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Abstract
Sorting algorithms are an intrinsic part of functional programming
folklore as they exemplify algorithm design using folds and un-
folds. This has given rise to an informal notion of duality among
sorting algorithms: insertion sorts are dual to selection sorts. Using
bialgebras and distributive laws, we formalise this notion within a
categorical setting. We use types as a guiding force in exposing the
recursive structure of bubble, insertion, selection, quick, tree, and
heap sorts. Moreover, we show how to distill the computational
essence of these algorithms down to one-step operations that are
expressed as natural transformations. From this vantage point, the
duality is clear, and one side of the algorithmic coin will neatly lead
us to the other “for free”. As an optimisation, the approach is also
extended to paramorphisms and apomorphisms, which allow for
more efficient implementations of these algorithms than the corre-
sponding folds and unfolds.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems—Sorting and searching

General Terms Algorithms, Languages

Keywords algorithm design, sorting, category theory, bialgebras,
distributive laws, paramorphisms, apomorphisms

1. Introduction
Sorting algorithms are often the first non-trivial programs that are
introduced to fledgling programmers. The problem of sorting lends
itself to a myriad of algorithmic strategies with varying asymptotic
complexities to explore, making it an ideal pedagogical tool. Within
the functional programming community, the insertion sort also
serves to exemplify the use of folds, where the key is to define an
appropriate function insert which inserts a value into a sorted list.

insertSort :: [Integer ]→ [Integer ]
insertSort = foldr insert [ ]

The insertion function breaks a list into two with respect to the
value to be inserted. This value is then inserted in between the two:

insert :: Integer→ [Integer ]→ [Integer ]
insert y ys = xs++[y ]++ zs

where (xs,zs) = span (6 y) ys
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This is an entirely routine and naïve definition, which makes use
of the span function from the list utilities section of the Haskell
Report. When the input list ys is ordered, insert y ys adds y to the
list ys and maintains the invariant that the ensuing list is ordered.
Thus, we are able to fold an unordered list into an ordered one when
we start with an empty list as the initial value of the fold.

Perhaps less well known is that an alternative sorting algorithm,
selection sort, can be written in terms of an unfold. An unfold can
be thought of as the dual of a fold: a fold consumes a list, whereas
unfold produces a list, as is evident in the type of unfoldr:

unfoldr :: (b→Maybe (a,b))→ b→ [a]

A selection sort constructs an ordered list by repeatedly extracting
the least element from an unordered list. This effectively describes
an unfold where the input seed is an unordered list that is used to
produce an ordered list:

selectSort :: [Integer ]→ [Integer ]
selectSort = unfoldr select

The function select removes the least element from its input list,
and returns that element along with the original list with the ele-
ment removed. When the list is empty, the function signals that the
unfolding must finish.

select :: [Integer ]→Maybe (Integer, [Integer ])
select [ ] = Nothing
select xs = Just (x,xs′)

where x = minimum xs
xs′ = delete x xs

With a little intuition, one might see that these two sorting al-
gorithms are closely related, since they fundamentally complement
one another on two levels: folds dualise unfolds, and insertion du-
alises selection. However, the details of this relationship are some-
what shrouded by our language; the connection between the ingre-
dients of insert and select is difficult to spot since (++) and span
seem to have little to do with minimum and delete. Furthermore,
the rendition of insert and select in terms of folds and unfolds is
not straightforward.

In order to illuminate the connection, we use a type-driven ap-
proach to synthesise these algorithms, where notions from category
theory are used to guide the development. As we shall see, naïve
variants of insert and select can be written as an unfold and fold,
respectively, thus revealing that they are in fact dual. As a conse-
quence, each one gives rise to the other in an entirely mechanical
fashion; we effectively obtain algorithms for free. We will obtain
the true select and insert with alternative recursion schemes.

Of course, both of these algorithms are inefficient, taking
quadratic time in the length of the input list to compute. In practice,
these toy examples are soon abandoned in favour of more practical
sorting algorithms. As it turns out, our venture into understanding
the structural similarities between insertSort and selectSort will
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not be in vain: the insights we gain will become useful when we
investigate more efficient sorting algorithms.

The main contributions of the paper are as follows:
• A type-driven approach to the design of sorting algorithms us-

ing folds and unfolds, which we then extend to paramorphisms
and apomorphisms in order to improve efficiency.
• An equivalence of sorting algorithms, which allows us to for-

malise folkloric relationships such as the one between insertion
and selection sort.
• Algorithms for free; because the concepts we use to develop

these algorithms dualise, each sorting algorithm comes with
another for free.
• As a consequence of this formalisation, we relate bialgebras

and distributive laws to folds of apomorphisms and unfolds of
paramorphisms.
We continue this paper with a gentle introduction to folds, un-

folds, and type-directed algorithm design in Section 2. Then, we
delve into sorting by swapping in Section 3, defining two sorting
algorithms at once using a distributive law with folds and unfolds.
In Section 4, we introduce para- and apomorphisms and use them
to define insertion and selection sort in Section 5. We move on
to faster sorting algorithms in Section 6 (quicksort) and Section 7
(heapsort). Finally, we review related work in Section 8, and con-
clude in Section 9.

2. Preliminaries
The standard definitions of foldr and unfoldr in Haskell obscure
the underlying theory that gives us these recursive schemes because
they are specialised to lists. These schemes in fact generalise to a
large class of recursive datatypes. Here, we give an alternate pre-
sentation of recursive datatypes, folds, and unfolds, that provides
a more transparent connection to the theory presented in this pa-
per. For this and subsequent sections, we assume a familiarity with
folds, unfolds, and their characterisation as initial algebras and final
coalgebras. We have otherwise attempted to keep the categorical
jargon light, giving brief explanations where necessary.

Folds, also called catamorphisms, provide a recursion scheme
for consuming a data structure by combining its elements to pro-
duce a value. The idea is that the recursion scheme follows the
shape of the data structure, and the details of combining the ele-
ments are given by the functions that replace the constructors. To-
gether, these functions constitute the algebra of the fold.

It is possible to define recursive datatypes in such a way that the
definition of fold shows this connection more transparently than
the usual Haskell definition. To do this, we introduce the view of
recursive datatypes as fixpoints. First, the type

newtype µf = In {in◦ :: f (µf )}

takes a functor to its least fixed point. When used in a point-free
manner, In will be written as in, but In a will be written as dae. As
an example of building a recursive datatype, consider the functor

data List list = Nil | Cons K list

where we use K to represent some ordered key type. Note that we
deliberately introduce lists that are not parametric because this sim-
plifies the exposition, and parametricity with type class constraints
can be reintroduced without affecting the underlying theory. As its
name suggests, this datatype is similar to that of lists with elements
of type K. In this case, however, the recursive argument to Cons
has been abstracted into a type parameter. We call such a datatype
the base functor of a recursive datatype, and the functorial action
of map marks the point of recursion within the datatype:

instance Functor List where
map f Nil = Nil
map f (Cons k x) = Cons k (f x)

We then tie the recursive knot by taking the least fixed point µList,
which represents the type of finite lists with elements of type K.
In a category theoretic context, 〈µF, in〉 is the initial algebra of the
functor F.

Now that datatypes and algebras are to be defined in terms of
base functors, it is possible to give a generic definition of fold:

fold :: (Functor f )⇒ (f a→ a)→ µf → a
fold f = f ·map (fold f ) · in◦

This definition of fold only depends on the base functor; this de-
termines the type of the algebra, the shape of the data structure,
and the recursive pattern over it (via the definition of map). One
of the impacts of such a relationship is that the control flow of any
program written as a fold matches the data structure. When the run-
ning time of an algebra is constant, the running time of a fold will
be proportional to the size of the input shape. Such a property can
be a powerful guarantee, but also an onerous requirement when
the control flow of an algorithm does not precisely match the data
structure, as we will show. Note that our cost model will assume
that Haskell is strict in order to avoid the additional complexity of
lazy evaluation. We will continue in this manner, as such issues are
not relevant to any of our discussions.

As a short example of the type-directed approach that we will
follow again and again, we point out that we can write in◦ :: µF→
F (µF) in terms of in. It is a function from µF, so we should try
a fold: we simply need an algebra of type F (F (µF))→ F (µF).
An obvious candidate is map in, so in◦ = fold (map in); we will see
this again at the end of the section.

Dual to folds are unfolds, also known as anamorphisms, which
provide a scheme for producing a data structure instead of con-
suming one. This requires the dual view of recursive datatypes as
greatest fixed points of functors, which is defined as

newtype ν f = Out◦ {out :: f (ν f )}
When used in a point-free manner, Out◦ will be written as out◦,
but Out◦ a will be written as bac. Using the base functor List, νList
also ties the recursive knot, and represents the type of indefinite
lists. However, instead of algebras and folds, we are now concerned
with coalgebras and unfolds. A coalgebra is a function b→ List b,
where b is the type of the seed value. As the categorical dual of an
initial algebra, 〈νF,out〉 is the final coalgebra of the functor F.

We can now define unfold in the same manner as fold, where
the details of the recursive scheme depend only on the base functor
of the datatype being produced:

unfold :: (Functor f )⇒ (a→ f a)→ (a→ ν f )
unfold f = out◦ ·map (unfold f ) · f

Again, the placement of the recursive calls is determined by the
definition of map. As with folds, the control flow of unfolds is
determined by the base functor (and therefore the shape of the data
structure). In this case, this means that, given a coalgebra with a
constant running time, the running time of an unfold is linear in the
size of the output. As with folds, this is an important fact to keep in
mind in subsequent sections.

We can again use a type-directed approach to express out◦ ::
F (νF)→ νF in terms of out. It is a function to νF, so this time
we should try an unfold. As one would expect from duality, out◦ =
unfold (map out).

Because the type declarations for the fixed points of functors
were given in Haskell, the difference between greatest and least
fixed points is not obvious; the definitions are the same except
for the names of the constructors and destructors, and these two
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datatypes are isomorphic, a property known as algebraic compact-
ness. While this is the case for Haskell, it is not true in general
and we do not depend on this. We will therefore be explicit about
whether we are working with µF or νF by using different types.
We will explicitly downcast when we move from νF to µF:

downcast :: (Functor f )⇒ ν f → µf

As they are the same in Haskell, we can implement this as

downcast = in ·map downcast ·out

but in general this is a lossy operation. However, we can always go
the other way and embed the least into the greatest with a function
upcast ::(Functor f )⇒ µf → ν f . How can we define upcast? Let us
first discuss a small generalisation: given the concrete base functors
F and G, how can we write a function of type µF→ νG? We will
follow a type directed approach; it is a function from µF, so we can
write it as a fold:

fold (unfold c) : µF→ νG

unfold c : F (νG)→ νG

c : F (νG)→ G (F (νG))
∼= F (G (νG))→ G (F (νG))

In fact, it is a fold of an unfold. (The types on the right progress
from top to bottom, the terms of the left are built from bottom to
top.) Alternatively, upcast is a function to νG, so we can write it as
an unfold:

unfold (fold a) : µF→ νG

fold a : µF→ G (µF)

a : F (G (µF))→ G (µF)
∼= F (G (µF))→ G (F (µF))

This time it is an unfold of a fold. In both cases, we have gone
one step further and expanded the recursive types so that we could
reveal that the type of the coalgebra c is almost the same as the
type of the algebra a. This suggests that a and c are both instances
of some function s ::F (G x)→ G (F x) that is parametric in x. We
will revisit this idea in the next section.

Now to define upcast: it is a specialisation of the above case,
so we need either an algebra F (F (µF))→ F (µF) or a coalgebra
F (νF)→ F (F (νF)). We have seen these before when defining in◦
and out◦: the former is simply map in, and the latter map out.

upcast :: (Functor f )⇒ µf → ν f
upcast = fold (unfold (map out)) = fold out◦

= unfold (fold (map in)) = unfold in◦

Why are these equal? We shall see in the next section.

3. Sorting by Swapping
With the preliminaries of folds and unfolds in place, we now turn
our attention back to sorting algorithms. First, we start by creating
a new datatype to represent the base functor of sorted lists:

data List list = Nil | Cons K list
instance Functor List where

map f Nil = Nil
map f (Cons k list) = Cons k (f list)

Note that List is defined exactly like List, but we maintain the
invariant that the elements in a List are sorted. Our goal is to express
sorting algorithms as some function sort, with the following type:

sort :: µList→ νList

This precisely captures the notion that we will be consuming, or
folding over, an input list in order to produce, or unfold into, an

ordered list. This choice of type is motivated by the fact that there
is a unique arrow from an initial object, in this case µList, and there
is a unique arrow to a final object, in this case νList.

In Section 1, we wrote selection sort as an unfold. Let us replay
this construction, but now with the definitions from Section 2 and
following our type directed theme. What we obtain is not the true
selection sort, but bubble sort:

bubbleSort :: µList→ νList
bubbleSort = unfold bubble

where bubble = fold bub
bub :: List (List (µList))→ List (µList)
bub Nil = Nil
bub (Cons a Nil) = Cons a dNile
bub (Cons a (Cons b x))
| a 6 b = Cons a dCons b xe
| otherwise = Cons b dCons a xe

This is because the select operation should select the minimum
element but leave the remaining list unchanged. Instead, fold bub
produces the swapping behaviour seen in bubble sort. Since bub is
a constant-time operation, bubble sort is a quadratic-time algorithm
(the input and the output list have the same length).

We also wrote insertion sort as a fold. If we write it as a fold of
an unfold, we obtain a naïve version of insertion sort.

naı̈veInsertSort :: µList→ νList
naı̈veInsertSort = fold naı̈veInsert

where naı̈veInsert = unfold naı̈veIns
naı̈veIns :: List (νList)→ List (List (νList))
naı̈veIns Nil = Nil
naı̈veIns (Cons a bNilc) = Cons a Nil
naı̈veIns (Cons a bCons b xc)
| a 6 b = Cons a (Cons b x)
| otherwise = Cons b (Cons a x)

Why have we labelled our insertion sort as naïve? This is because
we are not making use of the fact that the incoming list is ordered—
compare the types of bub and naı̈veIns. We will see how to capi-
talise on the type of naı̈veIns in Section 5.

Our bub and naı̈veIns are examples of the abstract algebra a and
coalgebra c that we discussed at the end of the previous section.
As pointed out then, the similarities in the types are plain to see,
but another observation now is that the implementations of bub
and naı̈veIns are almost identical. The only difference is that d–e
appears on the left in bub, and b–c appears on the right in naı̈veIns.
At the end of the previous section, we suggested that there must
be some parametric function that generalises both the algebra and
coalgebra. As bubble and naïve insertion sorts are swapping sorts,
we will call this function swap.

swap :: List (List x)→ List (List x)
swap Nil = Nil
swap (Cons a Nil) = Cons a Nil
swap (Cons a (Cons b x))
| a 6 b = Cons a (Cons b x)
| otherwise = Cons b (Cons a x)

This parametric function extracts the computational ‘essence’ of
bubble and naïve insertion sorting. It expresses the core step: swap-
ping adjacent elements. We have initially referred to it as paramet-
ric, but in a categorical setting we will consider it natural in x. Fur-
thermore, we will read its type as a so-called distributive law—it
distributes the head of a list over the head of an ordered list.

Given swap, how do we turn it back into bub and naı̈veIns? For
the former, we match the return type of swap, List (List (µList)),
to the return type of bub List (µList) using map in. Dually, we
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match the input type of naı̈veIns with the input type of swap using
map out. So our final sorting functions become:

bubbleSort′,naı̈veInsertSort′ :: µList→ νList
bubbleSort′ = unfold (fold (map in · swap))

naı̈veInsertSort′ = fold (unfold (swap ·map out))

Now that we can express bub as map in · swap, and naı̈veIns as
swap · map out, we would like to dig deeper into the apparent
relationship between the two.

3.1 Algebra and Coalgebra Homomorphisms
Let us proceed towards this goal by first looking at a property
of bubble. Recall that an F-algebra homomorphism between F-
algebras a ::FA→A and b ::FB→B is a function with the property
f ·a = b ·map f —F-coalgebra homomorphisms have the dual prop-
erty. We originally wrote bubble as a fold of the algebra bub. The
following law states that bubble is a List-algebra homomorphism.

bubble · in = bub ·map bubble

It says that bubble is a homomorphism from the initial algebra, in,
to the algebra bub. We will render this law as a diagram, as what
follows is more easily motivated in diagrammatic form.

List (µList)

in
��

map bubble // List (List (µList))

bub
��

µList
bubble = fold bub

// List (µList)

We claimed that we can replace bub with map in · swap, so let us
rewrite the homomorphism law, to express the relationship between
bubble and swap:

bubble · in = bub ·map bubble

⇐⇒ { bub is replaceable by map in · swap }
bubble · in = map in · swap ·map bubble

Let us also redraw the diagram with this replacement,

List (µList)

in

��

map bubble // List (List (µList))

swap
��

List (List (µList))

map in
��

µList
bubble

// List (µList)

and then re-arrange it to better see the symmetry by moving
List (µList) to the left.

List (µList)

in
��

map bubble
++

List (List (µList))

swap
��

µList

bubble
��

List (List (µList))

map inss
List (µList)

Similarly, we can express the relationship between naı̈veInsert
and swap,

out ·naı̈veInsert = map naı̈veInsert ·naı̈veIns

⇐⇒ { naı̈veIns is replaceable by swap ·map out }
out ·naı̈veInsert = map naı̈veInsert · swap ·map out

along with the corresponding diagram, this time jumping directly
to the re-arranged variant.

List (νList)

naı̈veInsert
��

map out
++

List (List (νList))

swap
��

νList

out
��

List (List (νList))

map naı̈veInsertss
List (νList)

Now, not only do we have a new expression of the relationships
between bubble and swap, and naı̈veInsert and swap, but we can
also begin to see the dual nature of bubble and naı̈veInsert.

3.2 Bialgebras
We have drawn the dashed boxes to highlight the fact that these are
so-called bialgebras: that is, an algebra a and a coalgebra c, such
that we can compose them, c ·a. In the first diagram, bubble forms
a bialgebra 〈µList, in,bubble〉, and in the second, naı̈veInsert forms
〈νList,naı̈veInsert,out〉. To be precise, these are swap-bialgebras,
where the algebra and coalgebra parts are related by a distributive
law, in this case, swap. For an algebra a : List X → X and coalge-
bra c : X→ List X to be a swap-bialgebra, we must have that

c ·a = map a · swap ·map c (1)

This condition is exactly what we have already seen in the previous
diagrams for bubble and naı̈veInsert.

List X

a
��

map c
**
List (List X)

swap
��

X

c
��

List (List X)

map att
List X

We now will use the theoretical framework of bialgebras to
show that bubble sort and naïve insertion sort are, categorically
speaking, two sides of the same coin.

We will proceed by identifying the initial and final swap-
bialgebras. Our initial swap-bialgebra will be 〈µList, in, fold (map in·
swap)〉 and fold a will be the unique swap-bialgebra homomor-
phism to any bialgebra 〈X,a,c〉. Expressed diagrammatically,

List (µList)

in
��

map (fold a) //

†

List X

a

��
µList

fold (map in · swap)
��

fold a //

‡

X

c

��
List (µList)

map (fold a)
// List X

There are three proof obligations that arise from this diagram. First,
that 〈µList, in, fold (map in · swap)〉 is a valid swap-bialgebra, but
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this is true by definition. Second, that the top half of the diagram (†)
commutes, but this is true by construction. Third, that the bottom
half of the diagram (‡) commutes:

map (fold a) · fold (map in · swap) = c · fold a

Proof. We proceed by showing that both sides of the equation can
be expressed as a single fold.

map (fold a) · fold (map in · swap) = c · fold a

⇐⇒ { c is an algebra homomorphism, see below }
map (fold a) · fold (map in · swap) = fold (map a · swap)

This first step is justified by the law for swap-bialgebras (1), which
states that c is an algebra homomorphism from a to map a · swap:

c ·a = (map a · swap) ·map c

To conclude the proof, we need to show that map (fold a) is also an
algebra homomorphism from map in · swap to map a · swap.

map (fold a) ·map in · swap

= { map preserves composition }
map (fold a · in) · swap

= { fold a is a homomorphism }
map (a ·map (fold a)) · swap

= { map preserves composition }
map a ·map (map (fold a)) · swap

= { swap is natural }
map a · swap ·map (map (fold a))

Thus, fold a is the coalgebra homomorphism that makes the bottom
half of the diagram (‡) commute.

We have now constructed the initial swap-bialgebra. We can
dualise this construction to obtain the final swap-bialgebra. We take
〈νList,unfold (swap ·map out),out〉 to be the final swap-bialgebra,
and unfold c as the unique homomorphism from any bialgebra 〈X,
a,c〉. Again, that this is a valid bialgebra is by definition, and that
unfold c is a coalgebra homomorphism is by construction. The
third proof obligation, that unfold c is an algebra homomorphism,
follows from the dual of the proof: from the naturality of swap, and
that a is a coalgebra homomorphism.

Now that we have the theoretical framework in place, we are in
a position to say something about the relationship between bubble
sort and naïve insertion sort. Let us remind ourselves of their
definitions.

bubbleSort′ = unfold (fold (map in · swap))

naı̈veInsertSort′ = fold (unfold (swap ·map out))

We have shown that bubble and naı̈veInsert are the initial and final
swap-bialgebras, respectively. Because of initiality, fold naı̈veInsert
is the unique arrow from bubble. Dually, because of finality, the
unique arrow to naı̈veInsert is unfold bubble.

List (µList)

in
��

// List (νList)

naı̈veInsert
��

µList

bubble
��

‖
fold naı̈veInsert

unfold bubble
// νList

out
��

List (µList) // List (νList)

By uniqueness, bubbleSort′ and naı̈veInsertSort′ are equal, and
with that we have arrived at our first result.

We need to be precise about what we mean by “equal”. This
equality is more than merely extensional: indeed, all the sorts in
this paper are extensionally equal as they correctly sort a list. Our
achievement is twofold.

First, we have distilled the computational essence of insertion
into a list, and selection from a list, down to a function swap; we
read it as a distributive law that describes a single step of both of
these sorting algorithms.

Second, given a distributive law such as swap, there are two
ways to turn it into a sorting function, µList→ νList: as a fold of
an unfold, and an unfold of a fold. While these mundanely construct
the recursive computation, this is truly where the duality arises. In
the case of swap, the former is naïve insertion sort and the latter is
bubble sort. Moreover, using the framework of bialgebras, we can
set up the former as the initial construction and the latter as the final
construction. There is a unique arrow from initial to final, and our
two sorting algorithms are simply dual ways of describing it.

4. Para- and Apomorphisms
In the previous section, we saw how to write insertion sort naïvely
as a fold of an unfold, and bubble sort as an unfold of a fold.
While simple, these algorithms are inefficient: fold traverses the list
linearly, applying the algebra to each element. Since our algebras
are unfolds, the running time is quadratic in length of the list.
Dually, the same holds for unfold with coalgebras that are folds.

At this stage, the novice functional programmer is typically in-
troduced to other sorting algorithms with better asymptotic com-
plexity. However, to write the swapping sorts that we have seen
thus far in terms of primitive recursive morphisms, we need variants
of our cata- and anamorphisms, namely para- and apomorphisms.
Apomorphisms allow us to write more efficient coalgebras that can
signal when to stop corecursion, and paramorphisms provide a way
to match on the intermediate state of the list during computation.

4.1 Paramorphisms
Paramorphisms are a variation of catamorphisms—folds—where
the algebra is given more information about the intermediate state
of the list during the traversal. By analogy with catamorphisms, we
call the argument to a paramorphism an algebra, though this is not
strictly accurate. In a catamorphism, the algebra gets the current
element and the result computed so far; in a paramorphism, the
algebra also gets the remainder of the input. This extra parameter
is used in a similar way to a Haskell as-pattern.

For the paramorphism algebra we will need products and a split
combinator that builds a product from two functions:

data a×b = As {outl :: a,outr :: b}
(M) :: (x→ a)→ (x→ b)→ (x→ a×b)
(f Mg) x = As (f x) (g x)

We will write the constructor of products, As a b, as a b (we will
later use it like the Haskell as-pattern: a@b).

We are now ready to define the paramorphism:

para :: (Functor f )⇒ (f (µf ×a)→ a)→ (µf → a)
para f = f ·map (idMpara f ) · in◦

Note the similarity with fold (Section 2); the important difference
is in the type of the algebra, which is now f (µf × a)→ a instead
of just f a→ a. In fact, para can be defined directly as a fold:

para′ :: (Functor f )⇒ (f (µf ×a)→ a)→ (µf → a)
para′ f = outr · fold ((in ·map outl)M f )

Another name often given to para is recurse (Augusteijn 1999).
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4.2 Apomorphisms
Having seen how to construct the paramorphism, we now pro-
ceed to its dual: the apomorphism. Apomorphisms generalise
anamorphisms—unfolds—and can be used to provide a stopping
condition on production, which in turn improves the efficiency of
the algorithm. Also by analogy, we will call the argument to an
apomorphism a coalgebra.

For defining apomorphisms we will need a disjoint union type
and a combinator that destructs a sum using two functions, imple-
menting a case analysis:

data a+b = Stop a | Play b
(O) :: (a→ x)→ (b→ x)→ (a+b→ x)
(f Og) (Stop a) = f a
(f Og) (Play b) = g b

We name the constructors of +, Stop and Play, alluding to their
behaviour in the context of a coalgebra. We write Stop a as a◾, and
Play b as ▸b.

We are now ready to define the apomorphism:

apo :: (Functor f )⇒ (a→ f (ν f +a))→ (a→ ν f )
apo f = out◦ ·map (idOapo f ) · f

As expected, apo is similar to unfold, but the corecursion is split
into two branches, with no recursive call on the left. Another name
often given to apo is corecurse.

Apomorphisms can also be defined in terms of unfolds. How-
ever, this is not as efficient: recursion continues in ◾mode, copying
the data step-by-step:

apo′ :: (Functor f )⇒ (a→ f (ν f +a))→ (a→ ν f )
apo′ f = unfold ((map (◾) ·out)O f ) ·▸
At the end of Section 2, we followed a type-directed approach

to derive the types of an algebra a and a coalgebra c in the terms
fold (unfold c) and unfold (fold a). We will now repeat this exercise
for a and c, but this time with fold (apo c) and unfold (para a).

fold (apo c) : µF→ νG

apo c : F (νG)→ νG

c : F (νG)→ G (νG+F (νG))
∼= F (G (νG))→ G (F+ (νG))

unfold (para a) : µF→ νG

para a : µF→ G (µF)

a : F (µF×G (µF))→ G (µF)
∼= F (G× (µF))→ G (F (µF))

By introducing the types

type f+ a = a+ f a
type f× a = a× f a

we can see that the algebra a and a coalgebra c are still closely
related. While the correspondence is no longer as obvious as in
Section 2, we will see that we can describe both a and c in terms of
a natural transformation of type F ◦G× →̇G ◦F+, where ◦ is used
for functor composition and →̇ for natural transformations.

An obvious question is why we do not use a para of an apo, or
an apo of a para. The answer is simply that we lose the relationship
between a and c, as we see when we follow the type directed
approach we first showed in Section 2.

para (apo c) : µF→ νG

apo c : F (µF×νG)→ νG

c : F (µF×νG)→ G (νG+F (µF×νG))

apo (para a) : µF→ νG

para a : µF→ G (νG+µF)

a : F (µF×G (νG+µF))→ G (νG+µF)

While expressive, these types are not useful to us: we cannot con-
struct a natural transformation that relates a and c, and nor can we
set them up as bialgebras.

5. Insertion and Selection Sort
The naïve insertion sort presented in Section 3 is unable to leverage
the fact that the list being inserted into is already sorted, and so it
continues to scan through the list, even after the element to insert
has been placed appropriately. Now that we have apomorphisms,
however, we can write the insertion function as one that avoids
scanning needlessly:

insertSort :: µList→ νList
insertSort = fold insert

where insert = apo ins

The coalgebra ins is now enriched with the ability to signal that the
recursion should stop.

ins :: List (νList)→ List (νList+List (νList))
ins Nil = Nil
ins (Cons a bNilc) = Cons a (bNilc◾)
ins (Cons a bCons b x′c)
| a 6 b = Cons a (bCons b x′c◾)
| otherwise = Cons b (▸(Cons a x′))

This signal appears in the definition of the third case, where the
element to insert, a, is ordered with respect to the head of the
already ordered list, so there is no more work to be done. The
stop signal is also used in the second case, where the list to insert
into is empty. We could have given the following as an alternative
definition for this case:

ins (Cons a bNilc) = Cons a (▸Nil)

While still correct, the apomorphism would take one more step, to
turn ▸Nil into Nil. With or without the superfluous step, insertSort
will run in linear time on a list that is already sorted; this is in
contrast to naı̈veInsertSort, bubbleSort, and selection sort, which
we will define shortly. All of these will still run in quadratic time,
as they cannot abort their traversals. Early termination in apomor-
phisms avoids redundant comparisons and is the key to insertSort’s
best and average case behaviour.

We can extract a new natural transformation from ins. In Sec-
tion 3 we called the natural transformation for swapping sorts,
swap; we will call our enriched version swop, for swap‘n’stop.

swop :: List (x×List x)→ List (x+List x)
swop Nil = Nil
swop (Cons a (x Nil)) = Cons a (x◾)
swop (Cons a (x (Cons b x′)))
| a 6 b = Cons a (x◾)
| otherwise = Cons b (▸(Cons a x′))

The type makes it clear that x and x◾ really go hand-in-hand.
Before, we had a natural transformation, List ◦ List →̇ List ◦

List; now we have one with type, List ◦ List× →̇ List ◦ List+. In
Section 3 we saw a diagram that described the relationship between
naı̈veInsert and swap; contrast this with the relationship between
insert and swop in the following diagram.

74



List (νList)

insert
��

map (idMout)
++

List (List× (νList))

swop
��

νList

out
��

List (List+ (νList))

map (idO insert)ss
List (νList)

Note that this diagram is not symmetric in the way that the diagrams
were in Section 3: for example, out is matched with map (idMout),
rather than map out. This is because swop itself is not symmetric.
In Appendix A we briefly sketch how swop can be turned into a dis-
tributive law of type List+ ◦List× →̇List× ◦List+. This distributive
law is unneeded here, as we will write insert directly in terms of
swop using an apomorphism. (The proof of why this is the case is,
again, in Appendix A.) As in Section 3, we can also dualise this de-
velopment. Just as naïve insertion as an unfold was dual to bubble
as a fold, insertion as an apomorphism can be dualised to selection
as a paramorphism.

selectSort :: µList→ νList
selectSort = unfold select

where select = para sel
sel :: List (µList×List (µList))→ List (µList)
sel Nil = Nil
sel (Cons a (x Nil)) = Cons a x
sel (Cons a (x (Cons b x′)))
| a 6 b = Cons a x
| otherwise = Cons b dCons a x′e

The sole difference between sel and bub (Section 3) is in the case
where a 6 b: sel uses the remainder of the list, supplied by the
paramorphism, rather than the result computed so far. This is why
para sel is the true selection function, and fold bub is the naïve
variant, if you will.

To conclude our discussion, we have new definitions of insertion
and selection sort in terms of our new natural transformation, swop.

insertSort′ :: µList→ νList
insertSort′ = fold insert

where insert = apo (swop ·map (idMout))

selectSort′ :: µList→ νList
selectSort′ = unfold select

where select = para (map (idO in) · swop)

We shall omit the proofs that select and insert form initial and
final bialgebras, respectively; the details are lengthy and beyond
the scope of this paper, see Hinze and James (2011). Instead we
shall simply give the diagram that states them.

List+ (µList)

idO in
��

// List+ (νList)

idO insert
��

µList

idM select
��

‖
fold insert

unfold select
// νList

idMout
��

List× (µList) // List× (νList)

Thus, insertSort′ and selectSort′ are dual; moreover, by uniqueness,
they are equal.

6. Quicksort and Treesort
While the reader should not have expected better, the results of
Section 5 are still somewhat disappointing; apomorphisms have
helped implement a small optimisation, but the worst case running
time is still quadratic. This arises from the use of swaps in both
selection and insertion sort—they are fundamentally bound by the
linear nature of lists. If we are to do better than a quadratic bound,
we need sublinear insertion and selection operations. To use such
operations, we must introduce an intermediate data structure that
supports them. We do this by moving to a two-phase algorithm,
where the first phase builds such an intermediate data structure
from a list, and the second phase consumes it to produce a sorted
list. In this section, we seek a better sorting algorithm by using
binary trees with elements of type K.

data Tree tree = Empty | Node tree K tree
instance Functor Tree where

map f Empty = Empty
map f (Node l k r) = Node (f l) k (f r)

Henceforth, we will write Empty as ε and Node l k r as l �k
 r. In
this section, we will be using the tree type as a search tree,

type SearchTree = Tree

where all the values in the left subtree of a node are less than or
equal to the value at the node, and all values in the right subtree are
greater. Such a tree orders the elements horizontally, such that an
in-order traversal of the tree yields a sorted list.

6.1 Phase One: Growing Search Trees
First, we start with the unfold of a fold approach. Therefore, we
seek a fold that produces something of type SearchTree (µList).
The idea is that the fold will create one level of the tree, where
l�k
 r contains a value k for which values in the list l are less than
or equal to k, and values in the list r are greater than k. In other
words, k acts as a pivot around which l and r are partitioned.

pivot :: List (SearchTree (µList))→ SearchTree (µList)
pivot Nil = ε

pivot (Cons a ε) = dNile�a
 dNile
pivot (Cons a (l�b
 r))
| a 6 b = dCons a le�b
 r
| otherwise = l�b
 dCons a re

In effect, fold pivot :: µList→ SearchTree (µList) is a partitioning
function that takes a list and returns its last element as a pivot,
along with the two partitions of that list. At each step, the enclosing
unfold will call this fold on each of the resulting partitions, which
will ultimately yield the entire search tree.

The type of pivot gives us little choice in its implementation; Nil
will be replaced with ε , Cons a ε will become a tree of one element,
with empty lists as children. Therefore, the construction of l and r
is determined by value of the pivot, the last element.

As we have done before, we shall extract a natural transforma-
tion from this algebra.

sprout :: List (x×SearchTree x)→ SearchTree (x+List x)
sprout Nil = ε

sprout (Cons a (t ε)) = (t◾)�a
 (t◾)
sprout (Cons a (t (l�b
 r)))
| a 6 b = (▸(Cons a l))�b
 (r◾)
| otherwise = (l◾)�b
 (▸(Cons a r))

In Sections 3 and 5, we were operating with lists and swapped the
elements to maintain the ordering. With trees, we must maintain
the search tree property when inserting elements.
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Having extracted the natural transformation, we can synthesise
the coalgebra that is dual to pivot,

treeIns :: List (νSearchTree)
→ SearchTree (νSearchTree+List (νSearchTree))

treeIns Nil = ε

treeIns (Cons a bεc) = (bεc◾)�a
 (bεc◾)
treeIns (Cons a bl�b
 rc)
| a 6 b = (▸(Cons a l))�b
 (r◾)
| otherwise = (l◾)�b
 (▸(Cons a r))

which takes an element of the input list and inserts it one level deep
into a search tree. We shall call this treeIns, since, as we shall see,
this algebra forms the first phase of a treesort. Efficient insertion
into a tree is necessarily an apomorphism; because of the search
tree property, the recursion need only go down one of the branches,
which is not possible with an unfold.

The derivation of treeIns merits some review. We began this
section by writing a function to partition a list around a pivot. Then,
we turned this into a natural transformation. Now, out the other
side, so to speak, we have another useful function, which inserts
an element into a search tree: apo treeIns :: List (νSearchTree)→
νSearchTree. Moreover, we got this for free.

As before, the algebra and coalgebra can be written in terms
of the natural transformation, so pivot = map (idO in) · sprout and
treeIns = sprout ·map (id M out). This yields two algorithms for
generating search trees:

grow,grow′ :: µList→ νSearchTree
grow = unfold (para (map (idO in) · sprout))

grow′ = fold (apo (sprout ·map (idMout)))

We can either recursively partition a list, building subtrees from the
resulting sublists, or start with an empty tree and repeatedly insert
the elements into it.

6.2 Phase Two: Withering Search Trees
The previous section was concerned with growing search trees.
With these in place, we will now look at ways of flattening these
trees into a sorted lists.

We will start with the complement to pivot, which partitioned
a list around a pivot. Here, we need a List-coalgebra to glue the
partitions back together. More specifically, we need a coalgebra for
an apomorphism, so that we can signal when to stop.

glue :: SearchTree (νList)
→ List (νList+SearchTree (νList))

glue ε = Nil
glue (bNilc�a
 r) = Cons a (r◾)
glue (bCons b lc�a
 r) = Cons b (▸(l�a
 r))

Note that apo glue :: SearchTree (νList) → νList is essentially a
ternary version of append: it takes a left and a right sorted list, an el-
ement in the middle, and glues it all together. Had we implemented
this naïvely as a plain unfold, the right list would also have to be
traversed and thus induce unnecessary copying.

Following our established course, we can extract the natural
transformation from this coalgebra,

wither :: SearchTree (x×List x)→ List (x+SearchTree x)
wither ε = Nil
wither ((l Nil)�a
 (r )) = Cons a (r◾)
wither ((l (Cons b l′))�a
 (r )) = Cons b (▸(l′�a
 r))

which captures the notion of flattening by traversing a tree and
collecting the elements in a list. Specifically, this function returns
the leftmost element, along with the combination of the remainder.

We can now synthesise the algebra that is dual to glue.

shear :: SearchTree (µSearchTree×List (µSearchTree))
→ List (µSearchTree)

shear ε = Nil
shear ((l Nil)�a
 (r )) = Cons a r
shear ((l (Cons b l′))�a
 (r )) = Cons b dl′�a
 re

To understand what is in our hands, let us look at the third case: a is
the root of the tree, with l and r as the left and right subtrees; b is the
minimum of the left subtree and l′ the remainder of that tree without
b. In which case, para shear :: µSearchTree→ List (µSearchTree)
is the function that deletes the minimum element from a search
tree. Thus, the fold of this flattens a tree by removing the elements
in order. This should surprise no one: the second phase of treesort
would surely be an in-order traversal.

We can again define both the algebra and the coalgebra in
terms of the natural transformation, which yields two algorithms
for flattening a tree to a list:

flatten,flatten′ :: µSearchTree→ νList
flatten = fold (apo (wither ·map (idMout)))

flatten′ = unfold (para (map (idO in) ·wither))

6.3 Putting Things Together
We have now constructed the constituent parts of the famous quick-
sort and the less prominent treesort algorithms. The components for
quicksort dualised to give us those for treesort, and now all that re-
mains is to assemble the respective phases together.

Quicksort works by partitioning a list based on comparison
around a pivot, and then recursively descending into the resulting
sublists until it only has singletons left. This is precisely the algo-
rithm used to create the tree in grow, and we have simply stored the
result of this recursive descent in an intermediate data structure.
The flatten then reassembles the lists by appending the singletons
together, now in sorted order, and continuing up the tree to append
sorted sublists together to form the final sorted list.

Dually, treesort starts with an empty tree and builds a search
tree by inserting the elements of the input list into it, which is
the action of grow′. The sorted list is then obtained by pulling the
elements out of the tree in order and collecting them in a list, which
is how flatten′ produces a list. In each, tying the two phases together
is downcast, which is necessary because grow and grow′ produce
trees, but flatten and flatten′ consume them.

quickSort, treeSort :: µList→ νList
quickSort = flatten ·downcast ·grow

treeSort = flatten′ ·downcast ·grow′

In the average case, quicksort and treesort run in linearithmic
time. But, we have not succeeded in eliminating a quadratic running
time in the worst case. We are not yet done.

7. Heapsort
Quicksort and treesort are sensitive to their input. Imposing a hor-
izontal (total) ordering to the tree offers us no flexibility in how to
arrange the elements, thus an unfavourably ordered input list leads
to an unbalanced tree and linear, rather than logarithmic, opera-
tions. (Of course, we could use some balancing scheme.) For this
section we will use Heap as our intermediate data structure,

type Heap = Tree

where the element of a tree node in a heap is less than or equal to all
the elements of the subtrees. This heap property requires that trees
are vertically ordered—a more ‘flexible’, partial order.
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7.1 Phase One: Piling up a Heap
Now that we are accustomed to the natural transformations that de-
scribe the single steps of our sorting algorithms, in this section we
will write them first; then we will derive the algebra and coalgebra
that make up the final and initial bialgebras, respectively.

The type of our natural transformation, which we will call pile,
will be the same as sprout in Section 6.1, modulo type synonyms.
However, rather than its implementation being dictated by the
search tree property, we have a choice to make for pile.

pile :: List (x×Heap x)→ Heap (x+List x)
pile Nil = ε

pile (Cons a (t ε)) = (t◾)�a
 (t◾)
pile (Cons a (t (l�b
 r)))
| a 6 b = (▸(Cons b r))�a
 (l◾)
| otherwise = (▸(Cons a r))�b
 (l◾)

There is no choice in the first two cases; it is solely in the third
case, which we will now examine. We can avoid the guards if we
use min and max—this rewrite emphasises that the structure does
not depend on the input data. We write min as u, and max as t, so
the third case is now rendered as:

pile (Cons a (t (l�b
 r)))
= (▸(Cons (atb) r))�(aub)
 (l◾)

We actually have a choice between four different steps: adding the
maximum to the left or to the right, and swapping or not swapping
the results (the subtrees of a heap are, in a sense, unordered).

pile (Cons a (t (l�b
 r)))
= (▸(Cons (atb) l))�(aub)
 (r◾)
= (r◾)�(aub)
 (▸(Cons (atb) l))
= (l◾)�(aub)
 (▸(Cons (atb) r))
= (▸(Cons (atb) r))�(aub)
 (l◾)

We chose the last option: we always add to the right and then swap
left with right. By doing so, we will end up building a heap that is
a Braun tree (Braun and Rem 1983), where a node’s right subtree
has, at most, one element less than its left. Thus we ensure that our
heapsort is insensitive to the input, in contrast to quick (tree) sort.

Now that we have our natural transformation in place, it is rou-
tine to turn it into a List-algebra and Heap-coalgebra. We will start
with the latter, as this will be the expected function for heapsort.

heapIns :: List (νHeap)
→ Heap (νHeap+List (νHeap))

heapIns Nil = ε

heapIns (Cons a bεc) = (bεc◾)�a
 (bεc◾)
heapIns (Cons a bl�b
 rc)
| a 6 b = (▸(Cons b r))�a
 (l◾)
| otherwise = (▸(Cons a r))�b
 (l◾)

We have called it heapIns as apo heapIns :: List (νHeap)→ νHeap
is the heap insertion function. Thus a fold of an apo will build a
heap by repeated insertion. (It is instructive to compare heapIns to
treeIns in Section 6.1.)

As an aside, we can actually do slightly better: sinking the ele-
ment, b, into the right subheap r, does not require any comparisons
as the heap property ensures that b is smaller than the elements in r.
One solution would be to introduce a variant of lists, List′, with a
third constructor Cons6, to signal when no more comparisons are
needed. We can then write fold (apo heapIns′) · toList′, where,

heapIns′ (Cons a bl�b
 rc)
| a 6 b = (▸(Cons6 b r))�a
 (l◾)
. . .

heapIns′ (Cons6 a bl�b
 rc)
= (▸(Cons6 b r))�a
 (l◾)

All that is left is to examine the List-algebra that arises from pile.
It is related to the pivot function in Section 6.1. There, we were
building two lists partitioned around a pivot, but here we are select-
ing the least element and collecting the rest into two lists. We shall
name the synthesised algebra divvy, meaning to divide up.

divvy :: List (Heap (µList))→ Heap (µList)
divvy Nil = ε

divvy (Cons a ε) = dNile�a
 dNile
divvy (Cons a (l�b
 r))
| a 6 b = dCons b re�a
 l
| otherwise = dCons a re�b
 l

The function fold divvy :: µList→ Heap (µList), selects the least
element and divides the remaining list into two parts of balanced
length (using Braun’s trick). The unfold of divvy constructs a heap
by repeated selection, rather than by repeated insertion. This is
rather reminiscent of selection and insertion sort, and is an intrigu-
ing variant on building a heap.

7.2 Phase Two: Sifting through a Heap
Our natural transformation for describing one step of turning a
heap into a list will take an interesting divergence from wither
in Section 6.2. There, wither described one step of an in-order
traversal. The search tree property provided the correct ordering for
the output list, so no further comparisons were needed. The choice
afforded to us by the heap property in Section 7.1 now means that
further comparisons are needed, to obtain a sorted list.

sift :: Heap (x×List x)→ List (x+Heap x)
sift ε = Nil
sift ((l Nil)�a
 (r )) = Cons a (r◾)
sift ((l )�a
 (r Nil)) = Cons a (l◾)
sift ((l (Cons b l′))�a
 (r (Cons c r′)))
| b 6 c = Cons a (▸(l′�b
 r))
| otherwise = Cons a (▸(l�c
 r′))

The fourth case is where these comparisons must be made: we need
to pick the next minimum element from the left or the right. When
constructing the heap node to continue with, we have the option to
swap left with right, but this buys us nothing.

Once again, we can routinely turn our natural transformation
into a Heap-algebra and List-coalgebra. This time we will start with
the former as this is the algebra that matches the Heap-coalgebra,
heapIns, that performs heap insertion.

meld :: Heap (µHeap×List (µHeap))
→ List (µHeap)

meld ε = Nil
meld ((l Nil)�a
 (r )) = Cons a r
meld ((l )�a
 (r Nil)) = Cons a l
meld ((l (Cons b l′))�a
 (r (Cons c r′)))
| b 6 c = Cons a dl′�b
 re
| otherwise = Cons a dl�c
 r′e

We have called it meld as para meld :: µHeap→ List (µHeap) is
a function one might find in a priority queue library, often called
deleteMin. It returns the minimum element at the root and a new
heap that is the melding of the left and right subheaps. This Heap-
algebra is related to treesort’s SearchTree-algebra, shear, but due
to the contrasting ordering schemes the mechanics of extracting the
next element are quite different.

The dual construction from sift is the List-coalgebra that com-
bines sorted lists; this time we will make a direct instantiation.
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blend :: Heap (νList×List (νList))
→ List (νList+Heap (νList))

blend ε = Nil
blend ((l Nil)�a
 (r )) = Cons a (r◾)
blend ((l )�a
 (r Nil)) = Cons a (l◾)
blend ((l (Cons b l′))�a
 (r (Cons c r′)))
| b 6 c = Cons a (▸(l′�b
 r))
| otherwise = Cons a (▸(l�c
 r′))

Note that apo (blend ·map (id M out)) :: Heap (νList)→ νList is
really a ternary version of merge, just as apo glue in Section 6.2
was a ternary append.

7.3 Putting Things Together
In the previous two sections, we took the approach of defining the
natural transformations upfront. The algebras and coalgebras are
the synthetic results, so we will express the final algorithms in terms
of these. Fully assembled, our heapsort is defined as:

heapSort :: µList→ νList
heapSort = unfold deleteMin ·downcast · fold heapInsert

where deleteMin = para meld
heapInsert = apo heapIns

We use the names deleteMin and heapInsert to emphasise that this
is exactly the expected algorithm for a function named heapSort.

The dual to heapsort is a strange creature, for which we will
invent the name minglesort:

mingleSort :: µList→ νList
mingleSort = fold (apo (blend ·map (idMout)))

· downcast
· unfold (fold divvy)

It uses the same intermediate data structure as heapsort, yet it
behaves suspiciously like mergesort: the input list is recursively
divided into two parts and then merged back together. This, of
course is not quite true, as it actually divides into three parts: two
lists of balanced length along with the minimum element. The
merging phase is a similarly trimerous operation.

The true mergesort is really described by another intermediate
data structure:

data Bush bush = Leaf K | Fork bush bush

A key facet of mergesort is that the first phase performs no com-
parisons: the input is recursively uninterleaved, which matches the
dimerous nature of Bush. Remember that quick (tree) sort only per-
forms comparisons in the first phase, and that heapsort, and thus
minglesort, do so in both phases.

As minglesort impersonates mergesort, one would expect the
dual of mergesort to be not unlike heapsort. It turns out that this is
exactly the case; we have already continued this work and defined
mergesort with Bush as the intermediate data structure and non-
empty lists as the input and output data structure.

data List1 list1 = Single K | Push K list1

The non-empty list requirement comes from the fact that Bush is
a non-empty container. For conciseness, we have not reported this
work here. However, as a further justification that this is an intrigu-
ing avenue for future work, we should point out that µBush is iso-
morphic to (K,µHeap)—heaps (trees) paired with an additional
element (Hinze and James 2010). It is also isomorphic to [µRose],
lists of rose trees, where Rose is defined as:

data Rose rose = Rose K [rose]

Rose trees can be used to implement binomial trees, and the type
[µRose] is exactly the type of binomial heaps. Given the character-

istics of these heaps, this also begs the question of how we apply
our approach to a heapsort where the first phase runs in linear time.
We leave the study of the relationship between mergesort, heapsort,
and the various data intermediate structures to future investigations.

8. Related Work
Sorting algorithms, described in great detail by Knuth (1998), are
often used in the functional programming community as prime ex-
amples of recursive morphisms. Recursive morphisms, known to
be suitable for expressing many algorithms (Gibbons et al. 2001),
have been widely studied (Gibbons 2003), especially ana- (Gib-
bons and Jones 1998), cata- (Hutton 1999), and paramorphisms
(Meertens 1992). Apomorphisms are less frequently used, but Vene
and Uustalu (1998) provide a detailed account.

Augusteijn (1999) presents the same sorting algorithms that we
handle in this paper, but focuses on their implementation as hylo-
morphisms. A hylomorphism encapsulates a fold after an unfold,
combining a coalgebra A→ F A and an algebra F B→ B. The al-
gebra and coalgebra have different carriers (A and B), but share the
functor F. Their use has been explored in a wide variety of set-
tings (Adámek et al. 2007; Capretta et al. 2006; Hinze et al. 2011;
Meijer et al. 1991). However, we do not discuss hylomorphisms
in this paper, instead using bialgebras, which combine an algebra
F X→ X and a coalgebra X→G X: they share the same carrier, but
operate on different functors. Moreover, we focus our attention on
the (co-)algebras being recursive morphisms themselves. Dually,
Gibbons (2007) has explored metamorphisms, i.e., an unfold after
a fold, in which they gave quicksort as a hylomorphism and heap-
sort as a metamorphism as an example. We note that we obtain the
same results with our approach but are also able to dualise each of
these algorithms, yielding treesort as a metamorphism from quick-
sort and mingleSort as a hylomorphism from heapsort for free.

Others have looked at how to obtain “algorithms for free”, or
develop programs calculationally. Bird (1996) give an account on
formal derivation of sorting algorithms as folds and unfolds; Gib-
bons (1996) derives mergesort from insertion sort using the third
homomorphism theorem; Oliveira (2002) analyses which sorting
algorithms arise by combining independently useful algebras.

Our treatment of sorting algorithms as bialgebras and distribu-
tive laws is an application of the theoretical work that originates
from Turi and Plotkin’s mathematical operational semantics (Turi
and Plotkin 1997). Hinze and James (2011) also use this work to
characterise the uniqueness of systems of equations that describe
streams and codata in general. The types in this paper that we call
F+ and G× are really the free pointed functor for F and the cofree
copointed functor for G (Lenisa et al. 2000); our Sections 3 and 5,
and Appendix A have lightweight presentations of results from Turi
and Plotkin (1997) and Lenisa et al. (2000).

9. Conclusion
Folds and unfolds already gave some insights into the structure
of sorting algorithms, and we leveraged this fact by using a type-
driven approach to guide our derivations. By taking the analysis
into the world of bialgebras, we were able to isolate the computa-
tional essence of these sorting algorithms, which we read as dis-
tributive laws. This allowed us to talk of equivalence between two
algorithms. Furthermore, we could construct one algorithm from
another this way, giving us algorithms for free. Even in such a pla-
tonic domain, we were nevertheless able to address efficiency con-
cerns, both algorithmically and by extending the theory to include
para- and apomorphisms as more efficient recursion schemes.
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A. Proofs
In this appendix we will take swop :: List ◦ List× →̇ List ◦ List+,
from Section 5 and show how to make it symmetric. We do this so
that we can apply the general theory of bialgebras and distributive
laws to construct the initial and final bialgebras. This will be in a
similar fashion to the conclusion of Section 3, albeit now in a more
expressive setting. Having given the general construction, we will
show how apo- and paramorphisms are ‘shortcuts’. But first, we
need to introduce a few definitions.

A.1 Casting
Folds that consume a list of type µList require a List-algebra, but
sometimes we will have a List+-algebra in our hands. We can cast
the latter into the former with the following function:

down+ :: (Functor f )⇒ (f+ a→ a)→ (f a→ a)
down+ b = b · inr

(In this appendix we will use inl and inr in place of ◾ and ▸,
respectively, to better illustrate the duality with outl and outr.) We
can also cast up:

up+ :: (Functor f )⇒ (f a→ a)→ (f+ a→ a)
up+ a = idOa

Dually, unfolds that produce a list of type νList require a List-
coalgebra. Again, we can cast between the two:

down× :: (Functor f )⇒ (f× a→ a)→ (f a→ a)
down× d = outr ·d
up× :: (Functor f )⇒ (f a→ a)→ (f× a→ a)
up× c = idM c

At a higher level of abstraction there is something deeper going
on: there is an isomorphism between the category of List-algebras
and the category of List+-algebras—dually for List-coalgebras and
List×-coalgebras. The functors that witness these isomorphisms are
subject to various coherence conditions, but the details are beyond
the scope of this paper, see Hinze and James (2011).

A.2 Symmetry
In Section 5, swop has the type L ◦O× →̇O ◦L+, where List and
List have been abbreviated to L and O, respectively. Given any
natural transformation of type L ◦O× →̇O ◦L+, we can construct
a distributive law with the symmetric type L+ ◦O× →̇O× ◦ L+.
We will use the name swopsy for the symmetric law constructed
from swop; the two are related by the following equivalence.

up× c ·up+ a =O× (up+ a) · swopsy ·L+ (up× c)

⇐⇒
c ·a =O (up+ a) · swop ·L (up× c)

(Note that here we have used the name of the functor in place of
map, so that we can be clear as to which map is being used.) We
can read this equivalence as a specification for swopsy; we shall
also render it diagrammatically.

L+ X

up+ a

��

L+ (up× c)
))
L+ (O× X)

swopsy ⇐⇒
��

X

up× c
��

O× (L+ X)

O× (up+ a)uu
O× X

L X

a
��

L (up× c)
))
L (O× X)

swop
��

X

c
��

O (L+ X)

O (up+ a)uu
O X
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From this specification, the definition of swopsy can be calculated.
Again, this calculation is beyond the scope of this paper, see Hinze
and James (2011). We will simply state the final construction.
In fact, as the distributive law goes from a coproduct (initial) to
a product (final), there are two constructions, and, following the
theme of this paper, they are equal by uniqueness.

swopsy = L+ outl M (O inl · outr O swop)

=O× inl O ( inr ·L outl M swop)

The following, regrettably detailed diagram, shows the initial
and final swopsy-bialgebras. These are constructed in terms of folds
and unfolds, which is why the terms are so complex: we need to
mediate between L- and L+-algebras, and O- and O×-coalgebras.

L+ (νO)

unfold (down× (swopsy ·L+ (up× out)))
// νO up× out // O× (νO)

L+ (µL)

OO

up+ in // µL

fold (down+ (unfold (down× (swopsy ·L+ (up× out)))))
=

unfold (down× (fold (down+ (O× (up+ in) · swopsy))))

OO

fold (down+ (O× (up+ in) · swopsy))

// O× (µL)

OO

It is worth comparing this diagram to the more simple diagram
that concluded Section 3, which showed the initial and final swap-
bialgebras. Where before we had in ::L (µL)→ µL, we now have
up+ in ::L+ (µL)→ µL; and before we had unfold (swap ·L out),
but now we have unfold (down× (swopsy · L+ (up× out))), and
in the centre of the diagram, where we apply fold to it, we must
use a final down+ cast. Unfortunately, the selective but necessary
use of casts makes the construction of the initial and final swopsy-
bialgebras rather noisy.

A.3 Apomorphisms as a Shortcut
When we gave our final definition of insertion sort in Section 5,
we wrote it as a fold of an apomorphism, rather than as a fold

of an unfold. The reason for doing so was to utilise the compu-
tational efficiency of swop and apomorphisms—our insertion sort
has linear complexity in the best case. From a theory perspective,
apomorphisms also present a shortcut: we can use swop directly,
rather than having to take the more general approach of construct-
ing a distributive law that is symmetric. This leads to more concise
terms, compared to what we see in the diagram above.

Paramorphisms and apomorphisms are useful in the case where
we are building natural transformations involving F+ and F× func-
tors; the following is a proof that apo (swop · L (id M out)) is in-
deed a ‘shortcut’ for our general construction of the final swopsy-
bialgebra.

down+ (unfold (down× (swopsy ·L+ (up× out))))

= { definition of down+ }
unfold (down× (swopsy ·L+ (up× out))) · inr

= { definition of down× }
unfold (outr · swopsy ·L+ (up× out)) · inr

= { definition of swopsy }
unfold (outr · (L+ outlM (O inl ·outrO swop)) ·L+ (up× out)) · inr

= { computation: f2 = outr · (f1 M f2) }
unfold ((O inl ·outrO swop) ·L+ (up× out)) · inr

= { definition: L+ f = f +L f }
unfold ((O inl ·outrO swop) · (up× out+L (up× out))) · inr

= { functor fusion: (f1 O f2) · (g1 +g2) = f1 ·g1 Og2 ·g2 }
unfold (O inl ·outr ·up× outO swop ·L (up× out)) · inr

= { definition of up× }
unfold (O inl ·outr · (idMout)O swop ·L (idMout)) · inr

= { computation: f2 = outr · (f1 M f2) }
unfold (O inl ·outO swop ·L (idMout)) · inr

= { definition of apo as unfold }
apo (swop ·L (idMout))

A dual proof would show that para (O (idOout) · swop) is equal to
down× (fold (down+ (O× (up+ in) · swopsy))). However, where
apomorphisms offer a shortcut in both efficiency and brevity,
paramorphisms only offer the latter.
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