Process Theories and Graphical Language

Aleks Kissinger

Institute for Computing and Information Sciences Radboud University Nijmegen

12th July 2016

Aleks Kissinger

Radboud University Nijmegen

Picturing Quantum Processes

Picturing Quantum Processes

When two systems [...] enter into temporary physical interaction due to known forces between them, [...] then they can no longer be described in the same way as before, viz. by endowing each of them with a representative of its own. I would not call that one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought.

- Erwin Schrödinger, 1935.

Picturing Quantum Processes

When two systems [...] enter into temporary physical interaction due to known forces between them, [...] then they can no longer be described in the same way as before, viz. by endowing each of them with a representative of its own. I would not call that one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought.

- Erwin Schrödinger, 1935.

In quantum theory, *interaction* of systems is everything. **Diagrams** are the language of interaction.

Radboud University Nijmegen

Picturing Quantum Processes

Q: How much of quantum theory can be understood just using diagrams and diagram transformation?

Radboud University Nijmegen

Picturing Quantum Processes

Q: How much of quantum theory can be understood just using diagrams and diagram transformation?

A: Pretty much everything!

Radboud University Nijmegen

Process theories and diagrams

Quantum processes

Classical and quantum interaction

Applications: a Hollywood-style trailer

Outline

Radboud University Nijmegen

Process theories and diagrams

Quantum processes

Classical and quantum interaction

Applications: a Hollywood-style trailer

• A process is anything with zero or more *inputs* and zero or more *outputs*

- A process is anything with zero or more *inputs* and zero or more *outputs*
- For example, this function:

$$f(x,y) = x^2 + y$$

Processes

- A process is anything with zero or more *inputs* and zero or more *outputs*
- For example, this function:

$$f(x,y) = x^2 + y$$

...is a process when takes two real numbers as input, and produces a real number as output.

Processes

- A process is anything with zero or more *inputs* and zero or more *outputs*
- For example, this function:

$$f(x,y) = x^2 + y$$

...is a process when takes two real numbers as input, and produces a real number as output.

• We could also write it like this:

Processes

- A process is anything with zero or more *inputs* and zero or more *outputs*
- For example, this function:

$$f(x,y) = x^2 + y$$

...is a process when takes two real numbers as input, and produces a real number as output.

• We could also write it like this:

Processes

- A process is anything with zero or more *inputs* and zero or more *outputs*
- For example, this function:

$$f(x,y) = x^2 + y$$

...is a process when takes two real numbers as input, and produces a real number as output.

• We could also write it like this:

• The labels on wires are called system-types or just types

More processes

• Similarly, computer programs are processes

Radboud University Nijmegen

More processes

- Similarly, computer programs are processes
- For example, a program that sorts lists might look like this:

Radboud University Nijmegen

More processes

- Similarly, computer programs are processes
- For example, a program that sorts lists might look like this:

• These are also perfectly good processes:

• We can combine simple processes to make more complicted ones, described by diagrams:

Diagrams

• We can combine simple processes to make more complicted ones, described by diagrams:

• The golden rule: only connectivity matters!

Radboud University Nijmegen

• Connections are only allowed where the types match, e.g.:

• Connections are only allowed where the types match, e.g.:

Types

• Connections are only allowed where the types match, e.g.:

Radboud University Nijmegen

Types

• Connections are only allowed where the types match, e.g.:

• Types tell us when it makes sense to plug processes together

Radboud University Nijmegen

Radboud University Nijmegen

Types and Process Theories

• Ill-typed diagrams are undefined:

Radboud University Nijmegen

Types and Process Theories

• Ill-typed diagrams are undefined:

In fact, these processes don't ever make sense to plug together

Radboud University Nijmegen

Types and Process Theories

• Ill-typed diagrams are undefined:

- In fact, these processes don't ever make sense to plug together
- A family of processes which <u>do</u> make sense together is called a process theory

Radboud University Nijmegen

Types and Process Theories

• Ill-typed diagrams are undefined:

- In fact, these processes don't ever make sense to plug together
- A family of processes which <u>do</u> make sense together is called a process theory, e.g.
 - functions
 - linear maps
 - optical devices
 - proofs, ...

Radboud University Nijmegen

Special processes: states and effects

• Processes with no inputs are called states:

Special processes: states and effects

Processes with no inputs are called states:

Interpret as: preparing a system in a particular configuration, where we don't care what came before.

Special processes: states and effects

• Processes with no inputs are called states:

Interpret as: preparing a system in a particular configuration, where we don't care what came before.

• Processes with no outputs are called effects:

Special processes: states and effects

• Processes with no inputs are called states:

Interpret as: preparing a system in a particular configuration, where we don't care what came before.

• Processes with no outputs are called effects:

Interpret as: testing for a property π , where we don't care what happens after.

Numbers

• A number is a process with no inputs or outputs, written as:

 $\langle \lambda \rangle$ or just: λ

Numbers

• A number is a process with no inputs or outputs, written as:

 $\widehat{\lambda}$ or just: λ

• Numbers always form a commutative monoid:

$$\langle \lambda \rangle \cdot \langle \mu \rangle := \langle \lambda \rangle \langle \mu \rangle$$
 1 :=

Radboud University Nijmegen

Numbers

• A number is a process with no inputs or outputs, written as:

 $\widehat{\lambda}$ or just: λ

• Numbers always form a commutative monoid:

$$\langle \hat{\lambda} \cdot \hat{\mu} \rangle := \langle \hat{\lambda} \rangle \langle \hat{\mu} \rangle$$
 1 :=

Interpret as: what happens when a state meets an effect

effect
$$\left\{ \begin{array}{c} \swarrow \\ \downarrow \\ state \\ \psi \end{array} \right\}$$
 number
Radboud University Nijmegen

Numbers

• A number is a process with no inputs or outputs, written as:

 $\widehat{\lambda}$ or just: λ

• Numbers always form a commutative monoid:

$$\langle \hat{\lambda} \cdot \hat{\mu} \rangle := \langle \hat{\lambda} \rangle \langle \hat{\mu} \rangle$$
 1 :=

Interpret as: what happens when a state meets an effect, e.g.

effect
$$\left\{ \begin{array}{c} \checkmark \pi \\ \downarrow \\ state \left\{ \begin{array}{c} \checkmark \psi \\ \psi \end{array} \right\}$$
 probability

Radboud University Nijmegen

Numbers

• A number is a process with no inputs or outputs, written as:

 $\widehat{\lambda}$ or just: λ

• Numbers always form a commutative monoid:

$$\langle \lambda \rangle \cdot \langle \mu \rangle := \langle \lambda \rangle \langle \mu \rangle$$
 1 :=

Interpret as: what happens when a state meets an effect, e.g.

effect
$$\left\{ \begin{array}{c} \swarrow \\ \bot \\ \downarrow \\ \end{array} \right\}$$
 probability state $\left\{ \begin{array}{c} \psi \\ \psi \end{array} \right\}$

This is called the (generalised) Born rule

Aleks Kissinger

Radboud University Nijmegen

Process theories in general

Q: What kinds of behaviour can we study using just diagrams, and nothing else?

Radboud University Nijmegen

Process theories in general

Q: What kinds of behaviour can we study using just diagrams, and nothing else?

A: (Non-)separability

Radboud University Nijmegen

Separable states

• States can be on a single system, two systems, or many systems:

Radboud University Nijmegen

Separable states

• States can be on a single system, two systems, or many systems:

 A state ψ on two systems is ⊗-separable if there exist ψ₁, ψ₂ such that:

Radboud University Nijmegen

Separable states

• States can be on a single system, two systems, or many systems:

 A state ψ on two systems is ⊗-separable if there exist ψ₁, ψ₂ such that:

• **Intuitively:** the properties of the system on the left are *independent* from those on the right

Radboud University Nijmegen

Separable states

• States can be on a single system, two systems, or many systems:

 A state ψ on two systems is ⊗-separable if there exist ψ₁, ψ₂ such that:

- **Intuitively:** the properties of the system on the left are *independent* from those on the right
- In classical (deterministic) world, we expect all states to ⊗-separate

Characterising non-separability

...which is why non-separable states are way more interesting!

Characterising non-separability

- ...which is why non-separable states are way more interesting!
- But, how do we know we've found one?

Characterising non-separability

- ...which is why non-separable states are way more interesting!
- But, how do we know we've found one?
- i.e. that there do not exist states ψ_1, ψ_2 such that:

$$\psi$$
 = ψ

Characterising non-separability

- ...which is why non-separable states are way more interesting!
- But, how do we know we've found one?
- i.e. that there do not exist states ψ_1, ψ_2 such that:

$$\psi$$
 = ψ_1 ψ_2

• Problem: Showing that something doesn't exist can be hard.

Characterising non-separability

Solution: Replace a negative property with a (stronger) postive one:

Characterising non-separability

Solution: Replace a negative property with a (stronger) postive one:

Definition

A state ψ is called *cup-state* if there exists an effect ϕ , called a *cap-effect*, such that:

Cup-states

• By introducing some clever notation:

Radboud University Nijmegen

Process theories and diagrams Quantum processes Applications: a Hollywood-style trailer

Cup-states

• By introducing some clever notation:

•

Radboud University Nijmegen

:=

φ

 ψ

 ϕ

Cup-states

• By introducing some clever notation:

Process theories and diagrams Quantum processes

Classical and quantum interaction Applications: a Hollywood-style trailer

Radboud University Nijmegen

Yank the wire!

Process theories and diagrams Quantum processes

Classical and quantum interaction Applications: a Hollywood-style trailer

Radboud University Nijmegen

Yank the wire!

A no-go theorem for separability

Theorem

If a process theory (i) has cup-states for every type and (ii) every state separates, then it is trivial.

A no-go theorem for separability

Theorem

If a process theory (i) has cup-states for every type and (ii) every state separates, then it is trivial.

Proof. Suppose a cup-state separates:

$$\bigvee$$
 = $\psi_1 / \psi_2 / \psi_2 / \psi_1$

A no-go theorem for separability

Theorem

If a process theory (i) has cup-states for every type and (ii) every state separates, then it is trivial.

Proof. Suppose a cup-state separates:

$$\bigvee$$
 = $\psi_1 / \psi_2 / \psi_2 / \psi_1$

A no-go theorem for separability

Theorem

If a process theory (i) has cup-states for every type and (ii) every state separates, then it is trivial.

Proof. Suppose a cup-state separates:

$$\bigvee$$
 = $\psi_1 / \psi_2 / \psi_2$

A no-go theorem for separability

Theorem

If a process theory (i) has cup-states for every type and (ii) every state separates, then it is trivial.

Proof. Suppose a cup-state separates:

$$\bigvee$$
 = $\psi_1 / \psi_2 / \psi_2 / \psi_1$

A no-go theorem for separability

Theorem

If a process theory (i) has cup-states for every type and (ii) every state separates, then it is trivial.

Proof. Suppose a cup-state separates:

A no-go theorem for separability

Theorem

If a process theory (i) has cup-states for every type and (ii) every state separates, then it is trivial.

Proof. Suppose a cup-state separates:

Process theories and diagrams

Classical and quantum interaction Applications: a Hollywood-style trailer

Transpose

Process theories and diagrams Quantum processes

Classical and quantum interaction Applications: a Hollywood-style trailer

Transpose

i.e.

Radboud University Nijmegen

Radboud University Nijmegen

Tranpose = rotation

A bit of a deformation:

Radboud University Nijmegen

Tranpose = rotation

A bit of a deformation:

allows some clever notation:

f /

Radboud University Nijmegen

Tranpose = rotation

A bit of a deformation:

allows some clever notation:

f /

Process theories and diagrams Quantum processes

Classical and quantum interaction Applications: a Hollywood-style trailer **Radboud University Nijmegen**

Transpose = rotation

$\mathsf{Tranpose} = \mathsf{rotation}$

Specialised to states:

 $\widehat{\psi}$:= $\widehat{\psi}$

Radboud University Nijmegen

Tranpose = rotation

Specialised to states:

Radboud University Nijmegen

Tranpose = rotation

Specialised to states:

Radboud University Nijmegen

State/effect correspondence

Radboud University Nijmegen

State/effect correspondence

Radboud University Nijmegen

State/effect correspondence

Adjoints

state ψ

testing for ψ

U

Adjoints

Radboud University Nijmegen

state ψ

testing for ψ

Extends from states/effects to all processes:

Adjoints

Radboud University Nijmegen

state ψ

testing for ψ

Extends from states/effects to all processes:

Adjoints

state ψ

testing for ψ

Extends from states/effects to all processes:

Normalised states and isometries

• Adjoints increase expressiveness, for instance can say when ψ is normalised:

Normalised states and isometries

• Adjoints increase expressiveness, for instance can say when ψ is normalised:

• *U* is an *isometry*:

Normalised states and isometries

• Adjoints increase expressiveness, for instance can say when ψ is normalised:

• *U* is an *isometry*:

...and unitary, self-adjoint, positive, etc.

Conjugates

If we:

Radboud University Nijmegen

Aleks Kissinger

28 / 89

Conjugates

If we:

Conjugates

If we:

...we get horizontal reflection.

Conjugates

If we:

...we get horizontal reflection. The *conjugate*:

Process theories and diagrams

Classical and quantum interaction Applications: a Hollywood-style trailer

4 kinds of box

conjugate

Radboud University Nijmegen

Quantum teleportation: take 1

Can we fill in '?' to get this?

Quantum teleportation: take 1

Here's a simple solution:

Quantum teleportation: take 1

Here's a simple solution:

Problem: 'cap' can't be performed deterministically

Aleks Kissinger

31 / 89

Radboud University Nijmegen

Bob's problem now!

Radboud University Nijmegen

Quantum teleportation: take 1

Solution: Bob fixes the error.

Radboud University Nijmegen

Radboud University Nijmegen

Radboud University Nijmegen

Outline

Radboud University Nijmegen

Process theories and diagrams

Quantum processes

Classical and quantum interaction

Applications: a Hollywood-style trailer

Hilbert space

Radboud University Nijmegen

The starting point for quantum theory is the process theory of **linear maps**

Hilbert space

Radboud University Nijmegen

The starting point for quantum theory is the process theory of **linear maps**, which has:

- **1** systems: Hilbert spaces
- Ø processes: complex linear maps

Hilbert space

Radboud University Nijmegen

The starting point for quantum theory is the process theory of **linear maps**, which has:

- **1** systems: Hilbert spaces
- Ø processes: complex linear maps
- ...in particular, numbers are complex numbers.

Hilbert space

Radboud University Nijmegen

Looking at the 'Born rule' for linear maps, we have a problem:

Hilbert space

Radboud University Nijmegen

Looking at the 'Born rule' for linear maps, we have a problem:

Hilbert space

Radboud University Nijmegen

Looking at the 'Born rule' for linear maps, we have a problem:

Doubling

Solution: multiply by the conjugate:

Doubling

Solution: multiply by the conjugate:

Then, for normalised ψ, ϕ :

Doubling

Solution: multiply by the conjugate:

Then, for normalised ψ, ϕ :

(i.e. the 'usual' Born rule: $\overline{\langle \phi | \psi \rangle} \langle \phi | \psi \rangle = |\langle \phi | \psi \rangle|^2$)

Aleks Kissinger

Doubling

Radboud University Nijmegen

New problem: We lost this:

Doubling

Radboud University Nijmegen

New problem: We lost this:

...which was the basis of our interpretation for states, effects, and numbers.

Radboud University Nijmegen

Doubling

Solution: Make a new process theory with doubling 'baked in':
Radboud University Nijmegen

Doubling

Solution: Make a new process theory with doubling 'baked in':

Radboud University Nijmegen

Doubling

Solution: Make a new process theory with doubling 'baked in':

Doubling

The new process theory has doubled systems $\widehat{H} := H \otimes H$:

Radboud University Nijmegen

Doubling

The new process theory has doubled systems $\widehat{H} := H \otimes H$:

:= |||

and processes:

double $\begin{pmatrix} f \\ f \end{pmatrix}$:= $\begin{bmatrix} f \\ f \\ f \end{bmatrix}$ = $\begin{bmatrix} f \\ f \\ f \\ f \end{bmatrix}$

Radboud University Nijmegen

Doubling preserves diagrams

Radboud University Nijmegen

...but kills global phases

(i.e. $\lambda = e^{i\alpha}$)

43 / 89

Radboud University Nijmegen

...but kills global phases

Discarding

Radboud University Nijmegen

Doubling also lets us do something we couldn't do before:

Radboud University Nijmegen

Doubling also lets us do something we couldn't do before: throw stuff away!

Discarding

Radboud University Nijmegen

Doubling also lets us do something we couldn't do before: throw stuff away!

How? Like this:

Discarding

For normalised ψ , the two copies annihilate:

Quantum maps

Definition

The process theory of **quantum maps** has as types (doubled) Hilbert spaces \hat{H} and as processes:

Radboud University Nijmegen

Two characterisations of 'pure'

No discarding involved, i.e. for some f:

Radboud University Nijmegen

Two characterisations of 'pure'

No discarding involved, i.e. for some f:

Radboud University Nijmegen

Consequence: no-broadcasting

Theorem (No universal broadcasting)

There exists no quantum map Δ where:

Radboud University Nijmegen

Consequence: no-broadcasting

Theorem (No universal broadcasting)

There exists no quantum map Δ where:

Radboud University Nijmegen

Consequence: no-broadcasting

Theorem (No universal broadcasting)

There exists no quantum map Δ where:

$$\begin{array}{c|c} - & - & - \\ \hline \end{array} \begin{array}{c} (1) \\ = \\ \end{array} \begin{array}{c} (1) \\ = \\ \end{array} \begin{array}{c} (1) \\ = \\ - \\ \hline \end{array} \begin{array}{c} - \\ - \\ - \\ \end{array} \end{array}$$
Proof. From (1):

Radboud University Nijmegen

Consequence: no-broadcasting

Theorem (No universal broadcasting)

There exists no quantum map Δ where:

Proof. From (I):
$$\begin{array}{c} 1 \\ \Delta \\ 1 \end{array} = \begin{array}{c} 1 \\ P \\ P \\ P \end{array}$$

From (r):

$$= \begin{array}{c} 1 \\ \underline{-} \\ \underline{-} \\ 1 \end{array} = \begin{array}{c} \psi \\ \underline{-} \\ \underline{-} \\ \underline{-} \end{array}$$

Radboud University Nijmegen

Consequence: no-broadcasting

Theorem (No universal broadcasting)

There exists no quantum map Δ where:

Proof. From (I):
$$\begin{array}{c} 1 \\ \Delta \\ 1 \end{array} = \begin{array}{c} 1 \\ P \\ P \\ P \end{array}$$

From (r):

$$=$$
 $\begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$ $=$ $\begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$

 \Rightarrow contradiction.

Aleks Kissinger

49 / 89

Causality

A quantum map is called *causal* if:

$$\begin{bmatrix} - \\ T \\ 0 \\ T \end{bmatrix} = - T$$

Causality

A quantum map is called *causal* if:

$$\begin{bmatrix} \bar{\underline{-}} \\ \Phi \\ T \end{bmatrix} = \bar{\underline{-}}$$

If we discard the output of a process, it doesn't matter which process happened.

Causality

A quantum map is called *causal* if:

$$\begin{bmatrix} \bar{\underline{-}} \\ \Phi \\ T \end{bmatrix} = \bar{\underline{-}}$$

If we discard the output of a process, it doesn't matter which process happened.

 $\mathsf{causal} \iff \mathit{deterministically physically realisable}$

Consequence: no cap effect 🛞

Consequence: there is a unique causal effect, discarding:

50 / 89

Consequence: no cap effect 🛞

Consequence: there is a unique causal effect, discarding:

Hence 'deterministic quantum teleportation' must fail:

Consequence: no cap effect 🛞

Consequence: there is a unique causal effect, discarding:

Hence 'deterministic quantum teleportation' must fail:

Process theories and diagrams Quantum processes Classical and quantum interaction Applications: a Hollywood-style trailer

Process theories and diagrams Quantum processes Classical and quantum interaction Applications: a Hollywood-style trailer

Consequence: no signalling 🙂

51 / 89

Process theories and diagrams Quantum processes Classical and quantum interaction Applications: a Hollywood-style trailer

Process theories and diagrams Quantum processes Classical and quantum interaction Applications: a Hollywood-style trailer

Process theories and diagrams Quantum processes Classical and quantum interaction Applications: a Hollywood-style trailer

Outline

Radboud University Nijmegen

Process theories and diagrams

Quantum processes

Classical and quantum interaction

Applications: a Hollywood-style trailer

Radboud University Nijmegen

Double vs. single wires

 $\left[\begin{array}{c} \text{quantum} := \end{array} \right]$

Radboud University Nijmegen

Double vs. single wires

Classical values

$$\downarrow$$
 := 'providing classical value *i*'

Classical values

$$\stackrel{\perp}{i}$$
 := 'providing classical value *i*'

$$\frac{i}{1}$$
 := 'testing for classical value *i*'

Classical values

$$i$$
 := 'providing classical value *i*'

$$\stackrel{i}{\downarrow}$$
 := 'testing for classical value *i*'

$$\begin{array}{c} \underbrace{j}\\ \hline \\ i \end{array} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Aleks Kissinger

۸

Classical values

$$i$$
 := 'providing classical value *i*'

$$\stackrel{\frown}{i}$$
 := 'testing for classical value *i*'

$$\begin{array}{c} \overbrace{j}\\ \hline \\ \hline \\ i \end{array} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

$$(\Rightarrow \text{ONB})$$

Classical states

Radboud University Nijmegen

General state of a classical system:

$$\bigvee_{p} := \sum_{i} p_{i} \bigvee_{i}$$

probability distributions

Classical states

Radboud University Nijmegen

General state of a classical system:

 \bigvee_{i}^{p} := $\sum_{i} p_{i} \bigvee_{i}^{l} \leftarrow$ probability distributions

Hence:

$$\bigvee_{i}^{\perp}$$
 \leftarrow point distributions

Copy and delete

Unlike quantum states, classical values can be copied:

Copy and delete

Unlike quantum states, classical values can be copied:

and *deleted*:

Radboud University Nijmegen

Copy and delete

These satisfy some equations you would expect:

Copy and delete

Radboud University Nijmegen

These satisfy some equations you would expect:

Copy and delete

Radboud University Nijmegen

These satisfy some equations you would expect:

Copy and delete

Radboud University Nijmegen

Radboud University Nijmegen

Other classical maps

 $\overline{\vee}$ $:= \sum_{i} \bigvee_{i}^{i}$

58 / 89

Radboud University Nijmegen

Other classical maps

Radboud University Nijmegen

Other classical maps

Radboud University Nijmegen

Other classical maps

Radboud University Nijmegen

...satisfying lots of equations

Radboud University Nijmegen

...satisfying lots of equations

Radboud University Nijmegen

...satisfying lots of equations

Radboud University Nijmegen

...satisfying lots of equations

When does it end???

Spiders

Radboud University Nijmegen

Spiders

All of these are special cases of *spiders*:

Spiders

The only equation you need to remember is this one:

Spiders

The only equation you need to remember is this one:

When spiders meet, they fuse together.

Radboud University Nijmegen

Spider reasoning

Radboud University Nijmegen

Spider reasoning

Radboud University Nijmegen

Spider reasoning \Rightarrow string diagram reasoning

How do we recognise spiders?

Suppose we have something that 'behaves like' a spider:

How do we recognise spiders?

Suppose we have something that 'behaves like' a spider:

Do we know it is one?

Aleks Kissinger

Radboud University Nijmegen

Spiders = 'diagrammatic ONBs'

Yes!

Radboud University Nijmegen

Spiders = 'diagrammatic ONBs'

Yes!

i

Radboud University Nijmegen

Classical and quantum interaction

Classical and quantum interaction

Classical values can be encoded as quantum states, via doubling:

Classical and quantum interaction

Classical values can be encoded as quantum states, via doubling:

This is our first classical-quantum map, encode.

Classical and quantum interaction

Classical values can be encoded as quantum states, via doubling:

This is our first classical-quantum map, *encode*. It's a copy-spider in disguise:

Radboud University Nijmegen

Measuring quantum states

The adjoint of *encode* is *measure*:

Radboud University Nijmegen

Measuring quantum states

The adjoint of *encode* is *measure*:

quantum state $\langle \bigvee^{\text{probability distribution}} \rangle$

This represents measuring w.r.t.

Aleks Kissinger

67 / 89

Radboud University Nijmegen

Measuring quantum states

The adjoint of *encode* is *measure*:

quantum state $\left\{ \begin{array}{c} & & \\$

This represents measuring w.r.t.

...where probabilities come from the Born rule:
Radboud University Nijmegen

Measuring quantum states

The adjoint of *encode* is *measure*:

quantum state $\left\{ \begin{array}{c} & & \\$

This represents measuring w.r.t.

...where probabilities come from the Born rule:

Radboud University Nijmegen

Measuring quantum states

The adjoint of *encode* is *measure*:

quantum state $\left\{ \begin{array}{c} & & \\$

This represents measuring w.r.t.

...where probabilities come from the Born rule:

Radboud University Nijmegen

Classical-quantum maps

Definition

The process theory of **cq-maps** has as processes diagrams of quantum maps and encode/decode:

Radboud University Nijmegen

Quantum processes

Causality generalises to cq-maps:

$$\begin{bmatrix} 0 & -\frac{1}{2} \\ 0 & -\frac{1}{2} \\ 0 & -\frac{1}{2} \end{bmatrix} = 0 \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$

Radboud University Nijmegen

Quantum processes

Causality generalises to cq-maps:

$$\begin{bmatrix} \phi & -\frac{1}{2} \\ \phi \\ \phi \end{bmatrix} = \begin{pmatrix} \phi & -\frac{1}{2} \\ 0 &$$

quantum processes := causal cq-maps

Special case: quantum measurements

A *measurement* is any **quantum process** from a quantum system to a classical one:

$$\begin{array}{c} & & \\ & & \\ \hline \Phi \end{array} & \stackrel{\cong}{\longleftrightarrow} & \mathsf{POVMs} \end{array}$$

Special case: quantum measurements

A *measurement* is any **quantum process** from a quantum system to a classical one:

Radboud University Nijmegen

Special case: controlled-operations

A **quantum process** with a classical input is a *controlled operation*:

Special case: controlled-operations

A controlled isometry furthermore satisfies:

Special case: controlled-operations

Suppose we can use a single \hat{U} to build a *controlled isometry*:

Special case: controlled-operations

Suppose we can use a single \hat{U} to build a *controlled isometry*:

...and an ONB measurement:

Radboud University Nijmegen

Quantum teleportation: take 2

Radboud University Nijmegen

Complementary bases

Radboud University Nijmegen

Complementary bases

Aleks Kissinger

75 / 89

Radboud University Nijmegen

Complementary bases

Complementarity

Aleks Kissinger

Radboud University Nijmegen

Complementarity

Interpretation:

(encode in \bigcirc) THEN (measure in \bigcirc) = (no data flow)

Radboud University Nijmegen

Consequence: Stern-Gerlach

Process Theories and Graphical Language

Radboud University Nijmegen

Quantum computation

Doubling a classical spider gives a *quantum spider*:

Universality

Radboud University Nijmegen

By decorating quantum spiders with phases:

Radboud University Nijmegen

Universality

By decorating quantum spiders with phases:

and spider-diagrams become universal for quantum computation!

Soundness and completeness

Restricting the phase group to $\mathbb{Z}_4 \cong \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\} \subset U(1)$ gives *stabiliser QT*.

Radboud University Nijmegen

Soundness and completeness

Restricting the phase group to $\mathbb{Z}_4 \cong \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\} \subset U(1)$ gives *stabiliser QT*.

Sound and complete presentation via the ZX-calculus:

Outline

Process theories and diagrams

Quantum processes

Classical and quantum interaction

Applications: a Hollywood-style trailer

Radboud University Nijmegen

Quantum circuits and rewriting

Radboud University Nijmegen

Quantum circuits and rewriting

Radboud University Nijmegen

Measurement-based quantum computing

Radboud University Nijmegen

Measurement-based quantum computing

Radboud University Nijmegen

Quantum algorithms

Spiders can be used to build quantum oracles:

 \Rightarrow simple derivations of **Deutsch-Jozsa**, **quantum seach**, and **hidden subgroup** algorithms.

Radboud University Nijmegen

GHZ/Mermin non-locality

Radboud University Nijmegen

Multipartite entanglement

SLOCC-classification of 3 qubits:

Automation

Quantomatic:

Aleks Kissinger

Radboud University Nijmegen

Radboud University Nijmegen

Thanks! Joint work with Bob Coecke (book):

...and many more!

Abramsky, Backens, Duncan, Edwards, Gogioso, Hadzihasanovic, Heunen, Lal, Merry, Pavlovic, Perdrix, Quick, Selinger, Vicary, Zamdzhiev, ...

http://quantomatic.github.io

Aleks Kissinger