
Types for Quantum Computing

Ross Duncan
Merton College, Oxford

Oxford University Computing Laboratory

Submitted for the degree of Doctor of Philosophy

Michaelmas Term 2006

Abstract

This thesis is a study of the construction and representation of typed models
of quantum mechanics for use in quantum computation. We introduce logical
and graphical syntax for quantum mechanical processes and prove that these
formal systems provide sound and complete representations of abstract quantum
mechanics. In addition, we demonstrate how these representations may be used
to reason about the behaviour of quantum computational processes.

Quantum computation is presently mired in low-level formalisms, mostly de-
rived directly from matrices over Hilbert spaces. These formalisms are an obsta-
cle to the full understanding and exploitation of quantum effects in informatics
since they obscure the essential structure of quantum states and processes.

The aim of this work is to introduce higher level tools for quantum mechan-
ics which will be better suited to computation than those presently employed in
the field. Inessential details of Hilbert space representations are removed and
the informatic structures are presented directly. Entangled states are partic-
ularly important in this treatment, as is appropriate, since entanglement is a
fundamental driver of quantum computation. The benefits two-fold: as well as
producing foundational tools for the study of quantum computation this work
also connects quantum mechanics to mainstream areas of computer science such
as categorical logic, type theory, program language semantics, and rewriting.

We describe, following Abramsky and Coecke, how quantum mechanics may
be carried out without reference to Hilbert space, in a strongly compact closed
category. In particular we show how to freely construct a categorical model of
abstract quantum mechanics from an arbitrary category.

We introduce Multiplicative Categorical Quantum Logic (mCQL), a sequent
calculus whose proof rules capture the structure of compact closed categories.
This sequent calculus is interpreted in a freely generated compact closed cate-
gory, and its semantics is sound with respect to cut elimination. We define an
equivalent graphical syntax, similar to linear logic’s proof-nets, and prove that
these proof-nets provide a full and faithful representation of any freely generated
compact closed category.

Further analysis of the structure of quantum states which correspond to
mCQL proofs using multiplicative linear logic shows that the linear type system
describes the quantum entanglement found in such states. We show that the
entanglement present in these states is always of a particularly simple form:
collections of entangled pairs.

In order to tackle arbitrary entanglement, we generalise the work of Kelly
and Laplaza to give a representation theorem for the free compact closed cat-
egory by a polycategory. Such categories are shown to be equivalent to a gen-
eralised system of proof-nets whose axioms may have more than one premise

i

ii

or conclusion. These axioms may be understood as abstract representatives of
interactions involving several distinct quantum systems.

A striking application of entanglement is the class of measurement-based
models of quantum computation. In the final chapter, the diagrammatic no-
tation is applied to the verification of programs in the measurement calculus
of Danos, Kashefi, and Panangaden — a measurement-based model where the
computation is coded directly in an entangled state. By exploiting their dia-
grammatic form, some example programs are transformed to equivalent quan-
tum circuits, thus proving the correctness of the original programs.

Acknowledgements

It is both an honour and a pleasure to acknowledge my debt to my supervisor,
Samson Abramsky. This thesis would not have been possible without his insight,
encouragement, patience and generosity.

I also extend my warmest thanks to Bob Coecke, whose friendship and in-
spiration over the past four years have been invaluable.

Many colleagues have contributed through lectures and discussions from
which I have benefited enormously: Prakash Panangaden, Phil Scott, Vincent
Danos, Elham Kashefi, Peter Hines, Alexandru Baltag and Eric Paquette, to
name only a few. Their ideas have helped shape this work and their interest en-
couraged me to pursue it. Especial thanks to Ellie d’Hondt for helpful comments
on a draft version.

The Oxford University Computing Laboratory provided the necessary finan-
cial support for this thesis in the form of a studentship; without this funding I
would never have been able to embark on this project. The work was carried
out while I was a member of Merton college, which provided generous financial
and pastoral assistance. In particular I thank Luke Ong for his support as my
tutor and Dean of graduates. I spent six months as a guest of the Ecole Normal
Superieure in Paris while writing up; their generosity is acknowledged.

The document was typeset using LATEX. I made use of Paul Taylor’s diagrams
and prooftree macro packages.

In many respects moral support is as important, if not more so, than the
financial kind. I owe my sanity to my friends, in Oxford and elsewhere, without
whom life would have been very bleak indeed. The value of their laughter,
sympathy and kindness cannot be understated.

To my family I express my bottomless gratitude for their love and support
throughout my protracted education; and to Nora, for everything, thank you.

iii

iv

Contents

1 Introduction 1
1.1 Quantum Mechanics . 5
1.2 Programs, Proofs and Categories 10
1.3 Outline of the Thesis . 12

2 Categorical Background 15
2.1 Monoidal Categories . 16
2.2 Duality . 19
2.3 Compact Closed Categories . 21
2.4 Names and Conames . 24
2.5 Strong Compact Closure . 27
2.6 Trace . 28
2.7 Scalars and Loops . 29
2.8 Free Construction . 31

3 Categorical Quantum Mechanics 35
3.1 Multiplicative Quantum Mechanics 36
3.2 FDHilb as a strong compact closed category 37
3.3 Categorical Quantum Mechanics 39
3.4 Free Models . 40

4 Multiplicative Categorical Quantum Logic 45
4.1 Formulae . 46
4.2 Sequent Calculus . 46
4.3 Proof-nets . 55
4.4 Example: Entanglement Swapping 65

5 MLL and Entanglement 67
5.1 Entangled States . 68
5.2 Double Gluing . 70
5.3 Multiplicative Linear Logic . 72

5.3.1 Sequent Calculus . 72
5.3.2 Proof-nets . 73
5.3.3 Interpreting MLL in the Free Category 74

v

vi CONTENTS

6 Generalised mCQL 79
6.1 Polycategories . 82
6.2 Graphs and Circuits . 87

6.2.1 Graphs . 87
6.2.2 Circuits . 98

6.3 The Free Compact Closed Category on a Polycategory 104
6.4 Scalars . 107
6.5 Homotopy . 108

6.5.1 Extended Labellings . 109
6.5.2 Homotopy Equivalence . 109
6.5.3 Circuits under Homotopy 115
6.5.4 Quotients of the Free Structure 116

6.6 Generalised Proof-nets . 117
6.6.1 PN(A) is equivalent to Circ(A) 130

6.7 Relations and Rewriting . 133
6.8 Example: Proving No-cloning . 135

7 The One-Way Quantum Computer 137
7.1 The Measurement Calculus . 137
7.2 Representing the Measurement Calculus 139
7.3 Examples . 146

7.3.1 Teleportation . 146
7.3.2 One qubit unitary . 146
7.3.3 Controlled-NOT . 147
7.3.4 Controlled-U . 148

7.4 Remark . 148

8 Further Work 151

Chapter 1

Introduction

The relationship between the quantum computational model and its classical1

predecessor remains unclear. What are the truly “quantum” features of quan-
tum computing? And how should they be represented? In the following chapters
I aim to address these questions by describing the structural features of quan-
tum computation, and other quantum systems, in the terms of logic and type
theory.

This thesis is a study of the construction and representation of typed models
of quantum mechanics for use in quantum computation. I introduce logical
and graphical syntax for quantum mechanical processes and prove that these
formal systems provide sound and complete representations of abstract quantum
mechanics. In addition, I demonstrate how these representations may be used
to reason about the behaviour of quantum computational processes.

The analysis of quantum systems is complicated by the phenomenon known
as quantum entanglement. Entanglement allows seemingly disjoint systems to
behave as a tightly coupled whole, and, as a consequence, quantum systems can-
not be understood by simply examining their constituent parts: the entire sys-
tem must examined together. The exploitation of entanglement is fundamental
in quantum computation. It lies at the heart of the speed-up of quantum algo-
rithms, and is used directly in many quantum communication protocols. Indeed,
an entire class of quantum computational models, the so-called measurement-
based models, is based on the use of entangled resources. Despite all this, the
underlying structure of entanglement is poorly understood. A large portion of
this thesis is spent developing a mathematical framework which captures the
essential features of many-body entanglement in a high level fashion. My aim
in so doing is to establish a foundation upon which the behaviour of entangled
systems can be understood directly in terms of structural relationships between
their subsystems.

A point worth making early is that my focus falls exclusively on the tensor
fragment of quantum theory, which, despite its fundamental importance, has
not been seriously studied before. Other aspects of quantum mechanics, such as
non-determinism and branching, are not considered. This sub-theory I refer to
as multiplicative quantum mechanics, following the terminology of linear logic.

1The word classical is slightly overloaded when simultaneously discussing logic and quan-
tum computation. Throughout this work I use it to denote non-quantum; it will not be
necessary to discuss classical logic as distinct from linear or intuitionist logic.

1

2 CHAPTER 1. INTRODUCTION

The general theoretical backdrop to this work is the Curry-Howard isomor-
phism, also called propositions-as-types or, more accurately, proofs-as-programs
[GLT89, SU06]. This correspondence relates two things: an idealised computing
system built up from program terms and a logic or type discipline to charac-
terise the valid programs. The archetypal example of this correspondence is the
connection between the simply typed λ-calculus [Chu40, Bar84, Hin97] and in-
tuitionistic natural deduction [Gen35, Pra65]: every proof defines a λ-term and
vice versa. This correspondence is not a static relationship between terms and
proofs; it also preserves the dynamical behaviour of program execution. For
example, if one λ-term β-reduces to another then their corresponding proofs
will be related by the cut-elimination procedure for intuitionistic logic. In this
fashion logically sound proof-transformations, the most important being cut-
elimination, encode program transformations, the most important of which is
execution.

The picture is completed by adjoining a third component to this relation: a
categorical model which provides semantics to formalise the meaning of the pro-
grams. In the case of intuitionistic logic, the corresponding model is a Cartesian
closed category; the proof-rules of the logic reflect exactly the algebraic struc-
ture of the category, hence any model of the simply typed λ-calculus must form
such a category [LS86]. The dynamic relationships between terms or proofs
given by their normalisation behaviour are reflected in the categorical model
as static equalities between arrows. Programs with equivalent behaviour have
equal denotations in the model.

The overarching goal of the work carried out in the this thesis is to define
a suitable logical syntax, program term language, and categorical model, to
construct a similar logical trinity for quantum computation.

The λ-calculus describes only the fundamental actions of abstraction and
application, and abstracts away from many details of a practical functional
language such as ML [MTHM97] or Haskell [PJH99]. In the same way, we shall
avoid getting bogged down in the details of any particular proposed quantum
computer by focusing only on their essential common aspect, the theory of
quantum mechanics itself.

Quantum mechanics has been studied in logical terms since its earliest days.
Traditional approaches follow Birkhoff and von Neuman [BvN36] in taking the
lattice of closed subspaces of a Hilbert space as the fundamental object. How-
ever this lattice is not distributive and the meet does not have a right adjoint,
hence the notion of implication is problematic (see [Sme01], chapter 11 for a
discussion). As a result, such quantum logics do not admit a conventional idea
of deduction, and thus a Gentzen-style logical calculus is not available. Worse
still, it seems impossible to define a tensor product on such lattices, hence the
logic is not closed under combination of systems. These difficulties were resolved
by Abramsky and Coecke’s explicitly categorical account [AC04], which refor-
mulates the axioms of quantum mechanics in the language of strongly compact
closed categories with biproducts. Due to its categorical nature, and unlike its
predecessors2, this approach is intrinsically compositional, and hence admits a
non-trivial proof theory. Development of this proof theory is a central compo-
nent of this thesis.

2But see also Baltag and Smets’s modal quantum logic [BS04] and Isham and Butterfield’s
topos theoretic approach [IB00].

3

In order to develop a logical characterisation of quantum processes — or,
more accurately, a type-theoretic one — we construct formal, syntactic models of
the underlying categorical structures found in quantum mechanics. The axioms
of these categories are captured in the syntax exactly, so that the resulting
proof-theory may be used to represent and reason about quantum mechanics
and, in particular, quantum computation. The central theme is the construction
of free categories which have the requisite structure. The principal results are:

• We define a sequent calculus, called Multiplicative Categorical Quantum
Logic (mCQL), whose proof rules capture the structure of compact closed
categories. Via an equivalent graphical syntax, similar to linear logic’s
proof-nets, we prove that any freely generated compact closed category
has a representation in this logic.

• We use multiplicative linear logic [Gir87a, DR89](MLL) to analyse the
structure of the quantum states which correspond to mCQL proofs and
find that their typing in MLL describes the quantum entanglement in such
states. The entanglement present in these states is always of a particularly
simple form: collections of entangled pairs.

• In order to tackle arbitrary entanglement it is necessary to generate the
compact closed category on top of an already existing, non-trivial tensor
structure. To do so, we step outside of the ground covered by the Kelly-
Laplaza coherence theorem [KL80] and consider a larger class of compact
closed categories, freely generated upon polycategories [Sza75]. We prove
a representation theorem and show that these categories are equivalent to
a generalised class of proof-nets, whose axioms may have more than one
premise or conclusion.

As an example application of this approach, we demonstrate how the gener-
alised proof-net notation can be used to translate between two concrete models
of quantum computation. Starting from programs defined the measurement
calculus [DKP07], a notation for measurement-based quantum computation, we
construct equivalent quantum circuits, and hence verify the correctness of some
example programs.

The primary motivation for this work is the need for quantum program-
ming languages. We take for granted that quantum computers will be used to
carry out a variety of information processing tasks and that they will form an
important class of devices which algorithm designers will call upon. In order
to exploit this new paradigm, quantum programmers will require programming
languages which allow them to express and manipulate patterns based on the
unique features of the quantum model. Since compact closed categories are the
fundamental underlying algebraic structure of quantum mechanics it is natu-
ral to assume that any type system for a quantum programming language will
necessarily represent this structure. Hence we propose that the logical frame-
work introduced here represents a necessary core of any strongly typed quantum
language.

Perhaps this claim requires further justification. There have been many pro-
posals for quantum programming languages, c.f. [Kni96, SZ00, Sel04, Öme03,
Sab03, AG05], some of which are indeed strongly typed. The most common
approach is to take an existing programming language and augment it with an

4 CHAPTER 1. INTRODUCTION

additional quantum data type, usually qubits; the resulting quantum data are
then treated as being essentially unstructured. However, as the quantum tele-
portation protocol (discussed below) shows, by using entanglement it is possible
to construct non-trivial structures in the quantum realm and carry out informa-
tion processing by manipulating these structures. The logical extreme of this
idea is found in the one-way model [RB01], in which the entire computation
is carried out by modifying a large entangled state. Hence, if a language is to
describe quantum structures — as opposed to qubits embedded in classical pro-
grams — then a more serious treatment of such structures is required. With few
exceptions [BIP03, DKP07, Per05] this structured approach to entanglement is
not found in the existing literature. While this thesis does not contain an ex-
position of a concrete programming language, it does develop and characterise
the necessary algebraic structure for such a language.

The categorical approach yields several other benefits. Since arrows in a
category have explicit domains and codomains, everything in the formalism has
a type, which specifies what kind of thing it is. This contrasts with the approach
common in the physics literature where everything, be it a state, unitary trans-
formation, or measurement, is represented as a matrix. Especially useful in
a programming environment, but also of more general benefit, is the limita-
tion that types impose on the composition of arrows, which effectively disallows
unsound operations. In addition, since the model proposed is abstract and ax-
iomatic, it has interpretations in other settings beyond the usual Hilbert space
model of quantum mechanics. In particular, these models — and especially the
graphical representations developed here — may be applied in the verification of
quantum programs, and used to derive new proof techniques for use in quantum
mechanics; see Chapter 7, and also [CP06].

There are also applications of working with a formal logical calculus. When
quantum computation was first proposed [Man80, Fey82] it was hoped that
quantum computers would be able to efficiently carry out certain tasks which
classical machines find difficult or impossible. While there have been some
specific examples of practical interest [Sho97, Gro96], the general complexity
situation remains unclear [Cle00, AK]. We do not tackle any questions related
to algorithms or complexity theory here but, by recasting quantum computation
in terms of formal logic, we make a link with the established field of implicit
computational complexity. To pick an example near at hand: the syntax we
define is closely related to proof-nets for multiplicative linear logic. It has been
shown that Boolean circuits of depth n may be simulated by MLL proof-nets of
depth O(n) [Ter04]. Further, the cut elimination problem for MLL is complete
for classical polytime [MT03].

The next two sections of this chapter cover some background material nec-
essary for the main body of the thesis. First, in Section 1.1 we describe the
basic features of finite dimensional quantum mechanics as formalised in Hilbert
spaces. This serves principally to highlight the parts of quantum mechanics
of interest, and also to introduce a key example — the teleportation protocol
[BBC+93]. After this, Section 1.2 provides a discursive overview of the logical
and categorical background to this work. The final section presents an overview
of the rest of the thesis.

1.1. QUANTUM MECHANICS 5

1.1 Quantum Mechanics

Before immersing ourselves in the abstractions of category theory and cate-
gorical quantum mechanics, a very brief review of the postulates of quantum
mechanics in their concrete setting is in order. The intent is not to give a
full exposition of the theory — see for example [Ish95, Per93, NC00] — but
rather to establish the terminology and background assumptions underpinning
the following chapters. I should emphasise that I treat quantum mechanics as
a mathematical theory; in particular I take no position on its interpretation
as a description of the physical world, although ideas from quantum informa-
tion and quantum computation have been influential there. See, for example,
[Fuc02, Spe].

Quantum mechanics is the physics of elementary particles — typical objects
of consideration are individual atoms, electrons, photons, etc. We will talk
simply of quantum mechanical systems, defined simply to be any system which
obeys the laws of quantum mechanics.

• To each quantum system we associate a finite dimensional complex Hilbert
space H, called its state space.

In physical problems infinite dimensional state spaces are often encountered;
however in the situations typically considered in quantum computation finite
dimensions suffice. We will often identify a system with its state space.

• The states of a quantum system are equivalence classes of unit vectors in
H; ψ ∼ φ if there exists θ such that ψ = eiθφ.

The restriction to unit vectors is required to ensure that the measurement prob-
abilities (see below) sum to one. For other purposes vectors of arbitrary length
may be used freely, provided they are normalised before computing the proba-
bilities. With this in mind, we could equivalently define a state to be a ray in
H containing the vector ψ; that is, a one dimensional subspace

{zψ | z ∈ C}.

Working with vectors is more convenient than working with rays, hence we will
generally take a concrete representative of each class and defer the normalisation
and phase equivalences until the end of any calculation. We will often use the
Dirac notation |ψ〉 to emphasise that ψ is a quantum state; however it will still
be treated as a column vector.

• If A and B are the state spaces of two quantum systems, the joint system
formed by combining them has state space A⊗B.

The occurrence of a tensor rather than Cartesian product in this postulate makes
quantum systems difficult to simulate. Since dim(A ⊗ B) = dimAdimB, the
dimension of the state space of n identical particles increases exponentially in
the number of particles. The fact that the dimension of A ⊗ B is greater than
A×B essentially amounts to the claim that the space A⊗B contains elements
of the form

a1 ⊗ b1 + a2 ⊗ b2 6= a⊗ b

which cannot be factorised as a pair for any a or b in A or B respectively.
Such states, called entangled, represent systems which are correlated with each

6 CHAPTER 1. INTRODUCTION

other; much of the power of quantum computation derives from entangled states
[JL03].

The simplest non-trivial quantum system is the quantum bit or qubit. Whereas
a classical bit is a value from a two element set, a qubit’s state space is the 2-
dimensional space C2, which we usually denote Q. The space Q is equipped
with a standard basis whose elements are written |0〉 , |1〉. The Dirac notation
is especially convenient for arrays of qubits: rather than |0〉 ⊗ |1〉 we write |01〉.
We write Q⊗Q or Q⊗2 for the space of two qubits; its standard basis comprises
the four vectors |00〉 , |01〉 , |10〉 and |11〉. Another important basis for this space
is the Bell basis, which consists of the vectors

β1 =
1√
2
(|00〉+ |11〉) , β2 =

1√
2
(|00〉 − |11〉) ,

β3 =
1√
2
(|01〉+ |10〉) , β4 =

1√
2
(|01〉 − |10〉) .

These vectors are often called Bell states or EPR states; in particular β1 is the
Bell state. The Bell basis is notable because all of its elements are entangled
states; due to this property it is very important in many quantum protocols.

Quantum systems change their state via unitary dynamics. More precisely:

• For each discrete time step, the evolution of a closed quantum system is
described by a unitary map U : H → H.

As I have stated this postulate, it is a consequence of a more general axiom, that
quantum systems evolve according to the time dependent Schrödinger equation.
However we will only consider discrete time steps here, and simplify accordingly.
The unitary evolution maps are treated as a set of basic operations: quantum
“gates” for qubits, in analogue with boolean logic gates of conventional elec-
tronic circuits.

Since unitaries are isomorphisms, this postulate implies that quantum evo-
lution is reversible. Another important consequence is the following theorem.

Theorem (No-Cloning). An unknown quantum state cannot be duplicated.

Proof. Let U be a candidate unitary cloning map; suppose that for some state
|ψ〉 we have

U |0ψ〉 = |ψψ〉 ,

where |0〉 is a specially chosen input state. Suppose that U is also able to clone
another state φ, so

U |0φ〉 = |φφ〉 .

Since 〈0 | 0〉 = 1, and unitary maps preserve the inner product, we have

〈φ | ψ〉 = 〈0φ | 0ψ〉 = 〈0φ|U†U |0ψ〉 = 〈φφ | ψψ〉 = 〈φ | ψ〉〈φ | ψ〉.

Hence 〈φ | ψ〉 = 〈φ | ψ〉2, which implies that 〈φ | ψ〉 = 0 or 〈φ | ψ〉 = 1. Hence
unitary cloning of quantum states is only possible for states which are elements
of a known orthonormal basis.

Remark. This proof is essentially that found in [NC00]. I include it for compari-
son with the the abstract version of the no-cloning theorem found in Chapter 6.

1.1. QUANTUM MECHANICS 7

A related result, the no-deleting theorem [PB00], states that no quantum
operation can erase an unknown quantum state.

A closed quantum system is of limited interest as an information processing
device. In order to extract information from such a system a measurement must
be performed. Unlike classical systems, the result of a quantum measurement
is not a fixed value determined by the system’s state. Instead the state fixes
a probability distribution which governs the measurement outcomes. An even
more striking difference is that quantum measurements change the state of the
measured system.

• A quantum observable on a state space H is defined by a self-adjoint linear
operator O : H - H; in finite dimensions it has spectral decomposition

O =
∑
i

λiPi

where λi are the eigenvalues and the Pi are projectors onto the correspond-
ing eigenspace. If a system in state |ψ〉 is tested against the observable O,
the ith outcome will be observed with probability

pi = 〈ψ|Pi |ψ〉

and its new state after the measurement will be 1√
pi
Pi |ψ〉.

Since the eigenvalue λi occurs neither in the expression for the probability nor
in that for the new state, we will ignore it in favour of the index i, which we
view as labelling the different possible outcomes of the measurement. It is worth
emphasising that a measurement is a state changing operation: if outcome i is
observed the transformation

|ψ〉 - √
piPi |ψ〉 .

has been performed. This transformation is called the action of the mea-
surement. Measurement actions offer an alternative mechanism for the ma-
nipulation of quantum systems, particularly entangled systems — this idea is
taken to its logical extreme in the one-way model of quantum computation
[RB01, RBB02, RBB03].

If the eigenspaces of O are all one dimensional then the choice of a unit vec-
tor from each one will determine an orthonormal basis for the space H. Hence,
after measuring O, it is guaranteed that the system is in a state corresponding
to an element of that basis. Conversely, we will assume that there is a measure-
ment corresponding to any basis for H and speak of, for example, a Bell basis
measurement.

A crucial aspect often glossed over in conventional accounts of quantum
mechanics is that, after performing the measurement, the experimenter knows
which outcome occurred. In a traditional physics setting, the eigenvalue asso-
ciated with the outcome is the actual physical quantity — spin, momentum,
or polarisation for example — being measured. In quantum computation we
are more often interested in measurement as a part of a larger process and
hence a measurement with n possible outcomes produces log2 n classical bits of
information in addition to the probabilistic state change described above.

8 CHAPTER 1. INTRODUCTION

The set of outcomes of a measurement is much smaller than the set of states:
a continuum is reduced to a finite set. Hence it is impossible3 to accurately iden-
tify an unknown quantum state by measuring it, unless additional information
— such as knowing that the state is an element of a certain basis — is provided.

Before moving on, we consider a class of protocols which will occur again
and again in later chapters: quantum teleportation. .

Typically, a classical bit is transmitted by copying it from the sender’s mem-
ory to some medium, and then copying it back from the medium into the re-
ceiver’s memory. The no-cloning theorem prevents quantum bits from being
transmitted in a similar way. The limitations of quantum measurement prevent
a classical description of the qubit from being transported in its place. Is there
any way to transmit qubits other than transporting the physical system encod-
ing them? The teleportation protocol says yes, and shows how entanglement
acts as a fundamental substrate in quantum computation.

Figure 1.1: The Quantum Teleportation Protocol

The set up is simple and shown in Figure 1.1. Alice has an unknown qubit
|ψ〉 = α |0〉 + β |1〉 that she wishes to transmit to Bob. We assume that there
is a classical channel between them. As discussed above this will not suffice to
transfer the unknown qubit, so in addition we assume that Alice and Bob share
a Bell state |00〉+ |11〉, with each party possessing 1 qubit. The initial state of

3Given an unlimited number of copies of the unknown state, accurate identification of the
state is possible — see [Per93] Chapter 3.5.

1.1. QUANTUM MECHANICS 9

the combined system is thus:

(α |0〉+ β |1〉)⊗ (|00〉+ |11〉) = α |000〉+ α |011〉+ β |100〉+ β |111〉

Alice performs a Bell-basis measurement upon the two qubits in her possession;
there are four possible outcomes depending on which of the four Bell basis
vectors she observed. A little calculation shows that if the outcome is the Bell-
state |00〉+ |11〉 then the new unnormalised state of the system is

α |000〉+ β |001〉+ α |110〉+ β |111〉 = (|00〉+ |11〉)⊗ (α |0〉+ β |1〉).

Hence Bob’s qubit is now in the original state |ψ〉.
However, since the measurement action is probabilistic, Alice may observe

any of the other three elements of the Bell basis and, indeed, they are all equally
likely. The three corresponding states for the system are:

α |000〉 − β |001〉 − α |110〉+ β |111〉 = (|00〉 − |11〉)⊗ (α |0〉 − β |1〉) ,
α |011〉+ β |010〉+ α |101〉+ β |100〉 = (|01〉+ |10〉)⊗ (α |1〉+ β |0〉) ,
α |011〉 − β |010〉 − α |101〉+ β |100〉 = (|01〉 − |10〉)⊗ (α |1〉 − β |0〉) .

In each case Bob’s qubit is related to the original qubit by a unitary map. Let

U2 =
(

1 0
0 −1

)
, U3 =

(
0 1
1 0

)
, U4 =

(
0 1
−1 0

)
.

If Alice observes the outcome βi then Bob can recover the original state |ψ〉 by
applying the transformation Ui to his qubit. (Take U1 = 1Q). If we index the
entries in these unitary matrices, u00 the top left, u01 for the top right, etc, it
can be seen that the Bell basis vectors can be expressed as

βk =
∑

i,j∈{0,1}

u
(k)
ij |ij〉 .

In other words, the entangled state which is observed by Alice is a representation
of the linear map which has been applied between the input and the output.

This can be generalised. Notice that the entangled state initially shared by
the participants in the teleportation protocol is β1, which represents the identity
matrix. If they had shared an arbitrary entangled state, say

|A〉 = a00 |00〉+ a01 |01〉+ a10 |10〉+ a11 |11〉 ,

then performing the protocol with this resource will result in Bob’s qubit fin-
ishing in the state

|ψBob〉 = AUi |ψ〉

where A =
(
a00 a01

a10 a11

)
. Hence entangled states can be used to perform

arbitrary linear transformations between states.
The connection between entangled states and linear maps is due to the iso-

morphism between the tensor product of two vector spaces and the space of
linear maps between them. This fundamental algebraic fact is central to our
approach.

10 CHAPTER 1. INTRODUCTION

1.2 Programs, Proofs and Categories

The no-cloning and no-deleting theorems put striking limitations on the abilities
of a quantum device when compared to the freedom that a classical computer
enjoys to duplicate and erase information. What consequences does this have
for a theory of quantum types?

In logic the ideas of copying and deleting are expressed through the sequent
rules weakening and contraction.

Γ ` ∆
Weak.

A,Γ ` ∆

A,A,Γ ` ∆
Cont.

A,Γ ` ∆

Contraction corresponds to the idea that, if a fact A is known, we can make
use of that fact more than once in a proof — that knowing A once is the same
as knowing it twice. From a computational point of view, a program which
requires two inputs of type A could equally well accept one input and use it
twice. The corresponding λ-term is λfx.fxx. On the other hand, weakening
allows a proof which does not require the proposition A to demand it; it allows
dummy inputs to a program, as in the λ-term λfx.f .

While these inference rules are obviously valid in the context of a logical4

proof, they ignore any notion of cost. If A represents a resource of some kind
— whether it be a block of memory to construct a data structure or money for
cigarettes — then these rules do not hold. If contraction is forbidden then each
input is effectively consumed when it is used and hence may be used at most
once. If weakening is rejected then each input must be used: we cannot “keep
the change”.

Rejection of both weakening and contraction is the starting point for lin-
ear logic [Gir87a]. While resource sensitive logics had been considered earlier
[Lam69], linear logic was the first attempt to resynthesise the traditional intu-
itionistic logic in these terms. It permits very fine grained distinctions between
programs when compared with the usual λ-calculus and, as a result, has found
wide application in computer science [O’H91, Abr93, BS94, MOTW95, Hof99].

The most striking feature of linear logic is the splitting of the traditional
connectives ∧ (“and”) and ∨ (“or”) into two pairs. The first set, the multi-
plicative conjunction ⊗ (“tensor”) and disjunction P (“par”), have the strict
resource preservation properties discussed above. The tensor A⊗ B represents
two logically distinct non-overlapping terms. The disjunction A P B is more
subtle; in the same way as classical logic defines A ⇒ B ≡ ¬A ∨ B, the linear
implication is defined as A −◦ B ≡ A⊥ P B (where A⊥ is the linear negation).
Hence A P B can be understood as a map from A⊥ to B which uses its argu-
ment exactly once. Of course P is symmetric so it can equally be viewed as a
map from B⊥ to A, so we see a term of type APB as a channel or correlation
between A and B, which may be written to by either side.

The other operations of linear logic, the additive connectives & (“with”) and
⊕ (“plus”), and the exponential modalities ! and ? will not concern us here, but
the subsystem containing only the multiplicative connectives — called multi-
plicative linear logic and abbreviated MLL — will be of particular relevance.

4Note that λfx.f is the K combinator of combinatory logic; when combined with S :=
λxyz.xz(yz) every computable function can be represented [CF58]. Note also that the input
z is used twice in the S combinator.

1.2. PROGRAMS, PROOFS AND CATEGORIES 11

Perhaps the most fundamental rule found in logic is the Cut rule:

Γ ` A A,∆ ` B
Cut

Γ,∆ ` B

The cut allows proofs of intermediate results to be combined in the proof of a
larger theorem. Viewing proofs as programs, it allows the construction of large
programs by composing smaller ones — the output of one process is used as input
to another. Linear logic enjoys the cut elimination property: its proofs can be
transformed so that the conclusions proceed directly from the axioms without
any use of cut. We view this process as the execution of the program5. However,
as is usually the case for sequent calculi, there is an undesirable element of choice
involved in the transformation process. The sequential nature of a proof forces
a definite order on the inferences when there is no logical reason that one should
precede another. The result is that a proof may have many cut-free forms, and
many proofs which ought to be equivalent are syntactically distinct.

The multiplicative fragment of linear logic resolves this problem via a beau-
tiful theory of proof-nets [Gir87a, DR89, BCST96]. A proof-net is akin to a λ-
term; it represents the the logical dependencies of a proof—and nothing more—
in the form of a graph. Every MLL proof can be translated to a proof-net
and vice versa, although the process is not an isomorphism since proofs which
have the same logical operations in a different sequence will produce the same
proof-net. Proof-nets enjoy strongly normalising cut-elimination, so every net
can be reduced to a unique cut-free form, unlike the sequent calculus. Since the
normal forms are unique, and the normalisation procedure can be performed
very efficiently, the question of equivalence of proofs can be decided simply by
normalising and checking if the normal forms are equal. The question of proof-
nets for MALL is much more complicated [Gir96, LTdF04] but it has recently
been resolved [HvG03].

We turn our attention from syntax to semantics. For each logic we can con-
struct a category where the propositions are objects and the proofs are arrows
[Lam68, Lam69]. If an arrow exists between two objects A and B then there
must be a proof of B based on the assumption of A. In some cases, for example
classical logic, this is all that can be said: the structure of the model encodes
provability and nothing more. Intuitionistic logic and linear logic, on the other
hand, enjoy models where distinct arrows correspond to distinct proofs. If two
proofs are equivalent, in the sense of having the same logical content or, more
formally, the same normal form, then they are represented by the same arrow.
The category is then said to be an interpretation, or model, of the logic. The
model will not usually be unique but the structure of the proofs will force every
model to have certain algebraic structure. In the case of multiplicative linear
logic the requisite structure is a ∗-autonomous category [Bar79, See89, Bar91].

Examples of ∗-autonomous categories are common throughout mathemat-
ics. For our purposes, the most important is FDHilb, the category of finite
dimensional Hilbert spaces and linear maps, since concrete quantum mechan-
ics is carried out here. FDHilb has a self-dual tensor product, which means
that the multiplicative connectives tensor and par have the same interpretation.
Hence the maps from an object A to another object B are representable as ele-
ments of the tensor product A⊗B — just as was observed above for entangled

5See [Tak87, GLT89, Tro91] for discussion of cut elimination and related proof theory.

12 CHAPTER 1. INTRODUCTION

states and linear maps. Categories with this property are called compact closed
[KL80].

In their seminal paper [AC04] Abramsky and Coecke point out that the
defining axiom of the compact closed structure implies that the teleportation
protocol can be carried out in any such setting. More generally, since every
arrow has a representative in a tensor object, there is an analogue to entan-
gled states in all such categories. In the above cited paper, the authors carry
out a complete axiomatisation of finite dimensional quantum mechanics in the
framework of compact closed categories with biproducts. The quantum part
of the system is represented by the degenerate multiplicative framework of the
compact closed structure, while the non-determinism and classical choice is
represented by the biproduct, which corresponds to a degenerate version of
linear logic’s additive connectives and has the properties of both a product
and a coproduct. This categorical presentation has been refined by later work
[AC05, Abr05, Coe05, Sel05, CP07] but the compact closed structure retains a
fundamental role, particularly for the analysis of entangled states.

Until now, little work has been done on the logical presentation of such
categories aside from Kelly and Laplaza’s definitive paper [KL80], and the un-
published [Shi96]; a more recent contribution is [Abr05]. More attention has
been directed toward techniques for “repairing” a compact closed category by
adding extra structure, in order to produce a non-degenerate model of linear
logic [Loa94, AGN95, Tan97, HS03]. In computer science, compact closed struc-
tures have been studied in the context of typed concurrency theory as interaction
categories [AGN96].

The next chapter will describe compact closed categories and their basic
properties in detail.

1.3 Outline of the Thesis

The thesis is organised as follows.
Chapter 2 gathers together the requisite material on the various flavours

of monoidal categories which will be required in the subsequent chapters, in
particular the basic properties of strongly compact closed categories. Most,
though not all, of this material is commonly known, but it is presented here to
fix notation and terminology.

In Chapter 3 we revisit the axioms of quantum mechanics, and show that the
category FDHilb is indeed strongly compact closed. Probabilistic branching is
not discussed — we focus exclusively on what might be termed the multiplica-
tive aspect of the theory. Within this setting we explain how Abramsky and
Coecke’s categorical formulation maps the components of the physical theory
onto the algebraic structure of strongly compact closed categories and reframe
the postulates of quantum mechanics in this language. Finally we consider how
models of these axioms with desired equational properties may be constructed,
and how the models so constructed are related to the standard interpretation
of quantum mechanics in Hilbert spaces.

With the necessary background covered, Chapter 4 begins our main subject:
the logic of compact closed categories. However it is not possible to talk about
the logic of compact closed categories, in the way that intuitionistic logic is
the logic of Cartesian closed categories. Compact closed categories were first

1.3. OUTLINE OF THE THESIS 13

seriously studied during Kelly’s investigation of coherence theorems [Kel72b,
Kel72a, Kel74]. They are unusual in that the equations which hold in a compact
closed category cannot be expressed purely in terms of functors and generalised
natural transformations, in the way that, for example, symmetric monoidal
closed categories can [ML63, KML71]. As discussed in the remarks at the end
of [KL80], and in [Kel92], compact closed categories do not arise from a “club”,
and hence the best form of coherence available for them is a description of the
free compact closed category generated by another category. The upshot of this
for a logical presentation of such categories is that any proof system must contain
some non-logical axioms to represent the generators of the free structure.

In Chapter 4, we define a sequent calculus for Multiplicative Categorical
Quantum Logic (mCQL), a formal logic whose inference rules encode the al-
gebraic structure of a compact closed category and whose non-logical axioms
are drawn from an arbitrary category A. We define an interpretation map from
mCQL proofs into the free compact closed category generated by A, and prove
that this semantic is sound with respect to cut elimination. We then define
a proof-net calculus for mCQL and prove its equivalence to the sequent pre-
sentation. Finally we demonstrate that every arrow in the free compact closed
category generated byA has a representation as an mCQL proof-net. Hence the
syntax of mCQL is a sound and complete representation of the free category.

One might hope that a theory of quantum types would be able to distin-
guish between those states which are entangled and those which are not. Un-
fortunately the entangled states in a given state space do not form a closed
subspace, so there is no hope that the objects of the FDHilb will provide the
desired type information. We must abandon the idea that the entanglement
will be abstractly captured by the objects of a compact closed category. How-
ever, the syntax of mCQL, both in its sequent and proof-net formulations, is
a relaxation of the rules of MLL, essentially by identifying the connectives of
tensor and par. In Chapter 5 we restore that distinction in order to investigate
the structure of the entanglement found in these states. We show that, under
the duality between points and maps, maximally entangled states correspond
to unitary maps. We use the technique of double gluing, introduced by Loader
[Loa94] and later developed by Tan [Tan97], and Hyland and Schalk [HS03], to
build a *-autonomous category on top of any abstract quantum theory; in this
setting the connectives of MLL serve to distinguish separable and entangled
states: points of a tensor product are never entangled, while points of the par
may be. This result is strengthened; in the case where an mCQL proof-net can
be typed in MLL, then the corresponding quantum state is separable if and
only if its type is tensor product.

Our analysis of the entanglement found in the quantum states which are
representable in mCQL exposes a weakness in the theory. By choosing to
parameterise the construction of the compact closed structure by a category,
the only primitive entanglement which can be represented is bipartite, since
the entangled states are essentially collections of arrows from the generating
category, and an arrow has only two ends. In Chapter 6 we attack this problem
by generalising the construction of the free compact closed category relative
to a polycategory. Unlike the case in Chapter 4 we cannot fall back upon the
coherence theorem of Kelly and Laplaza [KL80]; hence we spend a substantial
portion of the thesis identifying the structure of the resulting category. We prove
a representation theorem, which states that the free compact closed category

14 CHAPTER 1. INTRODUCTION

generated by a polycategory is equivalent to a certain category of diagrams
called circuits.

We then define a proof-net calculus similar to that of mCQL, but gener-
alised to accommodate multi-ary axiom links. Unlike the case for mCQL, these
proof-nets do not enjoy cut elimination; however it is possible to prove strong
normalisation, and that the system of proof-nets whose axioms are drawn from
a given polycategory is equivalent to the category of circuits generated by the
same polycategory.

The resulting system is able to represent arbitrary entanglement structures
and, indeed, over-approximates the entanglement relation. However this can
be remedied by taking a quotient with respect to suitable equations. The last
technical chapter demonstrates the use of these representations, with the quo-
tient given as explicit rewrites, to prove the correctness of programs in the
measurement calculus.

We conclude with some suggestions for future research based on this work.

Chapter 2

Categorical Background

The abstract formulation of quantum mechanics introduced in [AC04] takes
place against the background of a strongly compact closed category. This struc-
ture is the central mathematical object of this thesis. This chapter gathers
together the requisite pieces of category theory needed to develop our main
results.

Compact closed categories [KL80] are abundant throughout mathematics
and computer science. Examples include Rel, the category of sets and rela-
tions, finitely-generated projective modules over a commutative ring and Con-
way games (as categorified in [Joy77]). Of course, FDHilb, the category of
finite dimensional Hilbert spaces is compact closed, indeed strongly so.

Compact closed categories are defined by the presence of dual1 or adjoint ob-
jects for each object. In any symmetric monoidal category the full sub-category
determined by those objects which do have duals is compact closed, as is the
sub-category of Hilb determined by the Hilbert-Schmitt maps or, more gener-
ally, the nuclear maps of tensored *-category [ABP99].

In computer science compact closed categories have been studied in the con-
text of typed concurrency as interaction categories [AGN95, AGN96]; in logic,
compact closed categories are degenerate models of multiplicative linear logic
[AJ94, Loa94, HS03]; in physics the category of n-dimensional cobordisms, used
in topological quantum field, theory is compact closed [BD95]. More examples
are easy to find.

Much of the material of this chapter is standard. Mac Lane [ML97] covers
monoidal categories and their coherence; Kelly-Laplaza [KL80] provides the ba-
sic properties of compact closed categories and the essential coherence theorem.
The notion of strong compact closure was introduced in [AC04] and refined in
[AC05]. Other sources are cited as needed.

1We prefer the term dual here, to avoid confusion with linear algebraic adjoint which forms
the “strong” part of the strongly compact closed categories.

15

16 CHAPTER 2. CATEGORICAL BACKGROUND

2.1 Monoidal Categories

Definition 2.1. A category C is monoidal if equipped with a functor⊗ : C×C →
C, a distinguished neutral object I, and natural isomorphisms

αA,B,C : A⊗ (B ⊗ C)
∼=- (A⊗B)⊗ C,

λA : I ⊗A
∼=- A, ρA : A⊗ I

∼=- A.

For the associativity morphism α we require that the pentagon

A⊗ (B ⊗ (C ⊗D))
α- (A⊗B)⊗ (C ⊗D)

α- ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D)

1 ⊗ α

?

α
- (A⊗ (B ⊗ C))⊗D

α⊗ 1
6

commutes. The isomorphisms λ and ρ express the neutrality of I; we require
that the following digram commutes:

A⊗ (I ⊗B)
α - (A⊗ I)⊗B

A⊗B.
�

ρ
⊗

1
1 ⊗
λ

-

A monoidal category is called strict if the isomorphisms α, λ,and ρ are all iden-
tities.

Proposition 2.2. In a monoidal category the equality

λI = ρI

holds and the following diagrams commute:

(A⊗B)⊗ I
α- A⊗ (B ⊗ I) (I ⊗A)⊗B

α- I ⊗ (A⊗B)

A⊗B

�

1
⊗
ρρ

-

A⊗B.

�

λ

λ⊗
1 -

Proof. See [JS93].

Definition 2.3. A monoidal category is symmetric if it has a natural isomor-
phism

σA,B : A⊗B → B ⊗A

2.1. MONOIDAL CATEGORIES 17

such that

(A⊗B)⊗ C
σ - C ⊗ (A⊗B)

A⊗ (B ⊗ C)

�
α
−1

(C ⊗A)⊗B
α

-

A⊗ (C ⊗B)
α

-

1 ⊗
σ -

(A⊗ C)⊗B,

�

σ
⊗

1

and

A⊗ I
σ- I ⊗A A⊗B

1- A⊗B

A

�

λ

ρ

-
B ⊗A

σ
-

σ

-

commute.

Mac Lane’s celebrated coherence theorem states that any formal diagram
constructed from the α, ρ, λ and σ will commute.

Definition 2.4. Given monoidal categories A and B, a monoidal functor F :
A → B is a functor F and a pair of natural transformations

φ2 : FA⊗ FB → F (A⊗B)
φ0 : I → FI

such that the following diagrams commute:

(FA⊗ FB)⊗ FC
α- FA⊗ (FB ⊗ FC)

F (A⊗B)⊗ FC
�

φ2
⊗ 1

FA⊗ F (B ⊗ C)

1 ⊗
φ
2

-

F ((A⊗B)⊗ C)
Fα

-

φ
2

-

F (A⊗ (B ⊗ C)),
�

φ2

18 CHAPTER 2. CATEGORICAL BACKGROUND

FA⊗ I
ρ - FA I ⊗ FA

λ - FA

FA⊗ FI

1 ⊗ φ0

?

φ2

- F (A⊗ I),

Fρ

6

FI ⊗ FA

φ0 ⊗ 1

?

φ2

- F (I ⊗A).

Fλ

6

If φ2, φ0 are isomorphisms then F is called strong ; if they are identities then F is
strict . A monoidal functor between symmetric monoidal categories is symmetric
if it commutes with the symmetry as shown by the diagram below.

FA⊗ FB
σ - FB ⊗ FA

F (A⊗B)

φ2

?

Fσ
- F (B ⊗A)

φ2

?

Definition 2.5. A natural transformation between two monoidal functors θ :
(F, φ2, φ0) ⇒ (G, γ2, γ0) is called monoidal if the following diagrams commute
for all objects A,B of the underlying category.

FA⊗ FB
φ2- F (A⊗B) FI

I

φ0
-

GA⊗GB

θA ⊗ θB

?

γ2

- G(A⊗B)

θA⊗B

?
GI

θI

?γ
0

-

The identity natural transformation is evidently monoidal, and the hori-
zontal or vertical composition of two monoidal natural transformations is also
monoidal. Hence this definition makes the class of small monoidal categories
into a 2-category which we write Mon. Since Mon is a 2-category, each of its
hom-sets Mon(A,B) forms a category whose objects are monoidal functors be-
tween any two monoidal categories A,B, and whose arrows are monoidal natural
transformations. Note also that Mon(A,A) (indeed, any category of endofunc-
tors) is itself strict monoidal, with the tensor given by composition of functors.
We write SMon for the sub 2-category of symmetric monoidal categories and
functors.

Recall that an equivalence of categories A, B is a pair of functors F : A →
B, G : B → A such that both FG and GF are naturally isomorphic to the
identity.

Theorem 2.6 (Mac Lane). Every monoidal category C is equivalent to some
strict monoidal category A via a strong monoidal functor G : C → A and a
strict monoidal functor F : A → C.

The above theorem is sharpened by Joyal and Street [JS93] to state that
each monoidal category A is equivalent to a particular strict monoidal category

2.2. DUALITY 19

st(A), and further, each monoidal functor F : A → B induces a strict monoidal
functor st(T) : st(A) → st(B). Hence any diagram of monoidal categories
and functors can be replaced with an equivalent diagram of strict monoidal
categories and functors. Given this, we will assume without further remark
that any monoidal category under discussion is strict whenever convenient to
do so, and likewise for functors.

2.2 Duality

Let C be a monoidal category. Suppose we have maps

η : I → B ⊗A

ε : A⊗B → I

then say that B is dual (or adjoint) to A if the composites

A
1A⊗η- A⊗B ⊗A

ε⊗1A - A (2.1)

and
B

η⊗1B - B ⊗A⊗B
1B⊗ε- B (2.2)

are equal to 1A and 1B respectively. In this case we write (η, ε) : A a B, and
call η and ε the unit and counit maps. If A a B and A′ a B′ then there is a
bijection between C(A,A′) and C(B′, B): given f : A → A′, define g : B′ → B
by

B′ η ⊗ 1B′ - B ⊗A⊗B′

B

g

?
�

1B ⊗ ε′
B ⊗A′ ⊗B′.

1B ⊗ f ⊗ 1B′

?

(2.3)

If f : A→ A′ and g : B′ → B are related by this bijection, we say that g is the
dual of f and write f a g.

Proposition 2.7. If A a B and also A a C then B ∼= C and this isomorphism
is natural in the following sense: suppose that A1 a B1, A1 a C1 and also
A2 a B2, A2 a C2; further let f : A1 → A2. Morphisms fB : B2 → B1 and
fC : C2 → C1, dual to f , necessarily exist, and these make the diagram

B2

∼= - C2

B1

fB

?

∼=
- C1,

fC

?

(2.4)

commute.

20 CHAPTER 2. CATEGORICAL BACKGROUND

Proof. The isomorphism between B and C is given by the arrow

d : B
ηC⊗1B- C ⊗A⊗B

1C⊗εB- C.

Let d′ = (1B ⊗ εC) ◦ (ηB ⊗ 1C), then

d′ ◦ d = (1B ⊗ εC) ◦ (ηB ⊗ 1C) ◦ (1C ⊗ εB) ◦ (ηC ⊗ 1B)
= (1B ⊗ εB) ◦ (1B ⊗ ((εC ⊗ 1A) ◦ (1A ⊗ ηC))⊗ 1B) ◦ (ηB ⊗ 1B)
= (1B ⊗ εB) ◦ (ηB ⊗ 1B)
= 1B ,

where the second line follows by the functoriality of the tensor. Similarly d◦d′ =
1C . To establish the naturality condition (2.4) note that

fC ◦ d2 = (1C1 ⊗ εC2) ◦ (1C1 ⊗ f ⊗ 1C2) ◦ (ηC1 ⊗ 1C2)
◦(1C2 ⊗ εB2) ◦ (ηC2 ⊗ 1B2)

= (1C1 ⊗ εB2) ◦ (1C1 ⊗ ((εC2 ⊗ 1C2) ◦ (1A2 ⊗ ηC2))⊗ 1B2)
◦(1C1 ⊗ f ⊗ 1B2) ◦ (ηC1 ⊗ 1B2)

= (1C1 ⊗ εB2) ◦ (1C1 ⊗ f ⊗ 1B2) ◦ (ηC1 ⊗ 1B2).

A similar calculation gives

d1 ◦ fB = (1C1 ⊗ εB2) ◦ (1C1 ⊗ f ⊗ 1B2) ◦ (ηC1 ⊗ 1B2)

as required.

Proposition 2.8. Strong monoidal functors preserve duals. More explicitly, if
F : A → B is a strong monoidal functor, then A a B implies FA a FB and
f a g implies Ff a Fg.

Proof. Suppose (η, ε) : A a B in A, and let F = (F, φ2, φ0) be a strong monoidal
functor A → B. Define

ηF = I
φ0- FI

Fη- F (B ⊗A)
φ−1

2- FB ⊗ FA

εF = FA⊗ FB
φ2- F (A⊗B)

Fε- FI
φ−1

0- I

To show that (ηF , εF) : FA a FB we need to show that the equations

1FA = (εF ⊗ 1A) ◦ (1A ⊗ ηF),
1FB = (1B ⊗ εF) ◦ (ηF ⊗ 1B)

hold in B. Figure 2.1 shows a diagrammatic proof of the first equation. The
lower edge of the diagram is the expanded definition of the right hand side of
the equation: the end triangles and the middle diamond commute due to the
coherence conditions of monoidal functors; the upper triangle commutes because
A a B in A; and the remaining quadrilaterals commute due to the naturality of
φ2. The proof of the second equation is essentially the same.

To show that f a g implies Ff a Fg for some arrows f : A0 → A1, g : B1 →
B0 we must prove that

Ff = (εF0 ⊗ 1FA1) ◦ (1FA0 ⊗ Fg ⊗ 1FA1) ◦ (1FA0 ⊗ ηF1).

2.3. COMPACT CLOSED CATEGORIES 21

F (A⊗ I)
1FA - F (I ⊗A)

FA

1F
A

- F (1A ⊗ η)

-
F (A⊗B ⊗A)

F (ε⊗
1A)

-

FA

1
F
A

-

FA⊗ FI

φ2

6

1FA ⊗ Fε-

1
F
A ⊗

φ −
10 -

FA⊗ F (B ⊗A)

φ 2

-

F (A⊗B)⊗ FA
Fε⊗ 1FA-

φ −
12

-

FI ⊗ FA

φ−1
2

? φ
−1
0

⊗
1F
A

-

FA⊗ FB ⊗ FA

φ 2
⊗ 1FA

-1
F
A ⊗

φ −
12

-

Figure 2.1: Diagrammatic proof of proposition 2.8

Since f a g we have also that

Ff = F (ε0 ⊗ 1A1) ◦ F (1A0 ⊗ g ⊗ 1A1) ◦ F (1A0 ⊗ η1).

Establishing the equality of these two expressions involves little more than the
coherence conditions on F , and can tackled with a very similar proof to that
shown in figure 2.1.

2.3 Compact Closed Categories

Definition 2.9. A symmetric monoidal category is called compact closed if
every object A has a chosen dual (ηA, εA) : A a A∗.

As we have already shown, duals are unique up to isomorphism; the choice
of a particular dual makes the compact closed structure equational. Although
strong monoidal functors preserve duals, they do so only up to isomorphism. In
order to preserve this equational structure we make the following definition.

Definition 2.10. A functor F : A → B between two compact closed categories
is compact closed if it is strictly monoidal and preserves the assigned duals
exactly:

F (A∗) = (FA)∗ FηA = ηFA FεA = εFA.

The class of all small compact closed categories and compact closed functors
between them forms a category ComCl. The forgetful functor U : ComCl →
Cat has a left adjoint F , giving the free compact closed category generated by
a category. We postpone discussion of the free construction until Section 2.8.
For the moment we concentrate on the elementary properties of compact closed
categories, and in particular the role of the duality.

22 CHAPTER 2. CATEGORICAL BACKGROUND

Proposition 2.11. (−)∗ defines a contravariant functor with f a f∗.

Proof. We have 1∗A = 1A∗ immediately from the definition of dual, and (f ◦g)∗ =
g∗◦f∗ follows from a routine calculation, very similar to the proof of proposition
2.7.

Lemma 2.12. In a compact closed category C we have the following dual pairs:

1. A⊗B a B∗ ⊗A∗;

2. I a I;

3. A∗ a A.

Proof. We give the definitions of the unit and counit maps in each case.

1. (η1, ε2) : A⊗B a B∗ ⊗A∗ via

η1 = I
ηB- B∗ ⊗B

1B∗⊗ηA⊗1B- B∗ ⊗A∗ ⊗A⊗B,

ε1 = A⊗B ⊗B∗ ⊗A∗
1A⊗εB⊗1A∗- A⊗A∗

εA- I.

2. (η2, ε2) : I a I via

η2 = I
λ−1

I- I ⊗ I,

ε3 = I ⊗ I
λI- I.

3. (η3, ε3) : A∗ a A via

η3 = I
ηA- A∗ ⊗A

σ- A⊗A∗,

ε3 = A∗ ⊗A
σ- A⊗A∗

εA- I.

Verifying that equations (2.1) and (2.2) hold is routine.

By proposition 2.7, duals are naturally isomorphic, hence we have natural
isomorphisms

u : (A⊗B)∗ ∼= B∗ ⊗A∗

v : I∗ ∼= I

w : A∗∗ ∼= A,

which lead to the following corollary.

Proposition 2.13. The functor (·)∗ : Cop → C is strong monoidal, and an
equivalence of categories.

Since we have the equivalence between C and Cop, any statement about
some arrow applies equally well to its dual. In particular, results concerning
units translate directly into results about counits and vice-versa.

A compact closed category which, in addition to being strictly monoidal, has
all of the isomorphisms u, v, w equal to the identity is called a strict compact

2.3. COMPACT CLOSED CATEGORIES 23

closed category. Kelly and Laplaza [KL80] show that any compact closed cate-
gory is equivalent to a strict one, hence we will take the isomorphisms above to
be equalities whenever convenient.

The unit maps constructed in Lemma 2.12 allow an equational characterisa-
tion of ηA⊗B , ηI and ηA∗ in terms of the isomorphisms u, v, and w. In a strict
compact closed category we have equalities η1 = ηA⊗B , η2 = ηI and η3 = ηA∗ .

Lemma 2.14 (Kelly-Laplaza). The following are equivalent:

(1A∗ ⊗ f) ◦ ηA = (f∗ ⊗ 1B) ◦ ηB ;
εB ◦ (f ⊗ 1B∗) = εA ◦ (1A ⊗ f∗);

f = (1B ⊗ εA) ◦ (1B ⊗ f∗ ⊗ 1A) ◦ (ηB ⊗ 1A);
f∗ = (1A∗ ⊗ εB) ◦ (1A∗ ⊗ f ⊗ 1B∗) ◦ (ηA ⊗ 1B∗).

Proof. See [KL80].

Note that the last of these is the defining equation of f∗ (equation (2.3)),
which leads directly to the following.

Proposition 2.15. In a compact closed category the units and counits define
dinatural transformations (see [GSS91])

η : I ⇒ ((−)∗ ⊗−)
ε : (−⊗ (−)∗) ⇒ I.

Proof. Treating the case of the unit only, it must be shown that

A∗ ⊗A

I

ηA

-

A∗ ⊗B

1
A ∗ ⊗

f
-

B∗ ⊗B

f
∗ ⊗

1B

-

η
B

-

which is exactly the first equation of lemma 2.14. The second equation gives
the dinaturality of the counit.

Proposition 2.16 (Joyal-Street). If C is compact closed then Mon(C,A) is a
groupoid. More explicitly, αA : FA → GA is invertible with α−1

A = (αA∗)∗, up
to a canonical isomorphism.

Proof. We take both categories and functors as strict, and assume for simplicity
of exposition that (FA∗)∗ = FA and (GA∗)∗ = GA, since in all cases they are
canonically isomorphic.

By definition, (αA∗)∗ is

GA
1GA⊗Fη- GA⊗ FA∗ ⊗ FA

1GA⊗αA∗⊗1F A- GA⊗GA∗ ⊗ FA
Gη⊗1F A- FA.

24 CHAPTER 2. CATEGORICAL BACKGROUND

Since α is a monoidal natural transformation, we have

αA∗⊗A = (αA∗ ⊗ 1GA) ◦ (1FB ⊗ αA)

and
αA∗⊗A ◦ Fη = Gη.

Hence

αA ◦ (αA∗)∗ = (GεA ⊗ αA) ◦ (1GA ⊗ αA∗ ⊗ 1FA) ◦ (1GA ⊗ FηA)
= (GεA ⊗ 1GA) ◦ (1GA ⊗ αA∗⊗A) ◦ (1GA ⊗ FηA)
= (GεA ⊗ 1GA) ◦ (1GA ⊗GηA)
= 1GA

and similarly (αA∗)∗ ◦ αA = 1FA∗ ; so α−1
A = (αA∗)∗ as required.

2.4 Names and Conames

The duality of a compact closed category gives a particularly strong form of
monoidal closure. Every arrow in the category has a point which represents it,
and dually a copoint. These representatives, the names and conames, will be
crucial to our treatment of entangled quantum states.

Definition 2.17. Let f : A → B in a compact closed category C. Define the
name and coname of f to be the maps pfq : I → A∗⊗B and xfy : A⊗B∗ → I
which are defined by the diagrams below.

I
ηA- A∗ ⊗A A⊗B∗

A∗ ⊗B

1A∗ ⊗ f

?

pfq
-

B∗ ⊗B

f ⊗ 1B∗

?

εB
- I

xfy

-

An immediate consequence of this definition is the isomorphism of hom-sets

C(I, A∗ ⊗B) ∼= C(A,B) ∼= C(A⊗B∗, I).

Lemma 2.18 (absorption). Let

D
h- A

f- B
g- C;

then we have
(1A∗ ⊗ g) ◦ pfq = pg ◦ fq,

and
(h∗ ⊗ 1B) ◦ pfq = pf ◦ hq.

2.4. NAMES AND CONAMES 25

Proof. The first equation is immediate from the definition. In the second we
have

(h∗ ⊗ 1B) ◦ pfq = (h∗ ⊗ 1B) ◦ (1A∗ ⊗ f) ◦ ηA
= (1D∗ ⊗ f) ◦ (h∗ ⊗ 1A) ◦ ηA
= (1A∗ ⊗ f) ◦ (1A∗ ⊗ h) ◦ ηD

by definition, functoriality of ⊗, and dinaturality of η, respectively.

Lemma 2.19 (Compositionality). Given

A
f- B

g- C;

we have
(xfy⊗ 1C) ◦ (1A ⊗ pgq) = g ◦ f.

Proof. Since η and ε are dinatural we have the following commuting squares
(tensor written as juxtaposition on the arrow labels):

A⊗B∗ ⊗B B ⊗B∗ ⊗ C

A

1A
ηB

-

A⊗B∗ ⊗ C

f1
B
∗ 1C

-1
A 1
B ∗g

-

C

ε
B 1
C

-

A⊗ C∗ ⊗ C

1A
g
∗ 1C

-

1
A η
C -

A⊗A∗ ⊗ C

εA
1C

-
1
A f ∗1

C -

We have f∗ ◦ g∗ = (g ◦ f)∗ and hence, again by dinaturality,

A⊗A∗ ⊗A

A

1A
ηA

-

A⊗A∗ ⊗ C

1
A 1
A ∗(g ◦

f)-

A⊗ C∗ ⊗ C
1A

(g
◦ f

)∗ 1C
-

1
A η
C -

commutes. Taking these together we have

(xfy⊗ 1C) ◦ (1A ⊗ pgq)
= (εA ⊗ 1C) ◦ (1A ⊗ 1A∗ ⊗ (g ◦ f)) ◦ (1A ⊗ ηA)
= (g ◦ f) ◦ (εA ⊗ 1A) ◦ (1A ⊗ ηA)
= g ◦ f

as required.

26 CHAPTER 2. CATEGORICAL BACKGROUND

Lemma 2.20 (Compositional Cut). Suppose we have

A
f- B

g- C
h- D;

then
(1A∗ ⊗ xgy⊗ 1D) ◦ (pfq⊗ phq) = ph ◦ g ◦ fq.

Proof. By the functoriality of the tensor

(1A∗ ⊗ xgy⊗ 1D) ◦ (pfq⊗ phq) = ([(1A∗ ⊗ xgy) ◦ (pfq⊗ 1C∗)]⊗ 1D) ◦ phq.

By the composition lemma (1A∗ ⊗ xgy) ◦ (pfq⊗ 1C∗) = (g ◦ f)∗ hence

(1A∗ ⊗ xgy⊗ 1D) ◦ (pfq⊗ phq) = ((g ◦ f)∗ ⊗ 1D) ◦ phq

from which the result follows by absorption.

We can also define partial versions of the name and coname; essentially
currying and uncurrying.

Lemma 2.21 (Partial Names and Conames). In any compact closed category
we have the following isomorphisms:

C(A⊗ C,B) ∼= C(A,C∗ ⊗B) (2.5)
C(A,C ⊗B) ∼= C(A⊗ C∗, B) (2.6)

Proof. Since the two isomorphisms are dual, we prove only the first. Define
F : C(A⊗ C,B) → C(A,C∗ ⊗B) and G : C(A,C∗ ⊗B) → C(A⊗ C,B) by

F : f 7→ (1 ⊗ f) ◦ (ηA ⊗ 1)
G : g 7→ (εA ⊗ 1) ◦ (1 ⊗ g)

Their composition gives GFf = (εA ⊗ 1) ◦ (1 ⊗ f) ◦ (1 ⊗ ηA1) from which

A⊗ C
1 ⊗ ηA ⊗ 1- A⊗A∗ ⊗A⊗ C

1 ⊗ f- A⊗A∗ ⊗B

A⊗ C

εA ⊗ 1

?

f
-

1
-

B

εA ⊗ 1

?

and hence GF = Id. Similarly Id = FG, which establishes the isomorphism.

Equation (2.5) essentially states that compact closed categories are indeed
closed with BA = A∗ ⊗ B. Since A∗ ⊗ I ∼= A∗ this gives immediately the
following.

Corollary 2.22. Compact closed categories are ∗-autonomous[Bar79].

2.5. STRONG COMPACT CLOSURE 27

2.5 Strong Compact Closure

The usual von Neumann account of quantum mechanics takes place in the cate-
gory of Hilbert spaces: for the purposes of quantum computation we restrict to
the finite dimensional case and operate in the category FDHilb. This category
is, indeed, compact closed. However the language of compact closed categories
does not offer a complete description of the Hilbert space structure. The missing
component is the inner product 〈· | ·〉 : H ×H → C. Without it, crucial parts
of quantum mechanics cannot be represented. To address this shortcoming,
Abramsky and Coecke [AC04] introduced strong compact closed categories.

In a Hilbert space, the inner product is regarded as primitive and used to
define the adjoint f† of a linear map f . The adjoint so-defined is a contravariant
involutive functor on FDHilb. Since the vectors of the space H can themselves
be thought of as linear maps I → H, the adjoint can be used to define the
inner product. Recognising how the adjoint interacts with the usual dual leads
to the definition of strongly compact closed category. We use here the refined
definition of [AC05].

Definition 2.23. A strongly compact closed category is a symmetric monoidal
category C equipped with the following data:

1. an involutive monoidal assignment A 7→ A∗ on objects;

2. an involutive, contravariant, strict monoidal functor (·)† such that A† = A
on all objects A, and for each of the monoidal structure isomorphisms
σ, α, ρ, λ we have f† = f−1;

3. to each object A a map ηA : I → A∗ ⊗A such that the equations

ηA∗ = σA∗,A ◦ ηA (2.7)

1A = A
1A⊗ηA- A⊗A∗ ⊗A

(η†A◦σA,A∗)⊗1A- A (2.8)

hold for all A.

Note that equation (2.8) is simply the first defining equation (2.1) of an
ordinary compact closed category with εA = (η†A ◦σA,A∗). Performing the same
substitution upon the dual condition (2.2) yields

f = A∗
ηA⊗1A∗- A∗ ⊗A⊗A∗

1A∗⊗(η†A◦σA,A∗)- A∗

from whence

f† = A∗
1A∗⊗(σA∗,A◦ηA)- A∗ ⊗A⊗A∗

η†A⊗1A∗- A∗

and since A = A∗∗, equations (2.7) and (2.8) yield f† = 1A = 1†A = f†† = f , so
strongly compact closed categories are indeed compact closed. Note that while
A∗∗ = A, a strong compact closed category is not necessarily strictly compact
closed; though in general we shall assume this.

28 CHAPTER 2. CATEGORICAL BACKGROUND

2.6 Trace

The notion of a trace on a monoidal category was introduced by Joyal, Street
and Verity in [JSV96] and has since found wide application. Here we review
some facts about the trace in the context of compact closed categories. This
definition is that of [AHS02], which is equivalent to that of the original [JSV96].

Definition 2.24. A trace on a symmetric monoidal category C is a family of
functions TrCA,B : C(A⊗C,B⊗C) → C(A,B) which obeys the following axioms.

Naturality in A Given f : A⊗ C → B ⊗ C and g : A′ → A then

TrCA,B(f) ◦ g = TrCA,B(f ◦ (g ⊗ 1C)).

Naturality in B Given f : A⊗ C → B ⊗ C and h : B → B′ then

g ◦ TrCA,B(f) = TrCA,B((g ⊗ 1C) ◦ f).

Dinaturality in C Given f : A⊗ C → B ⊗ C ′ and k : C ′ → C then

TrCA,B((1B ⊗ k) ◦ f) = TrC
′

A,B(f ◦ (1A ⊗ k)).

Vanishing Given f : A⊗ I → B ⊗ I and g : A⊗ C ⊗D → B ⊗ C ⊗D then

TrIA,B(f) = f ;

TrC⊗DA,B (g) = TrCA,B(TrDA⊗C,B⊗C(g)).

Superposing Given f : A⊗ C → B ⊗ C ′ and g : D → D′ then

g ⊗ TrCA,B((1B ⊗ k) ◦ f) = TrC
′

D⊗A,D′⊗B(f).

Yanking TrAA,A(σA,A) = 1A.

A symmetric monoidal category is called traced if a trace exists for all objects
A,B,C.

Proposition 2.25 (Joyal-Street-Verity). Every compact closed category is traced,
via the canonical trace

TrCA,B(f) = A
1A⊗ηC∗- A⊗ C ⊗ C∗ f⊗1C∗- B ⊗ C ⊗ C∗ 1B⊗εC- B.

Conversely every traced monoidal category has canonical extension to a com-
pact closed category via the Int construction.

Definition 2.26. Let C be a traced symmetric monoidal category; we define a
category IntC as follows. The objects of IntC are pairs (A,B) of objects A,B of
C. An arrow f : (A,B) → (C,D) of IntC is an arrow f : A⊗D → C ⊗B. The
composition of f : (A,B) → (C,D) and g : (C,D) → (E,F) is IntC is given by
the trace TrD(h) : A⊗ F → E ⊗B in C where h is the composite

A⊗F⊗D
∼=- A⊗D⊗F f⊗1- C⊗B⊗F

∼=- C⊗F⊗B g⊗1- E⊗D⊗B
∼=- E⊗B⊗D.

The identity 1(A,B) in IntC is the arrow 1A ⊗ 1B in C.

2.7. SCALARS AND LOOPS 29

Remark. The original Int construction is developed in a non-symmetric setting;
the definitions presented here are modified accordingly.

We omit the description of the tensor and compact closed structures; see
[JSV96].

Proposition 2.27. IntC is a compact closed category and the assignments
N(A) = (A, I) and N(f) = f define a traced, strong monoidal, fully faithful
functor N : C → IntC.

Theorem 2.28 (Joyal-Street-Verity). Let C be a traced symmetric monoidal
category and D a compact closed category. For every trace preserving functor
F : C → D there exists a compact closed functor K : IntC → D which is unique
up to monoidal natural isomorphism with KN ∼= F . Further, the inclusion of
ComCl into TraMon has a left biadjoint with unit having component at C
given by N : C → IntC.

Remark. The essential content of this result is already contained in our Lemma
2.21.

2.7 Scalars and Loops

Definition 2.29. In any monoidal category C the endomorphisms of the neutral
element C(I, I) are called the scalars.

Lemma 2.30. The scalars form a commutative monoid with respect to compo-
sition.

Proof. Let s, t ∈ C(I, I); then

I
ρ−1

- I ⊗ I
ρ - I

I

s

6

ρ−1
- I ⊗ I

s⊗ t-

s
⊗

1
-

I ⊗ I
ρ -

1
⊗
t

-

I

t

?

I

t

? ρ−1
- I ⊗ I

ρ -

1
⊗
s

-

t⊗
1 -

I.

s

6

Corollary 2.31. For scalars s, t the composite

I ∼= I ⊗ I
s⊗t- I ⊗ I ∼= I

is equal to s ◦ t = t ◦ s.

Definition 2.32. Let C be a monoidal category. Given a scalar s and some
arrow f : A→ B define a scalar multiplication s • f by the composition:

A
ρ−1

- A⊗ I
f ⊗ s- B ⊗ I

ρ - B.

30 CHAPTER 2. CATEGORICAL BACKGROUND

Remark. We could have defined s • f equivalently by multiplication on the
left rather than on the right as above. Note that u := λ−1 ◦ ρ is a natural
isomorphism (−⊗ I) ⇒ (I ⊗−), so the following diagram commutes

A⊗ I
f ⊗ s- B ⊗ I

A

ρ
−1 -

B

ρ
-

I ⊗A

u

?

s⊗ f
-

λ−1 -

I ⊗B

u

? λ

-

and hence the two definitions coincide.

Lemma 2.33. Each scalar s determines a natural transformation Id ⇒ Id such
that s • f = f ◦ sA = sB ◦ f .

Proof. The top and bottom edges define sA and sB respectively:

A
ρ−1

- A⊗ I
1A ⊗ s- A⊗ I

ρ - A

B

f

?

ρ−1
- B ⊗ I

f ⊗ 1I

?

1B ⊗ s
- B ⊗ I

f ⊗ 1I

?

ρ
-

f ⊗
s

-

B.

f

?

The outer squares commute due to naturality of ρ, and the middle due to the
functoriality of the tensor. Hence s defines a natural transformation. Note that
the middle path from A to B is the definition of s • f .

Corollary 2.34. The following are immediate.

1. s • (t • f) = (s ◦ t) • f

2. (s • f) ◦ (t • g) = (s ◦ t) • (f ◦ g)

3. (s • f)⊗ (t • g) = (s ◦ t) • (f ⊗ g)

Definition 2.35. In a compact closed category C define the dimension of an
object A, to be the following composite:

dimA = I
ηA- A∗ ⊗A

σ- A⊗A∗
εA- I.

Lemma 2.36. If f : A
∼=- B is an isomorphism in a compact closed category

C, then dimA = dimB.

Proof. Since (·)∗ is a functor we have (f ◦ g)∗ = g∗ ◦ f∗. Then

dimA = I
ηA- A∗ ⊗A

εA∗- I

= I
ηA- A∗ ⊗A

1A∗⊗f- A∗ ⊗B
1A∗⊗f−1

- A∗ ⊗A
εA∗- I

= I
ηB- B∗ ⊗B

f∗⊗1B- A∗ ⊗B
(f−1)∗⊗1B- B∗ ⊗B

εB∗- I

= I
ηB- B∗ ⊗B

εB∗- I

= dimB .

2.8. FREE CONSTRUCTION 31

In a free compact closed category on a discrete category (i.e. only identity
morphisms) then the only scalars are dimensions of the objects.

Lemma 2.37. In a strongly compact closed category let f : A→ B be unitary;
then dimA = (pfq)† ◦ pfq.

Proof.

(pfq)† ◦ pfq = (ηA)† ◦ (1A∗ ⊗ f†) ◦ (1A∗ ⊗ f) ◦ ηA
= εA∗ ◦ ηA.

Note that for arbitrary maps, |f | := (pfq)† ◦ pfq gives the Hilbert-Schmidt
norm in FDHilb; see [Coe05]. Indeed for any pair of maps f, g : A → B, we
can define the Hilbert-Schmidt inner product

〈f | g〉 := (pfq)† ◦ pgq

which for ψ, φ : I → A agrees with the inner product given earlier, to wit:

〈ψ | φ〉 = ψ† ◦ φ

Recall that any compact closed category admits a canonical partial trace
[JSV96] TrA,CB (f) : A→ C defined by

A
1A ⊗ ηB∗- A⊗B ⊗B∗ f ⊗ 1B∗- C ⊗B ⊗B∗ 1C ⊗ εA- C.

This can be extended to a full trace over any endomorphism f : A→ A by

Tr(f) = TrI,IA (ρ ◦ f ◦ ρ−1).

Again, for FDHilb, this coincides with the usual trace, given by summing the
diagonal elements of a matrix representation of f .

2.8 Free Construction

Cyclic structures play an important role in the theory of compact closed cate-
gories and, in particular, they give rise to the scalars in free constructions.

Define the set of endomorphisms E(A) by the disjoint union

E(A) =
∑
A∈|A|

A(A,A),

and let the set of loops [A] be the quotient of E(A) generated by the relation
f ◦ g ∼ g ◦ f whenever A

f- B
g- A. Let τ : E(A) → [A] be the canonical

map onto the loops, and for each endomorphism f write [f] for its image under
τ .

The key theorem is the following of [KL80].

32 CHAPTER 2. CATEGORICAL BACKGROUND

Theorem 2.38. Let

T : Aop ×A×Aop ×A× · · · × Aop ×A - B

be a functor of 2n variables, let K and L be objects of B and let α : K ⇒ T and
β : T ⇒ L be natural transformations with typical components

α : K - T (A1, A1, A2, A2, A3, . . . , An−1, An, An) , (2.9)
β : T (B1, B2, B2, B3, . . . , Bn−1, Bn, Bn, B1) - L ; (2.10)

given maps

B1
f1 - A1

f2 - B2
f3 - A2

f4- B3 · · ·Bn
f2n−1- An

f2n - B1

the composite of (2.9), T (f1, f2, f3, . . . , f2n−1, fn) and (2.10), depends only on
[f2nf2n−1 · · · f2f1] so that α and β give rise to a function [A] → B(K,L).

Taking A = B, K = L = I, α = η and β = ε gives a ready source of
scalars in any compact closed category A; indeed this is the dimension map
given in Definition 2.35. If the category is freely constructed these are the
only non-trivial scalars. This is a consequence of the more general coherence
theorem of Kelly and Laplaza. Before stating the theorem we must introduce
some additional terminology, which will be also be required in later chapters.

Definition 2.39. A signed set S is a function from a carrier set |S| to the
set {+,−}. Given signed sets R and S, let R∗ denote the signed set with the
opposite signing to R; let R ⊗ S be the disjoint union of R and S, such that
|R⊗ S| = |R|+ |S|.

Definition 2.40. An involution is a category which is a coproduct of copies of
the category 2. Given an involution σ, its object set |σ| can form a signed set
by assigning − to the source and + to the target of each arrow of 2. Call σ an
involution on the signed set S when this signing agrees with that of S.

Given some category A, we can construct the free compact closed category
generated by A, which we call FA. The objects of the FA are constructed from
those of A by repeated application of the functors −⊗−, (−)∗ and the constant
I. This characterisation may be used to inductively construct a signed set S(X)
corresponding to each object X of FA. Let

S(I) = ∅ ,
S(X ⊗ Y) = S(X)⊗ S(Y) ,

S(X∗) = S(X)∗ ,
S(A) = {A 7→ +} if A is an object of A .

The basic structure of arrows in FA depends upon involutions on the signed
sets generated by its objects.

Theorem (Kelly-Laplaza). Let A be a category; each arrow f : A → B of
the free compact closed category generated by A is completely described by the
following data:

1. An involution σ on S(A∗ ⊗B);

2.8. FREE CONSTRUCTION 33

2. A functor θ : σ → A agreeing with σ on objects (i.e. a labelling of σ with
arrows of A);

3. A multiset L of loops from A.

In Chapter 4 we will give a description of the free category FA in logical
terms, and in Chapter 6 we describe a generalisation where the generators A
form a polycategory rather than a category. In the next chapter we turn our
attention to the connection between compact closed categories and quantum
mechanics.

34 CHAPTER 2. CATEGORICAL BACKGROUND

Chapter 3

Categorical Quantum
Mechanics

We now reformulate the Hilbert space presentation of quantum mechanics in
the abstract setting of strongly compact closed categories. This approach was
initiated by Abramsky and Coecke [AC04] and was further developed in [Coe05,
Sel05, AC05, CP07]; here we follow [AC04] closely and neglect the refinements
introduced in later papers. In presenting this material, we aim to give a concrete
operational meaning to the abstract structures that will appear in the formal
categories constructed in later chapters. A noteworthy point is that the distinc-
tion between the different kinds of concrete operation — preparation, evolution,
and measurement — are captured by the types of their abstract counterparts.

Throughout this thesis we will consider only what might be termed multi-
plicative aspects of quantum mechanics1; we do not consider the non-deterministic
and probabilistic aspects of the theory. Importantly it is still possible to discuss
the action of a measurement in such a setting, if not the range of its possible
outcomes. To make this statement precise, the notion of run must be intro-
duced.

Recall that a quantum measurement on a given state produces a probabilis-
tic state change; hence the execution of a quantum process containing mea-
surements can be described as a tree of possible behaviours, where each path
is weighted by a probability. A run is a single path in this tree, together with
its associated probability. From an extensional point of view, a run is simply
an un-normalised state; by considering all the possible runs of the process a
probability distribution over its output states can be obtained. In the following,
however, the branching behaviour will be ignored and runs will be considered in
isolation. Note that, as well as uniquely defines a state, a run bears additional
quantitative information in the form of the weight. While it is nonsensical to
consider this a probability in the absence of other possible runs, weights do give
rise to probabilities when combined with the branching behaviour.

The first three sections of this chapter describe multiplicative quantum me-
chanics in the concrete setting, and then present its abstract formulation using
the language of strongly compact closed categories. The final section discusses
the construction of free models of abstract quantum mechanics from free com-

1Another possible term would be post-selected.

35

36 CHAPTER 3. CATEGORICAL QUANTUM MECHANICS

pact closed categories.

3.1 Multiplicative Quantum Mechanics

In the absence of measurements, quantum mechanics is a deterministic theory.
The evolution of a closed quantum system is determined exactly by the time-
dependent Schrödinger equation: if the present state is known any future state
can be calculated from the solution of the equation. Indeed the evolution map is
unitary, and hence invertible, so the present determines the past as well as the
future. If one considers the universe to be a quantum system then it is surely
closed and there is no need to consider quantum indeterminism or probabilities
at all.

There are of course grave practical, as well as philosophical, objections to
such an approach. Lacking knowledge of the “wave-function of the universe”, it
is necessary to consider the interaction of quantum systems with macroscopic
agents governed by classical physics, and here non-determinism enters the pic-
ture.

Classical agents interact with quantum systems via measurements. For a
given quantum system with a discrete observable, the outcome of the measure-
ment — i.e. what the observer will see — is governed by a probability distri-
bution, dependent on both the measurement performed and the state of the
system. Quantum measurement has a side-effect: the state vector is projected
onto the eigenspace determined by the measurement outcome. The evolution
of a system subject to measurement can be seen as a branching tree in which
each path is deterministic, and the choice of path is dictated by the probabilis-
tic measurement outcomes. By conditioning over these outcomes we can fix a
particular deterministic evolution for the system.

The physical meaning of such a branch is unambiguous: we consider a re-
peated experiment containing measurements, and when analysing its behaviour
we simply discard all those runs of the experiment where the measurements do
not agree with the chosen path. If we view our experiment as a quantum com-
puter there are clear complexity implications for such a view. Aaronson [Aar05]
considers a complexity class of quantum computations with post-selection and
finds that it is equivalent to the class PP of classical polynomial time proba-
bilistic computations. This class contains NP, hence it is outside of what we
might consider computationally feasible.

We do not consider complexity issues here. We study these deterministic
paths because our aim is understand the state transformations which are possi-
ble for a quantum computer. Expressed another way, we are interested in purely
quantum computation without considering any classical information or control
that may be present. Since the state transformations induced by measurements
are fundamental to several approaches to quantum computation [RB01, GC99]
we must incorporate measurement actions into our presentation in order to
discuss these models. Fortunately, this is not problematic.

We restate the postulates of quantum mechanics, but this time omit all
reference to probabilistic branching.

1. To each quantum system we associate a finite dimensional Hilbert space
H, its state space. A composite quantum system whose subsystems have
state spaces H1, . . . ,Hn has the state space H1 ⊗ · · · ⊗Hn.

3.2. FDHILB AS A STRONG COMPACT CLOSED CATEGORY 37

2. The system’s state is represented by a ray |ψ〉 = {cψ ∈ H | c ∈ C} for
some vector ψ in the state space H.

3. The evolution of a closed system is described by a unitary map for each
discrete time step |ψ1〉

U- |ψ2〉.

4. The action of a measurement is described by a projector P : H → H such
that P is self-adjoint and idempotent up to a scalar factor.

Since the set of vectors of H is isomorphic to the set of linear maps C → H,
there is no danger in identifying the state |ψ〉 and the corresponding ray in
FDHilb(C,H). Viewing states as maps rather than elements of a set makes
the translation into categorical language simpler. We will usually identify a state
of a system and the process which produced it, and so will use the terms “state”
and “preparation” interchangeably depending on which emphasis is desired.

In addition to the four axioms above, we make one further restriction. We
consider only measurements which are non-degenerate: every projector P has
a 1-dimensional image. In this case, there exists a vector φ such that P factors
into components,

P = H
〈φ|- C

z- C
|φ〉- H.

Hence each non-destructive measurement can be viewed as a destructive projec-
tion followed immediately by the preparation of a fresh state |φ〉. Note that the
scalar factor z may be equally well absorbed into either part. Since the state
preparation is already accounted for by axiom 2, we simplify axiom 4 as

4’ The action of a measurement is described by a ray

〈ψ| = {c〈ψ | ·〉 ∈ (H → C) | c ∈ C}

for some vector ψ ∈ H.

Hence measurement actions may be viewed as dual to states.
Remark. A subtlety worth pointing out early is that the identification of states
and preparations is valid only under the hypothesis that all other paths in
the computation may be neglected. Otherwise the scalar weights on a path
correspond to the probability (or rather, the amplitude) of that path’s success.
Hence we will pay close attention to the scalar factors, and not identify arrows
which differ only by a scalar. In other words, we work with runs rather than
states.

3.2 FDHilb as a strong compact closed category

Theorem 3.1. The category of finite dimensional Hilbert spaces and linear
maps, FDHilb, is strongly compact closed with the following structure:

• (FDHilb,⊗,C) is symmetric monoidal with ⊗ the usual tensor product of
Hilbert spaces;

• given a Hilbert space H, define H∗ to be the space containing the same set
of vectors as H with the following scalar multiplication and inner product

λ •∗ v := λ • v, 〈v | u〉∗ := 〈u | v〉,

and addition as in H;

38 CHAPTER 3. CATEGORICAL QUANTUM MECHANICS

• the functor (·)† is defined as the identity on objects and, for each linear
map f : H1 → H2, we define f† as the unique map satisfying

〈v | fu〉 = 〈f†v | u〉.

• Let {ei}i be a basis for H; define ηH : I → H∗ ⊗H by

ηH : 1 7→
∑
i

ei ⊗ ei.

Proof. I take for granted that FDHilb is a strict symmetric monoidal category.
The assignment H 7→ H∗ is trivially involutive, so we must show that it is
monoidal. The identity map for H1⊗H2 gives a linear isomorphism H∗

1 ⊗H∗
2 →

(H1⊗H2)∗. Since the addition is the same in both, it remains to check that the
scalar multiplication is preserved. Suppose that ψ ⊗ φ is a vector in H∗

1 ⊗H∗
2 ;

then

λ •1∗2∗ (φ⊗ψ) = (λ •1∗ φ)⊗ψ = (λ •1 φ)⊗ψ = λ •12 (φ⊗ψ) = λ •(12)∗ (φ⊗ψ).

Similarly, the assignment z → z is linear C→ C∗:

z • 1 = z 7→ z = z • 1 = z •∗ 1

hence (·)∗ is (strongly) monoidal.
To see that (·)† is a strict monoidal functor, suppose that we have Hilbert

spaces and linear maps

A
f- B

g- C;

then 〈(gf)†c | a〉 = 〈c | gfa〉 = 〈f†g†c | a〉 so (fg)† = g†f†, and also 〈a | 1Aa〉 =
〈1Aa | a〉 so 1†A = 1A† = 1A, hence (·)† is a functor. Since FDHilb is strict and
(·)† is the identity on objects the natural maps α, ρ, and λ are all identities;
this fact establishes

α−1 = α†, ρ−1 = ρ†, λ−1 = λ†.

In addition,
〈b⊗ a | σA,B(a⊗ b)〉 = 〈σ−1

A,B(b⊗ a) | a⊗ b〉

hence σ† = σ−1 as required. To complete the proof that (·)† is a strict monoidal
functor, we have

〈(f ⊗ g)†(b⊗ c) | a⊗ b′〉 = 〈b⊗ c | (f ⊗ g)(a⊗ b′)〉
= 〈b⊗ c | (fa⊗ gb′)〉
= 〈b | fa〉〈c | gb′〉
= 〈f†b | a〉〈g†c | b′〉
= 〈(f† ⊗ g†)(b⊗ c) | a⊗ b′〉,

Hence (·)† ⊗ (·)† = (· ⊗ ·)† as required.

3.3. CATEGORICAL QUANTUM MECHANICS 39

Finally suppose that ψ, φ ∈ A; then

〈ψ ⊗ φ | ηA(1)〉 = 〈ψ ⊗ φ |
∑
i

ai ⊗ ai〉

=
∑
i

〈ψ | ai〉〈φ | ai〉

= 〈φ | ψ〉.

Hence εA is the linear map generated by ψ ⊗ φ 7→ 〈ψ | φ〉. From which

ψ
1A⊗ηA - ψ ⊗ (

∑
i

ai ⊗ ai) =
∑
i

ψ ⊗ ai ⊗ ai
εA⊗1A -

∑
i

〈ψ | ai〉ai = ψ

satisfying the required commuting triangle to make FDHilb compact closed.

Remark. In the above, H∗ is not the usual dual space — that is, the space
of linear maps H → C. Taking it as such would give a natural isomorphism
between H∗∗ and H, but not a true involution.

3.3 Categorical Quantum Mechanics

The features of Hilbert space used in the postulates of quantum mechanics
without branching can all be expressed purely in terms of the strongly com-
pact closed structure of FDHilb. By rephrasing the postulates in categorical
language, we create an abstract version of quantum mechanics which may be
understood in any strongly compact closed category.

Given a strongly compact closed category C, the postulates of quantum
mechanics over C are as follows.

1. To each quantum system we associate an object A of C, its state space. The
system’s state is represented by a ray; a subset Sψ of C(I,A) determined
by a point |ψ〉 : I → A, such that Sψ = {s • |ψ〉 | s ∈ C(I, I)}.

2. Each discrete step of the evolution of a closed system is represented by a
unitary map f : A→ B.

3. The action of a measurement upon a system is represented by a projector
〈ψ| : A→ I.

4. A composite system whose subsystems have state spaces A1, . . . , An is has
state space A1 ⊗ · · ·An.

The scalar multiplication in postulate 1 has two effects: it normalises all the
states and it cancels out global phase. We might think of splitting the idea of
state into two. Firstly as preparation, which is simply a point |ψ〉 : I → A; and,
secondly, as a run which consists of any arrow in the category times a scalar
factor, considered to be its amplitude. Hence each member of the set Sψ can be
viewed as the preparation |ψ〉 with some amplitude.

A point of note is the relation between the unit maps and the Bell state.
Taking Q as the space of qubits, the map ηQ : I → Q∗ ⊗Q sends 1 to the state
|0∗0〉+ |1∗1〉; dually, the counit projects this vector onto 1 and sends the rest of

40 CHAPTER 3. CATEGORICAL QUANTUM MECHANICS

the space to 0. That this pair of preparation and measurement action performs
the teleportation protocol is essentially the statement of the defining axiom of
a compact closed category. Hence there is a notion of Bell state, Bell projection
and teleportation at every object in every compact closed category.

3.4 Free Models

In the subsequent chapters we will define models of the categorical formulation
of quantum mechanics which are freely constructed, that is, generated from a
category of basic elements by iterating the algebraic operations which define
the desired structure. In fact, we will spend the bulk of the next few chapters
defining free models of the compact closed structure only. In this section we
explain how this seeming gap, between categorical quantum mechanics and bare
compact closed categories, is bridged.

There are several reasons why free models are of interest. Foremost among
these is the fact that a free model contains only those equations which follow
directly from its algebraic structure. Hence we can distinguish properties de-
pending upon whether they rely purely upon the compact closed structure or
equation which hold between the generators, or indeed the interaction of both.
There is no chance to misled by contingent equalities of any particular matrix
representation.

This point of view is informed by the intended application to quantum com-
puting. A programming language will provide some small number of basic op-
erations at ground types from which all programs can be constructed by using
the various methods of combination and consumption provided by the language.
Realistic hardware — or experimental equipment — will implement a similarly
limited set of low-level transformations. This is no limitation on the expressive-
ness of the formalism, since various sets of quantum gates have been shown to
be universal, or approximately so ([NC00] Chapter 4.5 has a summary). This
intuition suggests that freely constructed models of our axioms will provide the
most natural situation to develop abstract quantum mechanics.

There is a second, more technical reason for restricting attention to freely
constructed categories. In any category with equational structure we should
like to know which equations hold by virtue of that structure. Such coher-
ence questions are effectively word problems over the objects and arrows of
the category. The ideal case resembles Mac Lane’s celebrated coherence theo-
rem [ML63, ML97], which gives a description of the equations which must hold
in any monoidal category exclusively in terms of the natural transformations
which make up the monoidal structure, and without reference to the other ar-
rows which may be present in the category. The remarks at the end of [KL80]
point out that the equations which must hold in a compact closed setting can-
not be so neatly described. Kelly shows in a sequence of papers, but principally
[Kel92], that such an absolute description is possible only when the structure
arises from a “club”, and indeed that compact closed categories do not so arise.
Hence the best possible account of the structure of a compact closed category
is the explicit description of the free construction relative to some generating
category.

So much for compact closed categories. We are concerned here with strongly
compact closed categories. It will turn out that the additional structure provided

3.4. FREE MODELS 41

by the involution (·)† can be largely neglected.
Selinger [Sel05] defines a dagger category as any category equipped with

an identity-on-objects, involutive, contravariant functor; elsewhere these have
been called involutive categories [Abr05, AD06]. A strongly compact closed
category2 can then be defined as a dagger category which is compact closed and
additionally satisfies:

(f ⊗ g)† = f† ⊗ g† , (3.1)

α†A,B,C = α−1
A,B,C , (3.2)

λ†A = λ−1
A , (3.3)

σ†A,B = σ−1
A,B , (3.4)

ε†A = σA∗,A ◦ ηA . (3.5)

In other words, a strongly compact closed category is a compact closed dagger
category where (·)† preserves the monoidal and compact closed structure exactly.
This suggests that it is possible to construct the free strongly compact closed
category on A in three steps, corresponding to the dagger, the compact closed
structure, and the coherence of the two.

Consider the three functors,

D : Cat - InvCat ,

F : Cat - ComCl ,

G : Cat - SComCl ,

which respectively send a category to the free dagger category, free compact
closed category, and free strongly compact closed category generated by it.
Given some category A, FDA is not strongly compact closed since the functor
(·)† is not defined on every arrow. However, as shown in [Abr05], it can be
extended by taking Equations (3.1)–(3.5) to define (·)† on the arrows where it
was not already defined. Calling this (trivial) embedding functor E, we now
have:

Cat

InvCat

D

?

F
- ComCl

E
- SComCl .

G

-

It is easy to see that EFDA is indeed the free strongly compact closed category
on A since it is freely compact closed and includes an arrow f† : B → A for
each f : A → B such that f† is formally distinct from all other arrows except
where the coherence laws require an equation.

To combine the functors in the other order, let InvComClCat be the cate-
gory of compact closed categories with involutions, and let D′ be the restriction

2Selinger uses the term “dagger compact closed” for strongly compact closed. The fact
that a dagger compact closed category is different to a compact closed dagger category seems
sufficient reason to avoid this terminology.

42 CHAPTER 3. CATEGORICAL QUANTUM MECHANICS

of D to compact closed categories, i.e. the functor making

ComCl
D′

- InvComClCat

Cat

U

?

F †
- InvCat

U

?

′

commute, with U,U ′ the evident forgetful functors. Then D′FA is dagger cate-
gory by its construction, and it is also compact closed since every object inherits
a dual from FA. It is not strongly compact closed since f† is always distinct
from f on non-identity arrows, and thus Equations (3.1)–(3.5) do not hold.

Let B = D′FA and let RAB be the least equivalence relation on the hom-set
B(A,B) such that

• (f, g) ∈ RA,B if f = g by Equations (3.1)–(3.5)

• R(A,B) = RA,B defines a functor Bop × B → Set;

• R(A,B)×R(C,D) ⊆ R(A⊗ C,B ⊗D)

Since R is a functor we have

R(A,B) ∼= R(A⊗ I,B) ∼= R(I ⊗A,B) ∼= R(A, I ⊗B) ∼= R(A,B ⊗ I)

via the left and right monoid unit morphisms. Since it respects tensor we also
haveR(A,B) ∼= R(B∗, A∗). Therefore the quotient functorQ : InvComClCat →
SComCl generated by R is a compact closed functor. We then have:

Cat
F- ComCl

D′
- InvComClCat

InvCat

D

?

F
- ComCl

E
- SComCl

Q

?

G

-

Hence in a free strongly compact closed category the role of the (·)† is restricted
to the generating category A and may be otherwise neglected. By way of em-
phasis, consider the case where A = 1, the category with one object and no
non-identity arrows. We have D1 = 1, and hence G1 = F1.

The construction of the free strong compact closed structure provides a num-
ber of unitary and self-adjoint maps with which to carry out abstract quantum
mechanics. The monoidal natural isomorphisms are all unitary. For each A, the
non-destructive measurement action,

A⊗A∗
εA- I

ηA- A∗ ⊗A
σA∗,A- A⊗A∗

is self-adjoint, upto a scalar factor of dimA. These arrows provide limited scope
for defining interesting algorithms. In light of the discussion above, any addi-
tional unitaries must come from from the generating category A. Rather than
simply considering the free dagger category DA, it would be more profitable to
consider a quotient of DA by some set of equations. For example:

3.4. FREE MODELS 43

• f†f = 1A and ff† = 1B for all f : A → B, making A into a unitary
groupoid;

• f† = f for some chosen f , since many common quantum logic gates are
defined by self-adjoint maps;

• more generally, commutation relations fg = hf for some arrows f, g, h,
may be required, for example to represent a symmetry group.

The procedure is rather similar to that above. Let E be a set of equations on
the arrows of C = DA and let RA,B be the least equivalence relation on C(A,B)
such that

• (f, g) ∈ RA,B if f = g is an equation of E ;

• R(A,B) = RA,B defines a functor Cop × C → Set.

Given such a functor R, there exists a universal arrow Q to the unique quotient
category C/R; we must construct a functor S : FCop×FC → Set such that the
quotients commute with the free construction of the compact closed structure
as shown below.

C
QR - C/R

FC

ΨC

?

QS
- (FC)/S = F (C/R)

ΨC/R

?

It suffices to lift the relations RAB to tensors of objects. Let SX,Y be the least
equivalence on FC(X,Y) such that

• SA,B = RA,B whenever A and B are objects of C;

• S(A,B) = SA,B defines a functor FCop × FC → Set.

• S(A,B)× S(C ⊗D) ⊆ S(A⊗ C,B ⊗D).

This relation defines a quotient functor QS : FC → (FC)/S, which preserves
the compact closed structure exactly. Since this structure is preserved, the
characterisation of Theorem 2.8 still applies. Suppose then that f = (σ, θ, L),
g = (σ′, θ′, L′) and Qf = Qg. Since QS doesn’t change the objects we must
have σ = σ′, which implies that θ and θ′ may differ only on the arrows of the
involution. Since each of these defines an arrow in C, QS will only equalise
them when QR does, hence θ : σ → C/R. The same applies to the loops.
Therefore (FC)/S is contained in F (C/R). The converse is similar. Therefore,
it is possible to characterise the free compact closed structure without reference
to any equations imposed upon DA, and perform the quotient upon FDC as
needed.

With these thoughts in mind, we now present a recipe for the construction
of free models of categorical quantum mechanics.

• Start with a category A; this provides the ground types and primitive
operations.

44 CHAPTER 3. CATEGORICAL QUANTUM MECHANICS

• For every arrow f : A → B augment A with a formally distinct arrow
f† : B → A, such that 1†A = 1A and (f ◦ g)† = g† ◦ f† to construct the
free dagger category DA.

• Quotient DA by some set of equations E .

• Construct the free compact closed category F (DA/E).

These steps ensure that the resulting category has the required elements to carry
out quantum mechanics in the abstract setting.

A - DA
Q- DA/E

Ψ- FDA/E

C

G\

?

G Q

-

G †

-

G

-

Since each of the horizontal arrows in the digram above is universal, if there
is a functor G : A → C to any strongly compact closed category, such that G
preserves the equations E then there exists a unique compact closed functor from
the freely constructed model FDA/R such that G factors through it. Hence, in
order to interpret the free model in a concrete category — typically FDHilb—
it suffices to provide a functor interpreting the primitives.

In the following chapters we shall set about providing an explicit description
of the freely constructed compact closed part of this structure, without any
undue worry about the other aspects. In keeping with this, we shall henceforth
drop the rather heavy notation FDA/R, and speak simply of the free compact
closed category FA on a category of generators A.

Chapter 4

Multiplicative Categorical
Quantum Logic

This chapter introduces mCQL , a logic which permits formal reasoning within
the strongly compact closed framework described in the previous chapter. As
such, it will be our first pass at a formal syntax for abstract quantum mechanics.

The syntax of mCQL is constructed relative to a class of basic types and
operations upon which an abstract quantum theory is built by imposing connec-
tives and structural rules which carry the compact closure. To be more precise,
we begin with a base category A and construct the free compact closed category
FA upon it.

Cat
F -
⊥�
U

Com

The constructed category FA forms the setting for our abstract quantum me-
chanics. The syntax of mCQL is a formal representation of this structure: the
formulae and proofs encode respectively the objects and arrows of FA, which we
may think of physically as abstract state spaces and quantum processes between
them.

Before continuing, it is worth disposing of an “impedance mismatch”. This
chapter is concerned with developing a theory for the free compact closed struc-
ture, whereas previously we claimed that the requisite framework for this part of
quantum mechanics is a strongly compact closed category. The essential extra
structure of the strongly compact closed setting is the involution (·)†, and as
described in Chapter 3, if A has a suitable involution we can lift it to FA to
produce a strongly compact closed category. The action of (·)† on the compact
closed structural maps is either trivial or does not introduce any new maps,
merely sending units to counits, and so on. Hence the effect of the involution
is effectively restricted to A. Therefore we will assume that A is already freely
augmented with a suitable involution and otherwise neglect the “strong” part
of strongly compact closed.

In what follows, we will offer two presentations of mCQL, firstly as a sequent
calculus, and secondly as a system of proof-nets. The sequent calculus has the
advantage that the relationship between the syntax and its interpretation is

45

46 CHAPTER 4. MULTIPLICATIVE CATEGORICAL QUANTUM LOGIC

clearer; however the proof-nets presentation stands in much closer relation to
the model. Indeed proof-nets for mCQL will give a faithful and fully complete
representation of FA.

4.1 Formulae

In the following, A is the chosen base category, also known as the category of
axioms, or category of atoms.

Definition 4.1. The formulae of mCQL are built from the following grammar:

F ::= A | A∗ | F ⊗ F,

where A ranges over the objects of A, which we shall refer to as atoms. We
define (·)∗ on arbitrary formulae by the following equations:

X∗∗ = X
(X ⊗ Y)∗ = Y ∗ ⊗X∗

We use the notational convention that upper case letters A,B,C from the
start of the Latin alphabet are atoms and those from the end of the alphabet
X,Y, Z are arbitrary formulae. Upper case Greek letters Γ,∆,Σ signify lists of
formulae.

We shall use axiom synonymously with arrow of A.

4.2 Sequent Calculus

Definition 4.2. An mCQL sequent is of the form

Γ ` ∆; [L]

where Γ,∆ are lists of formulae and L is a multiset of loops.

The incorporation of the loops in the definition of sequent is slightly misleading:
the loop sets are a proof decoration rather than a property of the sequents
themselves. The loops are syntactic representatives for the scalars I → I; they
may be considered weights or amplitudes of the particular deterministic process
represented by the proof. This quantitative information should not form part
of the type, so two sequents are defined to be equal if they differ only by loops.

Further, the inclusion of loops in the syntax allows a minor technical im-
provement on [Shi96] in that troublesome cuts can be eliminated by introducing
a loop, and hence there is no need for an auxiliary notion of normal form.

Warning!. It is necessary to distinguish between occurrences of formulae in
sequents and throughout proofs, otherwise one can arrive at situations where it
is impossible to see what is going on. In the following it is tacitly assumed that
all formulae occur uniquely. This defect is remedied in the proof-net presentation
of the next section.

Definition 4.3. An mCQL proof is a tree of sequents joined by the inference
rules shown in figure 4.1. The inferences at the leaves of the tree must be either
f -axioms or h-units.

4.2. SEQUENT CALCULUS 47

Structure Group: σ, τ permutations.

Γ, X ` X,∆ ; [L]
(cut)

Γ ` ∆ ; [L]

Γ ` ∆ ; [L] Γ′ ` ∆′ ; [L′]
(mix)

Γ,Γ′ ` ∆,∆′ ; [L,L′]

Γ ` ∆ ; [L]
(exch)

τ(Γ) ` σ(∆) ; [L]

Multiplicative Group:

Γ, X, Y ` ∆ ; [L]
(L⊗)

Γ, X ⊗ Y ` ∆ ; [L]

Γ ` X,Y,∆ ; [L]
(R⊗)

Γ ` X ⊗ Y,∆ ; [L]

Γ ` ∆, X ; [L]
(L∗)

Γ, X∗ ` ∆ ; [L]

X,Γ ` ∆ ; [L]
(R∗)

Γ ` X∗,∆ ; [L]

A-Group: where A
f- B

g- A are axioms, and h is a loop.

(f -axiom)
A ` B ; []

Γ, A ` B,∆ ; [L]
(g-cut)

Γ ` ∆ ; [L]

(h-unit)
` ; [h]

Figure 4.1: Inference Rules for mCQL

Note that since A is a category there is an 1A-axiom rule for every object A
of A, but, for reasons of technical convenience, we only include identity axioms
for atomic formulae. Identity axioms are admissible for all formulae, as a con-
sequence of the full completeness theorem, but we will not need them. We do
however include cut rules at all formulae, in addition to those parameterised by
the arrows of A.

Example 4.4. Suppose we have axioms B
f- A and C

g- D
h- B.

(f -axiom)
B ` A; []

(1A-axiom)
A ` A; []

(mix)
B,A ` A,A; []

(R⊗)
B,A ` A⊗A ; []

(g-axiom)
C ` D; []

(mix)
B,A,C ` A⊗A,D; []

(h-cut)
A,C ` A⊗A; []

The cut rule, as shown here, might be better described as a trace rule, and
in the semantics for mCQL proofs it is indeed interpreted by the trace. By
proposition 2.4 of [AHS02] we have

g ◦ f = TrBA,C(σB,C ◦ (f ⊗ g))

48 CHAPTER 4. MULTIPLICATIVE CATEGORICAL QUANTUM LOGIC

Structure Group: σ, τ permutations.

f : Γ⊗A→ A⊗∆
(cut)

TrAΓ,∆(σ ◦ f) : Γ → ∆

f : Γ → ∆ g : Γ′ → ∆′

(mix)
(f ⊗ g) : Γ⊗ Γ′ → ∆⊗∆′

f : Γ → ∆
(exch)

σ ◦ f ◦ τ−1 : τ(Γ) → σ(∆)

Multiplicative Group:

f : Γ → ∆⊗X
(L∗)

(1∆ ⊗ εX) ◦ (f ⊗ 1X∗) : Γ⊗X∗ → ∆

f : X ⊗ Γ → ∆
(R∗)

(f ⊗ 1X∗) ◦ (1Γ ⊗ ηX) : Γ → X∗ ⊗∆ ; [L]

No interpretation of R⊗ or L⊗

A-Group: where A
f- B

g- A are axioms, and h is a loop.

(f -axiom)
f : A→ B

f : Γ⊗A→ B ⊗∆
(g-cut)

TrA⊗BΓ,∆ (σ ◦ (f ⊗ g)) : Γ → ∆

(h-unit)
εA ◦ phq : I → I

Figure 4.2: Semantics for rules of mCQL

for f : A → B, g : B → C. Hence the rule gives the usual idea of partial
composition. The traditional cut rule,

Γ ` ∆, A A,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′

is admissible, and we will write it as short hand for its mCQL derivation, viz.

Γ ` ∆, A A,Γ′ ` ∆′

(mix)
Γ, A,Γ′ ` ∆, A,∆′

(cut)
Γ,Γ′ ` ∆,∆′

Definition 4.5. To each mCQL proof π of Γ ` ∆ we assign an arrow JπK :⊗
Γ →

⊗
∆. This arrow is constructed from π via the correspondence be-

tween the inference rules of Figure 4.1 and the constructions on arrows shown
in Figure 4.2.

While this sequent calculus encodes the categorical structure very naturally,
the large number of rules makes it rather cumbersome. By taking advantage
of De Morgan duality we can convert all sequents and proofs into a one-sided

4.2. SEQUENT CALCULUS 49

(f -axiom)
` A∗, B ; []

(f -axiom)
pfq : I → A∗ ⊗B

(h-unit)
` ; [h]

(h-unit)
ηA∗ ◦ phq : I → I

` Γ, X,X∗ ; [L]
(cut)

` Γ ; [L]

f : I → Γ⊗X ⊗X∗ ⊗∆
(cut)

(1Γ ⊗ εX ⊗ 1∆) ◦ f : I → Γ⊗∆

` Γ, A∗, B,∆ ; [L]
(g-cut)

` Γ ; [L]

f : I → Γ⊗A⊗B∗ ⊗∆
(g-cut)

(1Γ ⊗ xgy⊗ 1∆) ◦ f : I → Γ⊗∆

` Γ ; [L]
(exch)

` σ(Γ) ; [L]

f : I → Γ
(exch)

σ ◦ f : I → σ(Γ)

` Γ ; [L] ` ∆ ; [L′]
(mix)

` Γ,∆ ; [L,L′]

f : I → Γ g : I → ∆
(mix)

(f ⊗ g) : I → Γ⊗∆

` Γ, X, Y ; [L]
(⊗)

` Γ, X ⊗ Y ; [L]
(no interpretation)

Figure 4.3: Syntax (left) and Semantics (right) for One-Sided mCQL

variant, as shown in Figure 4.3, and so reduce the workload while losing nothing
essential. Where disambiguation is needed we write mCQL1 and mCQL2 for
the one- and two-sided presentations respectively.

If Γ is the list of formulaeX1, . . . , Xn, let Γ∗ be the list of formulaeX∗
n, . . . , X

∗
1 .

Definition 4.6. Given an mCQL2 proof π of the sequent Γ ` ∆ ; [L] we can
define an mCQL1 proof π∗ of ` Γ∗,∆ ; [L] by a direct rule for rule translation
of π. Since it is self dual, both left and right rules for the tensor are translated
by the same rule in the one sided system. There is no one-sided rule for the
right star rule; the left star rule is translated by the exchange:

` ∆∗,Γ, X
(exch)

` X,∆∗,Γ
.

Proposition 4.7. Let π be an mCQL2 proof and π∗ its mCQL1 translation.
Then:

Jπ∗K = pJπKq.

Proof. Use induction on the structure of π. The cases for axiom, unit, mix left
star, and tensor are trivial. The cut rule will be omitted since it may be dealt
with using the same techniques as g-cut. Hence only the three cases remain :
left star, g-cut, and exchange.

Suppose that π arises from π1 by an application of the exchange rule. By
induction hypothesis, we have Jπ∗1K = pJπ1Kq. Note that ph ◦ f ◦ gq = (g∗⊗ h) ◦

50 CHAPTER 4. MULTIPLICATIVE CATEGORICAL QUANTUM LOGIC

pfq, and if τ is a permutation on Γ then τ∗ = τ−1 on Γ∗. Hence

pJπKq = pσ ◦ Jπ1K ◦ τ−1q = (τ ⊗ σ) ◦ pJπ1Kq

as required.
Alternatively, suppose that π arises from π1 by an application of the g-cut

rule, where g : B → A be an axiom and Let f : X ⊗ A → Y ⊗ B be the
denotation of π1; this gives

JπK = TrA⊗BX,Y (σ ◦ (f ⊗ g))
= (1Y ⊗ εA⊗B) ◦ σ ◦ (f ⊗ g ⊗ 1A∗⊗B∗) ◦ (1X ⊗ η(AB)∗).

By induction hypothesis Jπ∗1K = pfq = (1X∗⊗A∗ ⊗ f) ◦ ηX⊗A. In figure 4.5 we
have pJπKq along the top edge of the diagram (starting from I) and Jπ∗K along
the lower edge. The cells marked (∗) commute because

ηA⊗B = σ ◦ (ηA ⊗ ηB),

or its dual. The cell marked (∗∗) commutes due to the equality

(εA ⊗ f) ◦ (1A ⊗ ηA) = f ◦ (εA ⊗ 1A) ◦ (1A ⊗ ηA) = f.

The other cells commute either due to functoriality and/or coherence of the
tensor. Hence Jπ∗K = pJπKq.

Finally suppose that the last inference of π is the left star rule applied to a
proof π′. Let f = Jπ′K : Γ - ∆⊗X then by induction we have

JπK = (1∆ ⊗ εX) ◦ (f ⊗ 1∗X)

and
Jπ∗K = σ ◦ (1Γ∗ ⊗ f) ◦ ηΓ .

These are equal; see Figure 4.4. The outer left path is pJπKq and the outer right
is Jπ∗K; all the isomorphisms are symmetries. Hence Jπ∗K = pJπKq.

From here on we’ll work exclusively with with the one sided syntax, mCQL1.

Theorem 4.8 (Cut-Elimination). Every mCQL proof can be transformed into
cut-free proof of the same sequent.

Proof. Although standard techniques largely suffice a full proof is provided.
The only novelties are the rules of the A-group, in particular the possibility of
self-cuts.

Define the rank of cut to be the number of atomic subformulae of its cut
formula; the cut-rank r(π) of a proof π is the maximum rank among its cuts,
with r(π) = 0 if π is cut-free. Let the height of a cut be the number of inferences
above1 it in the proof tree; the cut-height h(π) of the proof is the sum of the
heights of its cuts. We proceed by induction, with the following hypothesis: to
each proof π there exists a proof π′, with the same conclusions, such that

r(π) > r(π′) or r(π) = r(π′) and h(π) > h(π′).

1Unlike most trees in computer science, “up” in this context denotes “towards the leaves”.

4.2. SEQUENT CALCULUS 51

I

X ⊗ Γ∗ ⊗ Γ⊗X∗ �
∼=�

ηΓ⊗
X
∗

Γ∗ ⊗ Γ⊗X∗ ⊗X

ηΓ ⊗ ηX∗

?
� 1Γ∗⊗Γ ⊗ ηX Γ∗ ⊗ Γ

ηΓ
-

X ⊗ Γ∗ ⊗∆⊗X ⊗X∗

1X⊗Γ∗ ⊗ f ⊗ 1X

?
�
∼=

Γ∗ ⊗∆⊗X ⊗X∗ ⊗X

1Γ∗ ⊗ f ⊗ 1X∗⊗X

?
�1Γ∗⊗∆ ⊗ ηX ⊗ 1X Γ∗ ⊗∆⊗X

1Γ∗ ⊗ f

?

X ⊗ Γ∗ ⊗∆

1X⊗Γ∗⊗∆ ⊗ εX

?
�

∼=
Γ∗ ⊗∆⊗X

1Γ∗⊗∆ ⊗ εX ⊗ 1X

? �
1Γ
∗⊗∆⊗X

Figure 4.4: Proof of Proposition 4.7: the case for the left star rule

Assume without loss of generality that π is an mCQL proof containing exactly
one cut, which occurs as its last inference.

Suppose r(π) = 1: the cut formulae are literals, and hence the cut is an
instance of the g-cut rule, perhaps with g = 1A. Suppose g : B → A; then we
have:

...
(R)

Γ, A∗, B ; [L]
(g-cut)

Γ ; [L]

There are three subcases depending on which rule (R) is: an axiom introduc-
ing both cut-formulae; a mix where A∗ and B occur in different premises; or
anything else.

Suppose it is the first case. The proof looks like this:

(f -axiom)
` A∗, B ; []

(g-cut)
`

(4.1)

for some axiom f : A→ B. This configuration represents what has been called
“incestuous self-plugging” [Gir95]. In the degenerate world of compact closed
categories such things are quite acceptable. The proof reduces to

((g ◦ f)-unit)
` [g ◦ f]

which has cut-rank zero.

52 CHAPTER 4. MULTIPLICATIVE CATEGORICAL QUANTUM LOGIC

X
∗ X

1 (
X
∗
X

)
η (
A
B

)∗
-

X
∗ X

A
B
A
∗ B

∗
1 X

∗
f
g
1 (
A
∗
B
∗
)

-
X
∗ Y
B
A
A
∗ B

∗

(∗
)

I

η X

6

η X
η A
η B

-
X
∗ X

A
∗ A
B
∗ B

∼ =

?
X
∗ Y
B
B
A
∗ B

∗

1(
X
∗
Y
B

)g
1(
A
∗
B
∗
)

-
1 X

∗
f
1 (
B
A
∗ B

∗)

-

X
∗ Y
A
B
A
∗ B

∗

∼=

-

(∗
)

X
∗ A

∗ X
A
B
∗ B

∼ =

?
1 (
X
∗
A
∗
)
f
1 (
B
∗
B

)
-

X
∗ A

∗ Y
B
B
∗ B

∼ =

?
1 (
X
∗
A
∗
Y
B
B
∗
)
g -
X
∗ A

∗ Y
B
B
∗ A

∼=
- X

∗ Y1 (
X
∗
Y

)
ε A
B

?

(∗
∗)

(∗
)

X
∗ A

∗ X
A

η X
A

?

1 (
X
∗
A
∗
)
f

-

1(
X
∗
A
∗
X
A

)η
B

-

X
∗ A

∗ Y
B

1 (
X
∗
A
∗
Y
B

)
η B

6

1 (
X
∗
A
∗
Y

)
g

-
X
∗ A

∗ Y
A

1 (
X
∗
A
∗
Y

)
ε B

1 A

?

∼ =
-

X
∗ Y
A
A
∗

1 (
X
∗
Y

)
ε A

6

NB: In this diagram, tensor is written as juxtaposition, and all isomorphisms
are symmetries of the tensor.

Figure 4.5: Proposition 4.7: Case for g-cut

4.2. SEQUENT CALCULUS 53

In the second case π has the following shape

...
(R1)

` Γ, A∗ ; [L]

...
(R2)

` B,∆ ; [L′]
(mix)

` Γ, A∗, B,∆ ; [L,L′]
(g-cut)

` Γ,∆ ; [L,L′].

Suppose that inference R1 is not an axiom. Then the formula A∗ does not take
part in (R1) and hence the proof may be rewritten as

...

` Γ′, A∗ ; [L]

...
(R2)

` B,∆ ; [L′]
(mix)

` Γ′, A∗, B,∆ ; [L,L′]
(g-cut)

` Γ′,∆ ; [L,L′]
(R1)

` Γ,∆ ; [L,L′],

A similar rewrite is possible if (R2) is not an axiom. In either case the height
of the cut is reduced. If both (R1) and (R2) are axioms the proof is as shown
below.

(f -axiom)
` A∗, B ; []

(h-axiom)
` C∗, D ; []

(g-cut)
` A∗, D ; []

(4.2)

To eliminate the cut, rewrite the proof as,

((f ◦ g ◦ h)-axiom)
` A∗, D ; [].

which has rank zero.
If r(π) = 1 but neither of the cases considered above applies, then rule (R),

immediately preceding the cut, has no effect on the cut-formulae. In this case
it is necessarily a tensor or a mix on the side formulae, hence it is possible to
rewrite the proof so that (R) comes after the cut. This will reduce the height
of the cut by at least one.

The above reasoning establishes the base case of the induction; now we
consider the case r(π) > 1, where a similar analysis applies.

...
(R)

` Γ, X∗ ⊗ Y ∗, X ⊗ Y ; [L]
(cut)

` Γ ; [L]

We identify three cases: the inference (R) is an occurrence of the tensor rule
which introduces one of the cut-formulae; (R) is the mix rule, and the two cut-
formulae occur in different premises; or anything else. The “anything else” case
is as before: since it has no effect on the premises of the cut, (R) can be pushed
beneath the cut to reduce the cut height.

54 CHAPTER 4. MULTIPLICATIVE CATEGORICAL QUANTUM LOGIC

Otherwise, suppose that (R) is an occurrence of the mix rule as shown below.

...
(R1)

` Γ, X∗ ⊗ Y ∗ ; [L]

...
(R2)

` X ⊗ Y,∆ ; [L′]
(mix)

` Γ, X∗ ⊗ Y ∗, X ⊗ Y,∆ ; [L,L′]
(cut)

` Γ,∆ ; [L,L′].

If (R1) is not the inference introducing X∗ ⊗ Y ∗ then it does not interfere with
the cut-formula, hence it can be performed after the cut. Likewise for (R2). If,
on the other hand, both inferences introduce their respective cut-formulae then
we have the following proof

...

` Γ, X∗, Y ∗ ; [L]
(⊗)

` Γ, X∗ ⊗ Y ∗ ; [L]

...

` X,Y,∆ ; [L′]
(⊗)

` X ⊗ Y,∆ ; [L′]
(mix)

` Γ, X∗ ⊗ Y ∗, X ⊗ Y,∆ ; [L,L′]
(cut)

` Γ,∆ ; [L,L′],

(4.3)

which can be rewritten to

...

` Γ, X∗, Y ∗ ; [L]

...

` X,Y,∆ ; [L′]
(mix)

` Γ, X∗, Y ∗, X, Y,∆ ; [L,L′]
(exch)

` Γ, X∗, X, Y ∗, Y,∆ ; [L,L′]
(cut)

` Γ, X∗, X,∆ ; [L,L′]
(cut)

` Γ,∆ ; [L,L′],

which has a lesser rank than the original.
Finally we consider the case where the inference (R) is a tensor rule in-

troducing one of the cut formula. In this case the structure of π is as shown
below.

...
(R′)

` Γ, X∗, Y ∗, X ⊗ Y ; [L]
(⊗)

` Γ, X∗ ⊗ Y ∗, X ⊗ Y ; [L]
(cut)

` Γ ; [L]

Unfortunately we cannot proceed as usual by permuting the rule (R′) below the
cut: for example it may be a mix separating X∗ and Y ∗. Instead the branch
containing X ⊗ Y must be rewritten so that the inference introducing the cut-
formula occurs last. Let π0 be the subproof of π whose last inference is (R′). Let
(T) be the inference introducing X ⊗Y . Clearly (T) occurs in π0; suppose that
is not (R′). Consider the inference immediately below (T); since this inference
has a premise, namely the conclusion of (T), it cannot be an occurrence of the
axiom or unit rules. Further, by hypothesis, π has only one cut, so π0 is cut-free.

4.3. PROOF-NETS 55

Hence the rule after (T) must be an occurrence of the exchange, tensor or mix
rules. In all cases it will commute with (T). Hence we can rewrite π0 to an
equivalent proof π′0 where (T) is the last inference, giving the following:

...

` Γ, X∗, Y ∗, X, Y ; [L]
(⊗)

` Γ, X∗, Y ∗, X ⊗ Y ; [L]
(⊗)

` Γ, X∗ ⊗ Y ∗, X ⊗ Y ; [L]
(cut)

` Γ ; [L].

As in the case above, this can be rewritten to a proof of lesser cut-rank.

Theorem 4.9 (Soundness of Cut-Elimination). If π reduces to π′ by some
number of steps of the cut elimination procedure described above, then JπK =
Jπ′K.

Proof. Omitted; see soundness of cut-elimination for proof-nets, below.

Remark. The soundness result refers to the cut-elimination procedure used to
prove Theorem 4.8. It’s worth noting that there are possible cut elimination
procedures, equally good at producing valid proofs, which are not sound. As a
simple example, we note that in any cut-free proof of the sequent

` Γ ; [h]

the loop h must be introduced by an application of the h-unit rule, and the mix
rule. Omitting these inferences yields a perfectly serviceable cut-free proof of
` Γ, however its denotation will not coincide with that of the original.

The sequent calculus presentation is the most natural way to define the
semantics of the logic; however, it is far from perfect. As is usual for sequent
calculi, the cut elimination procedure is not confluent, so a proof can have many
denotationally equivalent normal forms. To remedy these defects, in the next
section we introduce proof-nets.

4.3 Proof-nets

In this section we present a graphical proof notation for mCQL , closely related
to proof-nets for multiplicative linear logic [Gir87a]. These proof-nets improve
on the sequent calculus in a number of respects: the cut-elimination process
is sound and strongly normalising. More importantly, the proof-nets provide a
faithful and fully complete representation of FA.

Definition 4.10 (proof-net). A proof-net is a finite oriented graph with edges
labelled by formulae. The graph is constructed by composing the following
nodes, which we call links, while respecting the labelling on the incoming and
outgoing edges.

Axiom No incoming edges; two out-going edges. The link itself is labelled by
an axiom f : A→ B . One outgoing edge is labelled A∗, the other, B.

56 CHAPTER 4. MULTIPLICATIVE CATEGORICAL QUANTUM LOGIC

Cut Two incoming edges; no outgoing edges. Each cut is labelled either by an
axiom f : A→ B with incoming edges labelled by A and B∗, or else it is
labelled by an identity with the incoming edges labelled by X and X∗ for
an arbitrary formula X.

Times Two incoming edges labelled X and Y ; one outgoing edge labelled X ⊗
Y .

Loop No incoming or outgoing edges. The link is labelled by a loop [f], that
is, an equivalence class of endomorphisms in A.

The orientation is such that edges enter the node from the top, and exit from
the bottom. The conclusions of the net are those labels on outgoing edges of
links which are left unconnected. The order of the conclusions is significant.

We emphasise that empty net is a valid net, having no conclusions.

Remark. Unlike proof-nets for linear logic, our proof-nets have no correctness
criteria [DR89, HvG03]. As we will prove shortly, every mCQL proof-net can
be translated back into an equivalent sequent proof.

Example 4.11. This net is the translation of Example 4.4.

— —
⊗

—

h

1A g f

A A

D B∗

A∗ C∗

A⊗A

Definition 4.12 (β-Reduction). We define a one-step reduction relation be-
tween proof-nets by the following local rewrites on cut links:

1. A cut between atomic formulae. Atomic formulae are only introduced by
axiom links, so there are two subcases.

(a) If both formulae belong to the same axiom (say f):

[g ◦ f]

g

f

A∗ B

(b) If the cut formulae are conclusions of different axioms, say f and h:

g

f h h ◦ g ◦ f

B C∗A∗ D DA∗

4.3. PROOF-NETS 57

2. Cut between two tensor products:

⊗ ⊗

1X⊗Y

1X 1YX Y X∗ Y ∗

X X∗ Y Y ∗

Let
β
- be the reflexive transitive closure of this one step relation; that is

π
β
- π′ if the proof-net π can be rewritten to π′ by a sequence of zero or

more of steps shown above. In this circumstance we say that π beta-reduces to
π′.

Theorem 4.13 (Cut Elimination). β-reduction for mCQL proof-nets is strongly
normalising; further, a proof-net is β-normal if and only if it contains no cut
links.

Proof. First, observe that all rewrites reduce the number of links in the proof-
net, so there can be no infinite rewrite sequence. Additionally, the left hand
sides of the rewrite rules exhaust all the possibilities for introducing a cut, hence
if π contains a cut, one of the three rewrites must apply, and so π is not normal.
Since the rewrites apply only to cut-links, the β-normal proof-nets are exactly
the cut-free proof-nets.

Finally we must show the confluence of β-reduction. The rewrite rules are
all purely local, so rewrites cannot interfere with each other unless they overlap.
There are two possible overlappings of rewrites: these are shown in Figure 4.6.
In the first case associativity in the underlying category A prevents any conflict;
in the second, there is no conflict because the two endomorphisms are cyclic
permutations of each other, hence they are both labels for the same loop.

Since the process is terminating and confluent, β-reduction is strongly nor-
malising.

Definition 4.14 (Semantics of proof-nets). Let ν be a proof-net with conclu-
sions Γ. Define an arrow of FA, JνK : I →

⊗
Γ, by recursion on the structure

of ν.

• If ν is just an axiom link corresponding to the arrow f : A→ B, then let
JνK = pfq : I → A∗ ⊗B.

• If ν has several disconnected components ν1, . . . , νn then define

JνK =
n⊗
i=1

JνiK.

• If ν is built by applying a cut labelled by f : A→ B between conclusions A
and B∗ of ν′, suppose that we have constructed Jν′K : I → Γ⊗A⊗B∗⊗∆.
Then define JνK by the composition

I
Jν′K - Γ⊗A⊗B∗ ⊗∆

1Γ ⊗ xgy⊗ 1∆- Γ⊗∆.

58 CHAPTER 4. MULTIPLICATIVE CATEGORICAL QUANTUM LOGIC

g k

gk

f h l

f l ◦ k ◦ hh ◦ g ◦ f l

l ◦ k ◦ h ◦ g ◦ f

Resolving divergence between 2 rewrites of type 1(b)

[gfkh] [khgf]

g k

kg

f h

hgffkh

=

Resolving divergence between rewrites of type 1(a) and 1(b)

Figure 4.6: Confluence of β-reduction

4.3. PROOF-NETS 59

• If ν is built by applying a ⊗-link between conclusions A and B of ν′ then
let JνK = Jν′K.

• If ν is a loop labelled by [f], where f : A → A for some atom A, then
JνK = εA∗ ◦ pfq. Note that, by Theorem 2.38, this value is independent of
the choice of f .

• If ν is the empty net JνK = 1I .

All these constructions commute wherever the required compositions are defined
due to the functoriality of the tensor, hence JνK is well defined.

Theorem 4.15 (Soundness). If a net ν reduces to ν′ by one or more steps of
the cut-elimination procedure of Theorem 4.13 then JνK = Jν′K.

Proof. Each of the rewrite rules of the cut elimination procedure preserves de-
notation. For each rewrite rule we show the corresponding equation.

1. Suppose we have arrows B
e- A

f- B
g- C

h- D in A; then

(a) We have

xey ◦ pfq = εA∗ ◦ (1A∗ ⊗ e) ◦ (1A∗ ⊗ f) ◦ ηA
= εA∗ ◦ (1A∗ ⊗ (e ◦ f)) ◦ ηA
= εA∗ ◦ pe ◦ fq

directly from the definition of the name and coname.

(b) The required equation

(1A∗ ⊗ xgy⊗ 1D) ◦ (pfq⊗ phq) = ph ◦ g ◦ fq

is Lemma 2.20 verbatim.

2. The case for tensor follows from εA⊗B = σ ◦ (εA ⊗ εB).

The result follows by the functoriality of the tensor.

Definition 4.16 (Translation into proof-nets). Given an mCQL sequent proof
π, we define a proof-net Nπ by recursion over the structure of π.

• If proof π is just an axiom, let Nπ be the proof-net containing just the
corresponding axiom link.

• If proof π is a just an application of the h-unit rule for some h : A → A,
let Nπ be the proof-net containing a loop labelled by [h].

• If π arises from π′ by an application of the g-cut rule for arrow g, form
Nπ by adding a cut link labelled by g between the conclusions of Nπ′

corresponding to the active formulae of the cut rule.

• Similarly if π is formed from π′ by a cut between two compound formulae
X andX∗, formNπ by adding an identity cut link between the conclusions
X and X∗ of Nπ′.

• Suppose π arises from subproofs π1 and π2 by the mix rule. Let Nπ be
the proof-net formed by juxtaposing Nπ1 and Nπ2.

60 CHAPTER 4. MULTIPLICATIVE CATEGORICAL QUANTUM LOGIC

• If π arises from π′ by an application of the times rule, form Nπ by adding
a ⊗-link between the conclusions of Nπ′ corresponding to the active for-
mulae of the tensor rule.

Remark. Proof-nets can be composed by simulating the sequent rules for binary
cut via this translation.

Lemma 4.17 (Simulating Cut-Elimination). Let π, π′ be mCQL sequent proofs
such that π reduces to π′ by one step of the cut elimination procedure defined in
Theorem 4.8; then Nπ

β
- Nπ′.

Proof. Observe that rewrites which do not reduce the cut rank of π have no
effect at all on Nπ since these are simply reorderings of inferences which do not
interact. In that case Nπ = Nπ′.

Otherwise, there are three cases where r(π) > r(π′), corresponding to Equa-
tions (4.1), (4.2) and (4.3). Each of these rewrites corresponds to β-rules 1(a),
1(b), and 2 respectively, hence Nπ

β
- Nπ′ in one step.

Proposition 4.18. Let π be a proof in mCQL. Then JπK = JNπK.

Proof. Each step of the translation from sequents to proof-nets preserves deno-
tation.

Since cut-elimination for proof-nets is sound, the preceding two results combine
to prove Theorem 4.9, soundness for sequent cut-elimination. Some technical
lemmas which characterise the structure of proof-nets now follow.

Lemma 4.19 (Separation). If π is a cut-free proof of ` Γ ; [] which contains
the literals A∗1, B1, . . . , A

∗
n, Bn then JπK has the form

I
pf1q⊗···⊗pfnq−−−−−−−−−→ (A∗1 ⊗B1)⊗ · · · ⊗ (A∗n ⊗Bn)

s−−−−−−−−−→ Γ

where the fi : Ai → Bi are axioms, and s is a permutation of the components
of the tensor.

Proof. Induction on the structure π.

• If π is an axiom then JπK = pf1q, giving the result.

• If π is derived from π1, π2 by the mix rule, then JπK = Jπ1K ⊗ Jπ2K by
construction. By induction hypothesis Jπ1K = (

⊗k
i=1pfiq); s1 and Jπ2K =

(
⊗n

i=k+1pfiq); s2 for some k, which gives the result, since s1 ⊗ s2 is a
permutation on the combined tensor.

• If π is derived from π′ by the tensor rule then JπK = Jπ′K, and result follows
by induction.

• If π arises by an exchange, then JπK = Jπ′K;σ where σ is a permutation.
Result follows trivially.

4.3. PROOF-NETS 61

Note that s is unique up to the initial choice of the ordering of the axioms
f1, . . . , fn. In the following some canonical ordering will be taken for granted;
call s the induced permutation of JπK.

A long standing observation[Gir87b, AJ94] in the theory of multiplicative
linear logic is that any cut-free MLL proof-net π, with only atomic formulae as
axioms, can be specified entirely by π ∼= (Γ, σ) where Γ is the sequent proven
by π and σ is a permutation which is fixpoint-free and a product of disjoint
transpositions. Such a permutation may be regarded as a category comprised of
a finite coproduct of copies of the category 2; as described Section 2.8 we refer
to such categories as involutions.

Since the proof-net is cut free, its conclusions provide sufficient information
to construct the bottom part of the proof net, while the transpositions of σ
correspond to the axiom links. In the absence of loops, cut-free mCQL proof-
nets have the same property, with the distinction that we also require a functor
θ : σ → A to label the axioms. We can formalise this in the following lemma.

Lemma 4.20. In order to uniquely specify a normal proof-net, three data are
required:

1. The list of conclusions Γ;

2. An involution σ on the literals occurring in Γ, together with a functor
θ : σ → A.

3. A multiset L of loops in A.

Proof. We divide the proof-net into three parts: the axioms, the logic, and the
loops. Each item on the list uniquely specifies one part of the proof-net.

Each conclusion A of Γ determines the structure of the net up to the axiom
links which introduced its atoms. If A = B⊗C then its parent link is a ⊗-link,
which in turn has a left and right premise. If A is a literal then its parent is an
axiom, so we are done. Since Γ is itself ordered this procedure puts an ordering
on the literals occurring among the conclusions.

Given this ordering, the involution σ connects pairs of literals to show the
position of the axiom links. The functor θ maps each such axiom link to an
axiom of A giving their labels.

All the parts of the net which deduce the conclusions are now defined. Each
loop of L defines a normal loop in the obvious fashion to complete the construc-
tion.

Consider an mCQL proof π which is constructed solely by the mix of axioms

(fi-axiom)
` A∗i , Bi.

In this case JπK = pf1q⊗· · ·⊗pfnq and the induced permutation is the identity.
The resulting proof-net Nπ is also just the mix of axiom links: the permutation
corresponding to those axioms is

(1 2) · · · (2n− 1 2n) .

Denote this permutation %n.

62 CHAPTER 4. MULTIPLICATIVE CATEGORICAL QUANTUM LOGIC

Lemma 4.21 (Characterisation). Let π be a cut free mCQL proof of ` Γ ; []
containing n axioms, such that Nπ ∼= (Γ;σ, θ, ∅) as described above. If s is the
permutation induced by JπK then σ = s−1%ns.

Proof. We use induction on the structure of π. We simplify our notation by
omitting the loops from the mCQL sequents, since they are empty in all cases.

• π is an axiom : then Nπ ∼= (` A∗, B ; %1). In this case JπK = ηA and the
induced permutation s is just the identity, so trivially σ = s−1%1s.

• π is formed by π′ by application of the tensor rule: We have

Nπ′ ∼= (` Γ, A,B,∆ ;σ′)
Nπ ∼= (` Γ, A⊗B,∆ ;σ′),

and JπK = Jπ′K by construction. By induction hypothesis, the result holds
for π′ and hence also for π.

• π is formed by applying the mix rule to π1 and π2: in this case

Nπ1
∼= (` Γ ;σ1)

Nπ2
∼= (` ∆ ;σ2)

Nπ ∼= (` Γ,∆ ;σ1σ2),

modulo a suitable renaming of the atoms of π2. By construction JπK =
Jπ1K ⊗ Jπ2K. Since the induced permutations s1 and s2 are disjoint, the
permutation induced by Jπ1K ⊗ Jπ2K is just their product s = s1s2. Now
by induction hypothesis σ1 = s−1

1 %ks1 and σ2 = s−1
2 %k′s2, hence

σ1σ2 = (s−1
1 %ks1)(s−1

2 %k′s2) = s−1
2 s−1

1 %k%k′s1s2

which gives the result.

• π arises from π′ by the exchange rule. It suffices to consider the case of a
transposition of two atoms, A,B, since more general permutations can be
constructed from products of transpositions. Let

Nπ′ ∼= (` Γ, A,B,∆ ;σ′)

so that π is a proof of ` Γ, B,A,∆. If i is the index of A in π, then

σ′ = (a i)(b i+ 1)σ′′

and
σ = (a i+ 1)(b i)σ′′

for some a, b, σ′′. By its construction JπK = Jπ′K; t where t = (i i+ 1), and
hence the permutation induced by JπK is s = s′t, where s′ is the induced
permutation of π′. But note that

σ = (i i+ 1)σ′(i i+ 1) = ts′−1%ns
′t = s−1%s

which is the desired result.

4.3. PROOF-NETS 63

Proposition 4.22 (Sequentialisation). For all normal proof-nets ν there exists
a sequent proof Pν such that ν = NPν.

Proof. We will define Pν by recursion over the structure of ν, and establish the
NPν = ν in each case by induction.

If ν consists of disconnected components ν1,ν2, . . . , νn with conclusions Γ1,Γ2, . . . ,Γn
respectively then Pν is constructed by combining Pν1, Pν2, . . . , Pνn via the mix
rule, as shown:

··· Pν1
` Γ1

··· Pν2
` Γ2

(mix)
` Γ1,Γ2···

` Γ1,Γ2, . . . ,Γn−1

··· Pνn
` Γ2

(mix)
` Γ1,Γ2, . . . ,Γn

By induction for each subproof Pνi we have NPνi = νi; it is immediate from
the definition of NPν that the equality holds for the construction above.

If ν consists of a loop labelled by [h] then let Pν be the proof (h-unit)
` ; [h].

Again we have NPν = ν immediately from the definition.
Otherwise, assume that ν is presented as ν ∼= (Γ, σ, θ) so that the lower part

of the proof-net is planar. Suppose further that the axioms occurring in ν are
fi : Ai → Bi for i = 1, . . . , n, ordered by the order that their left conclusions
occur as subformulae of Γ, so that

σ =
n∏
i=1

(ai bi) where
ai < bi
i < j ⇔ ai < aj .

Then form the proof

(f1-axiom)
` A∗1, B1

(f2-axiom)
` A∗2, B2

(mix)
` A∗1, B1, A

∗
2, B2···

` A∗1, B1, A
∗
2, B2, . . . , A

∗
n−1, Bn−1

(fn-axiom)
` A∗n, Bn

(mix)
` A∗1, B1, A

∗
2, B2, . . . , A

∗
n, Bn

by mixing together the fi-axioms for all i. Call this proof π1. Let Γ′ be the
sequent obtained from Γ by erasing every occurrence of the symbol ⊗ and replac-
ing it with a comma. We note that the difference between Γ′ and the conclusion
of π1 is simply a permutation of literals. Let Pν be the proof

··· π1

` A∗1, B1, A
∗
2, B2, A

∗
n, Bn

(exch)
` Γ′··· π2

` Γ

64 CHAPTER 4. MULTIPLICATIVE CATEGORICAL QUANTUM LOGIC

where π2 is a subproof consisting entirely of repeated applications of the tensor
rule. The exchange rule is via the permutation

s =
(
· · · 2i− 1 2i · · ·
· · · ai bi · · ·

)
.

Note that s is exactly the induced permutation of JPνK, henceNPν ∼= (Γ, s−1%ns, θ
′).

Now a simple calculation shows that, for i = 1 . . . n,

s−1(2i− 1 2i)s = (ai bi),

hence σ = s−1%ns. Since θ′ sends the ith component of σ to fi, θ′ = θ, hence
NPν = ν.

Corollary 4.23. JPνK = JνK.

Proof. Since ν = NPν, we have JνK = JNPνK, and by Proposition 4.18 JNPνK =
JPνK.

To complete the treatment of mCQL, we now show that mCQL proof-nets
are a faithful and fully complete model of the category FA.

Theorem 4.24 (Faithfulness). Two nets ν, ν′ with the same conclusions Γ
have the same normal form if and only if JνK = Jν′K.

Proof. Since cut-elimination is sound, we need only consider the case where ν, ν′

are already normal. Up to a scalar factor, JνK must have the following structure,

I
pf1q⊗···⊗pfnq-

n⊗
i=1

(A∗2i−1 ⊗A2i)
s- Γ

where s is the induced permutation. Given Γ, and fixing the order the names
pfiq, s suffices to determine the loop-free part of the net.

Let z be a scalar of FA. Then z =
⊗

iJhiK for some possibly empty family
of loops {hi}i. Note that z ⊗ f = f ⊗ z for all arrows f in FA, so any scalar
determines a multiset of loops. Further, since FA is freely constructed, we have
only structural equalities between scalars, hence this representation is unique.

Therefore, by Lemma 4.20, JνK provides all the data required to characterise
ν exactly, and so if JνK = Jν′K then ν = ν′.

It should be noted that the faithfulness result required the conclusions of
the nets to be specified. In fact the syntax is not truly injective onto the arrows
of FA. For example, the nets

— —

1A

A∗ A

and ⊗

—

1A

A∗ A

A∗⊗A

both denote the map ηA.
Recall that Theorem (2.8) allows the arrows to characterises the arrows of

FA by an involution σ, a functor θ : σ → A and a multiset of loops, L.

4.4. EXAMPLE: ENTANGLEMENT SWAPPING 65

Lemma 4.25. In a FA, let f : A → B ≡ (σ, θ, L) such that the arrows in the
image of θ are {fi}i; then pfq = λ • (s ◦

⊗
ipfiq) for some permutation s and

scalar factor λ.

Proof. An arrow and its name have the same representation in terms of la-
belled involutions and loops, hence f and pfq have the same scalar factors. By
proposition 8.1 of [KL80] we have that any arrow2 f : X → Y in FA is of the
form

X
x
- X1 ⊗ · · · ⊗Xn

g1⊗···⊗gn

- Y1 ⊗ · · · ⊗ Yn
y
- Y,

where x, y are structural isomorphisms and each gi is either g, g∗, pgq or xgy for
arrows g of A, or otherwise is a scalar. In particular, when f is itself a name
then X = I and all the gi must be names or scalars. Since pλ • fq = λ • pfq
this suffices.

Theorem 4.26 (Full Completeness). Let f : X → Y be an arrow of FA, the
free compact closed category on A; then there exists a proof-net ν such that
pfq = JνK.

Proof. By Kelly-Laplaza pfq ≈ (σ, θ, L). By the preceding lemma pfq = λ •
(s ◦

⊗
ipfiq); Let ν be the normal proof-net given by (` X∗ ⊗ Y, s−1ςns, θ, L).

By Lemma 4.21 JνK = pfq.

4.4 Example: Entanglement Swapping

To illustrate how mCQL proof-nets can be used in the context of quantum
computing, we now consider a simple protocol called entanglement swapping
[ZZHE93], here shown in a post-selected variant, which is a variant of the tele-
portation protocol described in Chapter 1.

In the teleportation protocol we had to assume that Alice and Bob shared an
entangled pair before they could carry out the protocol. Entanglement swapping
allows the parties to establish such a shared state via an intermediary who acts
as a “quantum telephone exchange”. We will describe this protocol using proof-
nets over the category Pauli; this has only one object C2 = Q, its arrows are
the Pauli group.

Initially, both Alice and Bob share a Bell pair with the Exchange; to keep
things simple we’ll take them both as the state |β0〉 = |00〉+ |11〉. We represent
the initial situation as a pair of axiom links labelled by 1Q.

— — — —

1Q 1Q

Q∗ Q Q∗ Q

(Since the proof-net notation does not represent the participants in the protocol
we make the convention that the left most formula belongs to Alice, the right
most to Bob, and the others to the Exchange.) In order to connect Alice and
Bob, the Exchange then performs a Bell basis measurement on the qubits in its

2In our setting we consider only those objects which Kelly and Laplaza call reduced.

66 CHAPTER 4. MULTIPLICATIVE CATEGORICAL QUANTUM LOGIC

possession. Supposing the outcome was |01〉+ |10〉 = pXq, we represent this as
an X-cut between the qubits:

— X

1Q

—

1Q

Q∗ Q

We obtain the final state of the protocol by performing cut-elimination:

—

X

Q∗ Q

Hence Alice and Bob share an entangled pair, which they can now use for
teleportation, provided they correct the X error.

While this example is very simple, indeed the simplest possible, it demon-
strates the basic ingredients of the proof-net approach. First, the different
interactions which make up the protocol are put together in the form of a net,
with axioms for state preparations and cuts for measurements. The proof-net
is then normalised to give the final state of the system.

It is worth emphasising that this proof-net represents only one possible run of
the protocol; a complete description would require all the possible measurement
outcomes to be accounted for, and for classical communication between the
participants in order to deal with the errors. These issues are not discussed in
this thesis; one possible approach is presented in [AD06].

Chapter 5

MLL and Entanglement

In this chapter we examine some formal characterisations of entangled states
in abstract quantum mechanics carried out in strongly compact closed cate-
gories. We will consider only the bipartite case here: multipartite entanglement
is considerably more complicated, and a discussion of it is postponed until the
following chapter.

Entanglement is a fundamental phenomenon in quantum computation. Loosely
speaking, a pair of quantum systems is entangled if the state of the joint sys-
tem cannot be expressed as a pair of states of its subsystems. Exploitation of
such non-local correlations lies at the heart of many quantum communication
protocols — see [BBC+93, Eke91b, FGM01, DP05] for some examples — and
it is implicated in the speedup observed in quantum algorithms [JL03].

Gisin [Gis91] proved that any bipartite pure state which is not a product
will violate some version of the Bell inequalities. This sharp division between
the entangled and unentangled, or separable, states is strengthened in [BBPS96]
which shows that an ensemble of weakly entangled states can be distilled into a
smaller number of maximally entangled states. In this sense, any bipartite en-
tangled state is equivalent to any other; the separable states form an intrinsically
different class.

Given the above, it would be desirable in a quantum programming language
to distinguish between separable and entangled states at the level of types.
Unfortunately the set of entangled states in a Hilbert space is not closed under
addition, and therefore does not form a subspace. Hence the objects of FDHilb,
and by analogy any compact closed category, cannot provide the desired type
information.

Describing the use of entangled resources in [BBPS96] Bennett et al remark:

Note that qubits are a directed channel resource, sent in a particular
direction from the sender to the receiver; by contrast, ebits [entan-
gled pairs] are an undirected resource shared between sender and
receiver.

The notion of a bidirectional channel also arises in linear logic [Gir87a], where
the multiplicative disjunction A P B can be understood as the simultaneous
implications ¬A ⇒ B and A ⇐ ¬B. We will show that multiplicative linear
types do provide the extra information needed to accurately describe separable
and entangled states. Since any compact closed category is also *-autonomous

67

68 CHAPTER 5. MLL AND ENTANGLEMENT

[Bar79], we already have a model of multiplicative linear logic1 (MLL) [Bar91,
See89]. However, compact closed models are degenerate: the connectives ⊗ and
P are identified, so more work is required.

In the next section, we abstract from the standard descriptions of entan-
gled states in the Hilbert space formalism to give characterisations of separable,
entangled, and maximally entangled in an arbitrary compact closed category.
In Section 5.2 we introduce double gluing [Loa94, Tan97, HS03], a construction
which produces a non-degenerate *-autonomous category from any compact
closed category. Double-gluing is partly successful in separating the entan-
gled and separable states. Finally, we consider the syntactic relations between
mCQL and MLL and prove that if an mCQL proof is typable in MLL then
its type determines whether or not it is entangled.

The notions of separability and entanglement are both relative to a given
partition of the state space into some number of subspaces. For example, a
pair of Bell states may be considered as separable or maximally entangled,
purely based on which sets of qubits are counted together as one subsystem.
For this reason we will temporarily treat the tensor structure as non-strict: the
associativity of the tensor will describe the division of a given object into two
sub-objects.

5.1 Entangled States

Let |ψ〉 ∈ A ⊗ B be a quantum state. To any such pure state there exists a
Schmidt decomposition: that is, sequences of orthonormal vectors ai ∈ A and
bi ∈ B such that

|ψ〉 =
∑
i

λi |ai〉 |bi〉

where the Schmidt coefficients λi are non-negative reals such that
∑
i λ

2
i = 1.

(See, e.g. [NC00] for details). The number of non-zero Schmidt coefficients in
the decomposition provides a crude measure of the entanglement of a bipartite
state. Given the Schmidt decomposition above, the reduced density matrices of
the two subsystems of |ψ〉 are respectively

ρA =
∑
i

λ2
i |ai〉 〈ai| and ρB =

∑
i

λ2
i |bi〉 〈bi| . (5.1)

Another consequence is that if dimB > dimA then the correlations between the
two subsystems are limited to a no greater than dimA dimensional subspace of
B [Eke91a]. From a more abstract point of view, this fact is contained in the
isomorphism between A⊗B and the space of linear maps from A to B; clearly
any such map f has dim(Im(f)) ≤ dimA. We now examine the relationship
between the map coded by a bipartite state and the entanglement between its
subsystems.

Definition 5.1. If there exist quantum states |ψA〉 ∈ A and |ψB〉 ∈ B such
that

|ψ〉 = |ψA〉 ⊗ |ψB〉

then |ψ〉 is called separable; otherwise |ψ〉 is entangled.
1We speak here only of multiplicative linear logic without units.

5.1. ENTANGLED STATES 69

Lemma 5.2. Let f : A→ B be a linear map such that pfq(1) = ψA ⊗ ψB, i.e.
a separable state. Then

f = |ψB〉 〈ψA| .

Proof. Let {|ai〉}i be a basis for A∗ such that |ψA〉 =
∑
i λi |ai〉. Then

pfq(1) = (
∑
i

λi |ai〉)⊗ |ψB〉

from whence
f : |ai〉 7→ λi

∑
j

λj |bj〉 .

The map |ai〉 7→ λi is the equivalent to the definition of 〈ψA|, so we are done.

The class of maps |ψB〉 〈ψA| exhibit the weakest possible dependency be-
tween input and output for a non-trivial linear map. The only influence of the
argument on the result is a magnitude; if we consider the source and target to
be quantum states then renormalisation removes even this. Viewing bipartite
states as maps, separable states are therefore functions which preserve no in-
formation. At the other end of the spectrum we consider maximally entangled
states.

For mixed states, entanglement is a complex and subtle property. Many
non-equivalent measures of entanglement have been proposed to address differ-
ent regimes, see for example [Eke91a, BBPS96, VPRK97]. For the simple case
considered here — bipartite entanglement of pure states — it has been proven
that almost2 all such measures of entanglement are equivalent to the von Neu-
mann entropy of the reduced density operator. Further, a density matrix ρ
maximises this function exactly when it is a scalar multiple of the identity. We
will adopt this as the concrete definition of maximal entanglement.

Definition 5.3. A pure bipartite quantum state |ψ〉 ∈ A ⊗ B is maximally
entangled if its reduced density matrices ρA, ρB are 1/n and 1/m respectively,
where dimA = n and dimB = m.

Note that, due to Eq.(5.1), maximal entanglement by this definition is only
possible when dimA = dimB .

The following result is originally due to Hines [Hin04], though the proof here
is new.

Lemma 5.4. Let dimA = dimB = n; then f : A→ B is unitary iff pfq(1√
n
) is

maximally entangled.

Proof. Let ai, bi be orthonormal bases for A,B. Then,

pfq(
1√
n

) = (1A∗ ⊗ f) ◦ ηA(
1√
n

)

=
1√
n

(1A∗ ⊗ f)(
∑
i

a∗i ⊗ ai)

=
1√
n

∑
i

a∗i ⊗ fai.

2See [VP98] for discussion and an exception.

70 CHAPTER 5. MLL AND ENTANGLEMENT

Since f is unitary, fai forms an orthonormal basis, and via this Schmidt de-
composition, we have

ρA∗ =
1
n

∑
i

|a∗i 〉 〈a∗i | =
1
n
1

and

ρB =
1
n

∑
i

|fa∗i 〉 〈fa∗i |

=
1
n

∑
i

f |a∗i 〉 〈a∗i | f†

=
1
n
f1f†

=
1
n
1,

hence the state is maximally entangled.
Conversely, if |ψ〉 is maximally entangled, suppose its Schmidt decomposition

is
|ψ〉 =

∑
i

λi |a∗i 〉 ⊗ |bi〉 ,

then we have ρA∗ = 1
n

∑
i |a∗i 〉 〈a∗i | = 1

n1 which implies that λi = 1√
n
. Then

f : |ai〉 7→ |bi〉 defines a unitary map such that pfq(1√
n
) = |ψ〉.

Remark. Evaluating pfq at 1√
n

gives the correct normalisation, but is slightly
redundant, since there is only one quantum state in the ray defined by pfq.

The preceding lemmas rephrase the characteristics of entangled states as
properties of maps; properties which make sense in any strongly compact closed
category. Hence we have an abstract definition of the three classes of bipartite
states.

Definition 5.5. Let C be strongly compact closed, and let ψ = pfq : I → A∗⊗B
be a point. Call ψ separable, or unentangled, if there exist ψA∗ : I → A∗ and
ψB : I → B such that f = ψ†A∗ ◦ψB ; otherwise ψ is entangled. Call ψ maximally
entangled if f is unitary.

Recall (Lemma 2.36) that, in any strongly compact closed category, if a
unitary map f : A → B exists between any objects A,B then dimA = dimB ,
which correlates nicely with our earlier remarks.

Example 5.6. In Rel, the category of sets and relations, a separable state on
A⊗B is the Cartesian product ψA×ψB of two subsets ψA ⊆ A,ψB ⊆ B. Since
in Rel all isomorphisms are unitary, a maximally entangled state is the graph
of a bijection between A and B.

5.2 Double Gluing

Since compact closed structure alone cannot provide types which distinguish
the entangled and separable states of a given state space, we turn our attention
now to a construction which will provide the desired structure.

5.2. DOUBLE GLUING 71

Every compact closed category is a model of multiplicative linear logic but a
degenerate one — the ⊗ and P connectives are identified. Double gluing was in-
troduced by Loader [Loa94] to construct a fully complete model of multiplicative
linear logic; see also [Tan97]. This construction provides a general method for
producing a *-autonomous category from a compact closed category such that
the formulae A⊗B and APB denote distinct objects. The following definition
and theorem are from [HS03], specialised to the compact closed setting.

Definition 5.7. Suppose C is compact closed, then the Double Gluing on C ,
G(C), is the category whose objects are triples A = (A,U,X) where

• A is an object of C

• U ⊆ C(I,A) is the set of points of A.

• X ⊆ C(A, I) is the set of co-points of A.

and whose arrows f : (A,U,X) → (B, V, Y) are arrows of C f : A → B such
that:

• ∀u ∈ U f ◦ u ∈ V ,

• ∀y ∈ Y y ◦ f ∈ X.

In the following, the isomorphism C(A, I) ∼= C(I,A∗) will be used freely; in
particular to write copoints A→ I as arrows I → A∗.

Theorem 5.8. Given A = (A,U,X) and B = (B, V, Y), G(C) as above is
*-autonomous with the following structure:

• I = (I, {1I}, C(I, I))

• A⊥ = (A∗, X, U)

• A⊗B = (A⊗B,W,Z) where

W = {I ∼= I ⊗ I
u⊗v- A⊗B | u ∈ U, v ∈ V },

Z =

{
A⊗B

xfy- I

∣∣∣∣∣ ∀u ∈ U I
u- A

f- B∗ ∈ Y,
∀v ∈ V I

v- B
f∗- A∗ ∈ X

}
.

With A and B as above, we define APB = (A⊥⊗B⊥)⊥ = (A⊗B,Z ′,W ′)
where,

Z ′ =

{
I

pgq- A⊗B

∣∣∣∣∣ ∀x ∈ X I
x- A∗

g- B ∈ V,
∀y ∈ Y I

y- B∗ g∗- A ∈ U

}
,

W ′ = {A⊗B
x⊗y- I ⊗ I ∼= I | x ∈ X, y ∈ Y }.

The double-gluing construction produces a non-degenerate *-autonomous
structure: in general A⊗B 6= APB.

Since the set of points of I is a singleton, for each object A = (A,U,X) we
have

GC(I,A) ∼= U ⊆ C(I,A)

72 CHAPTER 5. MLL AND ENTANGLEMENT

so the points of A in GC can be safely interpreted as points in C. The question
is: what can be gleaned from the extra type information provided by the gluing
construction?

An immediate observation is that the points of A⊗B contain only of sepa-
rable states of A⊗B; indeed if A and B are maximal then the sets of separable
states coincides with the points of A⊗B. We would hope, conversely, that the
points of APB consist of entangled states from A⊗B, but this does not hold
in general. Let

A = (A, C(I,A), C(A, I))
B = (B, C(I,B), C(B, I))

and suppose that we have a : I → A and b : I → B; then b ◦ a∗ defines a map
A∗ → B such that, for any copoint ψ of A, the composite b ◦ a∗ ◦ ψ is a scalar
multiple of b, and hence is in C(I,B); similarly (b◦a∗)∗ maps C(B, I) to C(I,A)
and hence pb ◦ a∗q is a point of APB despite being separable.

Since the points and copoints of A and B are the the entire hom-sets, the
above argument will go through for any map I → A ⊗ B; hence the points of
APB are all bipartite states.

Therefore, in the most general case, the double gluing construction gives a
proper inclusion of the points of A ⊗ B into the points of A P B. We must
interpret A ⊗ B as surely separable and A P B as possibly entangled. While
not entirely satisfactory, this arrangement will reappear in the extended set-
ting discussed in Chapter 6. In general, it is necessary to over-approximate
entanglement. However, note that the counter example above depends on the
choice of particular sets of points and copoints. We can do better by restrict-
ing to a subcategory determined by those points representable by proof-nets of
multiplicative linear logic.

5.3 Multiplicative Linear Logic

5.3.1 Sequent Calculus

We make two modification to the standard presentation of multiplicative linear
logic. Firstly, we generalise the axiom rule to range over the arrows of a category
A which is not necessarily discrete; hence the axioms may be non-trivial arrows.
Since they form a category, we can always eliminate cut in the standard way,
by composition in A, as shown in the preceding chapter.

Secondly, and as a consequence, we interpret the atoms as constants rather
than as variables, so that the interpretation of a proof will be an arrow in a
particular category rather than a dinatural transformation (cf. [GSS91, Blu93,
Tan97]). Indeed, the category will be the free compact closed category on A.
This is more a matter of presentation than of substance since the underlying
structure can in any case be lifted to the more general setting.

Finally, we restrict our attention to the cut-free fragment of MLL.

Definition 5.9 (Formulae of MLL). The formulae of multiplicative linear logic
are generated by a set of literals A,A⊥, B,B⊥, C, C⊥, . . . and binary connectives
X ⊗ Y and X P Y .

5.3. MULTIPLICATIVE LINEAR LOGIC 73

The linear negation (·)⊥ is defined on compound formulae by de Morgan
duality:

(X ⊗ Y)⊥ = X⊥
P Y ⊥, (X P Y)⊥ = X⊥ ⊗ Y ⊥, X⊥⊥ = X.

Definition 5.10 (Sequent calculus for MLL). A sequent of MLL is of the
form ` Γ where Γ is a list of MLL-formulae. The inference rules of MLL are
shown in Fig. 5.1.

(f -axiom)
` A⊥, B

` Γ, X, Y,∆
(exch)

` Γ, Y,X,∆

` Γ, X, Y,∆
(P)

` Γ, X P Y,∆

` Γ, X ` Y∆
(⊗)

` Γ, X ⊗ Y,∆

Figure 5.1: Inference rules for MLL : the parameter of the f -axiom
rule ranges over all the arrows of A. Reclaim the usual linear logic axiom by

restricting to f = 1A.

By comparison of Fig. 5.1 with Fig. 4.3, it is clear that all the inference rules
of MLL are derivable in mCQL, if ⊗ and P are identified. The same is true
for proof-nets.

5.3.2 Proof-nets

Definition 5.11. An MLL proof-structure consists of a connected graph whose
edges are labelled with MLL formulae, and whose vertices – called links – are
labelled with the inference rules (except for exchange, which is implicit) such
that the following conditions hold:

f-axiom If a link is labelled by the rule f -axiom, for some arrow f : A→ B of
A, then it has two outgoing edges labelled respectively by A⊥ and B. It
has no incoming edges.

tensor/par If a link is labelled by ⊗ or P it has two incoming edges, labelled
by some formulae X,Y and one outgoing edge labelled either by X ⊗ Y
or X P Y as appropriate.

A proof-structure is a proof-net if it arises from the translation of a sequent
proof. Since not every proof-structure represents a sequent proof, proof-nets are
identified by a correctness criterion, for example the well known Danos-Regnier
condition [DR89].

Definition 5.12. A switching in an MLL proof-structure is a subgraph deter-
mined by removing one incoming edge from every P-link.

Criterion (Danos-Regnier). A proof-structure is an MLL proof-net if every
switching is acyclic and connected.

Naively a proof-structure is a proof-net if it is constructed from a collection
of axiom links by adjoining new links such that:

74 CHAPTER 5. MLL AND ENTANGLEMENT

• if a P-link is added, both of its incoming edges must come from the same
connected component of the structure;

• if a ⊗-link is added then its incoming edges must originate in disjoint
connected components.

These conditions mirror the rules of the sequent calculus, and are illustrated in
Fig. 5.2.

π

&X Y

π2π1

⊗X Y

Figure 5.2: Schema for constructing a correct proof-net.

Every MLL proof-structure is a valid mCQL proof-net, with ⊗ and P
identified. The mCQL proof-nets so produced never contain loops, so in the
following we consider only those mCQL proof-nets without loops, without fur-
ther qualification.

5.3.3 Interpreting MLL in the Free Category

Since, by Theorem 4.26, the proof-nets of mCQL represent all the arrows of the
free category FA, there is an evident forgetful interpretation of MLL in this
category: simply derive an mCQL proof-net from an MLL one by replacing
all the occurrences of P with ⊗. Hence each MLL proof-net π determines a
map JUπK : I →

⊗
Γ of FA, where U : MLL → mCQL is the forgetful map.

This map is not faithful: both the proof-nets below have the same translation
in mCQL.

⊗ &

— —

X⊥ Y⊥ X Y

X⊥ ⊗Y⊥ XPY

⊗&

——

X⊥ Y⊥ X Y

X⊥ PY⊥ X⊗Y

In the preceding chapter we proved (Lemma 4.20) that an mCQL proof-net
π over A is determined by three data: its type Γ, a fixpoint free involution σ
over its literals and a functor θ : σ → A. Given these data, by Lemma 4.19, its
denotation in FA is a map of the following form

JπK = I
pf1q⊗···⊗pfnq- (A∗1 ⊗B1)⊗ · · · ⊗ (A∗n ⊗Bn)

ρ - Γ

= I
ηA1⊗···⊗ηAn- (A∗1 ⊗A1)⊗ · · · ⊗ (A∗n ⊗An)

ρ- Γ′
ρ(f)- Γ

where ρ is a permutation derived from σ as described in Lemma 4.21 and f =
⊗i(1A∗i ⊗ fi). Therefore every MLL proof-net has denotation in FA of the

5.3. MULTIPLICATIVE LINEAR LOGIC 75

same form3. Since the arrows f pertain only to the labelling and not to the
underlying proof-net structure we omit them below.

Definition 5.13. Say that a proof-net has type X, when its only conclusion is
the formula X.

Lemma 5.14. Let π be an MLL proof-net of type X ∗Y, where ∗ ∈ {⊗,P},
such that JUπK = f ⊗ g for some maps f : I → X and g : I → Y ; then π has
type X⊗Y.

Proof. By the above discussion,

JπK = I
ηA1⊗···⊗ηAn- (A∗1 ⊗A1)⊗ · · · ⊗ (A∗n ⊗An)

ρ1⊗ρ2- X ⊗ Y

and hence there is no axiom link in π between the literals occurring in X and
those occurring in Y. If the outer connective is P then the proof-structure is
disconnected in every switching; hence the type is necessarily ⊗.

Lemma 5.15. Suppose that π has type X⊗Y; then JπK = JπXK⊗ JπY K.

Proof. Let JπK = ρ ◦ (ηA1 ⊗ · · · ⊗ ηAn) as above, and suppose that ρ does not
factorise into disjoint permutations upon X and Y ; then there is at least one
axiom link between the literals of X and Y. Let x and y be these literals. Since
x is a left subformula of the outermost times link, and y is a right subformula,
there is a switching connecting each of these to the outer connective, and hence
a cycle, contradicting the correctness criterion.

These lemmas combine to give the following:

Theorem 5.16. An MLL proof-net π is of type X ⊗Y if and only if JπK is
separable.

Therefore, in FA, each point I → A ⊗ B is entangled exactly when it is
the denotation of an MLL proof-net of type APB. It is automatic that in
GFA(I,A⊗B) contains JπK if it is separable; due to the full completeness of
GFA for MLL [Tan97] we also have that JπK ∈ GFA(I,APB) iff and only if
it is entangled.

Theorem 5.17. Let JπK : I → Γ∗ ⊗∆ such that

JπK = ρ ◦ (pf1q⊗ · · · ⊗ pfnq)

as above. Then JπK is maximally entangled if and only if all the fi are unitary
and ρ has the property that

ρ(A∗i) ∈ Γ∗ iff ρ(Bi) ∈ ∆ (∗)

for all i.

Proof. Recall that for JπK = pgq to be maximally entangled with respect to
Γ,∆, g : Γ → ∆ should be unitary. Explicitly we have

g = Γ
1Γ⊗JπK- Γ⊗ Γ∗ ⊗∆

εΓ⊗1∆- ∆,
3This is indeed a well known fact about MLL; see [Gir87b].

76 CHAPTER 5. MLL AND ENTANGLEMENT

which is shown diagrammatically for the case n = 3 in Figure 5.3a.
Suppose that (∗) does not hold; then there exists i such that: (i) ρ(A∗i) and

ρ(Bi) are both in Γ; or (ii) ρ(A∗i) and ρ(Bi) are both in ∆. Suppose it is the
first. Then pfiq has its entire codomain in Γ and hence, upto permutation,

g = ((εA∗i ⊗ εBi) ◦ (1Ai ⊗ pfiq⊗ 1B∗i)) ⊗ g′

= xfiy⊗ g′,

and hence
g† ◦ g = (xfiy† ⊗ g′†) ◦ (xfiy⊗ g′)

which is always different to 1Γ regardless of g′. Similarly, if (ii) holds then

g = g′′ ⊗ pfiq,

(again, upto permutation) from which g ◦ g† 6= 1∆. Therefore, if (∗) does not
hold, then g is not unitary.

Conversely, suppose the condition holds. Note that if ρ sends A∗i to ∆ and
Bi to Γ then it factorises as ρ′ ◦σ where sigma is the permutation σ : A∗i ⊗Bi →
Bi ⊗ A∗i , leaving the other elements unchanged. Since σ ◦ pfiq = pf∗i q we can
assume without loss of generality that ρ sends the left hand factor of each pfq’s
codomain to Γ and each right hand factor to ∆. Further ⊗ipfiq differs from
pfnq ◦ pfn−1q ◦ · · · ◦ pf1q only by a permutation; we absorb this permutation
into ρ. With g now in this form, the condition (∗) asserts that ρ factorises into
ρ1 ⊗ ρ2, as shown in 5.3b. Further, by choosing the order of the pfiq we may
arrange that ρ1 = 1Γ∗ . We have then

g = Γ
1Γ⊗pfnq◦···◦pf1q- Γ⊗ Γ∗ ⊗∆′ εΓ⊗ρ2- ∆

= Γ
1Γ⊗ηΓ- Γ⊗ Γ∗ ⊗∆′ εΓ⊗(f◦ρ2)- ∆

= Γ
f◦ρ2- ∆.

Hence g is unitary if and only if each of the fi is unitary.

ρ

ε

ε

ε

f1 f2 f3

ρ2ρ1

ε

ε

ε

f ′1

f ′2

f ′3

(a) (b)

Figure 5.3:

The above theorem may be unpacked to a condition on proof-nets.

Corollary 5.18. An MLL proof-net of type XPY codes a maximally entan-
gled state exactly when all its axiom links connect a literal occurring in X with
one occurring in Y, and are labelled by unitaries.

5.3. MULTIPLICATIVE LINEAR LOGIC 77

We have shown that if a point |ψ〉 in FA is the denotation of a proof π in
MLL then the type of π determines whether or not |ψ〉 is entangled. We now
show that, upto a scalar factor, every point of FA is the denotation of an MLL
proof.

Theorem 5.19. Let π be a normal proof-net of mCQL which contains no
loops and is connected; then there exists a cut-free MLL proof-net π′ such that
u(π′) = π.

Proof. We construct the required proof π′ by inductively assigning either ⊗ or
P to each ⊗-link of π. Suppose π has n non-axiom links, all of which are ⊗-
links since π is cut-free. Remove any maximal ⊗-link l from the proof-net: if
the residual proof-net is connected then l is assigned P; otherwise it is assigned
⊗. Each connected component πi of the residue determines an MLL proof-net
by induction.

The MLL typing of an arbitrary mCQL proof π is not unique; however,
if π is closed then its outer connective is fixed. In other words, if we view the
connectives as entanglement descriptors, the entanglement is well defined upto
a given partition of the state space; the entanglement within the subspaces is,
in general, not well defined. If π ` X⊗Y then the subproofs corresponding to
the subformulae X and Y are complete MLL proof-nets in their own right and
hence they have well defined outer connectives. In this case JπK is separable,
and hence its reduced densities ρX and ρY are both pure states. On the other
hand, suppose π ` XPY, and let π′ be the same proof-net, with the outer
most P link removed. The corresponding mCQL proof uπ′ does not admit a
unique MLL typing. Note that in this situation the reduced densities of JπK
will be mixed states.

The restriction to connected mCQL proof-nets is not important since any
disconnected mCQL proof-net can be connected by additional ⊗-links which
do not change its denotation. The requirement that π be free of loops is more
interesting. Since each loop denotes a scalar, the theorem asserts that each
mCQL proof can be viewed as an MLL proof-net times a scalar, and conversely
each MLL proof-net fixes a ray among the mCQL proof-nets.

Each proof-net’s denotation is based on tensor product of unit maps:

I
η⊗···⊗η- (A∗ ⊗A)⊗ · · · ⊗ (A∗ ⊗A) - · · ·

As a result each proof-net is interpreted as a number of maximally entangled
“Bell pairs” which are distributed between the two subsystems. To handle more
general multipartite entanglement the generating category must bear a non-
trivial monoidal structure. This is carried out in the next chapter. However
the bipartite case is of considerable practical interest and so merits separate
treatment.

Remark. While this presentation of multiplicative linear logic used the tradi-
tional binary formulation of the connectives, there is no essential obstacle to
using their n-ary variants, cf. [DR89]. Binary connectives have the advan-
tage that, when viewing points as names of maps, there is a clear domain and
codomain.

78 CHAPTER 5. MLL AND ENTANGLEMENT

Chapter 6

Generalised Multiplicative
Categorical Quantum Logic

The formulation of mCQL in Chapter 4 allows quantum states to be repre-
sented as proof-nets whose axioms are taken from a category of unitary maps.
However, as the preceding chapter showed, the class of states thus representable
is limited to separable states and maximally entangled bipartite states. This
class is insufficient for general quantum computation.

The root of this lack of expressivity is the choice to generate the syntax from
a bare category; a non-trivial tensor structure is required. Consider a 4-qubit
state, φ. If φ has a proof-net representative π then necessarily its entanglement
graph is one of

— — — —
Q∗ Q Q∗ Q

— — — —
Q∗ Q∗ Q Q

— — — —
Q∗ Q∗ Q Q

and hence, it must decompose into two entangled pairs. To represent a genuine
4-way entanglement between the qubits, axioms which do not decompose in this
fashion are required.

In any compact closed category the duality between points and maps means
that the structure of the entangled states is fixed by the structure of the maps
in the category. In the categories we used in the preceding chapters the tensor
product was freely constructed, and hence each arrow expresses a relationship
between exactly two atomic objects: every arrow in FA is decomposable into
several primitive factors. This limits the possible entanglement between atomic
objects to the bipartite case.

An obvious approach to this problem is to build a free compact closed cat-
egory on a category A equipped with its own tensor structure, such that the
free tensor product of FA coheres with that of A. In this setting the entangled
states would correspond to morphisms which do not decompose as h = f ⊗ g.

However this approach yields two inequivalent means of introducing a tensor
product into a proof-net: in the usual way as a connective, or via an axiom.
These correpond to the freely generated tensor and the tensor of the generating

79

80 CHAPTER 6. GENERALISED MCQL

category A respectively. This duplication is not merely mathematically inel-
egant, it is an impediment to any study of entanglement since only former of
these is amenable to analysis at the level of proof-nets. Lacking any natural way
to expose internal tensor of the axiom scheme in the proof-net setting we instead
seek an axiom scheme which does not internalise the tensor structure; we still
want each arrow of A to represent an inseparable state. This requirement leads
naturally to the approach followed in this chapter, that of constructing the free
compact closed category generated by a compact symmetric polycategory.

The notion of polycategory is a strict generalisation of category; each pol-
yarrow has a list of objects for its domain and codomain, rather than a single ob-
ject. Polycategories have been previously studied in the context of classical logic
[Lam69, Sza75], rewriting grammars [Vel88] and bicategories [Lam05]. Blute,
Ivanov and Panangaden have used polycategories to study quantum causal sys-
tems [BIP03], though their approach is quite different to that pursed here. The
most important result relating polycategories to monoidal categories is by Cock-
ett and Seely [CS97] who showed that the essential structure of a polycategory
is that of a linearly distributive category, which itself is essentially a model of
multiplicative linear logic without negation.

In Section 6.1 we present the axioms for compact polycategories. As in the
case of mCQL proof-nets, operating in the compact setting eliminates many
difficulties concerned with sequentialisability present in the standard theory of
polycategories; see for example [Kos03], Section 1. The compact definition of
polycategory produces a structure extremely close to a symmetric monoidal
category; the principal difference is that a polycategory permits parallel com-
position only under the scope of a sequential composition, hence there are no
“non-interacting” composites as there are in a symmetric monoidal category. In
a sense, a compact polycategory is a monoidal category without a tensor.

The main purpose of this chapter is to construct the free compact closed
category generated by a polycategory, interpreting multi-ary polyarrows as ar-
rows between tensor products. To do so we need to generalise the work of Kelly
and Laplaza in [KL80]. Recall that the morphisms of the free compact closed
category upon a category A consist of two kinds of structures: arcs labelled
by arrows of A and loops labelled by equivalence classes of endomorphisms in
A. The loops can be understood as the result of tracing out the entire domain
and codomain of an arrow. Hence each element of the structure is either an
arrow of A or an equivalence class of the same. When the free construction
is performed over a polycategory the situation is more complicated since it is
possible to take a partial trace, leaving behind a non-trivial morphism which is
not a mere combination of arrows of the generator. As a result the structure of
morphisms may be arbitrary connected graphs, with the trace providing cycles.

In Sections 6.2 and 6.3 we introduce a class of circuit diagrams to represent
the free compact closed structure constructed upon a polycategory, and prove
that the category of such diagrams does indeed have the desired universal prop-
erty. In fact, for a given compact symmetric polycategory P, we have a sequence
of embeddings

P ⊂ - SM(P) ⊂ - TR(P) ⊂ - CC(P)

into the free strict symmetric monoidal, symmetric traced monoidal, and com-
pact closed categories generated by P. Each of these can be identified with a

81

certain subclass of diagrams, generated from the polycategory by adding extra
objects and arrows, so that the category is closed under the mix rule1, trace and
polarities, respectively2. The structure of the commutative monoid of scalars is
examined in Section 6.4.

In Section 6.3 we construct the free compact closed category generated by
a polycategory. However, the construction is not completely general: the poly-
category must itself be freely generated from a set of basic polyarrows. This
restriction is removed in Section 6.5, where we introduce the notion of homotopy,
a topological equivalence relation. Homotopy for circuits allows the composi-
tion and symmetry of the polycategory to be internalised, so circuits which are
homotopy equivalent contain the same elements of the underlying polycategory,
regardless of how these elements are presented. The homotopy relation does not
affect the additional structure introduced by the free construction — namely
mix, polarities and trace — and hence every connected component of the dia-
gram is, up to polarity, a trace equivalence class of polyarrows. This completes
the description of the free compact closed category generated by a polycategory.

Having established a suitable generalisation of Kelly and Laplaza’s coherence
theorem we turn our attention to a logical formulation of this structure. In
Section 6.6 we generalise the proof-nets for mCQL in two ways. Firstly, we
switch to two-sided proof-nets, in order to represent processes as well as states.
Secondly, the axiom links are multi-ary links drawn from a polycategory P. The
resulting system is similar to those of [BCST96, Tan97], but, as is well known
[Tak87] ,the presence of non-logical axioms is an obstacle to cut elimination.
Blute has considered MLL with non-logical axioms [Blu93]; the system he used
however requires that each axiom be equipped with a Kelly-Mac Lane graph to
enable cut elimination. This course of action would defeat our present purpose:
if every 4-ary axiom can be decomposed into a pair of binary links then once
again only bipartite entanglements are possible.

So we press on without a true cut-elimination theorem. However, all is not
lost: generalised proof-nets enjoy strong normalisation and the normal form of
each net consists of a polyarrow wrapped in logical connectives. This charac-
terisation of the normal forms leads naturally to the result that the proof-net
syntax gives a fully-complete representation of the free category.

As we noted in Chapter 3, it is often necessary to impose equations on a
free model in order to obtain a more accurate representation of the properties of
realistic quantum systems. Section 6.7 considers the situation where equations
between the generators are given as an explicit rewrite system. We show that
the rewriting on P can be lifted to the circuit formalism, and hence also to the
proof-net notation; further, if the original rewrite system was confluent, then so
is the lifted version. The same does not hold for termination.

The final section is a simple example. The circuit formalism is used to
provide an abstract proof of the no-cloning theorem.

1There are several equivalent ways to get a symmetric monoidal category from a polycate-
gory: introduce the mix rule; allow nullary composition, or introduce identity polyarrows for
all sequences of objects.

2This sequence of constructions is carried out in setting where the generator is a category,
rather than a polycategory in [Abr05]

82 CHAPTER 6. GENERALISED MCQL

6.1 Polycategories

Polycategories were introduced by Lambek [Lam69] (see also Szabo [Sza75] for
a more formal account) with the intention of providing a categorical framework
for classical logic, with multiple formulae on both left and right of the sequent.
Their composition law is based on the cut rule of classical logic. We generalise
this definition by permitting arrows to be composed along many premises at the
same time, known as multi-cut.

Definition 6.1. A compact symmetric polycategory (or symmetric polycategory
with multicut), P, consists of a class of objects ObjP and, to each pair (Γ,∆)
of finite sequences over ObjP , a set of polyarrows P(Γ,∆). Given a non-empty
sequence of objects Θ and poly-arrows

Γ
f- ∆1,Θ,∆2 and Γ1,Θ,Γ2

g- ∆

we may form the composition

Γ1,Γ,Γ2
g i

k◦jf- ∆1,∆,∆2

where |∆1| = i, |Γ1| = j and |Θ| = k > 0. In general there may be many
ways to compose a pair of polyarrows. It is helpful to visualise composition in
polycategories in terms of “wiring” diagrams; in this case, composition would
be represented as shown in Figure 6.1. If A is in ObjP then there is an identity

Γ1

Γ

Γ2

∆1

∆

∆2

Θ
f g

Figure 6.1: Composition of polyarrows

arrow 1A from the singleton sequence A to itself, such that

f ◦ 1A = f and 1A ◦ g = g

where the ith object of dom f and cod g is A.
Composition is associative: given three polyarrows

Γ
f- ∆1,Θ,∆2,

Γ1,Θ,Γ2
g- ∆3,Φ,∆4,

Γ3,Φ,Γ4
h- ∆

then
h (i+i′)

k′◦j′ (g i
k◦j f) = (h i′

k′◦j′ g) i
k◦(j+j′) f, (6.1)

where i′ = |∆3|, j′ = |Γ3|, k′ = |Φ|, and with i, j, k as above. Diagrammatically
this asserts that the composition shown in Figure 6.2 is unambiguous. We shall
omit the indices on polycomposition wherever it is unambiguous to do so.

6.1. POLYCATEGORIES 83

Γ3

Γ1

Γ

Γ2

Γ4

∆1

∆3

∆

∆4

∆2

f g hΘ Φ

Figure 6.2: Associativity of poly-composition

Suppose that σ is a permutation on the objects of Γ, and τ is a permutation
on ∆; then for every f ∈ P(Γ,∆) there is a poly-arrow fτσ ∈ P(σΓ, τ∆). Such
permutations compose in the obvious fashion,

(fτσ)τ
′

σ′ = fτ
′τ

σ′σ .

Given the poly-arrows f : Γ → ∆1,Θ,∆2 and g : Γ1,Θ,Γ2 → ∆, and permu-
tations σ1, σ2, τ1, τ2, ρ such that σ1 acts only on Γ1,Γ2, σ2 only on Γ, τ1 only
on ∆1,∆2, τ2 only ∆ and ρ only on Θ, then the following coherence conditions
apply:

(gσ1) ◦ f = (g ◦ f)σ1 ; (6.2)
g ◦ (fσ2) = (g ◦ f)σ2 ; (6.3)
g ◦ (fτ1) = (g ◦ f)τ1 ; (6.4)
(gτ2) ◦ f = (g ◦ f)τ2 ; (6.5)
g ◦ (fρ) = (gρ−1) ◦ f. (6.6)

Aside from associativity, identities, and symmetry, we also require that compo-
sition satisfies two commutativity conditions. Given

Φ1
f- Φ2,Θ,Φ3 Φ1,Θ,Φ2

f ′- Φ3

Ψ1
g- Ψ2,Σ,Ψ3 Ψ1,Σ,Ψ2

g′- Ψ3

Γ1,Θ,Γ2,Σ,Γ3
h- ∆ Γ

h′- ∆1,Θ,∆2,Σ,∆3

let τ be the permutation sending Φ2,Ψ2,∆,Ψ3,Φ3 to Ψ2,Φ2,∆,Φ3,Ψ3 and σ
be that sending Ψ1,Φ1,Γ,Φ2,Ψ2 to Φ1,Ψ1,Γ,Ψ2,Φ2. The following must hold:

(h ◦ f) ◦ g = ((h ◦ g) ◦ f)τ , (6.7)
f ′ ◦ (g′ ◦ h′) = (g′ ◦ (f ′ ◦ h′))σ. (6.8)

Figure 6.3 presents these equations diagrammatically. Finally one further axiom,
for generalised associativity, is required. Given polyarrows

f : Γ - ∆1,Ψ1,Φ,Ψ2,∆2

g : Γ1,Φ,Γ2
- ∆3,Θ,∆4

h : Γ3,Ψ1,Θ,Ψ2,Γ4
- ∆

84 CHAPTER 6. GENERALISED MCQL

=

Γ
1

Γ
2

Γ
3

Φ
1

Ψ
1

∆Φ
2

Φ
3

Ψ
2

Ψ
3

Θ

Σ

f

g

h

Γ
3

Γ
2

Γ
1

Ψ
1

Φ
1

∆ Ψ
3

Ψ
2

Φ
3

Φ
2

Θ

g

f

h

Σ

E
qu

at
io

n
(6

.7
)

in
di

ag
ra

m
fo

rm
.

=

∆
1

∆
2

∆
3

Φ
3

Ψ
3

ΓΦ
1

Φ
2

Ψ
1

Ψ
2

Θ

Σ

f
′

g
′

h
′

∆
3

∆
2

∆
1

Ψ
3

Φ
3

Γ Ψ
2

Ψ
1

Φ
2

Φ
1

Θ

g
′

f
′

h
′

Σ

E
qu

at
io

n
(6

.8
)

in
di

ag
ra

m
fo

rm
.

Figure 6.3: Commutativity Conditions

6.1. POLYCATEGORIES 85

and permutations

σ : ∆1,Ψ1,∆3,Θ,∆4,Ψ2,∆2
- ∆1,∆3,Ψ1,Θ,Ψ2,∆4,∆2

τ : Γ3,Γ1,Ψ1,Φ,Ψ2,Γ2,Γ4
- Γ3,Ψ1,Γ1,Φ,Γ2,Ψ2,Γ4

then
h ◦ (g ◦ f)τ = (h ◦ g)σ ◦ f. (6.9)

The generalised associativity axiom makes the diagram shown in Figure 6.4
unambiguous. In this situation Ψ1 and Ψ2 may be empty; if both are empty

Γ3

Γ1

Γ

Γ2

Γ4

∆1

∆3

∆

∆4

∆2

f g hΦ Θ

Ψ1

Ψ2

Figure 6.4: Generalised Associativity Axiom

then this axiom boils down to straight associativity.

If the composition f i
k◦j g is defined only in the case where k = 1 then

the definition above gives a (non-compact) symmetric polycategory in the usual
sense.

Henceforth all polycategories, with or without multicut, are assumed to be
symmetric.

Given a map F and a list of objects Γ = A1, A2, . . . , An, we write FΓ for
the list FA1, FA2, . . . , FAn.

Definition 6.2. A functor F : A → B between polycategories is a map
FO : ObjP → ObjQ and a family FΓ,∆ : P(Γ,∆) → Q(FOΓ, FO∆) such that
identities and composition are preserved, as are Equations. (6.1)–(6.9).

Definition 6.3. A natural transformation τ : F ⇒ G between polycategory
functors is a family of polyarrows τΓ : FΓ → GΓ such that

FΓ
τΓ - GΓ

F∆

Ff

?

τ∆
- G∆

Gf

?

86 CHAPTER 6. GENERALISED MCQL

commutes. If there exists another natural transformation σ : G⇒ F such that,
for all singletons A, σA ◦ τA = 1FA and τA ◦ σA = 1GA then τ is a natural
isomorphism.

Every category is a polycategory; a polycategory functor whose domain is
a category is just a functor in the usual sense. However if a polycategory P
has any polyarrows whose domain or codomain are not singletons, then there
is no functor from P to any category C, since C has no polyarrows. However, if
C is equipped with a strict symmetric tensor, a useful notion of functor arises
immediately.

Definition 6.4. A symmetric monoidal functor F from a polycategory P to a
symmetric monoidal category C consists of a an object map FO : ObjP → ObjC
and an arrow map FA sending each hom-set P(Γ,∆) to C(

⊗
FOΓ,

⊗
FO∆) such

that, for all Γ
f- ∆1,Θ,∆2 and Γ1,Θ,Γ2

g- ∆,

F (g ◦ f) = (1F∆1 ⊗ Fg ⊗ 1F∆2) ◦ σ ◦ (1FΓ1 ⊗ Ff ⊗ 1FΓ2),
F (fτ1τ2) = τ1 ◦ Ff ◦ τ−1

2 ,

where σ is the permutation exchanging ∆i and Γi, while leaving Θ unchanged.

It is easy to verify that this definition preserves the coherence conditions
above. Natural transformations between such functors are simply natural trans-
formations in the usual sense.

It is often convenient to work with formal polycategories which are freely
generated from some sets of objects and polyarrows. For example, let Q be the
polycategory whose only object is Q, and which is generated by the following
non-identity polyarrows:

|0〉 , |1〉 : − → Q

〈0| , 〈1| : Q→ −
H,X, Y, Z : Q→ Q

E : Q,Q→ Q,Q

We can now define a symmetric monoidal functor J·K : Q → Vectfd
C by assigning

JQK = C
2

and

J|0〉K =
(

1
0

)
, J|1〉K =

(
0
1

)
, J〈0|K =

(
1 0

)
, J〈1|K =

(
0 1

)
,

JHK = 1√
2

(
1 1
1 −1

)
, JXK =

(
0 1
1 0

)
, JY K =

(
0 −i
i 0

)
, JZK =

(
1 0
0 −1

)
,

JEK =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

In this example, J·K defines the standard interpretation of Q in the category of
vector spaces.

6.2. GRAPHS AND CIRCUITS 87

6.2 Graphs and Circuits

We introduce a class of formal circuits. These provide a type-free description
of the compact closed structure constructed atop a polycategory. While they
are based on the generalised graphs of [JS91, JSV96], we neglect the geometric
and topological issues given prominence there in favour of a more combinatorial
approach.

6.2.1 Graphs

Definition 6.5. A directed graph consists of a 4-tuple (V,E, s, t) where V and
E are sets, respectively of vertices and edges, s and t are maps

E
s -

t
- V

which we call source and target. Let in(v) and out(v) be V -indexed subsets of
E defined by

in(v) = t−1(v)

out(v) = s−1(v).

The in-degree of a vertex v is the cardinality of in(v) and the out-degree is the
cardinality of out(v). The degree of a vertex is the sum of its in- and out-degrees.

Now we define some standard terminology. Let G be a directed graph. If
there exists an edge e such that s(e) = x and t(e) = y then write x→ y; we say
that y is said to be a successor of x and x is a predecessor of y. If either x→ y
or y → x then x and y are adjacent. For vertices x, y we write x ≺ y if there
exists a non-empty finite sequence of edges {ei}ni=0 such that

s(e0) = x,

t(en) = y,

∀i s(ei+1) = t(ei).

Such a sequence of edges is called a directed path from x to y. A pair of vertices x
and y are said to be connected if x and y are related by the symmetric transitive
closure of ≺. The graph G is said to be connected if every pair of vertices is
connected; G is acyclic if, for all vertices x and y, x ≺ y implies y ⊀ x. A subset
of V is a connected component of G if every pair of vertices in V are connected
and no vertex in V is connected to a vertex outside V .

Lemma 6.6. Let G = (V,E, s, t) be an acyclic directed graph and let v be the
reflexive closure of ≺; then v is a partial order on V .

Proof. The relation is reflexive by definition so we show transitivity and anti-
symmetry.

Let x, y, z be vertices such that x v y and y v z. Let (ei)i and (fj)j be the
possibly empty paths connecting x to y and y to z; then e0, . . . , em, f0, . . . , fn
is a path from x to z, hence x v z.

If x v y and y v x then either x = y or both x ≺ y and y ≺ x; but G is
assumed to be acyclic, so the second possibility is excluded.

88 CHAPTER 6. GENERALISED MCQL

Corollary 6.7. Immediately from the above:

1. if G is acyclic the relation ≺ is a strict partial order on V ;

2. if G contains a cycle then v is a preorder on V .

Definition 6.8. A directed graph with circles is a 5-tuple (V,E,C, s, t) such
that (V,E, s, t) is a directed graph and C is a set of circles. The set of edges of
a graph with circles is the disjoint union E + C.

Of course, graphs are naturally drawn as pictures. Figure 6.5 (a) shows a
pictorial representation of the kinds of edges permitted in a directed graph with
circles; 6.5 (b) shows examples which are not permitted by this definition.

•

•

•

•

(a) (b)

Figure 6.5: (a) Permitted and (b) forbidden edges

A directed graph with circles is called acyclic if its underlying directed graph
is acyclic and C = ∅. Each circle is considered to be a connected component
hence a graph with circles is connected if (V,E, s, t) is connected and C = ∅ or
if V = E = ∅ and C is a singleton.

We now define a pair of mutually inverse operations for “splitting” and
“fusing” edges of a graph.

Definition 6.9. Let Γ be a graph with circles, and let e be an edge in Γ. Let
Γ�e to the result of splitting e; precisely:

Γ�e = (V + {e}, (E − {e}) + {e1, e2}, C, s′, t′)

where e1 and e2 are fresh edges. Define

s′(e1) = s(e), t′(e1) = e,
s′(e2) = e, t′(e2) = t(e),

and let s′ and t′ otherwise agree with s and t.

Remark. In this section we denote the disjoint union of two sets as A+ B. To
avoid getting mired in relabelling, this operation is taken as strictly associative.
Further, given distinct sets A and B, I will assume that A+B = B +A, unless
it is ambiguous to do so. As a consequence, some results stated as equalities
are properly natural isomorphisms; this loss of precision is harmless since in
later sections we will always consider graphs up to isomorphism. In return,
considerable notational baggage may be dropped.

Lemma 6.10. In Γ�e, e is a vertex with in-degree 1 and out-degree 1.

6.2. GRAPHS AND CIRCUITS 89

Proof. Immediate from the definition.

Lemma 6.11. Let e, f be distinct vertices in Γ; then (Γ�e)�f = (Γ�f)�e.

Proof. Let (Γ�e)�f = (V1, E1, C, s1, t1) and (Γ�f)�e = (V2, E2, C, s2, t2). Then

V1 = V + {e}+ {f} = V + {f}+ {e} = V2

and

E1 = (((E − {e}) + {e1, e2})− {f}) + {f1, f2}
= (E − {e, f}) + {e1, e2}+ {f1, f2}
= (((E − {f}) + {f1, f2})− {e}) + {e1, e2}
= E2.

Let

s∗ = λxyz


if z = x1 then s(x)
else if z = x2 then x

else

 if z = y1 then s(y)
else if z = y2 then y
else s(z)

then s1 = s∗fe and s2 = s∗ef ; but since e and f are distinct, the inner and
outer conditionals of s∗ may commute, hence s1 = s2. The target maps t1 and
t2 are treated similarly.

Figure 6.6: (a) Splitting an edge; (b) Fusing two edges

In a graph with circles, the circles are considered to be honourary edges. We
can define splitting for circles too: suppose that c ∈ C, then

Γ�c = (V + {c}, E + {c1, c2}, C − {c}, s′, t′)

where s′, t′ are as defined above. By the same reasoning employed in lemma
6.11 above, splitting distinct circles is commutative, and also commutes with
edge-splitting. Henceforth no distinction will be made between edge- and circle-
splitting.

Corollary 6.12. Let F ⊂ E + C; then Γ�F is well defined.

90 CHAPTER 6. GENERALISED MCQL

We now define the inverse operation to edge splitting, called edge fusion.
Suppose that v is a vertex of Γ = (V,E,C, s, t) such that |in(v)| = |out(v)| = 1,
and suppose that e1 and e2 are its incident edges:

· · ·
e1 - v

e2 - · · · .

Definition 6.13. With Γ, v, e1 and e2 as above, define Γ�v, the fusing of edges
at v, to be the graph obtained by removing v and identifying e1 and e2. There
are two cases:

1. e1 6= e2: Since v has degree 2, this implies that s(e1) 6= v and t(e2) 6= v;
the two edges are merged. Define:

Γ�v = (V − {v}, (E − {e1, e2}) + {v}, C, s′, t′)

and

s′(e) =
{
s(e) if e 6= v
s(e1) if e = v

t′(e) =
{
t(e) if e 6= v
t(e2) if e = v

2. e1 = e2: The edge e1 has both source and target at v, and there are no
other edges incident at v; removing the vertex leaves a circle. Define:

Γ�v = (V − {v}, E − {e1}, C + {v}, s′, t′)

where s′ and t′ are the respective restrictions of s and t to E − {e1}.

Lemma 6.14. Let x, y be vertices of Γ such that both x and y have in- and
out-degree equal to 1; then (Γ�x)�y = (Γ�y)�x.

Proof. Omitted, but essentially similar to Lemma 6.11.

Corollary 6.15. Let W be a set of vertices all with in-degree and out-degree
equal to 1; then the operation Γ�W is well defined.

Lemma 6.16. Let Γ be a graph containing an edge e and a vertex v of in- and
out-degree 1:

• Γ = (Γ�e)�e;

• Γ = (Γ�v)�v.

Proof. Immediate from the definitions.

Definition 6.17. A graph with boundary is a pair (G, ∂G) of an underlying
directed graph G = (V,E,C, s, t) and a distinguished subset of the degree one
vertices ∂G called the boundary of G; V −∂G is called the interior of G, written
IG. If a vertex x ∈ ∂G it is an outer or boundary node; otherwise it is an inner
or interior node.

6.2. GRAPHS AND CIRCUITS 91

Figure 6.7: An example of breaking a vertex.

The operations of splitting and fusing lift automatically to graphs with
boundary. Since all the vertices involved have degree 2 they can never be
boundary nodes, therefore if Γ is a graph with boundary define ∂(Γ�v) = ∂Γ
and ∂(Γ�e) = ∂Γ. We now define a third operation, which we call breaking a
vertex:

Definition 6.18. Suppose that Γ = (G, ∂G) is a graph with boundary and
suppose that v is vertex of G. We define a new graph with boundary Γ − v =
(G′, ∂G′) by

G′ = ((V − {v}) + in(v) + out(v), E, C, s′, t′)

where

s′(e) = e if e ∈ out(v)
s′(e) = s(e) otherwise

and

t′(e) = e if e ∈ in(v)
t′(e) = t(e) otherwise .

The new boundary is defined

∂G′ = (∂G− {v}) + in(v) + out(v).

It is not necessary that in(v) and out(v) be disjoint; hence in general the ele-
ments of V ′ must be tagged to indicate which part of the disjoint union they
came from.

Lemma 6.19. Let x, y be distinct vertices in Γ. Neglecting the coproduct injec-
tions,

(Γ− x)− y = (Γ− y)− x.

92 CHAPTER 6. GENERALISED MCQL

Proof. Let Γ1 = (Γ−x)−y and Γ2 = (Γ−y)−x, and let V1, V2 be their respective
sets of vertices. Evidently {x, y} is disjoint from each of in(x), in(y), out(x) and
out(y), hence:

V1 = (((V − {x}) + in(x) + out(x))− {y}) + in(y) + out(y)
= (((V − {x, y}) + in(x) + in(y) + out(x) + out(y)
= (((V − {y}) + in(y) + out(y))− {x}) + in(x) + out(x)
= V2.

The same reasoning, replacing V with ∂Γ, shows that the boundaries also coin-
cide. It is possible that an edge of Γ be incident at both x and y, in which case
it will occur twice in V1(= V2); in this case we use subscripts x, y to indicate
which occurrence is intended. Define a map

src = λv1v2 . e 7→

 ev2 if e ∈ out(v2)

else
{
ev1 if e ∈ out(v1)
else s(e)

,

then s1 = srcx y and s2 = src y x. However, since out(x) and out(y) are disjoint,
these two maps coincide. The target maps are treated in the same fashion, hence
s1 = s2 and t1 = t2, making the two graphs equal.

Given any subset U ⊆ V in a graph with boundary Γ, the preceding lemma
implies that Γ− U is a well defined operation on graphs with boundary.

Lemma 6.20. Let Γ = (G, ∂G) and suppose x ∈ ∂G; then Γ ∼= Γ− x.

Proof. Since x is a boundary node, in(x) + out(x) is a singleton, hence

(V − {x}) + in(x) + out(x) ∼= (V − {x}) + {∗} ∼= V.

The edges and circles are unchanged, and

V
∼= - V ′

E

�

ss

-

and similarly for the target map. Since the new node is a boundary node, fV
preserves the boundary as required.

Remark. Since the isomorphism commutes with the source and target maps,
and preserves the boundary, it is a morphism in the category of graphs with
boundary, to be defined later.

Lemma 6.21. If Γ is an acyclic graph with boundary, with vertex x then Γ−x
is also acyclic.

Proof. Suppose that there is a cycle in Γ− x,

v0
e1- v1

e2- · · · en- v0.

6.2. GRAPHS AND CIRCUITS 93

For all i, vi has degree at least 2, hence vi /∈ in(x) and vi /∈ out(x) (recall in(x)
and out(x) are included in the boundary of Γ−x). Therefore each of the vertices
on the cycle must belong to V , and hence the cycle must also be present in Γ,
contradicting the assumption of acyclicity.

Definition 6.22. Let Γ = (G, ∂G) be a graph with boundary. Call an interior
node x peripheral if it is adjacent to at least one other node, and either of the
following hold: (i) for all other nodes y, y → x implies y ∈ ∂G; or (ii) for all
other nodes y, x→ y implies y ∈ ∂G.

That is, x is peripheral if either all its successors or all its predecessors are in
the boundary. Note that if an acyclic graph has any interior nodes, it necessarily
contains peripheral nodes.

Proposition 6.23. Let Γ = (G, ∂G) be an acyclic, connected graph with bound-
ary whose interior is non-empty; then there exists a peripheral node p such that
the interior of Γ− p is acyclic and connected.

The proof of the proposition requires some intermediate definitions.

Definition 6.24. An increasing chain v1 ≺ v2 ≺ · · · ≺ vn is called complete if
(i) vi → vi+1 for all i; and (ii) v1 is minimal and vn is maximal with respect to
≺. A sequence of vertices {vi}ni=0 is a complete decreasing chain if {vn−i}ni=0 is
a complete increasing chain.

Definition 6.25. A zig-zag is an alternating sequence of increasing and de-
creasing complete chains,

x
(1)
1 ≺ · · · ≺ x(1)

n1

x
(2)
1 � · · · � x(2)

n2

...

x
(k)
1 ≺ · · · ≺ x(k)

nk
,

such that, for all i, x(i)
ni = x

(i+1)
1 , but x(k)

i 6= x(l)j otherwise. If Z is a zig-zag,
define a ordering <Z by

x
(k)
i <Z x

(l)
j if k < l

x
(k)
i <Z x

(k)
j if i < j.

The length of a zig-zag is the number of distinct vertices which occur in it.

Lemma 6.26. Let Γ be a graph with boundary with non-empty interior; then Γ
contains a maximal zig-zag.

Proof. This is an immediate consequence of the finiteness of graphs and the
property of zig-zags that no vertex may appear twice.

Proof of Proposition 6.23. Let Z be a maximal zig-zag in IΓ, in the sense that
there is no other zig-zag in IΓ having Z as an initial segment. Let v be the max-
imal vertex of <Z ; since v is the end-point of a complete chain it is necessarily
peripheral.

94 CHAPTER 6. GENERALISED MCQL

Suppose Γ − v is disconnected. All the vertices of Z must be contained in
the same connected component, since they are all connected and v occurs only
at the end of the sequence. Let this component be Γ′. Since Z is maximal in IΓ
all the other connected components must consist only of boundary nodes; hence
the interior of Γ− v is connected.

In the bulk of this chapter we will be concerned with a category whose arrows
are a particular class of graphs called circuits which are described in the next
section. In order to show that certain circuits exist it is useful to consider the
category whose objects are graphs with circles and boundaries. We start by
rephrasing Definition 6.5 and 6.8 in more abstract terms.

Consider two finite categories:

E = E
s-

t
- V and C = C.

Definition 6.27. A graph is functor G : E - Set. A graph with circles is a
functor H : E + C - Set.

Definition 6.28. A homomorphism between two graphs (graphs with circles)
G,H is a natural transformation f : G⇒ H in Cat(E ,Set) (in Cat(E+C,Set)).

The class of graphs forms a category, standardly denoted Grph. In a similar
fashion, the graphs with circles form a subcategory of the functor category
Cat(E + C,Set), which we denote G. Let ∅C : C → Set be the functor defined
by C - ∅. If G is a graph then [G, ∅C] is a graph with circles. The assignment
· 7→ [·, ∅C] extends to an embedding K : Grph - G. Given a graph with
circles H, let UH be its restriction to E ; U extends to a forgetful functor G →
Grph in the obvious fashion. These functors combine to give an adjunction

Grph
K-
⊥�
U

G.

Armed with a more abstract definition of graph we can restate Definition
6.17:

Definition 6.29. A graph with boundary is a pair (G, ∂G) of a graph with
circles G and a set ∂G such that ∂G ⊆ GV and x ∈ ∂G implies deg(x) = 1.

Definition 6.30. A homomorphism of graphs with circles f : G → H defines
a homomorphism of graphs with boundary f : (G, ∂G) → (H, ∂H) if fV (∂G) ⊆
∂H.

It is immediate that if F
f- G

g- H are morphisms which preserve bound-
aries then their composition must also preserve the boundary. Hence the graphs
with boundary and their homomorphisms form a category which we denote G∂ .
Note that G is a subcategory of G∂ and the embedding functor

K : G ⊂ - G∂ :: G 7→ (G, ∅)

is left adjoint to the forgetful functor

U : G∂ - G :: (G, ∂G) 7→ G.

6.2. GRAPHS AND CIRCUITS 95

Proposition 6.31. G∂ has coequalisers for all pairs of arrows.

Proof. Suppose that we have graphs with boundary and homomorphisms

A
f-

g
- B.

Suppose that I
i- J is an arrow in E . In Set we have coequalisers 〈uI , IU 〉

and 〈uJ , JU 〉 for the pairs (fI , gI) and (fJ , gJ). By the universal property of
〈uI , UI〉 the map indicated iU below exists and is unique.

AI
fI -

gI
- BI

uI - IU

AJ

Ai

? fJ -

gJ
- BJ

Bi

? uJ - JU

iU

?

Hence define a functor U : E - Set by UI = IU and Ui = iU for all objects
I and arrows i. The commutativity of this diagram asserts that the E-indexed
family of maps u is a natural transformation u : B ⇒ U . Let ∂U = uV (∂B);
this defines a graph (U, ∂U), and a graph homomorphism u : B - U such
that uf = ug.

To show that 〈u, U〉 is the coequaliser for f, g it remains to prove the universal
property, namely that for any map h such that hf = hg , there exists a unique
h′ such that h = h′u as shown below.

A
f -

g
- B

u - U

D

h′

?

h
-

Since each component of u is a coequaliser in Set we have a unique map h′I for
each object I of E such that h′IuI = hI . Therefore h′ is the unique family of
maps such that h′u = h; it remains to check that h′ is a morphism of graphs.

By definition of U , ∂U = uV (∂B). Since h is a homomorphism hV sends
∂B into ∂D, and hV = h′V uV , h′(∂U) ⊆ ∂D. Again take I

i- J to be a
morphism in E . Consider

AI
fI -

gI
- BI

uI - UI

AJ

Ai

? fJ -

gJ
- BJ

Bi

?

hJ
- DJ

-

96 CHAPTER 6. GENERALISED MCQL

The right square commutes because by the naturality of f and g; therefore
hJBifI = hJBigI and so hJBi must factor uniquely through uI . Expanding h
as h′u we have

BI
uI - UI

h′I - DI

?

BJ

Bi

?

uJ
- UJ

Ui

?

h′J

- DJ

Di

?

where the naturality of hmakes the outer rectangle commute, and the naturality
of u makes the left hand square commute. Hence hJBi = DihI = Dih′IuI and
also hJBi = h′JuJBi = h′JUiuI ; but the factorisation through uI is unique,
hence the square marked “?” commutes, and therefore h′ is natural.

Hence h′ is a graph morphism, satisfying the universal property, therefore u
is the coequaliser of f and g. Since f and g were arbitrary, G∂ has coequalisers
for any two arrows.

Proposition 6.32. G∂ has all finite coproducts.

Proof. The structure lifts from coproducts in Set. We show that G has an initial
object and binary coproducts: arbitrary (strict) coproducts can be constructed
similarly.

Let ∅ = (∅, ∅, ∅, ∅, ∅); then (∅, ∅) is the empty graph (with empty boundary).
Since ∅ is initial in Set, there is a unique graph morphism

(∅, ∅) - (G, ∂G),

to each (G, ∂G), whose components are the empty map.
Given two graphs G and H, let G+H be the functor defined by

A - GA+HA

7→

B

f

?
- GB +HB

Gf +Hf

?

where the right hand side uses the coproduct in Set, and let ∂(G+H) =
∂G+ ∂H.

By definition of the coproduct in Set, Gf +Hf = [inGB ◦Gf, inHB ◦Hf]
is the unique map making the diagram

GA
inGA - GA+HA � inHA

HA

GB

Gf

?

inGB
- GB +HB′

Gf +Hf

?
�

inHB
HB

Hf

?

6.2. GRAPHS AND CIRCUITS 97

commute. Hence we have natural transformations

G
in1- G+H � in2

H

which, by definition, preserve the boundaries of G and H.
Suppose we have a third graph (J, ∂J) and maps

(G, ∂G)
g- (J, ∂J) �h (H, ∂H).

For every arrow A
f- B of E + C there is a diagram in Set

GA
inGA- GA+HA � inHA

H

GB

Gf

?
JA

[gA, hA]

?�

hA
g
A

-

HB

Hf

?

JB

Jf

?�

hB
g
B

-

and hence

Jf ◦ [gA, hA] = [Jf ◦ gA, Jf ◦ hA]
= [gB ◦Gf, hB ◦Hf]
= [gB , hB] ◦ (Gf +Hf).

This makes [g, h] a natural transformation from G +H to J . If v ∈ ∂(G+H)
then necessarily either v ∈ ∂G or v ∈ ∂H; in the first case gV (v) ∈ ∂J , and in
the second hV (v) ∈ ∂J . Therefore [g, h]V (v) ∈ ∂J , hence [g, h] is a morphism of
graphs. The fact that [g, h] is the unique graph morphism making the coproduct
diagram commute follows from the uniqueness of each of its components in Set.

Therefore G has binary coproducts and an initial object (∅, ∅), which suffices
to provide all finite coproducts.

Corollary 6.33. G∂ has all finite colimits.

Proof. Finite coproducts and coequalisers suffice to generate all finite colimits
(see [ML97]).

Since left adjoints preserve colimits this suffices to show that both G and
Grph are also finitely cocomplete.

While the colimit structure of G∂ essentially lifts from Set the same is not
true for limits. In particular the one point set does not give a terminal object
due the need to preserve the boundary, since a graph with one vertex necessarily
has an empty boundary. Nor does G∂ have binary products, for essentially the
same reason.

For the rest of this chapter all graphs will be directed graphs with circles
and boundary. Henceforth this structure is simply called a graph.

98 CHAPTER 6. GENERALISED MCQL

There is an operation of “overlaying” graphs onto a common subgraph.
Given a graph S with morphisms G �s

S
s′- H then define G +S H

to be the vertex of the pushout

S
s - G

H

s′

?
- G+S H

?

Obviously, the resulting graph depends on the morphisms s and s′ but we will
generally take these to be given, and use the underspecified notation G +S H.
The principal case of interest is when S is a common subgraph of G and H, in
which case the morphisms are taken to be the canonical inclusions.

The resulting operation is clearly commutative. Given graphs and mor-
phisms

F � s
S

s′ - G � t
T

t′ - H

each rectangle of the diagram

S T

F
�

s

G
�

ts ′

-

H

t ′

-

F +S G
�

-

G+T H
�

-

J
�

-

is a pushout, hence J = (F +S G) +T H = F +S (G+T H).

6.2.2 Circuits

Definition 6.34. A circuit Γ = (G,dom Γ, codΓ, <in(·), <out(·)) where:

• G = ((V,E,C, s, t), ∂G) is a graph;

• dom Γ and codΓ are totally ordered sets such that ∂G = dom Γ + codΓ;

• <in(·) is a family of maps, indexed by V such that <in(v): in(v)
∼=- Nk

where k = |in(v)|.

6.2. GRAPHS AND CIRCUITS 99

• <out(·) is a family of maps, indexed by V such that<out(v): out(v)
∼=- Nk′

where k′ = |out(v)|.

As suggested by their name, the purpose of the two maps <in(·) and <out(·) is
to impose a linear order on in(v) and out(v). Since the maps give a bijective
correspondence between in(v), out(v) and an initial segment of the naturals, the
order in N lifts, and hence we will often simply treat these sets are ordered, and
write < for this ordering whenever unambiguous to do so.

dom Γ cod Γ

◦
◦

◦
◦

◦ ◦

◦ ◦

◦
◦

◦

•

•

•

•
•

∂Γ

IΓ

Figure 6.8: Anatomy of a circuit

A circuit is prime if it is connected and contains exactly one inner node,
simple when it has no inner nodes, and elementary when each of its connected
components is prime or simple. A circuit is even when its domain and codomain
have the same cardinality.

Definition 6.35. A homomorphism of circuits f : Γ → ∆ is a graph homomor-
phism between the underlying graphs of Γ and ∆ which preserves the additional
structure. Concretely:

• if x, y ∈ dom Γ such that x < y then fV (x), fV (y) ∈ dom ∆ and fV (x) <
fV (y);

• if x, y ∈ codΓ such that x < y then fV (x), fV (y) ∈ cod∆ and fV (x) <
fV (y);

• for all vertices v in Γ, and all edges e1, e2 in in(v), if e1 < e2 in in(v) then
fE(e1) < fE(e2) in in(fV (v));

• for all vertices v in Γ, and all edges e1, e2 in out(v), if e1 < e2 in out(v)
then fE(e1) < fE(e2) in out(fV (v)).

A map between circuits is an isomorphism if the underlying graph morphism is
an isomorphism; in this case all the orders are preserved exactly.

Obviously circuits and circuit homomorphisms form a category, related by
a forgetful functor to G∂ . There is no canonical way to derive a circuit from a
graph with boundary. In this section we will define a different category, called
Circ , which has circuits as morphisms. We now introduce some constructions
on circuits which will be used in the definition of Circ.

100 CHAPTER 6. GENERALISED MCQL

Definition 6.36. Let R, S be linearly ordered sets. The standard order on
their disjoint union R+ S is defined as

x < y if x ∈ R and y ∈ S
x < y if x, y ∈ R and x <R y
x < y if x, y ∈ S and x <S y.

For convenience we recall Definition 2.39.

Definition 6.37. A signed set S is a function from a carrier set |S| to the
set {+,−}. Given signed sets R and S, let R∗ denote the signed set with the
opposite signing to R; let R ⊗ S be the disjoint union of R and S, such that
|R⊗ S| = |R|+ |S|.

Let Γ be a circuit. Define a signing on its boundary ∂Γ by the direction of
the edges: for each b ∈ ∂Γ, set b 7→ + if out(v) = ∅ and b 7→ − otherwise. In
other words, b is positively signed if the edge incident at b goes toward b and
negatively signed if the edge goes away from b. Hence ∂Γ makes dom Γ and
codΓ isomorphic to signed finite ordinals.

Given some circuit Γ = (Γ,dom Γ, codΓ) define its opposite Γo = (Γ, codΓ,dom Γ).

Proposition 6.38. Let Circ denote the set of all circuits. Circ forms a com-
pact closed category.

Proof. The objects of Circ are linearly ordered finite signed sets. An arrow
f : A → B is a circuit with domain A∗ and codomain B. Two arrows are
considered equal if they are isomorphic as circuits.

Suppose we have circuits

A
f - B

g - C

The set B specifies a discrete graph with empty boundary, which we also denote
B. We have a pair of canonical monomorphisms

f � ⊃ B ⊂ - g

in G, which send B to the corresponding vertices of the underlying graphs (with-
out boundary) of f and g. Every positively signed vertex B will have exactly
one incoming node in f and one outgoing node in g, and vice versa for the
negatively signed vertices. Hence every vertex in the image B in the pushout
f +B g has in-degree 1 and out-degree 1. Hence we define the composition of
circuits

g ◦ f = ((f +B g)�B ,dom f, cod g, [<inf (·), <ing(·)], [<outf (·)), <outg(·))]),

where the orders on the domain and codomain are respectively those of f and
g. Given circuits

A
f - B

g - C
h - D

6.2. GRAPHS AND CIRCUITS 101

Since B and C are disjoint sets of vertices in the graph of g we have

h ◦ (g ◦ f) = (h+C ((g +B f)�B))�C

= (h+C g +B f)�B)�C

= (h+C g +B f)�C)�B

= (((h+C g)�C) +B f)�B

= (h ◦ g) ◦ f.

Let E be the positively signed singleton. Define 1E as the unique simple circuit
with domain E∗ and codomain E; let 1E∗ = 1oE . Note that for any signed set
S, we have

S ∼=
⊗
i

Ei,

where each Ei is either E or E∗, hence define 1S =
⊗

i 1Ei . Clearly, 1Bf = f =
f1A. Hence Circ is a category.

Circ is strictly monoidal with tensor on signed sets and circuits defined by
the coproduct of G∂ ; to get a circuit we define dom(Γ ⊗∆) = dom Γ ⊗ dom ∆
and cod(Γ ⊗ ∆) = codΓ ⊗ cod∆, taking in both cases the standard ordering.
Let I = ∅ and 1I is the empty circuit.

Given signed sets S, T the symmetry map sS,T is defined as the simple circuit

sS,T = (1S⊗T , S + T, T + S, ·, ·).

(Since the circuit is simple the order at each vertex is trivial.) The required
symmetry condition, sT,S ◦ sS,T = 1S⊗T is immediate.

Finally, the compact closure of Circ is is given by taking ηA : I → A∗ ⊗ A
and εA : A⊗A∗ → I to be

ηA = (1A, ∅, A∗ ⊗A)
εA = (1A, A⊗A∗, ∅).

The required equalities follow directly from the definition of composition.

Remark. Since every ordered finite set is order isomorphic to a finite ordinal,
Circ is equivalent to its full subcategory determined by the signed ordinals.
Hence we will assume that the objects of Circ are ordinals whenever convenient
to do so.

Only simple circuits are required to produce the compact closed structure:
therefore any subcategory of Circ which contains all the objects and simple
circuits will also be compact closed. Indeed, the subcategory of Circ containing
all the objects and exactly the simple circuits is the free compact closed category
generated by the discrete category 1.

Call a signed set positive if all its elements are mapped to +. Let Circ+ be
the full subcategory of Circ determined by the positive objects. Call a circuit
positive if it is an arrow of Circ+. Note that Circ+ is a symmetric traced
monoidal category, with the canonical trace of Circ.

Proposition 6.39. Every hom-set of Circ is isomorphic to a hom-set of Circ+

102 CHAPTER 6. GENERALISED MCQL

Proof. The basic idea is to use the partial name and coname construction
(Lemma 2.21) to move all positively signed nodes of the domain to the codomain,
and all negatively signed nodes in the codomain to the domain.

Concretely, any object X of Circ is isomorphic to X+ ⊗X∗
− where X+ and

X− are positive signed sets. Hence every hom-set Circ(X,Y) is isomorphic to
Circ(X+ ⊗X∗

−, Y
∗
− ⊗ Y+). Given f : X+ ⊗X∗

− → Y ∗
− ⊗ Y+, we can construct

f ′ : Y− ⊗X+ → Y + ⊗X− via

Y− ⊗X+
f ′ - Y+ ⊗X−

Y− ⊗X+ ⊗X∗
− ⊗X−

1 ⊗ ηX−

?

1 ⊗ f ⊗ 1
- Y− ⊗ Y ∗

− ⊗ Y+ ⊗X−

εY− ⊗ 1
6

Since X∗
− and Y ∗

− are both positive, f ′ is an arrow of Circ+. Note that

(1 ⊗ εX−) ◦ (1 ⊗ f ′ ⊗ 1) ◦ (ηY− ⊗ 1) = f,

hence we have an isomorphism as required.

Corollary 6.40. Any circuit can be canonically transformed into a positive
circuit.

Given a circuit Γ, operations Γ�e and Γ�v lift directly from graphs to cir-
cuits. To lift Γ− {v} we require an extra definition.

Definition 6.41. Let Γ be a circuit with interior vertex v. Define

Γ− {v} = (G− {v},dom Γ+in(v), codΓ+out(v), <in(·), <out(·))

where the order on the domain and codomain is standard, and the order at the
new vertices is trivial since they are all degree 1.

Note that by virtue of the ordering on the domain and codomain it is no
longer the case that Γ− V is well defined for sets of vertices V .

Lemma 6.42. Let Γ : A→ B be a circuit with two distinct vertices u, v; then

(Γ− {v})− {u} = (1A ⊗ σ) ◦ ((Γ− {u})− {v}) ◦ (1B ⊗ τ)

where σ and τ are the permutation maps

σ : out(u)⊗ out(v) - out(v)⊗ out(u)
τ : in(v)⊗ in(u) - in(u)⊗ in(v),

taking out(u) and out(v) as positively signed, and in(u) and in(v) as negatively
signed.

Proof. Immediate from definition.

6.2. GRAPHS AND CIRCUITS 103

Now consider the canonical trace on Circ:

TrE(g) = (1n ⊗ ε1∗) ◦ (g ⊗ 11∗) ◦ (1m ⊗ η1)

g = g

◦
◦

◦
◦

◦
◦◦

◦

This equality goes both ways, so given circuit f containing a cycle, we can
obtain g such that f = Tr(g) simply by “cutting the loop”. Clearly each such
cutting adds one positive and one negative point to the circuit’s boundary. This
construction is quite general.

Given a circuit Γ : A → B with an interior edge v1
e- v2, we construct

a new circuit Γ′ as follows. Let dom Γ′ = A∗ ⊗ E∗ and codΓ′ = B ⊗ E; then
construct the graph of Γ′ as Γ′ = Γ�e − {e}.

Lemma 6.43. Let Γ,Γ′ be circuits as described above; then Γ = TrA,BE (Γ′).

Proof. By Lemma 6.10 the new vertex e has degree two, hence let b+, b− be
the pair of corresponding points in ∂Γ′, b− in the domain, b+ in the codomain.
To compute the trace we first form Γ′ ⊗ 1E∗ , which adds a new pair of bound-
ary points c+, c−, respectively in the domain and codomain. Pre- and post-
composition with ηE∗ and εE respectively adds new edges c+ → b− and b+ →
c−. By the construction of Γ′ there are interior points v1, v2 such that v1 → b+
and b− → v2, hence we have a composition of edges

v1 - b+ - e− - e+ - b− - v2.

By the definition of composition, the intermediate vertices are deleted leaving
behind an edge v1 → v2, which was the edge of Γ originally deleted to form
Γ′.

By picking an internal edge f of Γ′ and iterating this procedure we can
produce another circuit Γ′′ = Γ′�f − {f}, and so on. Call any circuit produced
from Γ in this way a skeleton of Γ. The interior of a skeleton is a proper complete
subgraph of IΓ. If T is maximal among such subgraphs contained in a skeleton
∆ then say that ∆ is determined by T , or that it is a closure of T . In general T
will have many closures since it depends only on the set of edges removed from
Γ, while ∆ depends additionally on the order of their removal.

Lemma 6.44. Let Ξ : A⊗ U → B ⊗ U , Σ : A⊗ U ′ → B ⊗ U ′ be two skeletons
of a circuit Γ : A→ B, both determined by the same interior subgraph T .

• TrA,BU (Ξ) = Γ

• Ξ = (1B ⊗ σ−1) ◦ Σ ◦ (1A ⊗ σ) where σ is a permutation.

104 CHAPTER 6. GENERALISED MCQL

•
•

•
◦

◦

•
•

•
◦

◦

•
•

•

•
•

•
◦

◦ ◦

◦

•
•

•
◦

◦ ◦

◦

◦

◦

(a) (b) (c) (d)

Figure 6.9: (a) A graph G; (b) a subgraph of G’s interior; (c) a skeleton deter-
mined by the subgraph; (d) taking the trace.

Proof. Suppose IΓ − T = {e1, . . . , en} and that Ξ is produced from Γ by re-
moving the edges in this order. Then we have a sequence of skeletons Γ =
Ξ0,Ξ1, . . . ,Ξn = Ξ. Let U = En ⊗ · · · ⊗E1 where each Ei is a signed singleton.
By the vanishing rule of the trace we have

TrU (Ξ) = TrE1(· · ·TrEn(Ξ) · · ·)

By Lemma 6.43, TrEi(Ξi) = Ξi−1, which gives the first result.
Since Ξ and Σ are generated by the same graph, the same edges e1, . . . , en

have been removed from Γ in a different order, say eπ(1), . . . , eπ(n) for some
permutation π on n. Hence U ′ = Eπ(n)⊗· · ·⊗Eπ(1) and so σ is the permutation
sending i 7→ π(i).

Suppose |U | = n, and hence also |U ′| = n. Each pair of (Γ, T) as above
determines a groupoid GΓ,T whose objects are the skeletons of Γ determined by
T and whose arrows are elements σ of Sn such that σ : Ξ → Σ if they are related
as in the lemma above. This structure is generated by the action of Sn on any
chosen skeleton; the action of any σ ∈ Sn on GΓ,T is simply a permutation of
its objects.

Corollary 6.45. Let Γ : A→ B be a circuit and let S, T be complete subgraphs
of IΓ. If Ξ : A ⊗ U → B ⊗ U and Σ : A ⊗ V → B ⊗ V are skeletons of Γ
determined by S and T respectively then TrU (Ξ) = TrV (Σ).

6.3 The Free Compact Closed Category on a
Polycategory

We now consider the circuits generated by a particular polycategory. In what
follows, let A be the polycategory generated freely from some set ArrA of ba-
sic poly-arrows. We assume for now that there are no equations between the
generators; we return to this point in sections 6.5.4 and 6.7.

6.3. THE FREE COMPACT CLOSED CATEGORY ON A POLYCATEGORY105

Definition 6.46 (Labelling). Given a polycategory A, an A-labelling for a
circuit Γ is a pair of maps θ = (θO, θA) where

θO : E+C - ObjA
θA : V - ArrA

such that for each node f , in(f) = 〈a1, . . . , an〉 and out(f) = 〈b1, . . . , bm〉 imply

dom(θf) = θa1, . . . , θan

cod(θf) = θb1, . . . , θbm,

and subject to the further restriction that θA(v) = 1A if and only if v ∈ ∂Γ.
Call a circuit Γ A-labellable if there exists an A-labelling for it; if θ is a labelling
for Γ, then the pair (Γ, θ) is an A-labelled circuit.

Remark. Note that the boundary nodes are not treated on the same basis as
the interior nodes. We will often assume the boundary is labelled with objects
of A rather than the corresponding identity maps, and treat the boundary as
an A-labelled signed set.

We denote the class of A-labelled circuits Circ(A) .

Proposition 6.47. The A-labelled circuits form a compact closed category.

Proof. The structure lifts from the underlying category Circ, with the restric-
tion that arrows (f, θ), (g, κ) are only composable when θ(cod f) = κ(dom g).
We note that every simple circuit is A-labellable hence the resulting subcategory
is compact closed.

We now define the canonical embedding Ψ : A ⊂ - Circ(A). Let Ψg :
ArrA → Circ(A) be defined to send f : ⊗ni=1Ai → ⊗mj=1Bj to the prime circuit
with boundary |n|∗ ⊗ |m|, and its unique inner node labelled by f . Ψg extends
in the evident way to a symmetric monoidal functor Ψ : A → Circ(A), which is
well defined since, by hypothesis, there are no equations between the generators
of A.

Note that this embedding sends the objects of A to positive signed sets. Let
Circ(A)+ be the full subcategory of Circ(A) determined by the objects of A,
or equivalently the subcategory of Circ(A) determined by Circ+. Proposition
6.39 lifts immediately to give the following.

Lemma 6.48. Circ(A)+ is traced by the canonical trace of Circ(A), and every
hom-set of Circ(A) is isomorphic to a hom-set of Circ(A)+.

Lemma 6.49. Let (Γ, θ) be a circuit of Circ(A)+. Γ is acyclic and connected
if and only if (Γ, θ) = Ψf for some unique f in A.

Proof. Suppose f is an arrow of A; then f is a formal composition of generators
ArrA, possibly with domains and codomains permuted. By the definition of Ψ
each generator g is mapped to a prime circuit in Circ(A)+. The functor Ψ
commutes with composition, and composition in Circ(A)+ preserves acyclicity,
since a composition of positive circuits cannot form a loop. Composition of
connected circuits Γ,Γ′ also preserves connectedness, provided it is not along
I; but in that case the corresponding poly-arrows would not be composable.
Hence Ψf is acyclic and connected.

106 CHAPTER 6. GENERALISED MCQL

Conversely, suppose Γ is both connected and acyclic. We use induction on
the number of interior nodes of Γ. If Γ has no interior nodes then it consists of a
single wire, labelled by some object θOe; in this case (Γ, θ) = Ψ1θOe. Otherwise
Γ has n ≥ 1 interior nodes. Since it is acyclic and connected, Γ = Ξ1 ◦ Γ1 or
Γ2 = Γ2 ◦ Ξ2 where Ξ1,Ξ2 are prime circuits, and Γ1,Γ2 have n − 1 interior
nodes. (This is a consequence of Lemma 6.23.)

If Ξ is a prime circuit, then the labelling on its only node, v, gives Ψθv =
(Ξ, θ), up to a permutation on its domain and codomain. Hence if Ξ1 = Ξ2 are
both prime then θ1 = θ2, hence Ξ1 = Ξ2 = Ψf . By induction hypothesis there
is a unique poly-arrow g1 such that Γ1 = Ψg1; hence

Γ = Ξ ◦ Γ1 = Ψf ◦Ψg1 = Ψ(f ◦ g1),

and similarly if Γ = Γ2 ◦ Ξ2. Note that the choice of Ξ will not usually be
unique, but whenever there are conflicting choices, they will commute due to
Equations (6.7) and (6.8).

Corollary 6.50. The functor Ψ : A → Circ(A) is faithful.

Theorem 6.51. Given a compact closed category C, a symmetric polycategory
with multicut A freely constructed from generators ObjA and ArrA, and a sym-
metric monoidal functor G : A → C, there is a unique (up to isomorphism)
compact closed functor G\ such that G ∼= G\Ψ.

A
Ψ- Circ(A)

C

G\

?

G

-

Proof. The value of G\ is on the generators is fixed by G; thereafter its other
values are fixed by the need to preserve the compact closed structure of Circ(A).

If A ∈ ObjA then let G\ΨA = GA. By definition G\((ΨA)∗) = (GA)∗ and
G\ηΨA = ηGA and G\εΨA = εGA. Define G\(A ⊗ B) = G\A ⊗ G\B; since we
have (A ⊗ B)∗ = A∗ ⊗ B∗ in Circ(A), this determines the value of G\ on all
objects.

Since compact closed functors preserve units and counits, the value of G\ on
arrows is determined by its values on Circ(A)+. Let g = (Γ, θ) ∈ Circ(A)+(A,B).
We use a recursion on the number of cycles in the graph of g to define G\g.

If Γ is acyclic, then g = Ψf for some f ∈ A(A,B), hence let G\g be given
by

G\A
∼=- GA

Gf- GB
∼=- G\B

noting that G\(A⊗B) = GA⊗GB on the objects of Circ(A)+.
Suppose, on the other hand, that Γ has a cycle. We can obtain a new arrow

by picking an edge e which lies on the cycle and is labelled by C, then let
g′ = g�e − {e} : A ⊗ C → B ⊗ C. By Lemma 6.43 g = TrCA,B(g′) and hence

we must have G\g = TrG
\C

G\A,G\B(G\g′). Dinaturality of trace implies that the
choice of which edge to cut is unimportant; superposing and yanking axioms

6.4. SCALARS 107

together imply the order the cycles are removed in is irrelevant. Hence G\g is
well defined.

Clearly G ∼= G\Ψ. Suppose that H : Circ(A) → C is a compact closed func-
tor such that G ∼= HΨ; then let τ be the natural isomorphism G\Ψ

∼=- HΨ.
Since τ is invertible, let ρA = (τ−1

A)∗. For every object A of Circ(A), the
symmetry of the tensor gives a natural isomorphism A - (ΨA+)⊗ (ΨA−)∗,
hence we have

G\A
∼=- (G\ΨA+)⊗ (G\ΨA−)∗

τA+ ⊗ ρA−- (HΨA+)⊗ (HΨA−)∗
∼= - HA.

Therefore H ∼= G\.

Corollary 6.52. The inclusion of categories Com ⊂ - PolyCat has a left
adjoint, whose unit has component at A given by Ψ : A → Circ(A).

6.4 Scalars

As we saw in Chapter 4, the structure of a compact closed category cannot be
accurately represented without taking account of the scalars. This is particularly
important for a logical presentation since at the level of types an arrow cannot
be distinguished from its scalar multiples. In this section we characterise the
scalars of Circ and lift those structures to Circ(A). Since the scalars form a
commutative monoid with respect to the tensor, we describe only those circuits
with a single connected component.

The unit object I of Circ is the empty signed set, hence any circuit with an
empty boundary is a scalar. There are three situations where this may occur.

The simplest graph with empty boundary is a circle. It is simply a closed
loop without any vertex. We set aside this special case for now, and consider
only scalars which have vertices.

Suppose that Γ is a circuit of Circ with at least one vertex, and further
assume that it is acyclic. We can view such a graph as a partial order on its
vertices, with the order relation given by the connectivity of the graph. Γ is a
scalar if and only if its maximal vertices all have out-degree zero, and its minimal
vertices all have in-degree zero. If Γ is A-labellable then, by Lemma 6.49, each
labelling of Γ determines a unique polyarrow f : − → − in A. In other words,
the first class of scalars in Circ(A) are the scalars lifted from A. (Of course,
the scalars of Circ(A) are simply the set of polyarrows with empty domain and
codomain – there is no associated algebraic structure.)

Now suppose, on the other hand, that Γ is cyclic. The following is immediate.

Lemma 6.53. Every skeleton of a scalar is positive and even.

Therefore, every skeleton of Γ determines an element Ξ of Circ+ such that
Γ = Tr(Ξ). Suppose that Γ is A-labellable by some labelling θ; then θ also gives
a labelling for Ξ, which we write abusively also as θ. If Ξ is acyclic and connected
then (Ξ, θ) determines a unique polyarrow f such that (Γ, θ) = Tr(Ψf). This
will allow us to pin down the remaining scalars in the style of Section 2.8. Call
a polyarrow an endomorphism if it has the same sequence of objects for its
domain and codomain; say that two endomorphisms f : Γ → Γ and g : ∆ → ∆
are trace equivalent if TrΓ(Ψf) = Tr∆(Ψg). The scalars of Circ(A) generated

108 CHAPTER 6. GENERALISED MCQL

by cyclic circuits are isomorphic to the trace equivalence classes of A. If A is
just a category then this definition reduces to that of Section 2.8.

The vanishing axiom of the trace gives TrI(f) = f , hence the acyclic scalars
discussed above are included in this definition. Note that TrA(1A) has the graph
structure of a circle, so circuits with no vertices fall under this case too, and
these are simply the dimension maps of the objects of A. Hence we can sum up
the preceding discussion in the following:

Proposition 6.54. The scalars I → I of Circ(A) are in bijective correspon-
dence with the trace equivalence classes of A.

Given a polyarrow f , the circuit for Tr(f) can easily be constructed, and
from this circuit all the other elements of f ’s trace equivalence class can be
computed.

We consider one special case before moving on. Suppose Γ : A→ A is prime,
and denote its single vertex x. Call a prime circuit regular if it is positive
and acyclic, and the ordering on its domain and codomain agrees with in(x)
and out(x) respectively. Such a circuit is completely fixed by the object A.
If another prime Ξ : A → A is also positive, even and acyclic then there are
permutations σ, σ′ such that Ξ = σ◦Γ◦σ′, and further each pair σ, σ′ determines
a valid circuit in this way. Suppose that s is a prime scalar with Ξ : A → A, a
acyclic prime, as skeleton. By Lemma (6.44) we have s = TrA(Ξ) from whence
s = TrA(σ ◦ Γ ◦ σ′) = TrA(τ ◦ Γ) where τ = σ′σ. This leads directly to the
following lemma.

Lemma 6.55. The set of prime scalars in Circ is isomorphic to⋃
n∈N

{σ|σ ∈ Sn}.

To sum up the lemma in a slogan, the structure of a prime scalar is nothing
more than a description of how the outputs” of a circuit are fed back to its
“inputs”.

Remark. This general statement holds in the slightly more complicated situation
of non-prime scalars. Let Γ be a scalar which is not prime; let its vertices be
labelled f1, . . . , fn. By Lemma (6.44) it is equal to the trace over any of its
skeletons. Let Ξ be a skeleton determined by the totally disconnected subgraph;
then Ξ = σ ◦ (

⊗
i fi)σ

′, where fi denotes the regular prime determined by the
vertex of the same name. This result is essentially the same as Theorem 1 of
[KSW97].

6.5 Homotopy

Up to this point we have considered circuits based on a polycategory A, whose
arrows are presented as a set of generators. Under this regime, only the gener-
ators may occur as vertex labels in Circ(A). This restriction may be relaxed
by considering circuits under homotopy equivalence. Informally, two topologi-
cal spaces are homotopy equivalent if they are images of the same space under
a continuous deformation. In this section we use a specialised definition for
graphs; for a full treatment see e.g. [Hat02].

6.5. HOMOTOPY 109

Throughout this section the only circuits of concern are those with at least
one interior vertex. To avoid ceaseless repetition, this qualification will be omit-
ted from results and their proofs. In all cases, if the circuit has empty interior
then the result is trivial.

We proceed as follows: the class of A-labelled circuits is expanded by ad-
joining formal generators for every polyarrow of A; the notion of contraction
is defined for labelled circuits, and hence also a notion of homotopy equiva-
lence; we show that the quotient of the expanded class of circuits by homotopy
equivalence is equivalent to the original category.

6.5.1 Extended Labellings

Definition 6.56. An extended A-labelling on a circuit Γ is defined as in Def-
inition 6.46, with the relaxation that θA may range over all polyarrows of A,
i.e. the restriction to generators is dropped. The resulting class of circuits is
denoted Circx(A) .

The polyarrows of A are generated freely from some set ArrA, so writing
FArrA for the set of polyarrows, we have A ∼= (O,FArrA) where O is the
set of objects; then Circ(A) = Circ(O,FArrA). Analogously Circx(A) =
Circ(O,FFArrA). Hence Circx(A) is simply the original Circ construction
over an enlarged polycategory, therefore all our earlier results for Circ(A) apply
to Circx(A) as well.

The categories Circ(A) and Circx(A) have the same objects and since
FArrA ⊂ FFArrA, there is a faithful embedding

A Ψ- Circ(A) ⊂
Ψx - Circx(A)

which preserves the compact closed structure of Circ(A). The embedding is
the identity on objects, so it also gives an inclusion on the traced subcategories
determined by the positive objects:

Circ+(A) ⊂
Ψx - Circ+

x (A).

As in Circ(A), the compact closed structure of Circx(A) is determined by this
positive subcategory so most of this section will be devoted to Circ+

x (A) rather
than the whole category.

6.5.2 Homotopy Equivalence

Definition 6.57. A graph G is contractible to G′ if G′ is obtained from G
by identifying two adjacent vertices along an edge connecting them. Homo-
topy equivalence for graphs is the reflexive, symmetric, transitive closure of this
relation.

From this definition, any acyclic connected graph (without parallel edges) is
homotopy equivalent to a single vertex; this leads naturally to the following.

Proposition 6.58. The interior IG of a connected graph with boundary (G, ∂G)
is homotopy equivalent to single vertex with some number of self loops.

110 CHAPTER 6. GENERALISED MCQL

Proof. Let T be any minimum spanning tree of IG; then T is homotopy equiv-
alent to a point. The quotient map IG → IG/T is a homotopy equivalence (see
e.g. [Hat02]) and IG/T is a graph with only one vertex, hence all its edges are
self loops.

In order to apply this notion to labelled circuits, we must extend the defini-
tion of contraction.

Definition 6.59. Let v, u be distinct interior vertices of some circuit Γ, with
F a set of edges from v to u; define Γ/F , the contractum along F , as the circuit
whose underlying graph is

G′ = ((V − {v, u}) + {{v, u}}, E − F, C, s′, t′)

s′ : e 7→
{
{v, u} if s(e) = v or u
s(e) otherwise

t′ : e 7→
{
{v, u} if t(e) = v or u
t(e) otherwise

the ordered set out({v, u}) and in({v, u}) are defined as

out({v, u}) =O1 + out(u) +O2

in({v, u}) =I1 + in(v) + I2

where I1 and I2 form a partition of in(u) − F such that I1 contains the edges
which are ordered before all of F , and O1, O2 form a similarl partition of out(v).

Definition 6.60. With Γ, v, u, F as above, a contraction is a rewrite from Γ to
Γ/F ; if F contains all the edges from v to u it is called maximal.

Given vertices v, u as above, let τ and σ be permutations on |out(v)| and
|in(u)| such that:

τ : out(v) 7→ O1, F,O2

σ : in(u) 7→ I1, F, I2

Lemma 6.61. Let Γ, v, u, F, τ, σ be as above, and let Γ′ be the circuit obtained
by contracting along F ; if θ is an A-labelling for Γ there exists an A-labelling
of Γ′.

Proof. We construct a canonical labelling θ′ for Γ′. The edges of Γ′ are a subset
of those of Γ, so let θ′O = θO. Suppose θA(v) = f and θA(u) = g; define θ′A by
setting θ′A(x) = θA(x) for x /∈ {v, u} and θ′A(w) = gσ ◦ fτ .

In a circuit a vertex v is k-contractible to v′ if there exists a set of edges
of cardinality k from v to v′, for k > 0. A circuit Γ is contractible to Γ′ if Γ′

can be obtained by a k-contraction of Γ for any k. A labelled circuit (Γ, θ) is
contractible to (Γ′, θ′) if Γ is contractible to Γ′ and θ′ is the canonical labelling
of Lemma 6.61.

Since we work with symmetric polycategories the order of the edges incident
at a given vertex is essentially arbitrary. Another class of rewrites internalises
this symmetry.

6.5. HOMOTOPY 111

Definition 6.62. Let v be a vertex of a circuit Γ; say that Γ shuffles to Γ′ if
Γ′ is obtained from Γ by permuting the order of in(v) and out(v).

Lemma 6.63. Let (Γ, θ) be an A-labelled circuit such that Γ rewrites to Γ′ by
a shuffle at some vertex v; then Γ′ is A-labellable.

Proof. We define a canonical labelling θ′. Suppose that

in(v′) =σ(in(v)),
out(v′) =τ(out(v)),

for some permutations σ, τ . Define the canonical labelling for θ′ by θ′(x) = θ(x)
for x 6= v and θ′(v) = (θ(v))τσ.

Define homotopy equivalence of A-labelled circuits to be the transitive, re-
flexive, symmetric closure of contractibility and shuffle; write (Γ, θ) ' (∆, π) for
this relation. Since neither contraction nor shuffle has an effect on the boundary
of a circuit, if two circuits are homotopy equivalent then they have the same
type.

Lemma 6.64. Let a circuit Γ rewrite to Γ′ by some sequence of contractions
or shuffles; if Γ contains a cycle then so does Γ′.

Proof. Shuffle has no effect on the underlying graph of the circuit, so it is dis-
counted immediately. Suppose that some sequence of vertices v1, . . . , vn, v1 form
a cycle in Γ. If an edge vi → vi+1 connecting two vertices is removed by con-
traction, then vi and vi+1 are identified, hence the cycle is preserved. In the
extreme case, all the vertices are identified leaving a loop at the sole remaining
vertex.

Lemma 6.65. If a circuit of Circx(A) is connected, then it is homotopy equiva-
lent to a prime circuit. If the original circuit is acyclic it is homotopy equivalent
to a regular prime.

Proof. If the graph is connected, then all the vertices are at least 1-contractible;
the result is immediate from Proposition 6.58. If the original circuit is acyclic,
then suppose there are k edges from vertex x to y. Contracting along all k
edges will not introduce a cycle, hence by performing such maximal contractions
between every adjacent pair of vertices, the resulting prime (P, · 7→ f) is also
acyclic. Any acyclic prime can rewrite to a regular prime by a shuffle, so we
may take P to be regular.

Lemma 6.66. Let (Γ, θ) and (Γ′, θ′) be acyclic, connected circuits of Circ+
x (A)

such that (Γ, θ) rewrites to (Γ′, θ′) by a sequence of contractions; then (Γ′, θ′)
depends only on the sets of vertices identified.

Proof. Suppose there is a sequence of contractions:

(Γ, θ) = (Γ0, θ0)
c1- (Γ1, θ1)

c2- · · · cn- (Γn, θn) = (Γ′, θ′).

Each contraction unifies two vertices, so we may view the vertices of each (Γi, θi)
as sets of vertices of (Γ, θ). Each contraction can be seen as a union of these
sets. We show that the order of any pair of contractions may be exchanged

112 CHAPTER 6. GENERALISED MCQL

without changing (Γ′, θ′). Evidently such reordering has no effect on the sets of
vertices at the final stage and generates all possible contraction sequences.

We use induction on the length of the sequence of contractions.
If n = 0 then (Γ, θ) = (Γ′, θ′) and the result is trivial. If n = 1, there

is only one possible choice of contraction since, if v and u are the vertices to
be contracted, either v → u or u → v but not both, because (Γ, θ) is acyclic.
Further, the contraction must be maximal since any non-maximal contraction
would introduce a cycle, contradicting the acyclicity of (Γ′, θ′).

Otherwise, consider an adjacent pair of rewrites in the sequence,

(Γi−1, θi−1)
ci- (Γi, θi)

ci+1- (Γi+1, θi+1)

ci, ci+1. If they act on disjoint sets of vertices, then they may be exchanged
without affecting (Γi+1, θi+1). Otherwise, there are four cases, depending on
the topology of the three vertices in Γi−1 which will be identified.

In the diagrams below, suppose ci contracts along the edges labelled 1, and
ci+1 along those labelled 2. (Only one edge is shown between the vertices, but
the contractions are necessarily maximal, so no information is lost.)

Case 1

f
1 - g

2 - h

Contraction along 1 produces a new vertex labelled by gσ1 ◦ fτ1 , for
some permutations σ1, τ1 making f, g composable. Subsequent contrac-
tion along along 2 gives a vertex labelled by hσ2 ◦ (gσ1 ◦ fτ1)τ2 . Since f
and h are not adjacent the permutation τ2 acts only on the codomain of
g, hence

hσ2 ◦ (gσ1 ◦ fτ1)τ2 = hσ2 ◦ (gτ2σ1
◦ fτ1)

Similarly contracting 2 then 1 produces a vertex labelled by (hσ2 ◦gτ2)σ1 ◦
fτ1 ; here σ1 has no action on the domain of h, hence

(hσ2 ◦ gτ2)σ1 ◦ fτ1 = (hσ2 ◦ gτ2σ1
) ◦ fτ1 ,

which gives
(hσ2 ◦ gτ2σ1

) ◦ fτ1 = hσ2 ◦ (gτ2σ1
◦ fτ1)

by associativity.

Case 2

f g

h

�

21

-

Contraction along 1 then 2 produces a single vertex labelled by (hσ1 ◦
fτ1)σ2 ◦ gτ2 . Since g and f are not adjacent, σ2 does not act on the
domain of f , hence (hσ1 ◦ fτ1)σ2 ◦ gτ2 = (hσ1σ2 ◦ fτ1) ◦ gτ2 from which the
commutativity condition (Equations (6.7)) gives

(hσ1σ2 ◦ fτ1) ◦ gτ2 = ((hσ1σ2 ◦ gτ2) ◦ fτ1)ρ

6.5. HOMOTOPY 113

where ρ is a permutation, and since σ1 does not affect the domain of g,
we have

((hσ1σ2 ◦ gτ2) ◦ fτ1)ρ = ((hσ2 ◦ gτ2)σ1 ◦ fτ1)ρ
which is the label for the vertex produced by contracting along 2 then 1.

Case 3

h

f

�
1

g

2
-

This case is essentially the same as the previous one.

Case 4

f
3 - h

g

2
-

1

-

Note that contraction along 3 is not permitted since it would introduce a
cycle; the only possibilities are 1 then 2+3, or 2 then 1+3. Let the types
of f, g, h be

f : Γ - ∆1,Φ,∆2,Ψ,∆3

g : Γ1Φ,Γ2
- ∆4,Ξ,∆5

h : Γ3,Ξ,Γ4,Ψ,Γ5
- ∆

where Φ is the type of the edges labelled by 1, Ξ is the type of 2 and Ψ is
the type of 3. We assume, without loss of generality, that no permutation
is needed to make these bundles of edges composable. Suppose that edge
1 is contracted first: the resulting vertex is labelled by

g ◦ f : Γ1,Γ,Γ2
- ∆1,∆4,Ξ,∆5,∆2,Ψ,∆3.

The permutations required to make g ◦ f and h composable are

τ1 : ∆1,∆4,Ξ,∆5,∆2,Ψ,∆3
- ∆1,∆4,Ξ,Ψ,∆5,∆2,∆3

σ1 : Γ3,Ξ,Ψ,Γ4,Γ5
- Γ3,Ξ,Γ4,Ψ,Γ5

hence the result of contracting along 1 then 2+3 is

hσ1 ◦ (g ◦ f)τ1 : Γ3,Γ1,Γ,Γ2,Γ4,Γ5
- ∆1,∆4,∆,∆5,∆2,∆3

Suppose instead that edges 2 are contracted first. The label of the resulting
vertex is

(h ◦ g) : Γ3,Γ1Φ,Γ2,Γ4,Ψ,Γ5
- ∆4,∆,∆5,

114 CHAPTER 6. GENERALISED MCQL

and the required permutations are

τ2 : ∆1,Φ,∆2,Ψ,∆3
- ∆1,Φ,Ψ,∆2,∆3

σ2 : Γ3,Γ1Φ,Ψ,Γ2,Γ4,Γ5
- Γ3,Γ1Φ,Γ2,Γ4,Ψ,Γ5

hence the vertex obtained by contracting 1+3 is labelled with the map

(h ◦ g)σ2 ◦ fτ2 : Γ1,Γ,Γ2,Γ4,Γ5
- ∆3,∆1,∆4,∆,∆5,∆2,∆3.

Notice that τ1 factorises into τ1 = τ ′′1 τ
′
1 with

τ ′1 : ∆2,Ψ - Ψ,∆2,

τ ′′1 : ∆5Ψ - Ψ,∆5

where τ ′1 acts only on the domain of f ; note that τ ′1 = τ2. Similarly
σ2 = σ′2σ

′′
2 with

σ′2 : Ψ,Γ4
- Γ4,Ψ

σ′′2 : Ψ,Γ2
- Γ2,Ψ,

and σ1 = σ′2. Hence

(h ◦ g)σ2 ◦ fτ2 = (hσ′2 ◦ g)σ′′2 ◦ f
τ2

and
hσ1 ◦ (g ◦ f)τ1 = hσ′2 ◦ (g ◦ fτ2)τ

′′
1

and these are equal by the generalised associativity axiom.

Hence the resulting circuit is independent of the order of contractions.

Corollary 6.67. Let (Γ.θ) be an A-labelled circuit, with H an acyclic subgraph
of its interior; then operation Γ/H is well-defined.

Proof. We wish to contract the entire subgraph H to one vertex. To do so,
perform maximal (with respect to the edges of H) contractions between each
pair of vertices of H; by the preceding lemma, the result is independent of the
order of the contractions.

Lemma 6.68. Let f be a polyarrow in A, with n inputs and m outputs; let P
be an acyclic, regular, prime circuit with domP = n and codP = m. Then
ΨxΨf ' (P, · 7→ f).

Proof. Induction on n, the number of vertices of ΨxΨf .
If n = 1 then ΨxΨf is prime with its only vertex labelled by f ; by Lemma 6.49

it is acyclic. Any prime differs from a regular one only by a shuffle, hence
ΨxΨf ' (P, · 7→ f).

Otherwise, suppose n > 1. Since ΨxΨf = (Γ, θ) is acyclic and connected, it
has a peripheral node v, labelled by g such that

(Γ, θ) = (v, θv) ◦ (Γ− {v}, θ − {v}).

6.5. HOMOTOPY 115

Both of these circuits are acyclic and connected, hence by Lemma 6.49 there
exist g, h of A such that

ΨxΨg = (v, θv)
ΨxΨh = (Γ− {v}, θ − {v})

and hence
ΨxΨf = ΨxΨg ◦ΨxΨh = ΨxΨ(g ◦ h)

Since ΨxΨh has n− 1 vertices, by induction ΨxΨh ' (Ph, · 7→ h); on the other
hand, ΨxΨg is prime, hence its vertex is labelled by g. The circuit (v, θv) ◦
(Ph, · 7→ h) contracts to an acyclic prime via the maximal contraction between
the two vertices, leaving a prime labelled by g ◦ h. However ΨxΨ is faithful,
hence g ◦ h = f , which gives the result.

Proposition 6.69. Let (Γ, θ) be a circuit of Circ+
x (A); it is acyclic and con-

nected if and only if there exists a unique f in A such that ΨxΨf ' (Γ, θ).

Proof. For any polyarrow f , Lemma 6.49 states that Ψf is an acyclic, connected
circuit, hence ΨxΨf is also acyclic and connected.

Conversely, by the previous lemma, every acyclic connected circuit is homo-
topy equivalent to a regular prime (P, θ), and by Lemma 6.66 this is unique.
Evidently (P, θ) ' ΨxΨθ(·).

If maximal contractions are not used, cycles will be introduced in the graph.
Suppose that Γ contains a pair of vertices labelled by f and g such that g is
k-contractible to f along a set of edges E. For any j < k, let E′ ⊂ E such that
|E′| = j. Let ∆ be the new circuit which results from a contraction from g to
f along E′, with the new vertex labelled by f j ◦ g. The new vertex will have
k− j self loops corresponding to the edges E−E′, hence ∆ = Trk−j(∆′) where
∆′ is a skeleton obtained by cutting all these loops. On the other hand let Γ′ be
the skeleton of Γ obtained by cutting E−E′ in the same order; clearly Γ′ ' ∆′.
By lemma 6.44 Γ = Trk−j(Γ), hence Γ ' ∆.

6.5.3 Circuits under Homotopy

We now consider the category Circx(A)/', which has the same objects as
Circx(A), and whose arrows are the equivalence classes of arrows of Circx(A)
generated by homotopy equivalence. Let Q' be the evident full functor

Circx(A)
Q'-- Circx(A)/'

and write [f] for Q'f , the equivalence class containing f .

Lemma 6.70. The following are immediate from the definition.

• If f is a simple circuit of Circx(A) then [f] is a singleton.

• Circx(A)/' is compact closed and Q' preserves the compact closed struc-
ture of Circx(A).

Lemma 6.71. Let [g] be an arrow of Circ+
x (A)/'; then

[g] = [Ψx TrA(Ψf)] = TrA[ΨxΨf]

for some object A, and some arrow f of A.

116 CHAPTER 6. GENERALISED MCQL

Proof. By Lemma 6.65, we may take g to be prime; then g has an acyclic,
regular skeleton g′ such that g = TrA(g′). Since Q' preserves trace we have
[g] = [TrA(g′)] = TrA[g′]; by Lemma 6.69 there exists a unique f ∈ A such that
ΨxΨf = g′, which gives the result, since Ψx commutes with trace.

The map f in the above lemma is not unique for [g] since, in general, there
are many acyclic skeletons of a given g; however, for a given skeleton g′, f is
unique.

Proposition 6.72. The composite functor Q'Ψx : Circ(A) → Circx(A)/' is
full and faithful.

Proof. Lemma 6.71 implies the functor is full. For the faithfulness we consider
only the positive subcategories Circ+(A) and Circ+

x (A)/' since, as before,
every hom-set is canonically isomorphic to a positive one. Suppose that [Ψxf] =
[Ψxg]. Pick any prime h ∈ [Ψxf], and any acyclic, regular skeleton h′ such that
h = TrA(h′); there exists a unique h′′ ∈ A such that h′ ' ΨxΨh′′. Therefore
h ' TrA(ΨxΨh′′) = Ψx(TrA(Ψh′′)). Since h′′ is unique relative to this skeleton
f = TrA(Ψh′′). This argument does not depend on f , so also g = TrA(Ψh′′),
hence f = g.

Since both Ψx and Q' are the identity on objects we have:

Theorem 6.73. Circ(A) and Circx(A)/' are equivalent as categories.

6.5.4 Quotients of the Free Structure

Why go to all this effort to arrive at something equivalent to the original struc-
ture? Circx(A)/' provides a definition of the free compact closed category on
A which does not depend on decomposing polyarrows into generators. Each
polyarrow f corresponds to the equivalence class containing the unique regular
prime labelled by f . Hence, abusing notation slightly, the embedding

A ΦA- Circx(A)/'

can be stated directly, as A 7→ A and f 7→ [f].
Let F : A → B be a polycategory functor which is identity on objects. The

composition ΦBF is a symmetric monoidal functor from A to Circx(B), hence
by the universal property of Circx(A) we must have a unique compact closed
functor G such that

A
ΦA- Circx(A)/'

B

F

? ΦB - Circx(B)/'

G

?

commutes.
The functor G is easily defined using the structure of Circx(A)/'. Define a

partial map Circx(F)/' between the arrows of Circx(A)/' and Circx(B)/'
by

Circx(F)/' ([f]) = [Ff]

6.6. GENERALISED PROOF-NETS 117

whenever f is an acyclic prime. This is well defined since, by Lemma 6.66, if
[f] contains such an element it is unique.

Proposition 6.74. Circx(F)/' extends to the required compact closed functor
G above.

Proof. Take Circx(F)/' to be identity on objects. The requirement to preserve
the compact closed structure fixes the value of Circx(F)/' on the rest of the
arrows, since the acyclic primes generate the other arrows. To show that it
preserves composition, consider two arrows in Circ+

x (A)/', f and g. For a
general arrow

f = [TrA(
⊗
i

fi)]

with each of the fi acyclic, prime and regular. Hence

Circx(F)/' (f) ◦Circx(F)/' (g) = [TrA(
⊗
i

Ffi)] ◦ [TrB(
⊗
j

Fgj)]

= TrA⊗B [(
⊗
i

Ffi) ◦ (
⊗
j

Fgj)]

The circuit (⊗iFfi)◦ (⊗jFgj) is necessarily acyclic, hence each of its connected
components is the image of a well defined composition of polyarrows Ffi1 ◦
Fgj2 ◦ · · · ◦ Ffin = F (fi1 ◦ gj2 ◦ · · · ◦ fin) = Fhk.

TrA⊗B [(
⊗
i

Ffi) ◦ (
⊗
j

Fgj)] = TrA⊗B [(
⊗
k

Fhk)]

= Circx(F)/' (f ◦ g).

Remark. The restriction that F be identity on objects can be relaxed to the
requirement that F be injective on objects without causing any problems.

A particular case of interest is when B is obtained from the freely generated
A by imposing a set of equations between certain polyarrows. If Ff = Fg
the arrows of the free compact closed category are obtained by merging the
equivalence classes generated by these arrows, hence the decision problem for
Circx(B) is essentially reduced to that for B.

6.6 Generalised Proof-nets

We now define a system of two-sided proof-nets constructed over the generators
of a polycategory with multicut A. The resulting system of proof-nets will be
denoted PN(A) .

Definition 6.75. A PN(A) proof-net is a finite directed graph with edges la-
belled by mCQL formulae (see Section 4.1) . The graph is constructed by
composing the following links, while respecting the labelling on the incoming
and outgoing edges.

Premise: No incoming edges; one outgoing edge. The edge is labelled with an
arbitrary formula and the link is unlabelled.

118 CHAPTER 6. GENERALISED MCQL

Conclusion: One incoming edge; no outgoing edges. The edge is labelled with
an arbitrary formula and the link is unlabelled.

Unit: No incoming edges; two outgoing edges. The first outgoing edge is la-
belled X∗, the other, X, for some formula X. The link itself is labelled
by η.

Counit: Two incoming edges; no outgoing edges. Each counit is labelled by ε
and its incoming edges are labelled by X and X∗ for an arbitrary formula
X.

Tensor: Two incoming edges labelled X and Y ; one outgoing edge labelled
X ⊗ Y .

Cotensor: One incoming edge labelled X ⊗ Y ; two outgoing edges labelled X
and Y .

Circle: No incoming or outgoing edges; a circle is a closed loop labelled by a
formula.

Axiom: Each polyarrow f : ⊗iAi → ⊗jBj in ArrA defines a link labelled by f .
Its n incoming edges are labelled by A1, . . . , An and its m outgoing edges
are labelled by B1, . . . , Bm.

—X

—
X

η

XX∗ ε

X X∗

Premise Conclusion Unit Counit

⊗
X Y

X⊗Y

⊗
X⊗Y

X Y X

f

A1 An· · ·

B1 Bm· · ·
Tensor Cotensor Circle Axiom

Figure 6.10: Links for PN(A) Proof-nets

A proof-net is oriented such that edges enter the node from the top, and
exit from the bottom. This implies that any premise or unit link is above the
links they are connected to and, conversely, any conclusion or counit links are
below the links they are connected to.

The order of premises and conclusions is significant, and the type of a proof-
net is the pair (Γ,∆) of lists of formulae determined by the premises and conclu-
sions respectively. Usually this will be written as a sequent Γ ` ∆. A premise or
conclusion link is called atomic if the formula labelling it is a literal; a proof-net
is called atomic if all its premises and conclusions are atomic.

Proof-nets are permitted to be disconnected or cyclic, when considered as
directed or undirected graphs. In particular, an edge may leave a link and return
as an input to the same link, although the labelling on edges will prohibit this

6.6. GENERALISED PROOF-NETS 119

for all except axiom links. If a proof-net is directed-acyclic then it is called
process-like.

Definition 6.76 (β-reduction). Let ν, µ be proof-nets; define a one step reduc-
tion relation on proof-nets Rβ such that ν Rβ µ if ν can be rewritten to µ by
one of the local rewrite rules shown in Figures 6.11 and 6.12. Let

β
- be the

transitive, reflexive closure of Rβ and let =β be the symmetric closure of
β
- .

Lemma 6.77 (Subject Reduction). Suppose that ν is a proof-net with type
(Γ,∆) and ν

β
- µ; then µ also has type (Γ,∆).

Proof. No rewrites change the premises or conclusions, hence the type is un-
changed by β-reduction.

Theorem 6.78 (Termination). There is no infinite sequence of β-reductions.

Proof. Before the main part of the proof we can dispose of one of the rewrite
rules. Notice that the right hand side of the circle reversal rule cannot be
rewritten further, since the label is a positive literal. Since our proof-nets are
finite, there can only be finitely many circle reversal rewrites. Hence this rule
has no effect on termination, so we can safely ignore it.

Divide the edges of a proof-net ν into two classes: the “bad” edges are those
which connect two tensor links, two cotensor links, a premise to cotensor, or a
tensor to conclusion; the “good” edges are all the rest. Let r(ν) be the number
of occurrences of the the symbol ⊗ as the label on a good edge of ν. Let d(ν)
be the number of links in ν. Define an ordering on proof-nets by by ν < µ if
r(ν) < r(µ), or if r(ν) = r(µ) and d(ν) < d(µ). An inspection of the rewrite
rules reveals that if ν

β
- µ then necessarily ν > µ. Since both formulae and

proof-nets are finite, there can be no infinite descending chain in this order, and
hence every rewrite sequence terminates.

Theorem 6.79 (Local Confluence). If a proof-net ν β-reduces to ν1 and ν2 by
different rewrites r1, r2, then there exist sequences of rewrites s1, s2 such that

ν
r1 - ν1

ν2

r2

?

s2

- ν∗

s1

?

Proof. Since all the rewrites are local, it suffices to show that any pair of over-
lapping rewrites which diverge can be unified. There are 15 such divergences.

Firstly, the rules ηε-elim 1 and 2 may conflict in the three ways shown in
Figure 6.13. The first two divergences unify vacuously; the third case requires
an easy induction on the structure of the formula X. If X atomic, then the
circle labelled by X is already normal, and the circle labelled by X∗ rewrites
to this by the circle reversal rule. Otherwise if X = Y ⊗ Z, the circle then
rewrites via the circle split rule to a pair of circles labelled by Y and Z which,

120 CHAPTER 6. GENERALISED MCQL

...
...

η

ε

XX X∗

...

...

X
(ηε-elim 1)

...

...

η

ε

X∗ X X∗

...

...

X∗
(ηε-elim 2)

...
...

⊗

⊗

...
...

X Y

X⊗Y

X Y

...
...

...
...

X Y (⊗-elim)

...
...

η

X⊗YX∗⊗Y ∗

⊗

...

⊗

...

η η

XX∗ YY ∗

X∗⊗Y ∗ X⊗Y

(η-ex)

...
...

ε

X⊗Y X∗⊗Y ∗

⊗

...

⊗

...

ε ε

X⊗Y X∗⊗Y ∗

X X∗Y Y ∗

(ε-ex)

X⊗Y X Y
(circle split)

If A is an atom then:

A∗ A
(circle reversal)

Figure 6.11: Rewrite Rules for PN(A), I

6.6. GENERALISED PROOF-NETS 121

—

—

X ⊗ Y

X ⊗ Y ⊗

—

⊗

—

X Y

X ⊗ Y

X ⊗ Y

(⊗-ex 1)

...

⊗

—

...

X ⊗ Y

X ⊗ Y

...

⊗
⊗

⊗

—

...

X Y

X ⊗ Y

X ⊗ Y

(⊗-ex 2)

...

⊗

—

...

X ⊗ Y

X ⊗ Y

...

⊗
⊗

⊗

—

...

X Y

X ⊗ Y

X ⊗ Y

(⊗-ex 3)

...

⊗

—

...

X ⊗ Y

X ⊗ Y

...

⊗
⊗

⊗

—

...

X Y

X ⊗ Y

X ⊗ Y

(⊗-ex 4)

...

⊗

—

...

X ⊗ Y

X ⊗ Y

...

⊗
⊗

⊗

—

...

X Y

X ⊗ Y

X ⊗ Y

(⊗-ex 5)

...

...

⊗

⊗

...

...

X ⊗ Y

X ⊗ Y

...

...

⊗

⊗

⊗

⊗

...

...

X Y

X ⊗ Y

X ⊗ Y

(⊗-ex 6)

...

...

⊗

⊗

...

...

X ⊗ Y

X ⊗ Y

...

...

⊗

⊗

⊗

⊗

...

...

X Y

X ⊗ Y

X ⊗ Y

(⊗-ex 7)

...

...

⊗

⊗

...

...

X ⊗ Y

X ⊗ Y

...

...

⊗

⊗

⊗

⊗

...

...

X Y

X ⊗ Y

X ⊗ Y

(⊗-ex 8)

...

...

⊗

⊗

...

...

X ⊗ Y

X ⊗ Y

...

...

⊗

⊗

⊗

⊗

...

...

X Y

X ⊗ Y

X ⊗ Y

(⊗-ex 9)

Figure 6.12: Rewrite Rules for PN(A). II: Tensor Expansions

122 CHAPTER 6. GENERALISED MCQL

by induction hypothesis, are β-equal with the pair of circles labelled by Y ∗ and
Z∗.

Secondly, ηε-elim 1 and 2 may both clash with the rules η-ex and ε-ex. These
four cases are all essentially the same, so we treat only the divergence between
ηε-elim 1 and η-ex. Suppose that we have

π1
� ηε-elim 1

π
η-ex - π2

as shown in Figure 6.14. The resolution depends on the adjacent links L1 and
L2. There are four legal choices for L1: premise, unit, tensor and cotensor.
Dually, the four possibilities for L2 are conclusion, counit, tensor and cotensor,
giving a total of 16 pairings.

• If L1 is a tensor link then π2 rewrites to π1 by ⊗-elim.

• If L1 is a unit link, π1, π2 rewrite to π′1, π
′
2 by η-ex whereupon π′2 rewrites

to π′1 by ⊗-elim.

• If L1 is a premise and L2 is a conclusion then π1 rewrites to π2 by ⊗-ex 1.

• If L1 is a premise and L2 is a tensor, then π1 rewrites to π2 by ⊗-ex 2 or
3, depending on which input of L2 is used.

• If L1 is a cotensor and L2 a tensor, then π1 rewrites to π2 via one of ⊗-ex
6–9 depending on the arrangement of the inputs and outputs.

These cases are enumerated in Table 6.1 and their unifications are shown in
Figures 6.15, 6.16 and 6.17.

Finally, the rule for ⊗-elim may conflict with each the expansions ⊗-ex 2–9.
All of these are essentially the same so we treat only the case of ⊗-ex 8, shown
in Figure 6.18. Suppose

π1
� ⊗-elim

π
⊗-ex 8 - ⊗-elim - π2

There are four cases, based on what the link labelled L is.

• If L is a cotensor, π2 rewrites to π1 by ⊗-elim;

• if L is a tensor, π1 rewrites to π2 by ⊗-ex 7 or 8;

• if L is a conclusion, π1 rewrites to π2 by ⊗-ex 5;

• if L is a counit, π1, π2 rewrite to π′1, π
′
2 by ε-ex whereupon π′2 rewrites to

π′1 by ⊗-elim.

These four cases are shown in Figure 6.19.
Since all divergent rewrites can be unified, PN(A) is locally confluent under

β-reduction.

Theorem 6.80 (Strong Normalisation). β-reduction for proof-nets is strongly
normalising.

Proof. Since β-reduction is confluent, each proof-net has a unique normal form;
since it is terminating, every rewrite sequence must arrive at the normal form.

6.6. GENERALISED PROOF-NETS 123

...
...

ε

η

X X∗X∗ Xη

...
...

η

XX∗ ...
...

η

XX∗
=

...
...

ε

η η

XX∗X X∗

...
...

η

X X∗
...

...

η

X X∗=

η

ε

XX∗

X∗ X

Figure 6.13: Unifying ηε-elim Divergences

L1 Premise Unit Cotensor Tensor

L2

—X
η

XX∗

⊗
X⊗Y

X Y

⊗
X Y

X⊗Y

Conclusion

—
X 1 2 3 4

Counit

ε

X X∗

Dual to 2 5 6 7
Tensor

⊗
X Y

X⊗Y Dual to 3 Dual to 6 8 9
Cotensor

⊗
X⊗Y

X Y

Dual to 4 Dual to 7 Dual to 9 10

Table 6.1: Enumeration of cases for ηε-elim / η-ex divergence

124 CHAPTER 6. GENERALISED MCQL

. . .

. . .L
1

L
2

ε

η

X
⊗
Y

X
⊗
Y

(η
ε-

el
im

)

.L
1

L
2X
⊗
Y

(ε
-e

x)

(η
-e

x)
⊗ ⊗

⊗ . . .
⊗. . .

L
2

L
1

η
η

ε
ε

X
∗

Y
∗

X
∗

Y
∗

X
∗
⊗
Y
∗

X
Y

X
Y

(⊗
-e

lim
)

⊗. . .

⊗ . . . L
2

L
1

η
η

ε
ε

X
Y

X
Y

(η
ε-

el
im

)

⊗. . . ⊗ . . . L
2

L
1

X
Y

X
Y

?

Figure 6.14: Divergence between ηε-elim 1 and η-ex

6.6. GENERALISED PROOF-NETS 125
C

as
e

1:
L

1
=

pr
em

is
e

an
d
L

2
=

co
nc

lu
si

on
.

C
as

e
3:
L

1
=

te
ns

or
an

d
L

2
=

co
nc

lu
si

on
.

C
as

e
4:
L

1
=

co
te

ns
or

an
d
L

2
=

co
nc

lu
si

on
.

— —

X
⊗
Y

X
⊗
Y

⊗ —⊗—

X
Y

X
⊗
Y

X
⊗
Y

(⊗
-e

x)

⊗ —

. . .
. . .

X
Y

X
⊗
Y

(⊗
-e

lim
)

. . .
. . .

⊗ ⊗ ⊗ —

X
Y

X
⊗
Y

⊗

—
. . .

. . .

X
⊗
Y

X
⊗
Y

(⊗
-e

x)

⊗
⊗. . .

. . .
⊗ —

X
Y

X
⊗
Y

C
as

e
2:
L

1
=

un
it

an
d
L

2
=

co
nc

lu
si

on
.

. . .
—

η

X
⊗
Y

(η
-e

x)
⊗

⊗
. . .

—

η
η X

Y

X
⊗
Y

(⊗
-e

lim
)

⊗
⊗

. . .
⊗ ⊗ —

η
η

X
Y

X
Y

X
⊗
Y

(η
-e

x)

⊗ ⊗ —

. . .

η

X
Y

X
⊗
Y

Figure 6.15: Unifying ηε-elim and η-ex divergences, cases 1-4.

126 CHAPTER 6. GENERALISED MCQL

C
as

e
5:
L

1
=

un
it

an
d
L

2
=

co
un

it
.

. . .

. . .

ε

η

X
⊗
Y

(ε
-e

x)

(η
-e

x)
⊗ ⊗

. . .
. . .

. . .
. . .

η
η

ε
ε

X
Y

X
Y

(⊗
-e

lim
)

⊗ ⊗ ⊗ ⊗

. . .
. . .

. . .
. . .

η
η

ε
ε

X
Y

X
Y

X
Y

X
Y

(ε
-e

x)

(η
-e

x)

. . .

⊗ ⊗

. . .

η

ε

X
Y

X
Y

X
⊗
Y

C
as

e
6:
L

1
=

co
te

ns
or

an
d
L

2
=

co
un

it
.

. . .

. . .

ε

η

X
⊗
Y

(ε
-e

x)

(η
-e

x)
⊗ ⊗

. . .
. . .

. . .
. . .

η
η

ε
ε

X
Y

X
Y

(⊗
-e

lim
)

⊗ ⊗ ⊗ ⊗

. . .
. . .

. . .
. . .

η
η

ε
ε

X
Y

X
Y

X
Y

X
Y

(ε
-e

x)

(η
-e

x)

. . .

⊗ ⊗

. . .

η

ε

X
Y

X
Y

X
⊗
Y

Figure 6.16: Unifying ηε-elim and η-ex divergences, cases 5-6.

6.6. GENERALISED PROOF-NETS 127

Case 7: L1 = tensor and L2 = counit. Case 8: L1 = cotensor and L2 = tensor.

⊗

...
...

...

ε

X Y

X⊗Y (⊗-elim)

⊗

...
...

⊗

⊗

...

ε

X Y

X Y

X Y

X⊗Y

⊗
...

...

⊗

...

...

X⊗Y

X⊗Y

(⊗-ex) ⊗

⊗

...

...

⊗

⊗

...

...
X Y

X⊗Y

X Y

X⊗Y

Case 9: L1 = tensor and L2 = tensor. Case 10: L1 = tensor and L2 = cotensor.

⊗

⊗

...

...
...

...

X Y

X⊗Y (⊗-elim)
⊗

⊗

...

...

⊗

⊗

...
...

X Y

X⊗Y

X Y

X Y

⊗

⊗

...
...

...
...

X Y

X Y (⊗-elim)

⊗

⊗

...
...

⊗

⊗

...
...

X Y

X Y

X Y

X Y

Figure 6.17: Unifying ηε-elim and η-ex divergences, cases 7-10.

128 CHAPTER 6. GENERALISED MCQL

... ...

... L

⊗

⊗

⊗

...

Z X ⊗ Y

Z

...

L
...

...

⊗

...

X ⊗ Y
Z

... ...

... L

⊗
⊗

⊗

⊗
⊗

...

X Y
Z

Z

X Y
...

...

...

⊗

L

⊗
⊗

...

X YZ

X ⊗ Y

X Y

= π1

= π2

Figure 6.18: Divergence between ⊗-elim and ⊗-ex 8

Having established the existence of β-normal proof-nets, we now characterise
them intrinsically. Recall that for multiplicative linear logic proof nets[Gir87b],
the structure of a cut free proof can be separated into the axiom structure and
the connective structure. The following lemmas give a similar result, pushing
the connectives to the outside of the proof-net.

Lemma 6.81. Let ν be a normal proof-net, and suppose x is a link in ν.

• If x is a tensor link, all links below x are tensors or conclusions.

• If x is a cotensor link, all links above x are contensors or premises.

Proof. Let x be a tensor link. Its outgoing edge is labelled by some formula
X ⊗ Y ; suppose there is a link below it, called x′.

• If x′ is a cotensor then rewrite rule ⊗-elim applies, hence ν is not normal.

• If x′ is a counit then it is labelled by X⊗Y , hence rewrite rule ε-ex applies
and ν is not normal.

• If x′ is an axiom, it has an incoming edge labelled by a non-atomic formula,
which contradicts the definition of axiom link.

Hence x′ is either a tensor or a conclusion. If it is a conclusion then the hypoth-
esis is satisfied. If x′ is a tensor, then by induction all the links below x′ are
also tensors or conclusions. Hence if ν is normal, then all links below a tensor
link are also tensors or conclusions.

The case when x is a cotensor is exactly dual.

6.6. GENERALISED PROOF-NETS 129

...⊗

⊗

...

⊗

...
...

⊗

X Y

X ⊗ Y

X Y

...
...

...⊗

⊗

...

X Y

X ⊗ Y

...

...

⊗

⊗

...

...

X ⊗ Y

X ⊗ Y

...

...

⊗

⊗

⊗

⊗

...

...

X Y

X ⊗ Y

X ⊗ Y

Case L = Tensor Case L = Cotensor

...

⊗

—

...

X ⊗ Y

X ⊗ Y

...

⊗
⊗

⊗

—

...

X Y

X ⊗ Y

X ⊗ Y

... ...

⊗

...

ε

X ⊗ Y

X ⊗ Y

...

⊗ ⊗

...

⊗

...

ε ε

X∗ Y ∗ X Y

X ⊗ Y

...

...

⊗

⊗

⊗

...

ε

X Y

X Y

X ⊗ Y

...

⊗ ⊗

... ⊗

⊗
⊗

...

ε ε

X∗ Y ∗ X Y

X Y

X ⊗ Y

Case L = Conclusion Case L = Counit

Figure 6.19: Unifying ⊗-elim/⊗-ex divergences

130 CHAPTER 6. GENERALISED MCQL

Corollary 6.82. Any normal proof-net ν can be formed from a normal atomic
net ν′ by adding tensor links to its conclusions and cotensors to its premises.

Corollary 6.83. All the edges of a normal atomic proof-net are labelled by
literals.

Proposition 6.84. An atomic proof-net is normal if and only if all its edges
are labelled by atomic formulae and no unit link is connected to a counit.

Proof. If ν is normal, Corollary 6.83 gives that all its edges’ labels are atomic;
by its normality no unit is connected to a counit since otherwise rewrite ηε-elim
1 or 2 would apply.

Conversely, suppose that ν is atomic, such that all its edges are labelled by
literals, and none of its unit links are connected to counits. Since all its edges
are labelled by literals, none of η-ex, ε-ex, circle split, or ⊗-ex 1 can apply. For
the same reason it contains no tensor or cotensor links, hence rewrites ⊗-elim
and ⊗-ex 2–9 do not apply. By hypothesis, no unit is connected to a counit,
hence rewrites ηε-elim 1 and 2 cannot apply. Since, no rewrites are possible, ν
is in its normal form.

Definition 6.85. Let π, ν be proof-nets of types Γ ` ∆ and Γ′ ` ∆′. Define
their tensor product π ⊗ ν to be the proof-net formed by their juxtaposition,
with type Γ,Γ′ ` ∆,∆′.

Suppose further that Γ′ = Γ1, X,Γ2 and ∆ = ∆1, X,∆2; then the compo-
sition of π and ν along X is formed by identifying the X-conclusion of π with
the X-premise of ν to produce a proof-net of type Γ1,Γ,Γ2 ` ∆1,∆,∆2.

Proposition 6.86. PN(A)/ =β is a polycategory.

Proof. The objects of the polycategory are the formulae of PN(A); the poly-
arrows are the proof-nets. Routine work verifies that the required equations are
satisfied.

Indeed, one can show that PN(A), with the tensor defined above, is actually
a polycategory with self-dual tensor. See [CS97] for definitions.

6.6.1 PN(A) is equivalent to Circ(A)

The normal atomic proof-nets are very closely related to the A-labellable cir-
cuits. A simple formal transformation produces a circuit from each such proof-
net, and vice-versa. These transformations define a pair of functors

Circ(A)
F-

�
U

PN(A)

which form an equivalence of categories. We approach the proof via the special
case of normal atomic proof-nets.

Lemma 6.87. Suppose ν is an atomic normal proof-net; suppose e is an edge
in ν labelled by a negative literal. One of the following holds:

• e connects a premise to a conclusion;

• e connects a premise to a counit link;

6.6. GENERALISED PROOF-NETS 131

—

—

A∗

A∗

...

—

ε

A

A∗

—

...

ε

A

A∗

Figure 6.20: Negative Edges

• e connects a unit link to a conclusion.

Proof. By Lemma 6.81, ν contains no tensor or cotensor links; axioms cannot
have negative edges, therefore e must connect either a premise, unit, counit
or conclusion. Since the proof-net is normal, e cannot join a unit to a counit
by the preceding lemma. Since an edge cannot be incoming or outgoing at
both endpoints the pairings unit/unit, counit/counit, premise/premise, conclu-
sion/conclusion, conclusion/counit and premise/unit are excluded. This leaves
the three possibilities claimed. These can occur validly in a normal proof-net
as shown by Fig. 6.20.

Suppose that π : Γ → ∆ is normal and atomic; then π can be rewritten to
produce an A-labelled circuit c(π) :

⊗
Γ →

⊗
∆ by the following procedure.

1. The premises and conclusions of π become the boundary nodes of c(π); the
premises form dom c(π) and the conclusions cod c(π). They are labelled by
the edges formulae and signed according to whether the atom is positive
or negative.

2. For all edges e labelled by a negative literal A∗, reverse e’s direction, and
change its labelling to A. This guarantees that negatively signed nodes in
the codomain have incoming edges, and vice versa.

3. Erase every unit and counit node, merging their incident edges, which are
now pointing in the same direction.

4. The remaining links of π must all be axioms links. These become the
internal nodes of c(π). At each node x, the ordering on in(x) and out(x)
is simply that of the components of the domain and codomain of the arrow
(in A) which labels that node.

Lemma 6.87 guarantees that c(n) really is a circuit. There is a dual procedure,
taking a circuit f :

⊗
iAi →

⊗
j Bj to a normal atomic proof-net.

1. The nodes in dom f become premises; those of cod f , conclusions.

2. If e is an edge, labelled by A, going from some node n to a premise
p, replace e with a counit-link whose incoming edges are from e and p,
labelled by A and A∗ respectively.

3. If e is an edge, labelled by B, going to some node n from a conclusion
c, replace e with a unit-link whose outgoing edges go to e and c and are
labelled by B and B∗ respectively.

132 CHAPTER 6. GENERALISED MCQL

4. The interior nodes of f become axiom links, each determined by the label
on the corresponding node.

This defines a proof-net p(f) : A1, . . . , An ` B1, . . . Bm, which by Prop. 6.84 is
normal. The two procedures are mutually inverse, which leads to the following
characterisation result.

Theorem 6.88. Let π be a normal proof-net; then π is completely determined
by its type and an A-labellable circuit.

⊗
—

⊗
⊗

—
—

· · · · · ·

· · · · · · · · ·

· · · · · · · · ·

—
⊗

⊗
⊗

—
—

· · · · · ·

premise type Γ
Fixed by the

conclusion type ∆
Fixed by the

Defines a unique
A-labelled circuit f

Figure 6.21: Normal Proof-net decomposition

Proof. Suppose that π has type Γ ` ∆. Given a formal list of formula Γ, let Γ−

be the list of literals produced by replacing every occurrence of ⊗ by a comma.
By Lemma 6.81, π can be decomposed into three layers: on top πΓ of type
Γ ` Γ−, consisting only of cotensor links; the middle π− : Γ− ` ∆− which is
both normal and atomic; and at the bottom π∆ : ∆− ` ∆ consisting only of
cotensors. The layers πΓ and π∆ are uniquely determined by Γ and ∆, while
π− is uniquely determined by the circuit c(π−).

Justified by this theorem we write π ∼ (Γ ` ∆, f) for any normal π. The
required functors F and U are now easily defined.

For each A of PN(A), let UA be the positively signed singleton, labelled by
A; then define U(A∗) = (UA)∗ and U(X ⊗ Y) = UX ⊗ UY . Let π

β
- ν ∼

(Γ ` ∆, f) where ν is normal; then define Uπ = f .

6.7. RELATIONS AND REWRITING 133

To map Circ(A) into PN(A), let f be a circuit; then let Ff be the proof-net
obtained from p(f) by adding tensor links to all the conclusions (bracketed to
the left) and, similarly, cotensors to all the premises.

Theorem 6.89. The 4-tuple (Circ(A),PN(A), F, U) is an equivalence of cate-
gories.

Proof. Obviously, from the construction of U and F , we have UF = Id. On the
other hand, a proof-net π : X → Y only differs from FUπ : FUX → FUY by
the associativity of the tensor, hence Id ∼= FU .

6.7 Relations and Rewriting

Let A be a polycategory and suppose that E is a binary relation on the arrows
of A such that if (f, g) ∈ E then dom f = dom g and cod f = cod g. Let R be
the least congruence with respect to composition and symmetry containing E ,
modulo the equations for compact symmetric polycategories. We can view R
as a rewriting system on the arrows of A.

Consider a pair of arrows f, g ∈ A(A,B). Their images in Circ(A), Ψf and
Ψg, have the same boundary. Hence, if the open graph Ψf − ∂Ψf occurs as a
subgraph of some circuit Γ, replacing it with the interior of Ψg yields a valid
circuit Γ′, which is also A-labelled. Hence the rewriting system R lifts from A
to Circ(A).

Proposition 6.90. Let R be as described above, and let R̂ be the induced rewrit-
ing on Circ(A). Then, if R is locally confluent then so is R̂.

Proof. It suffices to consider Circ(A)+. Let Γ be a circuit such that there are
divergent rewrites

Γ1
� r̂1 Γ

r̂2 - Γ2

Suppose that γ1 and γ2 are the domains of r̂1, r̂2 respectively. Since r̂1, r̂2

correspond to rewrites g1
r1- and g2

r2- in A, γ1, γ2 are necessarily acyclic.
Any minimal subgraph of Γ containing both γ1 and γ2 is also acyclic, and hence
it is the image of some arrow g in A, to which the rewrites r1, r2 may be applied.
R is locally confluent so we have

g

g1
�

r 1

g2

r
2

-

g′
�

ρ 2
ρ
1

-

and both the paths ρ1, ρ2 lift to Circ(A). Hence R̂ is locally confluent.

134 CHAPTER 6. GENERALISED MCQL

Local confluence suffices for confluence, but unfortunately the bargains end
here: neither termination nor weak normalisation lift to circuits. It is easy to
manufacture examples where R is strongly normalising, but R̂ has infinitely
many non-normalisable terms, due to cycles induced by the trace.

Lemma 6.91. Let R be a terminating rewrite system on the polycategory A; if
f ∈ Circ(A) is acyclic then no infinite rewrite sequence in R̂ contains f .

Proof. Since f is acyclic, it is isomorphic as a graph to some polyarrow, hence
any infinite rewrite sequence including f would contradict the termination prop-
erty of R.

Call the binary relation E strictly reducing if whenever (f, g) is in E then
g contains strictly fewer generators than f . Note that if E is strictly reducing
then R is terminating : it contains no infinite rewrite sequences. If any rewrite
system is terminating and confluent it is strongly normalising.

Proposition 6.92. If E is strictly reducing then R̂ is terminating.

Remark. It should be possible to weaken the condition of strict reduction: all
that is really needed is that normal forms be invariant under cyclic (partial)
permutation.

Let ∼ be the equivalence relation on the arrows of A generated by R, and
let ∼̂ be the equivalence relation on the arrows of Circ(A) generated by R̂.

Proposition 6.93. The quotient category Circ(A)/∼̂ is compact closed.

Proof. The compact closed structure is given by simple circuits. Since E is
defined over the generators, these are unchanged.

If f ∼ g then Ψf∼̂Ψg, hence the embedding Ψ/∼:

A
Ψ - Circ(A)

A/∼

E

??

Ψ/∼
- Circ(A)/∼̂

Ê

??

is well defined.

Proposition 6.94. Let C be a compact closed category and G : A → A a strong
monoidal functor such that G ∼= G\Ψ. If G factors through A/∼ then G\ factors
through Circ(A)/∼̂.

Proof. Note that
Ψf∼̂Ψg ⇒ f ∼ g

⇒ Gf = Gg
⇒ G\Ψf = G\Ψg.

Since both ∼̂ and G\ preserve the compact closed structure we have f ′∼̂g′ ⇒
G\f ′ = G\g′.

6.8. EXAMPLE: PROVING NO-CLONING 135

6.8 Example: Proving No-cloning

In Section 1.1 we saw the proof of the no cloning theorem for quantum states in
the Hilbert space formalism. As a simple example of the circuit representation,
we repeat that proof in the abstract setting. In Hilbert spaces, the proof boiled
down to the claim that the semi-ring of scalars — in that case the complex
numbers — contained no idempotents except 1 and 0; in the circuit setting the
proof also depends on the properties of the scalars.

Let A be a polycategory, freely generated from some collection of objects
and polyarrows, such that A contains some “states”

ψ : − → A φ : − → A θ : − → A

We will represent these diagrammatically as:

Now suppose that Circ(A) contains a unitary cloning map, F : A⊗A→ A⊗A.
By cloning map, we intend that, given θ as an ancilla input, F will produce two
copies of its other input as output. That is, we have the equations

F ◦ (φ⊗ θ) = φ⊗ φ,

F ◦ (ψ ⊗ θ) = ψ ⊗ ψ,

which can be expressed as the diagrammatic equations:

To complete the proof, we simply compose the second equation with the adjoint
of the first, and use the unitarity of F :

136 CHAPTER 6. GENERALISED MCQL

Since Circ(A) is freely generated this equation does not hold, which gives a
contradiction to the supposed cloning property of F .

Recall that φ† ◦ ψ is the scalar product 〈φ | ψ〉, and so the original proof is
reclaimed by assuming 〈θ | θ〉 = 1I , but this is not necessary.

It is worth pausing to consider what is actually proved by the above argu-
ment. The construction above is a re-enactment of the standard proof in the
abstract setting; in particular it is not a derivation of no-cloning from logical or
structural reasons. Rather, the proof shows that if, for contingent reasons, the
cloning map exists then it implies an equation among the scalars. Since Circ(A)
is freely generated this equation cannot hold, therefore there is no cloning map
in Circ(A). Of course, it easy to construct an interpretation of Circ(A) into
FDHilb where this equality is indeed violated: simply interpret ψ and φ as
distinct, non-orthogonal states.

There are, however, models of Circ(A) where these equations do hold. For
example, in Rel the only scalars are the empty map and the identity, and hence
the equation 〈φ | ψ〉2 = 〈φ | ψ〉〈θ | θ〉 holds for all possible interpretations of
ψ, φ and θ. Indeed it is simple to define such a unitary cloning map in Rel.
(Note that the equations on scalars do not themselves imply the existance of a
cloning map. Consider the free strongly compact closed category generated by
the category 1 for a counterexample.)

To summarise: the no-cloning proof offered above shows that unitary cloning
maps do not exist in the free theory of abstract quantum mechanics; therefore
they may or may not exist in concrete interpretations of the free theory.

Chapter 7

The One-Way Quantum
Computer

The one-way model of quantum computation was introduced by Raussendorf,
Briegel and Browne [RB01, RBB02] to address concerns about the scalability of
quantum information processing. A computation in the one-way model begins
with a highly-entangled, multi-qubit state to which a sequence of single qubit
measurements and local unitary corrections is applied. Since the choice of basis
for each measurement may depend upon earlier measurements, an algorithm is
specified by the pattern of measurements and corrections, and their dependence.
In the course of the computation, the initial entangled state — called a cluster
state — is destroyed by the measurements, hence the name “one-way”.

This model contrasts strongly with the conventional idealised quantum com-
putation which essentially consists of a large unitary operation, typically ex-
pressed as a series of quantum logic gates, applied to an array of qubits, followed
by the simultaneous measurement of some set of those qubits. Despite being
limited to single qubit unitaries, the one-way model is at least as powerful as
the quantum circuit model, as it is possible to code any circuit as a pattern of
measurements on a cluster state.

This chapter uses the one-way model as an extended example of the tech-
niques of the preceding chapter applied in a concrete setting. We will define a
polycategory modulo some equations and use circuits over this polycategory to
represent computations in the one-way model. Due to their inherent parallelism,
one-way computations are usually rather difficult to understand. However, by
performing rewrites on the circuit representation we will prove the correctness
of a number of such programs and reduce them to simple unitary maps. The
one-way model is formalised in the measurement calculus, which we now define.

7.1 The Measurement Calculus

The Measurement Calculus, introduced by Danos, Kashefi and Panangaden
[DKP07] is a formal rewriting system for the one-way model. It is composi-
tional, both sequentially and in parallel, and is strongly normalising. Its terms
have a denotational semantics in terms of completely positive maps. We review
here the basic features of the calculus.

137

138 CHAPTER 7. THE ONE-WAY QUANTUM COMPUTER

The syntax of the measurement calculus is based on the following commands:

• 2-qubit entanglement operator Eij ;

• 1-qubit corrections Xi, Zj ;

• 1-qubit measurements Mα
i .

The indices i and j range over an array of qubits, on which the commands act.
The entanglement operator Eij is interpreted as the controlled-Z; the correc-
tions are the usual Pauli X and Z operators. The command Mα

i is interpreted
as a destructive projective measurement in the basis

|+α〉 =
1√
2
(|0〉+ eiα |0〉),

|−α〉 =
1√
2
(|0〉 − eiα |0〉).

To each measurement we associate a classical bit, called a signal; if the measure-
ment of the ith qubit yields the |+α〉 state then si = 0, and conversely si = 1 if
the state |−α〉 is produced.

Given signals s, t, define dependent corrections Xs
i and Ztj , by X1

i = Xi,
Z1
j = Zj and X0

i = Z0
i = I; and dependent measurements

t[Mα
i]s = M

(−1)sα+tπ
i .

Measurement commands are combined in patterns.

Definition 7.1. A measurement pattern consists of a finite set of qubits V with
distinguished subsets I,O ⊆ V of inputs and outputs, and a finite sequence of
commands acting on V such that:

• no command depends on a signal from a measurement not yet performed;

• no command acts on a qubit already measured;

• qubits are measured if and only if they are not outputs.

These conditions ensure that a pattern represents a runnable sequential pro-
gram. The input qubits I are prepared in some state |ψ〉, each of the non-inputs
is initialised to the state |+〉 = 1√

2
(|0〉+ |1〉) and the commands are applied in

sequence, leaving behind only the output qubits O.
After each measurement the pattern may proceed along two different com-

putation paths depending on the outcome of the measurement. Such a path,
coextensive with the command sequence, is called a branch. Each branch con-
sists of a sequence of unitary maps and projection operators, hence it defines a
CP-map. The execution of a pattern is a probabilistic choice over its branches.
Since CP-maps are preserved under convex combination, the effect of running
a pattern P is to apply a CP-map UP to its input. In this case, we say that
P implements the map UP, and two patterns are considered equivalent if they
implement the same map.

Measurement patterns come equipped with a sound rewriting relation which
is strongly normalising. This rewriting will not be treated here (see [DKP07]
for details), however the normal forms enjoy an additional property which will
be crucial to our development.

7.2. REPRESENTING THE MEASUREMENT CALCULUS 139

Proposition 7.2 (EMC normal form). For each measurement pattern P, there
exists an equivalent pattern P′ such that P ⇒∗ P′, and in the command sequence
of P′ all the entanglement operators precede all the measurements, which precede
all the corrections.

The measurement calculus is shown to be universal for unitary maps by rep-
resenting a 2-element universal set of unitaries as patterns. Arbitrary unitaries
can be built up compositionally and, by normalising the resulting patterns, time
and space efficient implementations can be found. However it is rarely clear what
a non-trivial measurement pattern computes. In the next section we approach
this recognition problem by representing normal patterns in the circuit notation
developed in the preceding chapter. Equational reasoning on the circuits allows
the patterns to be transformed back into simple unitary representations without
ancillary qubits.

7.2 Representing the Measurement Calculus

We will now introduce a polycategory P which we will use to encode the mea-
surement calculus. Note that, as elsewhere in this thesis, we are not concerned
with the branching aspect of pattern execution. Hence there is no need to rep-
resent any signals in the polycategory: we assume that the outcome of every
measurement is known, and any dependent operations are evaluated accordingly.
Given this simplification, the measurement command Mα may be replaced by

a projection operator |+α〉 or |−α〉. Let Tα =
(

1 0
0 eiα

)
; then

|+α〉 = |+〉T−α,
|−α〉 = |+〉T−α+π

hence we will use only the projection |+〉, augmented by some Tα to represent
the measurement commands, where 0 ≤ α < 2π.

We make one further restriction: we consider only patterns whose entangle-
ment graph is connected. In terms of syntax this means that there is at least
one command of the form Eij or Eji for every qubit i. Any pattern which does
not have this property may be expressed as a parallel composition of patterns
which do, so this restriction serves only to simplify the analysis, without any
loss of power.

Definition 7.3. Let P be the polycategory with a single object 1, and whose
polyarrows are freely generated by polycomposition and symmetry from the
following basic polyarrows:

|+〉 : − → 1 Tα : 1 → 1
〈+| : 1 → − X : 1 → 1
E : 1, 1 → 1, 1 H : 1 → 1

We write Z as a mnemonic for Tπ. Since there is only one object there is
only one identity arrow, which is also written 1; we write n as shorthand for
1, . . . , 1︸ ︷︷ ︸
n times

.

140 CHAPTER 7. THE ONE-WAY QUANTUM COMPUTER

We interpret P in FDHilb via the symmetric monoidal functor J·K : P →
FDHilb, where J1K = Q and the comma is interpreted as the usual tensor
product of Hilbert spaces. The functor assigns each polyarrow to a linear map
such that

J|+〉K =
1√
2

(
1
1

)
: C - Q

J〈+|K =
1√
2

(
1 1

)
: Q - C

JEK =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 : Q⊗Q - Q⊗Q

JTαK =
(

1 0
0 eiα

)
: Q - Q

JXK =
(

0 1
1 0

)
: Q - Q

JHK =
1
2

(
1 1
1 −1

)
: Q - Q

We will shortly form the category of circuits Circ(P); by the canonical em-
bedding of P into Circ(P) we may use the graphical notation of circuits for
arrows in the polycategory. The generators of P will be represented graphically
as shown in Figure 7.1; polyarrows are connected acyclic graphs whose vertices
are generators. As always, the diagrams should be read from top to bottom.

Figure 7.1: Generators for P in graphical form

Definition 7.4. Let P be a pattern containing n measurements, and let b ∈ Bn.
We define the branch (P, b) to be the pattern produced from P by setting each
signal si to the ith bit of b and evaluating all its dependent commands.

We now have sufficient material to construct a polyarrow to represent each
branch. The construction proceeds in the obvious fashion, by substituting the
generators of P for the corresponding measurement calculus commands. Sadly,
there are two complications of a rather uninteresting, technical nature. Firstly,
the polyarrow E requires its inputs to be adjacent, whereas the measurement
command Eij does not. Hence permutations must be introduced to shuffle the
operands into the correct places. Secondly, care is required to ensure that a

7.2. REPRESENTING THE MEASUREMENT CALCULUS 141

valid polyarrow is defined. This will require some intermediate definitions, to
which we now turn our attention.

Given an EMC-normal pattern P, let the entangling sequence e(P) be the
subsequence of P’s commands containing exactly those commands which are
entanglements. We use the notation Eninjn for the nth element of e(P) and let

e(P)|k = Ekikjk · · ·E
2
i2j2E

1
i1j1 ,

so that e(P)|k is the first k elements of e(P). Let

Jk(P) = {i1, j1, . . . , ik, jk} ,

that is, Jk(P) is the set of qubit indices which occur in e(P)|k. Clearly Jk+1(P) ⊆
Jk(P), and if the length of e(P) is N then JN (P) = V since the entanglement
graph is assumed to be connected. Since Jk(P) ⊂ N, let Jk(P) be ordered as
in N.

Definition 7.5. A pattern P is topologically sorted if, for all k, ik+1 ∈ Jk(P)
or jk+1 ∈ Jk(P) .

Lemma 7.6. For every pattern P there exists a pattern P′, equivalent to P,
such that P′ is topologically sorted.

Proof. Regardless of the values of i, j, k, l we have EijEkl = EklEij hence we
may choose them in any order. Since the entanglement graph is connected, any
topological sorting of the vertices will define a topologically sorted pattern.

We will now concentrate upon patterns which are topologically sorted; thanks
to Lemma 7.6 there is no loss of generality.

Given a topologically sorted pattern P, we now construct a polyarrow fn :
|Jn(P)| → |Jn(P)| for each entangling sequence e(P)|n by recursion over n.
The base case is trivial:

f1 = E .

Suppose that fn has already been constructed. Let Jn+1(P) = {ι1, . . . , ιl} so
that the subscripts reflect the order, and let in+1 = ιk and jn+1 = ιk′ ; without
loss of generality we assume ιk < ιk′ .

Since P is topologically sorted at least one of ιk, ιk′ belongs to Jn(P). Sup-
pose both do; then Jn+1(P) = Jn(P). Define a permutation on Jn(P) by

σ =
(
ι1 · · · ιk ιk+1 · · · ιk′−1 ιk′ ιk′+1 · · · ιl
ι1 · · · ιk ιk′ ιk+1 · · · ιk′−1 ιk′+1 · · · ιl

)
Then let

fn+1 = (E 0
2◦k−1 (fn)σ)σ

−1
.

Otherwise suppose that ιk ∈ Jn(P) but ιk′ /∈ Jn(P). Then define a permutation
on Jn+1(P):

τ =
(
ι1 · · · ιk′−1 ιk′ ιk′+1 · · · ιl
ι1 · · · ιk′−1 ιk′+1 · · · ιl ιk′

)
Now define

fn+1 = (E 0
1◦k−1 (fn))σ

−1

τ .

142 CHAPTER 7. THE ONE-WAY QUANTUM COMPUTER

The remaining case, when ιk′ ∈ Jn(P) but ιk /∈ Jn(P), is essentially the same as
this one. All three are illustrated in Figure 7.2. Given a measurement pattern
P, let fe(P) be the polyarrow defined by e(P).

It is worth remarking that, while we have not defined the semantics of the
measurement calculus, Jfe(P)K necessarily defines the same unitary map as the
entanglement sequence e(P). This is an immediate consequence of the fact that
J·K is symmetric monoidal.

Figure 7.2: Defining a polyarrow from an entanglement sequence.

Definition 7.7. Let (P, b) be a branch, where P is a topologically sorted
pattern in EMC-normal form. Let i1, . . . im be the indices of its non-input
qubits; let j1, . . . , jn be the indices of the qubits which are measured; and let
k1, . . . , kp be the indices of the qubits which have corrections applied to them.
We assume that measurements and non-inputs are listed in ascending order of
index; and corrections are listed in the reverse order to that in which they occur
in the pattern. We define a polyarrow

p(P, b) : |I| - |O|

by

p(P, b) = C(1)
0

1◦k1−1 · · · C(p)
0

1◦kp−1

(〈+| 0
1◦0 T−αj1

) 0
1◦j1−1 · · · (〈+| 0

1◦0 T−αjn
) 0

1◦jn−1

fe(P) im−1
1◦0 |+〉 · · · i1

1◦0 |+〉

where the measurement at the jth qubit is αj and C(k) is either X or Z de-
pending on the pattern,

This somewhat nightmarish composition looks more complicated than it is.
The basic idea is simply to plug all the single qubit operations into fe(P) in

7.2. REPRESENTING THE MEASUREMENT CALCULUS 143

the appropriate places. Recall that specification of a composition of polyarrows
includes the number of objects at the left of the domain/codomain which are
“skipped over”. Composition with 〈+| or |+〉 changes the arity of the polyarrow,
and hence interferes with the next composition. The fiddly indexing ensures that
arrows are composed “starting on the right” to avoid this problem.

Polyarrows are instrically 2-dimensional objects, so their representation as
strings of algebraic symbols does not serve easy comprehension, as the above
perhaps demonstrates. The results of Chapter 6 establish that the graphical
language of circuits is a faithful representation of any compact polycategory, so
we will prefer diagrams to algebraic expressions from here on.

By way of a simple example1 the unitary matrix

J(α) =
(

1 eiα

1 −eiα
)

is computed by the two qubit pattern J(α) = Xs1
2 M−α

1 E12. Consider the branch
(J(α), 0), i.e. the run where the outcome of the measurement is |+−α〉; the
resulting polyarrow, p(J(α), 0), is shown in Figure 7.3 (a); p(J(α), 1) is is shown
in Figure 7.3 (b).

Figure 7.3: Example: the J(a) pattern, with a′ = a+ π

It is easy to check that J(α) = JH◦TαK. However, since P is freely generated,
it lacks the necessary equations to prove that

H ◦ Tα = p(J(α), b).

Hence we will consider a quotient of P by some carefully chosen equations. The
equations chosen will hold in FDHilb, so the interpretation functor J·K will
factor uniquely through the quotient category to give a new interpretation J·Kq.
In fact we will take the quotient of the free dagger polycategory on P so that
the resulting class of circuits will be strongly compact closed.

Let DP denote the free dagger polycategory on P; let Q denote the quotient
category of DP by the following equations.

1Like all the examples of this chapter, this pattern is from [DKP07].

144 CHAPTER 7. THE ONE-WAY QUANTUM COMPUTER

Adjoints

|+〉† = 〈+| (7.1)

T †α = T−α (7.2)

X† = X (7.3)

H† = H (7.4)

E† = E (7.5)

Simplifications

Tα ◦ Tβ = Tα+β (7.6)
T0 = 1 (7.7)

H ◦H = 1 (7.8)
X ◦X = 1 (7.9)

〈+| 0
1◦1 E 0

1◦0 |+〉 = H (7.10)

Commuting Relations

Eσσ = E (7.11)

E 0
1◦1 E = E 1

1◦0 E (7.12)

E 0
1◦0 Tα = Tα 0

1◦0 E (7.13)

The reader is invited to verify that, for every equation F = G listed above,
JF K = JGK holds in FDHilb. The equations are clearer in graphical form, as
shown in Figure 7.4. We can now prove, using the circuit representation, that

Figure 7.4: Equations for P

the patterns for J(α) really compute the desired map.

7.2. REPRESENTING THE MEASUREMENT CALCULUS 145

Obviously Q is a more interesting than category P; unfortunately, it is not
strongly compact closed as our abstract quantum mechanics requires. Therefore
we will work in Circ(Q), the free compact closed category on Q. Note that as
a consequence of Equations (7.1)–(7.5) every adjoint in Q can be expressed as
an element in P hence we can neglect the dagger structure entirely.

We make one small but significant modification to the framework described
in earlier chapters. In the context of the measurement calculus we consider only
the concrete space of qubits Q and never its dual Q∗. To accommodate this
we implicitly compose each unit map ηQ with the sesquilinear map which sends
z 7→ z for each complex number z. While this map is not linear, and hence
not present in FDHilb, the resulting pseudo-unit ηQ : I → Q ⊗ Q is linear,
and corresponds to the Bell state |00〉 + |11〉 in FDHilb. The pseudo-counit
εQ : Q⊗Q→ I is defined similarly.

Just as the unit and counit were used to define for each arrow f : A → B
its dual f∗ : B∗ → A∗, so ηQ and εQ define the transpose fT : B → A. The
notions of name pfq and coname xfy are similarly adapted. It is easy to see
that ηQ, εQ and fT satisfy the same equations as ηQ, εQ and f∗.

Given the comments above, we can define the transpose diagrammatically
in Circ(Q). We note that each of our operations (except |+〉 and 〈+|) is in-
variant under transpose. Further, E is invariant under partial transpose. These
equations are shown in Figure 7.5.

Figure 7.5: Equations for transpose invariance in Circ(Q)

Lemma 7.8. In Circ(Q) we have

E |++〉 = pHq

〈++|E = xHy

Proof. See the diagram below.

146 CHAPTER 7. THE ONE-WAY QUANTUM COMPUTER

The equalities are due to: the invariance of E under partial transpose; topolog-
ical simplification; and, Equation (7.10). The other claim is dual.

7.3 Examples

The paper [DKP07] provides several examples of measurement calculus patterns
to compute various unitary maps. In the remainder of the chapter we will
use the circuit representation to prove that these patterns are indeed correct.
Starting with the circuit representation of a pattern, we rewrite it according to
the equations above until a manifestly unitary circuit is all that remains.

Remark. In each case we will consider only a single branch, the branch where all
signals are zero. A proof that the pattern meets its specification would normally
require every branch to be treated. However the examples we have chosen enjoy
the property of flow which implies that all their branches coincide, and hence
the proofs given here are complete. See [DK05] for details.

7.3.1 Teleportation

The pattern for teleportation map is

Xs2
3 Zs13 M0

2M
0
1E23E12 .

This pattern transfers the input state on qubit 1 to qubit 3; if we don’t distin-
guish between the qubits then the underlying map of the teleportation protocol
is the identity. Translating into Circ(Q), we have the circuit shown at the left,
below.

7.3.2 One qubit unitary

Any unitary map is equivalent to a sequence of three rotationsRx(γ)Rz(β)Rx(α),
which in turn may be factorised [DKP04] as

R(α, β, γ) = J(0)J(α)J(β)J(γ).

which results in the standard pattern:

Xs2+s4
5 Zs1+s35 M0

4 [M−α
3]s2 [M−β

2]s1M−γ
1 E45E34E23E12 .

7.3. EXAMPLES 147

Since all the signals are set to zero, this results in the circuit shown at the top
left of the diagram below. By the indicated sequence of rewrites, this circuit can
be reduced to the composition of one qubit gates shown in the bottom right.
Note that J(α) = HTα, hence

Figure 7.6: The pattern for an arbitrary unitary, R(a, b, c).

J(0)J(α)J(β)J(γ) = HT0HTαHTβHTγ = TαHTβHTγ

which is the map depicted in Figure 7.6. Therefore the pattern implements the
unitary as required.

7.3.3 Controlled-NOT

The pattern
Xs3

4 Zs24 Zs21 M0
3M

0
2E13E23E34

implements the controlled-not gate. This translation into Circ(Q) yields the
following rewrite sequence:

148 CHAPTER 7. THE ONE-WAY QUANTUM COMPUTER

whose correctness is easily verified.

7.3.4 Controlled-U

The final example is the controlled unitary gate, for an arbitrary one-qubit
unitary U . Again, borrowing from [DKP04], we construct the CU map as:

CU = Tα
′

1 T β+π
2 H2T

− γ
2

2 H2T
−π

2
2 H2CZ12

H2T
π
2

2 H2T
γ
2

2 H2T
−π−δ−β

2
2 H2CZ12H2T

−β+δ−π
2

2 . (7.14)

with α′ = α+ β+γ+δ
2 . The required pattern has fourteen qubits, indexed by lower

case letters a, b, c, . . . , k and upper case letters A, B and C. The normalised
pattern CU is shown below.

Z
si+sg+se+sc+sa

k X
sj+sh+sf +sd+sb

k XsB

C ZsA+se+sc

C

M0
BM

−α′
A M0

j [Mβ−π
i]sh+sf +sd+sb [M− γ

2
h]sg+se+sc+sa [M

π
2
g]sf +sd+sb

M0
f [M−π

2
e]sd+sb [M

γ
2
d]sc+sa [M

π−δ−β
2

c]sbM0
bM

−β+δ+π
2

a

EBCEABEjkEijEhiEghEfgEAfEefEdeEcdEbcEabEAb

The pattern is simplified by evaluating all the signals. Let b = 0, 0, 0, 0, . . . , 0;
then, the run (CU, b) has the form shown below.

M0
BM

−α′
A M0

jM
β−π
i M

− γ
2

h M
π
2
g M

0
fM

−π
2

e M
γ
2
d M

π−δ−β
2

c M0
bM

−β+δ+π
2

a

EBCEABEjkEijEhiEghEfgEAfEefEdeEcdEbcEabEAb.

The proof that this pattern above is equivalent to control-U gate as shown in
Figures 7.7 and 7.8. Note that due to space restrictions the Tα elements are
labelled with the index of their qubit rather than the angle found in the above
expression; the angles can be read from the pattern, above.

7.4 Remark

The equations we have chosen above suffice to prove the correctness of the
examples we present in this chapter. However it should be clear that these
equations will not suffice to prove in Q every equation which holds in the image
of J·K. A simple example is HXH = Z; the equation holds in FDHilb, but it
cannot be shown in the abstract setting of Q. A minimal set of equations which
suffice to prove every identity which holds in the image Q has yet to be found.

7.4. REMARK 149

Figure 7.7: The controlled-U gate, part 1.

150 CHAPTER 7. THE ONE-WAY QUANTUM COMPUTER

Figure 7.8: The controlled-U gate, part 2.

Chapter 8

Further Work

The primary objective of the this work was to describe the type theoretical basis
of quantum computation. The preceding chapters have constructed suitable
formal models based on the formulation of quantum mechanics in the framework
of compact closed categories. This represents a significant contribution towards
the construction of a quantum programming language based explicitly on the
behaviour of quantum systems. This work suggests several future directions for
further research.

Formal Quantum Mechanics

The framework elaborated here captures only the multiplicative aspect of quan-
tum mechanics. To give a complete account of quantum mechanics the frame-
work must be extended to include the probabilistic branching of quantum mea-
surement; for use as a programming framework classical information and control,
including classical probabilities, should also be incorporated.

In the original paper [AC04], these features are represented using a biproduct,
a degenerate version of linear logic’s additive connectives. The simple proof-
net formalism of Chapter 4 is extended with biproducts in [AD06], and the
techniques there are readily adapted to the generalised proof-nets of Chapter 6.
The cited work divides the proof-net into a number of slices (cf. [Gir87a]) to
represent the additive structure; a more practical approach uses local additive
boxes, so that proof-nets may be composed without requiring any knowledge
beside their types.

The biproduct is not the only candidate structure for this role. Coecke
and Pavlovic [CP07] introduce classical objects and use this notion to express
the branching behaviour of measurements in a coalgebraic framework. Selinger
[Sel06] uses the idea of splitting idempotents to incorporate classical types into
a purely multiplicative framework. Both of these formalisms have the benefit
of obviating the connective manipulation required by the separation of multi-
plicative and additive aspects, however the representation of control in these
approaches is less obvious.

Intimately connected with probabilistic behaviour in quantum mechanics
is the notion of mixed state. The constructions presented here are based on
compact closed structure only, and hence are readily applicable to both pure
and mixed state quantum computation, although we have focused on the for-

151

152 CHAPTER 8. FURTHER WORK

mer here. In other work Selinger [Sel05] and Coecke [Coe05] have considered
the construction of a category of mixed states from a category of pure states.
Since any practical quantum computation device is likely to deal with mixed
states it seems a worthwhile exercise to investigate these constructions in proof-
theoretical terms.

Entanglement and Computation

Current proposals for quantum programming languages do not take entangle-
ment seriously. The structure inside the quantum register is largely neglected.
In Chapter 5 we saw how the type system of MLL can assign types to mCQL
terms such that type describes the entanglement within the corresponding quan-
tum state. Of course, mCQL has limited expressive power with respect to
entangled states, so the generalised proof-nets of Chapter 6 are a more ap-
propriate tool to give the informatic flows within the quantum realm a more
complete treatment. If we restrict attention to one-sided nets — that is, to nets
denoting quantum states rather than maps between them — the same intuition
for assigning MLL types works well. One can construct an MLL type for a gen-
eralised proof-net by replacing some of the tensor links with par links. However
given that the graph structure of a generalised proof-net is arbitrarily compli-
cated, it remains to find a correctness criterion similar to the Danos-Regnier
criterion [DR89].

Of course a programming system must describe functions as well as states.
An appealing idea is to assign a type to each function, denoting whether it cre-
ates or destroys entanglement; however it is easy to find problematic examples.
The controlled-Z gate can map a separable state to a maximally entangled pair,
but only for certain inputs; other separable states remain separable. Worse,
this example is an involution, and hence not even monotonic with respect to
entanglement. Sticking with the MLL typing discipline we are led to interpret
⊗ as “surely separable” which is a subtype of P, understood as as “maybe en-
tangled”, as seen in [Dun04, BIP03, Per05]. I am pessimistic as to whether this
approach will lead to more informative judgements than “maybe-entangled” as
both input and output for any non-trivial term.

However the treatment of the measurement calculus developed in Chapter
7 suggests one avenue to progress. There, the circuit formalism was augmented
with equations reflecting properties of the Hilbert space model. The set of
equations used for rewriting is not complete, however the maps Tα,H,X and CZ
do generate all the unitaries in FDHilb. The discovery of a set of equations E on
these elements which made the interpretation functor Circ(Q)/E → FDHilb
faithful would be a major step. By orienting these equations as rewrite rules, a
formal system for reducing measurement patterns to their specification will be
defined; of course, small details like confluence and termination must be taken
care of as well to produce a truly effective system.

However, it is not necessary to go quite so far. The key property of the
the circuit representation of a quantum state is connectedness. Any equation
which rewrites a connected fragment to a disconnected one will yield a better
approximation to the true entanglement in the underlying quantum state. Hence
it is not necessary to derive every equation which holds in FDHilb, but merely
those which hold between graphs of differing topologies. Whether this is actually
easier remains to be seen, but one recent result which seems relevant is [AP05].

153

It is worth remarking that our proof that the pattern CU computes the
controlled-U map did so by reducing the pattern essentially to a sequence of
teleportation and “pushing” the phase and Hadamard maps through this net-
work. This suggests that it may be possible to use this technique to prove the
converse to the flow theorem: that if a pattern computes a unitary map then it
must contain a “flow” from its inputs to its outputs.

The preceding discussion assumes that the dichotomy between entangled
and separable states will be sufficient for a practical type system. A more subtle
discrimination may be desirable for some applications. As we noted in Chapter
5, in the abstract setting maximal entanglement in a state encodes unitarity
in the corresponding map. In the generalised setting, even if all the generators
are unitary there are non-unitary maps, namely unitaries with part of their
domain traced out. Hence there are states which are entangled, but less than
maximally so. This topic seems ripe for further investigation. The divergence
from unitarity of a circuit is related to how many traces have been taken over
it: that is, how many loops are present. This is an essentially topological
feature; it seems possible that the tools of algebraic topology may provide what
is needed for an abstract classification of entanglement. More concretely, it will
be necessary to relate the abstract entanglements found in the free model, to the
concrete measures of entanglement found in the quantum information literature.

Quantum Processes

We have generally assumed strictly monoidal categories, though the proof-net
formalism could easily adapt to a non-strict setting, perhaps with an increase
in elegance. Quantum protocols rely on a notion of agent which we could view
as a bracketing of the global state space. Under such an interpretation the as-
sociativity isomorphisms correspond to the redistribution of quantum resources
among the agents. For example, in a non-strict setting, the triangle law of
compact closed categories,

A
ρ- A⊗ I

1A ⊗ ηA- A⊗ (A∗ ⊗A)

A

1A

?
�

λ−1
I ⊗A �

ε⊗ 1A
(A⊗A∗)⊗A,

α

?

can be interpreted as a more explicit variation of the teleportation protocol
where Bob, on the right hand side of the tensor, creates the entangled pair
and sends one qubit to Alice. The transmission of this qubit is encoded by the
associativity map α.

In this way, a representation of a quantum process naturally splits into two
parts: the entanglement structure, which is captured by the process’s represen-
tation as a circuit or proof-net in the sense of Chapter 6; and its decomposition
into systems and subsystems. Notice that such a decomposition is necessary to
any discussion of entanglement, indeed the definition of entanglement requires
it. In Chapter 5 we took a somewhat ad hoc approach and used the parse tree of
the type as the state’s decomposition. In a more realistic setting, where agents

154 CHAPTER 8. FURTHER WORK

pass quantum resources between themselves, the distribution of the state would
not be a static in this way, but rather a dynamic part of the system’s behaviour.

A more promising candidate for a serious approach to this problem is Mil-
ner’s theory of bigraphs [MJ04, Mil01]. Bigraphical reactive systems are a very
general class of interaction calculi which explicitly represent locality of agents
as well as their interconnections. The integration of the logical characterisation
of quantum processes carried out in this thesis and the more general setting
of bigraphs appears a profitable approach to a quantum process algebra, or a
quantum programming language with explicit concurrency, not least because
bigraphs can be formalised in a rich categorical setting based on 2-categories
[SS02, SS04].

Algebraic Generalisations

Moving away from concrete quantum computation, recall that our work has
been carried out in the setting of symmetric monoidal categories. Relaxing this
condition to consider planar, braided or ribbon categories may yield interesting
structures and help make connections with areas as diverse as quantum groups
and cyclic linear logic. In particular there is a striking formal resemblance
between the spin networks used in some approaches to quantum gravity [Bae98],
and the representation of arrows in Circ(A). This connection merits fuller
investigation. While spin networks live in an n-categorical framework, there is
a strong connection between polycategories and bicategories [Lam05, CKS00].
It is perhaps worth the effort to recast the theory in this setting; the notion of
computads [Bat02, Mak05] may be useful for the free case.

Another important connection to be developed is that between the entan-
glement of a state and the complexity of program used to produce it. Two
results of Richard Jozsa are relevant here. Firstly, in [JL03], Jozsa and Linden
establish that an exponential speedup is only achieved in programs which create
an asymptotically unbounded amount of entanglement amongst its subsystems.
A more recent result [Joz06] states that the computational cost of simulating a
quantum circuit is exponential in the number of swaps in the circuit. From the
abstract point of view there is no essential difference between a quantum state
and the process which produces it. Hence I hypothesise that the deviation of a
graph from planarity – the abstract counterpart to the swaps – will give rise to
a natural measure of complexity. Some related work by Metayer [Mét94, Mét01]
and Gaubert [Gau04] makes connections between the topological genus implic-
itly defined by a proof in multiplicative linear logic and the number of exchanges
contained therein. Since the logic of compact closed categories is a close relative
of multiplicative linear logic it is likely that this work will transfer easily to the
quantum setting.

Bibliography

[Aar05] S. Aaronson. Quantum computing, postselection, and proba-
bilistic polynomial-time. Proceedings of the Royal Society A,
461(2063):3473–3482, 2005, quant-ph/0412187.

[ABP99] S. Abramsky, R. Blute, and P. Panangaden. Nuclear and trace ide-
als in tensored *-categories. Journal of Pure and Applied Algebra,
143:3–47, 1999.

[Abr93] S. Abramsky. Computational interpretations of linear logic. Theo-
retical Computer Science, 111(1-2):3–57, 1993.

[Abr05] S. Abramsky. Abstract scalars, loops, and free traced and strongly
compact closed categories. In J. Fiadeiro, editor, Proceedings of
CALCO 2005, volume 3629 of Springer Lecture Notes in Computer
Science, pages 1–31, 2005.

[AC04] S. Abramsky and B. Coecke. A categorical semantics of quantum
protocols. In Proceedings of the 19th Annual IEEE Symposium
on Logic in Computer Science: LICS 2004, pages 415–425. IEEE
Computer Society, 2004.

[AC05] S. Abramsky and B. Coecke. Abstract physical traces. Theory and
Applications of Categories, 14(6):111–124, 2005.

[AD06] S. Abramsky and R. Duncan. A categorical quantum logic.
Mathematical Structures in Computer Science, 16:469–489, 2006,
arXiv:quant-ph/0512114. Special Issue for the Proceedings of QPL
2004.

[AG05] T. Altenkirch and J. Grattage. A functional quantum programming
language. In Proceedings of Logic in Computer Science, 2005.

[AGN95] S. Abramsky, S. Gay, and R. Nagarajan. Specification struc-
tures and propositions-as-types for concurrency. In F. Moller
and G. Birtwistle, editors, Logics for Concurrency: Structure vs
Automata — Proceedings of the Banff Higher Order Workshop.
Springer-Verlag Lecture Notes in Computer Science, 1995.

[AGN96] S. Abramsky, S. Gay, and R. Nagarajan. Interaction categories
and the foundations of typed concurrent programming. In M Broy,
editor, Proceedings of the 1994 Marktoberdorf Summer School on
Deductive Program Design, pages 35–113. Springer-Verlag, 1996.

155

156 BIBLIOGRAPHY

[AHS02] S. Abramsky, E. Haghverdi, and P. Scott. Geometry of interac-
tion and linear combinatory algebras. Mathematical Structures in
Computer Science, 12:625–665, 2002.

[AJ94] S. Abramsky and R. Jagadeesan. New foundations for the geometry
of interaction. Information and Computation, 111(1):53–119, 1994.
Conference version appeared in LiCS ’92.

[AK] S. Aaronson and G. Kuperberg. The complexity zoo. http://
qwiki.caltech.edu/wiki/Complexity Zoo.

[AP05] K.M.R. Audenaert and M. B. Plenio. Entanglement on mixed sta-
biliser states–i: Normal forms and reduction procedures. New J.
Phys, 7, 2005, quant-ph/0505036.

[Bae98] J. Baez. Spin foam models. Class. Quantum Grav, 15:1827–1858,
1998, gr-qc/9709052.

[Bar79] M. Barr. ∗-Autonomous Categories, volume 752 of Lecture Notes
in Mathematics. SpringerVerlag, 1979.

[Bar84] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics.
North-Holland Publishing, 1984.

[Bar91] M. Barr. *-autonomous categories and linear logic. Mathematical
Structures in Computer Science, 1:159–178, 1991.

[Bat02] M.A. Batanin. Computads and slices of operads, 2002,
math.CT/0209035.

[BBC+93] C. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and
W. Wootters. Teleporting an unknown quantum state via dual
classical and EPR channels. Phys. Rev. Lett., pages 1895–1899,
1993.

[BBPS96] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher.
Concentrating partial entanglement by local operations. Phys. Rev.
A, 53(4):2046–2052, 1996.

[BCST96] R.F. Blute, J.R.B Cockett, R.A.G. Seely, and T.H. Trimble. Nat-
ural deduction and coherence for weakly distributive categories.
Journal of Pure and Applied Algebra, 113:229–296, 1996.

[BD95] J. Baez and J. Dolan. Higher-dimensional algebra and topolog-
ical quantum field theory. J.Math.Phys, 36:6073–6105, 1995, q-
alg/9503002.

[BIP03] R. F. Blute, I. T. Ivanov, and P. Panangaden. Discrete quantum
causal dynamics. Int. J. Theor. Phys., 42:2025–2041, 2003.

[Blu93] R. Blute. Linear logic, coherence and dinaturality. Theoretical
Computer Science, 115:3–41, 1993.

[BS94] G. Bellin and P. J. Scott. On the π-calculus and linear logic. The-
oretical Computer Science, 1994.

BIBLIOGRAPHY 157

[BS04] A Baltag and S. Smets. The logic of quantum programs. In Peter
Selinger, editor, Proceedings of the 2nd International Workshop on
Quantum Programming Languages, number 33 in TUCS General
Publication. Turku Centre for Computer Science, July 2004.

[BvN36] G. Birkhoff and J. von Neumann. The logic of quantum mechanics.
Annals of Mathematics, 37(4):823–843, October 1936.

[CF58] H. B. Curry and R. Feys. Combinatory Logic I. North-Holland
Publishing, 1958.

[Chu40] A. Church. A formulation of the simple theory of types. Journal
of Symbolic Logic, 5, 1940.

[CKS00] J.R.B Cockett, J. Koslowski, and R.A.G. Seely. Introduction to
linear bicategories. Mathematical Structures in Computer Science,
10(2):165–203, 2000.

[Cle00] R. Cleve. An introduction to quantum complexity theory. In
C. Macchiavello, G .M. Palma, and A. Zeilinger, editors, Collected
Papers on Quantum Computation and Quantum Information The-
ory. World Scientific, 2000, arXiv:quant-ph/9906111.

[Coe05] B. Coecke. De-linearizing linearity: Projective quantum axiomat-
ics from strong compact closure. In Proceedings of the 3rd In-
ternational Workshop on Quantum Programming Languages, 2005,
arXiv:quant-ph/0506134.

[CP06] B. Coecke and E. O. Paquette. POVMs and Naimark’s theorem
without sums. In Proceedings of the 4th International Workshop
on Quantum Programming Languages, 2006.

[CP07] B. Coecke and D. Pavlovic. Quantum measurements without sums.
In G. Chen, L. H. Kauffman, and Jr Lomonaco, S.J., editors, The
Mathematics of Quantum Computation and Technology, CRC Ap-
plied Mathematics & Nonlinear Science. Taylor and Francis, 2007,
quant-ph/0608035.

[CS97] R. Cockett and R.A.G. Seely. Weakly distributive categories. Jour-
nal of Pure and Applied Algebra, 113(2):229–296, 1997.

[DK05] V. Danos and E. Kashefi. Determinism in the one-way model. In
ERATO conference on Quantum Information Science 2005, 2005,
arXiv.org:quant-ph/0506062.

[DKP04] V. Danos, E. Kashefi, and P. Panangaden. Robust and parsimo-
nious realisations of unitaries in the one-way model. Phys. Rev. A,
72(6):060101, December 2004, quant-ph/0411071.

[DKP07] V. Danos, E. Kashefi, and P. Panangaden. The measurement calcu-
lus. Journal of ACM, 2007, arXiv:quant-ph/0412135. (to appear).

[DP05] E. D’Hondt and P. Panangaden. The computational power of the
W and GHZ states. Journ. Quantum Inf. and Comp, 6(2):173–183,
2005, quant-ph/0412177.

158 BIBLIOGRAPHY

[DR89] V. Danos and L. Regnier. The structure of multiplicatives. Arch.
Math. Logic, 28(3):181–203, 1989.

[Dun04] R. Duncan. Believe it or not, bell states are a model of multi-
plicative linear logic. Technical Report PRG-RR-04-18, Oxford
University Computing Laboratory, 2004.

[Eke91a] A. K. Ekert. Correlations in Quantum Optics. PhD thesis, Oxford
University, 1991.

[Eke91b] A. K. Ekert. Quantum cryptography based on Bell’s theorem. Phys.
Rev. Lett., 67(6):1769–1782, 1991.

[Fey82] R. P. Feynman. Simulating physics with computers. Int. J. Theor.
Phys., 21(6/7), 1982.

[FGM01] M. Fitzi, N. Gisin, and U. Maurer. Quantum solution to the byzan-
tine agreement problem. Phys. Rev. Lett., 87(21), 2001.

[Fuc02] C. Fuchs. Quantum mechanics as quantum information (and only
a little more), 2002, quant-ph/0205039.

[Gau04] C Gaubert. Two-dimensional proof-structures and the exchange
rule. Mathematical Structures in Computer Science, 14:73–96,
2004.

[GC99] D. Gottesman and I. L. Chuang. Quantum teleportation is a uni-
versal computational primitive. Nature, 402:390, 1999.

[Gen35] G. Gentzen. Untersuchungen über das schliessen. In M.E Szabo,
editor, The Collected Papers of Gerhard Gentzen. North-Holland
Publishing, 1935.

[Gir87a] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1),
1987.

[Gir87b] J.-Y. Girard. Multiplicatives. In G. Lolli, editor, Logic and Com-
puter Science: New Trends and Applcations, pages 11–37. Rendi-
conti del Seminario Mathematico dell’Universita e Politecnico di
Torino, 1987.

[Gir95] J.-Y. Girard. Linear logic: its syntax and semantics. In Jean-Yves
Girard, Yves Lafont, and Laurent Regnier, editors, Advances in
Linear Logic, volume 222 of London Mathematical Society Lecture
Notes. Cambridge University Press, 1995.

[Gir96] J.-Y. Girard. Proof-nets: the parallel syntax for proof theory. In
Marcel Dekker, editor, Logic and Algebra. 1996.

[Gis91] N. Gisin. Bell’s inequality holds for all non-product states. Phys.
Lett. A, 154(5,6):201–202, April 1991.

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cam-
bridge University Press, 1989.

BIBLIOGRAPHY 159

[Gro96] L. K. Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the Twenty-Eighth Annual ACM Sympo-
sium on Theory of Computing, pages 212–219. ACM, 1996.

[GSS91] J.-Y. Girard, A. Scedrov, and P. J. Scott. Normal forms and cut-
free proofs as natural transformations. In Y. N. Moschovakis, edi-
tor, Proceedings Workshop Logic from Computer Science, Berkeley,
CA, USA, 13–17 Nov 1989, volume 21, pages 217–241. Springer-
Verlag, New York, 1991.

[Hat02] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[Hin97] R.J. Hindley. Basic Simple Type Theory, volume 42 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University
Press, 1997.

[Hin04] P. Hines. Can the von Neumann architecture be made quantum?
manuscript, 2004.

[Hof99] M. Hoffman. Linear types and non-size increasing polynomial time
computation. In Proceedings of the 14th Symposium on Logic in
Computer Science. IEEE, 1999.

[HS03] M. Hyland and A. Schalk. Gluing and orthogonality for models of
linear logic. Theoretical Computer Science, 294:183–231, 2003.

[HvG03] D. Hughes and R. van Glabbeek. Proof nets for unit-free
multiplicative-additive linear logic. In Proc. Logic in Computer
Science 2003. IEEE, 2003.

[IB00] C. J. Isham and J. Butterfield. Some possible roles for topos theory
in quantum theory and quantum gravity. Foundations of Physics,
30:1707 – 1735, 2000.

[Ish95] C. J. Isham. Lectures on Quantum Theory: Mathematical and
Structural Foundations. Imperial College Press, 1995.

[JL03] R. Jozsa and N. Linden. On the role of entanglement in quan-
tum computational speed-up. Proceedings of the Royal Society A,
459:2011–2032, June 2003, arxiv:quant-ph/020143.

[Joy77] A Joyal. Remarques sur la théories des jeux à deux personnes.
Gazette des sciences mathématiques du Québec, 1(4), 1977.

[Joz06] R. Jozsa. On the simulation of quantum circuits, 2006, quant-
ph/0603163.

[JS91] A. Joyal and R. Street. The geometry of tensor categories i. Ad-
vances in Mathematics, 88:55–113, 1991.

[JS93] A. Joyal and R. Street. Braided tensor categories. Advances in
Mathematics, 102:20–78, 1993.

[JSV96] A. Joyal, R. Street, and D. Verity. Traced monoidal categories.
Math. Proc. Camb. Phil. Soc., 119:447–468, 1996.

160 BIBLIOGRAPHY

[Kel72a] G.M. Kelly. An abstract approach to coherence. volume 281 of
Lecture Notes in Mathematics, pages 106–147. Springer, 1972.

[Kel72b] G.M. Kelly. Many-variable functorial calculus I. volume 281 of
Lecture Notes in Mathematics, pages 66–105. Springer, 1972.

[Kel74] G.M. Kelly. On clubs and doctrines. volume 420 of Lecture Notes
in Mathematics, pages 181–256. Springer, 1974.

[Kel92] G.M. Kelly. On clubs and data-type constructors. In M.P. Four-
man, P.T. Johnstone, and A.M. Pitts, editors, Applications of Cat-
egories in Computer Science, volume 177 of London Mathematical
Society Lecture Notes, pages 163–190. Cambridge University Press,
1992.

[KL80] G.M. Kelly and M.L. Laplaza. Coherence for compact closed cate-
gories. Journal of Pure and Applied Algebra, 19:193–213, 1980.

[KML71] G.M. Kelly and S. Mac Lane. Coherence in closed categories. Jour-
nal of Pure and Applied Algebra, 1:97–140, 1971.

[Kni96] E. Knill. Conventions for quantum pseudocode. Technical Report
LAUR-96-2724, Los Alamos National Laboratory, 1996.

[Kos03] J. Koslowski. A monadic approach to polycategories. Electronic
Notes in Theoretical Computer Science, 69:193–218, February 2003.

[KSW97] P. Katis, N. Sabadini, and R.F.C. Walters. Bicategories of pro-
cesses. Journal of Pure and Applied Algebra, 115:141–178, 1997.

[Lam68] J. Lambek. Deductive systems and categories I. syntactic calculus
and residuated categories. Mathematical Systems Theory, 2(4):287–
318, 1968.

[Lam69] J. Lambek. Deductive systems and categories (ii). In R. J.
Hilton, editor, Category Theory, Homology Theory and their Appli-
cations I, volume 87 of Lecture Notes in Mathematics, pages 76–122.
Springer, 1969.

[Lam05] J. Lambek. Bicategories in algebra and linguistics. In P. Ruet,
editor, Linear Logic in Computer Science. 2005.

[Loa94] R. Loader. Models of Lambda Calculi and Linear Logic: Structural,
Equational and Proof-theoretic Characterisations. PhD thesis, St
Hugh’s College, Oxford, 1994.

[LS86] J. Lambek and P. J. Scott. Introduction to higher order categori-
cal logic, volume 7 of Cambridge studies in advanced mathematics.
Cambridge University Press, 1986.

[LTdF04] O. Laurent and L. Tortora de Falco. Slicing polarized additive nor-
malisation. In T. Ehrhard, J.-Y. Girard, P. Ruet, and P. Scott,
editors, Linear Logic in Computer Science, volume 316 of London
Mathematical Society Lecture Notes, pages 247–282. Cambridge
University Press, 2004.

BIBLIOGRAPHY 161

[Mak05] M. Makkai. The word problem for computads. 2005.

[Man80] Y. Manin. Computable and uncomputable. Sovetskoye Radio, 1980.
In Russian.

[Mét94] F. Métayer. Homology of proof-nets. Arch. Math. Logic, 33:169–
188, 1994.

[Mét01] F. Métayer. Implicit exchange in multiplicative proofnets. Mathe-
matical Structures in Computer Science, 11(2):261–272, 2001.

[Mil01] R. Milner. Bigraphical reactive systems. In Proceedings of the 12th
International Conference on Concurrency Theory, volume 2154 of
Lecture Notes in Computer Science, pages 16–35, 2001.

[MJ04] R. Milner and O. H. Jensen. Bigraphs and mobile processes. Techni-
cal Report UCAM-CL-TR-580, University of Cambridge Computer
Laboratory, 2004.

[ML63] S. Mac Lane. Natural associativity and commutativity. Rice Univ.
Studies, 49:28–46, 1963.

[ML97] S. Mac Lane. Categories for the Working Mathematician (2nd Ed.).
Springer-Verlag, 1997.

[MOTW95] J. Maraist, M. Odersky, D. Turner, and P. Wadler. Call-by-name,
call-by-value, call-by-need, and the linear lambda calculus. In 11th
International Conference on the Mathematical Foundations of Pro-
gramming Semantics, 1995.

[MT03] H. G. Mairson and K. Terui. On the computational complexity
of cut-elimination in linear logic. In Proceedings of ICTCS 2003,
number 2841 in Lecture Notes in Computer Science, pages 23–36.
Springer-Verlag, October 2003.

[MTHM97] R Milner, M. Tofte, R Harper, and D. MacQueen. Definition of
Standard ML (Revised). MIT Press, 1997.

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quan-
tum Information. Cambridge University Press, 2000.

[O’H91] P. W. O’Hearn. Linear logic and interference control: Preliminary
report. In S. Abramsky, P. L. Curien, A. M. Pitts, D. H. Pitt,
A. Poigné, and D. E. Rydeheard, editors, Proceedings of the Con-
ference on Category Theory and Computer Science, volume 530 of
Lecture Notes in Computer Science, pages 74–93. Springer-Verlag,
1991.

[Öme03] B. Ömer. Structured Quantum Programming. PhD thesis, TU Vi-
enna, May 2003.

[PB00] A.K. Pati and S. L. Braunstein. Impossibility of deleting an un-
known quantum state. Nature, 404:164–165, 2000.

162 BIBLIOGRAPHY

[Per93] A. Peres. Quantum Theory: Concepts and Methods. Kluwer Aca-
demic, 1993.

[Per05] S. Perdrix. Quantum patterns and types for entanglement and
separability. In Proceedings of the 3rd International Workshop on
Quantum Programming Languages, Electronic Notes in Computer
Science, 2005.

[PJH99] S. L. Peyton Jones and J. Hughes. The Haskell 98 Report, 1999.

[Pra65] D. Prawitz. Natural Deduction. A Proof-Theoretic Study. Almqvist
& Wiksell, 1965.

[RB01] R. Raussendorf and H. J. Briegel. A one-way quantum computer.
Phys. Rev. Lett., 86:5188–5191, 2001.

[RBB02] R. Raussendorf, D. E. Browne, and H. J. Briegel. The one-way
quantum computer - a non-network model of quantum computa-
tion. Journal of Modern Optics, 49:1299, 2002, arXiv.org:quant-
ph/0108118.

[RBB03] R. Raussendorf, D. E. Browne, and H. J. Briegel. Measurement-
based quantum computation with cluster states. Physical Review
A, 68(022312), 2003, arXiv.org:quant-ph/0301052.

[Sab03] A. Sabry. Modelling quantum computing in haskell. In Proceedings
of the ACM SIGPLAN Workshop on Haskell. ACM, 2003.

[See89] R. A. G. Seely. Linear logic, *-autonomous categories and cofree
algebras. In Conference on Categories in Computer Science and
Logic, volume 92 of AMS Contemporary Mathematics, pages 371–
382. June 1989.

[Sel04] P. Selinger. Towards a quantum programming language. Mathe-
matical Structures in Computer Science, 14(4):527–586, 2004.

[Sel05] P. Selinger. Dagger compact closed categories and completely pos-
itive maps. In Proceedings of the 3rd International Workshop on
Quantum Programming Languages, 2005.

[Sel06] P. Selinger. Idempotents in dagger categories. In P. Selinger, ed-
itor, Proceedings of the 4th International Workshop on Quantum
Programming Languages, 2006.

[Shi96] M. Shirahata. A sequent calculus for compact closed categories,
1996.

[Sho97] P. W. Shor. Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer. SIAM
J.Sci.Statist.Comput., 26(5), 1997.

[Sme01] S. Smets. The Logic of Physical Properties in Static and Dynamic
Perspective. PhD thesis, Vrije Universiteit Brussel, May 2001.

BIBLIOGRAPHY 163

[Spe] R. W. Spekkens. In defense of the epistemic view of quantum states:
a toy model. Phys. Rev. A. (to appear).

[SS02] V. Sassone and P. Sobocinski. Deriving bisimulation congruences:
a 2-categorical approach. Electronic Notes in Theoretical Computer
Science, 68(2), 2002.

[SS04] V. Sassone and P. Sobocinski. Congruences for contextual graph-
rewriting. Technical Report RS-04-11, BRICS, 2004.

[SU06] M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard
Isomorphism, volume 149 of Studies in Logic and the Foundations
of Mathematics. Elsevier, 2006.

[SZ00] J. Sanders and P. Zuliani. Quantum programming. In Mathemat-
ics of Program Construction, volume 1837 of LNCS, pages 80–99.
Springer, 2000.

[Sza75] M.E Szabo. Polycategories. Comm. Algebra, 3:663–689, 1975.

[Tak87] G. Takeuti. Proof Theory. North-Holland Publishing, 1987.

[Tan97] A. M. Tan. Full Completeness For Models Of Linear Logic. PhD
thesis, Cambridge University, 1997.

[Ter04] K. Terui. Proof nets and boolean circuits. In Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science: LICS
2004. IEEE Computer Society, 2004.

[Tro91] A. S. Troelstra. Lectures on Linear Logic, volume 29 of CSLI Lec-
ture Notes. Centre for the Study of Languages and Information,
Stanford, 1991.

[Vel88] Y. Velinov. An algebraic structure for derivations in rewriting sys-
tems. Theoretical Computer Science, 57:205–224, 1988.

[VP98] V. Vedral and M.B. Plenio. Entanglement measures and purifica-
tion procedures. Phys. Rev. A, 57:1619–1633, 1998, arXiv:quant-
ph/9707035.

[VPRK97] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight. Quanti-
fying entanglement. Phys. Rev. Lett., 78(12):2275–2279, 1997.

[ZZHE93] M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert. Event
ready detectors bell experiment via entanglement swapping. Phys.
Rev. Lett., 71(26):4287, 4290 1993.

Index

(−)∗, 22
(·)†, 27, 41
(·)⊥, 73
(P, b), 140
<in(·), 98
<out(·), 99
=β , 119
Eij , see measurement calculus, entan-

glement operator
FA, free compact closed category, 32
G+S H, 98
Rβ , 119
[f], homotopy class of f , 115
Γ− v, 91
Γ/F , 110
Γ�e, 88
Γ�v, 90
P, 67
Ψ, canonical embedding, 105
Ψx, canonical embedding, 109
β-reduction

for PN(A), 119
for mCQL proof-nets, 56

βi, see Bell basis
codΓ, 98
J·K, interpretation map

for mCQL proof-nets, 57
for mCQL proofs, 48

dom Γ, 98
', 111
CU, 148
J(α), 143
p·q, x·y, 24
∂G, boundary of graph G, 90

i
k◦j , 82

≺, 87
v, 87
in(·), 87
out(·), 87
fτσ , see polyarrow, permutation

s • −, scalar multiplication, 29

β
- , 119

A-labellable circuit, 105
A-labelled circuit, 105
A-labelling, 105
absorption lemma, 24
acyclic graph, 87
ArrA, 104
associativity

generalised, 83
in a polycategory, 82

atomic link, 118
atomic proof-net, 118

Bell basis, 6
Bell state, 6, 39
boundary, 90
boundary node, 90
breaking a vertex, 91

canonical trace, 28
categorical quantum mechanics, 35
characterisation lemma, 62
Circ, 99, 100
Circ(A), 105
Circ(A)+, 105
Circx(A), 109
Circ+

x (A), 109
circuit, 98
Circ+, 101
Circx(A)/ ', 115
coequalisers in G∂ , 95
colimits in G∂ , 97
ComCl, 21, 41
commutativity conditions in polycate-

gories, 83
compact closed category, 21
compact closed functor, 21
complete increasing chain, 93
composite system, 39

164

INDEX 165

compositional cut, 26
compositionality lemma, 25
coname, 24

partial, 26
confluence of β-reduction in PN(A), 119
connected graph, 87
contractible, 109
contraction, 10
contraction of circuits, 110
contractum along F , 110
coproducts in G∂ , 96
Curry-Howard isomorphism, 2
cut rule, 11
cut-elimination, 11

for mCQL, 50
for mCQL proof-nets, 57

dagger category, 41
Danos-Regnier criterion, 73
degree of a vertex, 87
dimA, 30
dimension, 30
directed graph, 87

with circles, 88
directed path, 87
double gluing, 70, 71
dual, 19

elementary circuit, 99
EMC normal form, 139
endomorphisms, 31
entangled state, 67, 68, 70

maximally, 70
entanglement, 67
entanglement swapping, 65
entangling sequence, 141
EPR state, 6
equivalence of categories, 18
even circuit, 99
evolution of quantum system, 6, 37, 39
extended A-labelling, 109
extended labellings, 109

faithfulness
of mCQL proof-net semantics, 64

FDHilb, 15, 37
formula

of mCQL, 46
of MLL, 72

free compact closed category

generated by a category, 32
generated by a polycategory, 104

free models of quantum mechanics, 40,
43

full completeness
for mCQL proof-nets, 65

functor between polycategories, 85
fusing edges of a graph, 90

G, 94
G∂ , 94
generalised proof-net, 117
graph, 87, 94

with boundary, 90
with circles, 94

graph with boundary, 94
Grph, 94

Hilbert-Schmitt norm, 31
homomorphism

of graphs, 94
of graphs with boundary, 94
of graphs with circles, 94

homomorphism of circuits, 99
homotopy, 108
homotopy equivalence, 109

of A-labelled circuits, 111
of graphs, 109

in-degree, 87
inference rules

for mCQL1, 49
for mCQL, 47
for MLL, 73

Int construction, 28
interior, 90
interior node, 90
InvCat, 41
InvComClCat, 41
involution, 32
involutive categories, 41

Kelly-Laplaza theorem, 32

linear logic, 10
link, 55

for PN(A) proof-nets, 118
loops, 31

maximal contraction, 110
maximally entangled state, 69, 70

166 INDEX

mCQL1

inference rules, 49
mCQL1semantics, 49
mCQL1, 49
mCQL2, 49
mCQL

faithfulness, 64
formula, 46
inference rules, 47
semantics, 48
sequent calculus, 46
sequentialisation of proof-nets, 63
translation from sequents to proof-

nets, 59
mCQL, 45

full completeness, 65
proof, 46
proof-net, 55

measurement, 37
non-degenerate, 37

measurement actions, 36
measurement calculus, 137

branch, 138, 140
corrections, 138
dependent corrections, 138
dependent measurements, 138
entanglement operator, 138
measurements, 138
pattern, 138
signals, 138

MLL
formula, 72
inference rules, 73
proof-net, 73
sequent calculus, 73

MLL, 10, 67, 72
proof-net, 73

Mon, 18
monoidal category, 16

symmetric, 16
traced, 28

monoidal functor, 17
from a polycategory, 86
strict, 18
strong, 18
symmetric, 18

monoidal natural transformation, 18
multi-cut, 82
multiplicative categorical quantum logic,

45

multiplicative linear logic, 10, 67, 72
multiplicative quantum mechanics, 36

name, 24
partial , 26

natural transformation between poly-
category functors, 85

no-cloning theorem, 6, 135
no-deleting theorem, 7

observable, 7
one-way model of quantum computa-

tion, 137
out-degree, 87

pattern, see measurement calculus
peripheral node in a graph, 93
PN(A) proof-net, 117
PN(A), 117
polyarrow, 82

permutation, 83
polycategory, 82

compact symmetric, 82
with multicut, see polycategory, com-

pact
positive circuit, 101
positive signed set, 101
prime circuit, 99
proof-net, 11

for mCQL, 55
for MLL, 73
for mCQL, 55
for MLL, 73
generalised, 117

proof-structure, 73

quantum bit, 6
quantum measurement, 37
quantum measurements, 7, 36
quantum mechanics

categorical, 35
categorical presentation, 39
Hilbert space, 5
multiplicative, 36

quantum state, 5, 37, 39
quantum teleportation, 8
qubit, 6

Rel, 15

scalars, 29

INDEX 167

Schmidt coefficients, 68
Schmidt decomposition, 68
SComCl, 41
semantics

for mCQL1 sequents, 49
for mCQL sequents, 48
of mCQL proof-nets, 57

separable state, 68, 70
separation lemma, 60
sequent calculus

for mCQL, 46
for MLL, 73

sequentialisation, 63
shuffle, 111
signals, see measurement calculus
signed set, 32, 100
simple circuit, 99
skeleton, 103
SMon, 18
soundness

of β-reduction for mCQL proof-
nets, 59

of cut-elimination in mCQL, 55
splitting an edge in a graph, 88
standard order on R+ S, 100
state space, 5, 36, 39
strict monoidal category, 16
strict monoidal functor, 18
strong monoidal functor, 18
strong normalisation of β-reduction in

PN(A), 122
strongly compact closed category, 27
subject reduction for PN(A), 119
superposing axiom, 28
switching, 73
symmetric monoidal category, 16
symmetric monoidal functor, 18

teleportation, see quantum teleporta-
tion, 146

termination of β-reduction in PN(A),
119

topologically sorted, 141
trace, 28

unentangled state, 70
unitary evolution, 37, 39

vanishing axiom, 28

weakening, 10

yanking axiom, 28

zig-zag in a graph, 93

