
Towards a Categorical Foundation for Generic Programming

Ralf Hinze
Department of Computer Science

University of Oxford
Wolfson Building, Parks Road

Oxford, OX1 3QD, UK
ralf.hinze@cs.ox.ac.uk

Nicolas Wu
Well-Typed LLP

Oxford, UK
nick@well-typed.com

Abstract
Generic Haskell is an extension of Haskell that supports datatype-
generic programming. The central idea of Generic Haskell is to in-
terpret a type by a function, the so-called instance of a generic func-
tion at that type. Since types in Haskell include parametric types
such as ‘list of’, Generic Haskell represents types by terms of the
simply-typed lambda calculus. This paper puts the idea of interpret-
ing types as functions on a firm theoretical footing, exploiting the
fact that the simply-typed lambda calculus can be interpreted in a
cartesian closed category. We identify a suitable target category, a
subcategory of Cat, and argue that slice, coslice and comma cate-
gories are a good fit for interpreting generic functions at base types.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features; F.3.2 [Semantics of Programming
Languages]: Denotational semantics

General Terms Languages

Keywords Generic programming, category theory, slice category,
comma category

1. Introduction
Datatype-generic programming (DGP) aims at making your life
as a programmer easier by making your programs more general
and more robust. Haskell offers rudimentary support for DGP in
the form of the deriving mechanism. Instead of manually cod-
ing, for example, equality for a datatype, the Haskell programmer
attaches a deriving Eq clause to the datatype declaration. The
clause instructs the compiler to auto-generate the class methods of
Eq , equality and inequality. Simple, convenient and robust. If the
datatype is changed at a later point in time, equality and inequality
are modified accordingly behind the scenes.

Haskell’s support for DGP is only partial: the deriving mecha-
nism is limited to a few predefined classes. In particular, the Haskell
programmer cannot define her own derivable classes. This is ex-
actly what DGP allows you to do. Informally, a derivable or generic
function is defined by induction on the structure of types. Typically,
the generic programmer provides code for some type constructs, the
rest is taken care of automatically.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WGP’11, September 18, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0861-8/11/09. . . $10.00

The last two decades have witnessed a multitude of proposals
for DGP, differing in convenience, expressiveness and efficiency.
We can roughly identify three overlapping periods:

• classicism (1990 –): strong background in category theory;
• romanticism (2000 –): shift towards type-theoretic approaches;
• realism (2005 –): compiler extensions and library development.

The language extension PolyP [16] is representative of the first pe-
riod. It grew out of the work on the Algebra of Programming (AoP)
with its emphasis on structured recursion operators (folds and un-
folds). PolyP is based on a grammar for bifunctors and regular func-
tors, so it does not cover the whole of Haskell’s expressive type sys-
tem. This weakness was overcome by Generic Haskell (GH) [13],
a representative of the second period. GH uses the simply-typed
lambda calculus to represent Haskell types. GH deviates from
PolyP in that it handles type recursion implicitly, obviating the need
for recursion operators. On the negative side, the generic program-
mer is even barred from providing an instance for type recursion,
which is sometimes limiting. Finally, the third period saw a flood of
proposals that aimed at supporting DGP natively within a host lan-
guage. (PolyP and GH are both implemented as pre-processors.)
While the approaches differ wildly in the mechanics—the way
types and elements of types are represented—the principle of DGP
is unchanged: (representations of) types are interpreted by func-
tions.

This paper aspires to initiate the neoclassical period, in that it
unites classical (AoP) with romantic elements (GH). Specifically,
the paper makes the following contributions:

• we put the idea of interpreting types as functions on a firm theo-
retical footing, exploiting the fact that the simply-typed lambda
calculus can be interpreted in a cartesian closed category;

• we argue that slice, coslice and comma categories are suitable
for interpreting generic functions at base types;

• we show that type recursion can be handled explicitly, simply
by adding type constants for least and greatest fixed points;

• we work through one example in considerable depth, providing
a logical reconstruction of generic crush.

In a sense, we liberate GH from its origins in Cpo, providing a
framework that can be instantiated to other categories of interest.

The rest of the paper is structured as follows. Section 2 briefly
reviews GH (using material from [11]). Section 3 shows how to
interpret a Haskell type as a functor. We build upon two standard
results, namely, that the simply-typed lambda calculus can be inter-
preted in a cartesian closed category, and that Cat, the category of
all small categories, is cartesian closed. For a categorical model of
GH we then simply have to choose a suitable base category for in-

47

terpreting types of kind ?. Section 4 argues that slice categories fit
the bill for simple generic consumers. Section 5 dualises the con-
structors to simple generic producers and Section 6 works towards
the general construction of which the first two are special cases.
Finally, Section 7 reviews related work and Section 8 concludes.

This paper is aimed at readers who are familiar with the basics
of category theory (in particular, the concepts of categories, func-
tors, natural transformations, products, and initial algebras), say to
the level of Chapter 2 of Bird and de Moor’s textbook [1].

2. Recap: Generic Haskell
This section serves as a short introduction to Generic Haskell (GH),
illustrating the concepts of type-indexed values and kind-indexed
types by means of two worked-out examples: mapping functions
and generic size.

Before tackling the generic definition of map, we first look at
different datatypes and associated mapping functions.

As a first example consider the list datatype.

data List a = Nil | Cons a (List a)

Actually, List is not a type but a unary type constructor. In Haskell
the ‘type’ of a type constructor is specified by the kind system. For
instance, List has kind ? → ?. The kind ? represents types that
contain values. The kind T → U represents type constructors that
map type constructors of kind T to those of kind U. The mapping
function for List, called mapList, is given by

mapList :: ∀a1 a2 . (a1 → a2)→ (List a1 → List a2)
mapList mapa Nil = Nil
mapList mapa (Cons a as) = Cons (mapa a) (mapList mapa as) .

Observe that the definition of mapList rigidly follows the structure
of the datatype.

The List type constructor is an example of a regular type, which
can be defined as the least fixed point of a functor. In fact, Haskell
is expressive enough to rephrase List using an explicit fixed point
operator. We repeat this construction here as it provides us with in-
teresting examples of datatypes and associated mapping functions.
First, we define the so-called base functor of List.

data ListF a b = Nil | Cons a b

The type constructor ListF has kind ? → (? → ?). The definition
below introduces a fixed point operator on the type level.

newtype Fix f = In (f (Fix f))

The kind of Fix is (? → ?) → ?. Using Fix we can re-define List
as a fixed point of its base functor.

type List′ a = Fix (ListF a)

How can we define the mapping function for lists thus defined? For
a start, we define the mapping function for the base functor.

mapListF :: ∀a1 a2 . (a1 → a2)→ ∀b1 b2 . (b1 → b2)
→ (ListF a1 b1 → ListF a2 b2)

mapListF mapa mapb Nil = Nil
mapListF mapa mapb (Cons a b) = Cons (mapa a) (mapb b)

Since the base functor has two type arguments, its mapping func-
tion takes two functions, mapa and mapb , and applies them to
values of type a1 and b1, respectively. More interesting is

mapFix :: ∀f1 f2 . (∀a1 a2 . (a1 → a2)→ (f1 a1 → f2 a2))
→ (Fix f1 → Fix f2)

mapFix mapf (In v) = In (mapf (mapFix mapf) v) ,

which takes a polymorphic function as an argument. The argument,
mapf , has a more general type than one would probably expect: it
takes a function of type a1 → a2 to a function of type f1a1 → f2a2.

By contrast, the mapping function for List (which like f has kind
? → ?) takes a1 → a2 to List a1 → List a2. The definition of
mapList′ demonstrates that the extra generality is necessary.

mapList′ :: ∀a1 a2 . (a1 → a2)→ (List′ a1 → List′ a2)
mapList′ mapa = mapFix (mapListF mapa)

The argument of mapFix, which is mapListF mapa , has the poly-
morphic type ∀b1 b2 . (b1 → b2)→ (ListF a1 b1 → ListF a2 b2).
In other words, f1 is instantiated to ListF a1 and f2 to ListF a2.

Now, let us define a generic version of map. The instances
above indicate that the type of the mapping function depends on
the kind of the type index. In fact, the type of map can be defined
by induction on the structure of kinds. For a type t of kind ? the
mapping function mapt::? equals the identity function. Hence, its
type is t → t . In general, the mapping function mapt::T has type
MapT t t , where MapT is inductively defined

Map? t1 t2 = t1 → t2 ;
MapT→U t1 t2 = ∀x1 x2 . MapT x1 x2 → MapU (t1 x1) (t2 x2) .

In the base case Map?t1t2 equals the type of a conversion function.
The inductive case has a characteristic form. It specifies that a
‘conversion function’ between the type constructors t1 and t2 is
a function that maps a conversion function between x1 and x2 to
a conversion function between t1 x1 and t2 x2, for all possible
instances of x1 and x2. The type signatures we have encountered
before are instances of this scheme.

How can we define the generic mapping function itself? It turns
out that this is surprisingly easy. To define a generic value it suffices
to give cases for primitive types, the unit type, sums, and products,
where the latter three types are defined

data 1 = ()

data a + b = Inl a | Inr b

data a × b = (a, b) .

Assuming that we have only one primitive type, Int , the generic
mapping function is given by

mapt::T :: MapT t t
mapInt i = i
map1 () = ()
map+ mapa mapb (Inl a) = Inl (mapa a)
map+ mapa mapb (Inr b) = Inr (mapb b)
map× mapa mapb (a, b) = (mapa a,mapb b) .

This straightforward definition contains all the ingredients needed
to derive maps for arbitrary datatypes of arbitrary kinds. In fact, all
the definitions we have seen before are instances of this scheme.

While a generic mapping function preserves the structure of its
argument, a reduction, or crush, is a generic function that collapses
such a structure into a single value. An example of this is size ,
which is a generalisation of length :: ∀a . List a → Int that works
on arbitrary container types. The size function for a list is defined

sizeList :: ∀a . (a → Int)→ (List a → Int)
sizeList sizea Nil = 0
sizeList sizea (Cons a as) = sizea a + sizeList as .

Instantiating sizea to const 1 gives us the familiar length function,
and instantiating it to id gives the sum function over lists.

Defining a generic version of size can be done in much the
same way as the previous map example. As before, we define size
by using induction on the structure of kinds. The generic function
sizet::T has type SizeT t , where SizeT is given by

Size? t = t → Int ;
SizeT→U t = ∀x . SizeT x → SizeU (t x) .

48

The size function itself is defined by giving cases for each of the
primitive types, so that we have

sizet::T :: SizeT t
sizeInt i = 0
size1 () = 0
size+ sizea sizeb (Inl a) = sizea a
size+ sizea sizeb (Inr b) = sizeb b
size× sizea sizeb (a, b) = sizea a + sizeb b .

To summarise, a generic function possesses a kind-indexed type
and is defined by providing instances for the type constants of GH.

3. The simply-typed lambda calculus
The central idea of generic programming is to interpret a type by
a function, the so-called instance of a generic function at that type.
Different approaches to generic programming differ in the language
that is used to represent types [14]. PolyP [16], for instance, is
based on a grammar for bifunctors and regular functors. Generic
Haskell uses the simply-typed lambda calculus to model Haskell’s
expressive type system. The latter choice is particularly attractive
as it covers a large class of types. Furthermore, the simply-typed
lambda calculus can be interpreted in a cartesian closed category,
which is key to the categorical treatment of Generic Haskell.

The rest of the section is structured as follows. We first revise
syntax and semantics of the simply-typed lambda calculus (Sec-
tion 3.1). Next a category suitable for interpreting lambda terms as
functors (Section 3.2) is introduced. We then provide some back-
ground to Mendler-style folds and unfolds (Section 3.3) before spe-
cialising the interpretation of lambda terms to this category (Sec-
tion 3.4).

3.1 A categorical model of the simply-typed lambda calculus
We assume a syntactic category of type constants b and a syntactic
category of term constants c. The following development is para-
metric in this data.

The raw syntax of the lambda calculus is given below.

t ::= b | t1 → t2 | t1 × t2

e ::= c | x | λ x : t . e | e2 e1 | (e1, e2) | fst e | snd e

We have added products to the language; they are required anyway
and they are jolly useful in modelling mutual recursion. For reasons
of space, we omit the typing rules that identify proved lambda terms
among the raw terms—they are entirely standard [6].

Turning to the semantics, let C be a cartesian closed category.
Types are interpreted as objects in C , and terms are interpreted as
arrows. Cartesian closure requires the existence of a final object (1,
!), products (A × B , outl , outr , f M g), and exponentials (BA,
apply , curry). An interpretation I is fixed by assigning objects
to the type constants, Ib , and so-called elements, arrows of type
C (1,A), to the term constants, Ic . Figure 1 lists the semantic
equations. The semantics of a proved term is defined by induction
over its typing derivation: JΓ ` e : tK : C (JΓK, JtK). In words, the
interpretation of a term is an arrow from the interpretation of the
context to the interpretation of its type. (If the interpretation I is
not obvious from the context, we write I J−K for emphasis.) Types
are interpreted in the obvious way, JtK : C ; the interpretation of a
context, JΓK : C , is a ‘run-time environment’, a nested product. If
e : t is closed, then its interpretation Je : tK is an element of JtK,
an arrow of type C (1, JtK).

3.2 Cartesian closure of Cat

In order to apply the framework to the specialisation of generic
functions, we have to exhibit a suitable category that allows us to
interpret terms as functors. Functors are arrows in Cat, the cate-
gory of all small categories. All that is left to do is to demonstrate

JbK = Ib

Jt1 → t2K = Jt2KJt1K

Jt1 × t2K = Jt1K× Jt2K

J()K = 1
JΓ, x : tK = JΓK× JtK

JΓ ` c : tK = Ic · !
JΓ, x : t ` x : tK = outr
JΓ, y : t ` x : tK = JΓ ` x : tK · outl
JΓ ` λ x : t1 . e2 : t1 → t2K = curry JΓ, x : t1 ` e2 : t2K
JΓ ` e2 e1 : t2K =

apply · (JΓ ` e2 : t1 → t2K M JΓ ` e1 : t1K)
JΓ ` (e1, e2) : t1 × t2K = JΓ ` e1 : t1K M JΓ ` e2 : t2K
JΓ ` fst e : t1K = outl · JΓ ` e : t1 × t2K
JΓ ` snd e : t2K = outr · JΓ ` e : t1 × t2K

Figure 1. Semantics of types, contexts and terms.

that Cat is cartesian closed. This is a known fact [18, p. 98], but
it is instructive to work through the exercise. Moreover, since our
goal is to calculate the definition of a functor including its arrow
part from a type term, we have a vital interest in the details.

The final object in Cat is 1, the category that consists of a
single object ∗ and a single arrow, the identity id∗. The functor
! : C → 1 is defined ! A = ∗ and ! f = id∗. Finality means that !
is the unique functor of this type.

The product category C × D is the product in Cat. An object
of C1 × C2 is a pair (A1,A2) of objects A1 : C1 and A2 : C2; an
arrow of (C1×C2)((A1,A2), (B1,B2)) is a pair (f1, f2) of arrows
f1 : C1(A1,B1) and f2 : C2(A2,B2). Identity and composition are
defined component-wise: id = (id , id) and (f1, f2)·(g1, g2) = (f1·
g1, f2 · g2). Like for object-level products, we have two projection
functors Outl : C ×D → C and Outr : C ×D → D given by

Outl (A,B) = A ,

Outl (f , g) = f ,

Outr (A,B) = B ,

Outr (f , g) = g .

Let F : C → D and G : C → E be two functors with a common
source, the ‘split’ functor F M G : C → D × E is defined

(F M G) A = (F A,G A) ,

(F M G) f = (F f ,G f) .

It is not hard to see that the action on arrows preserves identity and
composition. The split functor enjoys the universal property

H = F M G ⇐⇒ Outl · H = F ∧ Outr · H = G ,

which states that the product category is indeed a product in Cat.
We now turn to the exponentials in Cat, the category DC

of functors and natural transformations. The application functor
Apply : DC × C → D is given by

Apply (F,A) = F A ,

Apply (α, f) = G f · α A = α B · F f .

The action on objects is simply the application of the functor. The
action on an arrow (α, f), where α : F→̇G and f : A→ B , can be
given two equivalent definitions, G f · αA = αB · F f , which fall
out of the naturality condition on α : F →̇G. Of course, we have to
make sure that Apply preserves identity and composition.

Turning to the definition of currying, we first introduce the
concept of a partially applied functor. Let F : C × D → E and
let A : C , define FA : D → E by FA B = F (A,B) and
FA g = F (idA, g). It is not hard to see that FA is a functor.
Furthermore, given f : C (A,B), define the natural transformation
Ff : FA →̇ FB by Ff X = F (f , idX). Using partial application,

49

we define Curry F : C → E D by

Curry F A = FA ,

Curry F f = Ff .

The action on arrows sends an arrow f : C (A,B) to a natural
transformation Curry F f : Curry F A →̇ Curry F B . This time it
is probably not immediate that Curry F is a functor, so the reader
is encouraged to work through the details. Currying satisfies the
universal property

G = Curry F ⇐⇒ Apply · (G× Id) = F ,

which states that DC is the exponential in Cat.

3.3 Mendler-style folds and unfolds
Generic Haskell treats recursion implicitly: recursion on the type
level is mapped to recursion on the value level. Since we are aiming
for a categorical foundation of GH, we have to make type recursion
explicit. In a categorical setting, inductive datatypes are modelled
by initial algebras and coinductive datatypes by final coalgebras.
Let F : C → C be a functor, we denote the initial F-algebra
by (µF, in) and the final F-coalgebra by (νF, out). For instance,
in Set, µL with L A = 1 + N × A is the type of finite lists of
natural numbers, while νL is the type of colists, which comprises
both finite and infinite lists. In Cpo⊥, initial algebras and final
coalgebras coincide—this is why GH is able to treat recursion
uniformly.

Traditionally, functions from an initial algebra are given by
folds (aka catamorphisms) and functions to a final coalgebra are
given by unfolds (aka anamorphisms). We deviate from standard
practice and use Mendler-style folds and unfolds [22] instead since
they blend more nicely with GH. Informally, Mendler-style folds
capture the idea that the semantics of a recursion equation is given
by the fixed point of its associated base function. As an example,
consider the function sum : µL → N, which sums a list of
natural numbers. Written in a point-free style, sum is given by the
recursion equation

sum · in = zero O plus · (id × sum) ,

where zero : 1 → N corresponds to 0 and plus : N × N → N
is addition. We obtain the base function by turning the right-hand
side into a function in the variable sum . Applying the Mendler-
style fold to the result, ((λ sum . zero O plus · (id × sum))), then
yields the unique solution of the recursion equation.

Formally, let Ψ be a base function that sends an arrow f :
C (A,B) to an arrow Ψf : C (FA,B) such that Ψ(f ·h) = Ψf ·Fh .
The side condition formalises that Ψ is natural in A:

Ψ : ∀X . C (X ,B)→ C (F X ,B) .

The Mendler-style fold ((Ψ)) : C (µF,B) is then characterised by
the uniqueness property (UP)

h = ((Ψ)) ⇐⇒ h · in = Ψ h . (3.1)

Substituting the left-hand side into the right-hand side gives the
computation law:

((Ψ)) · in = Ψ ((Ψ)) ,

which can be seen as the defining equation of ((Ψ)). The UP states
that ((Ψ)) is the unique solution of this equation. The computation
law has a straightforward operational reading. The argument of
Ψ ((Ψ)) is destructed—this can be seen more easily if we move the
isomorphism in : C (F (µF), µF) to the right: ((Ψ)) = Ψ ((Ψ)) · in◦.
Thus, Ψ((Ψ)) takes an argument of type F(µF). The base function Ψ
then works on the F-structure, possibly applying its argument ((Ψ))
to recursive substructures of type µF. The naturality of Ψ ensures
that the substructures can only be passed to the recursive calls.

The UP (3.1) has three other consequences that are worth sin-
gling out. Setting Ψ:=λ f . in ·F f and h = id yields the reflection
law:

((λ f . in · F f)) = id . (3.2)

The most important consequence is the fusion law:

h · ((Φ)) = ((Ψ)) ⇐= h · Φ f = Ψ (h · f) , (3.3)

which states a condition for fusing an application of a function with
a fold to form another fold.

Finally, the type constructor µ can be turned into a higher-order
functor of type C C → C . The object part of this functor maps a
functor to its initial algebra. The arrow part, which maps a natural
transformation α : F →̇ G to an arrow µα : C (µF, µG), is given
by:

µα = ((λ f . in · α f)) ,

where α f is shorthand for Apply (α, f), the arrow part of the
application functor. To establish functoriality, we have to show that
µidF = idµF and µ(β·α) = µβ·µα. That µ preserves identity is an
immediate consequence of reflection. Preservation of composition
is a consequence of the functor fusion law:

((Ψ · α)) = ((Ψ)) · µα . (3.4)

Functor fusion expresses that ((−)) is natural in F:

((−)) : ∀F . (∀X . C (X ,B)→ C (F X ,B))→ C (µF,B) .

This is a higher-order naturality property [9] as F is a functor.
Using GH’s kind-indexed types the signature can be written more
succinctly as ((−)) : Fold (?→?)→? µ, where Fold? X = C (X ,B).

Using µ we can express that in : F (µF)→ µF is natural in F:

µα · in = in · α (µα) . (3.5)

As an aside, Mendler-style folds and traditional folds are in
one-to-one correspondence. The proof makes use of the so-called
Yoneda Lemma. Very briefly, let H : C → Set be a Set-valued
functor, and let A : C be an object, then

H A ∼= C (A,−) →̇ H .

Instantiating H to D(F−,Y) : C op → Set, we have

H Y ∼= C op(Y ,−) →̇ H

⇐⇒ { definition of H }
D (F Y ,Y) ∼= ∀A . C (A,Y)→ D(F A,Y) .

If an algebra a and a base function Ψ are related by the isomor-
phism, then the traditional fold ((a)) and the Mendler-style fold ((Ψ))
are, in fact, equal [12]. The Yoneda Lemma is worthwhile memo-
rising as we shall find several uses for it.

The development above nicely dualises to final coalgebras and
unfolds. Let Ψ : ∀Y . C (A,Y)→ C (A,GY) be a base function.
The Mendler-style unfold [(Ψ)] : C (A, νG) is then characterised by
the uniqueness property

h = [(Ψ)] ⇐⇒ out · h = Ψ h . (3.6)

3.4 The interpretation of lambda terms in Cat

In Section 3.2 we have set up the general framework. To fill it
with life we have to populate the syntactic categories b and c. The
particulars depend on the generic language and the generic program
at hand—not every function makes sense for every collection of
type constructors. Re-using the semantic symbols for the syntactic
entities, a fairly complete set of constants is

b ::= ? ,

c ::= Int | 0 | 1 | + | × | µ | ν .

50

JbK = Ib

Jt1 → t2K = Jt2KJt1K

Jt1 × t2K = Jt1K× Jt2K

J()K = 1
JΓ, x : tK = JΓK× JtK

JΓ ` c : tK % = Ic

JΓ, x : t ` x : tK % = Outr %
JΓ, y : t ` x : tK % = JΓ ` x : tK (Outl %)
JΓ ` λ x : t1 . e2 : t1 → t2K % = λ F . JΓ, x : t1 ` e2 : t2K (%,F)
JΓ ` e2 e1 : t2K % =

(JΓ ` e2 : t1 → t2K %) (JΓ ` e1 : t1K %)
JΓ ` (e1, e2) : t1 × t2K % = (JΓ ` e1 : t1K %, JΓ ` e2 : t2K %)
JΓ ` fst e : t1K % = Outl (JΓ ` e : t1 × t2K %)
JΓ ` snd e : t2K % = Outr (JΓ ` e : t1 × t2K %)

Figure 2. The categorical semantics specialised to Cat.

Since we interpret lambda terms as functors, type terms become
kind terms and terms become type terms. The syntactic category b
comprises only a single element: the kind ? represents the type of
types. This choice is influenced by Haskell’s type system, which
only has one base kind. The syntactic category c features constants
for integers (representative for primitive types), initial objects, final
objects, coproducts, products, initial algebras and final coalgebras.
The kinds of these constants are fixed as:1

Int , 0, 1 : ? ,

+,× : ?× ?→ ? ,

µ, ν : (?→ ?)→ ? .

Note that the fixed-point operators µ and ν are restricted to types
of kind ?, that is, we cannot define nested datatypes [2]. We do not
foresee any problems in extending fixed-points to higher types, but
for now we have left this to future work. Also, the list does not
include exponentials, simply because the kind system is too weak:
we cannot express that (=)(−) : C op × C → C is contravariant in
its first argument. A suitable extension is again left to future work.

Turning to the semantics, we have to interpret the kind con-
stant ? by a base category C and the type constants by functors
over C . Naturally, the two choices go hand in hand. In particu-
lar, if µ is meant to denote the initial algebra functor, then we
have to restrict C to a ω-cocomplete category and we have to
make sure that ω-cocompleteness is preserved by the constructions.
Furthermore, we have to ensure that the definable functors are ω-
cocontinuous. Likewise, for ν we require ω-completeness and ω-
continuity. If C is ω-cocomplete and ω-complete, then the other
conditions are met—the details are beyond the scope of this pa-
per. Finally, let us point out that there is no need to map, say, + to
a coproduct. The semantic entities only have to be functorial. For
instance, the category Cpo of complete partial orders and contin-
uous functions has no coproducts, so we have to interpret + by the
coalesced sum or by the separated sum.

It is high time to look at examples, deriving mapping functions
for types of interest. Haskell like many other languages maintains a
strict phase distinction. Types are compile-time entities, so we can
safely assume that we only need to specialise closed type terms—
Haskell makes the same assumption for its deriving mechanism.
In Figure 2 we have specialised the categorical semantics to Cat,
making the environment explicit. The equations are easy to mem-
orise: pairing is interpreted by pairing, application by application,
and abstraction by abstraction. Now, specialising the list datatype
List = λ A . µ(λ B . 1 + A × B) yields the following mapping

1 Although Haskell has no product kinds, we introduce them here since
they are convenient in our definitions: recovering kinds that can be used
in Haskell can be achieved through currying.

function from the functorial action on arrows:

λ f . ((λ g . in · (id1 + f × g))) .

We have plugged in the definitions of the type constants, in particu-
lar, µα = ((λ f . in ·α f)). For rose trees Rose = λA . µ(λB . A×
List B), we obtain

λ f . ((λ g . in · (f × List g))) .

The node of a rose tree has a list of sub-trees. We can generalise
the construction, if we parametrise Rose by a ‘sub-tree functor’:
GRose = λF . λA . µ(λB . A×FB). The functor GRose is truly
higher-order: it takes a functor to a functor—in Haskell jargon, it
has kind (? → ?) → (? → ?). Nonetheless, its mapping function
is straightforward to determine:

λ α . λ f . ((λ g . in · (f × α g))) .

Like the type, it simply abstracts away from List.

4. Simple generic consumers
In the previous section we have seen that a lambda term can be in-
terpreted as a functor. The functorial action on arrows corresponds
to Generic Haskell’s mapping function. In this section, we show
how to capture simple generic consumers such as generic size or
crush [20]. Perhaps surprisingly, the changes are minor: the kind ?
is interpreted by a different category, one that has more structure,
and, as a consequence, the interpretation of the type constants has
to be adapted. The one-million-dollar question is, of course, what
constitutes a suitable base category. We argue that a so-called slice
category fits the bill, so the interpretation of ? is defined

G? = C ↓Y ,

where G stands for a generic interpretation. Before we adapt the
interpretation of the type constants, we have to introduce slice
categories first and this is what we do after a short interlude.

4.1 Recap: Generic size and crush
A simple generic consumer is a function of type A→ Y , where A
is the type index or generic type and Y is some fixed type. The
generic size function is the paradigmatic example of a consumer.
For size , the type Y is instantiated to the type of natural num-
bers N. In Section 2 we have seen the Generic Haskell version of
size . Written using categorical combinators, it takes the following
form:

sizeInt = zero
size0 = ¡
size1 = zero
size+ = λ (f , g) . f O g
size× = λ (f , g) . plus · (f × g)
sizeµ = λ γ . ((γ)) .

Taking the size cannot sensibly be defined for final coalgebras,
which is why the case for ν is missing. The definitions for 0, +
and µ (the colimits) are “for free” in a sense we shall make precise
later. For now we just note that the instances are just the mediating
arrows for these types (¡, − O =, ((−))).

The definition of size has only two specific cases: 1 and ×.
These are determined by the constant zero : 1 → N and the
operation plus : N×N→ N. The generic function crush abstracts
away from these two ingredients. Given a constant e : 1→ Y and
a binary operation op : Y ×Y → Y , it is defined

crushInt = e
crush0 = ¡
crush1 = e
crush+ = λ (f , g) . f O g
crush× = λ (f , g) . op · (f × g)
crushµ = λ γ . ((γ)) .

51

We shall use crush as a running example. Indeed, the following can
be seen as a logical reconstruction of this definition.

4.2 Slice category
How can we model size or crush in our framework? We need a
way to associate an arrow with an object: crush0 with 0, crush1

with 1, and so forth. This is exactly what a so-called slice category
allows us to do.

Let C be a category and let Y : C be an object of C . An
object of the slice category C ↓ Y is a pair (A, a) where A : C
is an object and a : A → Y : C is an arrow. An arrow
f : (A, a) → (B , b) : C ↓ Y of the slice category is an arrow
f : A→ B : C of the underlying category such that a = b · f .

A

Y

a
g

A
f
� B

Y

≺
ba �

B

Y

b
g

In short, objects are arrows and arrows are commuting triangles.
Identity and composition are inherited from the base category C :
Clearly, idA serves as the identity on (A, a) as a = a · idA. The
diagram below shows that composition takes commuting triangles
to commuting triangles: b = c · g and a = b · f imply a = c · g · f .

A
idA � A

Y

≺
a

a �

A
f
� B

g
� C

Y

b
g ≺

ca �

We can easily turn the instances of crush at base types into
objects of the slice category C ↓ N—assuming that N lives in C .
The type index is the object part, and the generic instance at that
type is the arrow part: (0, crush0), (1, crush1), etc. Given h :
(A, crushA) → (B , crushB), the arrows of C ↓ N satisfy the
following fusion property: crushB = crushA · h .

A slice category adds structure on top of a base category. In such
a situation, there is a functor that forgets about the extra structure.
The forgetful or underlying functor UY : C ↓Y → C forgets about
the base object Y and the arrows into Y :

UY (A, a) = A ,

UY f = f .

We shall also need an operation that extracts the arrow compo-
nent from an object.

α (A, a) = a (4.1)

Since α maps an object to an arrow it is actually a transformation
of type α (A, a) : (A, a)→ (Y , idY). It is furthermore natural in
(A, a) as a quick calculation shows. Let h : (A, a)→ (B , b), then

α (A, a) = α (B , b) · h
⇐⇒ { definition of α }

a = b · h
⇐⇒ { assumption: h : (A, a)→ (B , b) }

true .

Let us now investigate the structure of slice categories more
closely. This will pay considerable dividends later when we dis-
cuss the interpretation of the type constants. To this end we shall
use the categorical concept of an adjunction. For a calculational in-
troduction to adjunctions we refer the interested reader to the paper
“Adjunctions” [8].

If the category C has products, then the forgetful functor UY

has a right adjoint, the so-called pairing functor PY : C → C ↓Y .

C
≺

UY

⊥
PY

�
C ↓Y

The pairing functor is defined

PY A = (A×Y , outr) ,

PY f = f ×Y .

The functor PY pairs its argument with Y , hence its name. It
respects the types, PY f : PY A → PY B , as outr = outr ·
(f × Y). To establish the adjunction we have to show that certain
arrows in C are in one-to-one correspondence with certain arrows
in C ↓Y :

C (UY (A, a),B) ∼= (C ↓Y)((A, a),PY B) .

Intuitively the adjunction captures the idea of caching: an attribute
a : A → Y is cached by pairing B with a’s value. The adjuncts
make this explicit

bf : UY (A, a)→ Bc = f M a ,

dg : (A, a)→ PY Be = outl · g .

The left adjunct respects the types, bf c : (A, a) → PY B , as
a = outr · (f M a). The following calculations show that b−c and
d−e are indeed inverses.

dbf ce
= { definitions }

outl · (f M a)

= { split computation }
f

bdgec
= { definitions }

outl · g M a

= { assumption: a = outr · g }
outl · g M outr · g

= { split fusion }
(outl M outr) · g

= { split reflection }
g

Adjunctions come with a wealth of properties. One important
fact to remember is that left adjoints preserve colimits and right
adjoints preserve limits. We shall repeatedly make use of these
facts.

In the previous section we have interpreted a type of kind ?→ ?
as a functor F : C → C . Now that the base category is C ↓ Y we
interpret the type as a functor F̄ : C ↓Y → C ↓Y . Of course, the
two interpretations should be related. If we forget about the base
object Y and the arrows into Y , that is the generic instances, then
F̄ should behave like F. This idea is formally captured using the
notion of lifting.

4.3 Lifting
A functor F̄ : C ↓ Y → D ↓ Z is a lifting of F : C → D if
U ◦ F̄ = F ◦ U.

C ↓Y

U
��

F̄ // D ↓ Z

U
��

C
F

// D

Liftings of F can be characterised neatly: they are in one-to-one
correspondence to natural transformations of type

∀A . C (A,Y)→ D(F A,Z) . (4.2)

52

RT ⊆ I JTK× G JTK
(A,C) ∈ R∗ ⇐⇒ A = U C

(A,C) ∈ RT×U ⇐⇒ (Outl A,Outl C) ∈ RT ∧ (Outr A,Outr C) ∈ RU

(F,H) ∈ RT→U ⇐⇒ ∀X Z . (X ,Z) ∈ RT =⇒ (F X ,H Z) ∈ RU

Figure 3. Generalising the notion of lifting to higher kinds (slice categories).

Recall that in GH the instance of size for a type F of kind ? → ?
has type Size?→? F = ∀A . (A → N) → (F A → N). Equat-
ing polymorphic functions with natural transformations, the size
instance induces an endofunctor over slice categories. The exact
match between GH and the categorical model is quite reassuring
and it shows that we are on the right track. The Yoneda Lemma ac-
tually allows us to simplify the type (4.2) to D(FY ,Z). While this
is a convenient simplification in this instance, it does not generalise
to higher-order kinds.

Turning to the proof of the claim, let us first spell out the nat-
urality condition associated with (4.2). Let τ be a natural transfor-
mation of this type and let h : A← B , then

τ A f · F h = τ B (f · h) , (4.3)

for all f : A → Y . Note that C (−,Y) and D(F −,Z) are
contravariant functors of type C op → Set, which is why the
direction of h is reversed.

Given a natural transformation τ , we can construct a lifting
Fτ : C ↓Y → D ↓ Z as follows

Fτ (A, a) = (F A, τ A a) , (4.4a)
Fτ f = F f . (4.4b)

Because Fτ has to be a lifting, its action on A and f is given by F;
the natural transformation τ specifies the action on a . Since F is a
functor, it is immediate that Fτ preserves identity and composition.
It remains to check that Fτ respects the types.

Fτ f : Fτ (A, a)→ Fτ (B , b) ⇐= f : (A, a)→ (B , b)

We reason

τ B b · F f

= { τ is natural (4.3) }
τ A (b · f)

= { assumption }
τ A a .

Conversely, given a lifting F̄ we can define a natural transfor-
mation

τF̄ A a = α (F̄ (A, a)) . (4.5)
We apply F̄ to the object (A, a) and then extract the arrow. We have
to show that τF̄ is natural. Let h : A← B , then

τF̄ A f · F h

= { definition of τF̄ (4.5) }
α (F̄ (A, f)) · F h

= { F̄ lifting of F and h : (B , f · h)→ (A, f) }
α (F̄ (A, f)) · F̄ h

= { α natural and F̄ h : F̄ (B , f · h)→ F̄ (A, f) }
α (F̄ (B , f · h))

= { definition of τF̄ (4.5) }
τF̄ B (f · h) .

It is not too hard to see that liftings and natural transformations of
type (4.2) are in one-to-one correspondence:

τFτ = τ , (4.6a)

FτF̄
= F̄ . (4.6b)

One direction is just a matter of unrolling the definitions.

τFτ A a

= { definition of τF̄ (4.5) }
α (Fτ (A, a))

= { definition of Fτ (4.4a) }
α (F A, τ A a)

= { definition of α (4.1) }
τ A a

For the other direction we make use of the fact that F̄ and Fτ are
liftings of F.

FτF̄
(A, a)

= { definition of Fτ (4.4a) }
(F A, τF̄ A a)

= { definition of τF̄ (4.5) }
(F A, α (F̄ (A, a)))

= { F̄ lifting of F }
F̄ (A, a)

FτF̄
f

= { Fτ lifting of F }
F f

= { F̄ lifting of F }
F̄ f

So far we have discussed liftings of endofunctors. Since type
expressions may have arbitrary kinds, we need to generalise the
notion to arbitrary higher-order functors. To this end, we set up a
logical relation, defined by induction over the structure of kinds,
see Figure 3. An object C of a slice category is a lifting of an
object A of the underlying category, if A is C ’s ‘carrier’. The
second clause expresses that pairs are related iff the components
are related. Finally, the third clause closes the logical relation under
application and abstraction. For example,

(F, F̄) ∈ R?→? ⇐⇒ U ◦ F̄ = F ◦ U ,

as desired.
We have two interpretations of type expressions, the standard

one I and the ‘generic’ one G. The Basic Lemma of logical
relations [23] guarantees that the two interpretations are related,

(I JtK,G JtK) ∈ RT for all t : T,

if the interpretations of the type constants are related

(Ic ,Gc) ∈ RT for all c : T.

Returning to our running example, the definition of a generic
crush, we shall now consider the various type constants, one by
one, and discuss how to define appropriate liftings. Quite pleas-
ingly, more than half of the definitions are “for free” in the sense
that there is one canonical choice. For instance, we shall see that

53

the coproduct in C ↓ Y is the lifting of the coproduct in C . Con-
sequently, a canonical interpretation of the type constant + is the
coproduct in C ↓Y . But we are leaping ahead.

4.4 Initial object
The initial object in C ↓Y is a lifting of the initial object in C . This
is because the underlying functor preserves colimits: UY 0 = 0.
Since furthermore there is a unique arrow from 0 to Y we have

0 = (0, ¡Y) .

Initiality requires that there is a unique arrow from (0, ¡Y) to any
other object (A, a). Since U preserves colimits, we know that
U (¡(A,a)) = ¡U (A,a). For an explicit proof, we have to show that
¡(A,a) respects the types, ¡(A,a) : (0, ¡Y) → (A, a). The resulting
condition, ¡Y = a · ¡A, is just an instance of fusion.

0
¡A � A

Y

≺
a

¡
Y �

Since 0 is a lifting of 0 and there is only one lifting, the defini-
tion of a generic consumer for 0 is for free.

G0 = 0

4.5 Final object
The slice category C ↓Y always has a final object:

1 = (Y , idY) .

The unique arrow !(A,a) from (A, a) to (Y , idY) has to satisfy
a = idY · !(A,a), Consequently, !(A,a) = a .

A
a
� Y

Y

≺ id
Ya �

Another way to determine the final object is to recall that PY

preserves limits: PY 1 = 1. The reader is invited to check the
details.

Turning to the definition of the instance for crush, we note that
1 : C ↓ Y is not a lifting of 1 : C . (This also implies that UY has
no left adjoint.) Hence, the generic programmer has to supply an
instance definition:

G1 = ¬ where ¬ = (1, e) .

Here, e : 1→ Y is the constant given to us.

4.6 Coproduct
Since a coproduct is a colimit, we might hope to obtain this instance
for free as well. Recall that a coproduct consists of four pieces of
data: an object A + B , constructors inl and inr , and a mediating
arrow O. Since UY preserves colimits, the carrier of the coproduct
in a slice category is easy to determine: we have UY ((A, a) +
(B , b)) = UY (A, a) + UY (B , b) = A + B . To determine the
arrow component, we reason as follows. Preservation of colimits
furthermore implies that U inl = inl and U inr = inr . In other
words, inl and inr also serve as constructors in the slice category.
We have inl : (A, a) → (A + B , x) and inr : (B , b) →

(A + B , x), where x is the unknown arrow. Let’s calculate.

inl : (A, a)→ (A + B , x) ∧ inr : (B , b)→ (A + B , x)

⇐⇒ { definition of C ↓Y }
a = inl · x ∧ b = inr · x

⇐⇒ { universal property }
a O b = x

Consequently, the coproduct in a slice category is defined

(A, a) + (B , b) = (A + B , a O b) .

It remains to show that the mediating arrow O respects the types.

f O g : (A + B , a O b)→ (C , c)

⇐= f : (A, a)→ (C , c) ∧ g : (B , b)→ (C , c)

We reason

c · (f O g)

= { fusion }
(c · f) O (c · g)

= { assumption }
a O b .

Since + is a lifting, the instance of generic crush is indeed for
free.

G+ = +

We should point out, however, that this is merely a canonical
choice, it is by no means the only one. Generalising the argument
of Section 4.3 to bifunctors, liftings of + are in one-to-one corre-
spondence to natural transformations of type

∀A B . C (A,Y)× C (B ,Y)→ C (A + B ,Y) .

Using Yoneda’s Lemma once more, we find that natural transfor-
mations of this type in turn are in one-to-one correspondence to
arrows of type C (Y + Y ,Y).

C (Y +Y ,Y) ∼= ∀AB . C (A,Y)×C (B ,Y)→ C (A+B ,Y)

As an example, a generic encoder that maps a value to a bit string
might use the lifting induced by cons 0 O cons 1, where cons
prepends a bit to a bit string.

4.7 Product
A product in a slice category is a so-called pullback in the underly-
ing category, so × is not a lifting of ×. We have to start afresh.

In order to define a lifting of × we use the characterisation of
bifunctors provided in the previous section. Liftings of × are in
one-to-one correspondence to binary operations of type Y ×Y →
Y . Using the operation op : Y × Y → Y given to us, a suitable
lifting for crush is defined

(A, a)⊗ (B , b) = (A× B , op · (a × b)) . (4.7)

The interpretation of × then uses this lifting.

G× = ⊗

4.8 Initial algebra
Initial algebras are colimits so again one might hope to get the
definition for free. The only slight ‘complication’ is that the kind
of the type constructor is more complicated: µ is a higher-order
functor that takes a functor to an object. Instantiating the logical
relation of Section 4.3 to kind (? → ?) → ? we have to show
that (as usual we overload µ to denote both the initial algebra in the
slice category and in the underlying category)

U ◦ F̄ = F ◦ U =⇒ U (µF̄) = µF .

54

Note that we can assume that the argument of µ is a lifting. We only
have to determine the initial algebra of liftings, which simplifies
matters. The implication already fixes the ‘carrier’ of µF̄, it remains
to determine the arrow component. We apply the same reasoning as
for coproducts: since U preserves colimits, in and ((−)) are inherited
from the base category. For the algebra in , this entails

in : F̄ (µF̄)→ µF̄

⇐⇒ { setting µF̄ = (µF, x) }
in : F̄ (µF, x)→ (µF, x)

⇐⇒ { characterisation of liftings: FτF̄
= F̄ (4.6b) }

in : (µF, τF̄ x)→ (µF, x)

⇐⇒ { definition of C ↓Y }
τF̄ x = x · in

⇐⇒ { uniqueness property (3.1) }
x = ((τF̄)) .

Consequently, the initial algebra is given by

µF̄ = (µF, ((τF̄))) . (4.8)

It remains to show that ((−)) also respects the types.

((−)) : (∀X̄ . (X̄ → B̄)→ (F̄ X̄ → B̄))→ (µF̄→ B̄)

⇐⇒ { definitions }
τF̄ (b · f) = b ·Ψ f =⇒ ((τF̄)) = b · ((Ψ))

⇐⇒ { fusion (3.3) }
true

So (4.8) defines a lifting and once more we obtain an instance
of generic crush for free.

Gµ = µ

Again, we should point out that this is only a canonical choice.
Adapting the argument of Section 4.3 to higher-order functors, lift-
ings of µ are in one-to-one correspondence to higher-order natural
transformations of type

∀F . (∀X . C (X ,B)→ C (F X ,B))→ C (µF,B) .

We have discussed in Section 3.3 that ((−)) indeed enjoys this
property. We are free to use a different recursion operator instead,
but the replacement must satisfy the same higher-order naturality
condition.

4.9 Summary: Generic crush
To summarise, the development in this section is an instance of
the general framework set up in Section 3. The only minor change
is that kind ? is interpreted by a slice category over the ambient
category.

G? = C ↓Y

The slice category allows us to associate an arrow with an object,
the instance of a generic function at that type.

Type expressions are interpreted as functors over this slice cate-
gory. These functors cannot be arbitrary, they have to be liftings of
the standard interpretation to ensure that the arrows actually repre-
sent generic instances.

In Generic Haskell, generic instances are polymorphic functions
of higher ranks. We have seen that their categorical counterparts,
higher-order natural transformations, are in one-to-one correspon-
dence to liftings, which nicely reinforces the approach.

We have discussed generic crush as a running example, which
is given by

G0 = 0 G+ = + Gµ = µ .

G1 = ¬ G× = ⊗
Since the underlying functor preserves colimits, initial objects,
coproducts and initial algebras are, in fact, liftings. We have ar-
gued that for crush , these canonical functors are indeed the right
choices. Consequently, the generic programmer only has to supply
definitions for the final object and products. These are uniquely
determined by a constant e : 1 → Y and a binary operation
op : Y × Y → Y , the two defining ingredients of a crush. It
is quite pleasing to see how everything falls into place.

Let us finally consider some example instantiations. The “Hello
World” example of generic programming, the list datatype List =
λ A . µ(λ B . 1 + A × B), yields the functor (we only show the
object mapping, the action on arrows is as before)

λ Ā . µ(λ B̄ . ¬ + Ā⊗ B̄)

= { liftings: Ā = (A, a) and B̄ = (B , b) }
λ (A, a) . µ(λ (B , b) . ¬ + (A, a)⊗ (B , b))

= { definition of ¬, + and ⊗ }
λ (A, a) . µ(λ (B , b) . (1 + A× B , e O (op · (a × b))))

= { definition of µ (4.8) }
λ (A, a) . (List A, ((λ b . e O (op · (a × b))))) .

For the higher-order functor GRose = λF . λA . µ(λB . A×FB)
we obtain

λ F̄ . λ (A, a) . µ(λ (B , b) . (A, a)⊗ F̄ (B , b))

= { definition of ⊗ (4.7) }
λ F̄ . λ (A, a) . µ(λ (B , b) . (A× F B , op · (a ⊗ τF̄ b)))

= { definition of µ (4.8) }
λ F̄ . λ (A, a) . (GRose F A, ((λ b . op · (a ⊗ τF̄ b)))) .

As in Section 3.4, the interpretation of all type terms follows from
the interpretation of the type constants.

5. Simple generic producers
Let us turn our attention to generic producers. We can now reap the
fruits of categorical duality—producers and consumers are dual,
and everything we said in Section 4 nicely dualises to producers.
For that reason, we only sketch the construction and work through
an example.

The dual of a slice category C ↓Y is a coslice category X ↓C ,
whose objects are arrows of type C (X ,A) and whose arrows are
commuting triangles.

X

A

f
g

X

A
h
�

≺
f

B

g
�

X

B

g
g

The standard textbook example of a coslice category is 1 ↓Set,
the category of pointed sets. An arrow of type Set(1,A) selects
a so-called base point in A. The arrows in 1 ↓ Set preserve this
base point. We can turn the example into an application of generic
programming by providing a generic definition of the selector.

null Int = zero · !X
null1 = !X
null+ = λ (f , g) . inl · f
null× = λ (f , g) . f M g
nullν = λ γ . [(γ)]

55

Two cases are missing, null cannot be defined for 0 and µ. In
general, there is no arrow C (1, 0). (In a cartesian closed category,
the existence of an arrow C (1, 0) implies that C is degenerate.) For
initial algebras, the reasoning is as follows. To construct an element
of an initial algebra, we have to use in : C (F (µF), µF). This
leaves us with the task of constructing an element of F (µF). The
argument of nullµ of type ∀X . C (1,X) → (1,F X) allows us
to do this, provided we have an arrow of type C (1, µF)—a vicious
circle. (More formally, since µId ∼= 0 the above argument for final
objects also applies here.) The definition for 1,× and ν (the limits)
are “for free”: the instances of null are the mediating arrows for
these types (!, − M =, [(−)]). For Int and + there is a choice, quite
arbitrarily we select 0 as the base point in Int , and inl nullA as the
base point in A + B .

Coinductive types such as the type of streams admit base points.
Specialising the definition to Stream = λ A . ν(λ B . A × B)
yields the functor (again, we only show the object part)

λ (A, a) . (Stream A, [(λ b . a M b)]) .

The associated natural transformation nullStream is a base point
transformer, it takes selectors to selectors: ∀A . C (1,A) →
C (1,Stream A). For example, nullStream (zero · !) yields the con-
stant streams of zeros. The naturality of nullStream means that the
instance enjoys a simple fusion property: Streamh ·nullStream f =
nullStream (h · f).

6. Outlook: Generic programs
This section works towards modelling the whole of Generic
Haskell. For reasons of space, we only provide an overview, sketch-
ing the categorical constructions.

The development of Section 4 is not general enough to model
generic consumers such as equality, where the source is a pair of
elements of the type index: C (A×A,Bool). To accommodate for
this, we allow A to appear in a context, modelled by a functor S.
(The name S is mnemonic for Source.) Thus, at base types, the type
of a generic consumer is C (S A,Y). While the target of S has to
be C , its source can be an arbitrary category.

consume : S
S
� C ≺

Y
1

Simple consumers are a special case of this construction where S =
IdC . For generic equality, a possible source functor is Sq : C → C
with Sq A = A × A and Sq f = f × f . However, there is an
alternative choice, which leads to a more general notion of equality.

equal : C × C
×
� C ≺

Bool
1

The source is now a product category. Since A in C (×A,Bool)
ranges over objects in C × C , the element types can actually be
different: C (A1×A2,Bool). For example, the instance of equality
for lists has type ∀A1 A2 . C (A1 × A2,Bool) → C (List A1 ×
ListA2,Bool), whereas in the first model the element types have to
be identical: ∀A . C (A×A,Bool)→ C (List A× List A,Bool).
Clearly, the second model is more general.

Turning to the dual setting, the paradigmatic example of a
generic producer is read , which constructs an element from some
string representation. Ignoring the details of the representation,
read is interesting, as it involves a parsing monad to organise the
working. How can we fit monadic computations into the picture?
The answer is simple: we dualise the approach above so that the
type index can be embedded in a context: C (X ,TA). (The name T
is mnemonic for Target.)

read : 1
1
� C ≺

Parser
C

For example, the instance of read for the List type constructor has
type ∀A . C (1,Parser A)→ C (1,Parser (List A)).

We are now ready for the general construction, which involves
one further generalisation step. Slice and coslice categories abstract
over one object A, which appears either in the source, C (S A,Y),
or in the target, C (X ,TA). An obvious generalisation is to abstract
away from both the source and the target: C (S A,T B). Two
different objects are involved, because we may need to interpret the
type index differently for the source and the target. The functors S
and T do not have to be endofunctors; their source categories can
be arbitrary.

generic : S
S
� C ≺

T
T

All in all, there are three knobs to turn. First of all and most
importantly, we have to pick a base category C . Choices include
Set, 1 ↓ Set or Cpo⊥. Second, we have to identify the source
context, in which the type index appears, fixing a category S and
a functor S. Third, we have to do the same for the target. Before we
introduce the generalisation of (co)slice categories, let us examine
how standard examples of generic functions fit into this picture.

Generic consumers are a special case of the construction.

consume : S
S
� C ≺

Y
1

The target functor is the constant functor which sends ∗, the only
object of 1, to Y . (As usual, we identify a functor of type 1 → C
with an object of C .) For generic producers, the situation is dual.

produce : 1
X
� C ≺

T
T

In the examples above, one of the two functors is constant. This
need not be the case: to model mapping functions we use

map : C
Id
� C ≺

Id
C ,

which provides an alternative view on GH’s map function intro-
duced in Section 2. As a final example, generic zipping, like equal-
ity, involves a product category.

zip : C × C
×
� C ≺

Id
C

Haskell’s zipWith function, which combines two lists into a single
list, is an instance of this scheme.

The categorical construction that generalises slice and coslice
categories is a so-called comma category, denoted S ↓ T. So in
general, the interpretation of kind ? is given by

G? = S ↓ T ,

where S : S → C and T : T → C are functors.
The comma category S ↓ T has as objects arrows and as arrows

commuting squares:

S A

T B

f

g

S A
S h
� S C

T B

f

g

T k
� T D

g

g

S C

T D .

g

g

Formally, an object of the comma category S↓T is a triple (A, f ,B)
where A is an object of S , B is an object of T and f : SA→ TB
is an arrow of C . An arrow (h, k) : (A, f ,B)→ (C , g ,D) : S↓T
of the comma category is a pair of arrows h : A → C : S and
k : B → D : T such that T k · f = g · S h .

The triple (A, f ,B) models an instance of a generic function at
some type t of kind ?. Generally, a generic function is determined
by three pieces of information: we have to show how to interpret t

56

RT ⊆ I JTK× G JTK×J JTK
(A,C ,B) ∈ R∗ ⇐⇒ A = Src C ∧ Trg C = B

(A,C ,B) ∈ RT×U ⇐⇒ (Outl A,Outl C ,Outl B) ∈ RT ∧ (Outr A,Outr C ,Outr B) ∈ RU

(F,H,G) ∈ RT→U ⇐⇒ ∀X Z Y . (X ,Z ,Y) ∈ RT =⇒ (F X ,H Z ,G Y) ∈ RU

Figure 4. Generalising the notion of lifting to higher kinds (comma categories).

as an object A in S , we have to interpret t as an object B in T ,
and we have to provide an arrow of type C (S A,T B).

1

S
S
�

≺

I
JtK

C ≺
T

T

J
JtK
�

S (I JtK)

T (J JtK)

G JtK
g

In Generic Haskell these three pieces of information are given
separately. Using a comma category we tie them together.

For (co)slice categories we had a forgetful functor to the un-
derlying category. Since an object in a comma category combines
two objects, there are two projection functors: Src : S ↓ T → S
extracts the source and Trg : S ↓ T → T extracts the target ob-
ject. The following non-commutative diagram summarises the type
information.

S ↓ T
Trg

� T

S

Src

g

S
� C

T

g

Like before, we require that the interpretation of a generic
function constitutes a lifting. For a functor between two comma
categories the notion of lifting is defined as follows. A functor
H : S ↓T→ S′ ↓T′ is a lifting of F : S → S ′ and G : T → T ′

if Src ◦ H = F ◦ Src and Trg ◦ H = G ◦ Trg.

S ≺
Src

S ↓ T
Trg

� T

S ′

F

g
≺

Src
S′ ↓ T′

H

g

Trg
� T ′.

G

g

Generalising the argument of Section 4.3 one can then show that
liftings of F and G are in one-to-one correspondence to natural
transformations of type

∀A B . C (S A,T B)→ C ′(S′ (F A),T′ (G B)) .

As a brief example, in the case of generic map, that is, S = T =
S′ = T′ = Id, we obtain the familiar type

∀A B . C (A,B)→ C ′(F A,G B) .

To generalise the notion of lifting to arbitrary functors, we use
again a logical relation, this time a ternary one, see Figure 4. The
interpretation of a generic function G JtK has to be a lifting of the
interpretations for the source I JtK and the target J JtK:

(I JtK,G JtK,J JtK) ∈ RT for all t : T.

Again, the Basic Lemma of logical relations guarantees that this
holds if the interpretations of the type constants are related.

Let us conclude by noting that the categorical framework also
accommodates type-indexed datatypes [15]. A type that is defined
by induction on the structure of types is simply an interpretation in
the sense of Section 3.4, such as I JtK and J JtK.

7. Related work
There is a considerable body of work on datatype-generic program-
ming (DGP), see [14, 24] for recent overviews. PolyP [16], one of
the first languages with support for DGP, grew out of the work on
the Algebra of Programming [19, 21]. PolyP is based on a grammar
for bifunctors (?× ?→ ?) and regular functors (?→ ?):

F = K T | K 1 | Par | Rec | F + F | F× F | D ◦ F ;
D = µF .

Though this language of functors is less general than our language
based on the simply typed lambda calculus (STLC), the generic
programmer actually has to provide instances for more cases, in-
cluding two cases for type variables (Par and Rec). PolyP only
considers initial algebras, µ applied to some functor. It is the ob-
servation that µ itself constitutes a functor that makes the current
paper fly.

The semantics described here is based on the interpretation of
the STLC in a cartesian closed category. A previous approach by
the first author [11] provided a syntactic model: building on the
notion of an applicative structure, type terms are interpreted by
terms of the polymorphic lambda calculus. The reconciliation of
the two approaches is left for future work. Generic Haskell [4, 5] is
a fairly substantial language. The semantics presented here covers
the core of the language including type-indexed datatypes [15].

Mendler-style (un-) folds were introduced in a type-theoretic
setting by, well, Mendler [22]. The categorical justification of
Mendler-style recursion is due to de Bruin [7]. Uustalu and Vene
[25] explored Mendler-style folds in more depth, extending them
among other things to simultaneous recursion. Mendler-style folds
blend nicely with GH in that the recursion operator ((−)) has the
kind-indexed type of a consumer at kind (?→ ?)→ ?.

The first account of the connection between STLC and carte-
sian closed categories was given by Lambek [17]. The specialisa-
tion to Cat was sketched by Gibbons and Paterson [9]. Among
other things, they present a parametricity theorem for recursion op-
erators. (Naturality is a special case of parametricity where the type
takes the form of an arrow between functors.) A more expressive
calculus building on ends and coends was defined by Cáccamo and
Winskel [3]. Their paper aims at formalising informal categorical
parlance such as “this isomorphism is natural in A”, providing a ba-
sis for the mechanisation of categorical reasoning. The use of slice,
coslice and comma categories for interpreting generic functions is
to best of the authors’ knowledge original.

On a related note, Gibbons and Paterson [9] have argued that
AoP is more principled than GH. Briefly, their argument is that
because GH works by case analysis over the structure of types,
generic functions lack the coherence properties the recursion op-
erators of AoP enjoy—folds and friends are higher-order natural
transformations. The present paper shows that this is a misconcep-
tion. In fact, we have seen that the two approaches nicely comple-

57

ment each other. Briefly, our argument in rebuttal is that AoP is
concerned with only a single case (recursion), which is why co-
herence across cases is not an issue. Indeed, instances of generic
functions in the sense of GH enjoy the same higher-order naturality
properties as the recursion operators of AoP—sometimes simply
because the generic instance is a recursion operator.

8. Conclusion
Category theory has been advocated for structuring definitions and
theories [10]. The present paper supports this view. After the initial
set-up—interpreting type terms as functors and generic functions
as objects in comma categories—everything falls into place.

To summarise, a kind-indexed type and a type-indexed value
correspond to an interpretation: the former determines the inter-
pretation of the kind constant ?, the latter determines interpreta-
tion of the type constants. We have argued that a comma cate-
gory is a good fit for interpreting a generic function at types of
kind ?. Higher-order kinded types are then interpreted as functors
over the ambient comma category. These functors cannot be arbi-
trary, they have to be liftings of the standard interpretation of types.
In Generic Haskell, generic instances are polymorphic functions
of higher ranks. We have seen that their categorical counterparts,
higher-order natural transformations, are in one-to-one correspon-
dence to liftings, which nicely reinforces the approach.

The categorical view of a generic function clearly exhibits its
structure. For example, we observed that the instances of crush for
colimits are just the mediating arrows. The development not only
provides a semantic footing for Generic Haskell, it also suggests
streamlining the language. For example, there is no need for kind-
indexed types with more than two arguments. Multiple arguments
or results can be handled using product categories. The approach
also supports mutually recursive datatypes without further ado.

References
[1] R. Bird and O. de Moor. Algebra of Programming. Prentice Hall

Europe, London, 1997.

[2] R. Bird and L. Meertens. Nested datatypes. In J. Jeuring, editor, Fourth
International Conference on Mathematics of Program Construction,
MPC’98, Marstrand, Sweden, volume 1422 of Lecture Notes in Com-
puter Science, pages 52–67. Springer Berlin / Heidelberg, June 1998.

[3] M. Cáccamo and G. Winskel. A higher-order calculus for categories.
In R. Boulton and P. Jackson, editors, Theorem Proving in Higher
Order Logics, volume 2152 of Lecture Notes in Computer Science,
pages 136–153. Springer Berlin / Heidelberg, 2001.

[4] D. Clarke and A. Löh. Generic Haskell, specifically. In J. Gibbons and
J. Jeuring, editors, Proceedings of the IFIP TC2 Working Conference
on Generic Programming, Schloss Dagstuhl, pages 21–48. Kluwer
Academic Publishers, July 2002.

[5] D. Clarke, R. Hinze, J. Jeuring, A. Löh, and J. de Wit. The Generic
Haskell user’s guide. Technical Report UU-CS-2001-26, Universiteit
Utrecht, November 2001.

[6] R. L. Crole. Categories for Types. Cambridge University Press, 1994.

[7] P. J. de Bruin. Inductive types in constructive languages. PhD thesis,
University of Groningen, 1995.

[8] M. M. Fokkinga and L. Meertens. Adjunctions. Technical Report
Memoranda Inf 94-31, University of Twente, Enschede, Netherlands,
June 1994.

[9] J. Gibbons and R. Paterson. Parametric datatype-genericity. In P. Jans-
son, editor, Proceedings of the 2009 ACM SIGPLAN workshop on
Generic programming, pages 85–93. ACM Press, August 2009.

[10] J. A. Goguen. A categorical manifesto. Mathematical Structures in
Computer Science, 1:49–67, 1991.

[11] R. Hinze. Polytypic values possess polykinded types. Science of
Computer Programming, 43(2-3):129–159, May-June 2002.

[12] R. Hinze. Adjoint folds and unfolds, or: Scything through the thicket
of morphisms. In C. Bolduc, J. Desharnais, and B. Ktari, editors, 10th
International Conference on Mathematics of Program Construction
(MPC ’10), volume 6120 of Lecture Notes in Computer Science, pages
195–228. Springer Berlin / Heidelberg, 2010.

[13] R. Hinze and J. Jeuring. Generic Haskell: Practice and theory. In
R. Backhouse and J. Gibbons, editors, Generic Programming: Ad-
vanced Lectures, volume 2793 of Lecture Notes in Computer Science,
pages 1–56. Springer Berlin / Heidelberg, 2003.

[14] R. Hinze and A. Löh. Generic programming in 3D. Science of
Computer Programming, 74(8):590–628, June 2009.

[15] R. Hinze, J. Jeuring, and A. Löh. Type-indexed data types. Science of
Computer Programming, 51(1-2):117–151, May 2004.

[16] P. Jansson and J. Jeuring. PolyP—a polytypic programming language
extension. In Conference Record 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL’97), Paris,
France, pages 470–482. ACM Press, January 1997.

[17] J. Lambek. From lambda-calculus to cartesian closed categories. In
J. Seldin and J. Hindley, editors, To H.B. Curry: Essays on Combi-
natory Logic, Lambda Calculus and Formalism, pages 376–402. Aca-
demic Press, 1980.

[18] S. Mac Lane. Categories for the Working Mathematician. Graduate
Texts in Mathematics. Springer-Verlag, Berlin, 2nd edition, 1998.

[19] G. Malcolm. Data structures and program transformation. Science of
Computer Programming, 14(2–3):255–280, 1990.

[20] L. Meertens. Calculate polytypically! In H. Kuchen and S. Swier-
stra, editors, Proceedings 8th International Symposium on Program-
ming Languages: Implementations, Logics, and Programs, PLILP’96,
Aachen, Germany, volume 1140 of Lecture Notes in Computer Sci-
ence, pages 1–16. Springer Berlin / Heidelberg, September 1996.

[21] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In J. Hughes, editor,
5th ACM Conference on Functional Programming Languages and
Computer Architecture, FPCA’91, Cambridge, MA, USA, volume 523
of Lecture Notes in Computer Science, pages 124–144. Springer Berlin
/ Heidelberg, 1991.

[22] N. P. Mendler. Inductive types and type constraints in the second-
order lambda calculus. Annals of Pure and Applied Logic, 51(1–2):
159–172, 1991.

[23] J. C. Mitchell. Foundations for Programming Languages. The MIT
Press, Cambridge, MA, 1996.

[24] A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and
B. C. d. S. Oliveira. Comparing libraries for generic programming
in Haskell. In A. Gill, editor, Haskell ’08: Proceedings of the first
ACM SIGPLAN symposium on Haskell, pages 111–122, New York,
NY, USA, 2008. ACM Press. ISBN 978-1-60558-064-7.

[25] T. Uustalu and V. Vene. Coding recursion a la Mendler (extended
abstract). In J. Jeuring, editor, Proceedings of the 2nd Workshop on
Generic Programming, Ponte de Lima, Portugal, pages 69–85, July
2000. The proceedings appeared as a technical report of Universiteit
Utrecht, UU-CS-2000-19.

58

