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Algebra and rewriting

An algebraic theory consists of a set of operations and constants, satisfying
certain equations

e e.g. a monoid consists of a binary operation and constant e such that:

(a-b)-c=a-(b-c) and a-e=a=¢e-a

e We can apply an equation as a term rewrite rule

Instantiate free variables:

(a-b) c:a~(b-c)/ b:=(y-e)

then replace a sub-term:

wo (v e) ) e ((yee) 2)
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o Alternatively, we could write these equations as trees:

a c a/?c ‘}. 4 Aa
e In which case:

w-((x-(y-e)-2) ~ w-(x-([r-e)-2)
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Algebra and rewriting

o Alternatively, we could write these equations as trees:
A a a a

w-((x-(v-e)-z) ~ w-(x-((ye)-2))
becomes:

LA

e In which case:
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e Note we can drop the free variables:
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e The role of variables is replaced by the fact that the LHS and RHS have a

shared boundary:
A A
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Diagram substitution

e Note we can drop the free variables:

AV A

e The role of variables is replaced by the fact that the LHS and RHS have a

shared boundary:

e This treats inputs and outputs symmetrically
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Algebra and coalgebra

e We can consider structures with many outputs as well as inputs.

Coalgebraic structures: algebraic structures “upside-down”
e e.g. a comonoid satisfies:

YN vy

The most interesting structures consist of algebras interacting with

W A-n -
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Equational reasoning with diagram substitution

e Again, we use equations to perform substitutions, but on graphs rather than
just trees
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Equational reasoning with diagram substitution

e Again, we use equations to perform substitutions, but on graphs rather than

just trees

e For example:
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Example: Quantum circuit rewriting
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Example: Quantum circuit rewriting

So, we can define an equational theory for quantum circuits, using rewriting.
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Why an equational theory for quantum circuits?

e circuit optimization:

(automated) translation to other gate sets and paradigms

exploit algebraic invariants to prove properties about computations
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A complete set of gate identities

e These equations are complete for Clifford circuits:

€
=
I
-
a
=

- EHAHSH .o (Cl0)

=
H2 = 1 (02)
st =1 (C3) Y— 1 = cwt (C11)
SHSHSH = w (C4)
Ir - — (cs) RS (c12)
1C = (C6) H H _ H+—{H (13)
ji ...-..'
; - = ; (C7)
- o
- (9 —
= ___ (C15)
(c9) —

(Selinger 2013)
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e unique normal forms
e relatively compact (3 generators, 15 rules)

e The bad:

e rules are large, and don't carry any intuition or algebraic structure
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As an equational theory

good:
complete for Clifford circuits:

[[Cl]] = [[CQH - Cl =F C2

unique normal forms
relatively compact (3 generators, 15 rules)

bad:

rules are large, and don't carry any intuition or algebraic structure
rewrite strategy is complicated (17 derived gates, 100 derived rules)

ugly:

Survey



Introduction

e The

Quantum circuits Spiders ZX-calculus MBQC
00080

As an equational theory

good:
complete for Clifford circuits:

[[Cl]] = HCQH - Cl =F C2

unique normal forms
relatively compact (3 generators, 15 rules)

bad:

rules are large, and don't carry any intuition or algebraic structure

rewrite strategy is complicated (17 derived gates, 100 derived rules)

ugly:

proof of completeness is extremely complicated (> 100 pages long! though
mostly machine-generated)
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Decomposing CNOT

i)

D 4
Xor

copy

)
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‘Copy’ maps
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Algebraic identities...

These satisfy 8 identities:

/A AT AR
VoY Y Y
i X

...making them a commutative Frobenius algebra.
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What about 2-colour diagrams?

Direction of edges doesn’'t matter:

N H

...in fact, only topology matters:

B
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Interaction: Hopf algebra

Red + green spiders also satisfy:

X# &1 Yo

...from which we can derive:

make the overall structure into a Hopf algebra
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Making spiders universal
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Making spiders universal
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N L) e e L)
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Making spiders universal

Theorem
Phased spiders are universal for qubit quantum computation.

Proof.
H oo

Let:
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The ZX-calculus consists of the two spider-fusion rules:
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The ZX-calculus

The ZX-calculus consists of the two spider-fusion rules:

-

four Interaction rules:

X8 A1 Y66 38

and the Colour Change rule:
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Completeness

Theorem (Backens 2013)
The ZX-calculus is complete for Clifford ZX-diagrams:

[Di] = [D2] = D1 =zx D
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Measurement-based quantum computing

¢ Measurement-based quantum computing is an alternative (and
equivalent) paradigm to the circuit model

e Rather than repeatedly applying operations to a small number of systems,
start with a big entangled state called a graph state and do many local
measurements in different bases:

e But crucially, the choices of measurements can depend on past
measurement outcomes. This is called feed-forward, and it's where all
the magic happens.
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e Graph states are prepared by starting with many qubits in the |+) state and
creating entanglement with controlled-Z operations:



MBQC
0000

Graph states and cluster states

e Graph states are prepared by starting with many qubits in the |+) state and
creating entanglement with controlled-Z operations:

A

e Since controlled-Z's commute, the only relevant part is the graph:

Shaaiit
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Measurements and feed-forward

e Compute with single qubit ONB measurements of this form:

®Q (9
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Measurements and feed-forward

e Compute with single qubit ONB measurements of this form:

®Q (9

e We want to get the first outcome and treat the second outcome as an error:

error Q
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e We can propagate the error out using the ZX-rules:

[0



MBQC
0000e

Measurements and feed-forward

e We can propagate the error out using the ZX-rules:

« « «
m = = us
T ) T
«a «
= s = s T
T

o If we know an error occurred, we can modify our later measurement choices

to account for it:
-6 v+

.48 - 1.3.1
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Measurements and feed-forward

e We can propagate the error out using the ZX-rules:

S INEE R

o If we know an error occurred, we can modify our later measurement choices

to account for it:
-6 v+

Lum

.<¢
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Notable results: MBQC

e Duncan & Perdrix used the ZX-calculus to offer a new technique for
transforming MBQC patterns to circuits, which has some advantages over
other known methods, e.g. not requiring ancillas.?

% e Fade b

R

(C5) (C6)

e For more details, Ducan has written a self-contained introduction to MBQC
from the diagrammatic/ZX point of view, which is available on the arXiv.2

!Rewriting measurement-based quantum computations with generalised flow. R. Duncan,
S. Perdrix, ICALP 2010.
personal.strath.ac.uk/ross.duncan/papers/gflow.pdf
2A graphical approach to measurement-based quantum computing. R. Duncan.
arXiv:1203.6242
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Notable results: quantum algorithms

e Vicary gave graphical characterisations of standard quantum algorithms>

{0,1} {0,1} Mat(n) S

ET G L ¢ L L
VISl vz VISTT V22 VI8
Deutsch-Jozsa Single-shot Grover Hidden subgroup

e ...a framework since used by Vicary & Zeng to develop new algorithms as
generalisations*

3The Topology of Quantum Algorithms. LICS 2013, J. Vicary. arXiv:1209.3917
*Abstract structure of unitary oracles for quantum algorithms. J.Vicary, W. Zeng.
arXiv:1406.1278
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Notable results: quantum protocols

e Coecke, along with 3 Wangs and a Zhang give graphical proof of QKD®
e Hillebrand gave rewriting proofs of many (~ 25) quantum protocols.®

e Zamdzhiev used ZX-calculus to verify 3 kinds of quantum secret sharing.”

Generalised GHZ
state

®Graphical Calculus for Quantum Key Distribution. B. Coecke, Q. Wang, B. Wang,
Y. Wang, and Q. Zhang. QPL 2011.

6Quantum Protocols involving Multiparticle Entanglement and their Representations in the
zx-calculus. A. Hillebrand. Masters thesis, Oxford 2011.
WWW.csS.ox.ac.uk/people/bob.coecke/Anne.pdf

"An Abstract Approach towards Quantum Secret Sharing. Masters thesis, Oxford 2012.
WWwW.CS.ox.ac.uk/people/bob.coecke/VladimirZamdzhievThesis. pdf
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Notable results: quantum non-locality

e AK, Coecke, Duncan, and Wang gave diagrammatic presentation of
GHZ /Mermin non-locality argument?®

ONONC . _

O

e ...which has since been generalised to arbitrary dimensions and
quantum-like theories®

8Strong Complementarity and Non-locality in Categorical Quantum Mechanics. B. Coecke,
R. Duncan, A. Kissinger, Q. Wang. LICS 2012.
‘Mermin Non-Locality in Abstract Process Theories. QPL 2015
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Where do we go from here?

e Completeness (Clifford + T, full)

e Automation: implementation of Clifford decision procedure, theory synthesis

e Bigger algorithms, more sophisticated protocols, and generally more
expressiveness of the diagrammatic language
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Thanks!

e Quantomatic is joint work with Lucas Dixon, Alex Merry, Ross Duncan,
Vladimir Zamdzhiev, and David Quick

e See: quantomatic.github.io
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