
Interactive Proof for Diagrammatic
Languages

Aleks Kissinger
SamsonFest 2013

June 3, 2013









So monoids...

I Consider a monoid (A, ·, e):

(a · b) · c = a · (b · c) and a · e = a = e · a

I Normally, an automated theorem prover would use these
equations as rewrite rules, e.g.

(a · b) · c a · (b · c) a · e a e · a a

I It is also possible to write these equations as trees:

=

a b c b ca

= =

a aa



So monoids...

I Consider a monoid (A, ·, e):

(a · b) · c = a · (b · c) and a · e = a = e · a

I Normally, an automated theorem prover would use these
equations as rewrite rules, e.g.

(a · b) · c a · (b · c) a · e a e · a a

I It is also possible to write these equations as trees:

=

a b c b ca

= =

a aa



So monoids...

I Consider a monoid (A, ·, e):

(a · b) · c = a · (b · c) and a · e = a = e · a

I Normally, an automated theorem prover would use these
equations as rewrite rules, e.g.

(a · b) · c a · (b · c) a · e a e · a a

I It is also possible to write these equations as trees:

=

a b c b ca

= =

a aa



So monoids...

I Consider a monoid (A, ·, e):

(a · b) · c = a · (b · c) and a · e = a = e · a

I Normally, an automated theorem prover would use these
equations as rewrite rules, e.g.

(a · b) · c a · (b · c) a · e a e · a a

I It is also possible to write these equations as trees:

=

a b c b ca

= =

a aa



Monoids

I Since these equations are (left- and right-) linear in the free
variables, we can drop them:

=

a b c b ca

⇒ =

I The role of variables is replaced by the notion that the LHS
and RHS have a shared boundary



Monoids

I Since these equations are (left- and right-) linear in the free
variables, we can drop them:

=

a b c b ca

⇒ =

I The role of variables is replaced by the notion that the LHS
and RHS have a shared boundary



Diagram substitution

I One could apply the rule “(a · b) · c→ a · (b · c)” using the
usual “instantiate, match, replace” style:

w · ((x · (y · e)) · z) → w · (x · ((y · e) · z))

I ...or by cutting the LHS directly out of the tree and gluing
in the RHS:

w
x

y
z x z

w

y

⇒

z
w

x
y

⇒

I This treats inputs and outputs symmetrically



Diagram substitution

I One could apply the rule “(a · b) · c→ a · (b · c)” using the
usual “instantiate, match, replace” style:

w · ((x · (y · e)) · z) → w · (x · ((y · e) · z))

I ...or by cutting the LHS directly out of the tree and gluing
in the RHS:

w
x

y
z x z

w

y

⇒

z
w

x
y

⇒

I This treats inputs and outputs symmetrically



Diagram substitution

I One could apply the rule “(a · b) · c→ a · (b · c)” using the
usual “instantiate, match, replace” style:

w · ((x · (y · e)) · z) → w · (x · ((y · e) · z))

I ...or by cutting the LHS directly out of the tree and gluing
in the RHS:

w
x

y
z x z

w

y

⇒

z
w

x
y

⇒

I This treats inputs and outputs symmetrically



Algebra and coalgebra

I Coalgebra: algebraic structures “upside-down”

I An example is a comonoid, which has a comultiplication
operation and a counit satisfying:

=
= =

I Monoids and comonoids can interact in interesting ways,
for instance:

Frobenius algebras: =

Bialgebras: =



Algebra and coalgebra

I Coalgebra: algebraic structures “upside-down”
I An example is a comonoid, which has a comultiplication

operation and a counit satisfying:

=
= =

I Monoids and comonoids can interact in interesting ways,
for instance:

Frobenius algebras: =

Bialgebras: =



Algebra and coalgebra

I Coalgebra: algebraic structures “upside-down”
I An example is a comonoid, which has a comultiplication

operation and a counit satisfying:

=
= =

I Monoids and comonoids can interact in interesting ways,
for instance:

Frobenius algebras: =

Bialgebras: =



Equational reasoning with diagram substitution

I As before, we can use graphical identities to perform
substitutions, but on graphs, rather than trees

=

I For example:

⇒ ⇒

I This style of rewriting is sound and complete w.r.t. to
traced symmetric monoidal categories



Equational reasoning with diagram substitution

I As before, we can use graphical identities to perform
substitutions, but on graphs, rather than trees

=

I For example:

⇒ ⇒

I This style of rewriting is sound and complete w.r.t. to
traced symmetric monoidal categories



Equational reasoning with diagram substitution

I As before, we can use graphical identities to perform
substitutions, but on graphs, rather than trees

=

I For example:

⇒ ⇒

I This style of rewriting is sound and complete w.r.t. to
traced symmetric monoidal categories



Diagrams with repetition
I In practice, many proofs concern infinite families of

expressions

I As an example, define the (m, n)-fold
multiplication/comultiplication as follows:

...
...

:=
...

...

I An equivalent axiomitisation of (commutative) Frobenius
algebras is:

...

=

...
...

...

...

...



Diagrams with repetition
I In practice, many proofs concern infinite families of

expressions
I As an example, define the (m, n)-fold

multiplication/comultiplication as follows:

...
...

:=
...

...

I An equivalent axiomitisation of (commutative) Frobenius
algebras is:

...

=

...
...

...

...

...



Diagrams with repetition
I In practice, many proofs concern infinite families of

expressions
I As an example, define the (m, n)-fold

multiplication/comultiplication as follows:

...
...

:=
...

...

I An equivalent axiomitisation of (commutative) Frobenius
algebras is:

...

=

...
...

...

...

...



!-boxes

I We can formalise this “meta” diagram using some
graphical syntax:

⇒
...

...

I The blue boxes are called !-boxes. A graph with !-boxes is
called a !-graph. Can be interpreted as a set of concrete
graphs:

= · · ·, , , ,, ,



!-boxes

I We can formalise this “meta” diagram using some
graphical syntax:

⇒
...

...

I The blue boxes are called !-boxes. A graph with !-boxes is
called a !-graph. Can be interpreted as a set of concrete
graphs:

= · · ·, , , ,, ,



!-boxes

I The diagrams represented by a !-graph are all those
obtained by performing EXPAND and KILL operations on
!-boxes

EXPANDb=⇒ KILLb=⇒

I We can also introduce equations involving !-boxes:

...

=

...
...

...

...

...

⇒ =



!-boxes

I The diagrams represented by a !-graph are all those
obtained by performing EXPAND and KILL operations on
!-boxes

EXPANDb=⇒ KILLb=⇒

I We can also introduce equations involving !-boxes:

...

=

...
...

...

...

...

⇒ =



!-boxes: matching

I !-boxes on the LHS are in 1-to-1 correspondence with RHS

=

I EXPAND and KILL operations applied to both sides
simultaneously

I Rewriting concrete graphs: instantiate rule with EXPAND
and KILL, then rewriting as usual

I Sound and complete, in the absence of “wild” !-boxes



!-boxes: matching

I !-boxes on the LHS are in 1-to-1 correspondence with RHS

=

I EXPAND and KILL operations applied to both sides
simultaneously

I Rewriting concrete graphs: instantiate rule with EXPAND
and KILL, then rewriting as usual

I Sound and complete, in the absence of “wild” !-boxes



!-boxes: matching

I !-boxes on the LHS are in 1-to-1 correspondence with RHS

=

I EXPAND and KILL operations applied to both sides
simultaneously

I Rewriting concrete graphs: instantiate rule with EXPAND
and KILL, then rewriting as usual

I Sound and complete, in the absence of “wild” !-boxes



!-boxes: matching

I !-boxes on the LHS are in 1-to-1 correspondence with RHS

=

I EXPAND and KILL operations applied to both sides
simultaneously

I Rewriting concrete graphs: instantiate rule with EXPAND
and KILL, then rewriting as usual

I Sound and complete, in the absence of “wild” !-boxes



!-boxes: exact matching

I What about using !-graph equations to rewrite other
!-graphs?

I Define an exact matching between !-graphs as an
embedding that respects the !-boxes:

↪→

I However, there are other situations where one !-graph
generalises another

�



!-boxes: exact matching

I What about using !-graph equations to rewrite other
!-graphs?

I Define an exact matching between !-graphs as an
embedding that respects the !-boxes:

↪→

I However, there are other situations where one !-graph
generalises another

�



!-boxes: exact matching

I What about using !-graph equations to rewrite other
!-graphs?

I Define an exact matching between !-graphs as an
embedding that respects the !-boxes:

↪→

I However, there are other situations where one !-graph
generalises another

�



!-boxes: inference rules

I Inference rules make new equations from old. Two
obvious ones:

G = H
EXPANDb(G = H)

exp
G = H

KILLb(G = H)
kill

I ...and some less obvious ones:

G = H
COPYb(G = H)

cp
G = H

MERGEb,b′(G = H)
mrg . . .



!-boxes: inference rules

I Inference rules make new equations from old. Two
obvious ones:

G = H
EXPANDb(G = H)

exp
G = H

KILLb(G = H)
kill

I ...and some less obvious ones:

G = H
COPYb(G = H)

cp
G = H

MERGEb,b′(G = H)
mrg . . .



Induction Principle for !-Graphs

I Let FIXb(G = H) be the same as G = H, but !-box b cannot
be expanded

I Using FIX, we can define induction

KILLb(G = H) FIXb(G = H) =⇒ EXPANDb(G = H)

G = H
ind



Induction Principle for !-Graphs

I Let FIXb(G = H) be the same as G = H, but !-box b cannot
be expanded

I Using FIX, we can define induction

KILLb(G = H) FIXb(G = H) =⇒ EXPANDb(G = H)

G = H
ind



Induction example

I Suppose we have these three equations:

= = = (empty)

I ...then we can prove this using induction:

=



Induction example

I Suppose we have these three equations:

= = = (empty)

I ...then we can prove this using induction:

=



Induction example

I First (reverse) apply induction to get two sub-goals:

=

= (empty) = =⇒ =

I The base case is an assumption, step case by rewriting:

=
assm assm

=
i.h.
=



Induction example

I First (reverse) apply induction to get two sub-goals:

=

= (empty) = =⇒ =

I The base case is an assumption, step case by rewriting:

=
assm assm

=
i.h.
=



Constructing a diagrammatic proof assistant

I Why?

I Diagrams are easier to understand, but easier to make
mistakes

I Want several layers of definition/abstraction (ex: quantum
circuits and error-correcting encodings)

I More expressive types of graphical languages⇒ new proof
styles and techniques.

I Unique from an HCI perspective. Possibly unexpected
results.

I Why not use terms?

I There is a term language, using ◦, ⊗, swap maps, etc.
I Many congruences
I Simplest decision procedure: “draw the diagrams and

compare”



Constructing a diagrammatic proof assistant

I Why?
I Diagrams are easier to understand, but easier to make

mistakes

I Want several layers of definition/abstraction (ex: quantum
circuits and error-correcting encodings)

I More expressive types of graphical languages⇒ new proof
styles and techniques.

I Unique from an HCI perspective. Possibly unexpected
results.

I Why not use terms?

I There is a term language, using ◦, ⊗, swap maps, etc.
I Many congruences
I Simplest decision procedure: “draw the diagrams and

compare”



Constructing a diagrammatic proof assistant

I Why?
I Diagrams are easier to understand, but easier to make

mistakes
I Want several layers of definition/abstraction (ex: quantum

circuits and error-correcting encodings)

I More expressive types of graphical languages⇒ new proof
styles and techniques.

I Unique from an HCI perspective. Possibly unexpected
results.

I Why not use terms?

I There is a term language, using ◦, ⊗, swap maps, etc.
I Many congruences
I Simplest decision procedure: “draw the diagrams and

compare”



Constructing a diagrammatic proof assistant

I Why?
I Diagrams are easier to understand, but easier to make

mistakes
I Want several layers of definition/abstraction (ex: quantum

circuits and error-correcting encodings)
I More expressive types of graphical languages⇒ new proof

styles and techniques.

I Unique from an HCI perspective. Possibly unexpected
results.

I Why not use terms?

I There is a term language, using ◦, ⊗, swap maps, etc.
I Many congruences
I Simplest decision procedure: “draw the diagrams and

compare”



Constructing a diagrammatic proof assistant

I Why?
I Diagrams are easier to understand, but easier to make

mistakes
I Want several layers of definition/abstraction (ex: quantum

circuits and error-correcting encodings)
I More expressive types of graphical languages⇒ new proof

styles and techniques.
I Unique from an HCI perspective. Possibly unexpected

results.

I Why not use terms?

I There is a term language, using ◦, ⊗, swap maps, etc.
I Many congruences
I Simplest decision procedure: “draw the diagrams and

compare”



Constructing a diagrammatic proof assistant

I Why?
I Diagrams are easier to understand, but easier to make

mistakes
I Want several layers of definition/abstraction (ex: quantum

circuits and error-correcting encodings)
I More expressive types of graphical languages⇒ new proof

styles and techniques.
I Unique from an HCI perspective. Possibly unexpected

results.
I Why not use terms?

I There is a term language, using ◦, ⊗, swap maps, etc.
I Many congruences
I Simplest decision procedure: “draw the diagrams and

compare”



Constructing a diagrammatic proof assistant

I Why?
I Diagrams are easier to understand, but easier to make

mistakes
I Want several layers of definition/abstraction (ex: quantum

circuits and error-correcting encodings)
I More expressive types of graphical languages⇒ new proof

styles and techniques.
I Unique from an HCI perspective. Possibly unexpected

results.
I Why not use terms?

I There is a term language, using ◦, ⊗, swap maps, etc.

I Many congruences
I Simplest decision procedure: “draw the diagrams and

compare”



Constructing a diagrammatic proof assistant

I Why?
I Diagrams are easier to understand, but easier to make

mistakes
I Want several layers of definition/abstraction (ex: quantum

circuits and error-correcting encodings)
I More expressive types of graphical languages⇒ new proof

styles and techniques.
I Unique from an HCI perspective. Possibly unexpected

results.
I Why not use terms?

I There is a term language, using ◦, ⊗, swap maps, etc.
I Many congruences

I Simplest decision procedure: “draw the diagrams and
compare”



Constructing a diagrammatic proof assistant

I Why?
I Diagrams are easier to understand, but easier to make

mistakes
I Want several layers of definition/abstraction (ex: quantum

circuits and error-correcting encodings)
I More expressive types of graphical languages⇒ new proof

styles and techniques.
I Unique from an HCI perspective. Possibly unexpected

results.
I Why not use terms?

I There is a term language, using ◦, ⊗, swap maps, etc.
I Many congruences
I Simplest decision procedure: “draw the diagrams and

compare”



Quantomatic: the good stuff

I Create, load, and save diagrams and rewrite rules

I Apply rewrite rules manually, or normalise w.r.t. subsets
of rewrite rules

I Rewrites happen live, so proofs are easy to show off
I Education: Quantomatic-based labs for two years in

conjunction with Categorical Quantum Mechanics course
at Oxford



Quantomatic: the good stuff

I Create, load, and save diagrams and rewrite rules
I Apply rewrite rules manually, or normalise w.r.t. subsets

of rewrite rules

I Rewrites happen live, so proofs are easy to show off
I Education: Quantomatic-based labs for two years in

conjunction with Categorical Quantum Mechanics course
at Oxford



Quantomatic: the good stuff

I Create, load, and save diagrams and rewrite rules
I Apply rewrite rules manually, or normalise w.r.t. subsets

of rewrite rules
I Rewrites happen live, so proofs are easy to show off

I Education: Quantomatic-based labs for two years in
conjunction with Categorical Quantum Mechanics course
at Oxford



Quantomatic: the good stuff

I Create, load, and save diagrams and rewrite rules
I Apply rewrite rules manually, or normalise w.r.t. subsets

of rewrite rules
I Rewrites happen live, so proofs are easy to show off
I Education: Quantomatic-based labs for two years in

conjunction with Categorical Quantum Mechanics course
at Oxford



Quantomatic: limitations

I Once a proof is done, it’s gone. Only the result is left.

I Only does rewriting, i.e. the purely equational part.
I Rewrite rules are used naively. No search/normalisation

strategies or Knuth-Bendix.



Quantomatic: limitations

I Once a proof is done, it’s gone. Only the result is left.
I Only does rewriting, i.e. the purely equational part.

I Rewrite rules are used naively. No search/normalisation
strategies or Knuth-Bendix.



Quantomatic: limitations

I Once a proof is done, it’s gone. Only the result is left.
I Only does rewriting, i.e. the purely equational part.
I Rewrite rules are used naively. No search/normalisation

strategies or Knuth-Bendix.



The Quanto2013 Projects

I Quantomatic is a (fairly) thin GUI built on QuantoCore, an
ML based rewriting engine

I Starting this year, we are working on new projects based
on QuantoCore:

I QuantoDerive – graphical derivation editor, essentially the
successor to Quantomatic GUI

I QuantoCosy – conjecture synthesis for diagrams
I QuantoTactic – Quantomatic/Isabelle integration



QuantoCosy

I Often, we have a concrete set of generators (e.g. a
particular example of some algebraic structure), and we
would like to derive the axioms

I Take a set of generators:

, , , , , , ,, , 0
0

, ,

I For each disconnected graph, enumerate all of the ways it
can be “plugged together”:



QuantoCosy

I Often, we have a concrete set of generators (e.g. a
particular example of some algebraic structure), and we
would like to derive the axioms

I Take a set of generators:

, , , , , , ,, , 0
0

, ,
I For each disconnected graph, enumerate all of the ways it

can be “plugged together”:

0



QuantoCosy

I Often, we have a concrete set of generators (e.g. a
particular example of some algebraic structure), and we
would like to derive the axioms

I Take a set of generators:

, , , , , , ,, , 0
0

, ,
I For each disconnected graph, enumerate all of the ways it

can be “plugged together”:

0 7→
0



QuantoCosy

I Often, we have a concrete set of generators (e.g. a
particular example of some algebraic structure), and we
would like to derive the axioms

I Take a set of generators:

, , , , , , ,, , 0
0

, ,
I For each disconnected graph, enumerate all of the ways it

can be “plugged together”:

0 7→

0



QuantoCosy

I If we have concrete values for generators (e.g. as matrices),
we can define an evaluation function J−K on diagrams

I We can organise diagrams into equivalence classes
G ≡ H⇔ JGK = JHK

I If we define a metric on graphs, some equivalences G ≡ H
will become redexes G H

I In the ’Cosy style, we can use these redexes to cut down
the search space by only enumerating irreducible expressions



QuantoCosy

I If we have concrete values for generators (e.g. as matrices),
we can define an evaluation function J−K on diagrams

I We can organise diagrams into equivalence classes
G ≡ H⇔ JGK = JHK

I If we define a metric on graphs, some equivalences G ≡ H
will become redexes G H

I In the ’Cosy style, we can use these redexes to cut down
the search space by only enumerating irreducible expressions



QuantoCosy

I If we have concrete values for generators (e.g. as matrices),
we can define an evaluation function J−K on diagrams

I We can organise diagrams into equivalence classes
G ≡ H⇔ JGK = JHK

I If we define a metric on graphs, some equivalences G ≡ H
will become redexes G H

I In the ’Cosy style, we can use these redexes to cut down
the search space by only enumerating irreducible expressions



QuantoCosy

I If we have concrete values for generators (e.g. as matrices),
we can define an evaluation function J−K on diagrams

I We can organise diagrams into equivalence classes
G ≡ H⇔ JGK = JHK

I If we define a metric on graphs, some equivalences G ≡ H
will become redexes G H

I In the ’Cosy style, we can use these redexes to cut down
the search space by only enumerating irreducible expressions



QuantoCosy



LCF-style Theorem Provers

I Theorem provers are large and complex. How can we be
(fairly) confident they fit our mathematical models?

I In 1972, Milner came up with the LCF approach to
automated theorem proving.

I The idea: write a kernel that is dumb (simple logic + a few
inference rules) but sound

I Don’t touch it! But tell it what to do with tactics, which are
smart. The kernel is the “gatekeeper” of soundness.



LCF-style Theorem Provers

I Theorem provers are large and complex. How can we be
(fairly) confident they fit our mathematical models?

I In 1972, Milner came up with the LCF approach to
automated theorem proving.

I The idea: write a kernel that is dumb (simple logic + a few
inference rules) but sound

I Don’t touch it! But tell it what to do with tactics, which are
smart. The kernel is the “gatekeeper” of soundness.



LCF-style Theorem Provers

I Theorem provers are large and complex. How can we be
(fairly) confident they fit our mathematical models?

I In 1972, Milner came up with the LCF approach to
automated theorem proving.

I The idea: write a kernel that is dumb (simple logic + a few
inference rules) but sound

I Don’t touch it! But tell it what to do with tactics, which are
smart. The kernel is the “gatekeeper” of soundness.



LCF-style Theorem Provers

I Theorem provers are large and complex. How can we be
(fairly) confident they fit our mathematical models?

I In 1972, Milner came up with the LCF approach to
automated theorem proving.

I The idea: write a kernel that is dumb (simple logic + a few
inference rules) but sound

I Don’t touch it! But tell it what to do with tactics, which are
smart. The kernel is the “gatekeeper” of soundness.



QuantoTactic

I The idea: formalise equivalence up to diagrammatic
equations in Isabelle:

∃R, R′ R ∈ axioms ∧
instance-of(R, R′) ∧
valid-rewrite(R′, G, H) =⇒ (G ≡ H)

I Wrap QuantoCore matching and rewriting capabilities in
tactics, which do the hard stuff (e.g. finding witnesses R, R′

for the implication above)



QuantoTactic

I The idea: formalise equivalence up to diagrammatic
equations in Isabelle:

∃R, R′ R ∈ axioms ∧
instance-of(R, R′) ∧
valid-rewrite(R′, G, H) =⇒ (G ≡ H)

I Wrap QuantoCore matching and rewriting capabilities in
tactics, which do the hard stuff (e.g. finding witnesses R, R′

for the implication above)



QuantoTactic

QuantoTactic is (or rather, will be...) three things:

1. A theory of diagrams and rewriting formalised in Isabelle

2. A tactic invoked by the prover, hooking the (powerful)
Quantomatic core up to the (sound) Isabelle kernel

3. Language extensions and GUI support for inline graphical
notation in proof documents



QuantoTactic

QuantoTactic is (or rather, will be...) three things:

1. A theory of diagrams and rewriting formalised in Isabelle

2. A tactic invoked by the prover, hooking the (powerful)
Quantomatic core up to the (sound) Isabelle kernel

3. Language extensions and GUI support for inline graphical
notation in proof documents



QuantoTactic

QuantoTactic is (or rather, will be...) three things:

1. A theory of diagrams and rewriting formalised in Isabelle

2. A tactic invoked by the prover, hooking the (powerful)
Quantomatic core up to the (sound) Isabelle kernel

3. Language extensions and GUI support for inline graphical
notation in proof documents



Thanks!

I Joint work with Lucas Dixon, Alex Merry, Ross Duncan,
Vladimir Zamdzhiev, David Quick, and others

I See: sites.google.com/site/quantomatic


