
The Genetic Evolution of Quantum

Programs Using The ZX-Calculus

Project Dissertation

University of Oxford

Department of Computer Science

Kenton Barnes

MSc in Computer Science 2019-20

September 2020

i

Abstract

This project is the first to use the ZX-calculus as an internal representation for an

evolutionary computation system that synthesises quantum programs. Specifically,

we use the open graph representation of ZX-diagrams in a genetic programming

system to solve a series of benchmark problems. We found that when compared to

previous works that used the quantum circuit model as their internal representa-

tion, the naturally reduced redundancy of the open graph representation provided

significant advantage to our system. We evolved solutions to some problems much

more often than the related work. However, the mutations defined over the open

graph representation proved less effective than those used in previous works defined

over the circuit model.

Keywords

Quantum Computing, Automatic Programming, Quantum Circuits, Genetic Algo-

rithms, ZX Calculus, Evolutionary Computation,

Abbreviations

GP Genetic Programming, QFT Quantum Fourier Transform, GDO Grovers Diffu-

sion Operator, SND Semantic Neutral Drift, Randomised Unitary (RND)

Contents

1 Introduction 1

2 Background 5

2.1 Quantum Computation . 5

2.1.1 The Quantum Speedup . 9

2.2 The ZX Calculus . 10

2.2.1 Diagram Reduction . 15

2.2.2 Circuit Extraction . 16

2.3 Evolutionary computation . 18

2.3.1 Genetic Algorithms . 19

2.3.2 Ant Colony Optimisation . 22

3 Methodology 23

3.1 Quantum Program Representation 23

3.2 Genetic Operators . 25

3.2.1 Managing Unsafe Operators 25

3.2.2 Mutation Operators . 27

3.2.3 Crossover Operator . 33

3.3 Population Creation . 34

3.4 Individual Selection . 35

3.4.1 Selection Algorithm . 36

3.4.2 Fitness Assessment . 37

3.4.3 Elitism . 39

4 Implementation 40

4.1 Implementation Language . 40

4.2 Genetic Algorithm . 40

4.3 Data Structures . 41

5 Results 42

ii

CONTENTS iii

5.1 Open Graph Redundancy and Mutations 42

5.1.1 Evaluation Methodology . 43

5.1.2 Evaluation Data . 45

5.1.3 Results Discussion . 49

5.2 Open Graphs Limited to kπ/4 Phases 50

5.2.1 Evaluation Methodology . 51

5.2.2 Evaluation Data . 51

5.2.3 Results Discussion . 52

5.3 Unsafe Mutation Mitigation . 53

5.3.1 Evaluation Methodology . 53

5.3.2 Evaluation Data . 53

5.3.3 Results Discussion . 54

6 Conclusions 55

6.1 Future Work . 56

Bibliography 58

Appendices 62

Extended Gate Definitions and ZX Equivalences 63

Chapter 1

Introduction

Quantum computers make use of quantum physics to achieve an advantage over clas-

sical computation. Such devices have been theoretical up until the last few years,

but now quantum hardware groups report to have devices that can perform some

computations faster than classical computers [1, 38]. Although widespread commer-

cial use is still years away [39], research efforts continue on both the hardware and

software side to make the supposed benefits of quantum computing, in areas such

as drug-design, cryptography and artificial intelligence, a reality.

Historically, programs for quantum computers have been created manually by con-

catenating small units of computation, called quantum gates, together. However,

the hardware that quantum scientists are writing programs for is improving in qual-

ity and scale. This pattern is set to continue as hardware developers continue to

achieve new levels of gate fidelity and qubit counts [40, 38]. This means larger pro-

grams that use more qubits, the smallest unit of quantum information, can be run.

It will no longer be the case that only a handful of instructions can be executed.

Programs with hundreds of operations across dozens of qubits will soon become the

norm. Consequently, it will become in-feasible for programmers to control their

quantum devices by writing a few lines in a low-level instruction language. Instead,

to best make use of the available hardware, automatic methods that can help to

produce larger and more optimal programs are needed.

Existing tools for assisting quantum programmers vary in function from optimi-

sation of low-level code written by humans [45], to languages that allow users to

only engage with high-level descriptors of quantum algorithms [49]. The type of

automated assistance this project will focus on are systems which automatically

synthesise entire quantum programs. Given a list of input cases and expected out-

1

CHAPTER 1. INTRODUCTION 2

puts, a quantum program synthesis system should produce a quantum program that

returns the expected outputs and is as small as possible.

More specifically this project deals with approximate program synthesis, where

an acceptable threshold of error in the outputs from the produced program is tol-

erated. This approximate version of the program synthesis problem also allows

systems to explore a trade-off between error in its outputs and the size of programs

produced. The ability to choose smaller programs with a small rate of error could

be of great advantage to near-term programmers of Noisy Intermediate-Scale Quan-

tum devices, where the accuracy of running a program on the device can drastically

decrease when running larger programs [39].

Evolutionary computation is a collection of heuristic driven optimisation methods

that are inspired by genetics and evolution. One of the applications of evolutionary

computation methods has been the creation of novel classical programs to solve prob-

lems defined by a given fitness function. While the quantum physics that underpins

quantum computation is not intuitive to humans, a computer’s ‘understanding’ of

a candidate program in some evolutionary computation system is purely numerical;

it takes the form of an assigned fitness value. Along with this, the actual represen-

tation of a quantum program can be similar in form to that of a classical program:

namely a list of small instructions to be executed in order. These similarities in how

an automated system might deal with classical and quantum programs have meant

that evolutionary computation methods are just as applicable to the synthesis of

quantum programs as they are to classical programs.

There have been many previous works that have created successful evolutionary

computation systems for generating quantum programs. The most common method

has been to use genetic programming (GP) [6, 31, 42, 47], but other works have

also used Ant Colony optimisation techniques [2]. One thing that these works have

in common is the use of the circuit model for quantum computation as the way of

representing candidate solutions in their systems. The circuit model is similar in

form to that of Boolean logic circuits in classical computing, made up of a group of

interconnected gates acting on a finite number of qubits. It is used by these works

because it is easy to manipulate using automatic methods. Operations such as gate

addition and removal are both simple to implement and allow a smooth traversal of

the semantic space for quantum programs.

CHAPTER 1. INTRODUCTION 3

The ZX-calculus is a diagrammatic way of representing quantum programs and

has been an important area of study since its inception in 2008 [11]. It has been gain-

ing popularity among quantum computing research groups because of results that

show how ZX-diagrams can be reduced down using well-defined transition rules.

For example, optimisation methods using the ZX-calculus are some of the best for

reducing the T-count of quantum circuits [28]. These transition rules also make it

easy to remove redundancy from a ZX based representation compared to the circuit

model. This reduced redundancy, and therefore increased semantic efficiency of the

representation, makes it a good candidate for being the representation used in evo-

lutionary computation software for quantum program synthesis.

This project aims to create a system that uses GP to evolve quantum programs,

where all candidate programs are represented as ZX-diagrams. This project is the

first work to use the ZX-calculus for this purpose. By making comparisons between

our system and previous works that used the circuit model, we evaluate how well

the ZX-calculus functions as the basis for candidate representation in evolutionary

computation systems. We use the open graph representation of ZX-diagrams, which

offers reduced redundancy compared to the circuit model. We assess whether any

performance gained by our system is through the reduced redundancy native to open

graphs, or through the mutation operations we introduce which have no analogue

in the circuit model. We also investigate how well using the ZX-calculus allows

the system to reduce the size of the evolved programs, and whether the system can

trade-off accuracy in the evolved program outputs for decreased program size.

As not all ZX-diagrams represent valid quantum programs, this project goes

some way towards investigating what methods are best to deal with this weakness

of a ZX based representation in GP systems. We propose four different ways to

mitigate against the introduction of these invalid individuals into the system, and

then include an evaluation of these methods to justify our choice in the method we

use for the rest of the work.

This report provides background information for quantum computing, the ZX-

calculus and genetic programming in Chapter 2. It then goes on to detail our

methodology for investigating the research aims of this project and implementation

of the designed system in Chapters 3 and 4. In Chapter 5 we discuss our evalu-

ation methodology and give results comparing different versions of our system to

each-other and previous works in this area of research. Our conclusions, detailed in

Chapter 6, are that the main advantage of the ZX based representation is not the

different mutation operations that it allows, but rather the reduced redundancy it

CHAPTER 1. INTRODUCTION 4

can enable compared to the circuit model. Overall the ZX-calculus was a success-

ful internal representation that allowed this project to achieve better results than

previous work, solving problems quicker and more reliably. However, more research

should be done to find mutations defined over the ZX-calculus that can efficiently

traverse the semantic space of quantum programs.

Chapter 2

Background

This background section is indented for those who have a firm basis in computer

science but whom may not have experience with quantum computing or evolutionary

computation. While some linear algebra is used to build up the basic concepts in

quantum computing, a detailed understanding of it is not needed to engage with

the content of this report.

For a more complete resource introducing the topic of quantum computation

we recommend Nielsen and Chuang (2002) [35], while for diagrammatic methods

and the ZX-calculus we recommend Coecke and Kissinger (2018) [12] as the best

introductory resource.

2.1 Quantum Computation

Since the inception of modern computer science in the 20th century, the capabilities

of most computers have not exceed that of the Turing machine, methods that can

be represented by paper-and-pen workings or classical physics. The machines and

associated computational methods bound by these limitations are referred to as

being classical throughout this work.

In 1982 Richard Feynman proposed that the physics seen in quantum theory

could be harnessed to somehow provide a benefit to the field of computation [16],

and take computers beyond the methods of classical computing. We have since

seen that quantum computing can indeed provide a speed-up and allow previously

intractable problems to be solved in polynomial time. Peter Shor proved the most

famous example of such a speed up, with the creation of his famous quantum algo-

rithm for factorising integers in polynomial time [44].

5

CHAPTER 2. BACKGROUND 6

Quantum computation is defined as any computation that is achieved through the

use of quantum theoretical laws such as entanglement and superposition. This broad

definition encompasses many different models for computation, but initially section

will focus on the one of the most common approaches: the quantum circuit model

[35].

In classical physics, the simplest physical system is the bit. This is an abstract

notion with two possible states, often referred to as ‘0’ and ‘1’. In real computers

there are several physical implementations of a bit, such as directions of magneti-

sation on a disk, or the value of a voltage in some part of an electronic circuit. A

bit is the smallest element of data in classical computing, and the smallest units of

computation are defined over small numbers of these bits. An example of a small

computational unit would be a logical gate like AND or NOT.

In quantum physics, the simplest system is the qubit. Like the bit, this is just

an abstract notion that has two possible observable states, we will label these states

|0〉 and |1〉. These labels are from Dirac notation, which is a way of hiding the matrix

notation that we will also be engaging with. In this notation, states correspond to

column vectors.

|0〉 =

[
1

0

]

|1〉 =

[
0

1

]
Unlike the bit, these observable states are not the only states a qubit can be in. Let’s

use a a small quantum operation, called the Hadamard (H) gate, and apply it to a

qubit in the |0〉 state. In matrix notation, quantum gates are all unitary matrices,

and then the application or sequential composition of gates is done through matrix

multiplication. Here is the unitary matrix for the Hadamard gate.

H = 1√
2

[
1 1

1 −1

]

H |0〉 = 1√
2

[
1 1

1 −1

][
1

0

]
= 1√

2

[
1

1

]

It is not immediately obvious how we interpret the resultant state. It seems to be

both a |0〉 and |1〉 added together. When we measure this state we will observe

|0〉 half of the time and observe |1〉 the other half; we have encountered the proba-

CHAPTER 2. BACKGROUND 7

bilistic nature of quantum computing. We say that the system we measured was in

superposition of states. In general, a single qubit superposition state |ψ〉 takes the

following form:

|ψ〉 = α |0〉+ β |1〉 =

[
α

β

]

s.t. |α|2 + |β|2 = 1

The probability that |0〉 is observed when measuring |ψ〉 is |α|2 and the probability

that |1〉 is observed is |β|2. An important caveat of making an observation of a

system in quantum computing is that this has an effect on the state of the system.

Going forward the system is no longer in a superposition state, but rather has col-

lapsed to the state which was observed. It is this destructive nature of measurement

that has made it so hard to implement reliable quantum computers.

There are some important superposition states we need to define for use later on.

We have already seen |+〉, defined as |+〉 = 1√
2
(|0〉 + |1〉) and we can also define

|−〉 = 1√
2
(|0〉 − |1〉).

Superposition is an important concept in quantum computing, but perhaps more

important for the computational speed-up that quantum computing offers is quan-

tum entanglement. To introduce entanglement we will use a quantum circuit [35],

which makes it easier to visualise the application of multiple quantum gates across

multiple qubits. The circuit model is one of the most widely-used methods for rep-

resenting quantum programs. It is similar to logical circuits from Boolean logic in

classical computing. Logical circuits are made up of ‘gates’, which describe a sim-

ple Boolean operation on a small number of bits, and ‘wires’, which connect gates

together and represent the flow of information for a single bit. This section has

already been using the gates defined in the circuit model, and we will now go on to

visualise these and connect them with wires that represent qubits. Often quantum

circuits are more static than Boolean logic circuits, in that the number of qubits

visible throughout a diagram does not change. Quantum circuits are read from left

to right, with the input being given at the far left of the circuit. For the purposes

of this project, the reader can assume that all measurement takes place at the end

(far right) of the circuit. Most gates are pictures as a labelled boxes. For example,

here we can see the Hadamard gate on a single wire.

CHAPTER 2. BACKGROUND 8

To use the circuit model to produce an entangled state we will need to use 2

qubits. The states of a 2-qubit system are constructed from the different combi-

nations of Kronecker (tensor) products of states |0〉 and |1〉. This is because the

Kronecker product corresponds to parallel composition. We have already seen that

matrix multiplication corresponds to sequential composition; note that both of these

operations preserve the unitary nature of gates, meaning the circuits that gates build

up are also unitary operations.

The observable states for a 2-qubit system are as follows.

|00〉 =

1

0

0

0

 |01〉 =

0

1

0

0

 |10〉 =

0

0

1

0

 |11〉 =

0

0

0

1

Next we need to define a gate that acts on 2 qubits called CNOT. The CNOT gate

is the conditional NOT operation. It has a control qubit and when this is in the |1〉
state it performs a NOT operation on the defined target qubit.

CNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

In the circuit model the CNOT gates gets a more descriptive visualisation than just

a labelled box. We represent the control qubit using •, the target is represented

by
⊕

, and these are connected by a vertical line. Let’s now consider the following

circuit, and assume that the input given is |00〉.

CHAPTER 2. BACKGROUND 9

If we were to use multiplication and Kronecker products to work through the matrix

notation for this circuit we would get the following resultant state.

1√
2

1

0

0

1

 =
1√
2

(|00〉+ |11〉)

If we were to measure this system we would have an equal chance of observing |00〉
or |11〉. In classical computing, any state can always be represented as the parallel

composition of each of the component bits. The state we have from the above cir-

cuit breaks away from that concept, as there are no two single qubit states that can

composed in parallel with each-other to make this state. We say that the two qubits

we have are entangled. If we were to measure just one of them we would know which

of the two possibilities we had forced the system to collapse to, and therefore know

what we would observe if we were to measure the second qubit.

While we have managed to construct an interesting entangled state with just the

Hadamard and CNOT gates, this gate set is not universal. That is to say that there

are quantum operations that we cannot represent using any number of Hadamard

and CNOT gates composed together. The most common example of a universal

gate set is Clifford+T. This is the set {Hadamard, CNOT, S, T} where S and T

are both different types of the parameterised Z rotation gate: Zα.

Zα =

[
1 0

0 eiα

]

For S we have α = π/2 and for T we have α = π/4.

2.1.1 The Quantum Speedup

With the background given so far in this report, it may be hard to see why quantum

computers are thought to provide a performance benefit over classical computers. To

understand this, we can think about how classical computers may simulate quantum

computers. Essentially they have to go through the operations we explored in the

previous section. We can remind ourselves that when we had a 2-qubit gate we had

to use a 4 × 4 matrix to describe the operation said gate. Extending this to larger

circuits we see that for an n-qubit circuit we need a 2n × 2n matrix to describe it.

CHAPTER 2. BACKGROUND 10

We need resources exponential in the number of qubits to simulate a given quantum

circuit. While there are certain families of quantum programs that can be simulated

in polynomial time [22], in general, the worst case is thought to be exponential.

While the hardware for quantum computers is improving [40, 38], for general

purpose applications classical computers simulating quantum computers are still the

fastest and most accessible way for researchers to engage with quantum computation,

despite the exponential worst-case performance cost. For this project this means

that, like all related work, the quantum programs our system produces will be

simulated on a classical computer rather than being run on a real quantum computer.

As this simulation time of thousands of candidate programs takes up a majority of

the run-time for current quantum program synthesis systems, it will be interesting

to see how this area of study changes if quantum hardware can reduce this run-time

in the future.

2.2 The ZX Calculus

While the circuit model reasons about quantum programs as unitary transformations

on qubit registers, it is possible to generalise this to any linear map between qubit

registers. The ZX-calculus [11] achieves such a generalisation.

The ZX-calculus is a diagrammatic approach to reasoning about quantum pro-

grammes. Like the quantum circuit diagram approach, we have wires that connect

some basic units of computation. However, rather than quantum gates, the compu-

tational units are called spiders, of which there are only two kinds: Z and X. Spiders

are more flexible than gates in that they can have any number of inputs and outputs,

but we can still give them a definition in terms of a linear map between these inputs

and outputs. This definition features an expansion of the Dirac notation already

seen where for a column vector |ψ〉: 〈ψ| is the adjugate of that vector.

CHAPTER 2. BACKGROUND 11

···
··· = |+...+〉 〈+...+|+ eiα |−...−〉 〈−...−|α

··
·

··
· = |0...0〉 〈0...0|+ eiα |1...1〉 〈1...1|α

We distinguish between spiders by their colour, green meaning the Z spider and

red meaning the X spider. We can see that each spider takes a single parameter

that is called the phase. When a spider has a phase of 0 we leave the spider blank

when drawn.

To give meaning to our ZX-diagrams we will be thinking about their interpretation

[25], which is the linear map that a given diagram represents. For some diagram D

we notate the interpretation as [[D]]. We will also use this to define a more flexible

version of equivalence on diagrams. For two diagrams D1 and D2 and some complex

number z s.t. z 6= 0: D1 = D2 when [[D1]] = z[[D2]]. We call this equivalence up to

a global scalar. These scalars are implementation details that only get in the way

for the purposes of this paper. There are several resources in literature that do give

the values for these scalars [26, 34].

We can represent gates from the previous section using these spiders. An exam-

ple is the Zα gate.

Zα=α

][][[
1 0

0 eiα

]
=

Some equivalences between gates and spiders are more complex, requiring multiple

spiders. Spiders and wires can be composed in parallel and in sequence to build up

these larger diagrams using the tensor product and multiplication operations that

we used in the circuit model. An example of a multi-spider gate equivalence is the

Hadamard gate.

CHAPTER 2. BACKGROUND 12

H=π
2

π
2

π
2

][][
1√
2

[
1 1

1 −1

]
=

Such is the commonality of this gate, we often use the convention of just drawing a

blue edge between spiders where there is a Hadamard gate.

π
2

π
2

π
2 =

Another multi-spider gate equivalence is for the CNOT gate.

CNOT=

][][
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 =

At this stage it is worth noting two identities in the ZX-calculus. Firstly that a

0-phase Z or X spider with one input and one output is just a wire. And secondly

that two Hadamard gates composed with each-other is also just a wire.

=

We have been building up equivalences between elements of the circuit model and

ZX-calculus with the aim of being able to convert any circuit into a ZX-diagram.

Consider the following example circuit.

Using what we have seen so far we can use the gate equivalences to convert the

example circuit to a ZX-diagram.

CHAPTER 2. BACKGROUND 13

π
2

There are now some transformations that it might benefit us to define and apply to

our very circuit-like ZX-diagram in an attempt to put it into a simpler form. The

first is the rule of colour change. This introduces a relationship between Z and X

spiders via the Hadamard gate.

···
··· =α ···

··· α

Applied to our circuit-like ZX-diagram on the X spiders, colour change gives us the

following.

π
2

The next rule is spider fusion, where connected spiders of the same colour are al-

lowed to fuse together by adding their phases.

α

β

α + β=

·

·

·

·

···
···

···
···

···
···

···
···

· · ·

CHAPTER 2. BACKGROUND 14

Applied to our circuit-like ZX-diagram, spider fusion gives us the following.

π
2

In the simplified representation of ZX-diagrams we are trying to transform our dia-

gram into, we cannot have Hadamard edges attaching to the edges of the diagram.

So we can now use the inverse of colour change and the previously stated identities

for Hadamards and the 0-phase spiders to get rid of the bottom left spider and

produce the following form.

π
2

This now meets the definition of a graph-like ZX-diagram, because: all spiders are

Z-spiders, these spiders are only connected to each-other via Hadamard edges, the

adjacency matrix of edges is lower- or upper-triangular as there are no self loops or

multiple edges between the same two spiders, each input and output is connected

to a single spider, and each spider is only connected to at most one input and one

output. While in this example the number of spiders in the diagram has not been

reduced since we first converted our example circuit to a ZX-diagram, the amount

of information needed to store this diagram has been. This is because there is now

only one type of edge between nodes (the edges that go to the inputs and outputs

of the diagram can be assumed), and there is now only one colour of spider. Using

equivalences between gates and spiders as well as the spider fusion and colour change

transitions we have shown how any circuit can become a graph-like ZX-diagram. The

work of Kissinger and Wetering (2020) [28] further shows that any ZX-diagram, not

just those derived from circuits, has an equivalent graph-like representation. That

is to say that the space of graph-like ZX-diagrams is not a restriction on what can

be represented.

A related concept to graph-like diagrams is that of the open graph. Open graphs

represent graph-like ZX-diagrams in the following structure; some triple (G, I,O)

CHAPTER 2. BACKGROUND 15

Inputs = {1, 2, 3}

Outputs = {5, 6, 7}

Phases = {6→ π
2
}

1 4

3

2

5

6

7

Figure 2.1: Open graph representation of ZX-diagrams. Consisting of connectivity
graph, input set, output set and phase map.

where G is the undirected graph with edge set E and vertex set V . With vertices

representing the Z-spiders and edges representing the Hadamard edges in a graph-

like ZX-diagram. I ⊆ V is the set of inputs and O ⊆ V are the outputs. An open

graph, along with an assignment between vertices and phases, completely describes

a given graph-like ZX-diagram. In this report we will display open graphs as seen

in Figure 2.1. We show the underlying graph representing the connections between

Z-spiders via Hadamard edges. Each spider is given a numerical label. The set of

inputs and outputs is also given. If needed, the map between spider index and phase

is given, where if a spider is not represented in the map the phase is assumed to be

0.

2.2.1 Diagram Reduction

The work of Kissinger and Wetering (2020) [28] is part of an area of research that

use the ZX-calculus, and transition rules defined over it, to optimise quantum cir-

cuits. Specifically, Kissinger and Wetering take quantum circuits, convert them to

graph-like ZX-diagrams, run a series of semantic-preserving transition rules defined

over graph-like diagrams that further reduce the size of the ZX-diagrams, and fi-

nally convert the diagrams back to quantum circuits (Section 2.2.2). The type of

optimisation this process aims to achieve is T-count reduction. The T-count of a

circuit is how many Zα gates there are such that α 6= kπ
2

for any k ∈ Z. In the pre-

viously mentioned Clifford+T gate set, the only gate that meets such a definition is

the T gate. Therefore, when run on Clifford+T circuits, the work of Kissinger and

Wetering attempts to minimise the number of T gates. This is an important task

because the T gates are harder to implement on quantum hardware, and simulate

on classical computers, than the other gates in Clifford+T [10].

CHAPTER 2. BACKGROUND 16

The main result of the Kissinger and Wetering paper is a reduction scheme that

manged to achieve the lowest known T-count for 72% of benchmark problems. This

area of research using the ZX-calculus to optimise circuits continues to be one of

the most successful applications of this quantum program representation [15, 14].

While the details of the transition rules they define over graph-like diagrams for

the purpose of reducing their size will not be discussed here, readers should know

that they only really work when the quantum circuit, and corresponding graph-like

diagram, contain gates with specific phases. That is, some of the rules used do

not work on spiders of arbitrary phase, rather they necessitate the phase be some

multiple of a fraction of π in order to be applicable.

2.2.2 Circuit Extraction

It is not currently possible for all ZX-diagrams to be ‘run’ by a quantum computer.

There are often ambiguities about what ‘running’ a given diagram would mean,

about when operations would be carried out and on which qubits they would apply

to. While in the future this may change, current quantum computing hardware

and classical simulators of quantum computers take input in the form of a quantum

circuit. This less ambiguous representation of a quantum program can simply be

interpreted as a list of instructions to execute, so is easier for computers to deal

with.

It is therefore desirable to convert ZX-diagrams to quantum circuits, for ex-

ample this was a step required in the circuit optimisation process in Section 2.2.1.

This problem of circuit extraction from ZX-diagrams is not trivial. In Section 2.2

we detailed how to convert circuits to ZX-diagrams and this used simple equiva-

lence between gates and small ZX-diagrams. However, to then get into the open

graph representation we transformed our diagram using rules such as colour change

and spider fusion. These rules changed the diagram into something that we could

no longer just apply the inverse of our gate equivalences to in order to get a cir-

cuit back out of the diagram. Circuit extraction is a difficult problem because of

these rules like spider fusion that have, in general, no equivalent in the circuit model.

The most extensive work on circuit extraction is that of Backens et al. (2020) [4].

They prove the worst case performance of their extraction method to be O(n2k2+k3)

where k is the number of qubits in the system and n is the number of inputs to the

diagrami. Their method works by progressing forward a frontier, one side of which

iIn general, k 6= n but in this project we always have exactly one input for each qubit.

CHAPTER 2. BACKGROUND 17

contains the circuit extracted thus far and the other side contains the diagram yet

to be extracted. They define a collection of rules than can be applied to progress

the frontier, with different rules being applied depending on the diagrammatic struc-

tures seen at the frontier.

It is not possible for all ZX-diagrams, or even graph-like ZX-diagrams, to be con-

verted into quantum circuits. If we were to run the circuit extraction procedure on a

diagram that was not extractable, eventually the frontier would reach a state where

none of the defined rules to progress the frontier were applicable. As mentioned pre-

viously, while quantum circuits represent unitary transformations between registers

of qubits, the ZX-calculus can be used to represent any linear-map between qubits;

so it makes sense that not all ZX-diagrams have an equivalent circuit.

Characterising the class of ZX-diagrams that can be extracted into circuits is an

important task. Often researchers want ensure certain transformations performed

on extractable ZX-diagrams retain extractability. Works such as that of Backens et

al. achieve such a characterisation by proving that their circuit extraction method

works exactly when the given open graph has a generalised flow, or gFlow [9]. This

is a mathematical property that is defined on open graphs, and it has been a great

tool for researchers in this area.

For the purposes of this project we will consider a simplified version of gFlow, that

we will understand as a recipe to follow to win a game played on an open graph.

Consider a game where we start by associating a random bit with each node in an

open graph. A player wins the game when they get the system into a state where

there are no 1’s on the graph apart from at the output nodes of the graph. A player

does this through the use of the flipv operation. When flipv is performed on some

vertex v in the graph, the NOT operation is applied to all the bits on all nodes that

neighbour (share an edge with) v.

A recipe for how to solve this game for all possible starting configurations (val-

ues of the bits associated with each node) on a given open graph would consist of two

things. Firstly an ordering ≺ over all nodes where the ordering starts with inputs

to the diagram and ends with the outputs. Secondly, a correction set for each node

which will tell us what to do if we find a ‘1’ on a given node. We will call this set

g(v) for some node v. Each node w ∈ g(v) must adhere to v ≺ w. The definition of

g(v) is thata after performing flipw for all nodes w ∈ g(v) the end result must be

that v has flipped, and that the only other bits that have changed are in g(v) or are

output nodes. To follow this recipe to solve a game we first find the minimum node

according to ≺ that is marked with a 1, call this node v. Then we perform flipw for

CHAPTER 2. BACKGROUND 18

all nodes w ∈ g(v). We repeat these two steps until all the 1’s present are only on

the outputs nodes.

We can give an example using the open graph we created in Section 2.2. We can

define ≺ using the index within each node. Note that the output set is {5, 6, 7}.

1 4

3

2

5

6

7

The correction sets are then g(1) = {4, 6}, g(2) = {7}, g(3) = {6}, g(4) = {5}.
Correction sets are not needed for outputs. We could follow this recipe and it would

win the game for any starting state on this graph. The presence of this recipe for

solving this game for this open graph means that this open graph has a gFlow and

thus could be extracted back into a circuit using the methods seen in Backens et al.

(2020) [4]. If an open graph does not have such a recipe, it does not have a gFlow

and is therefore currently thought to be non-extractable.

2.3 Evolutionary computation

Evolutionary computation is an umbrella term for a number of algorithms and meth-

ods inspired by genetics, evolution, and biology in general. They are optimisation

methods often centred around the randomised iterative improvement of a collection

of candidate solutions. This improvement is guided by some heuristic. In the case

of using evolutionary computation for creating computer programs, this heuristic

represents how close a given candidate is to the desired output program.

CHAPTER 2. BACKGROUND 19

2.3.1 Genetic Algorithms

One of the most popular methods in evolutionary computation is the genetic algo-

rithm [19]. Inspired by Darwin’s theory of evolution, the process revolves around

some selection function that only allows certain candidates to ‘survive’ into future

iterations of the algorithm. Another key part of genetic algorithms is that the

elements we want to optimise about a candidate solution are encoded in genes, col-

lectively known as genetic material.

Figure 2.2: Overview of a Genetic Algorithm

The algorithm starts with an initial population of randomly generated candidate

solutions or individuals. These are then each assigned a numerical fitness that rep-

resents how close a candidate solution is to the target solution. A selection algorithm

is then run. This selects the individuals that will make up the population in the

next iteration (generation) of the algorithm. It uses the fitness of the individuals to

make this selection, with it more commonly selecting fitter individuals. There are

a number of selection algorithms [21], and nearly all employ stochastic elements to

not just select the fittest individuals. This is because the system can benefit from

the increased genetic diversity of the population if some of the less fit individuals

are selected.

The next stage is to take the selected solutions and perform genetic crossover

on them. This pairs up the candidates and takes some features from one parent

and some features from the other to create offspring. These offspring then un-

dergo genetic mutation. These are random changes to characteristics about the

individual. For example, if an individual had a characteristic encoded by some nu-

merical gene, a mutation might be to add a random value to this gene. To allow

for some stability in the system, the crossover and mutation operations are not al-

CHAPTER 2. BACKGROUND 20

ways performed, rather performed on an individual-by-individual basis with a given

probability. These probabilities, known as the mutation rate and crossover rate, are

important hyper-parameters for the system. To get the most out of a genetic algo-

rithm, these need to be optimised along with other parameters that can be found

throughout the system, for example many selection functions have them [21].

After crossover and mutation, fitness assessment takes place again and we start loop-

ing with successive iterations of the algorithm. This process repeats itself usually

until either a fixed number of generations has passed or an individual has achieved

a sufficiently high fitness threshold and the run of the algorithm is deemed to be

successful.

In general genetic algorithms are good methods for exploring complex fitness land-

scapes and are often able to avoid getting stuck in local maxima because of the

stochastic nature of the method. While gradient-based methods [43] can also achieve

this, and often attain results quicker than genetic algorithms, it is not always pos-

sible to quickly attain the gradient of a given point in a fitness landscape. Program

synthesis is a great example of a problem domain with a complex fitness landscape

where it is hard to attain the gradient.

Genetic Programming

The use of genetic algorithms for evolving computer programs is known as genetic

programming (GP). Pioneered by Koza (1990) [30], this approach was initially used

to manipulate tree-based programs to solve problems defined by some fitness func-

tion representing the target program. The tree structure consisted of nodes that

were either operators or terminals. Terminals would represent some absolute value

or program input and then operators would take arguments from their children and

pass results of an operation on these arguments up to their parent nodes. The value

at the top of the tree would be used as the result of the program. Work in this area

has gone on to develop a range of program representations. For example there are

linear methods that use simple lists of instructions that store and operate on data

in registers [8]. Another popular method are stack-based systems where data and

program instructions are stored in a number of stack data structures [37, 48].

CHAPTER 2. BACKGROUND 21

Common mutations defined over the domain of computer programs are to add

an instruction, remove an instruction or to slightly change an existing instruction.

Common crossover operations involve splitting programs up and re-combining them

with their co-parent. More semantic crossover operations that perform one of the

two parents programs depending on a conditional statement [33].

Some of the advantages of genetic algorithms make them very appropriate for use in

the area of automatic programming. One advantage being the flexibility in how the

fitness function can be defined, meaning a wide variety of programs can be solved

by the same algorithm by just changing the fitness function. Most fitness functions

for GP systems work by having the user give the system a list of input and expected

output pairs. This test-case based fitness function will go through and run the can-

didate programs on each input, and evaluate how close the given output is to the

expected output.

Another advantage of the flexibility of fitness functions for GP systems is the po-

tential for multi-objective optimisation [29]. While getting the expected outputs for

each test-case might be one objective, making sure the evolved programs remain as

small as possible might be another. This could be achieved by linearly combining

the test-case fitness and program size fitness or a producing a tuple of the different

fitness values to give one a priority over the other in a lexicographic fitness.

There are some common disadvantages a GP system may suffer from. One be-

ing the size of the hyper-parameter space a system user might need to optimise

over. With parameters such as population size, crossover rate, mutation rates and

selection algorithm parameters; the hyper-parameter space can be very large. Sys-

tems might also take a while to run so evaluating many points in this space could

take a long time. Optimal parameters are also likely to vary from problem to prob-

lem, meaning optimisation needs to be re-done when a new programming problem

is tackled.

CHAPTER 2. BACKGROUND 22

2.3.2 Ant Colony Optimisation

Another example of an evolutionary computation method, is Ant Colony Optimi-

sation [17]. It is a method inspired by the way ants find the quickest path to food

sources, by leaving pheromones along a their walked path. It was first adapted for

programming tasks by Rout et al. (2000) [41] and later improved by Green et al.

(2004) [23], where they used it to solve symbolic regression problems. The program

representation used was the tree-based one as seen in GP. At each node in the tree

there would be a pheromone table, with an associated pheromone value for each of

the operators and terminals that could be used at this point in the program. Higher

pheromones values are more attractive to ants, making it more likely that a given

operator or terminal is selected to be used in a program. Initially all pheromones are

set to 0.5 which corresponds to a uniform distribution across all possible operators

and terminals at each position. Then the fitness of a program - where fitness metrics

are worked out in a similar way to GP systems - increases the values of the selected

operators’ and terminals’ pheromones. The value of all pheromones also decreases

slightly with each iteration of the system, as way of encouraging other ‘routes’ to

continue to be tried throughout the process and avoid getting the system stuck in

local maxima. The literature also describes how simulated ants walking through the

program tree can be used to perform genetic operators such as crossover [41, 23].

Chapter 3

Methodology

This chapter details the design of our GP system, describing what all the key com-

ponents are and and why design decisions were made. This section also explains how

different versions of our system have been created to investigate the primary research

aim of this project; whether the ZX-calculus is an effective internal representation

for evolutionary computation approaches for synthesising quantum programs.

3.1 Quantum Program Representation

Our GP system will mutate populations of quantum programs, but there are differ-

ent ways of representing these programs. Related works have used the circuit model

as a simple and easily mutable representation for their evolutionary programming

systems [31, 47, 2]. But, this work is the first to use an internal representation based

on the ZX-calculus instead.

We will be using the open graph representation of ZX-diagrams (Section 2.2) to

represent our quantum programs. There are several reasons for this. Firstly, not all

ZX-diagrams represent quantum systems that can be run as a quantum program.

The first barrier to knowing how to execute a ZX-diagram is having no guarantee

of knowing where the starting state of a qubit is fed into the diagram and where

the measurement is made for each qubit. The open graph representation solves this

by identifying a set of input and output nodes in the diagram, with one input and

output marked for every qubit.

23

CHAPTER 3. METHODOLOGY 24

Another advantage of the open graph representation is the reduced redundancy

it offers compared to the circuit model. Essentially this means many circuits can

be reduced to the same open graph. Figure 3.1 shows several circuits which are all

equivalent to the one we converted into an open graph in Section 2.2. All of these

circuits reduce to the same, previously seen, open graph.

Figure 3.1: Three different circuits that are all equivalent, and all of which reduce
to the same open graph

While the first two circuits become the same open graph due to the spider fusion

transformation, the third demonstrates another kind of redundancy: indifference to

some gate orderings when such orderings do not matter. Our hypothesis is that

the reduced redundancy of open graphs compared to the circuit model means our

program synthesis system will be able to traverse the fitness landscape quicker, as

we have effectively reduced the size of the search space.

CHAPTER 3. METHODOLOGY 25

Note that we have applied a small restriction on the open graphs we use, in that

we force the number of inputs to be the same as the number of outputs. This is

because of how our fitness function (Section 3.4.2) is defined, as it provides input

for all qubits and reads output for all qubits.

3.2 Genetic Operators

The design of good genetic operators (mutation and crossover) is important for the

functioning of a GP system. The operators dictate the systems ability to change

the semantics of individuals and thus explore the fitness landscape. In this work,

we want to trial new mutation operators that mutate open graphs. We want to

assess the capability of these mutations and compare them to the mutations used in

previous works that operate on the circuit model. To do this we will run benchmarks

on two versions of our system which vary in the mutation operators they can use.

The first, pure zx, will feature genetic operators that can only work on open graphs.

An example might be adding an edge between two nodes, which in general has no

simple analogue in the circuit model. The second system, pure cm, will use mutation

operators that feature in many of the previous works [31, 47]: the addition and

removal of gates at random positions in a circuit. A comparison between these

two systems will go someway towards answering the research aim for the project,

but a further comparison is needed to assess the advantage that may be provided

through the reduced redundancy that naturally comes from using open graphs. This

reduced redundancy will feature in both the pure zx and pure cm systems as it

happens regardless of the genetic operators used. Therefore, comparisons will be

made between these two systems and a third system from a related work that uses

evolutionary computation for quantum program synthesis.

3.2.1 Managing Unsafe Operators

A unique challenge for the design of genetic operators in the domain of open graphs

is that not all open graphs have a gFlow. Individuals that have no gFlow cannot

be extracted to a quantum circuit and hence cannot be run as a quantum program

for the purpose of fitness assessment. While the initial population (Section 3.3) will

only contain extractable individuals, some genetic operators may sometimes turn

extractable open graphs into open graphs that are not extractable. We will call the

genetic operators that have the potential to do this unsafe. This paper proposes

several possible strategies to mitigate the effects of unsafe operators.

CHAPTER 3. METHODOLOGY 26

1. Discarding: When an unsafe operation results in a non-extractable circuit,

discard the result and try another operation. While this stops the introduction

of non-extractable individuals into the system, it also increases the time taken

to perform genetic operators. For example, if we run an unsafe mutation and

the result is non-extractable, not only has the computation required to perform

the mutation so-far been wasted, but additional work is needed to undo the

mutation, select another mutation, and perform another mutation.

2. Non-selection: Allow unsafe operations to happen, but never select the non-

extractable circuits produced. This achieves a very similar effect to the dis-

carding method, by not letting bad individuals propagate far into the run of

the algorithm. However, this method effectively reduces the size of the popu-

lation in the system. If at every generation a certain percentage of the pool of

candidates are not valid for selection, then the effective size of the population

and hence diversity of genetic material across the population is reduced. We

also effectively waste fitness assessments, as the fitness assessment function is

called on individuals which we know are non-extractable. We have already

seen how circuit extraction is a polynomial cost operation (Section 2.2.2) and

how circuit simulation is exponential (2.1.1), so these wasted fitness evalua-

tions actually take less time than evaluations of extractable candidates. This

means that comparisons between systems based on the number of calls to the

fitness function, which is a common metric in previous work [31, 46], will dis-

advantage this approach compared to comparisons based on the real run-time

of the system.

3. Avoidance: Do not use any unsafe operations. Note that the pure cm ver-

sion of our system features only safe operators, but this is because all of the

mutations in that system are defined over the circuit model, not over open

graphs. During this project attempts were made to look into creating a ver-

sion of the system that used safe operators defined over open graphs. However,

while there is a wealth of literature on semantic preserving safe operations for

ZX-diagrams, operations that are safe and good at shifting the semantics of a

ZX-diagram in a meaningful way are uncommon. It is possible to make small

changes to a semantic preserving transformation to enable it change seman-

tics, but the ways in which these operations can change the semantics of a

program has been found to be insufficient to enable the genetic algorithm to

fully explore the fitness landscape. This is an area where we encourage further

work in, to find a set of effective safe operators that can efficiently traverse

the semantic space of quantum programs.

CHAPTER 3. METHODOLOGY 27

4. Acceptance: Use unsafe operations, and allow their non-extractable results

to be selected: albeit uncommonly because of the low fitness value they will

be assigned by the fitness function. This approach could be effective in two

scenarios. Firstly, if the unsafe operators used only produce non-extractable

individuals very rarely, and the natural selection pressure against these badly-

preforming individuals is enough to remove them from the population quickly,

without the need to implement specific non-selection. Secondly, it is theorised

that it is possible this approach could provide benefit to a system under certain

circumstances. Namely, this less restrictive approach could end up taking a

candidate out of extractable space, select this broken individual, then perform

another mutation that puts it back into extractable space but with different

semantics. In Section 3.3, this report shows that extractable open-graphs are

sparse in larger open graphs, and therefore the occurrence of an individual

travelling through non-extractable space to another more useful point in the

solution space will not be common.

The discarding method has been used throughout the experiments in the main

results section of this paper. It was chosen for use in our system over non-selection

because the only disadvantage it has compared to non-selection is the increased run-

time taken to repeat genetic operators. Section 5.1.1 details how our systems are

assessed in terms of the number of fitness evaluations performed rather than absolute

run-time, in order to be able to compare to previous works. This evaluation method

heavily disadvantages non-selection.

We used the discarding method over acceptance because we did not believe

our genetic operators would be able to take non-extractable individuals back into

extractable space at any useful rate.

We can see these hypothesised advantages of discarding confirmed in Section

5.3, where we compared systems that used discarding, non-selection and acceptance.

3.2.2 Mutation Operators

In our system the amount of mutations that occur is configured by the mutation

rate. This is the probability that an individual will undergo a mutation at the

start of each generation. When this chance occurs, a particular type of mutation

to perform must be chosen. In our systems each mutation is selected with an equal

probability.

We will now describe all mutations implemented for use in our system. Some exam-

ples will be given of mutations executed on the open graph built up in Section 2.2,

CHAPTER 3. METHODOLOGY 28

the circuit and produced open graph can be seen in Figure 3.2. Where the input

set, output set or phase map are not included in the result of a mutation the reader

may assume they have not changed.

1 4

3

2

5

6

7

Figure 3.2: Example circuit and open graph

Edge Removal and Addition

One of the simplest ways to change an open graph is to add an edge between two

previously unconnected nodes, or remove an existing edge. In this work we have

split these add and remove edge operations up into several different mutations. We

define internal nodes to be the nodes that are neither an output or input, and

similarly boundary nodes as those that are an input or output. We can then con-

sider three possible edge types, defined by the types of the two nodes they connect;

internal-internal, internal-boundary and boundary-boundary. We then have the add

edge and remove edge mutation for each of these types. These mutations work by

identifying a list of valid edges that they could add or remove, and then randomly

selecting one item from the list as the actual mutation to perform. These are all

unsafe operations, and all are included in the pure zx system.

An example of a successful edge addition on the example open graph leads to the

open graph seen in Figure 3.3. This has added a boundary-boundary edge between

nodes 6 and 7. As this only effects connections between output edges, the gFlow

seen in Section 2.2 still holds.

CHAPTER 3. METHODOLOGY 29

1 4

3

2

5

6

7

Figure 3.3: Result of boundary-boundary edge addition mutation

Another example can be seen in Figure 3.4, where the result of an internal-boundary

edge requires us to change the recipe to solve the bit flipping game. We need to

change the correction set for 2 to now be g(2) = {6, 7}.

1 4

3

2

5

6

7

Figure 3.4: Result of internal-boundary edge addition mutation

We can see the result of a mutation that has broken the gFlow in Figure 3.5. Here,

the remove mutation has removed internal-boundary edge between 1 and 4, and

thus there is no valid correction set for 1. Such a diagram does therefore not have

gFlow and is not extractable.

1 4

3

2

5

6

7

Figure 3.5: Result of internal-boundary edge removal mutation

CHAPTER 3. METHODOLOGY 30

Phase Change

The phase change mutation selects a node at random. It will then change the phase

of the selected node by a value between −π and +π, where all values are selected

uniformly at random. It is a property of open graphs that all phase changes do not

remove gFlow, hence the phase change mutation is safe. We can see this trivially

using in our definition of gFlow, as the phase map was not used at any point. This

mutation is used in the pure zx system.

Add Node

This mutation selects an edge in the graph connecting some nodes (x, y). It then

creates some node z and assigns it a random phase between 0 and 2π. It then

removes edge (x, y) and adds edges (x, z) and (z, y). This mutation is used in the

pure zx system. An example of this mutation on the example open graph can be

seen in Figure 3.6. The correction sets needed to show that this has gFlow are as

follows: g(1) = {4, 6, 7}, g(2) = {8}, g(3) = {7}, g(4) = {5} and g(5) = {6}.

{6→ π
2
, 7→ ∼π

20
}

1 4

3

2

6

7

8

5

Figure 3.6: Result of node addition mutation

Swap Edge

The edge swapping mutation is like an edge removal and addition at the same time.

It first chooses some node x to be the pivot node, and then chooses one its neigh-

bouring nodes, y. Then the method selects some node z such that z 6= x, z 6= y,

and there is currently no edge (x, z). The mutation then adds the edge (x, z). This

mutation is used in the pure zx system. An example of this mutation can be seen

in Figure 3.7. The result has gFlow if we modify the correction sets such that

g(1) = {4, 6, 7}, g(2) = {7}, g(3) = {6, 7} and g(4) = {5}.

CHAPTER 3. METHODOLOGY 31

1 4

3

2

5

6

7

Figure 3.7: Result of swap edge mutation

Full Reduce

Results from previous papers studying GP systems suggests that using Semantic

Neutral Drift (SND) mutations may benefit the system [3, 20]. SND mutations are

defined as being those which do not change the semantics of a candidate, rather

they perform some transformation that will change how the program is represented

without changing what the program does. While they will not immediately effect

the fitness of individuals, other than to perhaps reduce the size of a given program,

they are thought to be advantageous for the overall exploration of the semantic space

in subsequent generations. There has already been much work to find operations

that could be used as SND mutations in the ZX-calculus. The works discussed in

Section 2.2.1 find suitable operations that often have the goal of reducing the size

of a ZX-diagram without changing its semantics [28]. Such is the wealth of research

in this area, there is a large scope of possible SND mutations to try to use in a ZX

based GP system. In this work we have only implemented one such SND mutation,

and thus there is an opportunity for future experimentation in this area.

The SND mutation our pure zx system will use is the scheme for reducing ZX-

diagrams proposed by Kissinger and Wetering (2020) [28], which we will call Full

Reduce. The first part of their approach is to get the diagram into a graph-like form,

which we have already have as open graphs are graph-like. Subsequent operations

in the Full Reduce method rely on the ZX-diagram containing specific structures

that transformations can be performed upon. Many of these structures have to

feature specific phases, such as integer multiples of π. The mutations discussed in

this section are not conducive to such structures occurring regularly in our can-

didate solutions, with several mutations introducing randomly generated floating

point phases. Therefore, a modified version of the system will be produced where

all phases introduced will be multiples of π
4
. This better matches the domain of

CHAPTER 3. METHODOLOGY 32

ZX-diagrams the Full Reduce method was designed to optimise, and hence in this

version of the system the Full Reduce mutation should be more effective. This mod-

ified version of system is evaluated in Section 5.2, where we test it on a subset of

the benchmark problems and compare it to the main pure zx floating-point phase

version of the system. Restricted phases were not used in the pure zx system as we

hypothesise that restricting the phases to multiples of a fraction of π leads to less

smooth traversal of the fitness landscape and hence increases the likelihood of the

system getting stuck in a local maxima.

Gate Addition

The pure cm version of our system will trial mutations that have previously been

used in works that had the circuit model internal representation [31, 47]. One of

the most important types of mutation that these works have used is the addition

of a single specified gate at a random point into the program. For us to implement

this, we first use circuit extractioni to convert from ZX-diagram to circuit. Then a

random position and qubit in the circuit is selected, and the specified gate is inserted

there. If the gate requires further arguments like phase or additional qubits to act

on, then these are also randomly generated. The gates we have chosen to add via

this mutation are as followed: CNOT, Xπ, Xα, Zα, Hadamard, SWAP. For gates

not discussed previously, gate definitions can be seen in Appendix A. Each of these

gates is added to circuits by its own gate addition mutation. These operations are

all safe, as adding a gate to a circuit just creates another circuit.

Figure 3.8 shows the result of adding a Xπ gate on the middle qubit of the cir-

cuit used to build our example in Section x, and as we can see this single gate

addition has caused a more complicated change in the open graph with the addition

of a new internal node and a change of phase for another.

Gate Removal

The other mutation in the pure cm system is simply to extract the open graph to a

circuit, randomly select one of the gates in the circuit and remove it. An example

could be taking our example circuit and removing the last H gate. Figure 3.9 shows

what the circuit for this looks like and then gives the resultant open graph. The

output set for this graph is now {3, 5, 7}.

iWhere this paper talks about genetic operators that rely on being able to extract circuits, the
operation simply does not take place if the input is non-extractable.

CHAPTER 3. METHODOLOGY 33

{3→ 3π
2
, 5→ π

2
}

1 4

3

2

6

7

8

5

Figure 3.8: Result of gate addition, featuring resultant circuit and open graph

1 4

3

2

5

7

{3→ π
2
}

Figure 3.9: Result of gate removal, featuring resultant circuit and open graph

3.2.3 Crossover Operator

We use the common crossover operation from literature. Multi-point crossover over

for quantum circuits. This meant extracting a circuit from both parent ZX-diagrams,

converting these to a lists of gates and selecting 2 points in each list. Then we would

produce two offspring from splicing and combining the gate lists at the selected

crossover points. An example of this can be seen in Figure 3.10, where we start with

our individuals already being converted to gate-lists and show the resultant gate

lists after crossover. Gates are represented in this list using their name followed by

CHAPTER 3. METHODOLOGY 34

the indices of the qubits they act on. Colouring has been used to mark where the

selected crossover points were and to indicate which child each gate went into.

Figure 3.10: Example of crossover operation on gate lists

After this both children are converted into the open graph representation. If either

parent is not extractable, then copies of both parents are returned instead of any

crossover being performed.

In our system crossover is controlled by a crossover rate parameter. Given a list

of pairs of individuals to become the parents of the next generation, the parents

are crossed over with at the rate specified; otherwise they are copied into the next

generation without crossover. Mutation then occurs after crossover, and manifests

independently of whether crossover occurred or not.

3.3 Population Creation

The first population of an evolutionary computational method needs to be randomly

instantiated, sometimes with a bias towards where you think a solution might be.

The population creation method can be very influential for the success of a system,

with the best methods producing a varied population that are distributed across the

semantic space for the problem domain.

Throughout this work we have used one of the population creation methods from

previous work. This works by having some set of quantum gates, we used Clifford-

T, and to repeatedly randomly select some given number of these and place them

CHAPTER 3. METHODOLOGY 35

randomly into a quantum circuit. We then convert this circuit to our open graph rep-

resentation. We chose a size of 10 gates for our randomly instantiated initial circuits.

Another population creation method was trialled during the design phase of this

project. This was to randomly generate open graphs, and filter out those that were

not extractable. The method took as input the number of qubits generated diagrams

should have and generated an input node and an output node for each qubit. A sec-

ond parameter was the number of internal nodes to have in the diagram. Lastly, the

method would randomly add edges between each pair of nodes with a configurable

probability. For example if given a probability of 10%, then on average 10% of all

pairs of nodes would have an edge between them. This probability can therefore be

thought of as the average connectivity of the generated open graphs.

To assess the suitability of this method we investigated how commonly the ran-

domly created open graphs had gFlow. We varied two parameters while doing this:

the number of internal nodes in the open graph and the connectivity of the graph

generated. The number of qubits used in all diagrams was fixed at 4, though results

were found to be similar for other numbers of qubits. Figure 3.11 shows the per-

centage of randomly generated graphs that had gFlow across the different settings

for our random open graph generation method. 1000 repeat tests were used at each

point to attain this percentage.

This experiment shows the sparsity of gFlow in open graphs at higher internal

node numbers. As higher numbers of internal nodes corresponds to more complex

extracted circuits, this area of the space was the most important to explore. Out of

all 27,000 repeat tests with more than 5 internal nodes, across all graph connectivity

values, only 5 had a gFlow. So while this method could be used to reliably create

open graphs with few internal nodes, it was deemed unsuitable for use as an initial

population creation method.

3.4 Individual Selection

The following section describes the full process of how individuals are selected to be

the parents of the next generation in the genetic algorithm. As the individuals in

the open graph representation are assessed in a very similar way to individuals in

the circuit model, this component of the system, including the selection algorithm

CHAPTER 3. METHODOLOGY 36

Figure 3.11: Heatmap to show the incidence of open graphs which have gFlow.
Each data-point represents a percentage of randomly generated open graphs that

have a gFlow out of 1000 repeat tests.

and fitness function, are similar to approaches seen in previous works [31, 47, 2].

3.4.1 Selection Algorithm

Tournament selection has featured in several related works [47]. It is a selection

algorithm that values the ranking of fitnesses rather than absolute fitness values. It

is a highly configurable selection algorithm because of its use of two variables: tour-

nament size k and selection chance p. To make a selection it chooses k individuals

from the population at random. It then sorts these into fitness order. It then selects

the fittest individual with probability p. If this selection does not occur, then it se-

lects second fittest with probability p ∗ (1− p). If this further selection did not take

place then we continue down the tournament and select the ith fittest individual

with probability p ∗ (1− p)i−1. If no individual is selected from the tournament, we

restart the selection process. The configurability gained by varying k and p makes

it easy to change the selection pressure, which is important in the overall running

of a GP system.

CHAPTER 3. METHODOLOGY 37

3.4.2 Fitness Assessment

For program synthesis software, fitness functions are usually based on a collection of

test cases, each consisting of an input to the system and the expected output from

the program. This is no different for quantum programs. Each problem is defined

by several test cases, where inputs are defined by some sequence of qubits in either

the |0〉 or |1〉 state. Desired outputs are then given as the expected probability

distribution that someone would observe if they were to repeatedly measure the

output.

Before fitness assessment can take place in our system, we must first extract a

circuit from our open graphs, and then simulate it this circuit on the test cases. If

an individual cannot be extracted to a circuit, then we allocate the lowest possible

fitness value for each fitness metric.

Fitness functions from previous works have used the test case information in a

variety of ways to make a numerical measure of fitness. We will be combining some

of the most common approaches to result in a tuple of fitness values, which are then

compared lexicographically. The first two metrics in our fitness tuple are based on

the concept of Mean Squared Fidelity (MSF) [2]. To compute this we work out

the Bhattacharyya coefficient [7] between the expected output probability distri-

bution and the actual probability distribution given by the candidate for each test

case. If this coefficent is greater than 0.51 for a test case, we add one to a count

of passed tests, which is the fist component of our fitness tuple. This method was

inspired by Spector et al. (1999) [46], who proposed that works should reward each

test cases being passed in a way that was better than random, over any linear mea-

sure of fitness on a single test case. This deters the algorithm from finding easy ways

to get a lot of fitness without solving the problem, i.e. by putting the system into

a superposition of all states or just solving the easy test cases with high accuracy

but very low accuracy for other more difficult test cases. The passed tests fitness

component discourages such behaviours and helps the genetic algorithm avoid local

maxima.

Next we take the square of each of these calculated Bhattacharyya coefficients and

sum them together, before dividing by the total number of test cases to get an aver-

age of the coefficients. This gives us the MSF which is used as the second component

of our fitness tuple. This is a floating point number that represents the distance be-

tween the candidate and target solution, standardised between 0 and 1. Values of 1

mean that the expected output is observed across all test cases. It is this component

CHAPTER 3. METHODOLOGY 38

of fitness that we define success on. As we will be evolving programs on quite small

numbers of qubits, its quite easy for individuals to score the maximum value in

the passed tests metric, so this is unsuitable for classing a candidate as successful.

Instead we define success to be individuals with MSF ≥ 0.98, which is a level of

accuracy used in prior works [2].

One component of fitness that has featured in some works, but we believe is not

studied as often as it should be, is some measure of the cost of running a quantum

program. As we are evolving static circuits that cannot change the number of qubits

they operate on, we use the gate count of the circuits extracted from our individuals

to approximate the cost of running the candidate solutions on a real quantum de-

vice. This forms the third part of our fitness metric. We ask our system to minimise

this fitness component, but as this is the last metric it is only taken into account

when the other two metrics are the same.

Works in the area of approximate program synthesis present an opportunity to

explore a trade- off between approximating a desired circuit and reducing the cost

of the circuit. Our system however only be optimises the size of individuals when

it is at no cost to the accuracy. We do this because comparisons between our work

and related works will primarily be on the accuracy metrics, as related works do not

include detailed circuit size information. Yet, we still believe our system presents

some opportunity to the user to have a trade-off between accuracy and performance.

During the running of our system we observed that after successful evolving a can-

didate with MSF ≥ 0.98 the system would go on to increase accuracy to be closer to

1, and as it did the gate count of solutions would increase. We therefore started to

record the gate count of any candidate with MSF ≥ 0.98, which would often be lots

less than the best performing candidate. A system user could consider both these

smaller individuals closer to MSF = 0.98 and see how their gate counts compare

to the best performing individuals closer to MSF = 1, and in this way our system

offers the user a trade-off between accuracy and size, without ever prioritising the

optimisation of size over accuracy. In Section 5.1.3 we see this data collected and

discussed.

If the user of a program synthesis system knew exactly the trade-off between

accuracy and size they wanted to make, then they could instead have a fitness

component that was a linear component of MSF and gate-count directly in line with

the trade-off they wanted to make.

CHAPTER 3. METHODOLOGY 39

3.4.3 Elitism

Elitism is the process of automatically selecting the best performing individuals

when creating the next generation, rather than leaving it to randomised selection

methods [5]. It is usually configured as a percentage of the next generation the sys-

tem will select using elitism. This process useful when the semantics of individuals

are very sensitive to changes during mutation or crossover, as these changes can

quickly destroy useful evolved solutions before selection pressure manages to prop-

agate their advantageous genetic material throughout the system. Elitism means

that if a breakthrough mutation occurs that leads to some individual with a fitness

higher than all others there is no chance of the individual being randomly lost by

selection process. Elitism was used by all versions of our system.

Chapter 4

Implementation

This chapter outlines our Python implementation of the designed GP system. It

briefly justifies the use of Python as the programming language for the system,

describes the key software components and gives an overview of some of the main

data-structures.

4.1 Implementation Language

We used Python to implement the system because this gave the best access to a key

library: PyZX [27]. PyZX implements some useful methods from literature, which

saved time during this project. The key methods used are extract circuit [18, 4] and

full reduce [28]. This library was also useful for testing and prototyping the system

by enabling the us to easily visualise ZX-diagrams embedded in Jupyter notebooks.

Python also provides access to many libraries commonly used for research software,

such as Numpy [36], which gives useful functions over large collections of multi-

dimensional data. such methods were used for linear algebra in the fitness function,

and data-processing for attaining figures for results.

4.2 Genetic Algorithm

There were existing libraries that implemented genetic algorithms in Python. The

decision was made not to use any of these libraries because they did not contain the

features that enabled the recording of the data we needed to evaluate of our system.

40

CHAPTER 4. IMPLEMENTATION 41

It was also best to implement our own genetic algorithm suite, to avoid a bloat of

features we did not need and slow the system down.

An interface was created such that all the interchangeable components of the

system could be swapped in and out to enable different versions of the system to be

quickly tested. These are components such as the genetic operators, fitness function,

and test problem. The system was also implemented such that all hyper-parameters

were configurable at the top level of the interface, to enable the quick testing of

different parameter settings.

4.3 Data Structures

The PyZX library gives us some of the key data structures already implemented.

Namely, a representation of quantum circuits, ZX-diagrams and functions for con-

verting between the two. While open graphs can be represented using PyZX’s ZX

diagram class, we created our own version that was more optimised to just repre-

sent open graphs. This simpler data structure was smaller and easier to implement

mutations over. Functions to convert between this open graph data structure and

the PyZX ZX-diagram class were made so we could use the methods from literature

already implemented in PyZX.

We chose to represent open-graphs using four smaller data-structures.

1. An adjacency matrix. This is triangular due to the bi-directional nature of

ZX-diagrams. Nodes are identified by the index they are stored at in the

adjacency matrix.

2. A list of node-ids for the nodes that are regarded as inputs to the diagram

3. A list of node-ids for the nodes that are regarded as outputs to the diagram

4. An array, indexed by node-id, for the phases of each node. These are stored

as a floating point number or fraction which is interpreted as a multiple of π.

An alternative approach for representing an open-graph could be linked-object based,

with node objects storing all associated data for said node, such as its connections

and phase. This object-based structure would require traversal, such as an breadth-

first-search, just to enquire about the connectivity or phase of a node. This is why

we have selected an array-based approach, where we can access connectivity and

phase data with a constant time lookup.

Chapter 5

Results

This chapter is split into three sections. The first goes through the main results

of the project, which pertain to the central research aim of the project; whether

ZX-diagrams are an effective internal representation in evolutionary computation

systems for the synthesis of quantum programs. We evaluate the ability of the open

graph representation and mutations defined over open graphs to solve a variety of

benchmark problems, and their ability to produce solutions that are small in terms of

their gate count. The following two sections then deal with other research questions

raised within Chapter 3. The first of these sections evaluates evaluates our system

when the phases of all nodes are restricted to the form kπ/4 for k ∈ Z to make

better use of the Full Reduce mutation. Finally, we evaluate ways of mitigating

unsafe genetic operators. Each of the three sections in this chapter describes our

methodology for collecting results, presents the relevant data collected and discusses

this data to reach conclusions about the systems we are assessing.

5.1 Open Graph Redundancy and Mutations

This section aims to investigate whether ZX-diagrams are an effective internal rep-

resentation in evolutionary computation systems for the synthesis of quantum pro-

grams. This is primarily achieved through a comparison between our created sys-

tems, pure zx and pure cm, as well as a third that used the circuit model from

related work. Both of our systems use the open graph internal representation and

hence may be advantaged by the reduced redundancy this gives compared to the

circuit model. But additionally, performance of pure zx could be due to the mu-

tations we define over the ZX-calculus rather than the open graph representations

natural reduced redundancy. So we can investigate which mutations perform best,

42

CHAPTER 5. RESULTS 43

those defined over the circuit model or the ZX-calculus, with a comparison between

pure zx and pure cm.

5.1.1 Evaluation Methodology

Rigorous analysis of quantum program synthesis systems consists of repeatedly run-

ning them on a collection of test problems, with different random seeds for each run.

Data like the best fitness achieved, or the number of generations it took to each run

to achieve a pre-defined level of fitness, are recorded. However, up until recently,

there has been little consensus on the specifics of this evaluation process. Previous

works vary in the data they collect, how they are collect it, and most importantly

the test problems they use. This means many related works are hard to compare

to each-other. The work of Atkinson et al. (2019) [2] is the first to propose a set of

test problems to unify the bench-marking of works in this area. The work justifies

a list of proposed test problems for which they say all future systems should also

be evaluated on to make related works more comparable. Not only this, but the

results said work goes on to give are some of the most comprehensive in terms of the

amount of data reported on and in terms of giving an appropriate level of detail in

how the results were collected. Our project will be using the proposed benchmark

problems, as well as providing the same evaluation data that the work of Atkinson

et al. provides. This is not only to be able to directly compare to said work, but

also in the hope that it makes this body of work more comparable to future research

efforts if this becomes the standard for quantum program synthesis evaluation.

The bench-marking problems that Atkinson et al. propose are: the Quantum Fourier

Transform (QFT) [13] on 2, 3 and 4 qubits; the Grover’s Diffusion Operator (GDO)

[24] on 2, 3 and 4 qubits; Bell Pair (BP) generator [35] and the Toffoli (TOF) gate

[50]. These problems were chosen as they are regularly occurring in literature both

on their own and as components in larger circuits.

The primary metric for comparison in the work of Atkinson et al. is the success

rate for solving a problem. They run a system 100 times and allow each run a maxi-

mum of 1,000,000 quantum program evaluationsi, recording how many runs produce

an individual with MSF ≥ 0.98. As MSF is a component of our lexicographic fitness

it will be easy to reproduce this metric for our system.

iFor GP systems, a quantum program is evaluated every time the fitness function is called. So
evaluations = generations × population size.

CHAPTER 5. RESULTS 44

Another set of important metrics they use is based on the best preforming individ-

ual in each of the 100 runs. They report the median best fitness and the maximum

best fitness across all runs. This can aid understanding in how close a system is

getting to solving a problem, and hence help compare systems when there is a low

success rate. Additionally the interquartile range (IQR) of best fitnesses is given,

which indicates the consistency or variance of the best fitnesses attained by a system.

A slight deficiency in data given by the work of Atkinson et al. is a statistic that

could help compare systems when both are achieving a high success rate for a prob-

lem. We propose the inclusion of the median evaluations until success statistic for

this purpose. For example it could be the case that although systems are given

1,000,000 evaluations to solve a problem, they achieve the success threshold in the

first 10,000. Systems could record the first time they saw an individual that was

successful, according to the definition of success in the success rate metric. The

median value for this across all runs could then be reported. For problems which

a system is solving very commonly, knowing how quickly the system is solving it,

on average, will allow a more detailed comparison. In our system we have given

the median generations until success (Gens) data which can easily be converted to

the amount of evaluations until success by multiplying by our population size of 1000.

We also propose the inclusion of another important piece of data that is often over-

looked in previous works. The potential for evolutionary computation methods to

perform multi-objective optimisation has been studied [29]. In the area of quan-

tum program synthesis, multi-objective fitness functions lend themselves not only

to solving problems but solving them efficiently, i.e with as few gates as possible.

The ZX-calculus has the potential to be very adept at producing solutions with

reduced size, something we have tried to explore by adding a gate-count component

to our fitness metric. Our results section will include data on the gate counts of

evolved solutions to each problem, for both of our trialled systems. We will take

the best performing individual from each 100 run and report on the median gate

count of these individuals. To investigate the trade-off between performance and

gate-count, we also have our the systems report on the lowest gate-count for any

individual within the defined success range of MSF ≥ 0.98 for each run. A median

of this figure is given as well as the lowest gate count seen within MSF ≥ 0.98 across

all runs.

The last improvement we propose for the evaluation methodology is to add a ran-

domised benchmark problem. In this work we have used the work of Mezzadri (2006)

CHAPTER 5. RESULTS 45

[32] to generate random unitary matrices to represent target 2-qubit (RND-2) and

3-qubit (RND-3) circuits. While Atkinson et al. propose a varied set of test prob-

lems, it may still be possible for related works to in some way optimise their system

specifically towards the problems in this test set. It is much more of a challenge to

optimise towards randomly generated unitaries. A disadvantage of these test prob-

lems is that they are likely to have an increased variance due to different generated

unitaries being harder or easier to evolve than others. This could be counteracted

by performing more repeat tests for these test cases.

All systems were evaluated using the hyper-parameters seen in Table 5.1. Hyper-

parameters were attained through trial and error as well as being influenced by

related works. More comprehensive approaches to optimisation such as Grid Search

were not possible because of the number of parameters and the time it takes to

comprehensibly evaluate a setting of parameters.

Parameter Value

Crossover Rate 0.5
Mutation rate 0.7
Tournament k 9
Tournament p 0.6
Elitism 0.02

Table 5.1: Hyper-parameters used for our systems.

5.1.2 Evaluation Data

Evaluation data for the pure zx system being run on the bench-marking problems

can be seen in Table 5.2. All data points are the result of 100 repeat tests. All runs

were allowed to run for 1,000,000 circuit simulations. As populations of size 1000

were used in all tests, this means a maximum of 1000 generations were allowed to

run. All values are given to 3 significant figures. The best success rates across the

pure zx, pure cm and Atkinson et al. (2019) [2] systems are highlighted in bold for

each problem.

Evaluation data for the pure cm system being run on the bench-marking problems

can be seen in Table 5.3. All data points are the result of 100 repeat tests. All runs

were allowed to run for 1,000,000 circuit simulations. As populations of size 1000

were used in all tests, this means a maximum of 1000 generations were allowed to

run. All values are given to 3 significant figures.

CHAPTER 5. RESULTS 46

Problem Success Rate
Best Fitness Per Run

Gens
Median Best IQR

BP 100% 1.00 1.00 0.00 2
TOF 58% 1.00 1.00 0.00 182

QFT-2 100% 1.00 1.00 0.00 8
QFT-3 93% 1.00 1.00 0.00 111
QFT-4 15% 0.941 0.994 0.06 681

GDO-2 100% 1.00 1.00 0.00 79
GDO-3 0% 0.750 0.875 0.00 N/A
GDO-4 0% 0.900 0.900 0.00 N/A

RND-2 100% 1.00 1.00 0.00 31
RND-3 0% 0.919 0.944 0.01 N/A

Table 5.2: pure zx system results. 100 runs for each problem, each with 1,000,000
circuit evaluations. Success rate of runs with MSF ≥ 0.98. Best individual taken
from each run and median, best and interquartile range (IQR) of their fitnesses.
Median number of generations until success (Gens) is first reached in successful

runs.

Problem Success Rate
Best Fitness Per Run

Gens
Median Best IQR

BP 100% 1.00 1.00 0.00 2
TOF 78% 1.00 1.00 0.00 371

QFT-2 100% 1.00 1.00 0.00 14
QFT-3 95% 1.00 1.00 0.00 76
QFT-4 68% 0.993 0.996 0.00 450

GDO-2 100% 1.00 1.00 0.00 2
GDO-3 0% 0.750 0.875 0.00 N/A
GDO-4 0% 0.900 0.900 0.00 N/A

RND-2 100% 1.00 1.00 0.00 13
RND-3 59% 0.985 0.999 0.00 464

Table 5.3: pure cm system results. 100 runs for each problem, each with
1,000,000 circuit evaluations. Success rate of runs with MSF ≥ 0.98. Best

individual taken from each run and median, best and interquartile range (IQR) of
their fitnesses. Median number of generations until success is first reached in

successful runs (Gens).

CHAPTER 5. RESULTS 47

Table 5.4 shows the results from Atkinson et al. (2019) [2]. Data given to

as many significant figures as were available. All data points are the result of 100

repeat tests.

Problem Success Rate
Best Fitness Per Run
Median Best IQR

BP 100% 1.00 1.00 0.00
TOF 9% 1.00 1.00 0.06

QFT-2 100% 1.00 1.00 0.00
QFT-3 68% 1.00 1.00 0.06
QFT-4 2% 0.84 0.98 0.07

GDO-2 100% 1.00 1.00 0.00
GDO-3 0% 0.67 0.85 0.06
GDO-4 0% 0.90 0.90 0.00

Table 5.4: Data as given in Atkinson et al. (2019) [2]. 100 runs for each problem,
each with 1,000,000 circuit evaluations. Success rate of runs with MSF ≥ 0.98.
Best individual taken from each run and median, best and interquartile range

(IQR) of their fitnesses.

During the same experiments that was used to collect data for Tables 5.3 and 5.2,

we recorded data on the size of the individuals being created. Table 5.5 shows

these results for the pure zx system while Table 5.6 shows these for the pure cm

system. The best minimum gate counts within MSF ≥ 0.98 across both systems are

highlighted in bold. The same data for the Atkinson system is not available.

CHAPTER 5. RESULTS 48

Problem
Best MSF Per Run Smallest Successful Per Run
Median Gate Num Median Gate Num Minimum Gate Num

BP 5 4 4
TOF 34 30 26

QFT-2 23 17 14
QFT-3 38 30 26
QFT-4 126 85 74

GDO-2 9 6 6
GDO-3 N/A N/A N/A
GDO-4 N/A N/A N/A

RND-2 28 15 7
RND-3 N/A N/A N/A

Table 5.5: pure zx system solution size results. 100 runs for each problem, each
with 1,000,000 circuit evaluations. Best performing individual taken from each

run, median gate count of these is given. Lowest gate count individual with MSF
≥ 0.98 taken for each run and the median of these is given. Minimum gate count is

the smallest result seen across all runs that has MSF ≥ 0.98.

Problem
Best MSF Per Run Smallest Successful Per Run
Median Gate Num Median Gate Num Minimum Gate Num

BP 5 4 4
TOF 34 25 23

QFT-2 22 15 13
QFT-3 52 26 23
QFT-4 117 76 68

GDO-2 9 6 6
GDO-3 N/A N/A N/A
GDO-4 N/A N/A N/A

RND-2 60 17 12
RND-3 144 118 87

Table 5.6: pure cm system solution size results. 100 runs for each problem, each
with 1,000,000 circuit evaluations. Best performing individual taken for each run,
median gate count of these given. Lowest gate count individual with MSF ≥ 0.98
taken for each run and the median of these is given. Minimum gate count is the

smallest result seen across all runs that has MSF ≥ 0.98.

CHAPTER 5. RESULTS 49

5.1.3 Results Discussion

The results show that both systems produced in this work using the ZX-calculus

internal representation out-perform the previous work of Atkinson et al. (2019) [2].

This can primarily be seen by an increase in the success rate for some of the problems

that the Atkinson system struggled to solve, with our systems seeing a success rate

increase of at-least 49% for the Toffoli problem, and 25% for the QFT-3 problem.

The variance of our systems were also lower for these problems, both having an IQR

of 0 compared to 0.06 for the Atkinson system. This implies our systems were much

more consistent in their operation.

An example of a problem that our systems solved better than previous work is

the QFT-4 problem. Our pure cm system solved the problem 68% of the time while

the Atkinson system solved it 2% of the time. This is a drastic increase, where you

would expect our pure cm system to solve the problem given a single run but it

would take many runs before expecting the Atkinson system to find a solution.

While the set of genetic operators the pure zx and pure cm systems use differs

entirely from each-other, what they do have in common is the use of the open graph

internal representation. Because of the spider-fusion needed to get quantum circuits

into this representation, open graphs have decreased redundancy compared to the

circuit model, and this seems to have helped both our systems explore their solu-

tion space quicker and more reliably than the previous work across all test problems.

Despite the observed success rate increase across the QFT-3, QFT-4 and TOF

problems, our systems did not solve the GDO-3 and GDO-4 problems. However

the pure cm system did get closer to solving GDO-3 than the previous work, as can

be seen by increased the median and best fitness attained.

To further investigate the validity of the ZX-calculus as the basis for internal rep-

resentations in evolutionary computation systems, we have experimented with the

effectiveness of the mutations based on an open graph compared to mutations based

on a circuit. Both the success rate and median generations until success metrics

across multiple test problems support the conclusion that the mutations based on

the circuit model are more effective. There was no problem where pure zx out-

performed pure cm, although the difference between their success rates was smaller

than the difference observed between our systems and the prior work. In particular,

we can highlight the RND-3 test problem, which had systems trying to evolve so-

lutions to randomly generated unitary matrices. The pure cm system managed to

solve this problem 59% of the time while the pure zx system failed to solve it. This

CHAPTER 5. RESULTS 50

disparity between the two systems on the randomised test problem is the greatest

out of all test problems, and this helps justify our proposition for it to be added to

the benchmark problem suite for similar systems. We also did not observe a large

increase in IQR for the randomised test problems compared to other test problems,

also helping justify that the tests are not too random in that the unitaries they

produce do not differ too greatly in how easy they are to solve.

Not only was the pure cm system able to evolve solutions to the test problems

quicker and more reliably, but the solutions it created were smaller too. On average

across all test problems that both systems solved, the smallest solution created by

the pure cm that is still within the desired MSF fitness range, was a gate smaller

than those in the pure zx system. The pure cm achieved the smallest valid solution

on all problems, with the exception of RND-2. Overall, the sizes of the solutions

produced were unimpressive, with hand-written code being smaller in all cases. How-

ever, one positive in the size data is the difference between the sizes of the absolute

best performing individuals and the individuals that are just somewhere within MSF

≥ 0.98. For example, on the QFT-3 problem when solved by pure cm the median

gate count for the best performing individual of each run was 52, but if we allow

any individual within MSF ≥ 0.98 the median gate count is 26, a 50% reduction in

size that may well be worth the trade-off for a maximum of 0.02 MSF.

5.2 Open Graphs Limited to kπ/4 Phases

In Section 2.2.1 we introduced the work of Kissinger and Wetering (2020) [28], which

describes a scheme for reducing the size of ZX-diagrams, with a focus on reducing

the count of gates that have phases which are not in the form kπ/2 for k ∈ Z. A

mutation that performs this procedure, Full Reduce, was included in our system

with the goal of further reducing down the size of the open graphs of our candidate

solutions in order to have the extract to smaller circuits and increase the semantic

efficiency of our approach. As we have several mutations that add floating point

multiples of π, it is unlikely the system is using much of some of the methods in the

Full Reduce mutation. For this reason we have performed an experiment to see how

the system would perform differently if we limited all phases to the form kπ/4, and

allow the Full Reduce to perform more transformations on our candidate solutions.

We define the kπ/4 system as being the pure zx system, with the same hyper

parameters seen in Table X. The difference is that the Add Node and Phase change

CHAPTER 5. RESULTS 51

mutations are changed such that they can only introduce phases that are in the form

kπ/4, for k ∈ Z, into the system. As the initial population generation method con-

verted Clifford-T circuits into open graphs (see Section X) this also only introduces

phases of the form kπ/4 into the system.

Note that the kπ/4 system could be based on the better performing pure cm

system, but as Full Reduce was not used in the original pure cm system this could

lead to misleading results. We would not know if differences between the kπ/4

system and pure cm were down to the phase limitation or the inclusion of Full

Reduce in the pure cm mutation set.

5.2.1 Evaluation Methodology

We are using the same evaluation methodology as discussed in Section 5.1.1. How-

ever, due to time constraints and the computational resources accessible during this

project we were unable to evaluate another system across all benchmark problems

with 100 repeat tests each. Therefore we chose to evaluate the kπ/4 system on the

TOF and QFT-3 benchmark problems, with 100 repeat tests. These problem were

selected the original pure zx and pure cm systems solved them commonly but not

all the time. There is also room to improve on the size of the solutions produced.

5.2.2 Evaluation Data

Tables 5.7 and 5.8 display the data from evaluating the kπ/4 system as well as

the previously seen data from the pure zx system on the same problems. The best

success rate and minimum gate count within MSF ≥ 0.98 are highlighted in bold

for each problem.

System Problem Success Rate
Best Fitness Per Run

Gens
Median Best IQR

pure zx TOF 58% 1.00 1.00 0.00 182
pure zx QFT-3 92% 1.00 1.00 0.00 111
kπ/4 TOF 12% 0.750 1.00 0.00 545
kπ/4 QFT-3 52% 0.995 1.00 0.01 260

Table 5.7: pure zx system results. 100 runs for each problem, each with 1,000,000
circuit evaluations. Success rate of runs with MSF ≥ 0.98. Best individual taken
from each run and median, best and interquartile range (IQR) of their fitnesses.
Median number of generations until success (Gens) is first reached in successful

runs.

CHAPTER 5. RESULTS 52

System Problem
Best MSF Per Run Smallest Successful Per Run
Median Gate Num Median Gate Num Minimum Gate Num

pure zx TOF 34 30 26
pure zx QFT-3 38 30 26
kπ/4 TOF 36 30 27
kπ/4 QFT-3 35 29 22

Table 5.8: kπ/4 phase restricted system results. 100 runs for each problem, each
with 1,000,000 circuit evaluations. Best performing individual taken from each

run, median gate count of these is given. Lowest gate count individual with MSF
≥ 0.98 taken for each run and the median of these is given. Minimum gate count is

the smallest result seen across all runs that has MSF ≥ 0.98.

5.2.3 Results Discussion

We can see what the kπ/4 system is less good at solving the test problems than the

pure zx system as of the lower success rates and median best fitnesses. This was

expected due to the limitation we placed on the mutations the system could use.

The results regarding the size of the solutions produced are mixed, with the

kπ/4 system unable to beat pure zx on the TOF problem but achieving a small

optimisation over pure zx on QFT-3. This could indicate that the kπ/4 system is

indeed better able to optimise the size of individuals, but is being held back by its

poor ability to traverse semantic space. For example, if we consider that the pure zx

solved TOF 58 times, compared to the 12 times kπ/4 solved it, that’s 46 more

opportunities pure zx had to find smaller solutions compared to the kπ/4 system.

CHAPTER 5. RESULTS 53

5.3 Unsafe Mutation Mitigation

In Section 3.2.1 we proposed four methods for mitigating against the individuals with

no gFlow that are added to the system via unsafe mutations. While we explained

the decision to use the discarding method for most of this project, we would like to

do a small investigation to justify this choice and to assess the other methods.

Note that the avoidance method has not been assessed, as no successful avoid-

ance system could be created for this project. There needs to be more work to look

in to mutations that traverse semantic safe efficiently but are also safe to perform.

One could class the pure cm system as being an avoidance system, as it only uses

safe mutations, but the original intent behind the proposed methods was to allow

mutations defined over the ZX-calculus to be used rather than to revert to safe

methods defined on the circuit model.

The non-selection system is a version of the pure zx, where all the mutations will

not discard their results if they produce an individual with no gFlow. The selection

algorithm has been modified such that it never selects individuals with no gFlow.

The acceptance system is a version of the pure zx that has no mitigation against un-

safe individuals. It has the potential to traverse through the space of non-extractable

diagrams to get to other parts of extractable space.

5.3.1 Evaluation Methodology

We are using the same evaluation methodology as discussed in Section 5.1.1. Due

to time constraints and the computational resources accessible during this project

we were unable to evaluate more systems across all benchmark problems with 100

repeat tests each. We chose to evaluate the kπ/4 system on the TOF and QFT-3

benchmark problems, with 100 repeat tests. These problems were selected because

the original pure zx and pure cm systems solved them commonly but not all the

time. We have not included evaluation of the size of produced results, because

primarily we want to evaluate the ability of these systems to solve the problems,

and because there were no notable conclusions to draw from this data.

5.3.2 Evaluation Data

Table 5.9 displays the data from evaluating the non-selection system and acceptance

system as well as the previously seen data from the pure zx system that uses the

CHAPTER 5. RESULTS 54

discarding method on the same problem. The best success rate is highlighted in

bold for each problem.

System Problem Success Rate
Best Fitness Per Run

Gens
Median Best IQR

pure zx TOF 58% 1.00 1.00 0.00 182
pure zx QFT-3 92% 1.00 1.00 0.00 111
non-selection TOF 53% 1.00 1.00 0.00 212
non-selection QFT-3 85% 1.00 1.00 0.00 140
acceptance TOF 25% 0.750 1.00 0.00 413
acceptance QFT-3 34% 0.966 1.00 0.00 360

Table 5.9: Unsafe mitigation systems results. 100 runs for each problem, each with
1,000,000 circuit evaluations. Success rate of runs with MSF ≥ 0.98. Best

individual taken from each run and median, best and interquartile range (IQR) of
their fitnesses. Median number of generations until success (Gens) is first reached

in successful runs.

5.3.3 Results Discussion

We can see that the non-selection method is performing slightly worse than pure zx,

seeing an average of a 6% success rate difference in favour of pure zx. These ap-

proaches are likely to be even more similar than these results suggest, but our

evaluation methodology, which was chosen to be comparable to previous works, dis-

advantages the non-selection system by scoring performance based on the number of

fitness evaluations rather than run-time. It is likely this system would be more com-

parable to pure zx in terms of run-time for the reasons discussed in Section 3.2.1.

The closeness between the two discarding and non-selection approaches suggests

that non-selection is a valid mitigation technique, and that more research should go

in to comparing these two similar approaches.

The acceptance method performs much worse than pure zx, with lower success rates,

lower median fitnesses and higher number of generations until success on both test

problems. This confirms our hypothesis that the system would be unable to use

unsafe operations to its advantage, to better traverse the fitness landscape by using

the non-extractable space it now has access to compared to the other systems.

Chapter 6

Conclusions

This work has successfully created a system that uses genetic programming to syn-

thesise quantum programs. It is the first to use an internal representation based

on the ZX-calculus. The work has shown that the advantage of using such a repre-

sentation is the reduced redundancy it can offer compared to the quantum circuit

model which related works use [31, 47, 2]. The best version of our system solves the

QFT-3, QFT-4 and Toffoli benchmark problems at a success rate an average of 54%

higher than the work of Atkinson et al (2019) [2].

While the semantic efficiency of our ZX based internal representation was use-

ful, using mutations defined over the circuit model was more successful than using

our novel mutations that operate on ZX-diagrams. The system that used circuit

based mutations was always more successful than the system that used ZX based

mutations, with higher (or equal) success rates and median best fitnesses on all

problems. One of the benchmark problems was unsolved by the ZX-mutation based

system while the circuit model mutation based system solved it 59% of the time.

Up until recently there was little standardisation in how systems similar to ours

were evaluated and compared. The work of Atkinson et al. (2019) [2] changes this

by proposing a set of benchmark problems and metrics to measure when getting

systems to evolve solutions to the problems. We have adhered to this benchmark

problem set as well as proposing improvements to the method to further improve

how works are evaluated and compared. One such contribution was the inclusion

experiments to try and create randomly generated unitary matrices. This proved to

be a worthy inclusion as it was the most distinguishing problem for the comparison

of two of our systems.

55

CHAPTER 6. CONCLUSIONS 56

Another addition to the data collected for evaluation was the inclusion of gate

counts of the evolved programs, so the trade-off between evolving accurate solutions

and small solutions can be explored. Our system managed to exhibit a large differ-

ence in gate count between individuals with the best accuracy and individuals with

lower accuracy but still within a defined success bound, with the difference between

the median gate counts showing the lower accuracy solutions were often 50% the

size of the best fitness individuals. This shows the potential of GP systems to ex-

plore the gate count verses accuracy trade-off that may be important to near-term

quantum devices [39].

A weakness of our work has come from the Python-based implementation. While

using Python and the PyZX [27] library gave us access to already implemented

methods from literature, these technologies were not optimised for quickly simulat-

ing our candidate quantum circuits. Spending more time on implementing a faster

solution in another language or integrating a faster simulation system into our ex-

isting system might have benefit us in the long term of the project. This is because

some of the runs of the system took several hours on the machines we had available.

Considering hundreds of repeat tests are needed to be run for system evaluation, this

limited our ability to evaluate more systems across the whole benchmark suite and

meant we were less able to experiment with different settings of hyper-parameters.

Further optimisation of the hyper-parameters could have increased performance for

our systems.

6.1 Future Work

We believe this work has been a successful first attempt at using ZX based internal

representations for GP systems, but throughout the project have found many areas

that warrant further exploration.

One of the secondary objectives of this project was to propose and evaluate methods

for dealing with the unsafe mutations that can be defined over the ZX-calculus. We

used the discarding method throughout the work, with a small investigation into the

other proposed methods. These evaluations suggested that the individuals with no

gFlow served no benefit to our system, and hence we believe that a system that uses

only safe mutations would be best. Future works could look for effective mutations

that are also safe in the fact that they preserve gFlow. Up until now, works on the

CHAPTER 6. CONCLUSIONS 57

ZX-calculus looking at preserving gFlow have also been concerned with preserving

semantics for the purpose of creating transformations that help reduce the size of a

quantum circuit and keeping it extractable. More work could go into to looking at

gFlow preserving operations that also better traverse the semantic space of quan-

tum programs. We believe there is still potential for mutations defined over the

ZX-calculus to be very useful, despite them performing worse than the circuit based

mutations in this project.

Our system shows that GP systems can be used to allow users a trade-off between

accuracy or size in their evolved solutions. However, our system always prioritised

accuracy over size when evolving its solutions as we used a lexicographic fitness

metric where gate count was the last element. Future works could use a linear com-

bination of fitness metrics that would be informed by the accuracy to gate count

trade-off that would actually be of benefit to quantum devices. Different hardware

will be able to run different sizes of program at with different accruacy, knowledge of

this could help inform the way we linearly combine the fitness and gate count metrics.

Further to this, gate count is a primitive measure of the cost of a quantum program,

and in future we propose more informed metrics that could be device specific be used

to represent the real cost of running a given quantum program on a quantum device.

This work used the Full Reduce [28] operation as a SND mutation to attempt to

allow the system to optimise the size of its candidate solutions. Our results using

this mutation were mixed, as when we limited the phases introduced into our can-

didates we noticed a considerable loss of accuracy for our system, and only limited

improvements to gate counts. There is a wealth literature on semantic-preserving

ZX-diagram reducing transformations, including the components that make up the

Full Reduce operation. Experiments that use these as mutations could get more

success than just the Full Reduce on its own.

Bibliography

[1] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami

Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell,

et al. Quantum supremacy using a programmable superconducting processor.

Nature, 574(7779):505–510, 2019.

[2] Timothy Atkinson, Athena Karsa, John Drake, and Jerry Swan. Quantum pro-

gram synthesis: Swarm algorithms and benchmarks. In European Conference

on Genetic Programming, pages 19–34. Springer, 2019.

[3] Timothy Atkinson, Detlef Plump, and Susan Stepney. Evolving graphs with

semantic neutral drift. Natural Computing, pages 1–17, 2019.

[4] Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, and John van de

Wetering. There and back again: A circuit extraction tale. arXiv preprint

arXiv:2003.01664, 2020.

[5] Shumeet Baluja and Rich Caruana. Removing the genetics from the standard

genetic algorithm. In Machine Learning Proceedings 1995, pages 38–46. Else-

vier, 1995.

[6] Kenton M. Barnes and Michael B. Gale. Meta-genetic programming for static

quantum circuits. In Proceedings of the Genetic and Evolutionary Computation

Conference Companion, GECCO ’19, page 2016–2019. Association for Com-

puting Machinery, 2019.

[7] Anil Bhattacharyya. On a measure of divergence between two multinomial

populations. Sankhyā: the indian journal of statistics, pages 401–406, 1946.

[8] Markus F Brameier and Wolfgang Banzhaf. Linear genetic programming.

Springer Science & Business Media, 2007.

[9] Daniel E Browne, Elham Kashefi, Mehdi Mhalla, and Simon Perdrix. General-

ized flow and determinism in measurement-based quantum computation. New

Journal of Physics, 9(8):250, 2007.

58

BIBLIOGRAPHY 59

[10] Earl T Campbell, Barbara M Terhal, and Christophe Vuillot. Roads towards

fault-tolerant universal quantum computation. Nature, 549(7671):172–179,

2017.

[11] Bob Coecke and Ross Duncan. Interacting quantum observables. In Proceedings

of the 37th International Colloquium on Automata, Languages and Program-

ming (ICALP), Lecture Notes in Computer Science, 2008.

[12] Bob Coecke and Aleks Kissinger. Picturing quantum processes: A first course in

quantum theory and diagrammatic reasoning. In Picturing Quantum Processes:

A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge

University Press, 2017.

[13] Don Coppersmith. An approximate fourier transform useful in quantum fac-

toring. arXiv preprint quant-ph/0201067, 2002.

[14] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang. Techniques to re-

duce π/4-parity phase circuits, motivated by the zx calculus. arXiv preprint

arXiv:1911.09039, 2019.

[15] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang. Fast and effective

techniques for t-count reduction via spider nest identities. arXiv preprint

arXiv:2004.05164, 2020.

[16] David Deutsch. Quantum computation. Physics World, 5(6):57, 1992.

[17] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization.

IEEE computational intelligence magazine, 1(4):28–39, 2006.

[18] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John Van De Wetering.

Graph-theoretic simplification of quantum circuits with the zx-calculus. Quan-

tum, 4:279, 2020.

[19] Alex S Fraser. Simulation of genetic systems by automatic digital computers i.

introduction. Australian Journal of Biological Sciences, 10(4):484–491, 1957.

[20] Edgar Galván-López, Riccardo Poli, Ahmed Kattan, Michael O’Neill, and An-

thony Brabazon. Neutrality in evolutionary algorithms. . . what do we know?

Evolving Systems, 2(3):145–163, 2011.

[21] David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection

schemes used in genetic algorithms. In Foundations of genetic algorithms, vol-

ume 1, pages 69–93. Elsevier, 1991.

BIBLIOGRAPHY 60

[22] Daniel Gottesman. The heisenberg representation of quantum computers. arXiv

preprint quant-ph/9807006, 1998.

[23] Jennifer Green, Jacqueline L Whalley, and Colin G Johnson. Automatic pro-

gramming with ant colony optimization. In Proceedings of the 2004 UK Work-

shop on Computational Intelligence, pages 70–77. Loughborough University,

2004.

[24] Lov K Grover. A fast quantum mechanical algorithm for database search. In

Proceedings of the twenty-eighth annual ACM symposium on Theory of com-

puting, pages 212–219, 1996.

[25] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axioma-

tisation of the zx-calculus for clifford+ t quantum mechanics. In Proceedings of

the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pages

559–568, 2018.

[26] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Diagrammatic rea-

soning beyond clifford+ t quantum mechanics. In Proceedings of the 33rd An-

nual ACM/IEEE Symposium on Logic in Computer Science, pages 569–578,

2018.

[27] Aleks Kissinger and John van de Wetering. PyZX: Large Scale Automated

Diagrammatic Reasoning. In Bob Coecke and Matthew Leifer, editors, Pro-

ceedings 16th International Conference on Quantum Physics and Logic, Chap-

man University, Orange, CA, USA., 10-14 June 2019, volume 318 of Electronic

Proceedings in Theoretical Computer Science, pages 229–241. Open Publishing

Association, 2020.

[28] Aleks Kissinger and John van de Wetering. Reducing the number of non-clifford

gates in quantum circuits. Phys. Rev. A, 102:022406, Aug 2020.

[29] Abdullah Konak, David W Coit, and Alice E Smith. Multi-objective optimiza-

tion using genetic algorithms: A tutorial. Reliability Engineering & System

Safety, 91(9):992–1007, 2006.

[30] John R. Koza. Non-linear genetic algorithms for solving problems. United

States Patent 4935877, 19 June 1990. filed may 20, 1988, issued june 19,

1990, 4,935,877. Australian patent 611,350 issued september 21, 1991. Canadian

patent 1,311,561 issued december 15, 1992.

BIBLIOGRAPHY 61

[31] Paul Massey, John A. Clark, and Susan Stepney. Human-competitive evolu-

tion of quantum computing artefacts by genetic programming. Evolutionary

Computation, 14(1):21–40, 2006.

[32] Francesco Mezzadri. How to generate random matrices from the classical com-

pact groups. arXiv preprint math-ph/0609050, 2006.

[33] Alberto Moraglio, Krzysztof Krawiec, and Colin G Johnson. Geometric se-

mantic genetic programming. In International Conference on Parallel Problem

Solving from Nature, pages 21–31. Springer, 2012.

[34] Kang Feng Ng and Quanlong Wang. A universal completion of the zx-calculus.

arXiv preprint arXiv:1706.09877, 2017.

[35] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum

information, 2002.

[36] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA,

2006.

[37] Tim Perkis. Stack-based genetic programming. volume 1, pages 148 – 153 vol.1,

07 1994.

[38] JM Pino, JM Dreiling, C Figgatt, JP Gaebler, SA Moses, CH Baldwin, M Foss-

Feig, D Hayes, K Mayer, C Ryan-Anderson, et al. Demonstration of the qccd

trapped-ion quantum computer architecture. arXiv preprint arXiv:2003.01293,

2020.

[39] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79,

2018.

[40] Google AI Quantum et al. Hartree-fock on a superconducting qubit quantum

computer. Science, 369(6507):1084–1089, 2020.

[41] Olivier Roux and Cyril Fonlupt. Ant programming: Or how to use ants for

automatic programming. In Proceedings of ANTS, volume 2000, pages 121–

129. Springer Berlin, 2000.

[42] Ben IP Rubinstein. Evolving quantum circuits using genetic programming. In

Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat.

No. 01TH8546), volume 1, pages 144–151. IEEE, 2001.

[43] Sebastian Ruder. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747, 2016.

BIBLIOGRAPHY 62

[44] Peter W Shor. Algorithms for quantum computation: Discrete logarithms and

factoring. In Proceedings 35th annual symposium on foundations of computer

science, pages 124–134. Ieee, 1994.

[45] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edg-

ington, and Ross Duncan. t— ket¿: A retargetable compiler for nisq devices.

Quantum Science and Technology, 2020.

[46] Lee Spector, Howard Barnum, Herbert J Bernstein, and Nikhil Swamy. Quan-

tum computing applications of genetic programming. Advances in genetic pro-

gramming, 3:135–160, 1999.

[47] Lee Spector and Jon Klein. Machine invention of quantum computing circuits

by means of genetic programming. AI EDAM, 22(3):275–283, 2008.

[48] Kilian Stoffel and Lee Spector. High-performance, parallel, stack-based genetic

programming. Genetic Programming, pages 224–229, 1996.

[49] Krysta M Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher

Granade, Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres

Paz, and Martin Roetteler. Q#: Enabling scalable quantum computing

and development with a high-level domain-specific language. arXiv preprint

arXiv:1803.00652, 2018.

[50] Tommaso Toffoli. Reversible computing. In International Colloquium on Au-

tomata, Languages, and Programming, pages 632–644. Springer, 1980.

BIBLIOGRAPHY 63

Appendix A

Extended Gate Definitions and ZX Equivalences

Arbitrary Phase Shift Gate

Zα=α

][][[
1 0

0 eiα

]
=

Common instances are S = Zπ/2 and T = Zπ/4

Arbitrary X Rotation

Xα=α

][][[
cos(α

2
) −i sin(α

2
)

−i sin(α
2
) cos(α

2
)

]
=

Hadamard Gate

H=π
2

π
2

π
2

][][
1√
2

[
1 1

1 −1

]
=

CNOT Gate

CNOT=

][][
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 =

SWAP Gate

SWAP=

][][
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 =

	Introduction
	Background
	Quantum Computation
	The Quantum Speedup

	The ZX Calculus
	Diagram Reduction
	Circuit Extraction

	Evolutionary computation
	Genetic Algorithms
	Ant Colony Optimisation

	Methodology
	Quantum Program Representation
	Genetic Operators
	Managing Unsafe Operators
	Mutation Operators
	Crossover Operator

	Population Creation
	Individual Selection
	Selection Algorithm
	Fitness Assessment
	Elitism

	Implementation
	Implementation Language
	Genetic Algorithm
	Data Structures

	Results
	Open Graph Redundancy and Mutations
	Evaluation Methodology
	Evaluation Data
	Results Discussion

	Open Graphs Limited to k/4 Phases
	Evaluation Methodology
	Evaluation Data
	Results Discussion

	Unsafe Mutation Mitigation
	Evaluation Methodology
	Evaluation Data
	Results Discussion

	Conclusions
	Future Work

	Bibliography
	Appendices
	Extended Gate Definitions and ZX Equivalences

