Scalable spider nests
  (...or how to graphically grok transversal non-Clifford gates)
  Aleks Kissinger & John van de Wetering
  QPL 2024, Buenos Aires
  
    
    
    
  
 +
  
  ZX-diagrams
  ...are the language of the ZX calculus.
  
  
  They are made of spiders:
  
    
        | 
      $:=\ \  |0...0\rangle\langle 0...0| + e^{i \alpha} |1...1\rangle\langle 1...1|$ | 
    
    
        | 
      $:=\ \  |{+}...{+}\rangle\langle {+}...{+}| + e^{i \alpha} |{-}...{-}\rangle\langle {-}...{-}|$ | 
    
  
   
  We love ZX diagrams because
  
  
  ...But there's a catch
  
  Working with full-powered ZX diagrams is (exponentially) hard.
  Clifford ZX calculus
  
  A complete set of equations for qubit Clifford QC
  efficient synthesis, equality checking, classical simulation, ...
  "graphical stabiliser theory and stabiliser codes"
  Phase-free ZX calculus
  
  A complete set of equations for qubit phase-free QC
  
    efficient synthesis, equality checking, classical simulation, ...
  
  
    "graphical $\mathbb F_2$-linear algebra and CSS codes"
  
  Phase-free ZX diagrams
  ...are made of spiders with $\alpha = 0$:
  
    
        | 
      
        \[ :=\ \  |0...0\rangle\langle 0...0| + |1...1\rangle\langle 1...1| \]
       | 
    
    
        | 
      
        \[ :=\ \  |{+}...{+}\rangle\langle {+}...{+}| + |{-}...{-}\rangle\langle {-}...{-}| \]
       | 
    
    
       | 
      
        \[= \ \ N \sum_{\oplus_i b_i = 0} |b_1...b_n\rangle\langle b_{n+1}...b_{n+m}|\]
       | 
    
  
  Simplification
  
  
  
  
    - Apply (sp) and (id) as much as possible.
 
    - Apply (sc) once where
      
        
 is not an input and 
        
 is not an output. 
      
     
    - Repeat.
 
  
  Normal forms
  Phase-free ZX diagrams can be reduced efficiently to (pseudo-)normal form:
  
  Special case: unitaries
Unitary $\implies$ 
$m = n ,\ \  j = k = 0$
  
$\overset{*}{\rightarrow}$
  
  
  
  \[
    U :: |\vec x \rangle \mapsto |L \vec x\rangle
    \qquad\qquad
    L := \begin{pmatrix}
    1 & 0 & 1 & 1 \\
    1 & 1 & 1 & 1 \\
    1 & 1 & 0 & 1 \\
    0 & 0 & 1 & 1
    \end{pmatrix}
    \]
  
  Special case: isometries
  Isometry $\quad \implies \quad m \leq n ,\ \  j = 0$
  
  
  
  
  \[
    V :: |\vec x \rangle \mapsto \sum_{\vec y} |L \vec x + S \vec y\rangle
    \qquad
    L := \begin{pmatrix}
    1 & 0 \\
    1 & 1 \\
    1 & 1 \\
    0 & 0 
    \end{pmatrix}
    \qquad
    S := \begin{pmatrix}
    1 & 1 \\
    1 & 1 \\
    0 & 1 \\
    1 & 1
    \end{pmatrix}
    \]
  
  Q: What structures are between "full-strength" ZX and efficient (Clifford/PP) ZX?
  
  
  A: Diagonal non-Cliffords, which are all generated by 
phase gadgets:
  
  
 $\ \ ::\ \ |x_1 \ldots x_n \rangle \mapsto e^{i \alpha \cdot x_1 \oplus \ldots \oplus x_n} |x_1 \ldots x_n\rangle$
  
   
  For general $\alpha \in \mathbb R$, that's pretty much the whole story.
  
    But for $\alpha = \pi/4$, there are (infinitely) many non-trivial rules, e.g.
    
  
  These are called spider nest identities.
  Q: Is there a nice way to classify all spider nests and work with them effectively?
  
  
  A: Yes, but we need some new tools.
  Scalable notation
  
  
  
  
  \[
    M :: |\vec x \rangle \mapsto |L \vec x\rangle
    \qquad\qquad
    L := \begin{pmatrix}
    1 & 0 & 1 & 1 \\
    1 & 1 & 1 & 1 \\
    1 & 1 & 0 & 1
    \end{pmatrix}
    \]
  
  Scalable notation
  
  
  
  
  \[
    M :: |\vec x \rangle \mapsto |L \vec x\rangle
    \qquad\qquad
    L := \begin{pmatrix}
    1 & 0 & 1 & 1 \\
    1 & 1 & 1 & 1 \\
    1 & 1 & 0 & 1
    \end{pmatrix}
    \]
  
  All spider nest identities
	\[
	  M \textrm{ triorthogonal } :=
	  \begin{cases}
      \forall i: |M_i| = 0 \textrm{ mod } 8 \\
      \forall i<j: M_i \cdot M_j = 0 \textrm{ mod } 4 \\
      \forall i<j<k: M_i \cdot M_j \cdot M_k = 0 \textrm{ mod } 2
	  \end{cases}
	\]
  
  All spider nest identities
  
    Theorem.
    The Clifford ZX calculus plus the S4 rule:
    
    is diagonally complete for Clifford+T ZX diagrams, i.e. any true equation of the form:
    
    is provable.
  
  All spider nest identities
  ...where:
  
  
  
    Proof idea: S4 immediately implies:
    

      for all $n > 4$.
  
 
  All spider nest identities
  Then:

  ...forms a generating set for all the spider nest rules, up to Cliffords.
  (Uses equivalence between triorthonality and degree $\leq n-4$ polynomials/Reed-Muller codewords, cf. Nezami & Haah. Classification of small triorthogonal codes. 2022)
Quantum error correction
  ...is done by encoding some space of logical qubits into a bigger space of physical qubits:
  

  
  
  
    - $E$ (or just $\textrm{Im}(E)$) is called a quantum error correcting code
 
    - Stabiliser code $:= E$ is a Clifford ZX diagram
 
    - Calderbank-Shor-Steane code $:= E$ is a phase-free ZX diagram
 
  
  
  
  
  \[
    V :: |\vec x \rangle \mapsto \sum_{\vec y} |L \vec x + S \vec y\rangle
    \qquad
    L := \begin{pmatrix}
    1 & 1 \\
    1 & 0 \\
    0 & 1 \\
    0 & 0 
    \end{pmatrix}
    \qquad
    S := \begin{pmatrix}
    1 \\
    1 \\
    1 \\
    1 
    \end{pmatrix}
    \]
  
  
  \[
    X \text{ logical ops } := \{ X \otimes X \otimes I \otimes I, X \otimes I \otimes X \otimes I \}
  \]
  \[
    X \text{ stabilisers } := \{ X \otimes X \otimes X \otimes X \}
  \]
  
  
  
  
  \[
    Z \text{ logical ops } := \{ I \otimes Z \otimes I \otimes Z, I \otimes I \otimes Z \otimes Z \}
  \]
  \[
    Z \text{ stabilisers } := \{ Z \otimes Z \otimes Z \otimes Z \}
  \]
  
  
  
  
  \[
    V :: |\vec x \rangle \mapsto \sum_{\vec y} |L \vec x + S \vec y\rangle
    \qquad
    L := \begin{pmatrix}
    1 & 1 \\
    1 & 0 \\
    0 & 1 \\
    0 & 0 
    \end{pmatrix}
    \qquad
    S := \begin{pmatrix}
    1 \\
    1 \\
    1 \\
    1 
    \end{pmatrix}
    \]
  
  
  \[
    X \text{ logical ops } := \{ X \otimes X \otimes I \otimes I, X \otimes I \otimes X \otimes I \}
  \]
  \[
    X \text{ stabilisers } := \{ X \otimes X \otimes X \otimes X \}
  \]
  
  
  
  \[
    V :: |\vec x \rangle \mapsto \sum_{\vec y} |L \vec x + S \vec y\rangle
    \]
Fault-tolerant computation
  ...is done by implementing logical operations $f$ 
 with physical operations $F$:
  
  
  
  
    Often, we want these to be 
transversal to avoid spreading errors:
    
   
  
Transversal diagonal gates
  
  
  
  $\forall i . |P^i| = 1$
  
  Transversal diagonal gates
  
  
  
  
  $M = \begin{pmatrix} H & 0 \\ PL & PS \end{pmatrix}$
  $D_M$ vanishes $\iff M$ is triorthogonal
  
  
  
    Theorem.
    A CSS code with generator matrix $(L|S)$ admits a transversal implementation of a gate $D_H^\dagger \in \mathcal D_3$ if and only if there exists a matrix $P$ whose rows have Hamming weight $1$ such that the matrix
    
    \[ M = \begin{pmatrix} H & 0 \\ PL & PS \end{pmatrix} \]
    is triorthogonal.
  
Example
  
\[
  M =
  \footnotesize
\left(
\begin{array}{c|ccccccccccccccc}
  1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline
  0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
  0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
  0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
  0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}    
\right)^T
\]
  - $(L|S)$ is a $[[15, 1, 3]]$ quantum Reed-Muller code
 
  - $P = I$, $D_P = T^{\otimes 15}$
 
  - $D_H^\dagger = T^\dagger$
 
Example
  
\[
  M =
  \footnotesize
\left(
\begin{array}{cccccccc|cccccccc}
  0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
  0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
  0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ \hline
  0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}    
\right)^T
\]
Conclusions
  
    - Scalable notation tames the complexity of spider nests
      
 $\qquad \leadsto \qquad$ 
     
    - Scalable diagrams represent Clifford and non-Clifford parts together, allowing $\mathbb F_2$-linear structures to interact
 
    - Open Qs:
      
        - Can Clifford+S4 be completed?
 
        - Does this help with code search, distillation protocols, etc?
 
        - Application to other kinds of FT operations?
 
        - Beyond CSS/stabilser codes (e.g. Floquet codes)?