source. The algorithm
works by repeatedly removing the vertex with minimal distance and updating the
distances of its adjacent vertices. Priority search queues support both operations
equally well. The update operation is typically called decrease:

decrease :: (Ord k ,Ord p) ⇒ (k 7→ p) → PSQ k p → PSQ k p
decrease (k 7→ p) q = adjust (min p) k q

decrease-list :: (Ord k ,Ord p) ⇒ [k 7→ p ] → PSQ k p → PSQ k p
decrease-list bs q = foldr decrease q bs.

Note that decrease (k 7→ p) q has no effect if k ’s priority in q is less than p.
To keep the presentation terse we assume that the following functions on graphs

are provided from somewhere.

vertices :: Graph → [Vertex ]
adjacent :: Graph → Vertex → [Vertex ]

The function vertices returns an ordered list of all vertices of a graph; adjacent
produces a list of vertices adjacent to the given one.

The function dijkstra defined below takes three arguments: a directed graph, a
weight function, and a source vertex. It returns a list of vertex-distance bindings
that determine the minimal distance of each vertex from the source.

type Weight = Vertex → Vertex → Double

dijkstra :: Graph → Weight → Vertex → [Vertex 7→ Double ]
dijkstra g w s = loop (decrease (s 7→ 0) q0)

where
q0 = from-ord-list [v 7→ +∞ | v ← vertices g ]

loop Empty = [ ]
loop (Min (u 7→ d) q) = (u 7→ d) : loop (decrease-list bs q)

where bs = [v 7→ d + w u v | v ← adjacent g u ]

The helper function loop uses the minimum view to process the queue. Note that the
computed list of vertex-distance bindings may contain bindings with priority +∞,
which indicates that the given graph was not strongly connected. Now, if we assume
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that the computation of the view and the decrease operation each take Θ(log V )
time, then the algorithm has a worst-case running time of Θ((V +E ) log V ), which
is the best known running time for purely functional implementations.

Remark 1
If we modify the computation of the new distances as follows

. . . where bs = [v 7→ w u v | v ← adjacent g u ],

we obtain Prim’s algorithm for computing a minimum spanning tree.

4.2 One-dimensional bin packing

As the second example we employ priority search queues to implement the first-fit
heuristics for the bin packing problem. Recall that the standard list-based imple-
mentation shown below has a worst-case running time of Θ(n2) where n is the
number of items.

pack-first-fit :: [Item ] → [Bin ]
pack-first-fit = foldl first-fit [ ]

first-fit :: [Bin ] → Item → [Bin ]
first-fit [ ] i = [i ]
first-fit (b : bs) i
| b + i 6 1 = b + i : bs
| otherwise = b : first-fit bs i

The function pack-first-fit takes a list of items, each of a certain size, and returns
a list of bins that contain the input items. For simplicity, we represent an item by
its size and a bin by its total size (each bin has a capacity of 1).

Using priority search queues we can improve the running time of the nâıve imple-
mentation to Θ(n log n). The central idea is to use the function at-most to quickly
determine the first bin that can accommodate a given item (the bins are numbered
consecutively).

type No = Int

pack-first-fit :: [Item ] → [Bin ]
pack-first-fit is = [prio b | b ← to-ord-list q ]

where (q , ) = foldl first-fit (∅, 0) is

first-fit :: (PSQ No Bin,No) → Item → (PSQ No Bin,No)
first-fit (q ,n) i = case at-most (1− i) q of

[ ] → (insert (n 7→ i) q ,n + 1)
(k 7→ ) : → (adjust (+i) k q ,n)

This is the only place where essential use is made of Haskell’s non-strict semantics
as we merely require the first element of the list returned by at-most. In a strict lan-
guage, we would be forced to define a specialized version of at-most that computes
the first binding only (if any).
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Ade 4 Doaitse 2 Eelco 1 Johan 6 Lambert 3 Nigel 7 Piet 5 Vladimir 8

Doaitse 2 Eelco 1 Lambert 3 Piet 5

Eelco 1 Lambert 3

Eelco 1

Fig. 1. A tournament tree.

5 Priority search pennants

This section describes an implementation of priority search queues based on un-
balanced search trees. Great care has been taken to modularize the code so that a
balancing scheme can be added later with ease (Section 6 discusses the necessary
amendments). It should be noted, however, that the implementation in this section
is perfectly suitable for Dijkstra’s or Prim’s algorithm since both do not require
insertions.

The underlying idea of the implementation is best explained using the metaphor
of a knockout tournament. Consider the tournament depicted in Figure 1. We have
eight participants, so the course of matches forms a complete binary tree. Each
external node corresponds to a participant; each internal node corresponds to a
winner of a match. To facilitate searching the participants are arranged from left
to right in increasing order by name. Tournament trees are almost a suitable data
structure for priority search queues if it were not for the many repeated entries.
The champion, for instance, appears on every level of the tree. Now, there are at
least two ways to repair this defect.

One possibility is to promote losers up the tree turning the tournament tree of
Figure 1 into the heap-structured tree of Figure 2. This transformation usually
involves additional matches. In our example, Doaitse has to play with Johan to
determine the second-best player of the first halve of the tournament. Pursuing this
idea further leads to a data structure known as a priority search tree (McCreight,
1985). We will come back to this data structure in Sections 7 and 8.

An alternative possibility, which we will investigate in this section, is to label each
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internal node with the loser of the match, instead of the winner, and to drop the
external nodes altogether. If we additionally place the champion on top of the tree,
we obtain the topped loser tree of Figure 3. We call the resulting data structure
priority search pennant. Since every participant—with the notable exception of the
champion—loses exactly one match, the pennant does not contain repeated entries.
It is important to note, however, that the loser tree is not heap-structured. Since
the nodes are labelled with losers, they dominate, in general, only one subtree. The
node labelled Lambert, for instance, dominates its right but not its left subtree.
Thus the loser tree constitutes only a so-called semi-heap.

The Haskell data type for priority search pennants is a direct implementation of
the above ideas except that we additionally introduce split keys to support search-
ing.

data PSQ k p = Void | Winner (k 7→ p) (LTree k p) k

data LTree k p = Start | Loser (k 7→ p) (LTree k p) k (LTree k p)

Here,Void represents the empty tournament; Winner b t m represents a tourna-
ment that b has won, t is the associated loser tree and m is the maximum key.
Likewise, Start is the empty loser tree; Loser b tl k tr represents a subtournament
that b has lost, tl is the left subtree, k is the split key, and tr is the right subtree.
The maximum key is usually accessed using the function max-key.

max-key :: PSQ k p → k
max-key (Winner b t m) = m

We will see in Section 5.1 why it is useful to keep track of the maximum key.
Priority search pennants combine the features of search trees and semi-heaps. To

formulate the invariants, it is convenient to view the top node Winner b t m as
a binary node with an empty right subtree so that the maximum key becomes an
ordinary split key (Winner b t m ∼= Loser b t m Start).

Semi-heap conditions: 1) Every priority in the pennant must be less than or
equal to the priority of the winner. 2) For all nodes in the loser tree, the priority
of the loser’s binding must be less than or equal to the priorities of the bindings
of the subtree, from which the loser originates. The loser originates from the left
subtree if its key is less than or equal to the split key, otherwise it originates from
the right subtree.

Search-tree condition: For all nodes, the keys in the left subtree must be less
than or equal to the split key and the keys in the right subtree must be greater
than the split key.

Key condition: The maximum key and the split keys must also occur as keys of
bindings.

Finite map condition: The pennant must not contain two bindings with the
same key.

Two remarks are in order. First, the second semi-heap condition shows that a pri-
ority search pennant contains enough information to reconstruct the original tour-
nament tree. This ability is crucial for implementing the priority queue operations.
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Vladimir 8

Ade 4 Johan 6 Nigel 7 Piet 5

Doaitse 2 Lambert 3

Eelco 1

Fig. 2. The heap corresponding to the tournament of Figure 1.

Ade 4 Johan 6 Nigel 7 Vladimir 8

Doaitse 2 Piet 5

Lambert 3

Eelco 1

Fig. 3. The semi-heap corresponding to the tournament of Figure 1.
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E1
V

L3
J

D2
D

A4
A

J6
E

P5
N

N7
L

V 8
P

Fig. 4. The priority search pennant corresponding to the tree of Figure 3.

Second, the key condition ensures that every search key originates from a binding
in the tree. This means, in particular, that if we delete a binding from a tree, we
must also delete the key’s second occurrence as a search key. We will see that it is
relatively easy to maintain this invariant.

Let us consider an example. If we augment the tree of Figure 3 by split keys,
we obtain the priority search pennant depicted in Figure 4. Note that the dotted
lines mark the subtrees that are not dominated by the loser. As we have remarked
before, the semi-heap structure can also be determined by comparing the loser’s
key to the split key: the node labelled Lambert, for instance, dominates its right
subtree since L > J ; the node labelled Doaitse on the other hand dominates its left
subtree since D 6 D. The pennant can quite easily be expressed as a Haskell term:

Winner (E 7→ 1) (
Loser (L 7→ 3) (

Loser (D 7→ 2) (
Loser (A 7→ 4) Start A Start)
D (
Loser (J 7→ 6) Start E Start))

J (
Loser (P 7→ 5) (

Loser (N 7→ 7) Start L Start)
N (
Loser (V 7→ 8) Start P Start)))

V.

Note that if we list the search keys from left to right, we obtain the keys of the
participants in increasing order.

Remark 2
The nodes are decorated with bindings of type k 7→ p. While this is convenient
for the presentation, it comes at a small run-time cost since every access involves
one extra level of indirection. In the production code, which is available from
http://www.cs.uu.nl/~ralf/software, we speed up the access by storing the
keys and the priorities directly in the nodes.
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b1
m2

b2
m1

t1 t2

b16b2⇐=

b1
m1

t1

&

b2
m2

t2

b1>b2=⇒

b2
m2

b1
m1

t1 t2

Fig. 5. Playing a match (b1 6 b2 is shorthand for prio b1 6 prio b2).

5.1 Constructors

The empty queue and the singleton queue are defined as follows:

∅ :: (Ord k ,Ord p) ⇒ PSQ k p
∅ = Void

{·} :: (Ord k ,Ord p) ⇒ (k 7→ p) → PSQ k p
{b} = Winner b Start (key b).

The data types PSQ and LTree have been designed to efficiently support the binary
operation (&), which corresponds to playing a match. This operation, which is used
by most of the remaining functions, takes two pennants and returns a new pennant
that is the union of the two with the precondition that the keys in the first tree
are strictly smaller than the keys in the second tree. The operation is illustrated in
Figure 5.

(&) :: (Ord k ,Ord p) ⇒ PSQ k p → PSQ k p → PSQ k p
Void & t ′ = t ′

t & Void = t
Winner b t m & Winner b′ t ′ m ′

| prio b 6 prio b′ = Winner b (Loser b′ t m t ′) m ′

| otherwise = Winner b′ (Loser b t m t ′) m ′

Note that in order to construct the loser tree we require a split key, which is why
we keep track of the maximum key in the top node. This makes ‘&’ a constant-time
operation. It is not hard to see that ‘&’ preserves the invariants of priority search
pennants. Using ‘&’ we can easily define from-ord-list.

from-ord-list :: (Ord k ,Ord p) ⇒ [k 7→ p ] → PSQ k p
from-ord-list = foldm (&) ∅ · map (λb → {b})

The helper function foldm, which is listed in the Appendix, folds a list in a binary-
sub-division fashion. For instance,

from-ord-list [A 7→ 4,D 7→ 2,E 7→ 1, J 7→ 6,L 7→ 3,N 7→ 7,P 7→ 5,V 7→ 8]

reduces to

(({A 7→ 4} & {D 7→ 2}) & ({E 7→ 1} & {J 7→ 6}))
& (({L 7→ 3} & {N 7→ 7}) & ({P 7→ 5} & {V 7→ 8})),
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which in turn evaluates to the tree of Figure 4. In general, the expression tree
generated by foldm takes the form of a Braun tree (Braun & Rem, 1983). Since ‘&’
preserves the shape of the expression tree, the priority search pennant produced by
from-ord-list corresponds to a topped Braun tree. This means, in particular, that
the shape is solely determined by the total number of participants (and not by their
priorities).

5.2 Destructors

The minimum view is implemented as follows:

view (Ord k ,Ord p) ⇒ PSQ k p = Empty | Min (k 7→ p) (PSQ k p) where
Void → Empty
Winner b t m → Min b (second-best t m).

The function second-best used in the second clause determines the second-best
player by replaying the tournament without the champion.

second-best :: (Ord k ,Ord p) ⇒ LTree k p → k → PSQ k p
second-best Start m = Void
second-best (Loser b t k u) m
| key b 6 k = Winner b t k & second-best u m
| otherwise = second-best t k & Winner b u m

Note that only those players who lost to the champion are taken into account. The
origin of the champion is determined by comparing the loser’s key to the split key.

Again, it is straightforward to see that second-best preserves the invariants except
perhaps for the key condition: does second-best also remove the search key of the
champion? This is most easily shown if we define second-best on pennants instead
of loser trees (we call this variant delete-min).

delete-min :: (Ord k ,Ord p) ⇒ PSQ k p → PSQ k p
delete-min Void = Void
delete-min (Winner b Start m)

= Void
delete-min (Winner b (Loser b′ t k u) m)
| key b′ 6 k = Winner b′ t k & delete-min (Winner b u m)
| otherwise = delete-min (Winner b t k) & Winner b′ u m

Since the argument of delete-min is always a legal pennant, m must equal key b in
the second equation by virtue of the key condition. Furthermore, we know that b is
the champion, since the champion is passed unchanged to the recursive calls. The
function second-best can now be seen as a simple optimization: we have

delete-min (Winner b t m) = second-best t m.

Remark 3
When we replay a tournament we determine the origin of a loser by comparing
the loser’s key to the split key (key b 6 k). Instead of using this perhaps costly
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comparison, we can alternatively code the information into the constructors when
building the tree:

data LTree k p = Start
| LLoser (k 7→ p) (LTree k p) k (LTree k p)
| RLoser (k 7→ p) (LTree k p) k (LTree k p).

This is, in fact, the representation we use in the production code. The original
representation, however, is slightly easier to augment by a balancing scheme.

5.3 Observers

Views are not only convenient for the client of an abstract data type. They can also
be tremendously helpful when implementing an abstract data type. The following
declaration allows us to view a pennant as a tournament tree.

view (Ord k ,Ord p) ⇒ PSQ k p = ∅ | {k 7→ p} | PSQ k p & PSQ k p
where
Void → ∅
Winner b Start m → {b}
Winner b (Loser b′ tl k tr ) m
| key b′ 6 k → Winner b′ tl k & Winner b tr m
| otherwise → Winner b tl k & Winner b′ tr m

Note that we have taken the liberty of using ∅, {·} and ‘&’ also as constructors.
There is little danger of confusion since the constructors of the view may only
appear in patterns—with the notable exception of the view transformation itself—
while the functions of the same name may only appear in expressions. The view
transformation is essentially the inverse of the ‘&’ operation. In particular, if a
winner tree matches tl & tr , then it is guaranteed that the keys in tl are strictly
smaller than the keys in tr . Furthermore, both tl and tr are non-empty.

The function to-ord-list, which converts a queue into a list of bindings ordered
by key, nicely illustrates the use of the tournament view.1

to-ord-list :: (Ord k ,Ord p) ⇒ PSQ k p → [k 7→ p ]
to-ord-list ∅ = [ ]
to-ord-list {b} = [b ]
to-ord-list (tl & tr ) = to-ord-list tl ++ to-ord-list tr

In the last clause we rely on the fact that the keys in tl precede the keys in tr .
It is instructive to rewrite the definition of to-ord-list into a form that does not

make use of views. We will see that the resulting code is much harder to read.
On the other hand, the rewrite opens the possibility of small improvements (which

1 Due to the use of (++) the definition of to-ord-list exhibits Θ(n2) worst-case behaviour. This is,
however, easily remedied using standard techniques.
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a good optimizing compiler might be able to perform automatically). As the first
step, we fuse the view transformation and the original function:

to-ord-list :: (Ord k ,Ord p) ⇒ PSQ k p → [k 7→ p ]
to-ord-list Void = [ ]
to-ord-list (Winner b Start m)

= [b ]
to-ord-list (Winner b (Loser b′ tl k tr ) m)
| key b′ 6 k = to-ord-list (Winner b′ tl k) ++ to-ord-list (Winner b tr m)
| otherwise = to-ord-list (Winner b tl k) ++ to-ord-list (Winner b′ tr m).

Note that in each of the recursive calls to-ord-list is passed a non-empty winner tree.
Furthermore, the maximum key and the split keys are never used. This suggests
specializing to-ord-list (Winner b t m) to traverse b t :

to-ord-list :: (Ord k ,Ord p) ⇒ PSQ k p → [k 7→ p ]
to-ord-list Void = [ ]
to-ord-list (Winner b t m) = traverse b t

traverse :: (Ord k ,Ord p) ⇒ (k 7→ p) → LTree k p → [k 7→ p ]
traverse b Start = [b ]
traverse b (Loser b′ tl k tr )
| key b′ 6 k = traverse b′ tl ++ traverse b tr
| otherwise = traverse b tl ++ traverse b′ tr .

Most of the following functions can be optimized along these lines.
The look-up function is very similar to the look-up function for binary search

trees. Again, the tournament view allows for a very natural implementation.

lookup :: (Ord k ,Ord p) ⇒ k → PSQ k p → Maybe p
lookup k ∅ = Nothing
lookup k {b}
| k key b = Just (prio b)
| otherwise = Nothing

lookup k (tl & tr )
| k 6 max-key tl = lookup k tl
| otherwise = lookup k tr

The running time of lookup is proportional to the height of the tree even if we search
for a binding that is high up in the tree. This observation suggests to additionally
test the bindings on the search path at the cost of one additional comparison per
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recursive call. Of course, this change neither affects the worst-case nor the average-
case running time.

lookup′ :: (Ord k ,Ord p) ⇒ k → PSQ k p → Maybe p
lookup′ k (Min b q)
| k key b = Just (prio b)

lookup′ k ∅ = Nothing
lookup′ k {b} = Nothing -- we know that k 6 key b
lookup′ k (tl & tr )
| k 6 max-key tl = lookup′ k tl
| otherwise = lookup′ k tr

Note that this version of the look-up function uses both the minimum and the
tournament view.

5.4 Modifier, insertion, and deletion

The dictionary functions adjust , insert , and delete can be most easily implemented
using the tournament view.

adjust :: (Ord k ,Ord p) ⇒ (p → p) → k → PSQ k p → PSQ k p
adjust f k ∅ = ∅
adjust f k {b}
| k key b = {k 7→ f (prio b)}
| otherwise = {b}

adjust f k (tl & tr )
| k 6 max-key tl = adjust f k tl & tr
| otherwise = tl & adjust f k tr

The modifier adjust does not change the shape of the pennant. By contrast, insert
possibly increases the height of the tree. Since the loser trees are not balanced, there
is the annoying possibility that repeated insertions may produce a degenerated tree.

insert :: (Ord k ,Ord p) ⇒ (k 7→ p) → PSQ k p → PSQ k p
insert b ∅ = {b}
insert b {b′}
| key b < key b′ = {b} & {b′}
| key b key b′ = {b} -- update
| key b > key b′ = {b′} & {b}

insert b (tl & tr )
| key b 6 max-key tl = insert b tl & tr
| otherwise = tl & insert b tr

In the case of search trees deletion is notoriously more difficult to handle than
insertion. Perhaps surprisingly, this does not hold for priority search pennants. The
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reason is simply that using the tournament view all modifications take place at the
fringe of the tree.

delete :: (Ord k ,Ord p) ⇒ k → PSQ k p → PSQ k p
delete k ∅ = ∅
delete k {b}
| k key b = ∅
| otherwise = {b}

delete k (tl & tr )
| k 6 max-key tl = delete k tl & tr
| otherwise = tl & delete k tr

Given the hybrid nature of priority search pennants the definition of delete is sur-
prisingly attractive.

5.5 Range queries

Like the second version of the look-up function, the query function at-most employs
two views simultaneously. The minimum view is used to prune the search if a node
is encountered whose priority is greater than the given one.

at-most :: (Ord k ,Ord p) ⇒ p → PSQ k p → [k 7→ p ]
at-most pt (Min b q)
| prio b > pt = [ ]

at-most pt ∅ = [ ]
at-most pt {b} = [b ] -- we know that prio b 6 pt

at-most pt (tl & tr ) = at-most pt tl ++ at-most pt tr
The second query function at-most-range additionally tests the relation of the split
key to the given range to prune the search space.

at-most-range :: (Ord k ,Ord p) ⇒ p → (k , k) → PSQ k p → [k 7→ p ]
at-most-range pt (kl , kr ) (Min b q)
| prio b > pt = [ ]

at-most-range pt (kl , kr ) ∅ = [ ]
at-most-range pt (kl , kr ) {b}
| kl 6 key b 6 kr = [b ] -- we know that prio b 6 pt

| otherwise = [ ]
at-most-range pt (kl , kr ) (tl & tr )

= guard (kl 6 max-key tl) (at-most-range pt (kl , kr ) tl)
++ guard (max-key tl 6 kr ) (at-most-range pt (kl , kr ) tr )

The helper function guard is defined

guard :: Bool → [a ] → [a ]
guard False as = [ ]
guard True as = as.

Note that the implementation can be improved by specializing at-most-range to
semi-infinite key ranges, see, for instance (Wood, 1993).

The query functions are analysed in Section 7.
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6 A balanced scheme

One of the strengths of priority search pennants as compared to priority search trees
is that the basic implementation can be easily extended by a balancing scheme.
Most schemes use rotations to restore balancing invariants. Now, while rotations
preserve the search-tree property, they do not preserve the semi-heap property as
the following example shows.

F2
E

D5
B

t1 t2

t3
 

=⇒

D5
B

t1

F2
E

t2 t3

In the original tree, both losers, D and F , dominate their right subtree. This implies
that they have not played against each other and that the winner stems from the
leftmost subtree t1. Now, if we rotate the loser tree to the right, the new root should
dominate its right subtree but it does not. To restore the semi-heap property we
have to exchange D5 and F2. We will see that, in general, at most one exchange at
the cost of at most one additional comparison is required. In other words, rotations
are constant time operations for priority search pennants.

By contrast, in the case of priority search trees we have to preserve the heap

property, which takes Θ(h) time where h is the height of the tree. This means, in
particular, that in order to ensure an overall logarithmic time bound, the number
of rotations per update must be bounded by a constant. Red-black trees (Guibas
& Sedgewick, 1978) or 2-3-4 trees (Huddleston & Mehlhorn, 1982) satisfy this con-
straint. On the other hand, AVL trees (Adel’son-Vel’skĭı & Landis, 1962) or weight-
balanced trees (Adams, 1993) do not guarantee such a bound. Ironically, Okasaki’s
elegant functional implementation of red-black trees (1999) also fails to meet this
condition.

However, for priority search pennants we can freely chose an underlying balancing
scheme. We pick Adams’s weight-balanced trees (1993) since they support insertions
and deletions equally well. A tree is weight-balanced if for all nodes either both
subtrees have at most one element or one subtree does not have more than ω times
as many elements as the opposite subtree, where ω is some constant > 3.75. To
check and to maintain the invariant, each node in a loser tree is augmented by a
size field:

type Size = Int

data Tree k p = Lf | Nd Size (k 7→ p) (Tree k p) k (Tree k p).
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Using views and smart constructors we can make the computation of the size field
totally transparent.

leaf = Lf

node b l k r = Nd (1 + size l + size r) b l k r

view Tree k p = Leaf | Node (k 7→ p) (Tree k p) k (Tree k p)
where
Lf → Leaf
Nd b l k r → Node b l k r

size :: Tree k p → Size
size Lf = 0
size (Nd s ) = s

In the sequel we will use the smart constructors leaf and node to construct weight-
balanced trees, the view constructors Leaf and Node to pattern match weight-
balanced trees, and the function size to query the size field.

The balance function defined below maintains weight-balance using single and
double rotations under the precondition that at most one subtree has changed size
by at most one element and the original tree was in balance. The algorithm is
described in more detail in Adams (1993).

balance b l k r
| size l + size r < 2 = node b l k r
| size r > ω ∗ size l = balance-left b l k r
| size l > ω ∗ size r = balance-right b l k r
| otherwise = node b l k r

balance-left b l k r@(Node rl rr)
| size rl < size rr = single-left b l k r
| otherwise = double-left b l k r

balance-right b l@(Node ll lr) k r
| size lr < size ll = single-right b l k r
| otherwise = double-right b l k r

The balance operation is essentially the same as for search trees. Only the implemen-
tation of the rotations is more elaborate since they have to maintain the semi-heap
property. Figure 6 displays the possible cases for a single rotation to the right.
Since a single rotation involves two nodes and since each node may dominate one of
two subtrees, we must distinguish four different cases. The only problematic case is
the last one, where we have to perform one additional match to determine the top
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b1
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b2
k1

t1 t2

t3

(b2 & b1) & −∞

=⇒

b2
k1

t1

b1
k2

t2 t3

b2 & (b1 & −∞)

b1
k2

b2
k1

t1 t2

t3

(b1 & b2) & −∞

=⇒

b1
k1

t1
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t2 t3

b1 & (b2 & −∞)

b1
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b2
k1

t1 t2

t3

(b2 & −∞) & b1

=⇒

b2
k1

t1

b1
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t2 t3

b2 & (−∞ & b1)

b1
k1

t1

b2
k2

t2 t3

−∞ & (b2 & b1)

b16b2⇐=

b1
k2

b2
k1

t1 t2

t3

(−∞ & b2) & b1

b1>b2=⇒

b2
k1

t1

b1
k2

t2 t3

−∞ & (b2 & b1)

Fig. 6. A single rotation to the right (−∞ represents the winner; b1 6 b2 is shorthand
for prio b1 6 prio b2).
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binding. In general, b1 is the new top binding iff key b2 > k1 and prio b1 6 prio b2.
The four cases for the left rotation are symmetric.

single-left b1 t1 k1 (Node b2 t2 k2 t3)
| key b2 6 k2 ∧ prio b1 6 prio b2 = node b1 (node b2 t1 k1 t2) k2 t3
| otherwise = node b2 (node b1 t1 k1 t2) k2 t3

single-right b1 (Node b2 t1 k1 t2) k2 t3
| key b2 > k1 ∧ prio b1 6 prio b2 = node b1 t1 k1 (node b2 t2 k2 t3)
| otherwise = node b2 t1 k1 (node b1 t2 k2 t3)

Double rotations are implemented in terms of single rotations.

double-left b1 t1 k1 (Node b2 t2 k2 t3)
= single-left b1 t1 k1 (single-right b2 t2 k2 t3)

double-right b1 (Node b2 t1 k1 t2) k2 t3
= single-right b1 (single-left b2 t1 k1 t2) k2 t3

Remark 4

Since a double rotation is defined in terms of two single rotations, at most two
additional matches are required. Perhaps surprisingly, one can show that only one
additional match suffices. A direct implementation of the double rotations is left as
an exercise to the reader.

It remains to adapt the implementation of Section 5 to balanced trees. This can
be done by a simple renaming: occurrences of the constructors Start and Loser in
patterns must be replaced by Leaf and Node; occurrences in expressions must be
replaced by leaf and balance. The smart constructor node can be used instead of
balance if the shape of the tree has not changed (as in the case of adjust) or if the
tree is known to be balanced (as in the case of from-ord-list).

Let us conclude the section with a brief discussion of the running times of the
various operations. For simplicity, we assume that we are working in a strict setting.
Weight-balanced trees have a height that is logarithmic in the number of elements.
Consequently, the dictionary operations (lookup, insert , and delete) and the priority
queue operations (Min) have a worst-case running time of Θ(log n). The conversion
functions from-ord-list and to-ord-list are both linear in the number of bindings.
Finally, the range queries take Θ(r(log n − log r)) time where r is the length of
the output list—the next section contains a detailed analysis. The following table
summarizes the running times:
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Constructors and insertion Destructors and deletion

∅ Θ(1) Empty Θ(1)
{·} Θ(1) Min Θ(log n)
insert Θ(log n) delete Θ(log n)
from-ord-list Θ(n)

Observers Modifier

lookup Θ(log n) adjust Θ(log n)
to-ord-list Θ(n)
at-most Θ(r(log n− log r))
at-most-range Θ(r(log n− log r)).

7 Analysis of at-most and at-most-range

The range queries at-most and at-most-range are so-called output-sensitive algo-
rithms, that is, their running time is not only governed by the total number of
bindings in the tree but also by the number of bindings they return as a result.
To estimate their running time we have to determine the number of nodes that
must be inspected to return r outputs. A general observation is that whenever a
player enters the output list, we must additionally check all the players who have
lost to this particular player. Consider the pennant of Figure 3. If Eelco is selected,
we must check Lambert, Doaitse, and Johan. If Lambert is also selected, we must
additionally check Piet and Nigel.

The structure becomes more apparent if we turn the binary semi-heap into a
multiway heap. The dominated subtrees become children and the non-dominated
subtrees become siblings. Figure 7 displays the tree thus obtained. This transforma-
tion is an instance of what is known as the natural correspondence between binary
trees and forests, see Knuth (1997).

To simplify the analysis let us assume that the original trees are perfectly bal-
anced as in our example, so that we have a total number of n = 2h bindings. In
this special case we obtain as the result of the transformation a so-called binomial

heap (Vuillemin, 1978). Now, in a binomial heap with n = 2h elements, we have
one node with h subtrees (namely the root), 20 nodes with h−1 subtrees, 21 nodes
with h−2 subtrees, . . . , 2h−2 nodes with 1 subtree, and 2h−1 nodes with 0 subtrees.
Summing up and and adding one for the root we obtain a total of n nodes:

n = 1 + h + 20 · (h− 1) + 21 · (h− 2) + · · ·+ 2h−2 · 1 + 2h−1 · 0.

Using the binary logarithm we can rewrite the above identity into the following
form:

n = 1 + h +
n−1∑

k=1

h− 1− blg kc.

On the right-hand side we have a sum with n + 1 summands. Now, if we only sum
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Vladimir 8

Piet 5 Nigel 7 Ade 4

Lambert 3 Doaitse 2 Johan 6

Eelco 1

Fig. 7. The multi-way heap corresponding to the binary semi-heap of Figure 3.

up the first r +1 summands, we obtain the desired maximum number of successors
of r nodes. Consequently, the worst-case running time of at-most is proportional to

1 + h +
r−1∑

k=1

h− 1− blg kc,

for 1 < r 6 n. To estimate the asymptotic growth of this function we use the
formula

m∑

k=1

blg kc = (m + 1)blg(m + 1)c − 2blg(m+1)c+1 + 2

and calculate

1 + h +
r−1∑

k=1

h− 1− blg kc

= 1 + h + (r − 1)(h− 1)− (rblg rc − 2blg rc+1 + 2)

= r lg n− r − rblg rc+ 2blg rc+1

= r(lg n− lg r) + O(r).

Thus, if r is small, we have a logarithmic running time. The running time eventually
becomes linear as r approaches n.

The second query function at-most-range enjoys the same asymptotic bound since
the test of the priority dominates the running time. Note that a range query that
considers only the keys requires merely Θ(log n + r) time.

Let us conclude the section by noting that priority search pennants answer range
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queries less efficiently than priority search trees, which support them in Θ(log n+r)
time (Fries et al., 1987). The reason is simply that the heap property is stronger
than the semi-heap property: in the case of binary heaps at most two additional
elements must be checked for every element that enters the output list. As an aside,
this also shows that binomial heaps, which are essentially sequences of semi-heaps
(Hinze, 1999b), are less well-suited for answering range queries.

8 Related work

Priority search queues We have already commented on the relationship between
priority search pennants and McCreight’s priority search trees (1985). Let us briefly
summarize the main points. Priority search trees are restricted to balancing schemes
where the number of rotations per update is bounded by a constant. By contrast, our
methods works with arbitrary balancing schemes. The asymptotic running times of
the finite map and the priority queue operations are the same for both approaches.
However, priority search trees support range queries more efficiently.

As an aside, priority search trees should not be confused with cartesian trees or
treaps, which are also a combination of search trees and priority queues (Vuillemin,
1980). In a priority search tree each node is labelled with two keys, the key of the
binding and an additional split key, whereas in a treap the key of the binding serves
as the split key, which completely determines the structure of the treap.

Tournament trees and pennants Tournament trees and loser trees already appear in
Knuth‘s TAOCP series (1998). The term pennant was coined by Sack and Strothotte
(1990) to denote topped, perfectly balanced trees (we do not require the trees to be
perfectly balanced though). Pennants are widespread: Sack and Strothotte employ
them to design algorithms for splitting and merging heaps in the form of left-

complete binary trees, Okasaki (1998a) uses pennants as a fundamental building
block for data structures modelled after number systems, pennants underly binomial

heaps (Hinze, 1999b), and they are useful for analysing red-black trees (Hinze,
1999a).

Dijkstra’s algorithm Using priority search queues we were able to implement Di-
jkstra’s shortest-path algorithm in a purely functional way. Previous formulations
like that of King (1996) relied in an essential way on stateful computations. King
writes:

. . . if a purely function solution exists for these algorithms [Dijkstra’s and Kruskal’s] it
will probably involve using a state-encapsulating combinator.

Perhaps surprisingly, by using a different abstract data type—priority search queues
instead of priority queues—we obviate the need for state. We feel that the resulting
code is much clearer than the state-based formulation.

Views Views have originally been introduced by Wadler (1987). Later the idea was
fleshed out into a proposal for an extension to Haskell (Burton et al., 1996). Okasaki
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slightly simplified the proposal and adapted it to Standard ML (1998b). A recent
paper by the same author (2000), where Okasaki strongly advocates the use of
views, revived the author’s interest in this language feature.

9 Conclusion

Priority search queues are an amazing combination of finite maps and priority
queues in that they support both dictionary and priority queue operations. Build-
ing upon the metaphor of a knockout tournament we have developed a simple, yet
efficient implementation technique for this abstract data type. In developing the
code the concept of views was tremendously helpful: views enhanced both the read-
ability and the modularity of the code. We have presented two applications of pri-
ority search queues: a purely functional implementation of Dijkstra’s single-source
shortest path algorithm and an efficient implementation of the first-fit heuristics
for the bin packing problem. We hope to see further applications in the future.
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A Auxiliary types and functions

This appendix lists auxiliary types and functions used in the paper. All of them
with the notable exception of foldm are predefined in Haskell.

The type Maybe a represents optional values of type a.

data Maybe a = Nothing | Just a

The ubiquitous data type of parametric lists is given by

data [a ] = [ ] | a : [a ].

The function foldr captures a common pattern of recursion on lists—it is also known
as the fold-functional (Sheard & Fegaras, 1993) or as a catamorphism (Meijer et al.,
1991).

foldr :: (a → b → b) → b → [a ] → b
foldr (?) b [ ] = b
foldr (?) b (a : as) = a ? foldr (?) b as
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Thus, foldr (?) b applied to the list a1 : a2 : · · · : an : [ ] yields a1 ? (a2 ? (· · · ? (an ?

b) · · ·)). Note that the parentheses group from the right. The dual computation,
where the parentheses group from the left, is performed by foldl .

foldl :: (a → b → a) → a → [b ] → a
foldl (?) a [ ] = a
foldl (?) a (b : bs) = foldl (?) (a ? b) bs

Informally, we have foldl (?) a (b1 : b2 : · · · : bn : [ ]) = (· · · ((a ? b1) ? b2) ? · · ·) ?

bn . Both, foldr and foldl , produce a degenerated expression tree. The third fold-
operator, called foldm, folds a list in a binary-sub-division fashion producing an
almost balanced tree.

foldm :: (a → a → a) → a → [a ] → a
foldm (?) e as
| null as = e
| otherwise = fst (rec (length as) as)
where rec 1 (a : as) = (a, as)

rec n as = (a1 ? a2, as2)
where m = n ‘div ‘ 2

(a1, as1) = rec (n −m) as
(a2, as2) = rec m as1

The expression tree generated by foldm takes the form of a leaf-oriented Braun
tree: for any given subexpression l ? r , the left part l has either the same number
of leaves as the right part, or one leaf more.


