Quantum Processes and Computation

Assignment 2, Friday, 20 Oct, 12:00

Deadline: Monday Week 4

Goals: After completing these exercises you should know how to reason with the transpose, adjoints, and the conjugate, and work with projections, unitaries and isometries. Material covered in book: Chapter 4 .

Note: Many of these exercises also appear in Picturing Quantum Processes, but sometimes they have been slightly modified for the problem sheet. The corresponding exercise number from the book is shown in brackets.

Exercise 1 (4.10 \& 4.16):

(a) Prove that in relations, the following relations on a set A :

$$
\checkmark:: * \mapsto\{(a, a) \mid a \in A\} \quad \rightarrow:: \forall a \in A:(a, a) \mapsto *
$$

satisfy the yanking equations (eq. 4.11 in the book), and thus that relations has process-state duality.
(b) Show that process-state duality does not hold for functions.

Exercise 2 (4.12): Prove that

follows from the following 4 equations:

Hint: Use the second notation (with the boxes) as it prevents you from accidentally cheating.
Exercise 3 (4.14 in online version of PQP): Show that the following are equivalent:
(i) a state and an effect satisfying:

(ii) a state and an effect satisfying:

So in particular, if either eqs. (i) or eqs. (ii) hold, then all equations hold.
Exercise 4 (4.59): An inverse for a process $f: A \rightarrow B$ is a process $f^{-1}: B \rightarrow A$ such that $f^{-1} \circ f=\operatorname{id}_{A}$ and $f \circ f^{-1}=\operatorname{id}_{B}$. Show that for a process f the following are equivalent:

- f is unitary.
- f is an isometry and has an inverse.
- f^{\dagger} is an isometry and has an inverse.

Exercise 5 (4.37): Show that the trace of a process is independent of the particular choice of cup and cap, i.e. that if \cup and \cap satisfy the yanking equations, but \cup^{\prime} and \cap^{\prime} also satisfy it that then:

In the lecture we saw the transpose. If a system has multiple inputs and outputs then there are two choices for the transpose. There is the diagrammatic transpose:

and the algebraic transpose:
(for more details see section 4.2.2 of the book)
Exercise 6 (4.39): The adjoint is an operation which acts like a vertical reflection. Show that the algebraic transpose is in this regard an adjoint, i.e. show diagrammatically that:

1. It is an involution: $\left(f^{T}\right)^{T}=f$,
2. It preserves parallel composition: $(f \otimes g)^{T}=f^{T} \otimes g^{T}$,
3. It preserves sequential composition: $(f \circ g)^{T}=g^{T} \circ f^{T}$,
4. It preserves the identities: $\mathrm{id}^{T}=\mathrm{id}$,
5. It sends cups to caps: $\cup^{T}=\cap$,
6. It reverse the direction of swaps: $\operatorname{SWAP}_{A, B}^{T}=\operatorname{SWAP}_{B, A}$

For a process $f: A \rightarrow A$ we define its separable projector by

Exercise 7 (4.73): Given processes $f_{i}: A \rightarrow A$ find the process g such that:

Write g as a sequential composition of the conjugates, transposes and adjoints of the f_{i} 's.
Hint: Doing exercise 4.73 from the book first might reveal whether you understand the concept.

Exercise 8 (4.82): A state ψ is maximally non-separable if it corresponds to a unitary U by process-state duality, up to a number:

Show (i) that if one applies a unitary V to one side of a maximally non-separable state:

that one again obtains a maximally non-separable state, and (ii) that this unitary can always be chosen such that the resulting state is the cup (up to a number).

