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So monoids...

I Consider a monoid (A, ·, e):

(a · b) · c = a · (b · c) and a · e = a = e · a

I Normally, an automated theorem prover would use these
equations as rewrite rules, e.g.

(a · b) · c a · (b · c) a · e a e · a a

I It is also possible to write these equations as trees:

=

a b c b ca

= =

a aa
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Monoids

I Since these equations are (left- and right-) linear in the free
variables, we can drop them:

=

a b c b ca

⇒ =

I The role of variables is replaced by the notion that the LHS
and RHS have a shared boundary
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Diagram substitution

I One could apply the rule “(a · b) · c→ a · (b · c)” using the
usual “instantiate, match, replace” style:

w · ((x · (y · e)) · z) → w · (x · ((y · e) · z))

I ...or by cutting the LHS directly out of the tree and gluing
in the RHS:

w
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I This treats inputs and outputs symmetrically
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Algebra and coalgebra

I Coalgebra: algebraic structures “upside-down”

I An example is a comonoid, which has a comultiplication
operation and a counit satisfying:

=
= =

I Monoids and comonoids can interact in interesting ways,
for instance:

Frobenius algebras: =

Bialgebras: =
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Equational reasoning with diagram substitution

I As before, we can use graphical identities to perform
substitutions, but on graphs, rather than trees

=

I For example:

⇒ ⇒

I This style of rewriting is sound and complete w.r.t. to
traced symmetric monoidal categories
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Diagrams with repetition
I In practice, many proofs concern infinite families of

expressions

I As an example, define the (m, n)-fold
multiplication/comultiplication as follows:

...
...

:=
...

...

I An equivalent axiomitisation of (commutative) Frobenius
algebras is:

...

=
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!-boxes

I We can formalise this “meta” diagram using some
graphical syntax:

⇒
...

...

I The blue boxes are called !-boxes. A graph with !-boxes is
called a !-graph. Can be interpreted as a set of concrete
graphs:

= · · ·, , , ,, ,
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!-boxes

I The diagrams represented by a !-graph are all those
obtained by performing EXPAND and KILL operations on
!-boxes

EXPANDb=⇒ KILLb=⇒

I We can also introduce equations involving !-boxes:
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!-boxes: matching

I !-boxes on the LHS are in 1-to-1 correspondence with RHS

=

I EXPAND and KILL operations applied to both sides
simultaneously

I Rewriting concrete graphs: instantiate rule with EXPAND
and KILL, then rewriting as usual

I Sound and complete, in the absence of “wild” !-boxes
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!-boxes: exact matching

I What about using !-graph equations to rewrite other
!-graphs?

I Define an exact matching between !-graphs as an
embedding that respects the !-boxes:

↪→

I However, there are other situations where one !-graph
generalises another
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!-boxes: inference rules

I Inference rules make new equations from old. Two
obvious ones:

G = H
EXPANDb(G = H)

exp
G = H

KILLb(G = H)
kill

I ...and some less obvious ones:

G = H
COPYb(G = H)

cp
G = H

MERGEb,b′(G = H)
mrg . . .
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Induction Principle for !-Graphs

I Let FIXb(G = H) be the same as G = H, but !-box b cannot
be expanded

I Using FIX, we can define induction

KILLb(G = H) FIXb(G = H) =⇒ EXPANDb(G = H)

G = H
ind
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Induction example

I Suppose we have these three equations:

= = = (empty)

I ...then we can prove this using induction:
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Induction example

I First (reverse) apply induction to get two sub-goals:

=

= (empty) = =⇒ =

I The base case is an assumption, step case by rewriting:

=
assm assm

=
i.h.
=
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Constructing a diagrammatic proof assistant

I Why?

I Diagrams are easier to understand, but easier to make
mistakes

I Want several layers of definition/abstraction (ex: quantum
circuits and error-correcting encodings)

I More expressive types of graphical languages⇒ new proof
styles and techniques.

I Unique from an HCI perspective. Possibly unexpected
results.

I Why not use terms?

I There is a term language, using ◦, ⊗, swap maps, etc.
I Many congruences
I Simplest decision procedure: “draw the diagrams and

compare”
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Quantomatic: the good stuff

I Create, load, and save diagrams and rewrite rules

I Apply rewrite rules manually, or normalise w.r.t. subsets
of rewrite rules

I Rewrites happen live, so proofs are easy to show off
I Education: Quantomatic-based labs for two years in

conjunction with Categorical Quantum Mechanics course
at Oxford
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Quantomatic: limitations

I Once a proof is done, it’s gone. Only the result is left.

I Only does rewriting, i.e. the purely equational part.
I Rewrite rules are used naively. No search/normalisation

strategies or Knuth-Bendix.
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The Quanto2013 Projects

I Quantomatic is a (fairly) thin GUI built on QuantoCore, an
ML based rewriting engine

I Starting this year, we are working on new projects based
on QuantoCore:

I QuantoDerive – graphical derivation editor, essentially the
successor to Quantomatic GUI

I QuantoCosy – conjecture synthesis for diagrams
I QuantoTactic – Quantomatic/Isabelle integration



QuantoCosy

I Often, we have a concrete set of generators (e.g. a
particular example of some algebraic structure), and we
would like to derive the axioms

I Take a set of generators:

, , , , , , ,, , 0
0

, ,

I For each disconnected graph, enumerate all of the ways it
can be “plugged together”:
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QuantoCosy

I If we have concrete values for generators (e.g. as matrices),
we can define an evaluation function J−K on diagrams

I We can organise diagrams into equivalence classes
G ≡ H⇔ JGK = JHK

I If we define a metric on graphs, some equivalences G ≡ H
will become redexes G H

I In the ’Cosy style, we can use these redexes to cut down
the search space by only enumerating irreducible expressions
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LCF-style Theorem Provers

I Theorem provers are large and complex. How can we be
(fairly) confident they fit our mathematical models?

I In 1972, Milner came up with the LCF approach to
automated theorem proving.

I The idea: write a kernel that is dumb (simple logic + a few
inference rules) but sound

I Don’t touch it! But tell it what to do with tactics, which are
smart. The kernel is the “gatekeeper” of soundness.
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QuantoTactic

I The idea: formalise equivalence up to diagrammatic
equations in Isabelle:

∃R, R′ R ∈ axioms ∧
instance-of(R, R′) ∧
valid-rewrite(R′, G, H) =⇒ (G ≡ H)

I Wrap QuantoCore matching and rewriting capabilities in
tactics, which do the hard stuff (e.g. finding witnesses R, R′

for the implication above)
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QuantoTactic

QuantoTactic is (or rather, will be...) three things:

1. A theory of diagrams and rewriting formalised in Isabelle

2. A tactic invoked by the prover, hooking the (powerful)
Quantomatic core up to the (sound) Isabelle kernel

3. Language extensions and GUI support for inline graphical
notation in proof documents
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Thanks!

I Joint work with Lucas Dixon, Alex Merry, Ross Duncan,
Vladimir Zamdzhiev, David Quick, and others

I See: sites.google.com/site/quantomatic


