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Algebra and rewriting

• An algebraic theory consists of a set of operations and constants, satisfying
certain equations

• e.g. a monoid consists of a binary operation and constant e such that:

(a · b) · c = a · (b · c) and a · e = a = e · a

• We can apply an equation as a term rewrite rule

• Instantiate free variables:

(a · b) · c = a · (b · c)

/
a := x

b := (y · e)

c := z

then replace a sub-term:

w · ((x · (y · e)) · z)  w · (x · ((y · e) · z))
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Algebra and rewriting

• Alternatively, we could write these equations as trees:

=

a b c b ca

= =

a aa

• In which case:

w · ((x · (y · e)) · z)  w · (x · ((y · e) · z))

becomes:

w
x

y
z x z

w

y

 

z
w

x
y
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Diagram substitution

• Note we can drop the free variables:

=

a b c b ca

 =

• The role of variables is replaced by the fact that the LHS and RHS have a
shared boundary :

• This treats inputs and outputs symmetrically
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Algebra and coalgebra

• We can consider structures with many outputs as well as inputs.

• Coalgebraic structures: algebraic structures “upside-down”

• e.g. a comonoid satisfies:

=
= =

• The most interesting structures consist of algebras interacting with
coalgebras:

= = =
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Equational reasoning with diagram substitution

• Again, we use equations to perform substitutions, but on graphs rather than
just trees

=

• For example:
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Example: Quantum circuit rewriting

=
⊕

HH ⊕
H H

H  

⊕

Zα⊕ ⊕ Zα

⊕

⊕
 

⊕

Zα

H

⊕

H H H

H

H⊕

⊕ ⊕ ⊕

So, we can define an equational theory for quantum circuits, using rewriting.
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Why an equational theory for quantum circuits?

• circuit optimization:

H

⊕

Zα⊕ ⊕
=

⊕

Zα

H

⊕

H H

H

H⊕

⊕ ⊕

⊕

H

H

=
H

⊕
Zα

= H

⊕
H Zα

⊕

H
HH

• verify equivalence (e.g. when adding error-correction)

encode

decode

Z Z

H H H H H H H
=

Z

H

• (automated) translation to other gate sets and paradigms

• exploit algebraic invariants to prove properties about computations
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A complete set of gate identities

• These equations are complete for Clifford circuits:

(Selinger 2013)
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As an equational theory

• The good:

• complete for Clifford circuits:

JC1K = JC2K =⇒ C1 =E C2

• unique normal forms
• relatively compact (3 generators, 15 rules)

• The bad:

• rules are large, and don’t carry any intuition or algebraic structure
• rewrite strategy is complicated (17 derived gates, 100 derived rules)

• The ugly:

• proof of completeness is extremely complicated (> 100 pages long! though
mostly machine-generated)
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Can we do better?

• Yes!

• We can capture underlying algebraic structure by decomposing gates into
smaller pieces
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H

H

⊕

⊕

⊕

⊕H

Zα
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Decomposing CNOT

⊕
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Decomposing CNOT

⊕
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Decomposing CNOT

⊕

|i〉 |j〉
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Decomposing CNOT

⊕
copy

|i〉

|i〉

|i〉

|j〉
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Decomposing CNOT

⊕
copy xor

|i〉

|i〉

|j〉

|i ⊕ j〉
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‘Copy’ maps

{
|0〉 7→ |00〉
|1〉 7→ |11〉

⊕


|00〉 7→ |0〉
|01〉 7→ |1〉
|10〉 7→ |1〉
|11〉 7→ |0〉
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‘Copy’ maps

{
|0〉 7→ |00〉
|1〉 7→ |11〉

⊕

{
|++〉 7→ |+〉
|−−〉 7→ |−〉
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‘Copy’ maps

{
|0〉 7→ |00〉
|1〉 7→ |11〉

{
|0〉 7→ 1

|1〉 7→ 1
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‘Copy’ maps

{
|0〉 7→ |00〉
|1〉 7→ |11〉

{
〈0|+ 〈1|
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‘Copy’ maps

{
|0〉 7→ |00〉
|1〉 7→ |11〉

{
〈0|+ 〈1|

{
|00〉 7→ |0〉
|11〉 7→ |1〉

{
|0〉+ |1〉
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Algebraic identities...

These satisfy 8 identities:

= =

==

=

=

=

...making them a commutative Frobenius algebra.
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But luckily...
...you don’t need to remember all that! The only thing to remember is, for:

...

...
:=

{
|0..0〉 7→ |0...0〉
|1..1〉 7→ |1...1〉

we have:

...

...

...

...

... =

...

...

or equivalently:

=
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What about 2-colour diagrams?

Direction of edges doesn’t matter:

= =:

...in fact, only topology matters:

= =
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Interaction: Hopf algebra

Red + green spiders also satisfy:

= = =

...from which we can derive:

=

make the overall structure into a Hopf algebra
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Circuit calculation

=
⊕
⊕

⊕

(
⇐

)
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Circuit calculation

=

(
⇐

)
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Circuit calculation

=

(
⇐

)
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Making spiders universal

...

...
:=

{
|0..0〉 7→ |0...0〉
|1..1〉 7→ |1...1〉

...

...
:=

{
|+..+〉 7→ |+...+〉
|−..−〉 7→ |−...−〉



Introduction Quantum circuits Spiders ZX-calculus MBQC Survey

Making spiders universal

α

...

...
:=

{
|0..0〉 7→ |0...0〉
|1..1〉 7→ e iα |1...1〉

α

...

...
:=

{
|+..+〉 7→ |+...+〉
|−..−〉 7→ e iα |−...−〉
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Making spiders universal

α

...

...
:=

{
|0..0〉 7→ |0...0〉
|1..1〉 7→ e iα |1...1〉

...

α + β

...

...

...

α

β

... =

...

...

α

...

...
:=

{
|+..+〉 7→ |+...+〉
|−..−〉 7→ e iα |−...−〉

...

α + β

...

...

...

α

β

... =

...

...
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Making spiders universal

Theorem
Phased spiders are universal for qubit quantum computation.

Proof.
Let:

⊕ := U :=

γ

β

α
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The ZX-calculus

The ZX-calculus consists of the two spider-fusion rules:

...

α + β

...

...

...

α

β

... =

...

...

...

α + β

...

...

...

α

β

... =

...

...

four Interaction rules:

= = =
π

π
π

πα

π
=

-α

and the Colour Change rule:

α

· · ·

α

· · ·

· · · · ·

=

· · · · ·

where π
2

π
2

π
2

:=
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Completeness

Theorem (Backens 2013)

The ZX-calculus is complete for Clifford ZX-diagrams:

JD1K = JD2K =⇒ D1 =zx D2

D1 :=

. . .

. . .

· · ·

· · ·

π
2

· · ·

· · ·

π
2 D2 :=

. . .

. . .

· · ·

· · ·

π
2

· · ·

· · ·

π
2
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Measurement-based quantum computing
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Measurement-based quantum computing

• Measurement-based quantum computing is an alternative (and
equivalent) paradigm to the circuit model

• Rather than repeatedly applying operations to a small number of systems,
start with a big entangled state called a graph state and do many local
measurements in different bases:

...

...

...

... ... ...

• But crucially, the choices of measurements can depend on past
measurement outcomes. This is called feed-forward, and it’s where all
the magic happens.
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the magic happens.
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Graph states and cluster states

• Graph states are prepared by starting with many qubits in the |+〉 state and
creating entanglement with controlled-Z operations:

=

• Since controlled-Z’s commute, the only relevant part is the graph:
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Measurements and feed-forward

• Compute with single qubit ONB measurements of this form:

π
,

{ }
α α + π

,

{ }

• We want to get the first outcome and treat the second outcome as an error:

...

α

π

error
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Measurements and feed-forward

• We can propagate the error out using the ZX-rules:
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• If we know an error occurred, we can modify our later measurement choices
to account for it:

π
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Notable results



Introduction Quantum circuits Spiders ZX-calculus MBQC Survey

Notable results: MBQC

• Duncan & Perdrix used the ZX-calculus to offer a new technique for
transforming MBQC patterns to circuits, which has some advantages over
other known methods, e.g. not requiring ancillas.1

• For more details, Ducan has written a self-contained introduction to MBQC
from the diagrammatic/ZX point of view, which is available on the arXiv.2

1Rewriting measurement-based quantum computations with generalised flow. R. Duncan,
S. Perdrix, ICALP 2010.

personal.strath.ac.uk/ross.duncan/papers/gflow.pdf
2A graphical approach to measurement-based quantum computing. R. Duncan.

arXiv:1203.6242
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Notable results: quantum algorithms

• Vicary gave graphical characterisations of standard quantum algorithms3

• ...a framework since used by Vicary & Zeng to develop new algorithms as
generalisations4

3The Topology of Quantum Algorithms. LICS 2013, J. Vicary. arXiv:1209.3917
4Abstract structure of unitary oracles for quantum algorithms. J.Vicary, W. Zeng.

arXiv:1406.1278
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Notable results: quantum protocols

• Coecke, along with 3 Wangs and a Zhang give graphical proof of QKD5

• Hillebrand gave rewriting proofs of many (∼ 25) quantum protocols.6

• Zamdzhiev used ZX-calculus to verify 3 kinds of quantum secret sharing.7

5Graphical Calculus for Quantum Key Distribution. B. Coecke, Q. Wang, B. Wang,
Y. Wang, and Q. Zhang. QPL 2011.

6Quantum Protocols involving Multiparticle Entanglement and their Representations in the
zx-calculus. A. Hillebrand. Masters thesis, Oxford 2011.
www.cs.ox.ac.uk/people/bob.coecke/Anne.pdf

7An Abstract Approach towards Quantum Secret Sharing. Masters thesis, Oxford 2012.
www.cs.ox.ac.uk/people/bob.coecke/VladimirZamdzhievThesis.pdf
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Notable results: quantum non-locality

• AK, Coecke, Duncan, and Wang gave diagrammatic presentation of
GHZ/Mermin non-locality argument8

∑
αi

=

∑
αi

∑
αi

=
α3α2α1

=

• ...which has since been generalised to arbitrary dimensions and
quantum-like theories9

8Strong Complementarity and Non-locality in Categorical Quantum Mechanics. B. Coecke,
R. Duncan, A. Kissinger, Q. Wang. LICS 2012.

9Mermin Non-Locality in Abstract Process Theories. QPL 2015
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Where do we go from here?

• Completeness (Clifford + T, full)

• Automation: implementation of Clifford decision procedure, theory synthesis

• Bigger algorithms, more sophisticated protocols, and generally more
expressiveness of the diagrammatic language
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Thanks!

• Quantomatic is joint work with Lucas Dixon, Alex Merry, Ross Duncan,
Vladimir Zamdzhiev, and David Quick

• See: quantomatic.github.io
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