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Abstract

It is argued that the geometric dual of a noncommutative operator algebra repre-

sents a notion of quantum state space which differs from existing notions by rep-

resenting observables as maps from states to outcomes rather than from states to

distributions on outcomes. A program of solving for an explicitly geometric mani-

festation of quantum state space by adapting the spectral presheaf, a construction

meant to analyze contextuality in quantum mechanics, to derive simple reconstruc-

tions of noncommutative topological tools from their topological prototypes is pre-

sented.

We associate to each unital C∗-algebraA a geometric object—a diagram of topo-

logical spaces representing quotient spaces of the noncommutative space underly-

ing A—meant to serve the role of a generalized Gel’fand spectrum. After showing

that any functor F from compact Hausdorff spaces to a suitable target category C

can be applied directly to these geometric objects to automatically yield an exten-

sion F̃ which acts on all unital C∗-algebras, we compare a novel formulation of

the operator K0 functor to the extension K̃ of the topological K-functor. We then

conjecture that the extension of the functor assigning a topological space its topo-

logical lattice assigns a unital C∗-algebra the topological lattice of its primary ideal

spectrum and prove the von Neumann algebraic analogue of this conjecture.
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Chapter 1

Introduction
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The discovery of the quantum effected a revolutionary shift in our fundamental

conceptions of reality so profound that it necessitated an entirely new mathematics

with which to frame physical theories. A century later, elucidating the foundational

implications of those ideas remains a highly active area of both mathematics and

physics.

Von Neumann provided a common mathematical structure which unified vari-

ous proposed formalisms for quantum theory [70]. In his approach, algebraic re-

lations between observable quantities are emphasized and the essential departure

from the framework of classical theory is the presence of “noncommuting" quan-

tities, i.e. properties of a system which cannot be jointly measured. Despite the

apparently completely novel nature of this abstract, algebraic (commutator) for-

malism, there lies, beneath the surface, a great deal of structural similarity with

classical mathematics and the geometric structures used to model classical physics.

Indeed, modern mathematicians consider von Neumann algebras to be a generaliza-

tion of classical probability spaces. C∗-algebras (which are also employed to model

quantum systems [66]) are considered to be generalizations of classical topological

spaces.

Although geometric intuition played a key role in formulating classical mechan-

ics and early quantum theory, as well as modern mathematical studies of operator

algebras, explicitly geometric constructions associated to noncommutative algebras

are generally eschewed in favour of purely algebraic treatments which obscure sim-

ilarities with classical theory. In this dissertation, we attempt to define an explicitly

geometric interpretation for a noncommutative algebra of observables. This is done

by accounting for contextuality: the phenomenon of the outcome of a measurement

depending on the procedure used (or more formally, the choice of simultaneously

measured quantities).
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The germ of this idea was contained in Isham and Butterfield’s reformulation

(with Hamilton) of the Kochen-Specker theorem in terms of the lack of a global

section of the spectral presheaf associated with a quantum system [34]. That orig-

inal insight has sparked research in a number of directions (for example: the work

of Isham-Döring et al. [19, 20, 21, 22] and Heunen et al. [37, 38, 39] on devel-

oping an alternative formalism for quantum mechanics in terms of presheaves over

contexts; Abramsky-Brandenburger et al. [1] on utilizing presheaves and sheaves

as a framework for abstractly studying contextuality in theories more general than

quantum mechanics).

With this thesis we argue that the passage from classical to quantum descriptions

of the core operational content of physical theories, characterized mathematically

by the transition from a commutative algebra of observables to a noncommutative

one, can also be understood geometrically as a shift from classical sample spaces to

context-indexed diagrams of spaces. Second, we demonstrate how, by considering

other sorts of diagrams of spaces, we gain a new approach to the study of the

noncommutative extension of topology.

In the background section, we describe how the state-observable dualities in

mathematical models of physics are to be understood as examples of the more gen-

eral phenomenon of the geometry-algebra dualities which arise throughout math-

ematics and logic. The particular example of Gel’fand duality is examined closely,

as it models state-observable duality in classical mechanics. It is argued that a ge-

ometric dual for noncommutative C∗-algebras would represent a formal analogue

of pure state space for quantum mechanics. We describe our approach of finding

such a geometric dual by solving for the correct geometric structure which yields

reconstructions of noncommutative geometric tools.

Chapter 2 contains an exposition of the Kochen-Specker theorem and of the

phenomenon of contextuality in quantum theory. We provide a self-contained, ele-
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mentary account of the spectral presheaf as a context-indexed collection of sample

spaces. It is shown how, considering the spectral presheaf to represent to a notion

of geometric space, the Kochen-Specker theorem can be seen as its lack of global

points whereas Gleason’s theorem can be understood as a correspondence between

quantum states and probability distributions on the space [17].

The final chapters contain our primary original technical contributions. We in-

troduce a new approach to studying the noncommutative geometry of C∗-algebras

and to investigating possible generalizations of the Gel’fand spectrum to noncom-

mutative algebras. This is accomplished by defining a simple method for naturally

extending functors which act on topological spaces to ones acting on all C∗-algebras

which follows from associating diagrams of spaces to noncommutative algebras.

These diagrams are interpreted as keeping track of all the tractable quotient spaces

of the noncommutative space represented by an algebra.

It is shown that functorially associating a diagram of compact Hausdorff spaces

(meant to generalize the notion of spectrum) to a noncommutative algebra leads to

a simple method of extending topological functors. In particular, a new definition of

operator K-theory given in terms of topological K-theory is presented. A conjecture

about using the same method to extend the notion of an open set to the correspond-

ing notion of closed, two-sided ideal is made; the von Neumann algebraic version

of this conjecture is proved.

10



Chapter 2

Background and Motivation

The notion of state and observable of an (operational) physical theory is defined.

State-observable duality is described and some examples of geometric-algebraic du-

alities are presented. It is argued that the geometric dual of a noncommutative

operator algebra represents a notion of quantum state space which differs from ex-

isting notions by representing observables as functions from states to outcomes

rather than from states to distributions on outcomes. Noncommutative geometry,

the algebraic study of the “quantum geometries" underlying noncommutative alge-

bras is presented. A program of finding an explicitly geometric manifestation of

quantum state space by adapting structures related to the phenomenon of contex-

tuality in quantum mechanics to derive simple reconstructions of noncommutative

topological tools from their topological prototypes is presented.
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2.1 Mathematical Models of Physical Systems

A physical theory provides mathematical models for the physical systems which are

in the domain of applicability of the theory. These models consist of some math-

ematical structures (i.e. manifolds, vector spaces, etc.) and prescriptions for how

they can be used to compute numerical predictions of experimental procedures. It

may also provide a description of dynamics–how systems evolve with time–but we

ignore this aspect for now.

The empirical data which a successful model must predict can be summarily ex-

pressed as a map from experiments to predictions. An experiment is simply a pair

consisting of a method for preparing a system and a procedure for measuring some

property. Thus, a description of this data must specify two primitive collections. The

first is the collection P of preparations: all the possible ways of manipulating a sys-

tem to ready it for an experiment. The second is the collection M of measurements:

all the possible procedures for probing such a prepared system in order to witness

an experimental event. (One may choose to treat the measurable space (O,E) of

possible outcomes of measurements as another variable.) The predictive content

of the theory is then completed by specifying the collection F of probability distri-

butions f(e|p,m) of observing an event e ⊂ O upon performing the measurement

procedure m on a system prepared by a procedure p.

Definition 2.1.1. An operational theory is a triple (P,M, F ) where P is a set of prepa-

rations, M a set of measurement procedures, and a set F of probability distributions

f(−|p,m), indexed by pairs (p,m) ∈ P ×M , on the space of outcomes. [51, 52]

A description of a physical system at this operational level will be rich with re-

dundancies. For example, trivial differences in measurement procedures (e.g. using

apparatuses facing different cardinal directions) will not affect the predicted out-

comes for any preparation of the system. In this situation, we have an intuitive sense
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that there is one single property of the system which is being commonly measured

by both these procedures. Two procedures which extract the same fundamental

property should yield identical data for all experiments and, so, this sort of redun-

dancy is formalized by considering operational equivalence classes [9, 64, 66].

Definition 2.1.2. The observables of an operational theory (P,M, F ) are the equiva-

lence classes of measurements under the equivalence relation

m1 ∼ m2 ⇐⇒ ∀p ∈ P, f(−|p,m1) = f(−|p,m2)

Similarly, two methods of preparing a system may leave it in physical configu-

rations which are essentially the same. A necessary condition for two physical con-

figurations being the same is that there exists no empirical means of distinguishing

them.

Definition 2.1.3. The states of an operational theory (P,M, F ) are the equivalence

classes of preparations under the equivalence relation

p1 ∼ p2 ⇐⇒ ∀m ∈M, f(−|p1, m) = f(−|p2, m)

We thus think of states and observables as being closer to the more ontologi-

cally fundamental concepts of real configurations and properties of a system but we

are not justified in strictly identifying these pairs of concepts. In this extensional

viewpoint, states can be identified with their (distributions on) outcomes for all ob-

servables and observables can be identified with their (distributions on) outcomes

for all states. This fundamental symmetry leads to the notion of state-observable

duality; a theme which recurs throughout mathematics and logic, manifesting as

categorical dualities between geometry and algebra; semantics and syntax.
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2.2 State-observable Duality

A good mathematical model should contain representations of states and observ-

ables rather than preparations and measurements. The collections of states and

observables are often endowed with additional mathematical structure. The ob-

servables, being representatives of quantities which vary with state, are generally

endowed with algebraic structure reflecting the arithmetic of quantities. The states,

on the other hand, are endowed with geometric structure. Intuitively, states are

close to each other when they represent configurations of a system which share

similar physical properties as measured by experiments.

Important examples are those classical systems which can be modeled in terms

of Poisson geometry [53]. The collection of pure states is in fact a geometric space:

a Poisson manifold. This justifies use of the terminology state space. Any smooth

real-valued map from this manifold can be taken to represent an observable quan-

tity and taken together, these maps form a commutative algebra with pointwise

operations. In this case, the Poisson bracket provides the additional structure of a

Lie algebra. Hence, we refer to the algebra of observables.

In the above example, predictions for the outcomes of experiments are deter-

ministic and observables are explicitly represented as quantity-valued functions on

the state space. However, the fact that a pairing of a state with an observable re-

sults in a quantity means that fixing a state yields a quantity-valued function on

the collection of observables. Identifying a state with the function on observables it

defines allows realizing the state space as a space of functions from the algebra of

observables to an algebra of quantities.

This perspective is common in duality theory. The simplest example is the Stone-

type duality between the categories Set of sets and functions and caBa of complete,

atomic Boolean algebras and complete Boolean algebra homomorphisms [65, 42].
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A functor maps a set S to the the Boolean algebra HomSet(S, 2) of functions to

2 = {0, 1} and a function f : S → T to a caBa-morphism via pullback: f ∗(g) = g ◦ f .

We can use, in the opposite direction, the functor HomcaBa(−, 2), where 2 is the

two element Boolean algebra, to complete the duality of these categories. This is

an equivalence between a category of geometric objects (sets can be seen as trivial

geometries with no structure beyond cardinality) and algebraic objects.

An duality of the same form (defined by Hom functors to a dualizing object 2)

exists between the categories of Stone spaces and Boolean algebras. The geometric

nature of Stone spaces, which are certain kinds of topological spaces, is clearer

in this instance. This example also clearly demonstrates a logical form of duality

between semantics and syntax. The algebraic category of Boolean algebras can be

seen as the category of propositional theories whereas the geometric category of

Stone spaces is the category of corresponding spaces of two-valued models [27].

A classic example of geometric-algebraic duality, which informs the work in

Chapter 7, is that which exists between commutative, unital rings and affine schemes

[35]. Given such a ring R, one can define a topological space SpecR called the prime

spectrum (or, just spectrum) whose points are the prime ideals of R and whose open

sets are indexed by ideals of R. One can then define a sheaf of commutative rings

on SpecR such that the stalk at a prime ideal p is the localization of R at p, turn-

ing SpecR into a locally ringed space. The locally ringed spaces which arise in this

way are called affine schemes. The commutative ring giving rise to an affine scheme

can be recovered by taking the ring of global sections of the scheme. In this way,

a geometric dual to the category of commutative, unital rings is constructed and

geometric tools and reasoning can be brought to bear in subjects which make use

of commutative rings, such as number theory.

The most important example for our purposes is the Gel’fand duality between

the category KHaus of compact, Hausdorff spaces and continuous functions and
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the category uCC∗ of unital, commutative C∗-algebras and ∗-homomorphisms [29].

Under this duality, a space X corresponds to the commutative unital C∗-algebra

C(X) of all the continuous complex-valued functions on X. The reversal of this

process–going from a commutative algebra A to the topological space whose alge-

bra of functions is A–is accomplished by the Gel’fand spectrum functor Σ. (Similar

to the Stone dualities above, discussed above, Gel’fand duality arises from Hom

functors to a dualizing object: C. HomuCC∗(−,C) is topologized by pointwise con-

vergence; HomKHaus(−,C) is given the uniform norm.) Elements of the C∗-algebra

A can be thought of as continuous complex-valued functions on the space Σ(A);

the self-adjoint elements are the real-valued ones.

Gel’fand duality has a clear interpretation as a state-observable duality. The

objects of the geometric category can be seen as state spaces of classical sorts of

systems. Observables, in this analogy, are the continuous real-valued functions on

the state space, i.e. the self-adjoint elements of the algebra of observables. The

Gel’fand spectrum functor recovers the pure state space from the algebra of observ-

ables. We attribute a classical nature to these models since states are associated

with well-defined values for all observables simultaneously.

In all these instances, our algebraic categories consist of objects with commuta-

tive operations. In quantum theory, the model of a system is specified by a noncom-

mutative C∗-algebra of observables. Understanding the geometric duals of these

objects is essential to completing our understanding of how quantum mechanics re-

vises the nature of classical theories and, in particular, notions of states of systems.

It is also a fundamental question of purely mathematical interest.
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2.3 Quantum State Space

Quantum mechanics challenges the classical notion that all the measurable prop-

erties of a physical system have definite values simultaneously. As a most basic

example, consider a classical particle. At a given instant in time, it possesses both

a position and a velocity. Indeed, once these quantities are given along with a

potential energy function associated with the system, classical mechanics yields de-

terministic predictions about the future of the system. In the most modern and

elegant formulations of classical theory, the collection of all obtainable pairings of

position quantities and velocity quantities are the points of a geometric object: the

state space. The potential energy function provides geometric structure on this col-

lection of points and the time evolution of the system can be described quite simply

in terms of special paths within this geometric shape. Measurable quantities are

represented as maps which take a point in the shape to their value, i.e. real-valued

functions on the space.

The quantum mechanical description of the particle does not ascribe to it both

a precise position and a precise velocity. In the standard mathematical formalism

of the theory, wherein measurable quantities are represented as self-adjoint oper-

ators on a Hilbert space, this is captured by the fact that the operators associated

to position and momentum do not commute [41]. This fact that the C∗-algebras of

observables associated to quantum systems are noncommutative makes it impossi-

ble to frame quantum theory as a geometric theory akin to the above description of

classical mechanics. That is, one in which the possible physical states of a system

live together in a space and such that the observables are represented by functions

which assign quantities to states. This is, essentially, the content of the Kochen-

Specker theorem [46], which we review in the next chapter.

However, by admitting more liberal attitudes towards what one considers a ge-
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ometric space, one has hope of constructing something which may be justifiably

called quantum state space in this sense. Of course, this term can be applied to, say, a

Hilbert space or to spaces of density matrices. What we seek here is a notion of state

such that the algebra of observables is realized as “functions to outcomes" on the

state space as opposed to the more general notion outlined in Section 2.1. Phrased

alternatively, we seek to construct the geometric objects dual to C∗-algebras; to gen-

eralize the Gel’fand spectrum functor from acting on only commutative C∗-algebras

to acting on all C∗-algebras.

We have two hints for how to explicitly realize these geometric objects. The

first comes from physicists studying the notion of contextuality. Contextuality is a

novel phenomenon of quantum theory where the outcome of an experiment mea-

suring an observable depends on the procedure used for measuring that observable.

Geometries invented to study this phenomenon give us a starting point. The sec-

ond hint comes from pure mathematicians who have been studying the geometrical

dual of C∗-algebras for many decades. Synthesizing the insights of these bodies of

scholarship sheds light on each and constitutes the overall contribution of the work

described in this dissertation.
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2.4 The Noncommutative Geometry of C∗-algebras

Noncommutative geometry is the mathematical study of noncommutative algebras

by the extension of geometric tools which have been rephrased in the language of

commutative algebra [45]. Given a duality between geometric objects and com-

mutative algebras, like Gel’fand duality, we can rephrase geometric concepts by

expressing them algebraically in terms of functions. For example, if we wish to al-

gebraically express the idea of an open set of a topological space X, we might think

about the set of functions which vanish outside of it and note that this set is an ideal

in C(X). In fact, there is a bijective correspondence between closed ideals of C(X)

and open sets of X. As a more complicated example, the Serre-Swan theorem [67]

allows us to identify vector bundles over X with finitely generated projective C(X)-

modules. Remarkably, these algebraic descriptions of geometric concepts do not

rely crucially on the commutativity of C(X). This allows us to generalize geometric

tools and intuition to noncommutative algebras A by using these same algebraic

descriptions. This justifies thinking of a noncommutative C∗-algebra as a noncom-

mutative topological space. The elements of the C∗-algebra A can be thought of

as continuous complex-valued functions on a metaphorical noncommutative space.

Such a space defies explicit description by conventional mathematical ideas about

what a space is; for example, it cannot be thought of as a collection of points for

such an object always has a commutative algebra of functions.

One of the best examples of an extension of a topological tool to the setting

of noncommutative spaces is that of K-theory. The isomorphism classes of vector

bundles over a space X form a semigroup under direct sum and the Grothendieck

group of this semigroup is K(X). The K functor is an important cohomological

invariant in the study of topology. By using the geometry-to-algebra dictionary

described above, we can define an extension of K to C∗-algebras A in terms of

equivalence classes of finitely generated projective A-modules which is called K0.
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It is an extension in the sense that when A is commutative, i.e. A ≃ C(X) for a

space X, then K0(A) ≃ K(X). In this way, we obtain a most powerful invariant of

C∗-algebras [24]; one which is the basis of a classification program. We note that

in the modern account of operator K0, one uses an equivalent formulation in terms

of equivalence classes of projections in matrix algebras over A [60].

With considerable effort, this process of translation from geometry to algebra

yields a conceptual dictionary covering a vast terrain within mathematics. It is not

just topological concepts which can be translated into the language of algebra; there

exist noncommutative extensions of measure theory, differential geometry, etc. [15]

Geometry Algebra

continuous function from a space to C element of the algebra (operator)

continuous function from a space to R self-adjoint element of the algebra

range of a function spectrum of an operator

open set closed, 2-sided ideal

vector bundle finite, projective module

cartesian product minimal tensor product

disjoint union direct sum

infinitesimal compact operator

Borel probability measure state

integral trace

1-point compactification unitalization

... ...
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2.5 The ‘Geometry’ in Noncommutative Geometry

The unreasonable effectiveness of topological tools and intuition in the study of

C∗-algebras suggests the existence of a deeper principle at work. The method of

translating geometric ideas into algebra in order to generalize them is powerful but

strikes one as somewhat difficult and clumsy. Ideally, one would hope for a new

conception of space, of which the commutative/topological situation is a special

case, which serves as the categorical dual of noncommutative C∗-algebras. That is,

such a space would extend the notion of the Gel’fand spectrum of a commutative

algebra to the noncommutative case and assign to an algebra A an object whose

set of continuous functions is, in some sense, A. As pointed out above, an explicit

description of (currently imaginary) noncommutative topological spaces is very dif-

ficult since such spaces defy most contemporary ideas about mathematical spaces.

It is difficult to know how to begin defining such an object. However, we can imag-

ine that equipped with such an explicit description, should it not depart too far from

the commutative situation, we could find far more natural and intuitive methods of

extending topological tools.

We draw inspiration from the Isham-Butterfield approach to contextuality [34].

In this approach, a quantum system with separable, unital von Neumann algebra of

observables A is analyzed in terms of a presheaf of the Gel’fand spectra of the uni-

tal, commutative sub-von-Neumann-algebras of A. The commutative subalgebras

are connected by inclusion maps and so their spectra are connected by restriction

maps induced by Σ. The elements of these spectra play the role of valuations of

a collection of jointly measurable observables, i.e. contextual outcomes. As we

show in Chapter 3, canonical quantum states are easily recovered as the limit of

this presheaf after composing with the probability distribution functor. In Chapter

4 and Chapter 5, we modify this presheaf in order to construct an automatic method

of translating topological concepts from geometry to algebra.
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The criterion for a successful spatial manifestation of noncommutative space is

that it naturally leads to extensions of topological concepts which agree with well-

known noncommutative geometric invariants. In effect, we aim to complete the

following conceptual commutative diagram:

Commutative

Noncommutative

Topological
spaces

Geometry

(States)

Commutative

C∗-algebras

G Noncommutative

C∗-algebras

Algebra

(Observables)

(Classical)

(Quantum)

This informal diagram requires some explanation. The top row describes the

two dually equivalent mathematical formalisms for encapsulating the operational

content of a classical system: the topological picture, in which states are taken as the

primitive concept, and the commutative C∗-algebraic picture, in which observables

are taken as primitive.

The arrows give methods for the translation and generalization of concepts. The

Gel’fand spectrum functor allows for any notion or theorem phrased in terms of the

topological structure of spaces to be translated into algebraic terms; i.e. open sets

of a space becomes closed, two-sided ideals of an algebra. Once a concept has

been phrased in terms of algebra, it can be applied without modification to the

noncommutative case; i.e. finitely-generated projective modules of a commutative

algebra (the equivalent of vector bundles) becomes finitely-generated projective

modules of a not-necessarily commutative algebra. Thus, the composition of the

top and right arrows can be seen as the process of generating the basic entries of

the noncommutative dictionary.
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A topological concept can be translated in several different ways which means

that intuition and judgement must be deployed when determining appropriate al-

gebraic analogues. As a very trivial example, open sets of a space X are in cor-

respondence with both the closed, left ideals of C(X) and the closed, two-sided

ideals of C(X) as these two collections are identical in the commutative case. Thus,

finding a completely automatic method of translation which eliminates such am-

biguities would in itself constitute an advance in the structural understanding of

noncommutative geometry.

Akemann and Pedersen [56] proposed to replace the translation process by

working directly with Giles-Kummer’s [30] and Akemann’s [3] noncommutative

generalizations of the basic topological notions of open and closed sets. In contrast,

we do not employ algebraic generalizations of basic topological notions, but rather,

we work with objects which slightly generalize the notion of topological space and

come readily equipped with an alternative to the translation process.

In addition to the work of Akemann-Pedersen and Giles-Kummer on noncommu-

tative generalizations of Gel’fand duality, there have been a number of alternative

approaches by authors including Alfsen [4], Bichteler et al. [11], Dauns-Hofmann

[16], Fell [25], Heunen et al. [40], Kadison [43], Kruml et al. [47], Krusyński-

Woronowicz [48], Mulvey [55], Resende [57], Schultz [63], and Takesaki [68]. An

excellent discussion of many of these works is contained in a paper by Fujimoto

[28].

Our goal with this work is to solve the above diagram for the mathematical

structure G. The first motivation is to give a geometric manifestation for a notion of

noncommutative space (the quantum state space described above) whose existence

is currently understood as being merely metaphorical. The second is to exploit

this geometric manifestation to give a canonical method for importing concepts of

topology to noncommutative algebra.
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The primary desideratum of a guess for G is that it comes equipped with natural

methods of generalizing notions from topology and translating them to noncommu-

tative algebra; that is, labels for left and bottom arrows. That the composition of

these two arrows match the noncommutative dictionary is what would justify think-

ing of G as the geometric manifestation of a noncommutative algebra. Our guess

for G, as inspired by Isham and Butterfield’s work, is to consider diagrams of topo-

logical spaces. The framework of extensions, developed in Section 4, formalizes

how various ways of associating diagrams of topological spaces to noncommutative

algebras come with such left and bottom arrows and in this way, yield a noncom-

mutative counterpart for every topological concept. In Chapter 6, we solve for the

appropriate G such that the associated extension of topological K-theory essentially

matches up with the established noncommutative K-theory. In Chapter 7, as a ver-

ification of this construction of G, we also use it to extend the notion of open set to

the notion of closed, 2-sided ideal.
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Chapter 3

Contextuality

The Kochen-Specker theorem and the phenomenon of contextuality in quantum

mechanics is described. The spectral presheaf construction of a context-indexed

family of state spaces is given an elementary presentation with emphasis on its role

as a generalized state space. It is shown how its lack of points is equivalent to the

Kochen-Specker theorem while Gleason’s theorem is expressed as a correspondence

of probability distributions on the spectral presheaf with quantum states.
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3.1 Ontology and Epistemology

The famed (Bell-)Kochen-Specker theorem [46] is a result of profound metaphysical

significance; one best viewed not as a result strictly concerning quantum theory

itself but rather as one concerning all physical theories which aim to provide a

more refined explanation of empirically observed phenomena than quantum theory.

It asserts the impossibility of constructing a physical theory which reproduces the

highly-verified experimental predictions of quantum mechanics while maintaining

a commonly-held conception of realism.

Intuitively, realism is the notion that physical systems have objective proper-

ties which possess an existence independent of any observer or observation; we

will formalize this idea shortly. The theorem asserts that the concession which the

realistically-minded physicist must make is accepting the phenomenon of contextu-

ality; that is, allowing that the outcome of an experiment may depend not simply

on the system’s state and the quantity being measured but also on the choice of

quantities which are simultaneously measured, or, equivalently, on the choice on

experimental procedure used to ascertain the quantity in question. The necessity of

this concession is in tension with the assumption that the process of measurement

is the benign extraction of a pre-existing property of a system. Herein lies a clear

and unavoidable departure of quantum theory from the classical worldview. (One

interpretation of the Kochen-Specker theorem available to those who wish to hold

onto a classical form of reality underlying quantum theory is to reject only the abso-

lute reductionism which denies the possibility of interactions between the observed

system and measuring apparatus affecting the outcome of observation [61].)

An operational theory collating empirical predictions is an inherently epistemo-

logical description of a physical system. There is no implication that the states

in such a description correspond to all the possible real physical configurations or

26



that observables correspond to real physical properties. Only a collection of prob-

ability distributions which describe our knowledge about the outcomes of possible

experiments is provided. Given such a collection of probability distributions, one

is immediately drawn to inquiring as to their origin. Is there a realistic underlying

picture, as is implicit in classical theory, of the system existing in one of potentially

many states, knowledge of which would specify well-defined properties which are

independent of observation? Can any indeterminism in the theory be attributed to

ignorance of this precise state as in statistical mechanics? The natural framework

for addressing these questions are provided by hidden variable theories or ontological

models. [10, 64]

3.1.1 Ontological models

Definition 3.1.1. An ontological model for an operational theory (P,M, F ) is a mea-

surable space (Λ,Σ) together with:

1. a map P → D(Λ) :: p 7→ µp of preparations to probability distributions on the

set of ontic states Λ

2. a map of measurements m 7→ (rm : Λ → D(O)) to response functions rm which

yield, for each ontic state λ, a probability distribution rm(λ) on the space of

outcomes

such that for any measurement m, preparation p, and event e

f(e|m, p) =

∫

rm(λ)(e) dµp(λ)

Note here that the we have allowed for the possibility that the ontic state does

not fully determine the outcome of every measurement. There are two possible

interpretations of this. The first would be that the description of the system in
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question encapsulated by the ontic state is simply incomplete. Another would be to

assume that the measuring equipment is noisy.

Every operational theory (P,M, F ) has a trivial operational ontological model

where the ontic state space is simply taken to be the set of preparations, i.e. (Λ,Σ) =

(P,P(P )). The probability distribution associated to a preparation p ∈ P is simply

the Dirac delta distribution for p whereas the the response functions for measure-

ments m ∈ M are given by rm(p)(e) = f(e|p,m). So, the mere existence of an

ontological model for an operational theory is meaningless; what is interesting is

knowing the existence of models which exhibit certain properties.

Insisting that the ontic states determine with certainty the resulting observation

of any measurement procedure performed on the system is mathematically formal-

ized by insisting that the distributions rm(λ,−) are Dirac delta distributions. That

is, the response of a measurement on a system in a known ontic state is determined.

Definition 3.1.2. A deterministic ontological model for an operational theory (P,M, F )

is a measurable space (Λ,Σ) together with:

1. a map P → D(Λ) :: p 7→ µp of preparations to probability distributions on the

set of ontic states Λ

2. a map of measurements m 7→ (rm : Λ→ O) to deterministic response functions

such that for any measurement m, preparation p, and event e

f(e|m, p) = µp(r
−1
m (e))

We saw above that every operational theory admits an ontological model. In

fact, if we assume that the space of outcomes is a standard probability space (an

assumption covering any reasonable physical situation) and restrict ourselves to

modelling, at most, countably infinitely many preparation procedures, we can al-

ways find a deterministic ontological model [49].

28



Theorem 3.1.3. Every operational theory (P,M, F ) where the set of preparations P

is countable admits a deterministic model.

Proof. Take the space of ontic states Λ to be a copy of the unit interval for each

preparation: P × [0, 1]. For every preparation p ∈ P , there is an isomorphism (mod-

ulo null sets) of probability spaces Φp : ([0, 1], l) → (O, f(−|p,m)) from the unit

interval with Lebesgue measure to the outcome space with the probability distribu-

tion associated to measuring m on a preperation p given by the physical theory. The

deterministic response functions are then given by rm(p, x) = Φp(x).
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3.2 Contextuality in quantum theory: the Kochen-

Specker Theorem

The famous no-go result of Kochen and Specker [46], anticipated by Bell [10], as-

serts the impossibility of embedding the (non-Boolean) lattice of propositions about

a quantum system into a Boolean algebra. Phrased in the modern and, perhaps,

more intuitively clear framework of ontological models, it is equivalent to asserting

the impossibility of constructing a certain type of ontological model for quantum

theory.

Suppose we have a quantum system whose algebra of observables is represented

by B(H) where dimH > 2 (or, indeed, represented by any noncommutative, separa-

ble von Neumann algebra without summands of type I1 or I2 factor [18]). The mea-

surements M are given by the self-adjoint operators in the algebra of observables.

The preparations P are a nonempty collection of pure states. The distributions on

outcomes F are given by the Born rule.

Definition 3.2.1. An operational quantum theory is an operational theory (P,M, F )

arising as above.

That is, an operational quantum theory is simply the empirical predictions of

quantum theory. We arrive at our mathematical formalization of the concept of

noncontextuality which, in this case, is a property of ontological models for opera-

tional quantum theories.

Definition 3.2.2. A ontological model for operational quantum theory is noncontex-

tual if, whenever A = f(B) for self-adjoint operators A,B ∈ M and a measurable

function f : R→ R, then the response functions for A and B are related by f :

rA = f∗ ◦ rB
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Here, the expression A = f(B) is meant in the sense of the Borel functional

calculus and the function f∗ acts on distributions on the real line by pushing it

forward by f . When the ontological model in question is deterministic, this expres-

sion reduces to simply: rA = f ◦ rB. (Traditional formulations of noncontextuality

in quantum theory usually begin by assuming a deterministic model. A rigourous

derivation of the functional composition principle for deterministic valuations in

quantum theory from the basic premise of noncontextuality is given in [36].)

Theorem 3.2.3 (Kochen-Specker, 1967). No operational quantum theory admits a

noncontextual, deterministic ontological model.

Proof. We briefly summarize the proof for the case where the system in question

is described by B(H) for H of dimension 3. The case of higher dimensions follows

from this and the more general von Neumann algebraic case is treated in [18].

Suppose that Λ is a noncontextual, deterministic model for an operational quantum

theory (P,M, F ). Fixing a λ ∈ Λ, we define a function λ(p) on projections p ∈ B(H)

by λ(p) = rp(λ). Since projections are fixed by being squared, by noncontextuality,

we find that λ2 = λ and thus that the function λ can take only the values 0 or 1.

We can assume that λ assigns 1 to the identity operator as this must hold for almost

all λ (with respect to a distribution coming from any preparation) for the model to

reproduce the Born rule. Since projections are mapped to their orthogonal comple-

ments by the function x→ 1− x, we see, again, by noncontextuality, that λ assigns

1 to precisely one of p and p⊥. A simple induction argument demonstrates that λ is

thus additive on sets of orthogonal projections. Kochen and Specker prove that such

a valuation on projections is impossible to construct by providing a collection K of

117 vectors in H such that there is no subset of K intersecting every orthogonal

triple in K precisely once.
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3.3 The spectral presheaf

The geometric reformulation of the Kochen-Specker theorem in terms of the lack of

global sections of a presheaf of topological spaces, introduced by Hamilton, Butter-

field, and Isham [34], is the inspiration for the choice of ansatz described in Section

2.5 which guides the work described in the sequel.

The Kochen-Specker theorem precludes a model of the theoretically predicted

and empirically observed statistics of quantum theory in terms of a (deterministic)

classical state space if one insists that the mathematical representation of an ob-

servable is independent of the method used to measure it. The spectral presheaf

can be interpreted as a collation of classical sample spaces which are associated to

different measurement procedures.

A single experimental procedure may yield outcomes for multiple observables.

As a simple consequence of the operational definition of observables, experimental

procedures are operationally characterized by the maximal collection of observ-

ables for which they yield outcomes. The mathematical formalism of quantum

theory encodes the joint measurability of a collection of observables algebraically:

a collection of observables which can be measured simultaneously is simply a set

C ⊂ A of self-adjoint operators which is pairwise commutative. When performing

a procedure which yields outcomes for every observable in C, simple classical post-

processing yields outcomes for observables which can be expressed as polynomials

in C and the limits of such polynomials. This justifies formally representing opera-

tional equivalence classes of experimental procedures in quantum theory as closed,

commutative ∗-subalgebras of an algebra of observables.

Definition 3.3.1. A context of a unital von Neumann algebra A is a unital, commu-

tative sub-von-Neumann-algebra of A. The context category C(A) is the subcategory

of commutative, unital von Neumann algebras whose objects are the contexts of A and
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whose morphisms are the inclusion maps between them.

For every context C, the Gel’fand spectrum functor can be used to construct a

sample space Σ(C) whose points represent the possible outcomes for a procedure

jointly measuring all the observables in C. The elements o of Σ(C) are functions

which assign real numbers to the observables in C and which preserve addition and

multiplication. (These conditions are easily justified on physical grounds and are

sufficient to guarantee that o assigns to a self-adjoint operator Q an element of the

spectrum of Q.) This collection of functions comes equipped with an extremally

disconnected topology coming from pointwise convergence which is discrete in the

case that A is finite-dimensional.

Definition 3.3.2 (Spectral presheaf). Suppose A is a unital, separable von Neumann

algebra without type I1 or I2 summands. The spectral presheaf is the contravariant

functor from C(A) to KHaus which maps each object and morphism of C(A) to its

image under the Gel’fand spectrum functor.

An inclusion map ι : C1 →֒ C2 goes from a context C1 which represents a proce-

dure measuring a subset of the observables measured by the procedure represented

by C2, i.e. a course-graining. The image under the Gel’fand spectrum functor of

such an inclusion Σ(ι) : Σ(C2) → Σ(C1) acts by restriction: an outcome o ∈ Σ(C2)

is mapped to o|C1
.

Thus, a global section of the spectral presheaf of A is a choice of oC ∈ Σ(C) for

all contexts C of A such that oC1
= oC2

|C1
whenever C1 ⊂ C2.

3.3.1 Points: the Kochen-Specker theorem

Theorem 3.3.3. The Kochen-Specker theorem is logically equivalent to the non-existence

of global sections of spectral presheaves.
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Proof. Suppose the Kochen-Specker theorem is false and Λ is a noncontextual, de-

terministic ontological model for the operational quantum theory (P,M, F ) of A.

Fixing a λ ∈ Λ, denote by o(m) the value of the response function rm(λ) associated

to a self-adjoint operator m ∈ M which, by determinism, is a definite real number.

For each context C ⊂ A, define oC : C → R by restricting o to the self-adjoints

in C and extending by linearity to all of C. That oC1
= oC2

|C1
whenever C1 ⊂ C2

is trivially satisfied; it remains to show that oC ∈ Σ(C), i.e., they are linear and

multiplicative functions. Let A and B be self-adjoints in C. Since they commute,

there is a self-adjoint element S ∈ C such that A = f(S) and B = g(S). Thus, if

h = f + g, then A +B = h(S). Therefore,

oC(A + B) = oC(h(S))

= rh(S)(λ)

= h ◦ rS(λ)

= f ◦ rS(λ) + g ◦ rS(λ)

= rf(S)(λ) + rg(S)(λ)

= rA(λ) + rB(λ)

= oC(A) + oC(B)

A similar proof establishes multiplicativity. Therefore, the functions oC constitute a

global section of the spectral presheaf associated to A.

Now, suppose that oC are the sections of a global section of the spectral presheaf

of A. Denote by o the valuation on all projections of A given by o(p) = oC(p) for

any context C containing p (which is well-defined by the restriction condition since

Cp+Cp⊥ ⊂ C). It assigns to each p one of its eigenvalues: either 0 or 1. It is finitely

additive on any set S of orthogonal projections since the set S generates a context

CS and oCS
is additive. Therefore, by Gleason’s theorem [31], there is a state ρ

which extends o. The state ρ must be pure as a proper convex combination of states

could not yield deterministic valuations on all projections. Thus, one can construct
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a trivial ontological model which is noncontextual and deterministic with a single

ontic state for the system represented by A and the single preparation ρ.

Thus, the impossibility of providing a mathematical model in the classical sense

for quantum theory is expressed by constructing a geometric object associated to

a quantum system by collating the sample spaces associated to contexts, linked by

a simple consistency condition related to course-graining, and demonstrating that

said object possesses no ‘global points’.

3.3.2 Distributions: Gleason’s theorem

These geometries represented by spectra presheaves, do, however, possess global

probability distributions. Remarkably, these distributions are in correspondence

with (possibly mixed) quantum states. Just as the lack of points of spectral presheaves

is equivalent to a landmark theorem of quantum foundations (the Kochen-Specker

theorem), the correspondence of distributions on spectral presheaves with quantum

states is equivalent to Gleason’s theorem [31, 33]. This observation is easily made

and succinctly expressed using the framework described in following chapters and

was originally made by de Groote [17]; here, we give an elementary description to

emphasize its physical interpretation.

Suppose A is an algebra of observables for a quantum system as above and ρ

is a mixed state of this system (i.e, a positive normalized linear functional). For

every context C ⊂, ρ supplies a Borel, regular probability measure on the space of

outcomes Σ(C). This is simply the content of the Riesz-Markov-Kakutani represen-

tation theorem [44, p53] as applied to the functional ρ|C . (We will use ρ|C to also

denote the corresponding measure on Σ(C).) This distribution is simply that one

which is predicted by quantum theory for measurements of the observables in C,

measured by the procedure represented by C, of a system in the state ρ. When does
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a context-indexed family of probability distributions PC on Σ(C) arise in such a way

from a mixed state?

When a context C1 contains fewer observables than a context C2, i.e. C1 ⊂ C2,

then we can derive a distribution P1 on Σ(C1) from a distribution P2 on Σ(C2) in

a particularly simple way: marginalization. The likelihood of an event e ⊂ Σ(C1)

should be the likelihood of the event in Σ(C2) consisting of those outcomes which

assign to the observables in C1 all the same values as some outcome in e. This is

expressed equationally as:

P1(e) = P2(R
−1(e))

Here, R is Σ(ι) : Σ(C2) → Σ(C1) which the map described above which restricts a

real-valued function of C2 to a function of C1.

Definition 3.3.4. A context-indexed family of distributions PC on Σ(C) is consistent

when the above marginalization condition holds for every pair of contexts C1 ⊂ C2.

Every family of distributions provided by a quantum state ρ is consistent. To

prove this, consider an elementary quantum event represented by a projection P in

C1 and denote by EC1

P ⊂ Σ(C1) the set of outcomes where a measurement of P in

the context C1 returns one, i.e. those functions assigning to P the value one. An

outcome Σ(C2) assigns to P the value one if and only if its restriction to C1 does

and so EC2

P is precisely R−1(EC1

P ). The measurement of P in either context returns

one with a likelihood of ρ(P ) and, therefore,

ρ|C1
(EC1

P ) = ρ(P )

= ρ|C2
(EC2

P )

= ρ|C2
(R−1(EC1

P )).

As this equation holds for all the elementary quantum events of C1, which form a

basis for the topology of Σ(C1), it holds for all events. Thus, the context-indexed
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family of distributions {ρ|C} is consistent. (A similar proof of this fact appears in

[1]).

We demonstrated above that any quantum state yields a consistent family; now

we show that from a consistent family, we can construct the unique state which

gives rise to it. The proof relies on Gleason’s theorem [31, 33] and, indeed, provides

an alternative interpretation of that landmark result.

Suppose we are given a family of probability distributions ρ|C on Σ(C) for every

context C ⊂ A which is consistent. If P is a projection, C is any context which

contains P , and EC
P ⊂ Σ(C) is the event consisting of outcomes which assign to P

the value one, then ρ|C(E
C
P ) = ρ|CP

(ECP

P ) where CP is the context generated by P .

This follows from consistency and the fact that CP ⊂ C. We can thus define µ by

µ(P ) ≡ ρ|C(E
C
P ).

That µ assigns one to the identity projection is immediate. Now, if P1 and P2 are

orthogonal, denote their sum by P3 and the context generated by P1 and P2 by C ′.

Since, by linearity, an outcome o ∈ Σ(C ′) assigns one to P3 if and only if the sum of

the values o assigns to P1 and P2 is one, it follows that the event EC′

P3
is the disjoint

union of EC′

P1
and EC′

P2
. By additivity of the measure ρ|C′:

µ(P3) = ρ|C′(EC′

P3
)

= ρ|C′(EC′

P1
) + ρ|C′(EC′

P2
)

= µ(P1) + µ(P2)

So, by Gleason’s theorem, we can extend µ to a state M whose derived family of

distributions coincide with the family {ρ|C} on elementary–and thus on all–events.
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Chapter 4

Spatial Diagrams

We introduce the technical machinery necessary for contravariantly functorially as-

sociating diagrams of topological spaces, representing quotient spaces of a non-

commutative space, to noncommutative C∗-algebras. We axiomatize those functors

which associate to a C∗-algebra a diagram whose objects are spectra of contexts and

whose morphisms are such that the association yields a natural method of extend-

ing functors (described in the next chapter) which act on compact Hausdorff spaces

to functors which act on all unital C∗-algebras. The specific choice of morphisms

leading to the correct method of extension, as determined by the results of Chap-

ters 6 and 7, is given by those which arise from restricting inner automorphisms. A

simple example is presented.
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4.1 The Categories of all Diagrams in C

We propose to associate to each unital C∗-algebraA a diagram of topological spaces

whose objects are the spectra of the unital, commutative sub-C∗-algebras ofA. Such

an association should be expected to be (contravariantly) functorial. Typically, one

thinks of a diagram D : J → C in a category C as living inside the functor category

CJ. This is inadequate for our purposes as different algebras will have different

sets of commutative sub-C∗-algebras and thus be associated to diagrams of differ-

ent shapes. We introduce a very general construction which allows considering

diagrams of different shapes on the same footing.

Definition 4.1.1. For any category C, Diag
−−−→

(C), the covariant category of all diagrams

in C, has as objects all the functors D from any small category S to C. Morphisms from

D1 : S1 → C to D2 : S2 → C are given by pairs (f, η) where f is a functor from S1 → S2

and η is a natural transformation from D1 to D2 ◦ f .

The contravariant category of all diagrams Diag
←−−−

(C) has all contravariant functors

to C as objects; the morphisms from D1 to D2 are pairs (f, η) where f is a functor from

S2 → S1 and η is a natural transformation from D1 ◦ f to D2.

(These can constructed by considering the colax-slice and lax-slice 2-categories

Cat / C [62] and forgetting the 2-categorical structure.) The composition (g, µ) ◦

(f, η) of two Diag
−−−→

(C)-morphisms is given by (gf, (µf)η) where (µf)a is µf(a) and

the composition of natural transformations is componentwise. Note that if F is a

functor from C to C′, F naturally induces a functor from Diag
−−−→

(C) to Diag
−−−→

(C′) which

we will also denote by F . Explicitly, if D : A → C, then F (D) is simply F ◦D. For

a Diag
−−−→

(C)-morphism (f, η), F sends (f, η) to the Diag
−−−→

(C′)-morphism (f, Fη) where

(Fη)a is F (ηa). The functor F also induces, in a similar fashion, a functor from

Diag
←−−−

(C) to Diag
←−−−

(C′). If F is contravariant, then it induces a contravariant functor

from Diag
−−−→

(C) to Diag
←−−−

(C′) and one from Diag
←−−−

(C) to Diag
−−−→

(C′).
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4.2 Semispectral Functors

Having defined a category which can simultaneously accommodate diagrams of

varying shapes, we are ready to begin defining our contravariantly functorial asso-

ciations of diagrams of topological spaces to C∗-algebras. We will define a class of

such functorial associations. What all these functors from the category of unital C∗-

algebras to diagrams of compact Hausdorff spaces have in common is that they will

associate to each unital C∗-algebra a diagram (i.e. a functor) with domain a sub-

category of the category of unital, commutative C∗-algebras. In fact, in each case,

the objects of the domain subcategory of the diagram associated to a C∗-algebra

are its unital, commutative sub-C∗-algebras. The class of morphisms in the domain

subcategory, however, will be allowed to vary.

Our motivating example is the spectral presheaf. The recipe for its construction

which we aim to generalize is:

1. take a unital von Neumann algebra A

2. consider the subcategory s(A) ⊂ uCVnA of unital, commutative von Neumann

algebras with unital ∗-homomorphisms whose objects are the unital, commu-

tative sub-von-Neumann algebras (contexts) of A and whose morphisms are

the inclusions between such subalgebras

3. consider the inclusion functor ιA of this subcategory of unital, commutative

von Neumann algebras into unital, commutative C∗-algebras; this is an object

of Diag
−−−→

(uCC∗)

4. compose the Gel’fand spectrum functor with this inclusion functor to yield an

object of Diag
←−−−

(KHaus).

This association of spectral presheaves to algebras can be made functorial in a natu-
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ral way. For a ∗-homomorphism φ : A → B, we can define a Diag
−−−→

(uCC∗)-morphism

(f, η). The functor f : s(A) → s(B) sends a subalgebra U ⊂ A to φ(U) ⊂ B and

an inclusion U →֒ V to the inclusion φ(U) →֒ φ(V ). The natural transformation

η : iA → iB ◦ f has components ηU given by φ|U : U → φ(U). The Gel’fand spectrum

functor Σ yields a functor Σ : Diag
−−−→

(uCC∗)→ Diag
←−−−

(KHaus) and the image under this

functor of (f, η) is a Diag
←−−−

(KHaus)-morphism between the spectral presheaves of A

and B.

We will generalize this recipe to C∗-algebras. However, we will also want to

consider other choices of which morphisms to include in our diagrams. In the next

chapter, we see that an association of diagrams of space to algebras automatically

yields a method of extending topological functors to functors which act on all uni-

tal C∗-algebras. The family of morphisms we include in our diagrams affect the

resulting method of extensions. Thus, we vary the family of morphisms in order to

solve for the one whose method of extending functors matches up with the canon-

ical generalization process of noncommutative geometry; this was the motivation

behind the reconstruction of the definition of operator K-theory.

Definition 4.2.1. A functor σ : uC∗ → Diag
−−−→

(uCC∗) is called semispectral if:

(1) σ(A) is an inclusion functor from a subcategory dom(σ(A)) of uCC∗ whose

objects are the unital, commutative sub-C∗-algebras of A

(2) For a unital ∗-homomorphism φ : A → B, σ(φ) is (f, η) where f is a func-

tor from domσ(A) to domσ(B) which takes a unital, commutative sub-C∗-algebra

U ⊂ A to φ(U) and η is the natural transformation which associates to U the ∗-

homomorphism φ|U : U → φ(U)

(3) If A is commutative, then it is terminal in domσ(A)

The third condition is essential for constructing an extension process associated

to a semispectral functor.
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4.3 Spatial diagrams

We will be working primarily with spatial diagrams, which is a particular way of as-

sociating diagrams of topological spaces to unital C∗-algebras using a semispectral

functor. We will define this semispectral functor in two steps and then define the

spatial diagram functor G : uC∗ → Diag
←−−−

(KHaus) by composition with the Gel’fand

spectrum functor.

Definition 4.3.1. The unitary subcategory S(A) of uCC∗ of a unital C∗-algebraA has

as objects all unital, commutative sub-C∗-algebras of A and, as arrows, all morphisms

which arise as restrictions of inner automorphisms of A. That is, a morphism m : U →

V in uCC∗ (between two unital, commutative sub-C∗-algebras U, V ⊂ A) is contained

in S(A) if and only if there is a unitary element u ∈ A such that uUu∗ ⊂ V and

m(a) = uau∗ for all a ∈ U .

The composition of two such arrows is given by conjugation by the product

of the two original unitaries and so S(A) is indeed a subcategory of uCC∗. These

arrows are all of the form i ◦ r where i is an inclusion and r is an isomorphism

between subalgebras which are related by unitary rotation.

Definition 4.3.2. The unitary semispectral functor g : uC∗ → Diag
−−−→

(uCC∗) sends

a unital C∗-algebra A to the inclusion functor ιA : S(A) → uCC
∗. The action of

g on unital ∗-morphisms is fixed by Condition (2) in Definition 4.2.1: a unital ∗-

homomorphism φ : A → B, σ(φ) is (f, η) where f is a functor from S(A) to S(B)

which takes a unital, commutative sub-C∗-algebra U ⊂ A to φ(U) ⊂ B and η is the

natural transformation which associates to U the ∗-homomorphism φ|U : U → φ(U)

Note that when A is commutative, the set of arrows are simply the inclusions

which is why the Condition (3) of Definition 4.2.1 holds.

Definition 4.3.3. The spatial diagram functor G : uC∗ → Diag
←−−−

(KHaus) is Σ ◦ g.
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The topological spaces in the diagram G(A) should be thought of as being

those which arise as quotient spaces of the hypothetical noncommutative space

underlying A. To see this, note that a sub-C∗-algebra of C(X) yields an inclusion

i : C(Y ) → C(X) which corresponds to a continuous surjection Σi : X → Y ; this

surjection is a quotient map since both X and Y are compact and Hausdorff [69,

p12]. Thus, in accordance with the central tenet of noncommutative geometry,

unital sub-C∗-algebras of a unital noncommutative algebra A are to be understood

as having an underlying noncommutative space which is a quotient space of the

noncommutative space underlying A. By considering only the commutative sub-

algebras, we are restricting our attention to the tractable quotient spaces: those

which are genuine topological spaces. The morphisms of the diagram serve to track

how these quotient spaces fit together inside the noncommutative space.

We will require, in Chapter 6, a slight modification of the unitary subcategory:

Definition 4.3.4. The finitary unitary subcategory Sf (A) ⊂ S(A) of uCC∗ has as ob-

jects all unital, finite-dimensional commutative sub-C∗-algebras of A and, as arrows,

all morphisms which arise as restrictions of inner automorphisms of A. That is, a

morphism m : U → V in uCC∗ (between two unital, finite-dimensional, commuta-

tive sub-C∗-algebras U, V ⊂ A) is contained in S(A) if and only if there is a unitary

element u ∈ A such that uUu∗ ⊂ V and m(a) = uau∗ for all a ∈ U .

This is used to define a finitary version gf of the unitary semispectral functor g:

Definition 4.3.5. The functor gf : uC∗ → Diag
−−−→

(uCC∗) sends a unital C∗-algebra A

to the inclusion functor ιA : Sf(A) → uCC∗. For a unital ∗-morphism φ : A → B, we

define gf(φ) to be (f, η) where f is a functor from Sf (A) to Sf (B) which takes a unital,

finite-dimensional, commutative sub-C∗-algebra U ⊂ A to φ(U) ⊂ B and η is the

natural transformation which associates to U the ∗-homomorphism φ|U : U → φ(U).
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4.4 Example: M2(C)

The entire spatial diagram of an arbitrary C∗-algebra is usually rather difficult to

compute explicitly. In this section, we describe the simplest case of the 2× 2 matrix

algebra M2(C) . The topological spaces which are objects of the spatial diagram

G(M2(C)) are themselves the points of a topological space. (The spaces of objects

are computed for higher dimensional matrix algebras by Caspers et al. in [14]; they

are Grassmannian manifolds.)

There is a single trivial one-dimensional unital sub-C∗-algebra consisting of the

scalar multiples of the identity; its spectrum is a single point. The two-dimensional

unital sub-C∗-algebras are all of the form Cp + Cp⊥ for a rank 1 projection p;

the spectrum of these algebras are discrete two point spaces. The morphisms of

the diagram include a quotient map from each of these two point spaces to the

trivial one point space. As all the two-dimensional sub-C∗-algebras are unitarily

equivalent, the diagram contains all possible bijections between pairs of two-point

spaces (including permutations).

· · · · · ·

The one-dimensional projections P of M2(C) can be identified with their image:

a line in C2. They are thus parameterized by the points of the complex projec-

tive line CP1: equivalence classes of nonzero pairs of complex numbers (α, β) up

to rescaling by nonzero complex factors. Two different projections generate the

same sub-C∗-algebra precisely when they are orthogonal complements: (α, β) and
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(−β, α).

The quotient map identifying these points

π : CP1 → RP1

is the antipodal map in the S2 model of the complex projective line. We thus view

the objects of G(M2(A)) as a space with two connected components. One consists

of a single point representing the trivial unital sub-C∗-algebra. The second is RP1

and its points are the two-dimensional sub-C∗-algebras. The spectra of these sub-

C∗-algebras can be identified with their fibres π−1([P ]) = {P, P⊥} ⊂ CP1.
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Chapter 5

Extensions of Topological Functors

The generalization of limit and colimit functors which act on certain functor cate-

gories to ones which act on categories of diagrams is given. This allows defining

the extension of a topological functor to a noncommutative algebraic one, given an

association of diagrams of spaces to algebras as described in the previous chapter.

The extension process is interpreted as decomposing a noncommutative space into

tractable quotient spaces, applying a topological functor to each one, and pasting

together the result. The formulations of the Kochen-Specker theorem and Gleason’s

theorem described in Chapter 3 are described in this framework.
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5.1 The Generalized Limit and Colimit Functors

A key feature of the construction of Diag
−−−→

(C) in the case where C is cocomplete is

the existence of a generalized colimit functor lim−→ : Diag
−−−→

(C) → C. It assigns to a

functor F : A→ C the same object of C which is assigned to F by the colimit functor

of CA. If η is a natural transformation between F and G : A → C then lim−→ assigns

to the Diag
−−−→

(C)-morphism between F and G given by (idA, η) the same C-morphism

assigned to η by the colimit functor of CA. What is novel is the ability to assign

C-morphisms between colimits of diagrams of different shapes.

Everything in this section applies equally well (that is, all dual statements hold

true) to the case where C is complete, in which case we have a generalized limit

functor lim←− : Diag
←−−−

(C)→ C.

Recall that the colimit of a functor F from A to a cocomplete category C can be

expressed as a coequalizer of two coproducts [50, p355]:

∐

u:i→j F (domu)
θ //
τ

//
∐

i F (i)

The first coproduct is over all arrows u : i→ j of A and the second is over all objects

of A. We denote the canonical injections for these coproducts by

λu : F (domu)→
∐

u:i→j

F (domu)

and

κi : F (i)→
∐

i

F (i) .

The morphisms θ and τ can be defined by specifying their compositions with the

λu:

θλu = κdomu

τλu = κcoduF (u)

The advantage of this coequalizer presentation of the colimit of is that we may de-

termine a C-morphism between the colimits of two functors F and G by specifying
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a natural transformation between their coequalizer diagrams. That is, by giving its

components; C-morphisms N and M such that the following diagrams commute:

∐

u:i→j F (domu)
θ //

N

��

∐

i F (i)

M

��
∐

u′:i′→j′ G(domu′)
θ′ // ∐

i′ G(i′)

∐

u:i→j F (domu)
τ

//

N

��

∐

i F (i)

M

��
∐

u′:i′→j′ G(domu′)
τ ′

//
∐

i′ G(i′)

We denote the canonical injections into the coproducts for G by λ′
u and κ′

i.

Given a Diag
−−−→

(C)-morphism (f, η) between F and G we define N and M by

giving their compositions with the canonical injections:

Nλu = λ′
f(u)ηdomu

Mκi = κ′
f(i)ηi

It is straightforward to verify that the above diagrams commute, that is, that

θ′N = Mθ

and that

τ ′N = Mτ,

by computing the composition of these maps with the λu. The C-morphism assigned

by lim−→ to (f, η) is then defined to be that morphism which is induced by the nat-

ural transformation (whose components are N and M) between the coequalizer

diagrams for the colimits of F and G.

Functoriality of lim−→ is then straightforwardly verified by computing the compo-

sitions of the components of the natural transformations induced by (f, η) and (g, µ)
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and seeing that the resulting natural transformation is the same as the one induced

by (gf, (µf)η).

The generalized colimit construction is best illustrated by the example of abelian

groups. Let F : A→ Ab and G : B→ Ab be two diagrams in Diag
−−−→

(Ab) and (f, η) be

a morphism from F to G.

First, we describe the colimit of F in Ab (and thus its image under lim−→ : Diag
−−−→

(Ab)→

Ab). Let d be the direct sum of the groups F (a) over all objects a in A. If g is an

element of the group F (a), we use the notation (g)a to indicate the element of d

which is g in the ath component and 0 in all others. The colimit of F is d modulo

the subgroup generated by the elements (g)a1 - (F (u)(g))a2 where g ∈ F (a1) and

u : a1 → a2 is an arrow of A.

To define how the functor lim−→ : Diag(Ab) → Ab acts on (f, η), it is enough to

say how the group homomorphism lim−→((f, η)) acts on elements of the colimit of F

of the form [(g)a]. The image of such an element under lim−→((f, η)) is [(ηa(g))f(a)].

This is well defined for if u : a1 → a2 identifies (g)a1 with (F (u)(g))a2, then G ◦ f(u)

identifies (ηa1(g))f(a1) with (ηa2(F (u)(g)))f(a2).
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5.2 Extensions of Functors

For a fixed semispectral functor σ, we define a natural method for extending con-

travariant or covariant functors F : KHaus→ C when C is cocomplete or complete,

respectively. The idea is to use σ to turn an algebra A into a diagram of com-

mutative algebras, apply the Gel’fand spectrum functor to this diagram to yield a

diagram of topological spaces, apply F to yield a diagram in C, and finally, apply

the extended colimit or limit functor. We will primarily be working with the case

that σ is the unitary semispectral functor g as in Definition 4.3.2.

Intuitively, one should think of the extension process as decomposing a noncom-

mutative space into its quotient spaces, retaining those which are genuine topolog-

ical spaces, applying the topological functor to each one, and pasting together the

result.

Definition 5.2.1. For a semispectral functor σ, a cocomplete category C, and a con-

travariant functor F : KHaus → C, the σ-extension of F, denoted F̃ : uC∗ → C, is

given by:

F̃ = lim−→ ◦ F ◦ Σ ◦ σ

Extensions of covariant topological functors using a (contravariant) semispectral

functor are defined in the same way except that we use the limit functor lim←− :

Diag
←−−−

(C)→ C in place of a colimit.

It is the third property in the definition of semispectral functor–thatA is commu-

tative implies that A is terminal in the category picked out by σ(A)–which is crucial

in ensuring that F̃ does indeed extend F . As a consequence of this condition, the

diagram F (Σ◦σ(A)) has F (Σ(A)) as a terminal object. Since, for any diagram with

a terminal object, the canonical injection from the terminal object to the colimit is

an isomorphism, we have that F̃ (A) ≃ F ◦Σ(A). The second property ensures that
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for a homomorphism φ : A → B between commutative algebras, F̃ (φ) completes

the commutative square formed by these isomorphisms and F ◦ Σ(φ). Thus, these

isomorphisms define a natural equivalence between F̃ |uCC∗ and F ◦Σ. We have thus

proved that:

Theorem 5.2.2. For a semispectral functor σ, a cocomplete category C, and a con-

travariant functor F : KHaus→ C,

F̃ |uCC∗ ≃ F ◦ Σ

Dually, this equation also holds when C is a complete category and F : KHaus→

C is a contravariant functor.
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5.3 Theorems of quantum foundations

Having established the framework of extensions, we demonstrate how they can be

used to succinctly express two fundamental theorems of quantum foundations: the

Kochen-Specker theorem and Gleason’s theorem. The proofs of these reformula-

tions are omitted here as they are essentially contained in Section 3.3. The spectral

presheaf functor σ : uVnA → Diag
←−−−

(KHaus) is as described by the recipe in Section

4.2. In this section, F̃ = lim←− ◦ F ◦ Σ ◦ σ denotes the σ-extension of a covariant

functor F : KHaus→ C to a complete category C. We also restrict our extensions to

the full subcategory of those unital von Neumann algebras A which are separable

and contain no type I1 or I2 summands.

Theorem 5.3.1 (Kochen-Specker). The extension Ĩ of the identity endofunctor I :

KHaus→ KHaus yields the empty set on noncommutative algebras A.

Let D : KHaus→ Set be the Borel probability distribution functor which assigns

to a topological space X the set of all Borel probability distributions on X and to a

continuous function f the corresponding pushforward map f∗ on measures (defined

by f∗(µ)(e) = µ(f−1(e)).

Theorem 5.3.2 (Gleason). The extension D̃ of the Borel probability distribution func-

tor is naturally equivalent to the functor mapping von Neumann algebras to their set

of states (positive normalized linear functionals).
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Chapter 6

Reconstructing Operator K-theory

Topological K-theory, defined in terms of isomorphism classes of vector bundles,

and its C∗-algebraic generalization, the operator K0 functor, defined in terms of

isomorphism classes of finite, projective modules of C∗-algebras, are reviewed. A

novel definition of operator K0 is then compared to the extension of topological K-

theory. This result fixes the restrictions of inner automorphisms as the appropriate

class of morphisms in the diagrams associated to C∗-algebras.
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6.1 Topological K-theory

Topological K-theory, invented by Atiyah-Hirzebruch [7] after Grothendieck [32],

is an extraordinary cohomology theory. That is, it is a sequence of contravariant

functors from KHaus to Ab which satisfies all the Eilenberg-Steenrod axioms [23]

but the dimension axiom. After early successes, including the solution to the clas-

sical problem of determining how many linearly independent vector fields can be

constructed on S
n [2], the subject bloomed to include algebraic and analytic ver-

sions. The core idea is to describe the geometry of a space by algebraic information

about the possible vector bundles over it. Here, we briefly review its definition. Its

generalization to C∗-algebras, operator K0, is a key tool of noncommutative geom-

etry and will be outlined in the next section.

Definition 6.1.1. For a compact Hausdorff space X, the vector bundle monoid V (X)

is the set of isomorphism classes of complex vector bundles over X with the abelian

addition operation of fibrewise direct sum. That is, [E] + [F ] = [E ⊕ F ] . A continuous

function f : X → Y yields an abelian monoid morphism V (f) : V (Y ) → V (X) by

the pullback of bundles. That is, if p : E → Y is a bundle over Y , the bundle f ∗E is a

bundle over X given by the projection to X of

{(x, v) ∈ X ×E : f(x) = p(v)}

and V (f)([E]) = [f ∗E] .

This defines a contravariant functor V from compact Hausdorff spaces to abelian

monoids.

Definition 6.1.2. For an abelian monoid M , the Grothendieck group of M is the

abelian group G(M) defined as M ×M modulo the equivalence relation

(a, b) ∼ (c, d) ⇐⇒ ∃e ∈M : a+ d+ e = b+ c+ e .
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For an abelian monoid homomorphism φ : M → N , the abelian group homomor-

phism G(φ) is defined by

G(φ)([(a, b)]) = [(φ(a), φ(b))] .

The Grothendieck group functor is the universal construction of an abelian

group from an abelian monoid in the sense that any homomorphism out of G(M)

to any group factors uniquely through the natural homomorphism a 7→ [(a, 0)] of M

to G(M).

Definition 6.1.3. The topological K-functor is the contravariant functor defined by

G ◦ V .

From the topological K functor, one can easily construct the full sequence of

functors Kn for n ∈ N.

Definition 6.1.4. The suspension functor S maps the category of compact Hausdorff

space to itself by sending a space X to the quotient space

X × [0, 1]/{(x, 0) ∼ (x′, 0) and (x, 1) ∼ (x′, 1) for all x, x′ ∈ X}

and a continuous function f : X → Y to the map [(x, t)] 7→ [(f(x), t)] .

Definition 6.1.5. Topological K-theory is the sequence of functors Kn defined by

Kn = K(S |n|(X)) .

Bott periodicity [8] provides natural isomorphisms Kn ≃ Kn+2 . We are left with

K0 = K and K1 = K ◦ S . Note that topological K-theory additionally possesses a

ring structure which does not survive in the noncommutative case.
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6.2 Operator K-theory

Here, we outline the generalization of topological K-theory to operator K-theory

by the canonical method of noncommutative geometry. We provide the definition

and properties of the operator K0 functor which we will use in our analysis of

the extension of the topological K functor. These are basic facts found in any

introduction to the subject, e.g. [60], [71], or [26, p181].

In order to generalize a topological concept to the noncommutative case, one

must begin with a characterisation in terms of commutative algebra of the topo-

logical concept in question. In the case of K-theory, this requires phrasing the

notion of a complex vector bundle over X in terms of the algebra C(X) of continu-

ous, complex-valued functions on X. This rephrasing is provided by the Serre-Swan

theorem:

Theorem 6.2.1 (Serre-Swan, [1959). ] The category of complex vector bundles over a

compact Hausdorff space X is equivalent to the category of finitely generated, projective

modules of C(X) [67].

Recall that a projective A-module is the direct summand of a free A-module.

Roughly, the module associated to a vector bundle E over X is the set of continuous

global sections of E with the obvious operations. This justifies considering a finitely

generated, projective (left) A-module to represent a complex vector bundle over

the noncommutative space underlying the C∗-algebra A.

The canonical translation process of noncommutative geometry suggests, hav-

ing now in our possession an algebraic characterisation in terms of C(X) of the

topological notion of complex vector bundle, that we use it to define its noncom-

mutative generalization. That is, define the Murray-von Neumann semigroup of a

C∗-algebra to be the abelian monoid of its finitely generated, projective modules

(up to the appropriate notion of equivalence and with an appropriate addition op-
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eration). It turns out to be more convenient to work with an algebraic gadget which

is equivalent to finitely-generated, projective A-modules: projections in a matrix al-

gebra Mn(A) over A. As such a module µ is free, there is another such module µ⊥

such that µ⊕µ⊥ ≃ An. We identify the module µ with the projection p : An → µ, or

rather, the canonical representation of that projection as an element of the matrix

algebra Mn(A).

Equipped with our algebraic characterisation of vector bundles, we are ready to

begin defining operator K-theory in a manner directly analogous with the construc-

tion of topological K-theory.

Definition 6.2.2 (The Murray-von Neumann semigroup for unital A). The abelian

monoid V (A) is the set

⊔

n∈N

{p ∈Mn(A) : p is a projection}

modulo the Murray-von Neumann equivalence relation defined by identifying p ∈

Mn(A) with q ∈ Mm(A) whenever there is a partial isometry v in the C∗-algebra

Mm,n(A) of m× n rectangular matrices such that p = vv∗ and q = v∗v. It is equipped

with the abelian addition operation

[p] + [q] = [





p 0

0 q



] .

A unital ∗-homomorphism φ : A → B yields a homomorphism V (φ) : A → B

[p] 7→ [φ(p)]

where φ acts on elements of Mn(A) by entrywise application.

Definition 6.2.3. The operator K0 functor is the covariant functor defined by G ◦ V .

As in the topological case, one can easily construct the full sequence of functors

Kn for n ∈ N.
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Definition 6.2.4. The suspension functor S maps the category of C∗-algebras to it-

self by sending a C∗-algebra A to a sub-C∗-algebra of C(T,A), the C∗-algebra of

continuous A-valued functions on the unit circle; S(A) consists of those functions

f : T → A such that f(1) = 0 (or alternatively, S(A) = A ⊗ C0(R), the tensor

product of A with the continuous, complex-valued functions on R vanishing at infin-

ity). A ∗-homomorphism φ : A → B yields the ∗-homomorphism S(φ) defined by

([Sφ](f))(t) 7→ φ(f(t)) for all t ∈ T .

Note that this suspension functor is an extension of the one defined on topolog-

ical spaces in the sense that for algebras A = C(X), we have that S(A) = C(S(X)).

Definition 6.2.5. Operator K-theory is the sequence of functors Kn defined by Kn =

K0(S
|n|(A)) .

Generalized Bott periodicity provides natural isomorphisms Kn ≃ Kn+2 . We are

left with K0 and K1 = K0 ◦ S .

6.2.1 Unitalization

So far, we have defined operator K-theory only for the unital case. We describe the

extension of K0 to all C∗-algebras; a process we will be replicating later.

Definition 6.2.6. The minimal unitalization of a C∗-algebra A (which itself may be

unital or non-unital), is defined as the unital C∗-algebraA+ with underlying setA×C,

componentwise addition and scalar multiplication, and multiplication and involution

given by

(a, z)(a′, z′) = (aa′ + z′a+ za′, zz′), (a, z)∗ = (a∗, z̄) .

There exists a unique C∗-norm on A+ which we omit.

Note that (−)+ is a functor from the category of C∗-algebras with ∗-homomorphisms
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to the category of unital C∗-algebras and unital ∗-homomorphisms: a ∗-homomorphism

φ : A → B yields (a, z) 7→ (φ(a), z).

A copy of A lives canonically inside A+ in the first component. Indeed, the

unitalization of a C∗-algebra yields a short exact sequence

0→ A
ι
−→ A+ π

−→ C→ 0

with ι being the injection into the first component and π being the projection to the

second component. Exactness justifies identifying A with kerπ.

Definition 6.2.7. For a C∗-algebra A (either unital or non-unital) the K0 group

of A is defined as the subgroup of K0(A
+) given by the kernel of K0(π

+). A ∗-

homomorphism φ : A → B yields a homomorphism between the kernels of K0(A
+ π
−→

C) and K0(B
+ π
−→ C) by restriction of K0(φ

+) to the kernel of K0(A
+ π
−→ C).

6.2.2 Stability

Definition 6.2.8. The compact operators K is the sub-C∗-algebra of B(H), with H a

Hilbert space of countable dimension, which is generated by the finite rank operators.

Alternatively, it is defined as the direct limit in the category of C∗-algebras of the

sequence of matrix algebras

M1(C) →֒ M2(C) →֒ M3(C) →֒ ...

where the injections are inclusion into the upper left corner: x 7→





x 0

0 0



.

The C∗-algebra K is nuclear, which means that, for any C∗-algebra A there is a

unique C∗-norm on the algebraic tensor product A ⊗alg K and thus we may speak

unambiguously of the C∗-algebra A⊗K.
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Definition 6.2.9. The stabilization functor, which we (by a harmless abuse of nota-

tion) denote by K, maps the category of C∗-algebras to itself by sending a C∗-algebra

A to the C∗-algebra K(A) = A ⊗ K. It sends a ∗-homomorphism φ : A → B to

K(φ) : K(A)→ K(B) defined by φ⊗ idK.

It is alternatively defined as the direct limit of matrix algebras. That is, K(A) is

the limit in the category of C∗-algebras of

M1(A) →֒ M2(A) →֒ M3(A) →֒ ...

where the morphisms are inclusion into the upper left corner. A ∗-homomorphism φ :

A → B yields homomorphisms Mn(φ) : Mn(A)→ Mn(B) which form the components

of the natural transformation yielding K(φ).

The stabilization functor is an idempotent operation in the sense that K◦K ≃ K.

This follows from the fact that K⊗K ≃ K.

Definition 6.2.10. A C∗-algebra A is called stable or a stabilization if it is fixed (up

to isomorphism) by the K functor, i.e. A ≃ A⊗K.

Note that no stable C∗-algebra can be unital. Two C∗-algebras A and B are

stably equivalent when K(A) ≃ K(B). Among stable C∗-algebras, stable equivalence

reduces to ordinary isomorphism equivalence. As we shall see, stable algebras, in a

certain sense, form the class of C∗-algebras for which the operator K-theory can be

taken.

Theorem 6.2.11. Operator K-theory is matrix stable. That is, K0 ≃ K0 ◦Mn and

K1 ≃ K1 ◦Mn .

Theorem 6.2.12. Operator K-theory is continuous. That is, if

A1 → A2 → A3 → ...
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is a direct sequence of C∗-algebras and ∗-homomorphisms,

K0(A1)→ K0(A2)→ K0(A3)→ ....

is its image under the K0 functor, and A = lim−→An, then,

K0(A) ≃ lim−→K0(An)

via the obvious homomorphism induced between cones. A similar statement holds for

K1.

As a consequence of the preceding two theorems, and the alternative definition

of the compact operators as the limit of a direct sequence of matrix algebras, we

obtain:

Theorem 6.2.13. Operator K-theory is stable. That is, K0 ≃ K0◦K and K1 ≃ K1◦K .

The operator K-theory functors are determined by their restrictions to stable

C∗-algebras.
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6.3 Alternative definition of operator K0 functor

For a unital C*-algebraA, the K0-group can be expressed in a rather simple fashion

in terms of projections of its stabilization [60, p105]. We will require this definition

in the next section and thus describe it in explicit detail.

Definition 6.3.1. Two projections P and Q in a C∗-algebraA are unitarily equivalent

if and only if there exists is a unitary u ∈ A+ such that P = uQu∗.

We denote unitary equivalence of P and Q in this subsection by P ∼ Q.

Definition 6.3.2 (The Murray-von Neumann semigroup for unital A, alternative

definition). The elements of the abelian monoid V (A) are unitary equivalence classes

of projections in K(A).

The abelian addition is given by orthogonal addition. That is, if P and P ′ are two

projections in A ⊗ K, there exist projections Q and Q′ such that P ∼ Q, P ′ ∼ Q′,

and Q is orthogonal to Q′. The abelian addition operation on projections is defined by

[P ] + [P ′] = [Q+Q′].

A ∗-homomorphism φ : A → B yields an abelian monoid homomorphism by

[P ] 7→ [K(φ)(P )].

By redefining the Murray-von Neumann semigroup functor V , we automatically

get a new description of K0 by composition with the Grothendieck group functor:

K0 ≃ G ◦ V . Then, K0(A) is simply the collection of formal differences

[P ]− [Q]

of elements of V (A) with

[P ]− [Q] = [P ′]− [Q′]

precisely when there exists [R] such that

[P ] + [Q′] + [R] = [P ′] + [Q] + [R] .
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Composing the action on morphisms of the Grothendieck group functor after the

action of V just defined, we find that a unital ∗-homomorphism φ : A → B between

unital C*-algebras yields an abelian group homomorphism between the K0 groups

of A and B given by

[P ]− [Q] 7→ [φ(P )]− [φ(Q)] .
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6.4 The extension of topological K-theory

The spatial diagram G(A) associated to a unital C∗-algebra A can be thought of as

a geometric object which is a sort of topological approximation to the metaphorical

noncommutative space underlying A. Functors which are defined to act only on

topological spaces can also be applied directly to G(A) and the results compared

with the generalization to noncommutative topology of the concepts they encapsu-

late (when they exist).

One might naively conjecture that by decomposing a noncommutative space

into all its quotient spaces, taking the topological K-theory of all those quotient

spaces which turn out to be genuine topological spaces, and pasting the results all

together, one could recover the operator K-theory of the noncommutative space.

Indeed, we can weaken this guess to hold only for stable C∗-algebras and not lose

the ability to define K0.

Conjecture 6.4.1. K̃ ◦K is naturally equivalent to K0 ≃ K0 ◦K

Expanding the definition of K̃, as given in Definition 5.2.1, we see that the

conjecture is for the following equation to hold:

Conjecture 6.4.2. K0 ≃ K0 ◦K ≃ lim−→K ◦ Σ ◦ g ◦K

In fact, we find that we must modify this conjecture in order to reconstruct

operator K-theory as a colimit of the topological K-theory of its commutative sub-

algebras:

Theorem 6.4.3. K0 ≃ lim−→K ◦ Σ ◦ gf ◦K

We have modified our conjecture by replacing g with gf as defined in Definition

4.3.5.
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Although it remains open whether K0 ≃ K̃ we find that our original aim of

reconstructing K0 by applying K to spatial diagrams can be achieved by applying

K not to the diagrams G but to subdiagrams Gf = Σ ◦ gf after stabilizing.

Theorem 6.4.4. K0 ≃ K0◦K ≃ K̃f ◦K as functors from unital C∗-algebras to abelian

groups.

Here, K̃f is defined for unital C∗-algebras in a manner most similar to how K̃

is: as lim−→ K ◦ Gf . As all C∗-algebras isomorphic to A ⊗ K lack a unit, we must

extend K̃f to all C∗-algebras and we do so using the same method used for K0:

if π : A+ → C is the projection from the unitalization of A to the sub-C∗-algebra

of scalar multiples of the unit, then K̃f (A) is defined as the kernel of K̃f(π) [26,

p186].

Proof. For unital A, we will compute

K̃f ◦K(A) = lim−→K ◦Gf(A⊗K)

in stages and present it in such a form which makes it clear that it is isomorphic in

a natural way to K0(A). We begin by describing how the functor K̃f acts on unital

algebras before generalizing to the non-unital case.

The objects of Sf (A) are the unital, finite-dimensional, commutative sub-C∗-

algebras of A. The morphisms are given by the restrictions of inner automorphisms.

These morphisms are all of the form i ◦ r where i is an inclusion and r is an isomor-

phism between subalgebras which are related by unitary rotation.

Under the Gel’fand spectrum functor, the image of such an object is a finite,

discrete space whose points are in correspondence with the atomic projections of

the subalgebra. The images of the inclusions i : U → V are functions Σ(i) : Σ(V )→

Σ(U) with the property that whenever a point p ∈ Σ(U) corresponds to a projection

P atomic in U , then P is the sum of the atomic projections in V which correspond
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to the points of [Σ(i)]−1(p). The isomorphisms are sent by the spectrum functor to

bijections which connect points corresponding to unitarily equivalent projections.

Under the topological K-functor, each object yields a direct sum of copies of Z:

one for each point (a trivial vector bundle of each dimension and formal inverses).

Taking the colimit of the diagram then yields, as described in the previous chapter,

a direct sum of the groups indexed by the objects of Sf(A) modulo the relations

generated by the morphisms of the diagram. In our case, this is a quotient of the

direct sum of a copy of Z for each pair (U, P ) where U is a finite-dimensional, unital,

commutative sub-C∗-algebra of A and P is an atomic projection in U .

The image under K ◦Σ of the inclusions result in the identifications of a genera-

tor of a copy of Z associated to a pair (U, P ) with the sums of generators associated

to pairs (V, Pi) whenever U ⊂ V and Pi sums to P . Every projection P ∈ A is an

atomic projection in the subalgebra CP + C(1− P ) which is included in every sub-

algebra which contains P as a member. As the generators associated to the same

projection P atomic in different subalgebras are all identified in the colimit, we see

that we may speak of the element of the colimit group [(P )] associated to P without

reference to which subalgebra it appears in. Thus, the abelian group K̃f (A) can

be viewed as a quotient of the free abelian group generated by the elements [(P )].

The first class of identifications consists of those between elements [(P )] with the

sum of elements [(Pi)] whenever Pi are mutually orthogonal and sum to P . The iso-

morphisms in the diagram provide the second class; they ensure that the elements

associated to unitarily equivalent projections are also identified.

For non-unital algebras such asA⊗K, we need to determine the kernel of K̃f(π)

with π the canonical projection from (A⊗K)+ to C. This is not so difficult, however,

as all projections in (A⊗K)+ are of the form P or 1− P for P ∈ A⊗K. As

[(1− P )] = [(1)]− [(P )]

we see that all elements of the colimit group can be expressed using only elements

66



associated either to the identity projection or to projections in A ⊗ K. It is pre-

cisely those elements of K̃f ((A⊗K)+) which can be expressed using only elements

associated to projections in A⊗K which are in the kernel.

We are ready to define the natural transformation η : K0 → K̃f ◦K. The compo-

nent of the natural isomorphism ηA sends [P ] − [Q] ∈ K0(A) to [(P )] − [(Q)]. This

is easily seen to be well defined, for if

[P ] + [Q′] + [R] = [P ′] + [Q] + [R]

then we may find mutually orthogonal representatives of all these projections and

demonstrate that

[(P )]− [(Q)] = [(P ′)]− [(Q′)].

Preservation of addition follows by a similar argument.

We define an inverse map to demonstrate bijectivity. The element [(P )] ∈

K̃f(A⊗K) is sent by η−1
A to [P ]. Since the equivalences induced by the morphisms

of the diagram are respected at the level of K-theory, this map is well-defined.

To demonstrate the naturality of these isomorphisms, let φ : A → B be a unital

*-morphism. We will require the naturally induced *-morphism Kφ : A⊗K→ B⊗K

which is defined explicitly by φ⊗ idK.

K0(A)
ηA

//

K0(φ)

��

lim−→K̃f ◦K(A)

lim
−→

K̃f◦K(φ)

��

K0(B)
ηB

// lim−→K̃f ◦K(B)

An element [P ] − [Q] in K0(A) is mapped to [(P )] − [(Q)] by ηA. This is then

mapped to [(Kφ(P ))]− [(Kφ(Q))] by lim−→K̃f ◦K(φ). Alternatively, [P ]− [Q] in K0(A)

is mapped to [Kφ(P )]− [Kφ(Q)] in K0(B) which is in turn mapped to [(Kφ(P ))] −

[(Kφ(Q))] by ηB.
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Chapter 7

Noncommutative Topology

It is conjectured that applying the extension process to the functor which assigns

a compact Hausdorff space its lattice of open sets yields the functor which assigns

to a unital C∗-algebra its complete meet-semilattice of closed, two-sided ideals.

This is tantamount to taking the limit of topologies of each context to recover the

hull-kernel topology on the C∗-algebra’s primary ideal spectrum (the analogue of

the spectrum of commutative ring theory). After reviewing the primary ideal spec-

trum and some necessary facts about ideals and projections, this conjecture is then

rephrased as a characterization of those partial ideals which arise from total ideals.

In joint work with Rui Soares Barbosa, the von Neumann algebraic version of the

conjecture is proved.
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7.1 The primitive ideal space

Here, we include some basic facts on prime ideals of rings and, its C∗-algebraic

analogue, the primitive ideal space which are required in our explication of the

motivation for the consideration of the extension of the closed-set lattice functor

which follows.

7.1.1 The spectrum of commutative rings

In commutative ring theory and algebraic geometry, the starting point for the appli-

cation of geometrical methods is the association of a topological space to rings [35,

p70] (it is, in fact, a locally ringed space; however, we will not be considering this

additional structure).

Definition 7.1.1. A prime ideal J of a commutative ring R is a ideal J ( R such that

whenever we have a, b ∈ R such that ab ∈ J then either a ∈ J or b ∈ J .

The canonical examples of prime ideals come from the ideals of the ring of

integers generated by prime numbers.

Definition 7.1.2. Let R be a commutative ring and let I ⊂ R be a two-sided ideal of

R. Then hull(I) is the set of prime ideals containing I.

Definition 7.1.3. Let R be a commutative ring. The contravariant spectrum functor

Spec from the category of rings and ring morphisms to the category of topological

spaces and continuous maps sends an object R to the topological space whose points

are the prime ideals of R. It is equipped with the hull-kernel (or Zariski, or Jacobson)

topology whose closed sets are of the form hull(I) for some two-sided ideal I ⊂ R.

The spectrum functor sends a ring morphism h : R → S to the continuous map

Spec : Spec(R) → Spec(S) which sends a prime ideal J to its preimage h−1(J) under
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h.

7.1.2 The primitive ideal space

These definitions and theorems can be found in [5, p208] and [12, p118].

Definition 7.1.4. A primitive ideal J of a C∗-algebra A is one which is the kernel of

an irreducible representation of A.

Recall that an irreducible representation of a C∗-algebra A is a ∗-representation

π : A → B(H) such that for no a ∈ A and nontrivial closed subspaces S ⊂ H

is it the case that π(a)S ⊂ S. Every pure state of A gives rise to an irreducible

representation A by the Gel’fand-Naimark-Segal construction.

Definition 7.1.5. Let A be a C∗-algebra and let I ⊂ A be a closed, two-sided ideal of

A. Then hull(I) is the set of primitive ideals containing I.

Definition 7.1.6. Let A be a C∗-algebra. The primitive ideal space Prim(A) is the

set of the primitive ideals of A. It is equipped with the hull-kernel (or Zariski, or

Jacobson) topology whose closed sets are of the form hull(I) for some two-sided norm

closed ideal I ⊂ A.

Theorem 7.1.7. The map hull is an order preserving bijection between the set of

two-sided ideals of a C∗-algebra A and the closed sets of the hull-kernel topology on

Prim(A).

Definition 7.1.8. The spectrum Â of a C∗-algebra A is the set of unitary equivalence

classes of irreducible representations of A. It is equipped with the coarsest topology

with respect to which the map [π]→ ker π is continuous.

The topology on Â is thus also order isomorphic to the partially ordered set of

two-sided ideals of A.
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7.2 Von Neumann Algebras

In this subsection, we briefly outline some elementary facts about von Neumann

algebras [5, Chap. 3] which we will require in the rest of this section.

Definition 7.2.1. A unital von Neumann algebra A is a unital ∗-subalgebra of B(H)

which is closed in the weak (operator) topology.

Recall that a net of operators (Tα) in B(H) in converges to T in the weak topology

if and only if, for every vector v ∈ H and linear functional φ ∈ H∗, we have that

(φ(Tα(v))) converges to φ(T (v)). As convergence of a net of operators in norm

implies its weak convergence, we see that von Neumann algebras are examples

of C∗-algebras. We may equally well have defined von Neumann algebras to be

∗-subalgebras of B(H) which are closed in the strong, ultraweak, or ultrastrong

topologies as the closures of ∗-subalgebras of B(H) in these topologies all coincide.

Von Neumann proved that taking any of these closures of unital ∗-subalgebras of

B(H) coincides also with taking the double commutant (though he did not know of

the ultrastrong topology).

We will primarily require facts about projections and ideals of von Neumann

algebras and the relationship between the two notions.

7.2.1 Projections

The projections of A are operators p such that p = p∗ = p2 and they are orthogonal

projections onto closed subspaces ofH. This yields a natural ordering on projections

induced by the inclusion relation on their corresponding subspaces. Alternatively,

the ordering can be defined by:

p ≤ q if and only if pq = p if and only if qp = p .
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We denote the partially ordered set of projections in A by P(A). In von Neu-

mann algebras, the collection of projections forms a complete lattice: the infimum

infα pα of an arbitrary collection of projections {pα} is given by the orthogonal pro-

jection onto
⋂

pαHwhereas the supremum supα pα is the orthogonal projection onto

the closed linear span of
⋃

pαH. The orthogonal complement map ⊥ which sends

p to 1− p makes this lattice complemented in the sense that p ∨ p⊥ = 1, p ∧ p⊥ = 0,

and p⊥⊥ = p

The set of projections in A is also equipped with several other partial orderings

which arise from the canonical partial ordering and certain compatible equivalence

relations. We will require, in particular, the notions of Murray-von Neumann equiv-

alence of projections and unitary equivalence of projections.

The intuition behind Murray-von Neumann equivalence is to identify projec-

tions whose corresponding image subspaces are of the same dimension. That is,

there should be an operator v ∈ A mapping the Hilbert space H to itself which iso-

metrically maps the subspace of one projection to the subspace of another, thereby

witnessing the equality of their dimension.

Definition 7.2.2. Two projections p and q in a von Neumann algebra A are Murray-

von Neumann equivalent, denoted p ∼ q, if and only if there exists v ∈ A such that

p = v∗v and q = vv∗ .

The partial ordering on P(A) induces a partial ordering on the set of Murray-

von Neumann equivalence classes of projections. We write p 4
M

q to denote that

p ∼ p′ for some p′ ≤ q.

Definition 7.2.3. Two projections p and q in a unital von Neumann algebra A are

unitarily equivalent, denoted p ∼u q, if and only if there exists a unitary element

u ∈ A such that p = uqu∗.
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Unitary equivalence is stronger than Murray-von Neumann equivalence. The

partial ordering on P(A) induces a partial ordering on the set of unitary equivalence

classes of projections. We write p �
u
q to denote that p ∼u p′ for some p′ ≤ q.

We will require the fact that when p and q are orthogonal and Murray-von Neu-

mann equivalent they are automatically also unitarily invariant [6, p445].

Definition 7.2.4. The central carrier C(p) of a projection p ∈ A is the projection

inf{z ∈ P(A) ∩ Z(A), z ≥ p} .

It is immediate from this definition that a projection p and a unitary rotation

upu∗ have the same central carrier for z ≥ p if and only if uzu∗ = zuu∗ = z ≥ upu∗.

It is also immediate that if S ⊂ P(A) is a set of projections, then C(supS) =

supp∈S C(p).

One of the basic technical tools we will require is the comparison theorem of

projections in a von Neumann algebra [44]. The intuitive idea is best understood

in a factor (a von Neumann algebra with trivial centre) which can be thought of

as an elementary direct summand. Here, the dimension of two projections can be

compared; either they are of equal dimension, or the dimension of one exceeds the

dimension of the other.

Theorem 7.2.5 (Comparison theorem). Let p and q be projections in P(A). There

exists a central projection z ∈ A such that

zp <
M

zq and z⊥p ≺
M

z⊥q .

7.2.2 Ideals

Ideals of operator algebras must satisfy both the usual algebraic conditions as well

as an additional topological condition.
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It turns out that the appropriate notion of morphism for von Neumann algebras

is not weakly continuous ∗-homomorphism but rather ultraweakly continuous ∗-

homomorphism. The ultraweak topology is stronger than the weak topology.

Definition 7.2.6. A left (resp. right) ideal I of a von Neumann algebra A is a left

(resp. right) ring ideal I ⊂ A that is closed in the ultraweak topology.

A total ideal or two-sided ideal I of a von Neumann algebra A is two-sided ring

ideal I ⊂ A that is closed in the ultraweak topology.

Left, right, and total ideals correspond with projections. Examples of left (resp.

right) ideals are the sets given byAp (resp. pA); these are the kernels of morphisms

given by right (resp. left) multiplication by p⊥.

Theorem 7.2.7. Every left ideal L ⊂ A of a von Neumann algebra A is of the form

L = Ap for a projection p ∈ P(A). Further, the projection p is uniquely determined by

L.

Total ideals are precisely those left or right ideals corresponding to central pro-

jections.

Theorem 7.2.8. Every total ideal I ⊂ A of a von Neumann algebra A is of the form

I = zAz = zA = Az for a unique central projection z ∈ P(A) ∩ Z(A).
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7.3 Total and partial ideals

In the previous chapter, we found that including the class of restricted automor-

phisms in the diagram of topological spaces meant to act as a noncommutative

spectrum allowed us to give a novel definition of operator K-theory using nearly

the precise method which we conjectured in Chapter 2.

The next step in using extensions to directly obtain noncommutative analogues

from basic topological concepts would be to establish the conjecture that extending

the notion of closed topological subset leads to the analogous algebraic concept of

closed, two-sided ideal.

The principal theorem proved in this chapter (Theorem 7.3.6) concerns the von

Neumann algebraic analogue of a conjecture made by the author for C∗-algebras;

its proof is joint work with Rui Soares Barbosa. A notion of partial ideal for an

operator algebra is a weakening the notion of ideal where the defining algebraic

conditions are enforced only in the commutative subalgebras. We show that, in a

von Neumann algebra, the ultraweakly closed two-sided ideals, which we call total

ideals, correspond to the unitarily invariant partial ideals. The result also admits

an equivalent formulation in terms of central projections. We describe the origi-

nal question concerning C∗-algebras before stating and proving the von Neumann

algebraic version.

7.3.1 Motivation

In this subsection, we motivate the characterization of total ideals as invariant par-

tial ideals.

It is conjectured that taking the extension of the notion of open subset of a space

(or equivalently, closed subset) would lead to the notion of closed, two-sided (i.e.
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total) ideal of a C∗-algebra. To formalize this idea, let T : KHaus −→ CMSLat be the

functor which assigns to a compact Hausdorff topological space its complete lattice

of closed sets (with C1 ≤ C2 if and only if C1 ⊃ C2) and assigns to a continuous

function the complete meet-semilattice homomorphism mapping a closed set to its

image under the continuous function and let T̃ be its extension. Suppose further

that I is the contravariant functor from the category of C∗-algebras to the category

of complete meet-semilattices which sends an algebra to its lattice of total ideals

and a ∗-homomorphism φ : A −→ B to the homomorphism of complete meet-

semilattices I(φ) : I(B) −→ I(A) taking an ideal I ⊂ B to the ideal φ−1(I) of A.

Note that I, once restricted to the full subcategory of commutative C∗-algebras, is

naturally equivalent to T ◦ Σ.

Conjecture 7.3.1. The functors T̃ and I are naturally isomorphic.

To prove Conjecture 7.3.1 would be essentially to demonstrate a bijective cor-

respondence of total ideals of A with certain functions π which map commutative

sub-C∗-algebras V of A to closed ideals of V . To see this, note that the limit lattice

T̃(A) = lim←−TG(A) is a cone over the diagram TG(A).

L

�� ��

��

T̃(A)

π 7→π(V )
zz
zz
zz
zz

}}zz
zz
zz
zz

π 7→π(V ′)
DD

DD
DD

DD

""D
DD

DD
DD

D

I(V )
I(Adu|V

′

V
)

// I(V ′)

As we shall soon see, the elements of T̃(A) are precisely what we call the in-

variant partial ideals of A, i.e. choices of elements from each I(V ) subject to the

condition of the remark following Definition 7.3.4.
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Proving Conjecture 7.3.1 would establish a strong relationship between the

topologies of the geometric object G(A) and Prim(A), the primitive ideal space of

A: we would be able to recover the lattice of the hull-kernel topology on Prim(A),

as the limit of the topological lattices of the object G(A). Establishing this conjec-

ture would allow considering G to be an enrichment of Prim. Given that Prim is a

C∗-algebraic variant of the ring-theoretic spectrum whose hull-kernel topology pro-

vides the basis for sheaf-theoretic ring theory, one might hope to speculate about

the use of sheaf-theoretic methods in noncommutative topology.

7.3.2 Partial and total ideals of C∗-algebras

All algebras and subalgebras considered throughout this chapter are assumed to be

unital. By a total ideal of a C∗-algebra A, we mean a norm closed, two-sided ideal

of A.

Definition 7.3.2. A partial ideal of a C∗-algebra A is a map π that assigns to each

commutative sub-C∗-algebra V of A a closed ideal of V such that π(V ) = π(V ′) ∩ V

whenever V ⊂ V ′.

Remark 1. A partial ideal is precisely a choice of π(V ) ∈ I(V ) for each commutative

sub-C∗-algebra V of A such that whenever there is an inclusion morphism ι : V −֒→

V ′, then

π(V ) = I(ι)(π(V ′)) = π(V ′) ∩ V ;

i.e. the following diagram commutes.

V ′ {∗}
∗7→π(V ′) //

∗7→π(V )

!!C
CC

CC
CC

CC
CC

CC
CC

CC
I(V ′)

I(ι)

��
V
?�

ι

OO

I(V )

(7.1)
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Remark 2. The concept of partial ideal was introduced by Reyes [58] in the more

general context of partial C∗-algebras. His definition differs slightly but is equivalent

in our case: a subset P of normal elements of A such that P ∩ V is a closed ideal of V

for all commutative sub-C∗-algebras V of A.

Partial ideals exist in abundance: every closed, left (or right) ideal I of A gives

rise to a partial ideal πI in a natural way by choosing πI(V ) to be I ∩ V .

For example, in a matrix algebra Mn(C), the right ideal pMn(C), for p ∈ Mn(C)

a nontrivial projection, yields a nontrivial partial ideal of Mn(C) in this way. As

matrix algebras are simple, it cannot be the case that these nontrivial partial ideals

also arise as πI from a total ideal I. This raises a natural question:

Question 7.3.3. Which partial ideals of C∗-algebras arise from total ideals?

Some partial ideals do not even arise from left or right ideals: for example,

choosing arbitrary nontrivial ideals from every nontrivial commutative sub-C∗-algebra

of M2(C) yields, in nearly all cases, nontrivial partial ideals of M2(C). However, a

hint towards identifying those partial ideals which arise from total ideals is given

by a simple observation. If Adu : A −→ A is an inner automorphism of A—that is,

one given by conjugation by a unitary u of A—then Adu(I) = I for any total ideal

I ⊂ A. This imposes a special condition on the partial ideal πI(V ) = I ∩ V which

arises from I.

Definition 7.3.4. An invariant partial ideal π of a C∗-algebra A is a partial ideal of

A such that, for each commutative sub-C∗-algebra V ⊂ A and any unitary u ∈ A, the

rotation by u of the ideal associated to V is the ideal associated to the rotation by u of

V . That is,

Adu(π(V )) = π(Adu(V )) .

Remark 3. Imposing the invariance condition on partial ideals is equivalent to ex-

tending the requirement on maps π of Diagram (7.1) from inclusion maps to all
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∗-homomorphisms Adu|
V ′

V : V −→ V ′ arising as a restriction of the domain and

codomain of an inner automorphism. An invariant partial ideal is precisely a choice of

π(V ) ∈ I(V ) for each commutative sub-C∗-algebra V of A such that whenever there

is a morphism Adu|
V ′

V : V −→ V ′ as above, then

π(V ) = I(Adu|
V ′

V )(π(V ′)) = Adu∗(π(V ′)) ∩ V ;

i.e. the following diagram commutes.

V ′ {∗}
∗7→π(V ′) //

∗7→π(V )

!!C
CC

CC
CC

CC
CC

CC
CC

CC
I(V ′)

I(Adu|V
′

V )

��
V

Adu|V
′

V

OO

I(V )

Thus, we arrive at the simplest possible conjecture:

Conjecture 7.3.5. A partial ideal of a C∗-algebra arises from a total ideal if and

only if it is an invariant partial ideal. Consequently, the map I 7−→ πI is a bijective

correspondence between total ideals and invariant partial ideals.

Note that the first part of the statement says that the map I 7−→ πI is surjective

onto the invariant partial ideals. The second part of the statement follows easily

from this, since injectivity of this map is obvious: the left inverse is given by map-

ping an invariant partial ideal of the form πI to the linear span of
⋃

V π(V ), which

is equal to I itself.

7.3.3 Partial and total ideals of von Neumann algebras

One may define partial ideal (resp. invariant partial ideal) for a von Neumann

algebra by replacing in Definition 7.3.2 (resp. Definition 7.3.4) the occurrences of

“commutative sub-C∗-algebra”with “commutative sub-von-Neumann-algebra” and
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“closed ideal” with “ultraweakly closed ideal”. A total ideal of a von Neumann

algebra is, as in Definition 7.2.6 , an ultraweakly closed, two-sided ideal. As before,

a total ideal I determines an invariant partial ideal πI in the same way, and the map

I 7−→ πI is injective.

Establishing the analogue of Conjecture 7.3.5 for von Neumann algebras pro-

vides some measure of evidence for the original conjecture’s verity, and its proof

may be adapted to show that the original conjecture holds for a large class of—or

perhaps all—C∗-algebras.

Theorem 7.3.6 (Principal theorem of chapter). A partial ideal of a von Neumann

algebra arises from a total ideal if and only if it is an invariant partial ideal. Con-

sequently, the map I 7−→ πI is a bijective correspondence between total ideals and

invariant partial ideals.

Total ideals of a von Neumann algebra A are in bijective correspondence with

central projections z of A: every total ideal I is of the form zA for a unique z

(Theorem 7.2.8) [5]. This allows us to rephrase the theorem in terms of projections

which are vastly more convenient to work with.

Definition 7.3.7. A consistent family of projections of a von Neumann algebra A

is a map Φ that assigns to each commutative sub-von-Neumann-algebra V of A a

projection in V such that:

1. for any V and V ′ such that V ⊂ V ′, Φ(V ) is the largest projection in V which is

less than or equal to Φ(V ′), i.e.

Φ(V ) = sup {q is a projection in V | q ≤ Φ(V ′)} .

An invariant family of projections is such a map which further satisfies

2. for any unitary element u ∈ A, Φ(uV u∗) = uΦ(V )u∗.
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The correspondence between total ideals and central projections yields corre-

spondences between partial ideals (resp. invariant partial ideals) and consistent

(resp. invariant) families of projections. We therefore establish Theorem 7.3.6 in

the third section by proving an equivalent statement. Just as was the case for ide-

als, any projection p determines a consistent family of projections Φp defined by

choosing Φp(V ) to be the largest projection p in V which is less than or equal to p.

For a central projection z, Φz turns out to be an invariant family. In the opposite

direction, any consistent family of projections Φ gives a central projection Φ(Z(A))

where Z(A) is the centre of A.

Theorem 7.3.8 (Principal theorem of chapter, reformulated). A consistent family of

projections of a von Neumann algebra arises from a central projection if and only if

it is an invariant family of projections. Consequently, the maps z 7−→ Φz and Φ 7−→

Φ(Z(A)) define a bijective correspondence between central projections and invariant

families of projections.
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7.4 Technical Preliminaries

7.4.1 Little lemmata

In proving our main result, we shall make use of some simple properties of consis-

tent families of projections which we record here as lemmata for clarity.

Lemma 7.4.1. Let A be a von Neumann algebra, and Φ be a consistent family of

projections. Suppose V ⊂ V ′ are commutative sub-von-Neumann-algebras of A. Then:

i. Φ(V ) ≤ Φ(V ′);

ii. if p ∈ V and p ≤ Φ(V ′), then p ≤ Φ(V );

iii. in particular, if Φ(V ′) ∈ V , then Φ(V ′) = Φ(V ).

Proof. Properties i and ii are simple consequences of the requirement in the def-

inition of consistent family of projections that Φ(V ) is the largest projection in V

smaller than Φ(V ′). Property iii is a particular case of ii.

Given a commutative subset X of A, denote by VX the commutative sub-von-

Neumann-algebra of A generated by X and the centre Z(A), i.e. VX = (X ∪

Z(A))′′. Given a finite commutative set of projections {p1, . . . , pn}, we write Vp1,...,pn

for V{p1,...,pn}.

Lemma 7.4.2. Let A be a von Neumann algebra; Φ a consistent family of projections;

M a commutative set of projections in A such that Φ(Vm) ≥ m for all m ∈ M ; and s

the supremum of the projections in M . Then Φ(Vs) ≥ s.

Proof. For all m ∈M , since Vm ⊆ VM , we have

Φ(VM) ≥ Φ(Vm) ≥ m
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by Lemma 7.4.1-i and the assumption that Φ(Vm) ≥ m. Hence, Φ(VM) is at least the

supremum of the projections in M , i.e. Φ(VM) ≥ s. Now, from Vs ⊂ VM and s ∈ Vs,

we conclude by Lemma 7.4.1-ii that s ≤ Φ(Vs).

7.4.2 Partial orthogonality

Definition 7.4.3. Two projections p and q are partially orthogonal whenever there

exists a central projection z such that zp and zq are orthogonal while z⊥p and z⊥q are

equal.

Note that partially orthogonal projections necessarily commute and that if p1

and p2 are partially orthogonal, so is the pair zp1 and zp2 for any central projection

z. A set of projections is partially orthogonal whenever any pair of projections in

the set is partially orthogonal. We will require in the sequel the following simple

lemma:

Lemma 7.4.4. Let p1 and p2 be projections and z be a central projection such that zp1

and zp2 are partially orthogonal and z⊥p1 and z⊥p2 are partially orthogonal. Then p1

and p2 are partially orthogonal.

Proof. As zp1 and zp2 are partially orthogonal, there exists a central projections y

such that

yzp1 = yzp2 and y⊥zp1 ⊥ y⊥zp2 .

Similarly, as z⊥p1 and z⊥p2 are partially orthogonal, there exists a central projec-

tions x such that

xz⊥p1 = xz⊥p2 and x⊥z⊥p1 ⊥ x⊥z⊥p2 .

Summing both statements above, we conclude that

(yz + xz⊥)p1 = (yz + xz⊥)p2 and (y⊥z + x⊥z⊥)p1 ⊥ (y⊥z + x⊥z⊥)p2 ,
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where yz+ xz⊥ is a central projection and (yz+ xz⊥)⊥ = y⊥z+ x⊥z⊥. So, p1 and p2

are partially orthogonal.

7.4.3 Main lemma

When comparing projections, we write ≤ to denote the usual order on projections,

4
M

for the order up to Murray-von Neumann equivalence, and �
u

for the order up

to unitary equivalence.

The following lemma is one of the main steps of the proof. The idea is to start

with a projection q in a von Neumann algebra and to cover, as much as possible, its

central carrier C(q) by a commutative subset of the unitary orbit of q. The lemma

states that, in order to cover C(q) with projections from the unitary orbit of q, it

suffices to take a commutative subset, M , and (at most) one other projection, uqu∗,

which is strictly larger than the remainder C(q) − supM . That is, the remainder

from what can be covered by a commutative set is strictly smaller than q up to

unitary equivalence.

Lemma 7.4.5. Let q be a projection in a von Neumann algebra A. Then there exists a

set M of projections such that:

i. q ∈M ;

ii. M is a subset of the unitary orbit of q;

iii. M is a commutative set;

iv. the supremum s of M satisfies

sR ≺
u
q

where sR = C(q)− s.
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Proof. Let O be the unitary orbit of q. The partially orthogonal subsets of O which

contain q form a poset under inclusion. Given a chain in this poset, its union is

partially orthogonal: any two projections in the union must appear together some-

where in one subset in the chain and are thus partially orthogonal. Hence, by Zorn’s

lemma, we can construct a maximal partially orthogonal subset M of the unitary

orbit of q such that q ∈M . Clearly, M satisfies conditions i–iii.

Denote by s the supremum of the projections in M . Its central carrier C(s) is

equal to the central carrier C(q) of q. This is because C(−) is constant on unitary

orbits and C(supm∈M m) = supm∈M C(m). We now need to show that sR ≺
u
q.

By the comparison theorem for projections in a von Neumann algebra (Theorem

7.2.5), there is a central projection z such that

zsR <
M

zq and z⊥sR ≺
M

z⊥q .

We can assume without loss of generality that z ≤ C(q) since

C(q)⊥q = C(q)⊥sR = 0 .

Moreover, as s and sR are orthogonal, there is a unitary which witnesses these order

relationships. That is, there is a unitary u such that

zsR ≥ z(uqu∗) and z⊥sR < z⊥(uqu∗) .

We will show that z vanishes and thus conclude that sR < uqu∗ as required.

Define v to be the unitary zu + z⊥1 which acts as u within the range of z and

as the identity on range of z⊥. We first establish that vqv∗ and m are partially

orthogonal for every m ∈M .

Let m ∈ M . As M was defined to be a partially orthogonal set of projections and

q ∈ M , we know that q and m are partially orthogonal, and thus that z⊥q and z⊥m

are partially orthogonal. However, as z⊥v = z⊥, we may express this as: z⊥(vqv∗)
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and z⊥m are partially orthogonal. Now, on the range of z, we have that

z(vqv∗) = z(uqu∗) ≤ zsR and zm ≤ zs ,

implying that z(vqv∗) and zm are orthogonal, hence partially orthogonal. Putting

both parts together, we have that z⊥vqv∗ and z⊥m are partially orthogonal and

that z(vqv∗) and zm are partially orthogonal. We may thus apply Lemma 7.4.4 and

conclude that vqv∗ and m are partially orthogonal as desired.

Having established that vqv∗ is partially orthogonal to all the projections in M ,

it follows by maximality of M that vqv∗ ∈M . Hence,

zvqv∗ ≤ vqv∗ ≤ supM = s .

Yet, by construction,

zvqv∗ = zuqu∗ ≤ zsR ≤ sR ,

and so zvqv∗ must be orthogonal to s. Being both contained within and orthogonal

to s, zvqv∗ must vanish. Therefore, the unitarily equivalent projection zq must also

vanish. Now, z ≤ C(q) and zq = 0 forces z to be zero, for otherwise C(q)− z would

be both a central projection covering q and also strictly smaller than the central

carrier of q. We may finally conclude that sR < uqu∗.
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7.5 Main theorem

Theorem 7.3.8, and thus our principal result, Theorem 7.3.6, will follow as an

immediate corollary of:

Theorem 7.5.1. In a von Neumann algebra A, any invariant family of projections

Φ arises from a central projection, i.e. Φ is equal to Φz for the central projection

z = Φ(Z(A)).

Proof. Let Φ be an invariant family of projections. Suppose W is a commutative

sub-von-Neumann-algebra of A which contains the centre Z(A), and let q be the

projection Φ(W ). We claim that q is, in fact, equal to its own central carrier C(q)

and thus central. As q ≤ C(q) is true by definition, we must show that q ≥ C(q).

We start by applying Lemma 7.4.5 to q. Let M denote the resulting commuting

set of projections in the unitary orbit of q, s denote the supremum of the projections

in M , and sR denote C(q)− s = C(s)− s. From the lemma, we know that sR ≺u q,

i.e. there exists a unitary u such that sR < uqu∗.

First note that, since Vq ⊂ W and q ∈ Vq, by Lemma 7.4.1-iii, we have that

Φ(Vq) = q. Then, by unitary invariance of the family of projections, for every m ∈M

we have that Φ(Vm) = m. Hence, we can apply Lemma 7.4.2 to conclude that

Φ(Vs) ≥ s. We also conclude, again by unitary invariance of Φ, that Φ(Vuqu∗) =

uqu∗ ≥ sR.

Now, note that uqu∗ and sR commute and that Vs = VsR. So there is a commu-

tative sub-von-Neumann-algebra Vs,uqu∗ ⊇ Vs, Vuqu∗. By Lemma 7.4.1-i and the two

conclusions of the preceding paragraph, we then have

Φ(Vs,uqu∗) ≥ Φ(Vs) ∨ Φ(Vuqu∗) ≥ s ∨ sR = C(q) .

But, since C(q) ∈ Vuqu∗ by virtue of being contained in the centre, we can apply
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Lemma 7.4.1-ii to find that Φ(Vuqu∗) ≥ C(q). Finally, by unitary invariance,

q = Φ(Vq) ≥ u∗C(q)u = C(q) ,

concluding the proof that q is central.

We have shown that the projection Φ(W ) is central for every commutative sub-

von-Neumann-algebra W containing the centre Z(A). By Lemma 7.4.1-iii, this

means that Φ(W ) is equal to Φ(Z(A)), the projection chosen at the centre, for

all such W . In turn, this determines the image of Φ on all commutative sub-von-

Neumann-algebras W ′ as

Φ(W ′) = sup
{

p is a projection in W ′ | p ≤ Φ(VW ′∪Z(A)) = Φ(Z(A))
}

,

and we find that Φ must be equal to ΦΦ(Z(A)).
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7.6 Conclusions

Conjecture 7.3.5 is essentially the guess that the translation of the notion of closed

set by the extension method matches up with the algebraic concept one would

expect: closed, two-sided ideal. It would also recover the hull-kernel topology on

the primitive ideal space of a C∗-algebra A as a limit of the topologies; topologies

of quotient spaces of the noncommutative space underlying A.

We have established the von Neumman algebraic analogue of Conjecture 7.3.5.

As a consequence, the original C∗-algebraic conjecture holds for all finite-dimensional

C∗-algebras. The question of whether it holds for all C∗-algebras remains open. We

conclude by indicating some ideas for future work that may lead to progress on this

question.

One possible tack would be to enlarge the class of C∗-algebras for which the con-

jecture holds. An immediate suggestion would be the class of AF -algebras which

arise as limits of finite-dimensional C∗-algebras [13]; it would follow immediately

from a proof that T̃ preserves limits.

Another possibility would be to prove the whole conjecture directly by using the

proof of the von Neumann algebraic version as a guide. Indeed, one might still be

able to reduce the question to one about projections by working in the enveloping

von Neumann algebra A∗∗ of a C∗-algebra A. In this setting, the total ideals of a

C∗-algebra A correspond to certain total ideals of the enveloping algebra A∗∗ [5]:

those which correspond to open central projections. In essence, one would have to

prove the appropriate analogue of Theorem 7.3.8 in order to find a correspondence

between central open projections of A∗∗ and certain families of open projections

which obey a restricted form of unitary invariance.
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Chapter 8

Conclusions
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With this dissertation, we have identified and explored a connection between the

phenomenon of contextuality in quantum mechanics and the noncommutative ge-

ometry of C∗-algebras. We argued that, by taking state-observable duality seriously,

a notion of quantum state space for a quantum system could be defined formally

as being the geometric space such that the system’s algebra of observables, which

encapsulates all operational data, is manifested as the algebra of functions from

the state space to outcomes. Since quantum systems are described by C∗-algebras

of observables, construction of this quantum state space is tantamount to finding

the geometric dual, in the categorical sense, to noncommutative C∗-algebras; to

generalizing the Gel’fand spectrum functor from commutative to all C∗-algebras.

As the idea of representing observables as functions from states to outcomes

(rather than to distributions on outcomes) is suggestive of determinism it is per-

haps no surprise, in retrospect, that the phenomenon of contextuality plays a key

role. Indeed, the idea of Isham and Butterfield’s formulation in terms of context-

indexed state spaces of the Kochen-Specker theorem provided a starting point for

defining quantum state space. A hint which is sorely needed, as it is, of course,

impossible to define a noncommutative spectrum in the most naive way: as a set

of points with additional structure. The suggestion is then to consider as a possible

notion of noncommutative spectrum not one topological space but a diagram of all

the topological spaces which arise as quotient spaces of the hypothetical noncom-

mutative space underlying a C∗-algebra.

Given this starting point, the field of noncommutative geometry gave a target. It

provided generalizations of topological tools to the noncommutative setting which

should, in principle, be straightforwardly reconstructible in a directly geometric

way. A method for such reconstructions was proposed via an extension process

which can be seen as decomposing a noncommutative space into its quotient spaces,

retaining those which are genuine topological spaces, applying the topological func-
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tor to each one, and pasting together the result.

It is our hope that the results of the last two chapters provide convincing ev-

idence that the spatial diagrams associated to C∗-algebras in Chapter 4 are the

closest topological approximations to noncommutative spaces. This immediately

raises the question: why is the appropriate class of morphisms to consider those

which arise from restricting inner automorphisms? Physically, these symmetries

correspond to certain evolutions in time but how are they to be interpreted in terms

of noncommutative topology?

More convincing evidence could be provided should some of the open problems

to do with dropping the stability or finitary conditions in the K-theory result or the

original C∗-algebraic conjecture about reconstructing the hull-kernel topology be

resolved. Further examples of topological concepts which can be extended to their

noncommutative analogues or useful applications of novel extensions would also

strengthen the case.

To establish a concrete duality, it would be important to characterize which di-

agrams of spaces arise as spatial diagrams of a noncommutative algebra. For this

perspective to be helpful for computations, some notion of a sub-spatial diagram

‘cover’ is needed. A useful analogy might be that of manifolds which come equipped

with a maximal atlas. In practice, only a few charts are used for computations. Un-

derstanding how to recover a noncommutative algebra of functions from a spatial

diagram is another key step.

The spatial diagram might also be explicitly calculated for some special ex-

amples. One promising possibility is the canonical commutation relations algebra

which is closely connected with quantization and thus physically very significant.

In this case, the Krichever-Mulase classification of certain commutative subalgebras

of C[[x]][∂] [54] provides a potentially highly useful roadmap. Another possibly

tractable class of algebras for computations are those which arise as crossed prod-
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uct algebras, wherein a group action on a C∗-algebra is embedded in a larger C∗-

algebra such that the action is realized as a group of inner automorphisms. This

class includes within it the important example of noncommutative tori (the compu-

tation of whose K-theory was considered a very difficult problem [59]).

The idea of looking at commutative quotients is a very general one and could

perhaps be applied to analyze other sorts of noncommutative algebras other than

C∗-algebras. The ideas outlined above might be applied to any duality involving a

category of geometric objects and a category of commutative algebras.

The study of contextuality has extended beyond its original setting of quantum

theory. These more general settings include test spaces or generalized probabilis-

tic theories. This perspective of extending concepts defined for classical spaces to

noncommutative spaces could provide a guide to finding appropriate analogues

for concepts in classical probability theories in other general settings which exhibit

contextuality.
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