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Abstract

In this thesis, we use string diagrams to study the theory of Hopf alge-

bras in the context of Categorical Quantum Mechanics. First, we treat

the theory of representations of a Hopf algebra diagrammatically. The

category of representations of a quasitriangular Hopf algebra Rep(H) is a

braided tensor category and can be understood as a process theory of par-

ticles in Topological Quantum theory. We provide diagrammatic proofs

of equivalences relating the Drinfeld center construction on Rep(H) to

the category of Quantum double modules Rep(DH). We then use similar

tools to generalize Kitaev’s lattice models for Topological Quantum com-

putation and give a categorical perspective on Permutational Quantum

computation. Finally, we discuss functorial semantics in the context of

quantum computation, by constructing a braided language for stabilizer

quantum gates.
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Introduction

Algebraic structures have historically been described in set-theoretic terms. One

usually considers a set equipped with functions satisfying certain axioms. For ex-

ample, a monoid is a set equipped with a multiplication and a unit element satisfying

associativity and the unit law. Category theory provides a unifying framework for

describing algebraic theories. Many of the driving notions of category theory arise

through categorification of set-theoretic notions [4]. Categorification is the process

of replacing sets by categories, functions by functors and relaxing equations to nat-

ural isomorphisms between the functors. For example, the notion of a monoidal

category is the categorification of that of a monoid. Since their preliminary study

[25, 20] monoidal categories have been used as building blocks for more complex al-

gebraic theories and have found many applications to quantum physics [1, 7, 39, 34].

They have a very intuitive two-dimensional diagrammatic language where algebraic

equations are topological moves [35]. Using this language it is possible to represent

processes on physical systems [10], which can often be characterized by their sym-

metries. These latter are traditionally described by groups, as for instance for the

symmetries of crystals [3] or spin-1
2

particles [40]. Quasitriangular Hopf Algebras

provide a generalization of group theory which allows describing the symmetries of

many-body quantum systems as they treat local and global (or topological) symme-

tries on the same level [37].

The aim of this thesis is to provide a diagrammatic treatment of Hopf algebras and

their representations, outlining their relationship to quantum computation.

In the first chapter we introduce monoidal categories to obtain a diagrammatic

characterisation of Hopf Algebras. This is done using functorial semantics, in the

spirit of Lawvere theories [24]. We then recall some standard results and move on

to representation theory. Given a quasitriangular Hopf algebra H, the category of

its representations Rep(H) is braided monoidal and every object has a dual. If we

additionally require H to be quasitriangular, we obtain braids, making the language

of Rep(H) three-dimensional. In these categories, knots and links are scalars, and

we naturally obtain topological invariants.

The second chapter is dedicated to the study of special types of particles called

anyons, which appear in three-dimensional space-time. Their symmetries and ex-

change statistics are captured by quasitriangular Hopf algebras, so that categories of

representations can be interpreted as process theories of anyons. We also see how the

Drinfeld center construction, which takes place at the categorical level, corresponds

to a certain quantization of the symmetries: the quantum double construction on

a Hopf algebra. Our contribution here is a diagrammatic proof, characterising the

Drinfeld center Z(Rep(H)) through equivalences. We show Z(Rep(H)) is equivalent
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to the category of representations of the quantum double of H when H is finite di-

mensional and prove variations of this result in the cases where H is only a bialgebra

and when it is (possibly) infinite-dimensional.

In chapter 3 we study two different models of quantum computation induced by

Hopf algebras. Kitaev’s double model for topological quantum computation (TQC)

[21], which is based on a group, is formulated diagrammatically in terms of Hopf al-

gebras, providing a physical illustration of the results of section 2.3. Jordan’s model

for permutational quantum computing (PQC) [18] is described from a categorical

perspective in view of relating it to TQC. Finally, in section 3.3, we come back

to our discussion on functorial semantics using the notion of functorial boxes [28].

These are used to project the pictures of knots from braided fusion categories into

Hilbert spaces and obtain a braided syntax for quantum gates.
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Chapter 1

Diagrams and Hopf Algebras

1.1 Monoidal categories

In this section, we set in place the basic definitions and the diagrammatic framework

which we will use throughout the thesis. This section can be freely skipped given

basic knowledge of monoidal categories and string diagrams. The standard reference

about basic category theory is [25]. Many of the definitions are taken from [2]. For an

introduction to diagrammatic reasoning in monoidal categories consider the first two

chapters of [10]. A more technical and up to date survey on monoidal categories can

be found in [12]. Many of the results recalled in this section and their relationship

to quantum mechanics can be found in [39].

Definition 1.1 (Category). A category C consists of the data:

• a collection of objects obj(C),

• a collection of morphisms (or arrows) arr(C),

• domain and codomain assignments: dom, cod : arr(C)→ obj(C). For any two

objects a, b ∈ obj(C) we define the hom-set

C(a, b) := {f ∈ arr(C) : a = dom(f), b = cod(f)}

• for any triple of objects a,b and c, a composition map

C(a, b)× C(b, c)→ C(a, c)

we denote the composition by g ◦ f , diagrammatically:

a
b

c
f g

g ◦ f
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• for any object a an identity morphism ida : a→ a,

satisfying the following axioms:

h ◦ (g ◦ f) = (h ◦ g) ◦ f ; f ◦ ida = f = idb ◦ f

Example 1.1. Examples of categories are: Sets of sets and functions, FSets of

finite sets and functions, Rel of sets and relations, V ectk of vector spaces over a

field k and linear maps and FV ectk of finite dimensional vector spaces and linear

maps.

Category theory expresses equivalences and relationships between structures by

means of the following tools.

Definition 1.2 (Functor). A functor F : C → D is a mapping that

• associates an object F (a) of D to each object a of C,

• associates to each morphism f : a → b in C a morphism F (f) : F (a) → F (b)

in D such that F (ida) = idF (a) and F (g ◦ f) = F (g) ◦ F (f) for all morphisms

f : a→ b and g : b→ c.

For instance, there is a functor Q : FSets → FV ectk taking a set to the free

vector space generated by that set.

Remark Throughout the thesis we will sometimes describe our functors with some

adjectives that we have only defined for categories (for example we will sometimes

write ‘monoidal functor’ or ‘symmetric functor’). In all cases this means functors

which preserve the structure described by the adjective. For the rigorous definitions

please consult ncatlab.org/nlab.

Given two functors with matching source and target we can have natural transfor-

mations between them.

Definition 1.3 (Natural Transformation). Given categories C and D and functors

F,G : C → D a natural transformation α : F ⇒ G is an assignment to every object

a in C of a morphism αa : F (a)→ G(a) in D such that for each morphism f : a→ b,

the following commutes:

F (a)

G(a)

F (b)

G(b)

αa αb

F (f)

G(f)
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A natural isomorphism is a natural transformation such that all components are

isomorphisms.

Recall that a monoid is a triple (X,×, 1) where X is a set, 1 ∈ X and × is an

associative and unital multiplication on X. The notion of a monoidal category is

the categorification of a monoid. Elements of the set are replaced by objects in a

category C, multiplication by a functor ⊗ : C ×C → C and the equalities in the unit

and association axioms are replaced by natural isomorphisms. In order for this new

structure to be well-behaved we will also need to impose compatibility conditions.

We obtain the following definition:

Definition 1.4 (Monoidal category). A monoidal category is a category C equipped

with a functor ⊗ : C × C → C called tensor product, an object 1 called unit object, a

natural isomorphism

α : (−⊗−)⊗− ∼
=⇒ −⊗ (−⊗−)

called associator, a natural isomorphism

λ : 1⊗ (−)
∼
=⇒ (−)

called left unitor and a natural isomorphism

ρ : (−)⊗ 1
∼
=⇒ (−)

called right unitor. Subject to the following coherence conditions holding for all

objects a, b, c, d in C:

1. Pentagon axiom: the following diagram commutes

(a⊗ (b⊗ c))⊗ d

((a⊗ b)⊗ c)⊗ d

(a⊗ b)⊗ (c⊗ d)

a⊗ (b⊗ (c⊗ d))

a⊗ ((b⊗ c)⊗ d)

αa⊗b,c,d αa,b,c⊗d

αa,b,c ⊗ idd

αa,b⊗c,d

ida ⊗ αb,c,d

2. Triangle identity: the following diagram commutes

(a⊗ 1)⊗ b a⊗ (1⊗ b)

a⊗ b

αa,1,b

ida ⊗ λbρa ⊗ idb
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Example 1.2. The category Sets of sets and functions is monoidal with the carte-

sian product × and the singleton set as unit object.

Sets is also monoidal if equipped with the coproduct
∐

as monoidal product and the

empty set as unit object. Note that this shows that being monoidal is a structure

and not a property of categories. Many choices of monoidal structure are usually

possible.

The category V ectk of finite dimensional vector spaces over a field k is monoidal with

the usual tensor product ⊗ and the one dimensional vector space k as unit object.

The category Rel of sets and relations is monoidal with the cartesian product × and

the singleton as unit object.

The category Hilb of Hilbert spaces and linear maps is monoidal when equipped with

the usual tensor product ⊗.

The pentagon and triangle axioms make sure that any well formed diagram in a

monoidal category, made up of associators and unitors, commutes. This is known as

the coherence theorem for monoidal categories and can be found in [25]. When the

associators and unitors are trivial morphisms (i.e identity morphisms) we say the

category is strict monoidal. It is known that every monoidal category is equivalent

to a strict one [25], but it is sometimes useful to take associators into account as we

will see in our discussion on permutational quantum computation. As shown in the

survey [35], strict monoidal categories have a two-dimensional diagrammatic which

is rigorous. Objects are represented by their identity morphisms which we draw as

labelled wires:

a

A morphism f : a → c is drawn as a box with input and output wires going from

bottom to top:

a

c

f

The vertical composition h ◦ f where h : c→ e is denoted as:

a

c

e

f

h
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We write the tensor of two morphisms f ⊗ g : a ⊗ b → c ⊗ d simply putting them

side by side:

a b

c d

f g

Note that because the category is strict id1⊗f = f = f ⊗ id1 for any f , so we could

draw as many copies as we like of id1 on any diagram to obtain an equivalent one.

So really the identity on 1 is just the empty diagram which we can stick next to any

diagram we like. Isotopic diagrams correspond to the same processes [35, Theorem

3.3] so that topological moves are allowed algebraic manipulations.

Definition 1.5 (States and costates). Given a system A, a state of A is a morphism

y : 1→ a. A costate (or effect) of a is a morphism x : a→ 1. In the diagrammatic

language we draw states and costates respectively:

y

a x

a

Remark The cartesian product × in Sets satisfies the universal properties of a

categorical product, in the sense that we have projections p1 : A × B → A and

p2 : A × B → B such that if f and g are maps from some set C there is a unique

function h making the following diagram commute:

A B

A×B

C

h

p1 p2

f g

This implies that all states in (Sets,×) are separable, in the sense that any state c

of A×B is a product state a× b. The product × in Sets is cartesian whereas ⊗ in

V ect is not as ⊗ is not the categorical product. The categorical product in V ect is

the biproduct and it is defined in the appendix.

Example 1.3. In V ectk states are vectors and costates are functionals. Note that

the diagrammatic notation provides a two-dimensional generalisation of Dirac’s no-

tation. Note that the tensor of vector spaces ⊗ is not a categorical product, and in

fact we can have non-separable (entangled) states.

Definition 1.6 (Scalars). Scalars in a monoidal category are morphisms 1→ 1.
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The category Sets has only one scalar. Rel has two scalars forming the booleans B2

under composition. V ectk has scalars from k. Given a vector and a functional we

obtain a scalar by composing them.

Definition 1.7 (BMC). A braided monoidal category is a monoidal category C
equipped with a natural isomorphism Ba,b : a⊗ b→ b⊗ a called braiding, subject to

the following compatibility conditions (called hexagon equations):

(a⊗ b)⊗ c

a⊗ (b⊗ c) (b⊗ c)⊗ a

b⊗ (c⊗ a)

(b⊗ a)⊗ c b⊗ (a⊗ c)

αa,b,c

Ba,b⊗c

αb,c,a

Ba,b ⊗ idc

αb,a,c

idb ⊗Ba,c

a⊗ (b⊗ c)

(a⊗ b)⊗ c c⊗ (a⊗ b)

(c⊗ a)⊗ b

a⊗ (c⊗ b) (a⊗ c)⊗ b

αa,b,c

Ba⊗b,c

αc,a,b

ida ⊗Bb,c

αa,c,b

Ba,c ⊗ idb

In the diagrammatic language this means we have braidings:

A B B A

for any A and B, satifying:

A B
=

A B
;

B A
=

B A
(1.1)

The compatibility conditions are obvious statements in the diagrammatic calculus,
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for instance the first hexagon equation just says:

A B C

=

A B C

(1.2)

Both Sets and Hilb are examples of symmetric monoidal categories in the following

sense.

Definition 1.8 (SMC). A braided monoidal category is symmetric if the braiding

Ba,b satisfies

Ba,b ◦Bb,a = ida⊗b

For all objects a, b.

In a SMC the braiding is called symmetry morphism and is denoted

A

B

B

A

It satisfies:

A B

=

A B

We will now describe some new classes of examples of monoidal categories. These

are of a different nature to the categories we have seen so far.

Definition 1.9 (PRO). A PRO (products category) is a strict monoidal category

where every object is of the form x⊗n for a single object x and n ≥ 0.

Definition 1.10 (PROPs). A PROP (products and permutations category) is a

symmetric strict monoidal category where every object is of the form x⊗n for a

single object x and n ≥ 0.

This means that we are only allowed one type of wire when drawing diagrams

about PROPs but we can use as many copies as we like and we can make swaps with

them. Categories satisfying these properties are useful syntactic tools as we will see.

One way to think of a PROP A is as an abstract algebraic structure carrying some

axioms, we can then instantiate those axioms in some other symmetric monoidal

category C by considering symmetric monoidal functors F : A → C. We call such

functors algebras or models of A in C. If A is defined in terms of generators and
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relations (as is most often done), the choice of such functor corresponds to the choice

of one object from C and morphisms on that object respecting the defining relations

of A. On its own A has no clear interpretation, it just defines a syntax, but if C is

a semantic category (i.e one with a clear interpretation) then F is a ‘filling’ of the

syntax with meaning. This reasoning was first proposed in Lawvere’s Phd thesis in

1963 [24].

Remark The semantic categories we will use the most are Sets, V ectC and FV ectC.

In fact we will only consider vector spaces over C so from now on let us denote

V ect := V ectC and FV ect := FV ectC. One important difference between Sets and

FV ect is that FV ect exhibits duality.

Definition 1.11 (Rigidity). Let C be a monoidal category and A ∈ obj(C). A

left-dual of A is an object A∗ with morphisms

A A∗

A∗ A

Satisfying the snake equations:

A

A
=

A

A

A∗

A∗

=

A∗

A∗

If every object has a left-dual, we say that C is left-rigid. Similarly we can define

right-duals and right-rigid categories by interchanging the roles of A and A∗ in the

definition.

Given a (left/right) rigid structure we can define (left/right)transpose as follows.

Definition 1.12 (Transpose). Given a (left/right) rigid category C and any process

f : A→ B the (left/right) transpose f ∗ (or left transpose f l, right transpose f r if it

is not clear from context) is:

f = f (1.3)

Given the above definition we can define the (left/right) transpose endofunctor

on a (left/right) rigid category C as the funcotr (−)∗ : C → C taking objects to their

(left/right) duals and morphisms to their (left/right) transpose.
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Definition 1.13 (Trace). In a symmetric monoidal category C, if A has a left dual

A∗, the trace of some morphism f : A→ A is defined as the following scalar:

f

A pivotal structure on a rigid monoidal category C is a natural isomorphism

idC ⇒ (−)∗∗. It allows to define traces without using the symmetry. Most cate-

gories we will consider have both sided duals (in the sense that left and right duals

coincide), and therefore a trivial (identity) pivotal structure. Given a pivotal struc-

ture we can define left pivotal traces as:

f

Where we have hidden the pivotal natural isomorphism. Similarly we can define

right pivotal traces on endomorphisms in the obvious way.

Definition 1.14. A rigid monoidal category with a pivotal strucutre is spherical if

left and right traces coincide. In a spherical category, if a is an object, the trace tr :

End(a)→ End(1) is well defined and tr(ida) is called the categorical (or quantum)

dimension of a.

For a braided monoidal category, giving a spherical structure is equivalent to

giving a ribbon structure [31] where:

Definition 1.15. A ribbon (or twist) structure on a braided monoidal category with

left duality ? is a natural isomorphism θ : idC ⇒ idC satisfying:

θa⊗b
=

θa θb

(1.4)

and compatible with the rigid structure (θa)
? = θa?

1.2 Hopf algebras

Now that we have set in place a diagrammatic machinery based on monoidal cat-

egories, let us make use of it. In this section we will meet some mathematical

structures which have been used by mathematicians to describe symmetry. The
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notion of Hopf algebras is a powerful generalization of that of a group. Since their

discovery in the 1940s, Hopf algebras have been used in various fields of pure math-

ematics (such as number theory, algebraic geometry, and representation theory) and

have found applications in Quantum mechanics. Most of the results of this section

can be found in [26].

Definition 1.16 (Monoid). ∆ is a PRO generated by morphisms ( , ) satis-

fying associativity:

= (1.5)

and the unit law:

= = (1.6)

Models of ∆ in monoidal categories are called monoids and they are very well

known, examples include the natural numbers under addition, lists of some alphabet

under concatenation and any group. Taking the opposite category ∆op corresponds

to flipping all the diagrams.

Definition 1.17 (Comonoid). ∆op is a PRO generated ( , ) satisfying coas-

sociativity:

= (1.7)

and the counit law:

= = (1.8)

Models of these are comonoids, the most common example is the copy map on

any set with ‘delete’ as counit. Monoids and comonoids are simple structures that

we can stick together to form more complicated ones. Bialgebras arise from one

type of interaction of a monoid and comonoid.

Definition 1.18 (Bialg). Bialg is a PROP generated by ( , , , ), where

and form a monoid, and a comonoid and the morphisms additionally

satisfy the following laws:

= (1.9)

= (1.10)

= (1.11)
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= (1.12)

where the empty diagram is the identity on the tensor unit.

Models of Bialg in V ect are bialgebras. We leave examples for later as we are

now ready to introduce one of the main topics of this thesis.

Definition 1.19 (Hopf). Hopf is a PROP generated by ( , , , , S ),

where ( , , , ) is a bialgebra and the antipode S satisfies the Hopf law:

S = = S (1.13)

We will argue that Hopf is a good syntax to talk about symmetry. Let us start

by instantiating G : Hopf → Sets. This corresponds to choosing a set G, with an

associative binary operation G×G→ G (or multiplication) with a unit. Using the

counit rule it is easy to see that the comultiplication in Sets must be the copy map

g 7→ (g, g) so that the antipode is the morphism g 7→ g−1 and G forms a group.

Since the 19th century groups have been used by mathematicians and physicists to

describe symmetry.

Example 1.4 (Finite groups). We will only make use of the following classes of

finite groups:

• Zn the cyclic group with n elements.

• Sn the symmetric group, can be seen as the group of permutations of a set

with n elements, has order n!. S3 is the smallest non-abelian group up to

isomorphism.

Example 1.5 (Groups of matrices). Here we will fix some notation on the infinite

groups of matrices we will meet. All matrices we will consider are over the complex

numbers. GL(n) is the group of invertible n by n complex matrices. U(n) is the

group of unitary n×n matrices (i.e such that U †U = UU † = I). The special unitary

group SU(n) is the subgroup of U(n) consisting of matrices with determinant 1.

The representation theory of SU(n) is widely used in particle physics, for instance

representations of SU(2) model the behaviour of spin-1
2

particles.

If we take a model of H : Hopf → V ect we obtain what is known as a Hopf

Algebra.The most common example of Hopf algebras are group algebras.
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Example 1.6 (Group algebras). If G is a group with unit e, the group algebra

CG (of dimension |G|) is a hopf algebra with multiplication linearly generated by

|g〉 ⊗ |h〉 → |gh〉, unit |e〉, comultplication generated by |g〉 → |g〉 ⊗ |g〉 and counit∑
g 〈g|.

The previous example gives the usual definition of a group algebra which, for

finite sets and finite dimensional vector spaces is just the composition Q ◦ G (as

shown in the diagram) where Q : FSets → FV ect is the free vector space functor.

It is easy to see that Q preserves the monoidal structure as well as the symmetry

morphisms (we say Q is a symmetric monoidal functor) so that the composition is

also symmetric monoidal and Q ◦G is a model of Hopf .

FSets FV ect

Hopf
G CG

Q

In this case the comultiplication in FV ect is the linearisation of the copy map (the

copy map on some basis extended linearly to the whole vector space) which is co-

commutative. For a general H : Hopf → V ect this doesn’t have to be the case.

Hopf algebras provide a broader framework to talk about symmetry, as we can have

non co-commutative Hopf algebras. We can see it as a quantization of the notion

of symmetry, it will allow us to describe symmetries of quantum systems. The

following two propositions are simple but important results about the antipode of a

hopf algebra.

Proposition 1.1. The antipode of a Hopf algebra is unique, i.e being a Hopf algebra

is a property of bialgebras.

Proof. Suppose S and S ′ are two antipodes for some Hopf algebra, then:

S

1.8
1.6
= S

1.13
= SS ′

1.5
1.7
= S ′ S

1.13
= S ′

1.8
1.6
= S ′

Some bialgebras have a skew antipode instead of an antipode.

Definition 1.20 (Skew antipode). Given a bialgebra ( , , , ). S̄ is a

skew antipode if it satisfies:

S̄ = = S̄ (1.14)
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It is possible to replicate the proof above for skew antipodes to see that it is

a property of bialgebras too. Most of the Hopf algebras we will meet also have

a skew antipode. In particular, it is a well-known fact that Hopf algebras with

invertible antipode S always have a skew antipode defined by S̄ = S − S−1. Note

that this argument applies to Hopf algebras, as they are models of Hopf in V ect

where addition in the hom-sets is well-defined (V ect is an abelian category, see the

appendix) but it doesn’t hold in general for models of the Hopf PROP .

Proposition 1.2. The antipode is an anti-(co)algebra homomorphism.

S

=

S S

;

S

=
S S

(1.15)

Proof. We recall the proof given in Figure 4.6 of [27].

First note that:

S

1.9
=

S

1.13
=

1.10
=

So that S is a left convolution inverse to .

Also:

S S 1.7
=

S S

= S

S 1.8
1.13
= S 1.13

=

So that

S S

is a right convolution inverse to . And it is easy to see using asso-

ciativity and co-associativity that right and left convolution inverses must coincide.

Also note that:

1.12
=

1.13
= S

1.11
=

S 1.8
= S

We deduce that the antipode is an anti-coalgebra homomorphism. For a proof

that the antipode is an anti-algebra morphism simply flip all the diagrams and

interchange white with black.

Definition 1.21 (Quasitriangularity). A Hopf algebra H is quasitriangular if there

is an invertible element R ∈ H ⊗H satisfying the following equations:

R
=

R
(1.16)
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R
=

R

R

(1.17)

R
=

R

R

(1.18)

R is called the ‘universal R-matrix’, and it can be thought as controlling the non-

cocommutativity of the Hopf algebra. Quasitriangular Hopf algebras are sometimes

called Quantum groups. We will see that they exhibit topological behaviour, as the

following proposition hints to.

Proposition 1.3. The universal R-matrix satisfies the Quantum Yang-Baxter equa-

tion:

R RR

=
R RR

(1.19)

Proof. Making use of isotopy invariance we get:

R RR

= R

R

R

1.17
= R

R

1.16
= R

R

1.17
=

R

R

R =
R RR

Example 1.7. The most trivial example of quasitriangular Hopf algebras are the

cocommutative ones. It is easy to check that if H is cocommutative, it is quasitri-

angular with as R-matrix.

We will only be considering finite dimensional Hopf Algebras, as for finite di-

mensional vector spaces, these always have duals.

Definition 1.22 (Dual Hopf Algebra). For a finite dimensional Hopf Algebra H

the dual Hopf algebra is the vector space H? of linear functionals on H with Hopf

Algebra structure given by transposing all of the structure.

Given any finite dimensional Hopf algebra H with invertible antipode there is

a standard way of constructing a Quasitriangular Hopf Algebra first introduced by

Drinfeld [11]. It will be implicit from now on that all Hopf algebras (and vector

spaces) are finite-dimensional unless stated otherwise.
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Definition 1.23 (Quantum double of a Hopf algebra). The quantum double of a

finite dimensional Hopf algebra (H,µ, 1,∆, ε, S) with invertible antipode is the vector

space H ⊗H?, with the following structure:

• multiplication and unit:

S

;

• comultiplication and counit:

;

• antipode:

S S−1

It is shown in [26] that this is indeed a Hopf algebra and that it is quasitriangular

with universal R-matrix:

Physically we will see that quasitriangular Hopf algebras allow to talk about local

symmetries and exchange statistics on the same footing [37]. In particular if the

R-matrix is entangled (as for the quantum double above), the exchange statistics

can be highly non-trivial, in which case they will describe the braiding of anyons.

1.3 Representations of Hopf algebras

Recall that a group describes the symmetries of some space X when it acts on it

(classically X is taken to be a set). If we apply the same reasoning to Hopf Algebras

we have to make H act on some quantum state space (i.e Hilbert space). So our

object of study is not H on its own but rather a module (or representation) of H.

Definition 1.24 (Module). Let H be a bialgebra, a (left) H-module (or representa-

tion of H) is a finite dimensional vector space V together with a (left) action of H

on V ,
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VH

satisfying the following conditions:

= (1.20)

= (1.21)

A right H-module is defined similarly with a right H-action.

Suppose V and W are representations of H, then we say f : V → W (a linear

map) is a H-module homomorphism (or intertwiner) if:

V

W

f
=

V

f

W

(1.22)

Where the black square denotes the action of H on W .

Dually we can define H-comodules and H-comodule homorphisms as follows.

Definition 1.25 (Comodule). Let H be bialgebra, an H-comodule is a finite dimen-

sional vector space V together with a coaction of H on V ,

V

H

satisfying the following conditions:

= (1.23)
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= (1.24)

A right H-comodule is defined similarly with a right H-coaction. And H-comodule

homomorphisms are linear maps which commute with the H-coaction.

Remark Although Hopf algebras H : Hopf → V ect are allowed to be infinite

dimensional, we will only consider finite dimensional modules and comodules as

defined above. Also we do not distinguish between representations and modules.

Let us consider, the category Rep(H) where objects are representations of H and

morphisms intertwiners. It is easy to see that the axioms of a category are satisfied,

composition is just lifted from vector spaces. This category has really nice structure

induced from the defining axioms of hopf algebras.

Proposition 1.4. Rep(H) is a monoidal category for any bialgebra H with tensor

unit the trivial one-dimensional representation (C, ).

Proof. Given H-modules V and W (with white and black actions respectively),

V ⊗W has natural H-module structure induced by the comultiplication:

VH W

And V ⊗W with this action is indeed a module as:

1.9
=

1.20
=

Also:

1.10
=

1.21
=

Showing that (C, ) is the tensor unit is a trivial application of the counit law.

Proposition 1.5. If H is cocommutative, then Rep(H) is symmetric.

22



Proof. Cocommutativity means:

= (1.25)

So the symmetry morphism on V ⊗W from V ect is an intertwiner:

=
1.25
=

Recall that when H is cocommutative, it is trivially quasitriangular. The follow-

ing is an important generalisation of the previous result.

Proposition 1.6. If H is quasitriangular, then Rep(H) is braided.

Proof. For any H-modules V and W , using the symmetry morphism from V ect

define:

W V
:=

R

(1.26)

V W
=

R−1

(1.27)

It is easy to see these are inverses of each other, we first need to check they are

intertwiners.

R

1.20
=

R

1.16
=

R

1.20
=

R
=

R

And a similar proof works for the inverse. Now we need to show that the coherence

conditions (i.e the hexagon axioms) are satisfied. The first hexagon equation follows
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from 1.17:

=
R

1.17
=

R

R

1.20
= R

R

=

And similarly the second hexagon equation follows from (1.18).

Proposition 1.7. If H is a Hopf algebra, then Rep(H) is left-rigid.

Proof. For any H-module V let V ? be its dual in V ect, we can define a dual H-action

on V ? using the antipode:

L

H V ?

:=

HV ?

S (1.28)

Then the usual cups and caps from FV ect are intertwiners.

S

1.20
=

S

1.13
=

1.21
=

A similar derivation holds for the cap.

We can see that the proof relies on the existence of the antipode. If a skew-

antipode S̄ exists, Rep(H) is right-rigid, where the right dual is defined:

R

HV ?

:=
HV ?

S̄

(1.29)

The proof that this choice works is very similar to the one above. In particular, S̄

exists when the antipode is an invertible morphism as we can define S̄ = S − S−1

If the antipode coincides with the skew antipode then Rep(H) then left and right

duals in Rep(H) coincide, we say it is rigid.

In the following chapters we will frequently use the notion of a comodule. We

have only talked about the structure of the category of H-modules but all this

structure can be shown to apply to H-comodules as well. For instance the category

of H-comodules is monoidal with tensor product given by:
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Here we give a brief argument. Note that if we flip the axioms of a Hopf algebra

upside down we obtain the axioms back. An H-comodule is precisely the flipped

version of an H-module, therefore all the structure of the category of H modules is

also the structure of H-comodules. The definitions and proofs are simply obtained

by flipping the diagrams and interchanging white with black.

Tannaka duality

Here we give a very brief exposition of Tannaka reconstruction meant as a motiva-

tion for the study of Hopf Algebras. We wont prove the reconstruction theorems,

surveys on Tannaka duality are given by [38] and [19].

Reconstruction results are recipes which produce all the examples of a class of cate-

gories (i.e categories with some fixed structure) from simpler mathematical objects.

As we have seen in the previous sections, the structure of categories of H-modules is

induced from the axioms of the Hopf Algebra H. It is surprising that Hopf algebras

underly most of the categories with this structure.

Theorem 1.8 (Tannaka reconstruction). • Any monoidal category C equipped

with a fiber functor (i.e a strict monoidal functor) U : C → V ect is equivalent

to Rep(B) where B is a bialgebra.

• Any (braided) rigid monoidal category equipped with a fiber functor (here this

means strict (braided) rigid monoidal functor) to V ect is equivalent to Rep(H)

for some (quasitriangular) Hopf algebra H.

Note that any category can be seen as a process theory in the sense of [1] and

[10]. Objects are systems and morphisms are their possible physical evolutions. The

tensor product of a monoidal category can then be regarded as a way of forming

composed systems. Quantum systems usually exhibit duality (particle, antiparticle

pairs) and entanglement which are captured by the rigid structure of the category.

From this perspective, this reconstruction result has an interesting physical interpre-

tation. It says that any physical theory based on vector spaces (monoidal category

with fiber functor) is completely determined by the symmetries of the systems under

consideration (the algebra structure). In the next section we will take this reasoning

further to study physical theories of certain topological quantum systems.
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Chapter 2

The Algebra of Anyons

In this chapter we introduce the physics of Anyons using the framework previously

developed to define categorical models for theories of these particles. In section

2.1 we introduce the physics and make the link with braided fusion categories, in

section 2.2 we develop the categorical formalism and in section 2.3 we characterise

the Drinfeld center construction as a quantization procedure. For an introduction

to the physics of anyons consider the foundational paper [22] or Simon’s notes [36],

for a categorical presentation [32] and for a survey of the mathematical aspects of

anyons [34].

To understand how anyons arise physically, let us consider n indistinguishable par-

ticles evolving in space. The quantum amplitude for a space-time evolution of the

system will depend on the topology of the particle word-lines and not on the de-

tailed geometry. This means that isotopic space-time evolution will yield the same

amplitude. To formalize the situation suppose we have n indistinguishable particles

in D dimensions, the configuration space can be written as:

C = (RnD −∆)/Sn

where ∆ is the space of coincidences (where at least two of the n particles occupy

the same position in RD). We are quotienting the space by Sn to account for the

indistinguishability of the particles (i.e we do not care about the order of the n

coordinates in D dimensions). Let us fix the starting and endpoint in the configura-

tion space, the space of paths from starting to endpoint divides C into topologically

distinct classes, described by the fundamental group π1(C). These classes account

for the different possible exchange statistics of the particles.

We can then describe the evolution of the wave function for the system via unitary

transformations induced from the element of the fundamental group corresponding

to particles word-lines. In mathematical terms this corresponds to a representation
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of π1(C).

If space-time has D = 3 + 1 dimensions, the topological class of paths is completely

determined by the corresponding permutation of the particles, because there are

no knots in 4 dimensions. Therefore the evolution of the system under particle ex-

changes will be described by a representation of the symmetric group Sn. In 2 + 1

dimensions we have more exotic behaviour, as the paths in configuration space can

braid. The time evolution of the wave function is then described by a representation

of the braid group on n strands, denoted Bn.

Definition 2.1 (Braid group). The braid group on n strands Bn is the group gen-

erated by {σi : i = 1, .., n− 1} satisfying the following relations:

• σiσj = σjσi for i+ 1 < j

• σiσi+1σi = σi+1σiσi+1 for 1 < i < n.

The second relation is called Yang-Baxter equation and can be drawn as follows:

i− 1 i i+ 1

=

i− 1 i i+ 1

(2.1)

• Abelian case

We say the system is abelian if the wave function lives in a one-dimensional represen-

tation of the group of paths in configuration space. In 3 + 1 dimensions, this means

we have to consider the one-dimensional representations of Sn. Note that there are

only two possibilities (namely the trivial and the sign representations) corresponding

to the two possible types of particle statistics in 3 + 1 dimensions (Bose and Fermi

statistics respectively). In 2 + 1 dimensions we have many more possibilities as the

evolution of the wave function will be described by a one-dimensional representation

of the braid group Bn. There are infinitely many one dimensional representations

of the braid group connecting the fermions and bosons case. These are described by

a single parameter θ. Indeed any of the σi must be represented by a phase and it is

easy to show, using 2.1, that all n phases have to be the same. Systems described

by one-dimensional representations of Bn are called abelian anyons.

• Non-abelian case
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In the non-abelian case, the wave function lives in a higher-dimensional representa-

tion of π1(C). In 3 + 1 dimensions again there only two types of exchange statistics.

In 2 + 1 dimensions it is much harder to obtain a classification of all possible be-

haviours under exchange. We will instead construct a procedure to obtain general

theories of anyons. This means we will build a class of categories that model anyonic

behaviour and induce representations of Bn. As hinted by Tannaka duality these

will be induced by quasitriangular Hopf algebras and the universal R-matrix will

play an important role in the description of the exchange statistics.

2.1 Models of anyons

This section is inspired from [32] and appendix E of [22]. We motivate the study of

braided fusion categories, showing how they arise naturally as models of anyons.

We want to construct a category C that models the behaviour of anyons. Ojects of

C will correspond to quantum systems and morphisms to their possible evolutions,

or to the processes we can perform on them.

Let us first set a finite set of labels I = {a, b, c...} of distinct particle types, these

will be objects of C. In our theory we must be able to consider many particles at

the same time, so C must be monoidal [10]. The unit of the tensor 1 corresponds

to the vacuum particle type (or ”no-particle”) and must be within our labels. So

for the moment our theory is a monoidal category C and we can already use the

diagrammatic language. A particle of type a evolving trivially in time is denoted:

a

Where we have adopted the convention that time flows upwards. Any particle a

comes with its antiparticle a∗ which we can picture as a particle of type a travelling

backwards in time.

a

It has the property of fusing to the vacuum when it encounters a. Dually the vacuum

can yield a particle-antiparticle pair, so we have cups and caps morphisms

Categorically this corresponds to a rigid structure on C, where we have assumed that

every object has two-sided duals. We will also assume the category is well behaved:
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it is spherical and 1∗ = 1. This allows us to define the quantum numbers for each

particle type a to be the following scalar:

da := tr(ida) = a (2.2)

At this point we need to linearise the theory to take superpositions into account.

This means we make C into a rigid tensor category (see appendix). We have biprod-

ucts ⊕ to account for superpositions. Two particles of types a and b can fuse to a

third particle of type c. So we have fusion morphisms:

a b

c
φ

Similarly a particle c can split to give two particles a and b. And C contains splitting

morphism:

a b

c
ψ

In order for the fusions to behave well with superpositions we must require that our

labels for particle types be simple objects in the category and all objects decompose

as direct sums of simple ones ; we say C is semisimple (see the appendix).

Definition 2.2 (Fusion category). A fusion category is a finite semisimple C-linear

tensor category with two sided duals.

At this point, our category C is a spherical fusion category and the fusion rules

look like this:

a⊗ b ' ⊕cN c
abc (2.3)

Where N c
ab ∈ N. This defines a matrix for any a simple indexed by simple objects

i, j ∈ I:

(Na)i,j = Na
ij

We can also define the dimension of the theory C as the following scalar:

dim(C) =
∑
i∈I

d2i

Now we know that hom-sets in our category form vector spaces. The fusion mor-

phisms (φ above) are states of the fusion vector spaces V c
ab and the splitting mor-

phisms (ψ above) are states of the splitting spaces denoted V ab
c . In the case of
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abelian anyons all these spaces are one-dimensional, if they have higher dimension

the anyons are non-abelian. In section 3.1 we will see that these spaces are where

topological quantum computation takes place. The information of the theory can

be captured by few matrices which are defined on the fusion or splitting spaces. We

start by the F -matrix which contains the information of the fusions interacting with

the quasi-associativity of the tensor product.

Definition 2.3 (F-matrix). Given particles types a,b,c we have two ways of fusing

them to obtain particle type e, the matrix F e
abc : ⊕dV d

ab ⊗ V e
dc → ⊕fV e

af ⊗ V
f
bc is the

canonical morphism:

a b c

d
e

F eabc−−→
a b c

f
e

(2.4)

Physically the domain and codomain of the F -matrix correspond to a single

fusion space V e
abc. In all interesting cases (see Definition 3.2), the F -matrix is a

unitary and corresponds to the canonical change of basis for V e
abc.The possibilities

for the F -matrices are constrained by the pentagon axiom of a monoidal category,

it corresponds to a matrix representation of the associators.

We still have one important question to ask to the theory, what happens when the

position of two particles is exchanged? To answer this question the theory must have

a braided structure and we obtain a braided fusion category. The braided structure

determines the long-distance, topological interactions between particles. Braided

fusion categories induce representations of the braid group Bn, given our discussion

at the beginning of this chapter, we see that they are very good candidates for

describing theories of anyons. The braided structure is captured by the following

piece of data:

Definition 2.4 (R-matrix). Given particle types a, b and c the matrix Rc
ab : V c

ba →
V c
ab is the map defined by:

b a

c
φ = Rc

ab
a b

c
φ (2.5)

From the first section we know that sphericality of the theory, interacting with

the braided structure yields a ribbon structure. The twist θ has physical significance,

it can be seen as a rotation of the particle and in most interesting cases it will be

non-trivial.

In the case of abelian anyons, the twist is just a global phase, if we denote by ha
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the topological spin of the particle then θa = e2πiha is the twist factor of a. In this

scenario, the R-matrices are scalars and it is easy to see, using the definition of the

twist, that the R coefficients and the twist factors are related by:

Rc
abR

c
ba =

θc
θaθb

These coefficients are also constrained by the hexagon axiom of braided monoidal

categories. One way to build theories of anyons, is to start by choosing fusion

coefficients given by the N matrices, then constructing R matrices, twist factors

and F matrices which satisfy both hexagon and pentagon axioms. However, these

constraints do not fix R and F uniquely.

Example 2.1 (G-graded vector spaces). Suppose we start from a set of labels and

define the fusions to form a group. 1 is the identity particle type, for any particle

type a, a∗ will be its inverse. We have defined the skeleton of a spherical fusion

category, which we obtain by linearising, i.e taking a fiber functor to V ect. We

obtain the category V ecG, of G graded vector spaces over C. The category V ecG

for G a group is a symmetric spherical fusion category. Linearity and tensor are

given by the underlying V ect structure, simple objects Vg are one-dimensional and

indexed by elements g ∈ G, duality is proved by using the group inverse and fusions

are given by the group multiplication.

Vg ⊗ Vh ' Vgh

In this case both the F and R matrices are trivial.

Tannaka duality hints that this should be a category of representations and indeed it

is easy to show that V ecG ' Rep(Func(G)) where Func(G) is the function algebra

on G.

For G = Z2 we have two irreducible representations τ+ and τ−, both one dimensional

with the obvious fusion rules given by the cyclic group of order 2.

Proposition 2.1. If H is a finite dimensional, semisimple, quasitriangular Hopf

algebra, then Rep(H) is a braided fusion category and dim(Rep(H)) = dim(H).

Proof. Rep(H) is a fusion category from Theorem A.1 and from Proposition 1.6 we

know Rep(H) is braided.

In 1.3, we discussed how a representation V of a Hopf algebra H can be under-

stood as a quantum state space restricted by symmetries captured by H. When H

is quasitriangular, Proposition 2.1, implies that the information of the braiding of
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our quantum systems is fully contained in H. This means that H not only describes

the symmetries of the system V under isolation but also its long-range interaction

with other systems under exchange. The proof of Proposition 1.6 contains the form

of such interaction, obtained from the universal R-matrix from the definition of qua-

sitriangularity which perfectly matches the R-matrix of definition 2.4 . We see that

when the R-atrix is separable, the interaction only results in a global phase. If the

R-matrix is entangled more interesting interactions can arise from braiding. We will

take this discussion further in section 2.3.

Proposition 2.1 gives us a way of building theories of anyons from Hopf algebras.

The first example that comes to mind is that of a group algebra CG. So let us

suppose the theory is described by the category RepG. First consider the object

V = CG. It is known that CG ' ⊕i∈IXi ⊗ X∗i . Simple objects Xi correspond to

particle types so V can be seen as the completely mixed state. This object (i.e the

vector space with it’s G-action) carries all the information of the theory (by Tan-

naka duality) and indeed we could study the theory by just considering this algebra.

We can think of elements of G as particle subtypes, particle types correspond to

conjugacy classes, a state v ∈ V is a superposition of particle subtypes. The action

of G permutes the basis vectors, and corresponds to fusion. So acting with g ∈ G
on a state v ∈ V corresponds to fusing a particle of type g with one that is in a

superposition v of particle types.

In the case where G is abelian all irreducible representations are one dimensional,

each corresponding to an element of the group. So really Rep(G) ' V ecG and

behaves exactly like CG (without distinction between particle types and subtypes).

This case is perhaps interesting philosophically as the representations of our symme-

tries have the same structure as the symmetries themselves [cite majid self-duality].

From a computational perspective it is a trivial situation, as only classical processes

can be performed (no entanglement is possible).

If G is not abelian we must have a higher dimensional irreducible representation of

G. So we could obtain more interesting processes but from a topological quantum

perspective it remains a trivial case as no computational power can be obtained

from the braided structure. This is because RepG is symmetric as we have seen

in the first section. Physically, we have seen that symmetric exchange of particles

applies to fermions and bosons, from a topological perspective those types of parti-

cles can be seen as degenerate cases of anyons. Groups are therefore not enough to

describe interesting anyon theories. In the next section we pin down a smaller class

of categories which correspond to non-degenerate theories of anyons.
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2.2 Modular categories

In this section we define modular categories and state a few results that we will use

in the next section. As we have seen, braided fusion categories are well suited to

describe theories of anyons. These form a big class of categories, some of which are

uninteresting from the physical point of view. To distinguish between them we can

place braided fusion categories in a spectrum by asking what their symmetric center

Z2 is.

Definition 2.5 (Symmetric center). If C is a monoidal category, the symmetric

center Z2(C) is the full subcategory of C defined by:

obj Z2(C) = {X ∈ C : cX,Y ◦ cY,X = idY⊗X ∀Y ∈ C}

It is easy to see that C is symmetric iff Z2(C) = C.

Definition 2.6 (Modular categories). A braided fusion category is:

• pre-modular if it is spherical,

• non-degenerate if Z2(C) is trivial (i.e it only contains direct sums of the tensor

unit as objects, i.e every simple object is isomorphic to the tensor unit)

• modular if it is pre-modular and non-degenerate.

The two opposite ends of this spectrum are symmetric fusion categories on one

side (such that Z2(C) = C) and modular tensor categories (as defined). In the

first case, we have only symmetric exchange of quantum systems which means all

particles in the theory are either bosons or fermions. Such categories exhibit no

topological behaviour. Modular categories are the opposite situation, the theory

doesn’t contain any bosons or fermions but only non-degenerate anyons (i.e anyons

with non-trivial twist). Modular categories are very well-behaved theories as we can

assign to them the so called modular S-matrix which will contain all the information

on fusion rules as well as the braided structure.

Definition 2.7 (S-matrix). Let C be a spherical braided fusion category and let I

be the set of isomorphism classes of simple objects in C. We define Si,j for i, j ∈ I
to be the following:

Si,j := tr(BXj ,Xi ◦BXi,Xj) =

XjXi

(2.6)
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Remark Note that it doesn’t matter on which side we take the trace by sphericality.

The following matrix contains the information of the twist structure on our modular

category as it can be shown that the twist factors θi defined in the previous section

are precisely the diagonal entries of the T -matrix.

Definition 2.8 (T -matrix). Let C be a spherical braided fusion category, we define

the T matrix (indexed by I) given by

Ti,j := δi,jtr(BXi,Xj) = δi,j
XjXi

(2.7)

Remark Categories of this type are called modular as it can be shown that S and

T satisfy the same relations as the generators of the modular group SL(2,Z), so

that any modular category induces a representation of SL(2,Z). It is a conjecture

that the S and T matrices determine modular categories up to ribbon equivalence.

Definition 2.9 (Mueger centralizer). If D is a full (tensor) subcategory of C can

define CC(D) to be the full subcategory such that

obj(CC(D)) = {X ∈ obj(C) : BX,Y ◦BY,X = idX⊗Y }

It is easy to check this is indeed a monoidal subcategory and it is replete (i.e closed

under isomorphisms) [29]. Also note that Z2(C) = CC(C). The following result is one

of the most important pure category theoretic results on modular categories and we

will need it for the discussion on the Drinfeld center. We also state other important

results demonstrating the importance of the S-matrix in modular categories.

Theorem 2.2 (Mueger decomposition). [29, Theorem 4.2] Let C be a modular cat-

egory and K a semisimple full tensor subcategory, then there is an equivalence of

braided fusion categories:

C ' K � CC(K)

Theorem 2.3. C is modular iff the S-matrix is invertible.

Proof. Suppose C is not modular, then Z2(C) is non-trivial =⇒ there is a non-

trivial simple object a such that its braiding is the symmetry. Therefore Sa,i = dadi

for all i ∈ I, but also S1,i = di and so the first and ath rows of S are proportional

=⇒ S is not invertible.

The other direction is less easy and can be found in [5] and [29].

Proposition 2.4. [5, Proposition 3.1.12] The modular S-matrix diagonalises the

N-matrix.
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Therefore the S-matrix contain all the information of the fusion rules, and with

some algebraic manipulation (which can be found in [5]) we obtain the well-known

Verlinde formula for the fusion coefficients:

Nk
ij =

∑
r∈I

SirSjrSkr
S1r

(2.8)

Remark Given any modular category we can use the Turaev-Viro construction [6],

which yields a 2 + 1 topological quantum field theory. For our purposes we only

need to view the modular category as a process theory of anyons in the sense of [1]

and we won’t introduce the TQFT formalism.

Example 2.2 (Fibonacci anyons). The category Fib of Fibonacci anyons is one of

the most popular examples of modular categories as it has a purely algebraic formu-

lation. Anyons of this type are non-abelian and complete for topological quantum

computation [32]. We will meet them again in the next chapter.

Fib has only two simple objects: τ and the vacuum type 1. The fusion rules are

given by:

1⊗ τ = τ = τ ⊗ 1

τ ⊗ τ = 1⊕ τ

It turns out that those equations together with the hexagon and pentagon constraints

completely determine a modular category [36].

2.3 The Drinfeld center

In this section we introduce a general construction that turns braided fusion cat-

egories into modular categories, and we show its relationship with the Quantum

double construction on a Hopf Algebra introduced in the first chapter. The proofs

and results of this section were developed with Amar Hadzihasanovic.

Topological dependencies between objects in fusion categories are captured by the

braided structure. Let us fix some definitions before discussing the Drinfeld con-

struction.

Definition 2.10 (Half-braiding). A half-braiding on some object X in a monoidal

category C is a natural isomorphism

eX : X ⊗ (−)⇒ (−)⊗X

satisfying the compatibility condition:

eXY⊗Z = (idY ⊗ eXZ ) ◦ (eXY ⊗ idZ)
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Definition 2.11 (Drinfeld center). The braided (Drinfeld) center of a monoidal

category C is the category Z(C) with objects pairs (X, eX) where X ∈ C and eX is

a half-braiding, and with morphisms given by the morphisms of C which commute

with the half-braiding.

Definition 2.12 (Yetter-Drinfeld modules). Let H be a bialgebra, the category DlrH
is the category of left-right Yetter-Drinfeld modules where objects are left H-modules

which are simultaneously right H-comodules satisfying the following compatibility

condition:

= (2.9)

where the white box denotes the right H-coaction and the black box denotes the left

H-action. Morphisms of DlrH are both H-module and H-comodule morphisms. Left-

left Yetter-Drinfeld modules are defined in the obvious way and form a category DllH .

The compatibility condition is then the following:

= (2.10)

Proposition 2.5. Let C be a monoidal category, then Z(C) is braided monoidal.

Proof. It is easy to check that defining the tensor as (X ⊗ Y, eX⊗YZ = (eXZ ⊗ idY ) ◦
(idX ⊗ eY (Z)) and the braiding as eXY yields a braided monoidal structure on Z(C).

The following proposition hints to the relationship between the Drinfeld center

and the quantum double.

Proposition 2.6. [31, Theorem 7.1] The Drinfeld center of a spherical fusion cat-

egory is modular. And dim(Z(C)) = dim(C)2

In general Z(C) is not symmetric as we will see, but in the case of V ect the

Drinfeld construction is trivial.

Proposition 2.7. Z(V ect) ' V ect

Proof. Using the Mueger decomposition (Theorem 2.2), note that Z(V ect) is mod-

ular and V ect is a full fusion subcategory of Z(V ect), therefore

Z(V ect) ' V ect� CZ(V ect)(V ect)

But if (A, eA) is an object of CZ(V ect)(V ect) then any component eAB must be the

inverse of the symmetry morphism on A⊗B =⇒ it must be the symmetry morphism

=⇒ CZ(V ect)(V ect) ' V ect and so Z(V ect) ' V ect.
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We now aim to prove theorems 2.12 and 2.13 that relate Yetter-Drinfeld modules

and the Drinfeld center construction.

Fix a bialgebra H and suppose
(
V,

)
∈ obj(Rep(H)) and (V, eV ) is in Z(Rep(H)).

Note that H has a natural H-module structure given by right multiplication. Con-

sider the component of the half-braiding of H at V .

H V

In the arguments that follow we will use repeatedly the following trick which we

state as a Lemma, it exploits the copy of V ect which lives inside any category of

representations.

Lemma 2.8. For any W object of Rep(H) with white action and V as above.

H W V

=

H W V

(2.11)

H W V

=

H W V

(2.12)

H WV

=

H WV

(2.13)

Proof. Note that
(
H ⊗W,

)
is in Rep(H) and

:
(
H ⊗W,

)
→
(
W,

)
is an intertwiner by the module law. Also it is easy to check that the symmetry

morphism lifted from V ect (
W,

)
⊗ V → V ⊗

(
W,

)
is an intertwiner. And it follows from Z(V ect) = V ect that it must be the W -

component (where W has the trivial action) of the half braiding on V as W lives in

the copy of V ect in Rep(H). The equations then follow from naturality of the half

-braiding.
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Define a right coaction of H on V :

H

V

:= (2.14)

Note that, from the bialgebra laws, and (seen as morphisms on the H-module

H) are intertwiners in Rep(H). Therefore by naturality of the half braiding we get:

= = (2.15)

and

= = (2.16)

So that the coaction indeed defines a left H-comodule.

Claim 1.

= (2.17)

Proof. As the braiding is an intertwiner, it commutes with the action of H on V ⊗H,

therefore:

=
1.6
= (2.18)

Therefore by Lemma 2.8 with W := H (with the module structure given by multi-

plication):

2.11
= = (2.19)

We have defined a functor F1 : Z(Rep(H))→ DlrH which is the identity on arrows

(hence faithful) and sends (V, eV ) to the left-right Yetter-Drinfeld module with black

H action and white H coaction. To see this, note that if an H-module morphism f

is in Z(Rep(H)) then it commutes with the half-brading, in particular it commutes

with the H-component of the half-braiding and therefore it commutes with the H-

coaction as defined.

Similarly we can define a functor F2 : Z(Rep(H)) → DllH by considering the H
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component of the half braiding on V and defining the following left-coaction:

H

V

:= (2.20)

Claim 2.

= (2.21)

Proof. The proof is very similar to that of the previous claim. Using the fact that

the braid is an intertwiner we obtain

= (2.22)

Then using the unit law and the same trick as before we see that

=
2.13
= (2.23)

For the same reasons as for F1, F2 is faithful. To show F1 and F2 are equivalences

of categories we still need to show they are full and essentially surjective.

Proposition 2.9. If H is a bialgebra, then F1 : Z(Rep(H)) → DlrH and F2 :

Z(Rep(H))→ DllH are full and faithful.

Proof. Note that in all previous claims and definitions we have only assumed that

H is a bialgebra. We have already shown that F1 and F2 are faithful, it remains to

show they are full.

Suppose f is a morphism V → W in DlrH , then using the Lemma we see that for any

Z in Rep(H) with gray H-action:

f

Z V

1.21
= f

2.11
= f (2.24)
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And by definition of f , it commutes with the coaction so that:

=
f 2.11

1.21
=

f
(2.25)

So f commutes with the coaction =⇒ it is a morphism in Z(Rep(H)). Therefore

F1 is full. And a similar proof applies to F2.

Until now we have only assumed H is a bialgebra.

Proposition 2.10. If H is a Hopf algebra, F1 is essentially surjective.

Proof. To prove this we construct a half braiding for any object V of DlrH which

yields the coaction of the form (2.14).

Fix any object V with white right H-coaction and for any (W, ) define

V W := S (2.26)

(2.26) is an isomorphism as

W V :=
W V

(2.27)

is an inverse by the hopf law. It is natural in W as all morphisms are intertwiners

(so they commute with the H-action on W ). And it satisfies the compatibility

condition by definition of H-comodule. Clearly setting W = H in (2.27) with the

natural left-multiplication action, and inserting on the left of the tensor yields

the H-coaction (2.14).

Proposition 2.11. If H has a skew antipode, F2 is essentially surjective.

Proof. Define

V W := (2.28)

The same argument as the previous proposition applies defining the inverse using

the skew antipode S̄:

W V := S̄ (2.29)

We have proved the following theorem.
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Theorem 2.12. Let H be a bialgebra. If H is a Hopf algebra then Z(RepH) ' DlrH .

If H has a skew antipode then Z(RepH) ' DllH .

We now want to obtain a generalization of Theorem 2.12 to the case where H

is only a bialgebra. To do this we need to make the two kinds of Yetter Drinfeld

modules interact with one another.

Definition 2.13 (Interacting Yetter-Drinfeld modules). For a bialgebra H, the cat-

egory YDH has objects given by left H-modules which are also left H-comodules and

right H-comodules such that both the left-left and left-right Yetter Drinfeld compat-

ibility conditions are satisfied and the comodules structures additionally satisfy:

= ; = (2.30)

We now define a functor F : Z(Rep(H))→ YDH in a similar fashion to F1 and

F2 as above. Fix any object V of Z(Rep(H)) and consider the component eVH of the

half braiding on V at H.

V H

Define a left H-comodule structure on V by:

H

V

:= (2.31)

Note that this is precisely the left H-comodule structure in the definition of F2. As

the half-braiding on V is a natural isomorphism we can consider the inverse of the

H component:

H V

And define the right H-comodule structure on V by:

H

V

:= (2.32)
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In general this is not the same coaction as in the definition of F1. (2.31) and (2.32)

define a mapping F : Z(Rep(H))→ YDH for a bialgebra H. We now show F is an

equivalence of categories.

• To see that F is well-defined on objects note that (2.31) and (2.32) satisfy left-

left and left-right Yetter-Drinfeld compatibility conditions (resp.) by claim 2

and an adaptation of claim 1 where overcrossing is replaced by undercrossing

(resp.). The additional compatibility conditions of YDH are easily seen to

hold.Indeed using the Lemma 2.8 we have

2.13
= = (2.33)

• As for F1 and F2 we can define F to be identity on arrows. This is because if

some linear map commutes with the half braiding then it commutes with both

left and right H-coactions. So F is well-defined on arrows and it is faithful.

• The proof that F is full is the same as for Proposition 2.9, except it uses the

(2.12) and (2.13) instead of (2.11) from Lemma 2.8.

• To see F is essentially surjective. Fix any object V of YDH (with white left

and right comodule structures). Then for any (W, ) in Rep(H) define:

V W := ; W V := (2.34)

These are inverses of each other as:

=
1.20
=

2.30
= (2.35)

and similarly

= (2.36)

from the second compatibility condition of interacting Yetter-Drinfeld mod-

ules. Naturality is easy to check. And setting W = H and plugging units

in the H-components we recover the left and right H-coactions defined.

This proves the following result.

Theorem 2.13. If H is a bialgebra then Z(Rep(H)) ' YDH .
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If H is a hopf algebra or has a skew antipode we recover Propositions 2.10 and

2.11. Indeed given a skew antipode and left H-comodule structure we can define

:=
S̄

(2.37)

to obtain a right H-comodule structure. And similarly given an antipode and a

right H-comodule structure we obtain a left H-comodule structure by defining:

:=
S

(2.38)

When H is a finite-dimensional Hopf algebra we obtain the better known results

below.

Theorem 2.14. If H is a finite dimensional Hopf algebra with invertible antipode

Z(RepH) ' RepDH

Proof. Note that defining DH requires the antipode to be invertible (it is used

in the definition of the antipode for DH), so such condition is inevitable. As H

has invertible antipode it also has a skew antipode. Therefore we already know

Z(Rep(H)) ' DllH ' DlrH From theorem 2.12. So it is sufficient to show that

Rep(DH) ' DllH . Fix an object of DllH with black H-action and white H-coaction.

Making use of the antipode and the compatibility condition we obtain:

S

2.10
= S

1.13
= (2.39)

As H is finite dimensional, we can define the action of DH on V as follows (where

thick wires carry DH and thin wires carry H)

DH V
:= (2.40)

This action gives V a DH-module structure as:

2.39
= S

1.20
= S (2.41)

Now it is easy to see that morphisms commute with the DH-action iff they commute
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with the H-action and H-coaction. So we have defined a fully faithful embedding of

DllH into Rep(DH). To see it is essentially surjective note that, given a DH-action

on V , we can recover the H-action by plugging the counit in the H? component of

the DH-action and the H-coaction by plugging the unit in the H-component and

bending the H? wire up. It remains to check that those indeed define a left-left

Yetter-Drinfeld module in all cases, i.e that the compatibility condition is satisfied.

And it is indeed the case:

1.20
=

1.13
= S

1.5
1.7
= S 1.20

= (2.42)

Recall our discussion on the universal R-matrix of quasitriangular Hopf algebras

from section 2.1. We noted that when the universal R-matrix is entangled it induces

non-trivial interactions when braiding two representations. Now by the definition of

the quantum double, we know the R-matrix looks like this:

It can be shown that using this R-matrix as in the proof of Proposition 1.6 we

recover the half braiding of Z(Rep(H)). Also note that the R-matrix is entangled,

so that the interaction under braiding is necessarily non-trivial. This means the

braiding is not the symmetry corroborating the fact that Z(Rep(H)) is modular.

We have found many equivalent ways of constructing non-degenerate theories of

anyons. In the next section we will use the simplest examples induced by groups,

justified by the following proposition

Proposition 2.15. If G is a finite non-abelian group then Rep(D(G)) is modular.

Proof. This follows from the fact that Z(Rep(G)) is modular. A direct proof is given

in the third chapter of [5].
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Chapter 3

Quantum Computation

In the previous chapter we saw that categories can be interpreted as physical process

theories. In a similar way, we can interpret objects as data types and morphisms as

computational processes, so that any category corresponds to a theory of compu-

tation. Quantum computation is a model in which data is encoded and processed

on quantum systems. A computation consists of the preparation of some quantum

states, the implementation of some unitary transformation of the system followed

by measurement. Usually this procedure is repeated in order to collect statistics and

approximate density distributions. The unit of information in quantum computa-

tion is called qubit by analogy with the classical bit. A qubit is a two-level quantum

system, that is a Hilbert space of dimension 2 which is denoted by C2. Similarly a

qudit is a d dimensional system Cd.

In section 3.1 we introduce a model of quantum computation based on anyons. The

model, first introduced by Kitaev [21], is obtained by starting with a lattice of par-

ticles and imposing some dynamics (in the form of a Hamiltonian). We will see that

this physical procedure illustrates the categorical construction (Drinfeld center) that

was presented in section 2.3. Quantum computation by anyons has the advantage

of being fault-tolerant and is therefore the object of applied research by Microsoft

[15].

In section 3.2 we discuss the less known model of Permutational Quantum Comput-

ing (PQC) discovered by Jordan [18]. It is by nature a very restricted model, which

was introduced as an argument for the supremacy of quantum over classical com-

putation. Indeed, despite its restrictiveness, it can solve classically hard problems

in polynomial time [18]. Instead of focusing on computational complexity, we will

extract the salient features of PQC into a categorical formalism to identify in what

sense it is ‘restricted’.

Section 3.3 is an illustration of functorial semantics in the context of quantum com-

putation. We use the same modular categories which arise in Kitaev’s construction
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as syntax instead of semantic categories. This results in a description of quantum

gates consisting in braids.

3.1 Topological Quantum Computation

Modular categories are models for Topological Quantum Computation (TQC) in the

sense of [34] or [21]. In TQC, data is encoded in non-abelian anyons and quantum

gates are obtained by braiding those particles. Topologically equivalent braids im-

plement the same quantum process so that small perturbations of particle world-lines

do not affect the computation and gates (and quantum information) are topologi-

cally protected from decoherence. Another reason for studying topological quantum

computation is that some TQC models allow to efficiently approximate the Jones

polynomial, a problem that is believed to be untractable classically.

Definition 3.1 (TQC). A topological quantum computer runs as follows [34]:

1. Creation of anyon pairs from the vacuum to encode the information as a quan-

tum state.

2. Braiding those anyons performs a quantum gate on the state.

3. Fusing neighbouring anyons and observing the resulting anyon type corresponds

to a projective measurement on the system.

The computation result is the approximation to a probability distribution (over

measurement outcomes) obtained by repeating the procedure polynomially many

times and recording the output anyon types. Note that if we postselct on the vacuum

sector to be the output anyon type we are effetively approximating an invariant of

links. Indeed any process in TQC starting and ending in the vacuum sector is a

link, formed by the particle trajectories in space-time (i.e the briading process).

The operations we can perform on a system V are unitaries, so that any braiding

process on n particles induces the evaluation of some unitary representation β → Uβ

of the braid group Bn.

In order to make sure the braiding process is a unitary transformation of the state

space we will assume one further constraint on our categorical model of computation:

unitarity of the braids in the modular category in question.

Definition 3.2 (UMC). A unitary modular category (UMC) is a modular category

where each component of the braiding and of the associators is a unitary.
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This is important for quantum computation as unitaries are the only processes

we can physically implement. Given a UMC C, we have a finite set of data types

I given by the isomorphism classes of simple objects in C. The topological qudit

is usually encoded in some fusion space as follows. We fix some data type a and

consider the fusion of n copies of a. We then choose some output type b on which to

post-select in order to obtain a fusion space V := V b
a⊗n = Hom(a⊗n, b) of dimension

d. We can picture standard basis as a labelled binary fusion trees with b at the

root and a on the n leaves. Each binary tree shape (with n leaves) corresponds

to a different bracketing of a⊗n and usually yields distinct bases related to each

other via F -moves. Braiding a pair of type a anyons before fusing is an R-move.

All computational processes on V can be decomposed in sequences of F -moves (re-

bracketing) and R-moves (braiding).

Example 3.1 (Fibonacci anyons). We now look back at example [ref ] on Fibonacci

anyons and show how to compute in the model. Recall we have only two particle

types: the vacuum sector 1 and the non-trivial τ such that:

τ ⊗ τ = 1⊕ τ

τ and 1 are their own anti-particles so we don’t need to distinguish particles and

antiparticles by wrinting arrows on wires. We can write the basis of the two dimen-

sional space τ ⊗ τ as:

τ

τ τ

1

τ τ

The fusion space V τ
τ⊗3 is two dimensional, we will take it as our computational

space. Practically, this corresponds to considering three τ particles with overall

charge (type) τ . This space is our topological qubit and we write the computational

basis as:

τ

τ τ

τ

τ

1

τ τ

τ

τ

Let’s denote by |0〉 , |1〉 these basis states. Another basis is given by fusing the left-

most two anyons first:

τ

τ τ

τ

τ

1

τ τ

τ

τ
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And we denote them by |+〉 , |−〉. These two bases are linked by a unitary 2 × 2

transformation F := F τ
τ⊗3 given by the solution of the following system:

|0〉 = F0+ |+〉+ F0− |−〉

|1〉 = F1+ |+〉+ F1− |−〉

To derive the form of the F -matrix we need to consider the pentagon axiom. It turns

out that for the Fibonacci model the pentagon is enough to derive the F -matrix but

it is not the case in general. The resulting F -matrix is [36]:

F τ
τ⊗3 =

[
φ−1 φ−

1
2

φ−
1
2 −φ−1

]
(3.1)

where φ =
√
5−1
2

. Given the F -matrix and the two hexagon axioms for braided

monoidal categories the possibilities for the R-matrix are few. In this case there is

only one possibility and we obtain the R-matrix:

Rτ
τ⊗3 =

[
e−4πi/5 0

0 −e−2πi/5

]
(3.2)

In [32] it is shown that the Fibonacci model allows universal quantum computation.

This is done by first noting that polynomially many R and F matrices as above can

approximate any unitary on one qubit, and then by constructing a CNOT gate on

two topological qubits.

Kitaev’s quantum double model

Kitaev’s quantum double models originate in [21] and are induced by finite groups

. As we discussed at the beginning of the chapter it will illustrate the Drinfeld

center construction studied in 2.3 and in particular the Z(Rep(G)) ' Rep(DG) for

a group G. In 2.3 we obtained many variations of this result working with the more

general framework of Hopf algebras. In view of these generalisations we will present

analogous variations of Kitaev’s quantum double construction.

Suppose we have particles living in state space H where H is a Hopf algebra (with

black multiplication, white comultiplication and antipode S as usual). We can define

two canonical types of left H-module structures on H given by the right and left
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multiplication as follows:

L+ = ; L− =
s

(3.3)

Right multiplication defines a module by associativity, left multiplication also works

because the antipode is an algebra anti-morphism:

s =

ss

=

ss

(3.4)

Similarly there are two canonical left H-comodule structures on H given by left and

right comultiplication.

T+ = ; T− =

s

(3.5)

And the proofs that these are H-comodules are dual to the previous ones. Kitaev

considers the case where H = CG for some group G. The above module and

comodule structures then yield 4 types of linear operators on CG: Lg±, T h± (using

the notation from [21]), indexed by elements g, h ∈ G, and defined as follows:

Lg+ |z〉 = |gz〉 Lg− |z〉 = |zg−1〉

T h+ |z〉 = δh,z |z〉 T h− |z〉 = δh−1,z |z〉
(3.6)

Note that L operators commute with each other and T operators too. The non-

trivial commutation relations are the following:

Lg+T
h
+ = T gh+ Lg+ Lg+T

h
− = T hg

−1

− Lg+

Lg−T
h
+ = T hg

−1

+ Lg− Lg−T
h
− = T gh− L

g
−

(3.7)

In the general Hopf algebra case those commutation relations correspond to the

following equalities of diagrams, which are easily obtained using the bialgebra law

(1.9) and the fact that the antipode is an algebra and coalgebra anti-morphism

(Proposition 1.2).

= (3.8)
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s

=

s

s (3.9)

s

=
s

s (3.10)

s

s

=
s

s

s

s

(3.11)

We then consider a lattice with oriented edges embedded in some 2D oriented man-

ifold (e.g a sphere or a torus) with particles on the edges. For any vertex s and

adjacent plaquette p, a site is defined as the pair a = (s, p). Let star(a) be the set

of edges adjacent to s and bound(p) = {j1, ..jk} the ordered set of edges adjacent to

plaquette p starting and ending at vertex s. Every edge j ∈ star(s) on the lattice

has an orientation and in [21] is defined Lg(j, s) to be Lg− applied to vertex j when

s is the origin of j and Lg+ otherwise. Similarly T h(j, p) is defined to be T h+ (repec-

tively T h−) if j is on the right (resp. on the left) of j. The following operators are

then defined at each site a of the lattice:

Ag(a) =
∏

j∈star(s)

Lg(j, s)

Ph(a) =
∑

h1...hk=h

k∏
m=1

T hm(jm, p)

(3.12)

We will write the general diagrammatic form of these operators in the next section.

For the moment let us go through Kitaev’s reasoning [21].

From a physical point of view Ph operators can be understood as measuring the

magnetic flux of the system at some site and Ag are local symmetry transformations

on the charge. Flux measurements are projection Ph ∈ CG∗ onto flux sector h. The

allowed residual global symmetry transformations are then implemented via Ag for

g ∈ N(h).

The projectors form a Von Neumann family and satisfy

PhPh′ = δh,h′Ph.
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Operators Ag are global symmetry transformation

AgAh = Agh

and affect the fluxes via conjugation:

AgPh = Pghg−1Ag (3.13)

(this was shown was shown by Kitaev [21]). Operators Ag and Ph generate the

algebra DG. So the quantum double construction allows to capture both global

symmetry transformations and projective measurements in one algebraic structure.

It is easy to check, rewriting the definition, that the following is true.

Proposition 3.1. For any finite group G, its quantum double D(G) is the algebra

generated by {PhAg}h,g∈G with multiplication induced by (3.13), comultiplication and

antipode as defined in [first section].

D(G) has a natural quasi-triangular structure witnessed by the universal R-

matrix R =
∑

g,h∈G Phe⊗ Phg, making RepDG braided.

Kitaev then builds a Hamiltonian for the system and shows that the ground state of

the Hamiltonian is an irreducible representations of DG. Here we will skip this part

of the reasoning and rely on the intuition that the operators Ag and Ph correspond to

the symmetries of the system, i.e the dynamics which are ‘constantly being applied’.

So the allowed processes of the systems are processes that commute with all of those

operators, i.e the system lives in a representation of DG. The ground state of the

Hamiltonian has degeneracy 4g where g is the genus of the surface in which we

embedded the lattice.

In the case of a sphere, g = 0, so there is no degeneracy and the overall system

lives in a one dimensional (trivial) representation of DG, the vacuum sector. An

excitation can arise at some site on the lattice when the constraints given by the

Hamiltonian are violated. In representation theoretic terms this corresponds to the

creation of a state of some higher dimensional irreducible representation of DG.

Those excitations (or quasi-particles) are anyons and can only be created in pairs

(particle-antiparticle pairs). When the lattice is ‘layered’ enough (i.e contains many

particles) we can move those excitations on the lattice (practically this is done by

applying charge and flux operators at given sites on the lattice). All the excitations

can then be fused pairwise to end back in the vacuum sector and obtain fusion results.

There are different possible types of excitations (anyon flavours) we can create on

the lattice, corresponding to different possible violations of the constraints. These

are precisely indexed by the irreducible representations of DG. We can see that we

have obtained a physical setting giving rise to anyons whose behaviour is modeled

51



by the modular category Rep(DG).

In order to understand the possible anyon types in the model, we must study the

irreducible representations of the quantum double finite group algebra DG. This

has been done by Gould [16], who showed that irreducible representations of DG

are obtained in the following way.

Let {Ci}ni=1 be the distinct conjugacy classes in G. To each of those conjugacy classes

corresponds a centralizer subgroup Ni (two choices of representatives for Ci yield

isomorphic centralizer subgroups). Then for any irreducible representation (α, V i
α)

of Ni with basis elements vαj , let Vi,α = CCi ⊗ V i
α, this has basis {|k, vαj 〉}

k∈Ci
j=1,...,dimα

and forms an irreducible representation of D(G) under the action

Phg |k, vαj 〉 = δh,gkg−1 |h, α(h−1gk)vαj 〉 (3.14)

and the {Vi,α} is the complete set of irreducible representations. When G is abelian,

all irreducible representations are one-dimensional and we only have abelian anyons

which are very unlikely to be universal for quantum computation. It was shown by

Kitaev that if G = S5 the model is universal for quantum computation. In [23] the

G = S3 model was described thoroughly but not shown to be universal.

Example 3.2 (Quantum memory). The case where G ' Z2 gives rise to Kitaev’s

toric code. Note that D(Z2) ' C(Z2×Z?2), so that there are 4 irreducible representa-

tions, all of which are 1-dimensional. Each of those corresponds to a different type

of excitation. Let x and y be the generators of the group. The trivial representation

is the trivial excitation (or ‘no excitation’). The other irreducible representations

are obtained by mapping x and y to order 2 elements of C. We obtain two bosons,

when both get sent to −1 or i and one fermions when x 7→ −1 and y 7→ i.

If we implement the construction on a lattice embedded on a torus, we obtain a

model for a topologically protected quantum memory. Consider a (layered enough)

lattice on a torus with spins on the edges. Let C1 and C2 be two cycles. States of

the system are generated by labellings of the lattice with elements of Z2. As shown

by Kitaev, the ground state degeneracy has dimension 4, so that we can think of the

system as storing two qubits of information. If a particle-antiparticle pair is created

at some site on the lattice it will re annihilate at some other site. The world-lines

will form a loop on the torus and we have three possible behaviours. If the loop

can be shrinked to a point, this won’t affect the underlying information otherwise

we obtain two non-trivial operations T1 and T2 affecting the ground state when the

world-lines loop around cycle C1 and C2. If we initialise the lattice in some ground

state it will remain in that state unless a T1 or T2 operation is implemented. If the

lattice is layered enough, it is very unlikely that such processes occur spontaneously,

and therefore the quantum information is protected.
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Generalising the model

We will now try to generalize the above construction to the cases where the Hopf

algebra H is not a group algebra. We will wait before ’bending cables’ (i.e using the

dual Hopf algebra) to see how far we can go without making too many assumptions

on H. This will provide an interesting illustration of the proof given in section 2.3.

Interpreted in this physical context, the Drinfeld construction can be understood as

imposing global (or topological) dependencies on the particles under consideration

(e.g in the form of a Hamiltonian as the one considered by Kitaev) giving rise to

anyonic behaviour.

As above, we have an oriented lattice on a 2D oriented manifold with particles on

the edges taking values in H. For simplicity we will assume the manifold is a sphere

and that the lattice has no loops. Let La be the state space of particles at some site

a = (s, p) (i.e the particles on edges adjacent to s or p with some order that we give

below). We will define a left H-module and a left H-comodule structure on La and

show those satisfy the left-left Yetter-Drinfeld module compatibility condition.

Analogously to [21] we first define an H-module structure L, for j ∈ star(s) ∪
bound(p) given by L− from (3.3) if s is the origin of j ∈ star(s), by L+ if j is not

the origin and j ∈ star(s) and the trivial H-module otherwise. The H-comodule

structure is given by the T+ action from (3.5) if p is on the right of j, by T− if it

is on the left and by the trivial H-comodule otherwise. In his model, Kitaev only

needed to order the edges in bound(p) because the comultiplication of CG is just the

copy map, here we will need some more conventions on the ordering of the edges.

We have bound(p) = {j1, j2, ..., jk} starting and ending at vertex s, then order

star(s) = {i1, i2, ..., in} where i1 = j1 and in = jk also note that we have 4 possible

configurations of vertex s adjacent to plaquette p and we can choose which of the

edges is j1 and which is jk. We choose as follows:

s

pj1

jk s

pjk

j1 s

pj1

jk s

pj1

jk

Then we can define La = Hj1 ⊗ ... ⊗Hjk−1
⊗Hi2 ⊗ ... ⊗Hin where Hm is the copy

of H corresponding to edge m. Each of the Hm’s carries a left H-module and left

H-comodule structure as defined above so that La inherits the tensor product H-

module (given by using the comultiplication of H) and tensor product H-comodule

structure (using the multiplication). We obtain the following result.

Theorem 3.2. If the antipode of H is involutive (i.e S ◦ S = idH), then La is a

left-left Yetter Drinfeld module.
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Proof. We need to check the compatibility condition. First note that for all compo-

nents of La except the first and last one, the H-action and H-coaction commute (as

one of them is trivial). In order to keep our diagrams tidy we will only prove this

for the case where La = Hj1 ⊗Hjk (i.e j = n = 2), but it is easy to generalize the

proof as all other components would trivially commute.

For the first configuration we have:

La

=

s

s
s

3.11
3.10
=

s

s
s

s

s

s

1.13
=

La

(3.15)

Where the last step also uses the fact that S is an involution. For the second

configuration gives:

La

=
s

3.8
3.10
=

s

s
1.13
=

La

(3.16)

For a proof of the remaining two cases flip the two proofs above and interchange

white with black.

Note that this does not require the Hopf algebra to be finite dimensional, but

the construction on the lattice with H infinite-dimensional does not seem physically

meaningful. First of all because it would require having observables with infinitely

many degrees of freedom in a lattice configuration. And second because it would

produce a theory with infinitely many anyon types, violating one of the assumption of

models for TQC. We will discuss this further in relation to permutational quantum

computation in section 3.2. For finite-dimensional H, the above result yields a

generalisation of Kitaev’s original model from groups to Hopf algebras which was

already hinted in his original paper [21] and further developed by several authors (see

for instance the recent conference at the Perimeter institute for theoretical physics:

‘Hopf algebras in Kitaev’s quantum double models’, Waterloo, Canada, July 31

2017). When H = CG we recover the DG-module structure defined by Kitaev from

the equivalence seen in section 2.3.

3.2 Permutational Quantum Computing

This section is about a model of quantum computation introduced by Jordan [18].

It is a highly restricted model of quantum computation which still seems to yield ad-
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vantage over classical computation. For instance, Jordan showed the model allows

to compute some irreducible representations of Sn in polynomial time [18], prob-

lem for which no classical polynomial time algorithm is known. This section is the

beginning of a collaboration with Vojtech Havlicek and consists in a categorical pre-

sentation of permutational quantum computing (PQC). The categorical perspective

puts PQC on a broader picture and highlights its relationship to TQC but hasn’t

yielded interesting results yet.

Jordan’s model

Here we give an exposition of PQC as it appears in [18] and [17]. Let L be an

n-qubit quantum system. Basis states of an n-qubit quantum systems are often

specified by listing eigenvalues of Pauli-Z operators applied to each qubit, which

is known as computational basis. Permutational quantum computing (PQC) works

with another choice of basis states: eigenstates of complete set of commuting spin

measurements on qubit subsets. Let us fix a finite set I = {1, 2, 3..., n} indexing the

qubits. With a convention that ~ = 1, the spin of the k-th qubit is defined by a

triple:

~Sk =
1

2
(Xk, Yk, Zk) ,

where Xk, Yk and Zk denote the Pauli X,Y and Z operators on the k-th qubit. The

total spin operator of a qubit subset A is given by:

S2
A =

(∑
k∈A

~Sk

)
·

(∑
k∈A

~Sk

)
,

and we will use S2 to denote the spin operator on the set of all qubits. Let

ZA =
1

2

∑
k∈A

Zk

denote the total Z-spin operator on qubit subset A and we label by Z the total

Z-operator applied to all qubits (i.e Z = ZI). Z and S2 commute and stabilize an

eigenspaces labeled by quantum numbers J and M :

S2 |J, M〉 = J(J + 1) |J, M〉 , Z |J, M〉 = M |J, M〉 , (3.17)

where J is the total spin of all qubits and M takes values −J ≤M ≤ J in an integer

steps. There are therefore 2J+1 Z-operator eigenstates for each J and we will refer

to this degeneracy as M -degeneracy.

55



Now, the operators S2
A and S2

B on sets A,B commute if and only if A and B are

disjoint or one is subset of the other. We can then give a complete set of commuting

operators on I:

S2
{12}, S

2
{123}, . . . S

2, Z (3.18)

In practice, this means that if we have n qubits, measuring each of those operators

yields a a sequence of outcomes j12, j123, ..., J,M (the eigenvalues of each operator)

which tests for some state of J . Dually, allowing superselection on the outcomes of

each measurement we have also defined a preparation recipe. This choice of basis

states is known as sequential coupling.

The j-quantum numbers on sets of qubits A,B combine according to the angular

addition rules [40]:

|jA − jB| ≤ jA∪B ≤ jA + jB,

jA∪B + jA + jB ∈ Z,

For example if n = 3, there are two ways to obtain J = 1
2

eigenstate of three spins -

either by adding a qubit to a two-qubit singlet (J = 0) state, or by adding a qubit

to a triplet (J = 1) [33]. We can picture those states as labeled binary trees with n

leaves, which we refer to as labeled recoupling diagrams. For instance, for n = 3 we

have:

Note that the shape of those binary trees is induced by the choices (3.18). Every

rooted binary tree shape with n leaves (which we will refer to as recoupling diagram)

yields a different choice of complete set of commuting observables, and therefore a

different choice of basis for L. And there are 2n labelled recoupling diagrams for

every recoupling diagram, one for each basis state. A computation in PQC is given

by the following procedure:

Definition 3.3 (PQC). Given a permutation π:

1. Prepare a simultaneous eigenstate |λ〉 = |j12, j123, . . . , J,M〉 of S2
12, S

2
123, . . . S

2, Z.

Such basis (ie. the sequentially coupled basis) plays the role of computational

basis .

2. Measure the following set of observables: S2
π(1)π(2), S

2
π(1)π(2)π(3), . . . S

2, Z. This

is equivalent to applying a sequence of SWAP gates Uπ in the quantum circuit

model and measuring a J-spin eigenstate |x〉 = |j′12, j′123, . . . , J ′,M ′〉 in the

sequentially coupled basis.

3. The computing result is obtained by repeating steps 1 and 2 polynomially

many times to yield an approximation of the probability distribution Pπ(x|λ) =

| 〈x|Uπ |λ〉 |2.
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In his paper [18], Jordan shows that PQC can approximate the irreducible repre-

sentations of the symmetric group in polynomial tyme. This is a relatively surprising

result as this problem no classical polynomial time algorithm is known that solves

the same problem. This hints that although the the PQC model seems trivial in

comparison with other quantum computation models it is still superior to classical

computation. Any PQC computation (3.3), corresponds to a sequence of phase and

racah moves.

Definition 3.4 (Phase and Racah moves). Using a convention where AB := A∪B
we define the following

• A phase move is obtained by swapping adjacent particles, diagrammatically we

picture it as:

jAB

jA jB
7→ (−1)jA+jB−jA∪B

jAB

jA jB
(3.19)

• Racah moves (or F -moves):

jCjBjA

jBC
jABC

7→
jA+jB∑

f=|jA−jB |

F jA, jB , f
jC , jABC , jBC

jCjBjA

f
jABC

(3.20)

Where F a, b, c
d, e, f is the Wigner 6j-symbol.

Theorem 3.3 (Biedenharn-Louck). [9, Topic 12] Let A,B,C be disjoint sets of

qubits. Any quantum state corresponding to a labelled recoupling diagram can be

transformed to a superposition of sequentially coupled labelled recoupling diagram

states using a poly(n) sequence of Racah and Phase moves.

For our purposes the actual evaluation of Wigner 6j-symbols to compute F -

moves won’t be important. More importantly, phase and Racah moves have a general

categorical description as we will see in the next section.

Categorical PQC

The theory of permutational quantum computing is based on the following abstract

ingredients:

1. A tensor product to model many-body quantum systems

2. A direct product to model superpositions of particle types.
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3. A set of labels of particle types (with antiparticle for each type) generating all

other systems together with fusion rules which account for coupling of those

particle types.

4. A permutational structure, i.e the possibility to permute particle positions, i.e

phase moves

5. The Racah or F moves which models changes of basis.

6. Underlying Hilbert spaces which account for the quantum mechanical nature

of the model.

Let us build a class of categories which account for all those ingredients. As already

argued in the previous section we need the structure of a tensor category in order to

model many-body quantum systems together with superpositions. We then require

the category to contain a simple object for each particle type and to be semisimple

so that we obtain fusion rules (see appendix). Note that we do not require there to

be finitely many simple objects as in the anyonic case. Indeed note that if we want

a theory to reproduce Jordan’s model for any chosen number of particles (n), the

theory must contain infinitely many particle types, one for each half-integer value

(value of angular momentum). We must also require the category to be rigid so

that we have antiparticles for each particle type. A tensor category is monoidal so

it comes with associators which precisely model the equivalent of the Racah moves.

For the permutational structure we require the theory to have a symmetric structure.

And finally, if we want to recover finite dimensional Hilbert spaces underlying the

objects of our theory we can impose the existence of a forgetful functor to FHilb '
FV ect. Putting it all together we have obtained a rigid semisimple symmetric

tensor category C equipped with a fiber functor F : C → FV ect. We will call those

categories Tannakian for our purposes.

The following theorem is a variation of Tannaka reconstruction which shows that

any model for permutational quantum computation is induced by a group or a

supergroup. Here by supergroup we mean a supercommutative Hopf algebra, i.e a

model of Hopf in the category of Z2-graded vector spaces (see example 2.1) that is

cocommutative (i.e (1.25) holds).

Theorem 3.4 (Doplicher-Roberts). [30, Theorem 2.18] If C is a rigid semisimple

symmetric tensor category equipped with a fiber functor to V ect then C is symmet-

rically monoidally equivalent to Rep(G) for G some group (if the twist is trivial) or

some supergroup (if the twist is -1).

Now, we recognize Jordan’s model as the theory of representations of the special

unitary group.
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Proposition 3.5. Jordan’s qubit model J2 is the category of representations of

SU(2).

Proof. Irreducible representations of SU(2) are precisely indexed by half-integer

values and the fusion rules given by angular addition rules [40].

We can easily see that defining Jd := Rep(SU(d)) we obtain the corresponding

qudit model for permutational quantum computation. The permutational structure

of the categories under observation, is tightly linked to the symmetric group Sn. In

his model, Jordan builds an algorithm to compute representations of Sn, this can

be done in any PQC category.

Proposition 3.6. Any Tannakian category C induces representations of the sym-

metric group Sn for any n ∈ N.

Proof. Fix n ∈ N and a simple object a ∈ obj(C) then Sn acts on a⊗n by permuta-

tions, and this clearly defines a module as we can consider a as a vector space using

the fiber functor.

Example 3.3 (S3 PQC). The PQC model based on S3 is rather trivial. Recall the

group S3 = {e, g, g2, σ, σg, σg2}. The category Rep(S3) is a fusion category. By

the known representation theory of S3, Rep(S3) has three simple objects: the trivial

representation 1, the sign representation −1 and the geometric two dimensional

representation τ :

τ : σ 7→

(
0 1

1 0

)

g 7→

(
ω 0

0 ω̄

)

These satisfy the following fusion rules ∀X simple object:

1⊗X ' X ' X ⊗ 1

−1⊗−1 ' 1

−1⊗ τ ' τ ' τ ⊗−1

τ ⊗ τ ' 1⊕−1⊕ τ

(3.21)

Rep(S3) is symmetric so that phase moves are trivial. Note that

τ ⊗ τ ⊗ τ = 1⊕−1⊕ 3τ

So the fusion space V τ
τττ can serve as a qutrit. The only processes allowed by PQC

are the swap and the F -matrix. We can choose whether to use the trivial swap or
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the one inducing a −1 phase. The F -moves are more interesting and can be shown

to yield the equivalent of the Hadamard gate for qutrits adapting the argument in

[23]..

Comparing PQC and TQC

In the previous sections we have shown that modular categories are models for TQC

whereas PQC is modelled by Tannakian categories. These categorical models have

many similarities: they both are examples of semisimple braided tensor categories.

At the beginning of the chapter we stated that the PQC model is restricted. Given

the categorical formalism this restrictiveness becomes evident. Indeed let CT and

CP be models for TQC and PQC respectively. Then Z2(CT ) is trivial, whereas

Z2(CP ) = CP . This is because CP is symmetric whereas CT is modular. Similarly to

our discussion in section 2.2, we see that PQC is restricted in comparison to TQC

as it exhibits less computational power in the braiding process. This is echoed, at

the level of the symmetries (algebra structure), by the passage from groups (or co-

commutative Hopf algebras to include the supergroup case) to non-cocommutative

Hopf algebras.

Now, we have seen that Jordan’s model corresponds to the interpretation ofRep(SU(2))

as a theory of computation. Note that SU(2) is an infinite dimensional Hopf algebra

with involutive antipode. In view of the generalization of Kitaev’s model in section

3.1, it is a natural question to ask whether we can apply a similar reasoning here, to

obtain a model induced by Jordan’s model which exhibits topological dependencies.

This means applying the Drinfeld center construction to J2 or in other words pairing

the SU(2)-modules of Jordan’s model with an SU(2) coaction to obtain a theory

of SU(2) Yetter-Drinfeld modules. If we want to reproduce Kitaev’s construction

this could be done by initialising a lattice labeled by representations of SU(2) (i.e

spin 1/2 particles, for instance initialised in sector 1/2 as in the PQC model) and

define similar vertex operators given by the SU(2) action on the tensor and pla-

quette operators measuring the total angular momentum on the plaquette (yielding

the SU(2) coation). The theoretical development and possible implications of this

reasoning is left for future work. It is not known to the author whether such model

is implementable in practice. It should be noted though that this is very unlikely as

it gives rise to a theory of anyons with infinitely many particle types and it is one

of the assumptions of TQC that such setting is not possible in nature.

This brings us back to our initial discussion on the restrictiveness of the PQC model.

Indeed we have glossed over an important distinction between Tannakian categories

and modular categories. Modular categories have only finitely many simple objects

whereas Tannakian categories are allowed to have infinitely many (and J2 is an
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example). It is not clear whether the possibility of infinitely many particle types

brings computational advantage to PQC.

3.3 A braided representation of quantum compu-

tation

Recall our discussion on functorial semantics in 1.1. We talked about categories

representing syntax (such as PROs and PROPs) and semantic categories (such as

V ect or Sets). The category Rep(DG) is a category which we filled with meaning

and we have used it as a semantic category so far. Syntax and semantics are relative

notions, in this section we forget all the meaning we associated to the category

Rep(DG) (e.g as a theory of anyons, as a model for Kitaev’s lattice construction,

as a boosting of PQC etc...) and we just see it as a syntax for diagrams which

we will interpret in V ect. When drawing processes in some monoidal category D,

a functorial box [28] is a diagrammatic tool to depict the application of a functor

F : C → D to some diagram in the monoidal category C. We can think of the

functorial box as a separation between the inside world (the source category C) and

the outside world (the target category D). If f : A → B is a morphism in C we

have:

f

A

B

FA

FB

= F (f)

FA

FB

(3.22)

If g : B → C, the defining equation F (g ◦ f) = F (g) ◦ F (f) is depicted as follows:

f

g

A

B

FA

FB

B

C

FC

=
f

g

A

B

FA

C

FC

(3.23)

If the functor is strict monoidal this means the following holds for h : C → D:

f h
A

B

FA

FB

C

D

FC

FD

= f h
A

B

FA

FB

C

D

FC

FD

(3.24)

We will use functorial boxes to map the braided pictures in C := Rep(DG) down to

V ect and obtain a braided representation of quantum gates. This means that our

ambient world will be the category of vector spaces, but we will borrow pictures from
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C using a functorial box. Note that in section 2.3 all our diagrams were drawn in

V ect and we slightly abused the diagrammatic notation when equating braids from

Rep(DH) to linear maps in FV ect. We were making implicit use of the forgetful

functor U : Rep(DH) → FV ect. This was not harmful but here we will be careful

to depict U as a green box. First let us fix some definitions.

Definition 3.5 (Copyable states and cocopyable costates). Let H be a Hopf algebra.

A state z ∈ H, also denoted z , is copyable if:

z
= z z (3.25)

A costate f : H → C, also denoted f is cocopyable if

f
=

f f
(3.26)

The unit is always copyable and the counit always cocopyable by defini-

tion. In the case of group algebras copyable states are elements of the standard

basis and they are in bijective correspondence with elements of the group G. The

cocopyable costates are usually called characters. Let G := Zn be the cyclic group

with n elements (generated by 1), it is a well-known result that there are exactly n

characters of G, each determined by sending 1 to one of the nth roots of unity. In

what follows we will denote by α the character of Zn obtained by sending 1 to e
i2πα
n .

We know from section 2.3 that C = Rep(DG) ' DlrG, so specifying an object

of Rep(DG) just corresponds to choosing a vector space V with a left G-module

structure and right G-comodule structure satisfying the compatibility conditions.

To illustrate the idea let us start by picking G := CZ2 and let us denote the standard

basis of CZ2 by {|0〉 , |1〉}. Fix an object a left-right Yetter-Drinfeld module V over

G (equivalently V ∈ obj(Rep(DG))) with black G-action and white G-coaction.

As CZ2 is both commutative and cocommutative it is easy to see (using the an-

tipode) that the left-right Yetter-Drinfeld compatibility condition is equivalent to

the following:

= (3.27)

In order to represent quantum computation, we first should be able to reproduce a

CNOT gate. The CNOT quantum gate arises from the interaction of complementary

observables, such as X and Z observables (see [10, Chapter 9]). It is then natural to

consider the Z G-action (given by 0 7→ id and 1 7→ Z the Pauli Z operator) and X
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G action (defined similarly with the Pauli X operator) on C2. It is easy to see that

these yield G-module structures on C2 and as objects in FV ect are self-dual they can

turned into G-coactions which yield G-comodule structures. Note that X and Z do

not commute, so the combination of a Z action (coaction) and anX coaction (action)

doesn’t satisfy (3.27). For this reason we will need to choose two two-dimensional

objects of C representing qubits equipped with Z and X complementary observables.

Let VZ be C2 equipped with the Z-action and Z-coaction and VX be C2 equipped

with X-action and X-coaction. These trivially satisfy (3.27). We will denote VZ

with black wires (and Z (co)action with black boxes) and VX with blue wires (and X

(co)action with white boxes) in C. Recall that the forgetfull functor U : C → FV ect

picks the underlying vector space of each object and the underlying linear map each

morphism. So U(VX) = U(VZ) = C2 that we will denote with thin black wires. Also

it can be checked that U is a strict monoidal functor, we will depict it as a green

box. Now from (2.27) we obtain the following equality:

= (3.28)

And by definition the two equivalent diagrams above correspond to a SWAP gate

followed by a CNOT gate.

We now want a way to represent phases, we will do this using ancillary systems

which will implement a phase when braiding around VX and VZ . Define π as the

one-dimensional representation with action and coaction given by:

π := 1 ; π := 1 (3.29)

This is are well defined CZ2-(co)module structures as 1 = |1〉 is copyable and

1 = 〈0|− 〈1| is cocopyable. The Yetter-Drinfeld compatibility condition is trivially

satisfied. In C, π is not the unit of the tensor and we will denote it by a red wire.

Then braiding VZ with π gives:

= 1 (3.30)

which, by definition of the action on VZ , is the Pauli Z operator applied to VZ , i.e

the Z π phase. Note that the blue wire denoting π ‘disappears’ outside the box as

it is mapped to the identity on the tensor unit in FV ect. Similarly braiding π with
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VX gives:

=
1

(3.31)

which precisely yields an X π phase. Now π phases are not enough to obtain

interesting computations. For instance we would wish to perform a π/2 phase in

order to get stabilizer quantum mechanics. For this reason we will need to choose a

bigger group and again consider functorial semantics onto FV ect, but the ideas to

describe gates as braids will be the same as above.

Pick the group Z4 = {0, 1, 2, 3} and consider Rep(DZ4). First of all note that any

Z2-module is also a Z4-module by precomposing with the parity homomorphism

p : Z4 → Z2. Similarly any Z2-comodule is a Z4-comodule. Therefore there is a

copy of Rep(DZ2) living inside Rep(DZ4). Again we pick QZ and QX to be the

two-dimensional modules with G action generated by the π
2
Z-phase and π

2
X-phase

respectively. Then the braid on QZ ⊗ QX is a SWAP gate followed by a CNOT

as above. Now consider the one-dimensional object π
2

of Rep(DZ4) defined by the

following action and coaction:

π
2 := 1 ;

π
2 := 1 (3.32)

Using red wires to denote π
2
, we have that the braids:

; (3.33)

are respectively a π
2
X-phase and a π

2
Z-phase.

By now we have formed a language internal to the C consisting of all possible braids

using black, red and blue wires. This language is closed under composition and

tensoring so it forms a monoidal subcategory L of C. Applying the green functor

U to any diagram in L interprets it in the context of quantum computation by

associating to it a quantum gate on qubits. In L we can describe various gates such

as CNOT◦SWAP but it is clearly not universal for stabilizer quantum computation.

Indeed it is not possible to express the composition of X and Z phases on the same

system while staying in the inner world of C. In fact the main limitation is that we

cannot turn a black wire into a blue one inside C. The advantage of using functorial

boxes is that we can work in both source and target categories at the same time.

We will now add ingredients to our language, using the outside world of FV ect to

obtain a representation of the stabilizer segment of quantum computation. We will
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first need the following diagrams:

; (3.34)

i.e we need to be able to get outside the box and look at our system from the

complementary perspective. We can change the colour of wires by going outside

the boxes and therefore we can now compose X and Z phases. It is well-known

that X and Z π/2-phases and their compositions yield any one-qubit stabilizer

transformation. In order to capture all multi-qubit quantum gates we need the

possibility of swapping two systems without making them interact. As allowed by

the following diagram:

(3.35)

Note that the order of the colours is insignificant here, as we can pre/post compose

with the diagrams in (3.34) to change colour.

Proposition 3.7. Any stabilizer quantum gate can be expressed as a composition (or

tensoring) of boxed braids from L together with the diagrams in (3.34) and (3.35).

Proof. This is immediate from the fact that CNOT and π/2 phases form a universal

gate set for stabilizer quantum computation. Phases were discussed above and the

CNOT gate is simply obtained by composing (3.35) with the braid:

A quantum computation also requires the preparation of states and measure-

ments. As we can already express any stabilizer quantum gate, we only need sep-

arable states and costates. Any choice of one Z or X standard one-qubit basis

state and costate suffices: all other (co)states are achieved by tensoring and apply-

ing gates. This description of states is analogous to the one in measurement-based

quantum computing [10, Section 12.3] and an the syntax described here could be

adapted to this model of quantum computation.

65



Chapter 4

Conclusion and Future Works

The main outcome of this work was to demonstrate the power of diagrammatic rea-

soning, using it as the main tool in casting the theory of representations of Hopf

algebras and their applications to quantum computation.

In the first chapter we have seen how diagrammatic languages arise from monoidal

categories and have used them to study Hopf algebras and their representations.

The content of this chapter is well-known [26], but the diagrammatic proofs are not

commonly found in the literature.

In sections 2.1 and 2.2 we have developed the categorical framework of Modular cat-

egories (MCs) for describing theories of anyons following similar formulations pro-

vided in [22, 36, 32, 29, 5]. This has endowed the diagrammatic notation with phys-

ical significance as drawing diagrams in Modular categories corresponds to drawing

anyon trajectories in 2 + 1 dimensional space-time. Quasitriangular Hopf algebras

capture the symmetries of certain topological quantum systems and give rise to most

BFCs as categories of representations. Starting with a finite dimensional Hopf al-

gebra H the quantum double construction produces a quasitriangular Hopf algebra

DH. At the categorical level this quantization procedure is captured by the Drinfeld

center construction, which we have studied in detail in section 2.3. The results of

this section are known but the diagrammatic proofs are not present in the literature.

In chapter 3 we have started by recalling Kitaev’s models for Topological Quantum

Computation (TQC). In [21], Kitaev constructs a Hamiltonian capturing the dy-

namics of the lattice system exhibiting anyonic behaviour. Theorem 3.2 is our own

contribution, giving a diagrammatic generalization of the reasoning in [21] to the

Hopf algebra framework. A categorical formulation of the Hamiltonian formalism

would provide an interesting follow up and is material for future works. We have

then introduced Jordan’s model for Permutational Quantum Computing (PQC) [18]

and contributed with a categorical perspective on the model. This hasn’t been very

fruitful yet but has opened many directions for future research. Indeed, discussing

ways of relating PQC to TQC has raised various questions: can we boost Jordan’s
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model for PQC to obtain a model with topological dependencies between particles?

Is it true that only finitely many anyon types are possible in nature? If we interpret

the category of Yetter-Drinfeld modules over SU(2) as a theory of computation, how

powerful is it?

Finally, we have explored functorial semantics in the context of quantum computa-

tion, using the diagrams in Modular categories to construct a syntax for stabilizer

quantum gates. The use of functorial boxes allowed us to formulate a diagrammatic

language on two levels: the underlying commutative world of vector spaces and the

braided world of Yetter-Drinfeld modules. The study of this syntax from a type-

theoretic perspective could result in a (non-commutative) programming language for

measurement-based (stabilizer) quantum computing ; although it is likely to incur

in complexity issues.

67



Bibliography

[1] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols.

Proceedings of the 19th IEEE conference on Logic in Computer Science, 2004.

[2] S. Abramsky and N. Tzevelekos. Introduction to Categories and Categorical

Logic, volume 813 of New Structures for Physics, Lecture Notes in Physics.

Springer-Verlag Berlin Heidelberg, 2011.

[3] L. Auslander. An account of the theory of crystallographic groups. In Proceed-

ings of the American Mathematical Society, pages 1230–1236, 1965.

[4] J. Baez and D. James. Categorification. eprint arXiv:math/9802029, 1998.

[5] B. Bakalov and A. Kirillov. Lectures on tensor categories and modular functors,

volume 21 of University Lectures Series. American Mathematical Society, 2000.

[6] B. Balsam and A. Kirillov. Kitaev’s lattice model and turaev-viro tqfts. eprint

arXiv:1206.2308, 2012.

[7] B. Bartlett. Categorical aspects of topological quantum field theories. Master’s

thesis, Utrecht University, 2005.

[8] B. Bartlett. Fusion categories via string diagrams. eprint arXiv:1502.02882,

2015.

[9] L. C. Biedenharn and J. D. Louck. The Racah-Wigner Algebra in Quantum

Theory, volume 9 of Encyclopedia of Mathematics and its Applications. Addison

Wesley Publ. Co., 1981.

[10] B. Coecke and A. Kissinger. Picturing Quantum Processes. Cambridge Univer-

sity Press, 2017.

[11] V. Drinfeld. Quantum groups. American Mathematical Society, 1987.

[12] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor Categories, volume

205 of Mathematical Surveys and Monographs. American Mathematical Society,

2015.

68



[13] P. Etingof, D. Nikshych, and V. Ostrik. On fusion categories. eprint

arXiv:math/0203060, 2002.

[14] P. Freyd. Abelian Categories. Harper & Row, 1966.

[15] Elizabeth Gibney. Inside microsoft’s quest for a topological quantum computer.

[16] M. Gould. Quantum double finite group algebras and their representations.

Bulletin of the Australian Mathematical Society, 1993.

[17] Vojtech Havlicek. Search for computational advantage in permutational quan-

tum computing. unpublished (Term paper), April 2017.

[18] S. P. Jordan. Permutational quantum computing. Arxiv e-prints, 2009.

[19] A. Joyal and R. Street. An introduction to tannaka duality and quantum

groups. In Category Theory, volume 1488 of Lecture Notes in Mathematics,

pages 413–492. Springer, Berlin, 1991.

[20] G. M. Kelly. Many variable functorial calculus. In Coherence in Categories,

Lecture Notes in Mathematics, pages 66–105. Springer, 1972.

[21] A. Kitaev. Fault-tolerant quantum computation by anyons. Annals Phys. 303,

pages 2–30, 2003.

[22] A. Kitaev. Anyons in an exactly solved model and beyond. Annals Phys. 30,

pages 2–111, 2006.

[23] Ville Lahtinen. Topological quantum computation: an analysis of an anyon

model based on quantum double symmetries. Master’s thesis, University of

Helsinki, 2006.

[24] F: W. Lawvere. Functorial semantics of algebraic theories. PhD thesis,

Columbia University, 1963.

[25] S. Mac Lane. Categories for the working mathematician. Springer Verlag, 1971.

[26] Sh. Majid. Foundations of Quantum Group Theory. Cambridge University

Press, 1995.

[27] Sh. Majid. Quantum groups and braided algebra. In Quantum Physics and

Linguistics: A Compositional, Diagrammatic Discourse. Oxford Scholarship

Online, 2013.

[28] P. Mellies. Functorial boxes in string diagrams. In Springer Verlag, editor,

Computer Science Logic, pages 1–30, 2006.

69



[29] M. Mueger. On the structure of modular categories. eprint

arXiv:math/0201017, 2002.

[30] M. Mueger. Abstract duality theory for symmetric tensor *-categories. In Al-

gebraic Quantum field Theory, Handbook of the Philosophy of Physics, chapter

Appendix. J. Butterfield & J. Earman (eds), 2006.

[31] M. Mueger. Modular categories. http://www.math.ru.nl/ mueger/PDF/ox-

ford.pdf, 2012.

[32] P. Panangaden and E. Paquette. A categorical presentation of quantum com-

putation with anyons, volume 813 of Lecture Notes in Physics. Springer Berlin

Heidelberg, 2011.

[33] R. Pauncz. Alternant Molecular Orbital Method. Studies in physics and chem-

istry, no. 4. Saunders, 1967.

[34] E. Rowell and W. Zhenghan. Mathematics of topological quantum computing.

eprint arXiv:1705.06206, 2017.

[35] P. Selinger. A survey of graphical languages for monoidal categories. eprint

arXiv:0908.3347, 2009.

[36] S. Simon. Toplogical quantum. http://oxfordtopquantum.tiddlyspot.com/,

2016.

[37] J. K. Slingerland. Hopf symmetry and its breaking: braid statistics and confine-

ment in planar physics. PhD thesis, Universiteit van Amsterdam, 2002.

[38] J. Vercruysse. Hopf algebras, variant notions and reconstruction theorems.

eprint arXiv:1202.3613, 2012.

[39] J. Vicary and C. Heunen. Lectures on categorical quantum mechanics, 2012.

https://www.cs.ox.ac.uk/files/4551/cqm-notes.pdf.

[40] Peter Woit. Quantum Theory, Groups and Representations: An Introduction

(Final draft version). 2017.

70



Appendix A

Abelian categories

Abelian categories are frameworks for theories that have similar behaviour to linear

algebra. Results and definitions related to the theme of this appendix can be found

in [12], [8] and [14]. We will give a short description of abelian categories inspired

by [32], for this we will need a few preliminary notions. We start by generalising

the notions of injection and surjection from set theory.

Definition A.1 (Mono). A morphism f : a → b is a monomorphism if for any

g, h : c→ a

f ◦ g = f ◦ h =⇒ h = g

Definition A.2 (Epi). A morphism f : a → b is an epimorphism if for any g, h :

b→ c

g ◦ f = h ◦ f =⇒ h = g

One important feature of linear algebra is the presence of the following object.

Definition A.3 (Zero object). We say 0 ∈ obj(C) is a zero object if it is both initial

and terminal, i.e for any object a in C there are unique arrows 0→ a and a→ 0.

Such object gives rise to the presence of zero morphisms in any hom-set as the

unique morphism a → 0 → b for any a, b ∈ obj(C). Note that Sets has no zero

object. We obtain generalizations of the notions of kernels from vector spaces.

Definition A.4 (Kernel and cokernel). The kernel of a morphism f : a → b in a

category with zero object 0 is a morphism k : S → a such that f ◦ k = 0 and for any

h : c → a such that h ◦ f = 0 there is a unique h′ : c → S such that the following

diagram commutes:

a b

c

S
0

0

f

h

k
h′
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Dually the cokernel of a morphism f : a → b is a morphism u : b → S making the

following commute:

ba

c

S
0

0

f

h

u
h′

Definition A.5 (Ab category). The category C is Ab if it is enriched over abelian

groups. That is all hom-sets have abelian group structures and composition of mor-

phisms is a group homomorphism.

Definition A.6 (Direct sums). A category C has direct sums if it has a monoidal

structure with tensor ⊕ and such that ⊕ is the categorical product and coproduct.

This means for any objects A,B ∈ obj(C) the direct product A ⊕ B comes with

projections pA, pB and injections iA, iB satisfying the universal properties of the

categorical product and coproduct (respectively).

For ⊕ to be the categorical product means that for any morphisms f : C → A

g : C → B there is a unique arrow h : C → A ⊕ B such that pA ◦ h = f and

pB ◦ h = g. The universal property of the coproduct is the dual notion where all

arrows are flipped and projections are replaced by injections.

Definition A.7 (Additive category). An Ab-category C is additive if it has zero

object and every pair of objects has a direct sum ⊕.

It can be shown that the zero morphism of any hom-set is then the unit of the

abelian group structure [39]. We can now define abelian categories.

Definition A.8 (Abelian category). An abelian category is an additive category

where every morphism has a kernel and a cokernel and every monic (epic) is a

kernel (cokernel).

Note that this is precisely the behaviour of kernels and cokernels from vector

spaces. In an abelian category hom-sets are abelian groups, but we can explicitly

require hom-sets to be vector spaces over some field k.

Definition A.9 (k-linearity). Let k be field, we say C is k-linear if all hom-sets are

k-vector spaces and composition is bilinear.

We will assume throughout the thesis that k = C so in particular the field is

algebraically closed.

As explained in the introduction, categorification is the process of replacing sets by

72



categories, functions by functors and weakening equalities to natural isomorphisms.

Tensor categories are the categorification of rings. Multiplication becomes a tensor

product⊗ and addition becomes a direct product⊕. Monoidal categories are defined

in the first chapter of the thesis. They are obtained by categorifying the notion of

a monoid. We also defined rigidity, as the property that any object has a right dual

and a left dual. The notion of tensor categories is obtained by considering rigid

monoidal structures on abelian categories.

Definition A.10 (Tensor category). A tensor category is an abelian rigid monoidal

category.

Fusion categories are special types of tensor categories where the objects are

generated under ⊕ by a finite set of simple objects.

Definition A.11 (Simple object). An object X in a C-linear category is called

simple if EndX = kidX .

Definition A.12 (Semisimplicity). C is semisimple if every object is isomorphic to

a direct sum of simple objects. C is finite if there are finitely many isomorphism

classes of simple objects.

Definition A.13 (Fusion category). A C-linear tensor category is a fusion category

if it has finite-dimensional hom-spaces, is semisimple with finitely many isomor-

phism classes of simple objects and the unit 1 is simple.

The following is a folklore result, for which we refer to [13].

Theorem A.1. If H is a finite dimensional semisimple Hopf algebra then Rep(H)

is a fusion category.
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