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Chapter 1

Introduction

1.1 General context

This thesis covers two topics pertaining to the potential use of Category Theory for

Physics. Familiarity with the basic concepts of Category Theory is presumed, as would

be covered in a standard Category Theory textbook [2]. Such topics include functors,

equivalences, adjunctions, natural transformations, monads, (co)limits, etc.

Category Theory has seen various applications in Physics. For detailed guides to

such applications, there are comprehensive review papers such as Coecke and Paquette’s

“Categories for the practising physicist” [23] or Baez and Lauda’s “A prehistory of n-

categorical physics” [15] or Baez and Stay’s “Physics, topology, logic and computation:

a Rosetta Stone” [9]. Here we present a summary thereof.

William Lawvere was perhaps the first person to realise the potential of Category

Theory in Physics. His “Categorical Dynamics” formalised the relation between laws

of force and laws of motion in terms of a cartesian closed category [43]. His ideas have

since bloomed into a substantial body of knowledge called Synthetic Differential Geom-

etry, which formalises various aspects of Continuum Physics [44]; notably, it introduces
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a way of axiomatising infinitesimals, long used in Physics and Engineering, through

constructive logic [49].

These developments started a categorical tradition in Physics, where the objects of a

category are used to describe kinematics and morphisms are used to describe dynamics.

A functor is then a physical theory1 in the sense that its domain category describes the

“rules” of an abstract process and its codomain category describes the transformations

of the physical system at hand. Categorical Physics confers certain advantages over

other perspectives:

• Deep mathematical connections between different physical phenomena, or be-

tween a physical phenomenon and an algorithmic process, can become apparent;

furthermore, the similarities are formalised as equivalences of categories. The

most successful instance of this is in Quantum Algorithms, where categorical de-

scriptions have led to improvements and generalisations [77].

• Calculations can be simplified. One example here is gauge field theories, where

categorical tools have helped with complicated group operations [26].

• Theories can be reconstructed with fewer conceptual requirements. One such case

is General Relativity, where the topology of spacetime can be recovered without

the notion of smoothness [55].

• The elegance of some theories is revealed more clearly. This is not merely a

matter of aesthetics, but a way of approaching foundational research: at least

for the more mathematically-minded physicists, the idea that a mathematically

elegant physical theory must have some element of truth is pervasive.

The most prominent representative of this tradition, and currently the most active

area of research in Categorical Physics, is Categorical Quantum Mechanics. The aim of

1Lawvere used the term “model” for the functor and the term “theory” for its domain.
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Categorical Quantum Mechanics is to model quantum systems and quantum processes.

The codomain of the “theory” functor in this case is often Hilb, the category of finite-

dimensional Hilbert spaces and linear operators. Depending on the problem to be

modelled, the domain can be, for instance:

• a group seen as a one-object category, which is the group of symmetries of the

system2;

• the category of unions of parametrised circles and certain 2-dimensional cobor-

disms3, which yields a conformal field theory as part of String Theory [24];

• the category of compact oriented manifolds and oriented cobordisms, to describe

a Topological Quantum Field Theory [45].

Other such functors in Categorical Quantum Mechanics have as codomain a category

of certain representations of some sort of group and as domain a category whose mor-

phisms are a network-like structure. Such “theories” encompass structures like Feynman

diagrams [12] and Penrose’s spin networks [10]; for the latter, the reference given also

describes a 2-categorical structure with morphisms between spin networks (called “spin

foams”) that describes processes in Loop Quantum Gravity.

There is a distinctive characteristic of approaches to Quantum Mechanics, as op-

posed to Classical Physics, which has necessitated some new notation. In Classical

Physics, the structures that tend to arise are cartesian closed categories, such as the

ones Lawvere worked with. By contrast, researchers in Categorical Quantum Mechanics

tend to work with braided monoidal structures instead.4 Monoidal structures are best

2This is the simplest example, mainly used as an introduction [15, 9] to more intricate and useful
cases, such as the rest on this list.

3Due to space constraints, this description is a simplification of a simplification, itself taken from
Baez’s review paper [15]. The paper referenced actually involves infinity-categories.

4This is not a clear-cut dichotomy; the reasons for the tendency to prefer either structure depending
on context have been addressed by Abramsky and Coecke [1].
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visualised and handled using string diagrammatic language. We briefly use this nota-

tion in Chapter 3, even though we are not working in a quantum setting. We assume

familiarity with the basic principles of string diagrams [71].

Beyond Categorical Quantum Mechanics, there are also similar applications of Cat-

egory Theory to Relativity [55] and gauge theories [14]. In these cases, the domain of

the “theory” is a groupoid whose objects are points in space and morphisms are paths

between them, and the codomain has objects corresponding to sets of possible internal

states of a particle and morphisms corresponding to maps between them.

This is the general framework within which this thesis aims to aid the potential

application of Category Theory to Physics. The thesis consists of two subprojects

dealing with different aspects of the discipline, each treated in a separate chapter.

Chapters 2 and 3 are independent enough of each other that they can be read in either

order. The connection between them will become apparent in the sequel and will be

made explicit in Chapter 4.

1.2 Background to our work on matroids

Matroids are abstract structures which are widely used, their prime application being

in Combinatorics; as such, in Physics they have found use in a range of areas, from Civil

Engineering [67] to Electrical Circuits [65]. They are also useful as a means to compute

dependent probabilities [53]; the latter use gives us a connection to Entropy: Shannon

Entropy is the rank function of a generalisation of matroids called polymatroids [30],

and is also connected to matroids [56].

Matroid theory lies within set theory. Informally, a matroid is a set with some

added structure in the form of a distinguished family of subsets, which describes a

dependence relation. Historically, matroids were introduced by Whitney in 1935. His
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motivation was to generalise linear independence and acyclicity in graphs [80]. It was

Mac Lane who discovered the connection between matroids and projective geometry

a year later [54]. Since then, matroids have found application in geometry, topology,

combinatorial optimisation, network theory, and coding theory [79, 62].

While matroids themselves have been studied extensively, there is much less litera-

ture focussing on maps between them. Furthermore, there has been very little explicitly

categorical work on matroids, which we now list.

The most closely related work to this thesis is Al Hawary’s doctoral thesis from

1997 [5], which was an attempt to characterise one of the categories we discuss here: the

category of loopless pointed matroids and pointed strong maps. That thesis purports

to prove many related results, mainly concerning free objects, limits and colimits; some

corrected statements of theorems therein can be found in Propositions 30 and 42 of

this thesis, and others in Al Hawary’s papers of 2000 [6] (concerning free objects) and

2003 [7] (revolving around epimorphisms, monomorphisms, limits and colimits).

Before 2000, there was some categorical work on matroid bundles [8], which are

meant to imitate vector bundles. Matroid bundles are defined on the basis of weak

maps, which we do not examine in this thesis. We note, however, that the results

on matroid bundles find categorical implications for matroid representability, which

features prominently in this thesis.

Moving on to more recent work, there was a paper in 2010 [52] that examined cate-

gorical properties of and adjunctions between a category of matroids and corresponding

categories of matroid generalisations called fuzzy matroids and fuzzifying matroids. A

notable result was that the category of matroids embeds in that of fuzzifying matroids

as a simultaneously concretely reflective and coreflective subcategory. The mappings

of this matroid category were again the weak maps, so the results of this paper, while

interesting, have no implications for the category we examine in this thesis.
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Lastly, there was a paper in 2013 [73] on topological representations of matroid maps.

While the author examines both weak and strong maps, he focusses on the former. The

most notable result of this paper is that weak maps between matroids induce topological

mappings between their representations via a functor from the category of matroids and

weak maps to the homotopy category of topological spaces. Since we do not examine

these relations between matroids and topological spaces, we make no use of this paper;

however, for the reader’s reference we note that the paper also contains a partial result

about the category of matroids and strong maps.

Chapter 2 (which has been previously published [33]; the cited paper constitutes

joint work with Chris Heunen) aims to explore the categorical properties of matroids.

In this thesis we do not go into actual use of this category as a domain for a “theory”

functor for a specific type of system (in the sense described in the previous section),

but have laid the foundations for such an application.

1.3 Background to our work on entropy in Thermo-

dynamics

We begin with a brief overview of Thermodynamics and Statistical Mechanics. The

latter, while not explicitly tackled in Chapter 3, partly motivates it and is linked to our

future goals, as will be discussed in Chapter 4. Also note the connection to Shannon

Entropy, which as we have seen is expressible in terms of matroids, hence links this

aspect of the thesis to the work on matroids.

In examining the physical properties of a system composed of N particles in the

thermodynamic limit, i.e. when N → ∞, we may assume that quantities such as en-

ergy, temperature, mass, volume, pressure, etc. vary continuously with each other.

Thermodynamics concerns itself solely with these interdependencies; from the point of
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view of Thermodynamics, a system is in a macrostate, that is, a set of values of such

macroscopic variables. By contrast, Statistical Mechanics connects these quantities

to the statistical properties of the underlying energy states of the individual particles

of the system, hence is concerned with microstates, which specify the energy of each

individual particle.

A basic postulate in Statistical Mechanics is that of “equal a priori probabilities”,

which states that all microstates that correspond to a given macrostate are equally

likely. The number Ω of all possible microstates is a function of the macroscopic prop-

erties of the system. This function completely defines the thermodynamical behaviour

of the system. Systems generally tend to thermal equilibrium, which is the macrostate

corresponding to the largest number of microstates; it is an experimental fact that

this macrostate is typically orders of magnitude more likely than the next likeliest

macrostate. The fact that this is the macrostate which corresponds to uniform temper-

ature reveals a deep connection between Statistics and Thermodynamics: the heat flow

divided by temperature is a quantity proportional to lnΩ. This fundamental quantity

is called Entropy.

In the classical regime, the specific statistics of the particles of the system depend

on many parameters: whether they are distinguishable, how many energy levels are

allowed, how many states are allowed on each level, how many particles are allowed to

be in each state, etc. Things become significantly more complicated when the particles

are considered quantum, in which case new concepts emerge. The quantum regime is

not explicitly tackled in this thesis, but is within the scope of its applicability.

After this brief overview, we now move on to the central theme of Chapter 3, En-

tropy. The notion of Entropy is fundamental, both in Physics (Thermodynamical En-

tropy) and in Information Theory (Shannon Entropy). As regards Physics, Thermody-

namics was revolutionised as soon as the significance of Entropy, defined as the heat
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flow divided by temperature, was discovered. In Information Theory, Entropy is an

indispensable measure of information. It is of course no mere coincidence that these

two quantities share the same name; employing the Statistical Thermodynamics for-

mulation of Entropy we see that the two Entropies have the same defining formula
(
−
∑

i pi log pi
)
(where pi are probabilities in both contexts), the only difference being

in the basis of the logarithm and in an overall positive multiplicative factor. There is a

deep conceptual link between them, explained by Statistical Mechanics.

In this work we examine Thermodynamical Entropy through the prism of the Sec-

ond Law of Thermodynamics, which states that Entropy is a nondecreasing function

in any process taking place on a thermally isolated system (i.e. disallowing heat ex-

change). However, there is an equivalent5 formulation of the Second Law: Entropy is

a nondecreasing function in any process which is realised by means of an interaction

with some device consisting of some auxiliary system and a weight, in such a way that

the auxiliary system returns to its initial state at the end of the process whereas the

weight may have risen or fallen. Traditionally, the term “adiabatic” is used for ther-

mally isolated processes, but in this work we use “adiabatic” to refer to the processes

described in the latter formulation; explicitly:

Definition 1 ([51]). For a given system undergoing a process, we shall call the process

adiabatic if it is realised by means of an interaction with some device consisting of some

auxiliary system and a weight, in such a way that the auxiliary system returns to its

initial state at the end of the process whereas the weight may have risen or fallen.

This type of process is one where only the net heat exchange is required to be zero,

and the definition has the advantage that it avoids explicitly referring to heat exchange,

thus has less conceptual requirements. For more clarification and further discussion on

5The equivalence holds when the systems in question are assumed to be finite (i.e. the auxiliary
system cannot be a heat bath).
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how different authors interpret the term, along with constructive criticism of different

frameworks, see a relevant review paper [75].

From a mathematical viewpoint, Faddeev [28] has shown that the Entropy formula,

as defined on some set of probability measures, arises from just three simple properties:

Theorem 2 (Faddeev). Suppose I is a map sending any probability measure on any

finite set to a nonnegative real number. Suppose that:

1. I is invariant under bijections.

2. I is continuous.

3. For any probability measure p on a set of the form {1, . . . , n}, and any number

0 ≤ t ≤ 1,

I((tp1, (1− t)p1, p2, . . . , pn)) = I((p1, . . . , pn)) + p1I((t, 1− t)).

Then I is a constant nonnegative multiple of Shannon entropy.

This result arises from a simple fact: the logarithmic function is the only function

f for which f(ab) = f(a) + f(b). Faddeev’s theorem implies that Entropy reduces to

fundamental properties such as additivity, monotonicity etc and should therefore lend

itself to a simple axiomatisation; that is, it should arise from a small set of simple,

intuitive axioms. This in turn may open the door to all sorts of mathematical tools at

our disposal.

As we shall see, one of the main concepts we introduce in this work is what we

shall call an adiabatic category. The foundation of these categories is the paper “The

mathematical structure of the second law of thermodynamics”, written by Lieb and

Yngvason [51]. They use a preorder to model existence of adiabatic processes between
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thermodynamic systems in specific states and derive a notion of thermodynamical en-

tropy from a small number of first principles; concretely, they recover a unique (up

to some factor) subadditive nondecreasing function, which must therefore be Entropy.

Although their work is not categorical, it is conducive to categorical treatment and pro-

vides the motivation for adiabatic categories, which are defined in Section 3.3.1. Lieb

and Yngvason’s main theorem gives rise to an entropy functor from an LY-adiabatic cat-

egory (which is a specific sort of adiabatic category) to the nonnegative real numbers

(seen as a category). We shall see this in Theorems 225 and 230.

In the first part of Chapter 3, we use Category Theory to generalise Lieb and

Yngvason’s framework in order to model classes of adiabatic processes, whereas Lieb

and Yngvason only examined existence of adiabatic processes with given initial and

final state; we check that their proofs still hold in this setting (Subsection 3.3.4). This

opens up the possibility of proving properties of different classes of adiabatic processes,

something that Lieb and Yngvason’s simple model did not cover (we give a concrete

physical example at the end of Chapter 3).

Let us for a moment consider the possible uses of this new model. We shall call our

model thick, and Lieb and Yngvason’s model thin6. In a thick model, what could the

different classes of adiabatic processes be? Näıvely we may consider using the displace-

ment d of the weight as a classifier; but that would not work: the parameter d indirectly

measures the amount of energy exchanged with the system, therefore processes p1 and

p2 with the same initial state corresponding to displacements d1 6= d2 would necessarily

have final states of different energies. We may consider “cheating” by somehow omit-

ting this energy from the state description (that is, by using this energy to change a

parameter that is not included in the properties we consider as part of the state) but

then we may pay the price of violating the Second Law! As described by Jaynes in 1996

6The name comes from the fact that Lieb and Yngvason’s model gives rise to a thin category.
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in an illuminating paper [36], this “hidden” information can be exploited to seemingly

convert heat into work without any other apparent effects, which is explicitly forbidden

by the Second Law. While Jaynes’s example referred specifically to distinguishing be-

tween different substances, his argument applies to any property of the system, as long

as one may find a way to use it to do work.

So in conclusion the classifier cannot be the displacement of the weight; it cannot

be the initial or final position of the weight, either, because then composability (i.e. the

principle that we may successively perform two processes as long as the final state of

the former is the initial state of the latter) would be violated. Furthermore, in light of

the above discussion, if we are to use a property of the system as a classifier, we not

only have to exclude this property from the state description, but we also have to be

careful to exclude from our setup all processes that can exploit this property to do work.

The latter requirement is not placed on the model itself, but rather is a restriction on

its applicability; in order for the model to give us the Entropy that corresponds to

the actual experimental measurements of the underlying physical system, it has to

contain all the data relevant to energy conversions. As pointed out by Jaynes in his

aforementioned paper, this is in fact a way for a physicist to discover an unknown

phenomenon: they may apply this or a similar model to processes on states differing by

some property, which unbeknownst to them is somehow used to do work, and discover

that their model does not validly describe the system.

To avoid such considerations, the classifier must either be a property of the auxiliary

system (such as what tools are available) or a property of the noninteracting environ-

ment (such as a clock). The example we use in this work (Subsubsection 3.4.2) can be

interpreted as either of these, that is, we may label the processes either by the time

measured on a clock or by the average power of the stirrer we use.

So far we have spoken of the immediate connections between this thesis and pre-
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vious work. Taking a step back, we can see that this is situated within a broader

landscape; the use of Category Theory in Thermodynamics is of course nothing new.

Our generalisation of Lieb and Yngvason’s framework [51], which we discussed above,

falls loosely under the umbrella of Resource Theories [29, 22], where the objects of a cat-

egory are “resources” and its morphisms correspond to ways to “convert” one resource

into another.

Perhaps the closest to our treatment is a paper very similar to Lieb and Yngvason’s,

namely “A characterization of entropy in terms of information loss” by Baez, Fritz

and Leinster [13]. This paper defines the categories FinProb and FinMeas, which

involve sets with measures and measure-preserving functions between them, and derives

a notion of Shannon entropy from axioms similar to those of Lieb and Yngvason. They

explicitly define entropy functors from FinProb and FinMeas to the nonnegative real

numbers.

Although the two papers (Lieb-Yngvason and Baez-Fritz-Leinster) refer to different

scientific fields, their motivation is similar. Lieb and Yngvason’s goal was to derive En-

tropy as a nondecreasing function in a certain sort of physical process, namely adiabatic

processes, where the thermodynamical states involved formed a preorder; Baez, Fritz

and Leinster’s goal was to derive Entropy as a nonincreasing function in a category of

deterministic functions. Even though one of these settings lies in Physics and the other

in Information Theory, both aim to tackle the more abstract question of what sort of

systems display Entropy.

Furthermore, these two papers use overlapping methodologies. Specifically, they

take the following steps to retrieve an appropriate functor (unique up to affine equiva-

lence):

1. Establish a category with a symmetric monoidal product ⊞ and a family of co-

variant strict monoidal endofunctors λ that correspond to the nonnegative reals
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and whose composition corresponds to multiplication.

2. Ensure that the functor respects additivity (or convex linearity) and homogeneity

(in Lieb-Yngvason this is done by inserting morphisms between X and (1−λ)X⊞

λX both ways).7

3. Ensure that the functor is continuous8 (in Lieb-Yngvason this is done by building

continuity into the category).9

A notion of entropy can be defined if the objects of the category correspond to

vectors and the λ functors act as multiplication by a constant; one can then apply

these theorems in order to categorically characterise entropy-increasing and entropy-

decreasing chains. Lieb-Yngvason focussed on a macroscopic treatment so they were

satisfied to leave it at that, but if they had been working with probability distributions

as in the Baez-Fritz-Leinster paper, they could have got the statistical formulation

of Entropy by applying Faddeev’s theorem (which Baez-Fritz-Leinster did explicitly);

this is in part what motivates this work, but there is a caveat that we shall return

to shortly. To see how this works in general, we refer back to Theorem 2; the three

numbered properties are reflected in, respectively, the following properties that both of

these constructions have in common:

1. Functoriality of Entropy, along with the fact that the target category is a poset.

2. Continuity of the Entropy functor.

3. Monoidality of the Entropy functor and strict commutativity between the Entropy

functor and the λ endofunctors.
7The precise definition of additivity, convex linearity and homogeneity need not worry us here; a

precise mathematical definition of an appropriate category is given in Section 3.3.1.
8Here we mean continuous in the topological sense.
9Again, the precise definition of continuity need not worry us here; see definition of adiabatic cate-

gories in Section 3.3.1. We note, however, that there is some nuance here. Continuity is defined and
used slightly differently in each of these papers to achieve the same end result.
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A more complete explanation of how to get the Entropy formula from an appropri-

ate functor is found in Baez-Fritz-Leinster; a proof of existence of such a functor on

appropriate preorders is found in Lieb-Yngvason and repeated in our treatment in a

more general context (the main difference being that we no longer require a preorder).

The similarity of these two results is not to detract from their significance. Lieb-

Yngvason may have restricted their treatment to preorders (in a way a “decategorified”

version of Baez-Fritz-Leinster’s setting), but it is remarkable that they reached their

conclusion by making use of only the data of a category (i.e. instead of positing an

appropriate functor, they showed that it exists). This highlights the simplest possible

setting in which Entropy can arise. Baez-Fritz-Leinster, on the other hand, while they

included existence of such a functor in their assumptions, were the first to bring the

full force of categories into the picture and explore what sort of category is needed to

recover the explicit formula of Entropy.

It certainly looks like these two papers should complement each other, and this is

the contribution of this work. We aim to unite these two results into a seamless proof

of the necessity of a unique Entropy, given by the statistical formulation. However,

as we mentioned earlier, there is a caveat. This arises from the continuous-discrete

dichotomy.

In our work, the Entropy functor we recover satisfies the properties of Faddeev’s

theorem on an abstract level; that is, even though the function’s domain is not prob-

ability measures, it is invariant under bijections, continuous, and satisfies the same

convexity-type property. At this point it looks like we have done most of the work:

then surely all that remains is to set the domain to be a set of probability measures

(or, more accurately, set up a functor from our category to the category of probability

measures and stochastic maps) and we can apply Faddeev’s theorem to recover the sta-

tistical formulation of Entropy! Unfortunately, however, things are not so simple. Such
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a categorical application has complications due to the fact that Lieb and Yngvason

assume that their systems are continuous, whereas Faddeev’s theorem only applies to

probability measures on finite sets. This construction therefore demands a setup that

recovers the continuous case as a limit; in fact, it turns out that this requires setting up

intricate bicategories (meant as “approximations” of an adiabatic category) and taking

the categorical colimit of a chain of these bicategories in an appropriate category of

bicategories. While we have attempted this problem, it will not be further discussed in

this thesis; it is a large undertaking, reserved for a future project.
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Chapter 2

The category of matroids

2.1 Introduction

Note on previously published material

The material in this chapter has also been published in a relevant paper [33], which

was coauthored with Chris Heunen. A small amount of material has been contributed

by the anonymous reviewer, as we note in the appropriate places in this thesis.

Note on notation

Throughout this chapter, the term source will be used interchangeably with domain and

the term target will be used interchangeably with codomain. We caution the reader that

this differs from the use of the term source elsewhere in the literature [3].

2.1.1 Overview

As mentioned in Chapter 1, matroids abstract dependence and have found many uses

in Physics and Engineering. This is primarily through their connection to Linear Al-

gebra (where they encapsulate linear dependence) and to Graph Theory (where they
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encapsulate cycles). We treat these areas in Subsections 2.7.2 and 2.7.3 respectively.

For the moment, we note that the connection of matroids to Linear Algebra concerns

the so-called representable matroids, on which there are currently many open problems.

Of particular interest to us is the connection of matroids to Shannon Entropy [56];

this connection arises because matroids encapsulate probabilistic conditional depen-

dence. However, this involves a more advanced notion of representability, the so-called

probabilistic representability. We therefore opted not to tackle it in the context of this

thesis, but in future work on categories of representable matroids. The thesis contains

an expression of matroid representation as a functor, which can serve as the foundation

for future work on probabilistic representability.

In the most general terms, the purpose of this work is to survey the properties of

the category of matroids. Of course, speaking of “the” category of matroids entails a

choice of morphisms. There are mainly three candidates [79]: weak maps, strong maps

and comaps1. While there is some structure associated with the category of matroids

and weak maps [79, Chapter 9], here we have chosen strong maps for various compelling

reasons:

• They are a natural choice of structure-preserving functions.

• The resulting category is much “nicer” than the two other choices of morphisms;

we shall see that it has interesting factorisation properties (see Section 2.6).

• A few commonly used matroid constructions become functorial in this setting (see

Sections 2.5 and 2.8).

• There is a functor from vector spaces and linear maps to matroids and strong

maps, arising from matroid representation.

1Here, the prefix co- bears no relation to its common use in Category Theory.
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• As we show in Section 2.9, this category serves to characterise matroids in terms

of optimality of the greedy algorithm via limits.

Having motivated the category, we now give an outline of the chapter:

• In Section 2.2 we define the matroid categories we examine and look at some basic

properties.

• In Section 2.3 we look at limits and colimits of these categories.

• In Section 2.4 we examine chains of adjunctions between various notable subcat-

egories of matroids.

• In Section 2.5 we look at categorical properties of two basic matroid operations,

deletion and contraction.

• In Section 2.6 we look at factorisation systems in the category of matroids.

• In Section 2.7 we examine functors between matroids and other notable categories

(vector spaces, geometric lattices and graphs).

• In Section 2.8 we examine functoriality of common matroid operations.

• Lastly, in Section 2.9 we have a categorical characterisation of the greedy algo-

rithm.

2.2 The category

The category we shall be examining has matroids as its objects. Matroids, like topo-

logical spaces, have many equivalent definitions; as in the case of topology, this is a

testament to their usefulness.
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It is an unfortunate tradition in the matroids literature that these equivalent defini-

tions are called “cryptomorphisms”, to denote that the equivalence of these definitions

is not obvious. We find that this term places the emphasis on a trivial aspect of the the-

ory (i.e. whether a mathematical fact is intuitive), as well as alienates new researchers

in the area. In this work, we shall not use the term “cryptomorphism”, hoping that it

will eventually be abandoned.

We go on to give some of these equivalent definitions of a matroid. These have not

been chosen according to their ubiquitousness or general usefulness; they are merely

the ones used in our categorical treatment. For a comprehensive list and to gain a

better understanding of the intricate relations between the various notions involved,

the reader is encouraged to consult relevant textbooks [62, 79].

Throughout this chapter, we shall use the notation #X to denote the cardinality

of the set X ; furthermore, this cardinality is always understood to be finite for the

purposes of our treatment. We do note, however, that there exists a notion of matroids

of infinite cardinality [20] and even matroids of infinite rank (see below for the definition

of rank); many important matroid theorems still hold for these cases.

Definition 3. A matroid M consists of a finite ground set |M | with, equivalently:

• a family of I of subsets of |M |, called the independent sets, satisfying:

– nontrivial: the empty set is independent2;

– downward closed: if I ∈ I and J ⊆ I then also J ∈ I;

– independence augmentation: if I, J ∈ I and #I < #J , then I ∪ {e} ∈ I for

some e ∈ J \ I.

• a family F of subsets of |M |, called the closed sets or flats, satisfying:

2In view of the second axiom in this bullet point, this axiom is equivalent to “I is nonempty”;
hence the name “nontrivial”.
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– greatest element: |M | itself is closed;

– closed under intersection: if F,G ∈ F then also F ∩G ∈ F ;

– partitioning : if {F1, F2, . . .} are the minimal flats properly containing a flat

F , then {F1 \ F, F2 \ F, . . .} partitions |M | \ F .

• a rank function rk: 2|M | → N, satisfying:

– bounded: 0 ≤ rk(X) ≤ #|M | for all X ⊆ |M |;

– monotonic: if X ⊆ Y ⊆ |M |, then rk(X) ≤ rk(Y );

– semimodular: if X, Y ⊆ |M |, then rk(X ∪ Y ) + r(X ∩ Y ) ≤ rk(X) + rk(Y ).

The following three notions are also essential to matroid theory:

Definition 4. A maximal independent set is called a basis ; the collection of bases is

denoted B.

Definition 5. The closure operation cl : 2|M | → 2|M | is defined by

cl(X) =
{
x ∈ |M |

∣∣ rk(X ∪ {x}) = rk(X)
}
.

Definition 6. The maximal flats properly contained in the ground set are called hy-

perplanes ; the collection of hyperplanes is denoted by H.

Remark 7. The connection between the different equivalent definitions is as follows:

A flat is precisely a subset of |M | which equals its closure (hence the alternative term

“closed set”) and rk(X) is precisely the size of the largest independent set contained in

X ⊆ |M |.

We note for the sake of completeness that a matroid may equally be defined by

axiomatising its family of bases, its closure function or its family of hyperplanes instead

of its family of independent sets, its family of flats or its rank function.
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Remark 8. At this point the astute reader may observe, based on the above definitions,

that a matroid may be defined as a functor from some appropriate poset to the category

Sub of sets and inclusions. This idea will play a role in Section 2.9, when we examine

the connections to the greedy algorithm.

Matroids are fundamentally set-theoretic constructs, hence the elements themselves

are immaterial; we only deal with the distinguished subsets of the matroid that arise

from its defining family (eg independent sets, flats) or function (eg rank). However,

there are certain elements that exhibit notable properties. These are the loops, isth-

muses and parallel elements.

Definition 9. A loop is an element of a matroid that is not contained in any indepen-

dent set, or equivalently, an element that is contained in all flats. An isthmus is an

element that is included in every basis. Nonloop elements of the same rank-1 flat are

called parallel.

The following special types of matroids are of special interest in matroid theory.

Definition 10. A matroid is pointed when it has a distinguished loop, denoted • and

called the point. A (pointed) matroid is:

• loopless when it has no loops (other than the point);

• simple when it has no loops (other than the point) or parallel elements;

• free when every subset (not containing the point) is independent; equivalently,

when every subset (containing the point) is closed.

In this work, we shall also use the following term, mirroring the notion of free

matroids.

Definition 11. A matroid is cofree when the empty set is the only independent set;

equivalently, when only the ground set is closed.
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The following examples of matroids constitute the central themes of this work.

Example 12. Any finite3 vector space V gives rise to a matroid M(V ), whose ground

set is V , and whose independent sets are the linearly independent subsets of V ; flats

correspond to vector subspaces of V , the closure operation takes linear spans, and the

rank function computes the dimension of the linear span. The matroid M(V ) becomes

pointed by making the only possible choice for the distinguished loop •; that is, setting

the origin 0 as •. The pointed matroid M(V ) is free only when V is zero-dimensional

or when V = Z2.

The matroid in the next example is called the cycle matroid of a (multi)graph.

Example 13. Any undirected multigraph G gives rise to a matroid M(G), whose

ground set consists of the edges, and where the independent sets are the forests. Loops

of M(G) are precisely loops of G (i.e. edges between a vertex and itself), isthmuses

of M(G) are precisely isthmuses of G (i.e. edges that are not contained in any cycle),

and parallel elements of M(G) are precisely parallel edges of G (i.e. edges with both

adjacent vertices in common); this is, in fact, the origin of the terminology. We can

pointM(G) by choosing a loop. The matroid M(G) is simple when it has no loops and

no parallel edges; that is, when G is a graph. M(G) is free when G is a forest.

For the next example, recall the following definitions:

Definition 14.

• An element z in a partially ordered set (poset) covers x when x ≤ z, and if

x ≤ y ≤ z then x = y or y = z. In a poset P , a chain from x0 to xn is a subset

{x0, x1, . . . , xn} of P such that x0 < x1 < . . . < xn. The length of this chain is n.

The chain is maximal if each of its elements xi covers xi−1 (i > 0). The poset P

3According to the usual definition of a matroid, infinite vector spaces also qualify, but we do not
consider the infinite setting here.
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satisfies the Jordan-Dedekind chain condition if for every pair a < b all maximal

chains from a to b have the same length.

• A lattice is a poset with all pairwise least upper bounds (joins) and all pairwise

greatest lower bounds (meets). The least element of the lattice is called the bottom

and the greatest element of the lattice is called the top.

• The height h(y) of an element y of a poset is the maximum length of a chain from

0 to y (elements of height 1 are also called atoms). A lattice is semimodular if it

satisfies the Jordan-Dedekind chain condition and h(x)+h(y) ≥ h(x∨y)+h(x∧y)

for any pair of elements x, y.

• A lattice is geometric if it is semimodular and every element is a join of a (possibly

empty) set of atoms.

Example 15. A matroidM is specified by (the Hasse diagram of) its partially ordered

set L(M) of flats, ordered by inclusion. For example:

{a, b, c, d, e}

{a, b}

❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣
{a, d}

❦❦❦❦❦❦❦❦❦❦
{a, e}

✈✈✈✈✈

{b, d}

❍❍❍❍❍

{b, e}

❙❙❙❙❙❙❙❙❙❙
{c, d, e}

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

{a}

✻✻✻✻
✟✟✟✟

♥♥♥♥♥♥♥♥♥
{b}

PPPPPPPPP

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢ {c}

❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢ {d}

✺✺✺✺
♠♠♠♠♠♠♠♠♠

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳
{e}

✄✄✄✄

✺✺✺✺

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

∅

PPPPPPPPPPP

❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

♥♥♥♥♥♥♥♥♥♥♥

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

is a matroid with ground set {a, b, c, d, e}. As we will see later, any geometric lattice L

gives rise to a matroid M(L), which furthermore is simple; if L is the lattice of flats of

some matroid M ′, then M(L) may or may not be equal to M ′. The matroid M(L) is

free only when L is isomorphic to a full powerset lattice.

We now specify the morphisms of the category. These will be the so-called strong

maps.
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Definition 16. A strong map from M to N is a function f : |M | → |N | such that the

inverse image of any flat in N is a flat in M . Write Matr for the category of matroids

and strong maps, and LMatr, SMatr, FMatr for the full subcategories of loopless,

simple, and free matroids.

A strong map between pointed matroids is pointed when it sends the point to the

point. Write Matr• for the category of pointed matroids and pointed strong maps,

and LMatr•, SMatr•, FMatr• for the full subcategories of loopless, simple, and free

matroids.

The flats of a matroidM , when ordered by inclusion, form a geometric lattice L(M),

where the height of an element is the rank of the corresponding flat; and conversely,

every geometric lattice is isomorphic to the lattice of some matroid [62, Theorem 1.7.5].

This fact yields a characterisation of strong maps between matroids.

Lemma 17. For M,N ∈ Matr and f : |M | → |N | the following are equivalent:

(a) f is a strong map;

(b) rk(f(Y ))− rk(f(X)) ≤ rk(Y )− rk(X) for all X ⊆ Y ⊆ |M |;

(c) the function L(f) : L(M) → L(N) given by X 7→ cl(f(X)) preserves joins and

sends elements of height 1 to elements of height 0 or 1.

Proof. This is a well-known result in matroid theory [79, Propositions 8.1.3 and 8.1.6].

Of particular interest are submatroids:

Definition 18. Given a matroid M , a submatroid N of M is a matroid such that

|N | ⊆ |M | and FN = {F ∩ |N | : F ∈ FM}.
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It is immediate that if N is a submatroid of M then the map i : N →M acting as

the identity on elements is a strong map, and furthermore any strong map with target

N extends to a strong map with target M via composition with i.

The assignment M 7→ |M | forms a forgetful functor |−| : Matr → FinSet from the

category of matroids to the category FinSet of finite sets and functions. The following

observation justifies the use of the terms “free” and “cofree”.

Theorem 19. There is a series of adjunctions F ⊣ | − | ⊣ C ⊣ (−)0 given by

FF (X) = 2X , F (f) = f ,

FC(X) = {X}, C(f) = f ,

(M)0 = F0, (f)0 = f |F0.

where F0 denotes the matroid with only one flat, which is the rank-0 flat of M . There

are no further adjoints.

Proof. Functoriality is immediate in all cases. We show that the adjunctions hold.

For F ⊣ | − |: Observe that matroids of the form F (X) for some finite set X are

precisely free matroids, and that any matroid mapping whose source is free is a strong

map. This yields a universal arrow; that is, for every set X , every matroid M , and

every function f : X → |M |, there must exist a function ηX : X → X and a unique

strong map f̂ : F (X) →M satisfying f = f̂ ◦ ηX , namely ηX = idX and f̂ = f .

For | − | ⊣ C: Observe that matroids of the form C(X) are precisely the cofree

matroids, and that any matroid mapping whose target is cofree is a strong map. This

again yields a universal arrow: for every strong map f : M → C(X) there must exist a

strong map ηM : M → C(|M |) and a unique function f̂ : |M | → X satisfying f = f̂ ◦ηM ,

namely ηM (x) = x and f̂ = f .

For C ⊣ (−)0: observe that any strong map whose source is cofree must have a cofree
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matroid as its target. Therefore, we again recover a universal arrow (set ηX = idX and

f̂ = f).

We now show that there are no further adjoints.

Suppose K were left adjoint to F . Let M be the matroid with flats

{
∅, {a}, {b}, {c}, {d},

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c, d}
}
.

We will count the morphisms K(M) → X and M → F (X) (for the following suppose

that #X > 1). It is straightforward that there are #X#K(M) morphisms K(M) → X .

As for the morphisms M → F (X), in order for the preimage of each subset of X to be

a flat ofM , either all elements ofM must map to the same element of X , which can be

done in #X ways, or precisely 2 of the elements of M must map to each of 2 elements

of X , which can be done in 3#X(#X − 1) ways; in the end we get 3#X2− 2#X maps

in total. So K(M) must satisfy #X#K(M) = 3#X2 − 2#X ; but this clearly cannot

hold for every choice of X . Thus F has no left adjoint.

Finally, suppose B were right adjoint to (−)0. Let M be a free matroid. Then there

is a unique function (M)0 → X , so there can only exist one strong map f : M → B(X).

Hence #B(X) = 1 for all X . Now let M ′ be a matroid with at least one loop and let

#X > 1; there are multiple functions (M ′)0 → X , so #B(X) > 1. We have reached a

contradiction, therefore (−)0 cannot have a right adjoint.

The anonymous reviewer of our relevant paper [33] was the first to point out the

following link to topology. The preimage of any finite set X under | − | is partially

ordered: if M and N are matroids with |M | = |N | = X , then M ≤ N if and only if

FM ⊆ FN . This resembles the situation in general topology, with ≤ indicating a “finer”

matroid structure, F (X) being the finest (most closed sets) one, and C(X) being the
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coarsest (fewest closed sets) one.

2.3 Limits and colimits

We now examine limits and colimits in the matroid categories defined in Definition 16.

We give proofs and counterexamples to accommodate different variations and to repair

mistakes in the literature.

Firstly, observe that FMatr and FMatr• are finitely complete and cocomplete.

Remark 20. The functor | − | : Matr → FinSet restricts to an isomorphism of cate-

gories FMatr → FinSet. It follows that FMatr has all finite limits and colimits.

Similarly, the category FMatr• is isomorphic to the category FinSet• of pointed

finite sets and pointed functions, and so has all finite limits and colimits [3, 28.9.5].

Before continuing to the other matroid categories of interest, we offer a contextual-

ising remark, which describes a way to construct limits and colimits from FinSet. The

following remark was contributed by the anonymous reviewer of our relevant paper [33],

who observed that the situation was similar to topology. Note that the latter part of

our independent observation in Remark 20 also arises as a corollary of Remark 21.

Remark 21. In some ways, including the computation of limits and colimits, the

category of matroids is analogous to the category of topological spaces and continuous

functions.

Let D be a diagram in Matr. To construct its limit (if it exists) first take the limit

L of |D| in FinSet and denote the limit cone by λX : L → |X| for X ∈ D. Then the

limit of D exists if and only if there is a coarsest matroid structure on L making the

λX strong, that is, if and only if there is a coarsest matroid structure M on L such that

{λ−1
X (S) | X ∈ D, S ∈ FX} ⊆ FM .
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Similarly, for the colimit of D, take the colimit K in FinSet and form a colimit

cocone κX : |X| → K in FinSet. Then the colimit exists if and only if there is a finest

matroid structure N on K such that FN ⊆ {S ⊆ K | ∀X ∈ D, κ−1
X (S) ∈ FX}.

In contrast to topological spaces, there is an obstacle to the existence of all finite

limits and colimits of matroids: matroid flat structures on a set X are not closed

under finite intersections in 22
X

because of the partition property. Thus the category

of “generalised matroids”, with objects defined via closed subsets by removing the

partition axiom and strong maps as morphisms, gives a finitely complete and cocomplete

category containing Matr. The inclusion preserves coproducts and equalisers. As we

shall see, products and coequalisers are not reflected.

Clearly the empty matroid is an initial object in all of the unpointed matroid cate-

gories we consider. The one-element matroid where the element is a loop is a terminal

object in all categories of matroids we consider.

Proposition 22. The categories SMatr, LMatr, and Matr have coproducts.

Proof. Coproducts have been found by Brylawski [21] and Crapo [25, Proposition 4];

they are the same construction in all the unpointed matroid categories we examine.

The coproduct M + N has ground set |M + N | = |M | ⊔ |N | and flats {F ∪ G | F ∈

FM , G ∈ FN}. It is easy to see that if M and N are simple or loopless, then so is

M + N . The coprojections are the inclusions M → M +N and N → M + N , and it

is easy to see that for strong maps f :M → P and g : N → P there is a unique strong

map [f, g] :M +N → P .

Corollary 23. The categories SMatr•, LMatr•, and Matr• have coproducts, defined

in the same way as in the unpointed categories but additionally identifying the points of

the constituent matroids.

Proposition 24. The categories SMatr, LMatr, and Matr have equalisers.
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Proof. Equalisers have been shown to exist in the pointed loopless category [5, Theo-

rem 53] and are the same construction in all the matroid categories we examine. The

equaliser of f, g : M → N is the inclusion of the matroid E with |E| = {x ∈ |M | |

f(x) = g(x)} and FE = {F ∩|E| | F ∈ FM}. This is a well-defined matroid and clearly

satisfies the universal property. Finally, if M is simple or loopless, then so is E.

Corollary 25. The categories SMatr•, LMatr•, and Matr• have equalisers, defined

in the same way as in the unpointed categories.

Proposition 26. The categories SMatr, LMatr, and Matr do not have all products.

Proof. This was shown by Crapo [25, Proposition 5]; we repeat his argument here.

In any of SMatr, LMatr or Matr, consider the simple matroid M of rank 2 with

|M | = {a, b, c, d} and suppose M ×M existed. For any pair (x, y) ∈ |M |× |M | we have

two strong maps x, y : 1 → M , and therefore a unique map 〈x, y〉 : 1 → M ×M with

π1(x, y) = x and π2(x, y) = y. Hence M ×M has at least 16 elements. Take any per-

mutation σ : |M | → |M |; this yields a strong map 〈σ, idM〉 :M → M×M , whose image

{(a, σ(a)), (b, σ(b)), (c, σ(c)), (d, σ(d))} must be a flat. But {(a, a), (b, b), (c, c), (d, d)},

{(a, a), (b, b), (c, d), (d, c)} cannot both be flats.

Corollary 27. The categories SMatr•, LMatr•, and Matr• do not have all products.

Proof. Consider the pointed matroid arising from the matroid M in the above proof by

adding a point. The same argument holds.

It follows that these categories do not have pullbacks or exponentials either.

It was the anonymous reviewer of our relevant paper [33] who first pointed out the

existence of pushouts under cofree matroids, though they did not provide a proof.

Proposition 28. The categories SMatr, LMatr, and Matr do not have all pushouts,

but pushouts under cofree matroids exist.
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Proof. For the first part, we transcribe the proof in Crapo’s lecture notes [25, Propo-

sition 7], who proves the lack of all pushouts in SMatr. In any of SMatr, LMatr

or Matr, consider the following simple matroids M , M1 and M2, defined by their

hyperplanes:

M : |M | = {a, b, c, d, e, f},

HM = {{i, j}|i 6= j, i ∈ |M |, j ∈ |M |}

M1 : |M1| = {a, b, c, d, e, f, g},

HM1 = {{a, c}, {a, d}, {a, f}, {b, c}, {b, d}, {b, f}, {c, e}, {c, f}, {d, e}, {d, f},

{e, f}, {e, g}, {f, g}, {a, b, g}, {c, d, g}}

M2 : |M2| = {a, b, c, d, e, f, h},

HM2 = {{a, c}, {a, d}, {a, f}, {b, c}, {b, d}, {b, f}, {c, e}, {c, f}, {d, e}, {d, f},

{a, b, h}, {c, d, h}, {e, f, h}}

Suppose the pushout P of the embeddings f1 : M → M1 and f2 : M → M2 existed.

Then the image of M in the colimit cone P ′ cannot be of rank 3, because then M1

and M2 would be embedded in P with overlap M . The closures of the sets {a, b} and

{d, e} in P contain an element which is not in the closure of {e, f} of M1 but is in the

closure of {e, f} in M2. Therefore the image of M in P has rank at most 1. But there

exist different choices P ′, such that no rank-1 flat has a strong map to both choices P ′;

specifically, consider:

|P ′
1| = {abgh, c, d, e, f}, HP ′

1
= {{abgh}, {c}, {d}, {e}, {f}}

|P ′
2| = {a, b, c, d, e, f, gh}, HP ′

2
= {{a}, {b}, {c}, {d}, {e}, {f}, {gh}}

For the second part: Morphisms f : C(X) → M and g : C(X) → N in Matr
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correspond to f̂ : X → (M)0 and ĝ : X → (N)0 in FinSet by Theorem 19. These

have a pushout Y in FinSet, and it follows that C(Y ) is the pushout of f and g in

Matr.

Corollary 29. The categories SMatr•, LMatr• and Matr• do not have all pushouts.

Proof. Consider the pointed simple matroid with the same flat structure as M in the

above proof; the same argument holds.

Coequalisers are a bit messier, as we need more counterexamples. We start with

the pointed categories.

Proposition 30. The categories SMatr•, LMatr•, and Matr• do not have all co-

equalisers.

Proof. Consider the following objects and morphisms:

|M | = |N | = {•, 1, 2, 3, 4},

HM = HN =
{
{•, i, j}|i, j ∈ |M |, • 6= i 6= j 6= •

}
,

f = id,

g =
(
• 7→ •, 1 7→ 2, 2 7→ 1, 3 7→ 3, 4 7→ 4

)
.

If the coequaliser c : N → C of f, g : M → N existed, then [5, Theorem 54]4 its ground

set must be (in bijection with) the quotient |N |/∼ by the equivalence relation generated

by f(x) ∼ g(x) for all x ∈ |N |, and c must map x to its equivalence class [x]. Explicitly,

|C| = {•, [12], [3], [4]}.

M
f //
g

// N
c //

c′ &&◆◆
◆◆

◆◆
◆◆ C

k��
C ′

4That proof is invalid, as the map y 7→ [y] need not be strong. However, it does hold for the choices
in our proof below; that is, there are strong maps from N to options (2.1) and (2.3).

37



Each flat G of C must be of the form [F ] = {[x] | x ∈ F} for some flat F of N , because

G = c(c−1(G)) = [c−1(G)]. In fact, each flat F of C must satisfy F = [F ] in N . Thus

we do not allow the flats {•, [12], [3]} and {•, [12], [4]} in C. We are further constrained

by the three axioms that the closed sets of a matroid must satisfy, so we can only choose

FC to be one of the following (for SMatr•, consider only the first and third options):

{
{•}, {•, [12], [3], [4]}

}
, (2.1)

{
{•}, {•, [12]}, {•, [3], [4]}, {•, [12], [3], [4]}

}
, or (2.2)

{
{•}, {•, [12]}, {•, [3]}, {•, [4]}, {•, [12], [3], [4]}

}
. (2.3)

Option (2.1) fails when we set C ′ to have the same ground set as C with flats (2.3),

because then the inverse image under k of any rank-1 flat is not a flat. Option (2.2)

fails when we set |C ′| = {[•4], [12], [3]} and FC′ =
{
{[•4]}, {[•4], [12], [3]}

}
, because

then the inverse image under k of the rank-0 flat is not a flat. Option (2.3) fails when

we set |C ′| = {[•34], [12]} and FC′ =
{
{[•34]}, {[•34], [12]}

}
, because then the inverse

image under k of the rank-0 flat is not a flat.

Corollary 31. The categories LMatr and Matr do not have all coequalisers.

Proof. In the above proof, remove the point from every matroid and set involved; amend

the last paragraph as follows:

Set C ′ to have the same ground set as C. Option (2.1) fails when we give C ′

flats (2.3), because then the inverse image under k of any rank-1 flat is not a flat;

option (2.2) fails when we give C ′ flats (2.3), because then the inverse image under k

of two of the rank-1 flats is not a flat; option (2.3) fails when we give C ′ flats (2.2),

because then the inverse image under k of one of the rank-1 flats is not a flat.

Lastly, the case of unpointed simple matroids requires a larger counterexample.
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Proposition 32. The category SMatr does not have all coequalisers.

Proof. Consider the following objects and morphisms:

|M | = |N | = {1, 2, 3, 4, 5},

HM = HN =
{
{i, j, k}|i, j, k ∈ |M |, k 6= i 6= j 6= k

}
,

f = id,

g =
(
1 7→ 2, 2 7→ 1, 3 7→ 3, 4 7→ 4, 5 7→ 5

)
.

If the coequaliser c : N → C of f, g : M → N existed, then (by the same reasoning as

above) its ground set must be (in bijection with) the quotient |N |/∼ by the equivalence

relation generated by f(x) ∼ g(x) for all x ∈ |N |, and c must map x to its equivalence

class [x]. Explicitly, |C| = {[12], [3], [4], [5]}. Because C is simple, its rank-1 flats are

{[12]}, {[3]}, {[4]}, {[5]}.

M
f //
g

// N c //

c′ &&◆◆
◆◆

◆◆
◆◆ C

k��
C ′

Each flat F of C must satisfy F = [F ] in N , therefore we do not allow flats {[12], [3], [4]},

{[12], [3], [5]} and {[12], [4], [5]} in C. We are further constrained by the three axioms

that the closed sets of a matroid must satisfy, so we can only choose FC to be one of

the following:

{
∅, {[12]}, {[3]}, {[4]}, {[5]}, {[12], [3], [4], [5]}

}
, (2.4)

{
∅, {[12]}, {[3]}, {[4]}, {[5]}, {[12], [3]}, {[12], [4]}, {[12], [5]}, {[3], [4]}, {[3], [5]}, {[4], [5]},

{[12], [3], [4], [5]}
}
, or (2.5)

{
∅, {[12]}, {[3]}, {[4]}, {[5]}, {[3], [4], [5]}, {[12], [3]}, {[12], [4]}, {[12], [5]},

{[12], [3], [4], [5]}
}
. (2.6)
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Set |C ′| = |C|. Option (2.4) fails when we give C ′ flats (2.5), because then the inverse

image under k of any rank-1 flat is not a flat. Option (2.5) fails when we give C ′

flats (2.6), because then there is one rank-1 flat whose inverse image under k is not a

flat. Option (2.6) fails when we give C ′ flats (2.5), because then there are three rank-1

flats whose inverse image under k is not a flat.

So far, we have reasoned directly about pointed categories by applying the same

(perhaps slightly amended) proof as their unpointed counterparts. This is a simple

method, but there exists in fact a more elegant line of reasoning, again contributed by

the anonymous reviewer of our relevant paper [33]:

Remark 33. A loop in a matroid M is (the image of) a strong morphism C(1) → M

(where 1 denotes the singleton set). Hence Matr• is (isomorphic to) the coslice cate-

gory C(1)/Matr. Since Matr has coproducts by Proposition 22, the forgetful functor

Matr• → Matr is monadic and its left adjoint (−)• sends each object M ∈ Matr to

the coproduct inclusion C(1) →M +C(1).5 Moreover, this monad preserves connected

colimits. Thus the forgetful functor Matr• → Matr creates limits and connected

colimits. In particular it preserves and reflects monomorphisms and epimorphisms.

The above observations seem to refer to well-known facts, but some of the corre-

sponding proofs could not be located in the literature. We therefore append a proof for

the sake of completeness.

We first need an auxiliary definition and an auxiliary lemma.

Definition 34. A fibred coproduct is a colimit of a nonempty, possibly infinite, family

of morphisms with the same domain. A fibred product is a limit of a nonempty, possibly

infinite, family of morphisms with the same codomain.

5We had independently found this left adjoint, but not expressed in terms of the coslice category.
That proof is straightforward and omitted.
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Lemma 35. A category C has every connected colimit if C has the two following

colimits:

1. coequalisers,

2. fibred coproducts.

Proof. A result by Paré [63] states that a category C has all connected limits if it has

fibred products and is “simply connected”, meaning that the category C′ resulting from

adding inverses to every morphism in C is a preorder. Dualising this result we conclude

that a category has all connected colimits if it has fibred coproducts and is simply

connected. We need only show that if C has coequalisers then C′ is a preorder; for this,

we need the observation that there exists a functor π1 : C → C′ sending every morphism

to its invertible version, as composition and identity are clearly preserved6. The result

then follows: taking f, g : A → B in C with coequaliser c, we get π1(f) = π1(c)
−1 ◦

π1(c) ◦π1(f) = π1(c)
−1 ◦π1(c ◦ f) = π1(c)

−1 ◦π1(c ◦ g) = π1(c)
−1 ◦π1(c) ◦π1(g) = π1(g);

taking f : A → B and g : B → A in C, let c1 be the coequaliser of f ◦ g and idB

and let c2 be the coequaliser of g ◦ f and idA, getting π1(f) ◦ π1(g) = π1(f ◦ g) =

π1(c1)
−1 ◦ π1(c1) ◦ π1(f ◦ g) = π1(c1)

−1 ◦ π1(c1 ◦ f ◦ g) = π1(c1)
−1 ◦ π1(c1) = idπ1(B) and

π1(g) ◦ π1(f) = π1(g ◦ f) = π1(c2)
−1 ◦ π1(c2) ◦ π1(g ◦ f) = π1(c2)

−1 ◦ π1(c2 ◦ g ◦ f) =

π1(c2)
−1◦π1(c2) = idπ1(A), therefore π1(f) = π1(g)

−1. So in the end C′ is a preorder.

Now we give the proof.

Lemma 36. Let C be a category with coproducts and C ∈ Ob(C). Then the forgetful

functor U : C/C → C has a left adjoint F : C → C/C that sends each object D to

the coproduct inclusion C → C +D. Furthermore, the adjunction is monadic and the

6This is a well-known functor, as is evident from Paré’s paper [63], but details need not concern as
here.
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monad preserves connected colimits. Then U creates limits and connected colimits, and

in particular it preserves and reflects monomorphisms and epimorphisms.

Proof. For F ⊣ U : Explicitly, the forgetful functor U sends each object f : C → D of

C/C to target(f) and each morphism of C/C to itself, and the functor F sends each

object D ofC to p1(C+D) and each morphism f : A→ B ofC to idC+f . We note that

these are both well-defined functors. Then U(F (D)) = C +D and U(F (f)) = idC + f .

We verify the existence of a universal morphism ηA, namely the coproduct inclusion

A → C + A. For every A ∈ Ob(C) and any maps g : C → B and f : A → B in C,

consider the following diagrams in C:

A
ηA=p2(C+A) //

f
))❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚ U(F (A))

id // C + A

f̂
��

oo C
F (A)=p1(C+A) //

g

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙ C + A

f̂
��

U(g)
id // Boo B

The right-hand commutative diagram is a morphism f̂ : FA → g in C/C. By the

universal property of the coproduct, there is a one-to-one correspondence between mor-

phisms f̂ , morphisms f , commutative diagrams of the left-hand form and commutative

diagrams of the right-hand form (in fact, f̂ = [g, f ] by definition of the coproduct).

This establishes the result.

Adjunction is monadic: Observe that the counit of the triple (U ◦ F, η, µ) is

defined by µA = [idC , idC ] + idA. Then an algebra (A, a) of the monad corresponds to

a morphism f : C → A, setting a = [f, idA], and Hom((A, a), (B, b)) = Hom(A,B). So

the Eilenberg-Moore category of U ◦ F is isomorphic to C/C, making the adjunction

monadic.

U ◦ F preserves connected colimits: A proof of the dual proposition can be
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found online7. Here we essentially dualise that proof.8

Observe that the monad U ◦ F is precisely the functor C + . We show that C +

preserves connected colimits. By Lemma 35, we need only show that C + preserves

coequalisers and fibred coproducts. As every colimit functor, the coproduct functor

C × C → C is left adjoint to a constant diagram functor, hence preserves arbitrary

colimits. So we have

C + colim(c
gi→ ci) =colim(C

fi=idC→ Ci = C) + colim(c
gi→ ci) =

colim(C + c
idC+gi→ C + ci),

so C + preserves fibred coproducts. Similarly

C + colim(c
f ||g
→ c′) =colim(C

idC ||idC
→ C ′ = C) + colim(c

f ||g
→ c′) =

colim(C + c
(idC+f)||(idC+g)

→ C + c′),

so C + preserves coequalisers. Hence the proposition is proven.

U creates limits and connected colimits: Since U is monadic, it creates lim-

its [3, Proposition 20.12]. Monadic functors also create any colimits preserved by the

monad [3, Proof of Proposition 20.16]9, thus U creates connected colimits.

U preserves and reflects monomorphisms and epimorphisms: A morphism

7See Theorem 3.2 on https://ncatlab.org/nlab/show/connected+limit (as it was in 2017).
8The theorem we cite requires the category to be complete (which in our case would mean cocom-

plete, as we prove the dual statement), but that is only because they prove something stronger. Here
we only use coproducts, which exist by assumption.

9The proposition cited makes a weaker claim, but its proof also proves the claim we are making.
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f : X → Y is an epimorphism precisely when the following diagram is a pushout:

X

f
��

f // Y

idY
��

Y
idY // Y

A morphism f : X → Y is a monomorphism precisely when the following diagram is a

pullback:

X

idX
��

idX // X

f
��

X
f // Y

Since limits and connected colimits are created by U , it follows that monomorphisms

and epimorphisms are preserved and reflected.

Corollaries 27 and 29 follow from Remark 33, as right adjoints preserve limits.

Corollary 23 follows from Remark 33 and Proposition 28, noting that the coproduct of

M• and N• in Matr• is the pushout in C(1)/Matr of M• : C(1) → M + C(1) and

N• : C(1) → N + C(1).

Lemma 37. A morphism of Matr is monic if and only if it is injective, and epic if

and only if it is surjective. The same holds for Matr•.

Proof. A direct proof was given by Crapo [25]

Proof. (Contributed by the anonymous reviewer of our relevant paper [33])

The functor | − | : Matr → FinSet reflects pullback and pushout diagrams of the

form:

X

f
��

f // Y

idY
��

X

idX
��

idX // X

f
��

Y
idY // Y X

f // Y

It follows that | − | preserves and reflects monomorphisms and epimorphisms.
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To add a bit of detail to the reviewer’s proof: The preservation property follows

from the fact that | − | has both a left and right adjoint, hence preserves limits and

colimits. The reflection property follows from faithfulness.

We end this section with a related lemma.

Lemma 38. A morphism of Matr is an isomorphism if and only if it is bijective and

the direct image of any flat is a flat.

Proof. If f : M → N is an isomorphism, it is bijective by Lemma 37. The direct image

under f of a flat F equals the inverse image under f−1 of F , and therefore is a flat in

N because f−1 is strong. The latter argument also establishes the converse.

2.4 Adjunctions between subcategories of matroids

We have seen various classes of matroids: all matroids, simple matroids, free matroids,

and loopless matroids. We now study free and cofree constructions translating between

these classes. Theorem 19 already showed that free and cofree matroids over sets exist,

and are precisely what we have been calling free and cofree matroids. We go on to

consider whether the inclusions

FMatr →֒ SMatr →֒ LMatr →֒ Matr

and

FMatr• →֒ SMatr• →֒ LMatr• →֒ Matr•

have adjoints. Before embarking on this task, we note the following.

Lemma 39. The forgetful functor Matr• → Matr has no right adjoint.

Proof. Let R : Matr → Matr• be any functor. Consider the empty matroid O with

|O| = ∅. For any pointed matroid N , there are no functions N → O. However, there
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does exist a pointed strong map N → R(O), namely the map that sends every element

of N to •. Therefore, R cannot be a right adjoint to the forgetful functor.

Remark 40. It can be seen that the categories Matr• and Matr are not equivalent

by noting that only Matr• has a zero object: the one-element matroid is both initial

and terminal. This matroid is a terminal object in Matr, but not initial.

We shall first focus on pointed matroids. As we have shown in Section 2.3, Matr•

does not have many colimits apart from coproducts. Because of this, we cannot invoke

the adjoint functor theorem. We will reason concretely below, to avoid and repair

mistakes in the literature.

2.4.1 Free pointed matroids

We start with right adjoints of functors out of the category of free pointed matroids.

Theorem 41. The category FMatr• is a coreflective subcategory of LMatr•; that is

to say, the inclusion FMatr• →֒ LMatr• has a right adjoint F defined by

|F (M)| = |M |, FF (M) = 2|M | \ 2|M |\{•}, F (f) = f.

Proof. This has been proven in Al Hawary’s thesis [5, Theorem 86]; the proof can also

be found in two of his papers [7, 6].

It is straightforward to check that the above functor F extends the right adjoint

to the inclusion FMatr• →֒ SMatr• and extends to the right adjoint of the inclusion

FMatr• →֒ Matr•. We now examine whether the functor F itself has a right adjoint

for each of those three cases.
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Proposition 42. The functors F : SMatr• → FMatr• and F : LMatr• → FMatr•

have no right adjoints.10

Proof. Suppose V were a right adjoint; then #Hom(F (N), N) = #Hom(M,V (N))

for every loopless/simple matroid M and every free matroid N . We find a simple

counterexample by counting morphisms in homsets.

Let N be the matroid with flats
{
{•}, {•, e}

}
, and let M be the matroid with flats

{
{•}, {•, a}, {•, b}, {•, c}, {•, a, b, c}

}
. There are #|N |#|M |−1 = 8 morphisms F (M) →

N . Now let us count the morphisms M → V (N). For SMatr•:

• If #V (N) = 2, V (N) necessarily has flats
{
{•}, {•, e}

}
. Noting that the strong

property excludes maps that send precisely 2 nonloop elements to the loop, we

arrive at 5 morphisms.

• If #V (N) = 3, V (N) necessarily has flats
{
{•}, {•, e1}, {•, e2}, {•, e1, e2}

}
. Of

the 27 possible maps between the underlying pointed sets, it is easy to see that

we must exclude the 6 that send precisely 2 nonloop elements to the loop and the

10 whose restriction to nonloop elements is surjective, arriving at 11 morphisms.

• If #V (N) > 3, there are at least 11 morphisms.

For LMatr• we have to consider one extra case: FV (N) =
{
{•}, {•, e1, e2}

}
. In this

case we need only exclude the 6 maps that send precisely 2 nonloop elements to the

loop, resulting in 21 morphisms M → V (N).

Theorem 43. The functor F : Matr• → FMatr• has adjoints F ⊣ V ⊣ H given by

FV (M) = {|M |}, V (f) = f,

H(M) = F (M0), H(f) = f ||M0|.

10The purported right adjoint in Al Hawary’s thesis [5, Theorem 126] fails for every function mapping
1 < n < #M elements to •.
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where M0 is the matroid with only one flat, which is the rank-0 flat of M . The functor

H has no right adjoint. The inclusions FMatr• →֒ SMatr•, FMatr• →֒ LMatr•,

and FMatr• →֒ Matr• have no left adjoint.

Proof. The proof is almost identical to that of Theorem 19; the nonexistence of the left

adjoint to the inclusions requires the following adjustment:

Suppose K were left adjoint to F . Let M be the matroid with flats

{
{•}, {•, a}, {•, b}, {•, c}, {•, d},

{•, a, b}, {•, a, c}, {•, a, d}, {•, b, c}, {•, b, d}, {•, c, d}, {•, a, b, c, d}
}
.

We will count the morphisms K(M) → X and M → F (X). There are #X#K(M)−1

morphisms K(M) → X . The morphisms M → F (X) are those that map the elements

as in the unpointed case (see Theorem 19) plus those maps that map exactly one

nonloop element to the loop and everything else to the same nonloop element; there

are 4(#X − 1) maps of the latter sort. In total there are 3#X2 − 6#X + 1 maps

M → F (X). So K(M) must satisfy #X#K(M)−1 = 3#X2 − 6#X + 1, which cannot

be true for every choice of X . Thus F has no left adjoint.

2.4.2 Simple pointed matroids

Next, we turn to the inclusion of simple matroids into larger categories.

Proposition 44. The category SMatr• is a reflective subcategory of Matr•: the in-

clusion SMatr• →֒ Matr• has a left adjoint si•. The functor si• has no left adjoint.

Proof. The first statement follows from Theorem 80, which states that SMatr• is (iso-

morphic to) the Eilenberg-Moore category of a monad si• on Matr•; here, the inclusion
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is the canonical forgetful functor sending an algebra (A, a) to A, hence has a left ad-

joint sending A to (si•(A), µA), where µ is the algebra multiplication [16]. We shall

examine this monad in more detail in subsection 2.7.1; for now, it suffices to note that

the nonloop elements of si•(M) are the rank-1 flats of M .

For the second statement, suppose K ⊣ si•. Take M to be the pointed matroid

with two parallel elements a, b and the loop •; then Fsi•(M) =
{
{•}, {•, F1}

}
, where

we write F1 for the rank-1 flat of M . Let ǫM denote the couniversal morphism of M .

Take S to be the pointed simple matroid with elements e and • and consider the map

f : S → si•(M) that maps e to F1. Its transpose f̂ must map some element e′ of K(S)

to either a or b. But if e′ 7→ a satisfies f = ǫM ◦ si•(f̂) then so does e′ 7→ b, and vice

versa. Therefore, f̂ cannot be unique. We conclude that the couniversal morphism

cannot exist, hence neither does the adjoint.

Proposition 45. The inclusion SMatr• →֒ Matr• has no right adjoint.

Proof. If R : Matr• → SMatr• were a right adjoint, there would be a natural iso-

morphism F ∼= F ◦ R : Matr• → FMatr•, whence R must (1) preserve cardinality

and (2) reflect surjectivity. Now let S be the simple pointed matroid with FS =
{
{•}, {•, 1}, {•, 2}, {•, 3}, {•, 1, 2, 3}

}
and let M be the pointed matroid with FM =

{
{•}, {•, 1}, {•, 2, 3}, {•, 1, 2, 3}

}
. By property (1), R(M) has 4 elements. Without

loss of generality, we fix |R(M)| = |M |, which leaves only two possible simple pointed

matroids:

FR(M) =
{
{•}, {•, 1}, {•, 2}, {•, 3}, {•, 1, 2}, {•, 2, 3}, {•, 1, 3}, {•, 1, 2, 3}

}
:= F1, or

FR(M) =
{
{•}, {•, 1}, {•, 2}, {•, 3}, {•, 1, 2, 3}

}
= FS.

We can immediately reject the case FR(M) = F1, as then clearly #Hom(S,R(M)) <

#Hom(S,M) (because of the added flats to R(M) which some maps will no longer
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reflect). Suppose then that R(M) = S. The transpose f̂ of any surjective map f must

be surjective by property (2); yet there are no surjective strong maps S →M , whereas

idS : S → R(M) is surjective. Thus this case is also rejected. We conclude that the

adjoint does not exist.

Propositions 44 and 45 straightforwardly also apply to the inclusion SMatr• →֒

LMatr•.

2.4.3 Loopless pointed matroids

All that remains to consider is the inclusion LMatr• →֒ Matr•.

Theorem 46. The category LMatr• is a reflective subcategory of Matr•: the inclusion

LMatr• →֒ Matr• has a left adjoint J that deletes every loop except • from objects

and acts on morphisms f : M → N as

J(f)(e) =





f(e) if f(e) ∈ J(N)

• if f(e) /∈ J(N)

The functor J : Matr• → LMatr• has no left adjoint.

Proof. For the universal morphism ηM : M → J(M) we may take the strong map that

sends every loop to • and every nonloop element to itself. Then morphisms f : M → N

correspond bijectively to f̂ = J(f) satisfying f̂ ◦ ηM = f .

Suppose G ⊣ J . It is easy to see that G cannot be the constant functor •, so we

may pick K ∈ Ob(LMatr•) with • 6= e ∈ |G(K)|. Let M be the matroid with loops ∗

and •. Then any function G(K) → M (of which there exist at least two, interchanging

the mappings e 7→ ∗ and e 7→ •) is strong. However, there exists only one strong map

f : K → J(M), namely the one that maps every element of K to •. So there is no

50



bijection between the two homsets, which means that G could not have been the left

adjoint to J .

Theorem 47. The inclusion LMatr• →֒ Matr• has no right adjoint.

Proof. If N were a right adjoint, there would be a natural isomorphism F ∼= F ◦

N : Matr• → FMatr•, whence N must (1) preserve cardinality and (2) reflect surjec-

tivity. Let D be the matroid with flats {{•}, {•, c}, {•, a, b}, {•, a, b, c}}, and M the

matroid with flats {{•, ∗}, {•, ∗, e}}. Now #|N(M)| = 3 by property (1); without loss

of generality we may set |N(M)| = |M |, leaving two possible choices for FN(M). The

first choice is
{
{•}, {•, ∗}, {•, e}, {•, ∗, e}

}
; this is rejected because there are 9 strong

maps D → N(M) but 15 strong maps D →M , so the two homsets are not isomorphic.

The second choice is
{
{•}, {•, ∗, e}

}
; by property (2), epimorphisms D → N(M) cor-

respond to epimorphisms D → M , but there are 8 of the former and 4 of the latter. In

the end, either choice results in a contradiction, so the adjoint does not exist.

The following theorem summarises all adjunctions in the pointed case.

Theorem 48. The inclusions have the following adjunctions:
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The functors in the above diagram have no adjoints other than those indicated.
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Proof. Collate the previous results in this section.

2.4.4 Unpointed categories

As we have seen in Remark 40, the categories Matr• and Matr are not equivalent,

so our results for the pointed categories do not translate into the unpointed versions.

We now reason directly for the (non)existence of adjoints between unpointed matroid

categories.

Proposition 49. The category FMatr is a coreflective subcategory of SMatr; that is

to say, the inclusion FMatr →֒ SMatr has a right adjoint F defined by:

|F (M)| = |M |, FF (M) = 2|M |, F (f) = f.

It extends to right adjoints of the inclusions FMatr →֒ LMatr and FMatr →֒ Matr.

Proof. Setting f̂ = f , one can easily check that the map ηM : M → F (M) defined as

the identity on elements is a universal arrow.

The functor F : Matr → FMatr has a right adjoint V : FMatr → Matr, which in

turn has a right adjoint H : Matr → FMatr, both defined as in Theorem 43, and H

has no right adjoint; the proof is identical to Theorem 19.

Proposition 50. The functor F : SMatr → FMatr has no right adjoint.

Proof. Suppose G were a right adjoint. Let M be the free matroid on 2 elements, and

let D be the matroid with flats
{
∅, {a}, {b}, {c}, {a, b, c}

}
. There are 23 = 8 strong

maps F (D) →M .

If G(M) contains D as a submatroid, then there are at least 9 maps D → G(M),

because there are 9 mapsD → D; since adjunction requires the homsets Hom(F (D),M)
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and Hom(D,G(M)) to be isomorphic, this case is rejected. Assume then that G(M)

does not contain D as a submatroid, so that we cannot map each of the elements of

D to a separate flat of G(M). Since pairs are not flats in D, for the map f to be

strong, all elements of D must map to the same flat of G(M); since there are no loops

or parallel elements, it follows that every element of D must map to the same element

of G(M). Therefore there are #G(M) maps D → G(M), hence for the two homsets to

be isomorphic we must then have #G(M) = 8.

Now take D to be the simple matroid with |D| = {e}. There are 2 maps F (D) →M ,

but 8 maps D → G(M), which again contradicts the hypothesis that these two homsets

are isomorphic. Thus G could not have been right adjoint to F .

Proposition 51. The functor F : LMatr → FMatr has a right adjoint U given by:

|U(M)| = |M |, FU(M) = {∅, |M |}, U(f) = f.

The functor U has no right adjoint.

Proof. For the former statement, take the universal morphism to be the morphism

acting as the identity on elements and f̂ = f to establish F ⊣ U ; this is similar to the

adjunction | − | ⊣ C established in Theorem 19, with parallel elements here replacing

loops as “interchangeable target elements”.

For the latter statement, suppose U ⊣ G. Take D to be the free matroid on 2

elements, so U(D) is the matroid with 2 parallel elements. If we take M = D we have

exactly 2 morphisms U(D) →M , whereas there are #|G(M)|2 morphisms D → G(M).

Therefore the homsets Hom(U(D),M) and Hom(D,G(M)) are not isomorphic, hence

G could not have been right adjoint to U .

None of the inclusions FMatr →֒ SMatr, FMatr →֒ LMatr, and FMatr →֒

Matr have a left adjoint; the proof is identical to Theorem 19. Furthermore, the
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inclusions SMatr →֒ Matr and LMatr →֒ Matr have no left adjoint K: if M has at

least one loop then there are no morphisms M → K(M) at all. The category SMatr is

a reflective subcategory of LMatr, as the inclusion has a left adjoint si, and furthermore

the functor si has no left adjoint; existence of si and nonexistence of a further left adjoint

can be proven as in Proposition 44, noting that si can be defined on loopless matroids

identically to si•. The inclusions SMatr →֒ Matr and SMatr →֒ LMatr have no

right adjoint; the proof is identical to Proposition 45.

Theorem 52. The inclusion LMatr →֒ Matr has no right adjoint.

Proof. The proof is similar to Theorem 47, except for the fact that we have to consider

more cases for N(M). Concretely:

IfN were a right adjoint, there would be a natural isomorphism F ∼= F◦N : Matr →

FMatr, whence N must preserve cardinality; call this property (1) as in Theorem 47.

Let D be the matroid with flats {∅, {c}, {a, b}, {a, b, c}}, and M the matroid with flats

{{a, b}, {a, b, c}}. Now #|N(D)| = #|N(M)| = 3 by property (1); without loss of

generality we may set |N(M)| = |M |, leaving four possible choices for FN(M):

FN(M) #Hom(D,N(M))

F1 :=
{
∅, {a, b, c}

}
27

F2 :=
{
∅, {c}, {a, b}, {a, b, c}

}
15

F3 :=
{
∅, {a}, {b}, {c}, {a, b, c}

}
9

F4 :=
{
∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}

}
9

By hypothesis the homsets Hom(D,N(M)) and Hom(D,M) are isomorphic; since

there are 15 strong maps D →M , it follows that FN(M) = F2.

Now pick instead D with flats
{
∅, {a}, {b}, {c}, {a, b, c}

}
. Then there are 9 strong

maps D → N(M) but 15 strong maps D → M , making the homsets nonisomorphic.

Therefore, N could not have been a right adjoint.

The following theorem summarises all adjunctions in the unpointed case.
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Theorem 53. The inclusions have the following adjunctions:
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The functors in the above diagram have no adjoints other than those indicated.

Proof. Collate the previous results in this subsection.

2.5 Deletion and contraction

Let us recall some standard terminology from matroid theory.

Definition 54. Let M be a matroid. The deletion of Y ⊆ |M | from M is the matroid

M \Y with ground set |M | \Y and rank function X 7→ rkM(X). The resulting matroid

is said to be embedded in M , and the strong map M \ Y → M is called an embedding.

The contraction of M by Z ⊆ |M | is the matroid M/Z with ground set |M | \ Z and

rank function X 7→ rkM(X ∪ Z) − rkM(Z). A minor of M is a the matroid resulting

from a sequence of deletions and contractions of M .

Recall the definitions of categorical subobject and categorical quotient:

Definition 55. Consider a category A and an object A ∈ A. Two monomorphisms

f : R → A and g : S → A are equivalent when there exists an isomorphism τ : R → S
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such that g ◦ τ = f . An equivalence class of monomorphisms with codomain A is called

a subobject of A.

Dually, two epimorphisms f : A→ R and g : A→ S are equivalent when there exists

an isomorphism τ : R → S such that τ ◦ g = f . An equivalence class of epimorphisms

with domain A is called a quotient of A.

In terms of their domains, subobjects of N correspond to the matroids from which

there exists an injective strong map into N .11 The case of quotients can be confusing,

as the term “quotient” is already used in matroid theory.

Definition 56. A matroid Q is a (matroid) quotient of M if there exist a matroid N

and some X ⊆ |N | so that M = N \X and Q = N/X .

Hence by definition, (matroid) quotients are strong maps that are composed of a

contraction after an embedding. The rest of this section proves that quotients are

precisely the bijective strong maps, from which it follows by Lemma 37 that matroid

quotients are not the categorical quotients in the category of matroids. This also leads us

to a characterisation of subobjects; these are embeddings followed by matroid quotient

maps.

Theorem 76 in a later section shows that matroid quotients do correspond to cate-

gorical quotients in a related category.

We can derive that contractions, like embeddings, are strong maps.

Corollary 57. If M is a pointed matroid and Z ⊆ |M |, there is a strong map M →

M/Z.

11Some publications [39, 46, 79] state that subobjects in this category coincide with matroid minors.
This is incorrect; for example, the canonical map F (M) → M is injective, but F (M) is not generally
a minor of M .
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Proof. For A = X ∪ Z, it follows from Definition 3 that

rkM(A) + rkM(Y ) ≥ rkM(A ∪ Y ) + rkM(A ∩ Y ),

so rkM(Y )− rkM(A ∩ Y ) ≥ rkM(A ∪ Y )− rkM(A), whence

rkM(Y )− rkM(X) ≥ rkM(Y ∪ Z)− rkM(X ∪ Z)

= rkM(Y ∪ Z)− rkM(Z)− (rkM(X ∪ Z)− rkM(Z))

= rkM/Z(Y )− rkM/Z(X).

Lemma 17 now establishes the result.

By the standard definition of the contraction operation, the strong map correspond-

ing to contraction acts as the identity on noncontracted elements and maps the rest

to the distinguished loop. Alternatively, one may redefine the contracted matroid on

the original ground set, keeping the original elements as loops. In the latter case, the

contraction map acts as the identity on all elements.

Finally we establish that matroid quotients are precisely bijective strong maps.

Lemma 58. A function f : M → N is a bijective strong map if and only if it factors

as an embedding M → M\X = Q followed by a contraction Q = N/X → N .

Q
contraction

!!❉
❉❉

❉❉
❉❉

M
f

//

embedding
<<③③③③③③③

N

Proof. Sufficiency follows from Corollary 57, necessity is proven by Higgs [34].

The minimal matroid Q through which a quotient factors like this has been worked

out by Kennedy [40]. Every surjective strong map factors as a bijective strong map
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followed by a strong map τ with L(τ) = id [79, page 228], hence a surjection f : M → N

is a strong map if and only if it factors as a matroid quotient followed by a map τ with

L(τ) = id.

Lemma 59. Every contraction is a coequaliser in Matr•, but not conversely.

Proof. Suppose c : N → N/Z is a contraction with c(z) = • for z ∈ Z ⊆ |N |. Let M

be the free matroid on |M | = |N |. Define f, g : M → N by f(x) = x, and

g(x) =





x, if x /∈ Z,

•, if x ∈ Z.

Then c is a coequaliser of f and g.

Conversely, keeping f the same but letting g send all nonloop elements to the same

nonloop element results in a coequaliser that is not a contraction.

2.6 Factorisation

In this section we study how morphisms between matroids can be factored into easier

classes of strong maps. Let us first recall the basic definition [3].

Definition 60. A weak factorisation system in a category consists of two classes of

morphisms L and R such that:

• every morphism f factors as f = r ◦ l for some l ∈ L and r ∈ R;

• both L and R contain all isomorphisms;

• if l, l′ ∈ L, r, r′ ∈ R, and arbitrary morphisms f, g make the following diagram
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commute, then there is a fill-in h making both squares commute:

M

f
��

l // I

h
��✤
✤
✤

r // N

g
��

M ′

l′
// I ′

r′
// N ′

(2.7)

In an orthogonal factorisation system the fill-in h is additionally unique.

The standard example of an orthogonal factorisation system is that every function

between sets factors as an epimorphism followed by a monomorphism, where the fill-in

is the restriction of the function to its image. The category of matroids has an analogous

orthogonal factorisation system.

Lemma 61. The category Matr• has an orthogonal factorisation system where L con-

sists of epimorphisms and R consists of embeddings.

Proof. The fill-in is the restriction of g to the image of l, which is a strong map.

Call a morphism lattice-preserving if the lattice of flats of the domain is isomorphic

to the lattice of flats of the image. Epimorphisms in Matr• can be further decomposed

into a quotient followed by a lattice-preserving map [79, page 228]. This does not yield

a factorisation system, but lattice-preserving maps are a left class of one particular

factorisation.

Theorem 62. The category Matr• has an orthogonal factorisation system where L

consists of lattice-preserving maps and R consists of maps that are injective on elements

of each rank-1 flat.

Proof. For this proof we shall ignore lattice labellings; that is, we shall consider two

lattices equal if and only if they are isomorphic. We note that we do not lose generality

in doing this.
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Observe that a matroid is uniquely determined by its lattice of flats and its rank-1

flats; equivalently, by its lattice of flats, its loops and its sets of parallel elements. Given

a morphism f : M → N , define the matroid I as follows:

• L(I) ∼= L(M).

• The loops of I are the loops of N .

• The nonloop elements of each rank-1 flat Fi of I are copies of the elements of

f(Fi), indexed by i (this includes extra copies of the loops).

Now f decomposes asM
l
→ I

r
→ N , where l is the lattice-preserving map that acts as f

on elements when ignoring indices i, and r is the map with L(r) ∼= L(f) that sends each

element of I to the unindexed version of the element in N . Then l is strong because

L(l) ∼= idL(M), and r is strong because L(r) ∼= L(f). By construction l is lattice-

preserving, and r injective on elements of each rank-1 flat. Both L and R contain all

isomorphisms by Lemma 38.

For the fill-in h in (2.7), take the morphism with L(h) ∼= L(f) that acts as g on

elements when ignoring indices. This is by construction the unique strong map that

makes both squares commute, as we conclude by separately considering the effect of

morphisms on lattices and on elements.

Moreover, the category Matr• has a double factorisation system. Recall [64, Defi-

nition 2.1]:

Definition 63. A double factorisation system in a category C is given by a triple

(E ,J ,M) of classes of morphisms satisfying:

1. Iso · E ⊆ E , Iso · J · Iso ⊆ J and M · Iso ⊆ M,

2. Mor(C) = M· J · E ,
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3. for any commutative diagram

• e //

u

��

•
j // •

v

��
•

j′ // • m // •

in C with e ∈ E , j, j′ ∈ J , m ∈ M there are uniquely determined “diagonals” s

and t with s ◦ e = u, j′ ◦ s = t◦ j and m◦ t = v. (Here, A·B denotes the set of all

morphisms a ◦ b with a ∈ A and b ∈ B; Iso denotes the set of all isomorphisms.)

Remark 64. The category Matr• has a double factorisation system [64]: every mor-

phism decomposes as a lattice-preserving map followed by an epimorphism injective on

elements of each rank-1 flat followed by an embedding.

Proof. As embeddings are by construction injective, the orthogonal factorisation sys-

tems of Lemma 61 and Theorem 62 are “comparable” [64, Proposition 2.6], hence form

a double factorisation system [64, Theorem 2.7]. The middle class of morphisms are

those that are both epic and injective on rank-1 flats, that is, strong maps that are

bijective when restricted to rank-1 flats.

The aforementioned paper goes on to define the orthogonal Quillen factorisation

system [64, Definition 3.9]:

Definition 65. An orthogonal Quillen factorisation system of a category C is given by

morphism classes D (cofibrations), W (weak equivalences), N (fibrations) such that:

1. (W ∩D,N ), (D,W ∩N ) are factorisation systems,

2. W has the 2-out-of-3 property (i.e. if any two of f, g, g ◦ f is in W then so is the

third).

Unfortunately, the double factorisation system of Remark 64 is not an orthogonal

Quillen factorisation system, as the second property is not satisfied. Specifically, the

61



fibrations N = M · J have to be the maps that are injective on elements of each

rank-1 flat, the cofibrations D = J · E have to be the epimorphisms, and the weak

equivalences W = M · E have to be the monomorphisms f such that L(f) preserves

rank (equivalently, the strong maps that factor as a lattice-preserving map followed

by an embedding). Now take FM1 = {{•}},FM2 = {{•}, {•, ∗}},FM3 = {{•, ∗}} and

f : M1 → M2, g : M2 → M3 mapping each element to itself; f and g ◦ f are clearly

embeddings whereas g cannot be expressed as a lattice-preserving map followed by an

embedding.

Lastly, as we shall show later (Corollary 86), Matr• inherits orthogonal factorisation

systems from a category of geometric lattices (see subsection 2.7.1 for the complete

discussion).

2.7 Functors

This section considers functors between the category of matroids on the one hand and

the categories of geometric lattices, vector spaces, and graphs on the other. We shall

need the following auxiliary notions.

Definition 66. A functor F : C → D is nearly full when any morphism g in D between

objects in the image of F is of the form g = F (f) for some morphism f in C.

Recall that a functor F : C → D is full if the functions C(A,B) → D(FA, FB) are

surjective for all objects A and B in C. Hence every full functor is nearly full, but the

converse is not true in general. Here is a counterexample:

Example 67. Define the categories C and D as follows:

Ob(C) = {C1, C
′
1, C2, C

′
2}
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Mor(C) = {fa : C1 → C2, fb : C
′
1 → C ′

2} ∪ {idX |X ∈ Ob(C)}

Ob(D) = {D1, D2}

Mor(D) = {fa, fb : D1 → D2} ∪ {idX |X ∈ Ob(D)}

and define the functor F : C → D as follows:

Ci, C
′
i 7→ Di, i = 1, 2

fi 7→ fi, i = a, b

In other words, “nearly full” is a strictly weaker notion than “full”.

For the next notion, first recall [78, Chapter IV, Definition 4.7]:

Definition 68. A monoidal category (S, ·) is said to act upon a category X by a

functor12 · : S × X → X if there are natural isomorphisms s · (t · x) ∼= (s · t) · x and

e·x ∼= x for s, t ∈ S and x ∈ X, satisfying coherence conditions for the products s·t·u ·x

and s · e · x analogous to the coherence conditions defining S.

When a category C is such that a monoidal category M acts on C, we shall call C

enriched in left M-actions.

Definition 69. Let M be a monoidM seen as a one-object category, and C a category

enriched in left M-actions. A functor F : C → D is nearly faithful when F (f) = F (g)

implies m1 · f = m2 · g for some m1, m2 ∈M .

Any faithful functor is nearly faithful, but the converse it not true in general. Intu-

itively, a nearly faithful functor is ‘faithful up to a scalar in M ’.

12This notation is consistent, as S acts on itself by ·.
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2.7.1 Geometric lattices

We start with a functor from the category of matroids to the following category of

geometric lattices, extending Example 15.

Definition 70. Write GLat for the category whose objects are geometric lattices

(where isomorphic lattices are identified) and whose morphisms are functions that pre-

serve joins and map every atom to either an atom or the least element.

Remark 71. Here we have made the choice to identify isomorphic lattices in order

to simplify the notation, as this rids us of composition with isomorphisms in many

expressions and diagrams. There is no difference in any of our results if we do not

make this identification; as we shall see, our principal results involving GLat concern

factorisation (where the identification leaves the classes unchanged, as each contains all

isomorphisms), (near-)fullness and (near-)faithfulness of functors between GLat and

Matr(•) (that is, properties that remain unchanged) and a composite functor involving

vector spaces, whose properties likewise remain unchanged.

As all elements of a geometric lattice are joins of atoms, morphisms in GLat are

completely determined by their action on atoms.

Proposition 72. There is a functor L : Matr → GLat (and a functor L• : Matr• →

GLat) that sends a matroid M to its lattice L(M) of flats, and sends a strong map

f : M → N to the function L(f) : L(M) → L(N) given by X 7→ cl(f(X)).

Proof. Lemma 17 guarantees that L(f) is a well-defined morphism in GLat. If X ∈

L(M) then X = cl(X), so L preserves identities. It remains to show that L preserves

composition.

Let f : M → N and g : N → P be strong maps. If X ∈ L(M) then cl(f(M)) ∈

L(N), so because g is strong we get cl(g(f(X))) = cl(g(cl(f(X)))). So in the end

L(g ◦ f) = L(g) ◦ L(f).
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The functor L (functor L•) is surjective on objects, and injective on the objects of

SMatr (of SMatr•), but not injective on objects in general.

Lemma 73. The functor L (functor L•) is not faithful.

Proof. Write M for the matroid on the ground set {0, 1, 2} with flats
{
{0}, {0, 1, 2}

}
.

The function f : M → M given by f(0) = 0, f(1) = 2, and f(2) = 1 is a strong map.

Now L(f) = L(idM) both equal the identity function on FM .

The functor L is not full. For a counterexample, consider the unique matroid on

ground set ∅. Any matroid M allows a unique morphism L(M) → L(∅), but clearly

there is no strong mapM → ∅ for nonemptyM . The absence of loops in some matroids

is in fact the only reason that L is not full, as the following proposition shows.

Proposition 74. The functor L is nearly full; the functor L• is full.

Proof. Let M and N be pointed matroids, and let g : L•(M) → L•(N) be a morphism

in GLat. Construct a function f : M → N as follows. For every rank-1 flat X inM for

which g(X) is the least element of L•(N), define f(x) = • for all x ∈ X . For every rank-

1 flat X in M for which the flat g(X) in N has rank 1, let f map all x ∈ X that have

not yet been accounted for to an element of g(X) which is not a loop. Lemma 17 shows

that f is a strong map, and by construction L•(f) = g. Hence L• : Matr• → GLat is

full.

Finally, observe that in general L(M) = L•(M•). It follows from the argument

above that L : Matr → GLat is nearly full.

A morphism f is lattice-preserving precisely when L(f) = id. As promised in

Section 2.2, we can now prove that matroid quotients are precisely categorical quotients

in GLat via the functor L•.

Lemma 75. Epimorphisms in GLat are precisely the surjective morphisms.
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Proof. The proof is similar to the first proof of Lemma 37. The proof that surjective

maps are epimorphisms is identical; for the converse, the proof by contradiction is

amended as follows. Assume e : M → N is an epimorphism. If all atoms of N are

in the image of e then by join preservation so is every other element of N , so either e

is surjective or there exists an atom y ∈ N outside the image of e. Assume the latter

case. Write P for the unique geometric lattice with two elements. Define f : N → P by

sending y and the bottom to the bottom, and the rest to the top. Define g : N → P by

sending the bottom to the bottom and everything else to the top. Both are well-defined

morphisms in GLat, and satisfy f ◦ e = g ◦ e. But then e being epic implies f = g,

which is not true. So y must have been in the image of e, making e surjective.

Theorem 76. The functor L• : Matr• → GLat maps matroid quotients to categorical

quotients. The restricted functor from the subcategory of pointed matroid quotients to

the subcategory of categorical quotients is not full but nearly full.

Proof. For the first statement: By Lemma 58, matroid quotients f are surjective func-

tions. Hence L•(f) must also be surjective, which makes it a categorical quotient by

Lemma 75.

For nonfullness: Not every surjective morphism g : L•(M) → L•(N) in GLat has

a matroid quotient f : M → N with L•(f) = g; as a counterexample, if N is the

matroid with 1 + #|M | loops and no other elements, then all morphisms into L•(N)

are surjective, but there are no matroid quotients M → N . Hence the restriction of L•

is not full.

For near-fullness: Let g : L•(M) → L•(N) be a surjective map in GLat. Take M ′

to have L•(M
′) = L•(M) and ground set comprising • and the atoms of L•(M). Take

N ′ to have L•(N
′) = L•(N) and |N ′| = |M ′|; for any rank-0 or rank-1 flat F , populate

F with the elements of M ′ that map via g to F or to the bottom. Then there is clearly

a matroid quotient f : M ′ → N ′ with L•(f) = g, making the restriction of L• nearly
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full.

There is also a functor in the opposite direction.

Proposition 77. There is an embedding S : GLat → Matr• defined as follows:

• Action on an object G: |S(G)| is the set of atoms of G together with a loop •;

FS(G) is such that L•(S(G)) = G.

• Action on a morphism f : G → H: if f sends an atom of G to the bottom of H,

then S(f) sends the corresponding element of S(G) to •; if f sends an atom A of

G to an atom B of H, then S(f) also sends A to B.

Proof. Proposition 74 guarantees that S(f) is a legitimate morphism in Matr•, and

clearly S preserves identities. To show that S preserves composition, note that for

(pointed) simple matroids, a strong map is completely defined by its action on the

lattice of flats of its domain.

Faithfulness is a direct consequence of the fact that there is a one-to-one correspon-

dence between atoms of the lattice and nonloop elements of the matroid’s ground set;

different mappings between atoms therefore give rise to differents functions between

ground sets. Fullness follows from Lemma 17. Finally, S is injective on objects because

each matroid has a unique lattice of flats.

Theorem 78. There is a reflection L• ⊣ S.

Proof. When the codomain of a strong map f is a simple pointed matroid and the

action of f on rank-1 flats is known, then f is known; there is only one element in each

rank-1 flat and the rank-0 flat that each element of the domain can map to. Hence

Matr•(M,N) ≃ GLat(L•(M), L•(N)) for pointed matroids M and N if N is simple.

Moreover, if N is simple then it is in the image of S (up to isomorphism), and by the

definition of the action of S on objects we have G = L•(S(G)) for all geometric lattices
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G. Therefore Matr•(M,S(G)) ≃ GLat(L•(M), G), and this bijection is natural. Fi-

nally, note that the counit L•(S(G)) → G is an identity, making the adjunction into a

reflection.

Any adjunction gives rise to a monad, and in this case we recover the following

standard matroid operation [62, Section 1.7].

Definition 79. A simplification si(M) of a matroid M is a matroid isomorphic to the

one obtained by deleting all the loops and all but one element in each rank-1 flat.

For the pointed case, we add a loop • to the simplification; then the following result

applies.

Theorem 80. Simplification is a monad si• = S ◦ L• : Matr• → Matr•. Its category

of Eilenberg-Moore algebras is (isomorphic to) SMatr•.

Proof. By definition S(L•(M)) is a simplification of M . Because the monad unit M →

S(L•(M)) sends each nonloop element to its closure, the unit law for Eilenberg-Moore

algebras si•(M) → M implies that cl(x) = {x, •} for every nonloop element in M ; that

is, M is simple pointed, and the structure map has to be the map sending {x, •} 7→ x

for each nonloop element {x, •}. The morphisms of Eilenberg-Moore algebras are the

strong maps between pointed simple matroids.

Remark 81. The image of si• is equivalent but not isomorphic to SMatr•. This can be

fixed. Let (si•, η, µ) be the triple of si•. Then η acts on each matroidM by sending each

element to its closure; µ acts on each matroid M by sending {{x, •}, •} 7→ {x, •} for

each nonloop element {{x, •}, •}; both η and µ do the obvious thing on morphisms. We

can define a functor µ′ : si•Matr• → Matr• that acts on each matroid M by sending

{x, •} 7→ x for each nonloop element {x, •} (its action on morphisms is obvious). Then

the functor µ′ ◦ si• : Matr• → Matr• is also a simplification monad, and moreover it

is idempotent.
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We now briefly turn our attention to factorisation systems, which we discussed in

the previous section. Clearly factorisation systems in Matr• are strongly linked to

decomposing morphisms in GLat. Call a morphism f : A→ B in GLat a contraction

when its restriction to the interval [
∨
f−1(0B), 1A] is an identity; call g : A → B an

embedding when its corestriction to the interval [0B, g(1A)] is an identity. This is in

line with the definitions of contraction and embedding for matroids: L•(f) is a con-

traction/embedding if f is a contraction/embedding, and the converse holds for simple

matroids; L•(M) is a subobject of L•(N) if the matroid M is a minor of a matroid N ,

and the converse holds for simple matroids.

Before moving on to the results, we recall two basic matroid notions. Firstly, define

nullity with regards to matroids [79, Equation (5.1)] and strong maps [79, Section 8.2.8]:

Definition 82. The nullity nullM(A) of a subset A of a matroid M (with regards to

M) is defined by

nullM(A) = #A− rkM(A).

The nullity nullf(A) of A ⊆ X with regards to a bijective strong map f : M → N

where |M | = |N | = X is defined by

nullf(A) = rkM(A)− rkN(f(A)).

The nullity null(f) of the map f itself is defined by

null(f) = nullf(|M |).

Secondly, define Higgs lifts [79, Exercise 7.20]:

Definition 83. For N a nullity-k quotient ofM on the same ground set, define the ith
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Higgs lift M i (0 ≤ i ≤ k) of the map f :M 7→ N as follows:

|M i| = |M |

IM i = {I : I ∈ IM , nullN(f(I)) ≤ i}

We now give the results.

Lemma 84. The category GLat has a weak factorisation system where L consists of

embeddings and R consists of contractions; it is not an orthogonal factorisation system.

Proof. Every surjective map f : M → N in Matr• factorises as f = τ ◦ r ◦ l, where l

is an embedding, r is a contraction and τ is a lattice-preserving map. Then L•(f) =

L•(τ ◦ r ◦ l) = L•(τ) ◦L•(r) ◦L•(l) = L•(r) ◦L•(l) with L•(l) ∈ L and L•(r) ∈ R. The

middle object I is the lattice of the nth Higgs lift of N towards M+Fn along f+, where

n = null(f), where Fn is the free matroid on n elements, and where L•(f+) coincides

with L•(f) on the atoms of L•(M) and sends atoms of L•(Fn) to the bottom of L•(N).

Explicitly, L•(I) is the sublattice {X | X =
∨
f−1(f(X))} ∪ {X | rk(f(X)) = rk(X)}

of L•(M), the canonical embedding L•(r) : L•(M) → L•(I) corestricts to the identity,

and the canonical contraction L•(l) : L•(I) → L•(N) acts as L•(f+). All of this extends

to maps that are not surjective on flats [34]. For the fill-in (2.7), define h : I → I ′ as

the morphism that sends every atom a of I that is also in L•(M) to L•(f(a)), and all

other atoms to the bottom of I ′. Since we have some freedom in defining the action

of h on atoms of I without affecting commutativity of the diagram, this fill-in is not

unique, hence the factorisation system is not orthogonal.

The rest of this subsection shows that if GLat has an orthogonal factorisation

system, then it must induce an orthogonal factorisation system in Matr•.
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Proposition 85. For every N ∈ Matr•, the functor LN• : Matr•/N → GLat/L•(N)

between slice categories has a right adjoint RN that is full.

Proof. We shall employ the same construction as in Theorem 62.

For an object l : G→ L•(N) in GLat/L•(N), where G has atoms ai, define R
N
l (G)

to be the matroid with the following properties: L•(R
N
l (G)) = G; the rank-0 flat of

RN
l (G) is the rank-0 flat of N ; the nonloop elements of each rank-1 flat Fi of R

N
l (G)

with L•(Fi) = ai are copies, indexed by i, of the elements of L−1
• (l(ai)), including extra

copies of the loops. Then RN (l) : RN
l (G) → N is the map with L•(R

N (l)) = l that

sends each element in RN
l (G) to the unindexed version of the element in N .

For a morphism f : l1 → l2 in GLat/L•(N), define RN(f) : RN
l1
(G) → RN

l2
(G) as

the map with L•(R
N(f)) = f that acts as the identity on elements. Since RN(l1) ◦

RN(f) = RN(l2), this is a morphism in Matr•/N , and it clearly respects identities and

composition, so RN is a well-defined functor.

We now show the existence of a universal arrow for the adjunction. Concretely, we

show that the there exist unique morphisms ηf and ĥ making the following diagrams

commute for every f : M → N in Matr•, every g : K → L•(N) in GLat, and every

strong map h : M → source(RN (g)) with RN (g) ◦ h = f :

M
ηf //

f

((◗◗
◗◗◗

◗◗◗
◗◗

h

��❁
❁❁

❁❁
❁❁

❁❁
❁❁

❁❁
❁ M ′′

RN (L•(f))

vv♠♠♠
♠♠♠

♠♠♠
♠

RN (h)

zz

☛
✟

✆
✁

⑥
②

L•(M)

ĥ

��✤
✤
✤
✤
✤ LN

• (f)=L•(f)

**❚❚❚
❚❚❚❚

❚❚

N L•(N)

M ′

RN (g)

OO

K

g
77♦♦♦♦♦♦♦♦♦♦♦♦

Take ηf to be the lattice-preserving map that acts as f on elements when ignoring in-

dices. In the left diagram, the upper and right triangles then commute by construction.

By the left triangle, the map h acts as f on elements when ignoring indices. Because

both paths along the outer triangle act as f on elements, and both act as h on the
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lattice, the outer triangle commutes. Since ηf is lattice-preserving, there can exist at

most one ĥ that makes the large triangle commute, and it is given by L•(h). This

completes the proof that RN is right adjoint to LN• .

Finally, we show that RN is full: within each rank-1 flat, the strong maps forming

the objects of Matr•/N are one-to-one. Therefore, fixing the lattice maps that form

the objects of GLat/L•(N) constrains the morphisms of Matr•/N to identities on

elements.

A result by Zangurashvili [81] states that when a functor between slice categories

has a right adjoint that is full for every slice then factorisation systems are reflected

through the preimage of L. Specifically, Proposition 85 yields the following corollary:

Corollary 86. Any orthogonal factorisation system (L,R) in GLat induces an or-

thogonal factorisation system (L−1
• (L),R′) in Matr•.

2.7.2 Vector spaces

Next we extend Example 12 to a functor.

Definition 87. Let FVectk denote the category of finite vector spaces over k and

linear maps.

Proposition 88. There is a functor Mk : FVectk → Matr• that sends a vector space

V to the matroid with ground set V whose independent sets are the linearly independent

subsets, acting on morphisms as Mk(f) = f .

Proof. Since flats correspond to vector subspaces, Mk(f) is indeed a strong map as the

inverse image of a vector subspace is a vector subspace.

From this point on, we shall normally omit the subscript k from Mk, except when

the discussion involves more than one underlying field.
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The functor Mk is faithful, but not full. As a counterexample to fullness, take

V = k = Z4; the function f : V → V given by f(0) = 0, f(1) = 2, f(2) = 1, f(3) = 3

is a strong map M(V ) → M(V ) but not linear. The counterexample is essentially the

same for k > 4; as for k = 2 and k = 3, a counterexample can be found for each by

considering mappings Z2
2 → Z2

2 and Z2
3 → Z2

3 respectively.

Lemma 89. The functor M does not preserve coproducts, so has no right adjoint.

Proof. As we saw in Section 2.3 above, coproducts of (pointed) matroids have to satisfy

|M +N | = |M | + |N |, where the latter coproduct is in the category of (pointed) sets.

But |M(V ⊕W )| = V ⊕W 6= V ⊔W = |M(V ) +M(W )|.

A matroid M is representable over k if there is a strong map f : M → M(V ) for

some vector space V over k such that a subset X ⊆ |M | is independent if and only if

f(X) is independent. In particular, given a matrix with entries in k, we can construct a

matroid whose ground set consists of the columns of the matrix, and where a subset is

independent precisely when the corresponding columns are linearly independent. The

rank function of the matroid counts the rank of the matrix of selected columns. Every

representable matroid over k arises in this way. Not all matroids are representable

over some field, so the functor M is not surjective on objects. Nor is it injective on

objects: swapping the role of two collinear elements in a vector space results in the

same matroid.

We now examine a variation of the functor M . Intuitively, we consider the above

way to turn a matrix into a matroid, and remove some structure from the matrix. From

this point on, when the matroid N is represented by a matrix A, and B ⊆ |M |, we

write A[B] for the ordered set of columns of A labelled by elements of B.

Lemma 90. If matrices A,B,C satisfy A = CB, and I ⊆ J are sequences of columns
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of B, and I ′ ⊆ J ′ are the corresponding sequences of columns of A, then

rk(A[J ′])− rk(A[I′]) ≤ rk(B[J ])− rk(B[I]).

Proof. Take any column j ∈ J \ I and the corresponding j′ ∈ J ′ \ I ′. Let r = rk(B[I])−

rk(A[I′]) and r
′ = rk(B[I∪{j}])− rk(A[I′∪{j′}]). There are three possible cases:

• rk(B[I∪{j}]) = rk(B[I]) and rk(A[I′∪{j′}]) = rk(A[I′]), so r
′ = r.

• rk(B[I∪{j}]) = rk(B[I]) + 1 and rk(A[I′∪{j′}]) = rk(A[I′]), so r
′ = r + 1.

• rk(B[I∪{j}]) = rk(B[I]) + 1 and rk(A[I′∪{j′}]) = rk(A[I′]) + 1, so r′ = r.

In all cases r ≤ r′, and so rk(A[I′∪{j′}]) − rk(A[I′]) ≤ rk(B[I∪{j}])− rk(B[I]). The proof

is completed by repeating for the other elements of J \ I.

We will consider matrices as multisets of vectors. Recall [74]:

Definition 91. A multisubset of a set S is a multiplicity function j : S → N, with

support supp(j) = j−1(N \ {0}). A map between multisubsets j → j′ is a function

supp(j) → supp(j′).

A multisubset is finite when its support is finite.

Definition 92. Write MVectk for the category whose objects are finite multisubsets

j : V → N of some vector space V over k, and whose morphisms (V, j) → (V ′, j′) are

linear maps V → V ′ that restrict to supp(j) → supp(j′).

There is a canonical inclusion i : Vectk → MVectk mapping each element V to the

constant multiplicity function j : V → {1} and each linear map to itself.

Theorem 93. There is a functor M : MVectk → Matr sending (V, j) to the matroid

with ground set having j(x) elements for each x ∈ V where a subset is independent
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if and only if the corresponding multisubset of vectors in V is (a subset and) linearly

independent. It makes the following diagram commute:

FVectk
i��

M
,,❨❨❨❨❨❨
Matr

MVectk M

22❡❡❡❡❡

It is the left Kan extension of M : FVectk → Matr along i : FVectk → MVectk.

Proof. It is immediate that M : MVectk → Matr is well-defined on objects and func-

torial, and the diagram commutes by construction. It remains to show that it is well-

defined on morphisms.

Consider a morphism (V, j) → (V ′, j′) of MVectk. Write S = supp(j), S ′ =

supp(j′), and denote the restriction by f : S → S ′. The matroid M(f(S)) has the same

rank function as M(S ′), because each counts the rank of submatrices of f(S) and S ′

respectively, and these are identical apart from possibly repeated columns. Lemma 17

implies that this map M(f(S)) → M(S ′) is strong. Therefore it suffices to prove that

M(S) →M(f(S)) is strong.

Choose bases for V, V ′, so we may regard all of f, V, V ′, S, S ′ as matrices. Let

I ⊆ J ⊆ |M(S)|. By Lemma 90 then

rkM(S′)

(
M(f)(J)

)
− rkM(S′)

(
M(f)(I)

)

= rkM(f(S))

(
M(f)(J)

)
− rkM(f(S))

(
M(f)(I)

)

= rk
(
(f(S))[M(f)(J)]

)
− rk

(
(f(S))[M(f)(I)]

)

≤ rk(S[J ])− rk(S[I])

= rkM(S)(J)− rkM(S)(I).

Hence rkM(S′)

(
M(f)(J)

)
− rkM(S′)

(
M(f)(I)

)
≤ rkM(S)(J) − rkM(S)(I), which in con-
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junction with Lemma 17 implies that M(f) is strong.

Finally, we show that the functor M : MVectk → Matr is a left Kan exten-

sion of M : FVectk → Matr along i : FVectk → MVectk: Observe that for every

M ′ : MVectk → Matr and natural transformation α : M ⇒ M ′ ◦ i there is a unique

natural transformation β : M ⇒ M ′ such that β ◦ i = α. Uniqueness follows from the

fact that if β satisfies βB ◦M(g) = M ′(g) ◦ βA for all g : A → B in MVectk then β

must act as the identity on elements (regarding repetitions as the same element). To

show existence, note that β is a strong map.

The rest of this subsection considers the functor L ◦M that turns a vector space

into its lattice of vector subspaces, which is of interest to e.g. quantum logic.

Proposition 94. The functor L ◦M : FVectk → GLat is nearly faithful.

Proof. Suppose that two linear maps f, g : V → W give rise to the same lattice mor-

phism L(M(f)) = L(M(g)); we show that f and g are multiples of each other. For

all flats X of M(V ) we have cl
(
M(f)(X)

)
= cl

(
M(g)(X)

)
. It follows from faithful-

ness of M that f(X) = g(X) for every subspace X of V . Therefore f(v) = w implies

g(v) = βvw for some βv ∈ k. For any v, v′ ∈ V , f(v − v′) = g(βv − β ′v′) for some

β, β ′ ∈ k. So f(v − v′) = β ′g(v − v′) + (β − β ′)g(v). Taking v, v′ noncollinear, v − v′

cannot be a multiple of v, so we must have β = β ′, hence f = βg.

The functor L ◦Mk is not full. For a counterexample, consider the Z2-vector space

V = Z2
2, which has three 1-dimensional subspaces. Let A = {(0, 0), (1, 0)}, B =

{(0, 0), (0, 1)} and C = {(0, 0), (1, 1)}, and consider the lattice map g : L(M(V )) →

L(M(V )) that sends all atoms to B. There is only one f : V → V with L(f) = g

(namely f(0, 0) = (0, 0), f(1, 0) = (0, 1), f(0, 1) = (0, 1) and f(1, 1) = (0, 1)), but this

function is not linear. This counterexample applies essentially the same to all finite

fields. Even if we allow infinite base fields, L ◦ Mk is not full. For example, take
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V = R2, map all the lines through the origin to one of the axes, and the origin to itself.

This preserves the loop, atoms, and joins, because everything is mapped to the same

subspace. But there is no linear map implementing this assignment.

2.7.3 Graphs

This work would not be complete without examining the relationship between matroids

and graphs, which are their main application. We regard the construction of Example 13

(that is, turning an undirected graph into a matroid) as a functor and briefly discuss

some basic properties that such a functor would have. We simplify the definition of

undirected graph [19], as we do not distinguish between bands and loops.

Definition 95. Write Graph for the following category. Objects are undirected multi-

graphs: a set V of vertices, a set E of edges and a boundary map θ from E to the class

of singleton and two-element subsets of V . A morphism (V,E, θ) → (V ′, E ′, θ′) is a pair

of maps f : V → V ′ and g : E → E ′ satisfying f ◦ θ = θ′ ◦ g.

To extend Example 13 to a functor Graph → Matr, we could restrict the category

of graphs to only permit ‘strong’ morphisms of graphs, whose preimage preserves closed

sets (here a set of edges is closed if the addition of an edge does not change the size

of a spanning tree in the corresponding subgraph). There is some evidence that this

choice of morphisms is useful for some applications of graph theory [66]. Alternatively,

we could allow more functions than strong maps as morphisms between matroids. We

must at least keep the restriction that loops map to loops: note that in Definition 95, the

condition imposed on morphisms implies #(θ′(g(e))) ≤ #(θ(e)). Another alternative

would be to restrict both the domain and codomain, in which case we write Graph∗

and Matr∗ for the chosen domain and codomain.

For a functor M : Graph∗ → Matr∗ to be of any practical use, it should act as the
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identity on morphisms. It must then have the following properties:

• It cannot be surjective on objects. A matroid is of the form M(G) precisely when

it is graphic, and there exist non-graphic matroids.

• It cannot be injective on objects13, even by identifying isomorphic graphs. Here

are graphs G1 6≃ G2 with M(G1) =M(G2):

G1

• •

•

b
⑦⑦⑦⑦⑦⑦⑦

a
❈❈❈❈❈❈❈❈

G2

• •

•

a

•

b

• It cannot be full. There are no maps G1 → G2 that are surjective on edges,

whereas M(G1) must have at least one morphism to itself (namely the identity).

• It cannot be faithful. Functions G2 → G1 corresponding to the identity matroid

map may act differently on vertices.

One could define functors from the category of graphs and strong maps to the

category of matroids that assign more obscure matroids to graphs, but none of them is

surjective or injective on objects, nor full or faithful. We briefly list a few such matroids

in use.

Bicircular matroids14, as well as Zaslavsky’s [82] frame matroids and lift matroids15

reduce to the cycle matroid for the graphs G1 and G2 given above, and bond ma-

troids [62, Section 2.3] in the case of planar graphs reduce to the cycle matroid of the

13We may actually make the functor injective by altering the graph G: Form the graph G′ by adding
to G an extra vertex v as well as one edge vw for every pre-existing vertex w; take M(G) to be the
cycle matroid of G′.

14The flats of the bicircular matroid [62, Section 12.1] of a graph G are the forests F of G such that
in the induced subgraph of V (G) − V (F ), every connected component has a cycle.

15Frame matroids and lift matroids are defined on bias graphs; we shall not go into bias graphs here.
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dual graph16; hence for all these classes of matroids the associated functor would inherit

the properties listed for the cycle matroid. A transversal matroid [62, Section 1.6] is

defined on the vertices of one side of a bipartite graph; concretely, the elements are ver-

tices on one side of the bipartition, and the independent subsets are sets of endpoints of

matchings of the graph. This type of matroid has similar properties, as demonstrated

by the graphs G′
i below (where we define the transversal matroid on the left-hand ver-

tices): for a counterexample to fullness, consider Hom(M(G′
1),M(G′

2)), and specifically

the map sending exactly half of the elements ofM(G′
1) to each element ofM(G′

2); for a

counterexample to injectivity on objects, consider G′
2 versus G′

3; for a counterexample

to faithfulness, consider the maps in Hom(G′
2, G

′
3).

G′
1

• •

• •

• •

•

♦♦♦♦♦♦♦♦♦♦♦♦♦

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡

G′
2

• •

• •

G′
3

• •

•

④④④④④④④④
•

Finally, a note on (co)limits. The coproduct in Graph∗ is the disjoint union; this

seems to be a well-known fact for Graph, but a reference could not be found, so we

provide a proof for the sake of completeness.

Lemma 96. Let G be the category of (un)directed (multi)graphs with (strong) graph

homomorphisms (that is, G is one of eight possible categories corresponding to these

different combinations). Then the coproduct in G is the disjoint union.

16Bond matroids are defined as the dual matroids (see Definition 97) of graphic matroids.
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Proof. As before, we treat the objects as triples G = (V,E, θ), where the elements of

the codomain of the boundary map θ may or may not be ordered, depending on whether

G is directed or undirected.

Consider the graphs G1 = (V1, E1, θ1) and G2 = (V2, E2, θ2). Observe that the

disjoint union G1⊔G2 = (V1⊔V2, E1⊔E2, θ1⊔θ2) is simple if and only if G1 and G2 are.

The coproduct injections p1 = (f1, g1) : G1 → G1 ⊔ G2, p2 = (f2, g2) : G2 → G1 ⊔ G2

are the pairs whose underlying functions are coproduct injections fi : Vi → V1 ⊔ V2 and

gi : Ei → E1 ⊔E2 in Set. Check that p1 is a graph homomorphism: Take e ∈ E1, then

(θ1 ⊔ θ2) ◦ g1(e) = θ1 ◦ g1(e) = θ1(e) = id(θ1(e)) = f1 ◦ θ1(e).

Similarly for p2. Note that these graph homomorphisms are trivially strong, as preim-

ages are identities.

Now take graph G′ = (V ′, E ′, θ′) and graph homomorphisms h1 = (f ′
1, g

′
1) : G′ →

G1, h2 = (f ′
2, g

′
2) : G′ → G2 and set [h1, h2] = ([f ′

1, f
′
2]Set, [g

′
1, g

′
2]Set). Coproduct

factorisation in G follows from coproduct factorisation in Set, whence [h1, h2] is a

graph homomorphism: For e ∈ E1,

θ′ ◦ (g′1 ⊔ g
′
2)(e) = θ′ ◦ g′1(e) = f ′

1 ◦ θ1(e) = [f ′
1, f

′
2]Set ◦ (θ1 ⊔ θ2)(e).

Similarly for E2. Note that [h1, h2] is strong if h1 and h2 are, as preimages are disjoint

unions of preimages. Finally, to see uniqueness, consider the factorisation of the identity,

which is trivially a strong graph homomorphism.

Therefore the functor M : Graph∗ → Matr must preserve coproducts.
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2.8 Constructions

This section examines the functoriality of various operations of matroid theory.

2.8.1 Single-matroid operations

We start with one of the most fundamental operations: the dual of a matroid.

Definition 97. The dual M∗ of a matroid M has ground set |M | and the bases of M∗

are complements of bases of M .

This operation is not a functor from/toMatr or any immediately obvious variations

of this category.

Remark 98. There are matroids M,N with strong maps M → N but no strong maps

M∗ → N∗ or N∗ → M∗, so taking duals is not functorial on Matr. (For an example,

take FM =
{
∅, {a, b, c}

}
and FN =

{
{∗}
}
; then there is only one map M → N and no

maps N →M , but there are maps both M∗ → N∗ and N∗ →M∗.)

Taking duals is functorial on the subcategory of Matr of surjective strong maps

between matroids of equal cardinality, since a matroid quotient q : M → N does induce

a strong map q∗ : N∗ →M∗.

We now look at addition of elements. There are many ways in which one can add

an element to a matroid without changing the inclusion relations of the existing flats:

one can make the new element into a loop, an isthmus, or choose to add it into an

existing rank-1 flat. Adding a loop or an isthmus are the only ways one can freely add

an element. We already saw in Remark 33 that adding loops is a functorial process; we

now prove that the same holds for adding isthmuses.

Proposition 99. There is an endofunctor A : Matr → Matr that acts on objects as

BA(M) = {B ∪ {∗} | B ∈ BM}, and on morphisms as A(f)(∗) = ∗ and A(f)(x) = f(x).
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Proof. By construction ∗ is an isthmus in A(M). Since A = (−) +D, where D is the

free matroid on {∗}, the assignment A is clearly functorial.

Next we consider the operations of deletion and contraction. These operations are

not functorial on Matr. Specifically, suppose f : M → N maps m 7→ n and g : L→ M

maps l 7→ m, where l, m, n are all nonloops; if m is among the elements by which we

contract or delete but the elements l and n are not, then the composite morphism f ◦ g

cannot canonically be mapped to any strong map, either covariant or contravariant.

However, these operations become functorial when we change the category to ensure

the deleted/contracted elements inM are exactly those that map to deleted/contracted

elements of N .

Proposition 100. Write Matr∗ for the category whose objects are pairs (M,Z) of

M ∈ Matr and Z ⊆ |M |, and whose morphisms (M,Z) → (M ′, Z ′) are strong maps

M →M ′ where Z is the preimage of Z ′. There are functors:

C : Matr∗ → Matr D : Matr∗ → Matr

(M,Z) 7→M/Z (M,Z) 7→M\Z

f 7→ f f 7→ f

Proof. The operations on objects are clearly well-defined, and identity and composition

are clearly respected. We need only show that the operations on morphisms are well-

defined. For X ⊆ Y ⊆ |M | \ Z:

rkC(M ′)(f(Y ))− rkC(M ′)(f(X)) = rkM ′(f(Y ) ∪ Z ′)− rkM ′(f(X) ∪ Z ′)

= rkM ′(f(Y ∪ Z))− rkM ′(f(X ∪ Z))

≤ rkM(Y ∪ Z)− rkM(X ∪ Z)
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= rkC(M)(Y )− rkC(M)(X),

and

rkD(M ′)(f(Y ))− rkD(M ′)(f(X)) = rkM ′(f(Y ))− rkM ′(f(X))

≤ rkM(Y )− rkM(X)

= rkD(M)(Y )− rkD(M)(X).

The result now follows from Lemma 17.

We may implement a series of n deletions and contractions by employing the cate-

gory Matr∗n, whose objects are (M,Z1, . . . , Zn) where the sets Zi ⊆ |M | are disjoint,

and whose morphisms (M,Z1, . . . , Zn) → (M ′, Z ′
1, . . . , Z

′
n) are strong maps f : M →M ′

such that Zi is the preimage of Z ′
i for all i. Then we can define contraction and deletion

functors C,D : Matr∗n+1 → Matr∗n. The composition of all these functors produces a

minor, so taking minors in Matr is functorial.

Theorem 101. Deletion D : Matr∗n+1 → Matr∗n is right adjoint to the inclusion

i : Matr∗n → Matr∗n+1 given by (M,Z1, . . . , Zn) 7→ (M,Z1, . . . , Zn, ∅) and f 7→ f .

Proof. Take the universal morphism η to act as the identity on the matroid; then the

transpose f̂ : (M,Z1, . . . , Zn, ∅) → (M ′, Z ′
1, . . . , Z

′
n+1) is the morphism with the same

underlying function as f : (M,Z1, . . . , Zn) → (M ′, Z ′
1, . . . , Z

′
n).

The following matroid operation turns out not to be functorial.

Definition 102 ([79], Proposition 7.3.3). The free extension of a matroid M by p is

defined as the matroid X(M) with |X(M)| = |M | ∪ {p} and flats

{
K ∈ FM \ {|M |}

}
∪
{
K ∪ {p} | K ∈ FM \ H(M)}.
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Remark 103. LetM be the free matroid on {a, b} andN the free matroid on {a, b, c, d}.

Let f : M → N be the strong map f = {a 7→ a, b 7→ b}. Then

FX(M) =
{
∅, {a}, {b}, {p}, {a, b, p}

}

and

FX(N) =
{
∅, {a}, {b}, {c}, {d}, {p},

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, p}, {b, p}, {c, p}, {d, p},

{a, b, c}, {a, b, d}, {a, b, p}, {a, c, d}, {a, c, p},

{a, d, p}, {b, c, d}, {b, c, p}, {b, d, p}, {c, d, p},

{a, b, c, d, p}
}
.

There are no strong maps X(M) → X(N) that agree with f . Hence X(f) cannot be

canonically defined in a way that respects identities, and the free extension cannot be

functorial.

It follows that the matroid operation of truncation (contraction by p after free

extension by p) cannot be functorial, because free extension is equivalent to truncation

by p after the addition of an isthmus p, and addition of isthmuses is functorial by

Proposition 99. Two other basic matroid operations are the free coextension, defined

dually to the free extension as (X(M∗))∗, and the Higgs lift17, defined by deletion of p

after free coextension by p; a similar counterexample shows that the Higgs lift is not

functorial either, whence the free coextension is likewise not functorial (because, as we

have shown, deletion can be cast as a functor).

17We have seen the (ith) Higgs lift of a map (Definition 83); this is a related notion, where we set
ILift(M) = {A : A ∈ EM , rM (A) ≥ |A| − 1}.
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Remark 104. Set

FM =
{
∅,

{0}, {1}, {2}, {3}, {4}, {5},

{0, 1, 3}, {0, 2, 5}, {0, 4}, {1, 2, 4}, {1, 5}, {2, 3}, {3, 4}, {3, 5}, {4, 5},

{0, 1, 2, 3, 4, 5}
}

FN =
{
∅,

{0}, {1}, {2}, {3},

{0, 1, 2, 3}
}

and let f : M → N be the strong map that maps 0 → 0, 1 → 1, 2 → 2, 3 → 3, 4 →

0, 5 → 1. Then

FLift(M) =
{
∅,

{0}, {1}, {2}, {3}, {4}, {5},

{0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4},

{2, 5}, {3, 4}, {3, 5}, {4, 5},

{0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 1, 5}, {0, 2, 3}, {0, 2, 4}, {0, 2, 5}, {0, 3, 4},

{0, 3, 5}, {0, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},

{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5},

{0, 1, 2, 3, 4, 5}
}

FLift(N) =
{
∅,

{0}, {1}, {2}, {3},

{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3},
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{0, 1, 2, 3}
}

There are no strong maps Lift(M) → Lift(N) that agree with f . Hence Lift(f) cannot

be canonically defined in a way that respects identities, and the Higgs lift cannot be

functorial.

Extensions generalise free extensions, coextensions generalise free coextensions, quo-

tients generalise truncations and lifts generalise Higgs lifts. Based on our discussion so

far, none of these operations is functorial.

Finally we consider erection, the inverse matroid operation of truncation. This can

obviously be done in many ways. The erections of a matroid M form a lattice based

on the following ordering [79, Chapter 7.5]: M2 ≤ M1 if and only if every hyperplane

of M2 is contained in some hyperplane of M1. The top element E(M) of this lattice

is the so-called free erection of M and the bottom element is M itself. By convention,

E(M) = M if M has no erections; otherwise M is called erectible. Erection is not

functorial:

Remark 105. Let M,N be the erectible matroids with the following sets of flats:

FM =
{
∅,

{0}, {1}, {2}, {3}, {4},

{0, 1}, {0, 2}, {0, 3}, {0, 4}, {1, 2}, {1, 3}, {1, 4}, {2, 3, 4},

{0, 1, 2, 3, 4}
}

FN =
{
∅,

{0}, {1}, {2}, {3}, {4},

{0, 1, 2, 3, 4}
}
.
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Then one can compute18 their respective free erections:

FE(M) =
{
∅,

{0}, {1}, {2}, {3}, {4},

{0, 1}, {0, 2}, {0, 3}, {0, 4}, {1, 2}, {1, 3}, {1, 4}, {2, 3, 4},

{0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 2, 3, 4}, {1, 2, 3, 4},

{0, 1, 2, 3, 4}
}

FE(N) =
{
∅,

{0}, {1}, {2}, {3}, {4},

{0, 1}, {0, 2}, {0, 3}, {0, 4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},

{0, 1, 2, 3, 4}
}
.

Then the identity function is a strong map f : M → N , but there are no strong maps

E(M) → E(N) that agree with f . This operation is therefore not functorial.

2.8.2 Two-matroid operations

By Proposition 22, the coproduct is a monoidal structure on Matr. We now exam-

ine which other matroid operations constitute a monoidal structure on Matr. These

operations mostly come from graph theory, where Matr• would not be useful, so we

shall not examine monoidal structures in Matr•. However, towards the end of this

subsection we include an observation on a similar category, which is more appropriate

in relation to graphs.

The following operations from matroid theory do not have monoidal structure: the

sum or union M ∪ N is the matroid whose independent sets are the unions of the

18In this case, this was done using the matroid package of the Python computer language; algorithms
that compute the free erection of a matroid have been invented by Las Vergnas [48] and Knuth [42].
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independent sets of its constituents; the product or intersection ofM∩N is the matroid

(M∗ ∪N∗)∗; the half-dual sum is the matroid M∗ ∪N∗.

Remark 106. To see that the union is not a monoidal product, consider the following

matroids:

FA = FB =
{
{•}, {•, 0, 1, 2}

}
,

FC =
{
{f}, {f, a}, {f, b}, {f, c}, {f, d}, {f, e},

{f, a, b}, {f, a, c}, {f, a, d}, {f, a, e}, {f, e, b}, {f, e, c}, {f, e, d},

{f, a, e, b}, {f, a, e, c}, {f, a, e, d}, {f, a, e, b, c, d}
}
,

FD =
{
{e}, {e, a}, {e, b}, {e, c}, {e, d}, {e, f},

{e, a, b}, {e, a, c}, {e, a, d}, {e, a, f}, {e, b, c},

{e, b, d}, {e, b, f}, {e, c, d}, {e, c, f}, {e, d, f},

{e, f, a, b}, {e, f, a, c}, {e, f, a, d}, {e, f, b, c}, {e, f, b, d}, {e, f, c, d}, {e, a, b, c, d},

{e, a, b, c, d, f}
}

Then FA∪B =
{
{•}, {•, 0}, {•, 1}, {•, 2}, {•, 0, 1, 2}

}
and C ∪D is the free matroid on

{a, b, c, d, e, f}. Observe that A∪B has a loop but C ∪D does not, so there can be no

maps A ∪ B → C ∪D, whereas there are maps A → C and B → D. Therefore, union

is not a monoidal product in Matr.

Remark 107. To see that the intersection is not a monoidal product, consider the

following matroids:

FA = FB =
{
∅, {1, 2}

}
, FC = FD =

{
∅, {x}

}
.

Then FA∩B =
{
{1, 2}

}
and FC∩D =

{
∅, {x}

}
. There is a map 1, 2 7→ x in each homset
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Matr(A,C) and Matr(B,D), but there can be no map A∩B → C ∩D because there

are loops in A ∩ B but no loop in C ∩ D. Therefore, intersection is not a monoidal

product in Matr.

Remark 108. To see that the half-dual union is not a monoidal product, consider the

following matroids:

FA =
{
{0}
}
, FB =

{
∅, {0}

}
, FC = FD =

{
{∗}
}
.

Then FA∪B∗ =
{
{0}
}
and FC∪D∗ =

{
∅, {∗}

}
. Observe that the homsets Matr(A,C)

and Matr(B,D) each contain the map sending everything to the loop, whereas there

are no maps in Matr(A ∪ B∗, C ∪ D∗), because A ∪ B∗ has a loop and C ∪ D∗ does

not. Therefore, half-dual union is not a monoidal product in Matr.

The intertwining of two matroids, defined as a minor-minimal matroid that contains

them both as minors, is not a monoidal product either, as it is not always unique up

to isomorphism.

Altering the category slightly allows for two monoidal structures instead of one.

Write Matr× for the category of matroids with a distinguished element and strong

maps preserving the distinguished element. The parallel connection M ||N is the co-

product in this category [79]. Explicitly, the ground set of M ||N is the disjoint union

of |M | and |N |, the distinguished elements are identified, and the flats of M ||N are

the unions of flats in M and in N . This is similar to the coproduct in Matr•, except

that the distinguished element need not be a loop. Now we get one more monoidal

product: the series connection MN is defined dually to the parallel connection by

MN = (M∗||N∗)∗, and is another monoidal structure on Matr×. This monoidal struc-

ture is not a categorical product, but remarkably enough it is naturally affine, in the

sense that there are always natural transformations MN → M and MN → N . The
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parallel connection and the series connection do not distribute over each other.

2.9 The greedy algorithm

There exists a well-known characterisation of matroids which, intriguingly, is algo-

rithmic in nature and exemplifies the connection between matroids and problems in

combinatorics [62, 60].

Definition 109. Let I be a collection of subsets of a finite set E that satisfies the

nontrivial and downward closed conditions from Definition 3. Given a function w : E →

R define the associated weight function w : 2E → R by

w(X) =
∑

x∈X

w(x).

The optimisation problem for the pair (I, w) is to find a maximal member B of I of

maximum weight.

Definition 110. The greedy algorithm for a pair (I, w) as in Definition 109 is:

(i) Set X0 = ∅ and j = 0.

(ii) If E −Xj contains an element e such that Xj ∪ {e} ∈ I, choose such an element

ej+1 of maximum weight, let Xj+1 = Xj ∪ {ej+1}, and go to (iii); otherwise, let

BG = Xj and go to (iv).

(iii) Add 1 to j and go to (ii).

(iv) Stop.

Theorem 111. Let I be a nontrivial and downward closed collection of subsets of a

finite set E. Then I is the collection of independent sets of a matroid on E if and
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only if the greedy algorithm for (I, w) solves the optimisation problem for (I, w) for all

possible weight functions w : E → R (generalised to w : 2E → R as in Definition 109).

Proof. This is a well-known result in matroid theory [62, Theorem 1.8.5].

Crucially, this theorem is equivalent to the following statement: “The greedy algo-

rithm solves the optimisation problem if and only if all maximal independent sets have

the same cardinality”. It is easy to show that the latter condition, given nontrivial-

ity and downwards closure, is equivalent to the independence augmentation axiom of

Definition 3.

This leads us to a categorical characterisation of matroids. Write Vectb
k
for the

category of vector spaces over k with a chosen basis b and linear transformations between

them.

Lemma 112. Every run of the greedy algorithm produces a maximal chain of epimor-

phisms in a subcategory of VectbR.

Proof. Let the list B = (b1, b2, . . . , br) denote the final output of the algorithm. Observe

that the vector (w(b1), w(b2), . . . , w(br)) is an element of Rr. At the nth step of the

algorithm, the candidate output corresponds to a vector in Rn. Then the nth step of the

algorithm corresponds to an epimorphism en : Rn → Rn−1 which projects out the largest

element of the vector. The algorithm continues as long as there are candidate elements,

hence forms a maximal chain in the subcategory formed by all such epimorphisms.

This is the categorical equivalent of the fact that the greedy algorithm produces a

maximal independent set; the length of the chain equals the cardinality of that set. The

following definition makes precise when a partially ordered set is ‘as wide as it is tall’.

Definition 113. Define a square poset to be a finite partially ordered set P with a

least element, such that any element A ∈ P covers exactly nA+1 elements, where nA is
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the maximum length of a maximal chain from the least element to A. A square functor

is a functor I : P → Sub from a square poset P, seen as a category, to the category

Sub of sets and inclusions that is injective on objects and preserves chain lengths.

Every square functor I : P → Sub induces a pair (I, E) where I is a nontrivial

downwards closed collection of subsets of a set E. Namely, define E to be the union

of all the sets Si in the image of I, and set I = {Si \ I(0)}, where 0 is the least

element of P . This is evidently a collection of subsets of E, and it contains the empty

set. Because I is injective on objects, the number of inclusions into each object Si is

maximal, guaranteeing that all subsets of each member of I are in the image of I.

Lemma 114. Given a square functor I : P → Sub, the induced pair (I, E) is the

collection of independent sets and ground set of a matroid if and only if every maximal

chain in the image of I has the same length; equivalently, if and only if the following

holds: for any maximal chain C ⊆ P , the colimit of the diagram I : C → Sub is

independent of C (up to isomorphism).

Proof. Each nonidentity inclusion in C adds one element to the domain, therefore the

length of the chain equals the cardinality of the final codomain. This statement is

therefore equivalent to “all maximal elements of I have the same cardinality”, which

together with the first two axioms defines a matroid. The colimit formulation now

follows from the fact that sets with the same cardinality are isomorphic.

Lemma 115. Given a square functor I : P → Sub, the induced pair (I, E) is the

collection of independent sets and ground set of a matroid if and only if for every

contravariant functor W : P → VectbR such that I factors through W , and for every

maximal chain C ⊆ P , the limit of the diagram W : C → VectbR is independent of C.

Proof. This is equivalent to the above lemma, by the definition of a limit and the fact

that vector spaces of the same dimension are isomorphic.
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The following theorem summarises the main result of this section.

Theorem 116. The greedy algorithm solves the optimisation problem if and only if the

chains in VectbR induced by all runs have the same limit.

Proof. Combine Theorem 111 and Lemma 115.

2.10 Matroids and Entropy

Before moving on to the next chapter, which concerns itself with Entropy in Classical

Thermodynamics, we discuss some links between matroids and other notions of Entropy.

Here we focus on Statistical Mechanics.

The properties of matroids are the properties of dependence, a notion that appears

in virtually any physical process. Consider the following physical scenario. Suppose

that we have two substances A and B, separated from each other and not interacting,

respectively comprising NA and NB identical particles. Each substance may be in a

specific microstate, that is, a combination of the states of all its particles. Suppose

that each particle of A (respectively B) can be in one of sA (respectively sB) different

states; then we have sNA

A sNB

B possible microstates for the whole system. Writing out the

elements of each component as a sNA

A ×1 (respectively sNB

B ×1) matrix, the whole is the

Kronecker product of these two matrices. Performing a process on the system means

applying a stochastic matrix to this product, during which the two components may

interact; performing a process each of the two components separately then corresponds

to a Kronecker-separable stochastic matrix. Recovering the effect of the process on one

of the components is tantamount to a projection on a subspace. Taking the matroid of

the matrix one may apply our results above in order to isolate the dependence properties

of the system and reason about them categorically.
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Another angle (further discussed in Chapter 4) comes from the fact that Shannon

Entropy (and by extension Entropy in Statistical Mechanics) induces a structure which

generalises matroids and to which many results from matroid theory can be extended. In

that sense, some properties of matroids are properties of Entropy. A possible application

of our results on matroids to Entropy is reserved for future work.
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Chapter 3

Categorical perspectives on Entropy

3.1 Introduction

3.1.1 Overview

The aim of this work is to explore concepts that may serve as a mathematical foundation

for various notions of Entropy. We use Category Theory to capture the mathematical

essence of Entropy.

As discussed in Section 1.3, our starting point is an embellished version of Lieb and

Yngvason’s framework [51]. A large proportion of this project is devoted to showing

connections of this expanded model with two other categorical notions, each unique

and significant in its own way. These are topological weak semimodules and traced

monoidal categories.
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topological weak semimodules

traced monoidal categories

adiabatic categories

We briefly introduce the notions in the above diagram, without yet giving their

proper definitions. Adiabatic categories (introduced in Subsection 3.3.1, here depicted

in blue) have a “weakly linear” structure that cooperates with a “convergence” functor;

similarly, topological weak semimodules (introduced in Subsection 3.3.2, here depicted

in green) have a “weakly linear” structure that cooperates with a topological functor.

Finally, recall [38, 31] that a traced monoidal category (here depicted in red) is a braided

monoidal category with a natural operation called a trace, generalising a matrix trace,

which takes a morphism in Hom(A ⊗ X,B ⊗ X) to a morphism in Hom(A,B) and

satisfies certain properties that arise from the case of a linear trace.

We expect physical systems that display Entropy to lie within the intersection of

all three circles. We shall now describe our results on the pairwise intersections of the

above diagram.
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Both adiabatic categories and topological weak semimodules are defined over a topo-

logical semiring. Out of all possible underlying semirings, we distinguish adiabatic cat-

egories over what we shall call “rational-like” semirings (we call these rational-like adi-

abatic categories) and topological weak semimodules over what we shall call “stable”

semifields. A rational-like topological semiring is a topological semiring that behaves

like Q or Q≥0 in some ways; without giving a technical definition here, we note that a

rational-like semiring need not be a semifield. We call a topological semifield “stable”

if the topology cooperates with the linear structure in a certain intuitive manner (we

shall not go into more detail in the context of this introduction).

Refining the above diagram, we shall depict these distinguished adiabatic categories

and topological weak semimodules with a semicircle of darker hue.

topological weak semimodules

stable topological
weak semimodules

(semicircle)

traced monoidal categories

adiabatic categories

rational-like adiabatic categories
(semicircle)

stable adiabatic categories
(intersection of 2 circles)

Observe in the above diagram that the stable topological weak semimodules contain
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the intersection between weak semimodules and adiabatic categories. We show that the

intersection of adiabatic categories and topological weak semimodules contains precisely

the adiabatic categories over “stable” topological semifields; we furthermore show that,

fixing a specific “stable” topological semifield Λ, adiabatic categories over Λ are a subset

of topological weak semimodules over Λ and every topological weak semimodule over

Λ can be canonically mapped to an adiabatic category over Λ (Theorem 204). We

shall later see an example of a stable topological weak semimodule that is not an adi-

abatic category, along with its mapping.

We now point out an intentional omission in the diagram. The intersection of traced

monoidal categories with the other two sets is restricted to those categories whose trace

is definable in terms of their topological structure; for adiabatic categories in particular,

this is done by means of a Cancellation Law, which restricts them to what we shall call

rational-like adiabatic categories. That is, we have not depicted adiabatic categories

or topological weak semimodules that may admit an arbitrary trace (for the sake of

completeness we mention here that we have shown all adiabatic categories over a topo-

logical ring to be traced monoidal in the more general sense – see Remark 238). In

this context, it almost goes without saying that there exist traced monoidal categories

that are neither adiabatic categories nor topological weak semimodules; the reader can

just pick their favourite example from the literature on traced monoidal categories, and

chances are that it will have no such structure.

Bearing in mind this discussion, note in the above diagram that the rational-like

adiabatic categories contain the intersection between adiabatic categories and traced

monoidal categories. We show (Theorem 247) that adiabatic categories over certain

“rational-like” topological semirings are traced monoidal if they satisfy a set of physi-

cally plausible constraints (in which case we call them nearly-traceable1) and their sym-

1There is a reason that we distinguish strict symmetry among the properties we require. Specifically,
only one of the properties of trace directly involves the braiding (here a symmetry) and this is the one
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metry is strict. Any topological weak semimodule that maps to such an adiabatic cate-

gory is also traced monoidal, whether or not it is itself an adiabatic category; this is be-

cause the possible extra topological structure of the topological weak semimodule does

not interfere with the axioms of a traced monoidal category.

In short, these main results may be depicted as follows.

topological weak semimodules

stable topological
weak semimodules

(semicircle)
mappings: semicircle
maps to intersection
(traced to traced)

traced monoidal categories

adiabatic categories

rational-like adiabatic categories
(semicircle)

stable adiabatic categories
(intersection of 2 circles)

nearly-traceable strict-symmetric
rational-like adiabatic categories

We note that any physically relevant model is both stable and traced:

• In a thermodynamical setting, the topological semiring corresponds to a set of

scaling factors, and specifically to mass2. Therefore, we are only interested in

R≥0 with the standard topology, which is stable and rational-like.

that is often not satisfied in nature. We use the term near-trace for a natural operation in a braided
monoidal category with the same type as the trace that satisfies all properties of trace except for the
one involving the braiding, and the term nearly-traced monoidal category accordingly. We show that
nearly-traceable categories are nearly-traced.

2As we shall see, the idea is that as these scaling factors tend to 0, the system “disappears”; hence,
mass is the quantity affected. This is the crucial property that enables us to recover an additive
extensive function later.
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• The constraints that an adiabatic category has to satisfy in order to be traced

monoidal are physically plausible. For instance, the monoidal structure of the

adiabatic category must have a strict symmetry; since the symmetry is physically

interpreted as a way of putting two systems together (eg mixing, or reaching

thermal equilibrium), we can make that assumption without losing generality from

a thermodynamical point of view. The other relevant constraints are similarly

benign.

What do these notions have to do with Entropy? As mentioned in Chapter 1, when

choosing the topological semiring to be R≥0 with the standard topology we recover

Entropy as a unique (up to some factor) subadditive nondecreasing function. In this

abstract setting, we provide some categorical examples of a macroscopic treatment.

Moreover, as noted in Chapter 1, the function we recover satisfies the properties of

Faddeev’s theorem on an abstract level, which provides a basis for future work (see

Chapters 1 and 4).

Without yet giving proper definitions, we give a brief description of rational-like

adiabatic categories in terms of physical intuition:

Remark 117. As per Lieb and Yngvason’s work [51], a rational-like adiabatic cate-

gory (more specifically, an adiabatic category over R≥0 with the standard topology)

models thermodynamical systems at various states (objects) and adiabatic processes

between these states (morphisms). Composition then means performing one process

after another, and identity means doing nothing to a system.

• The category is symmetric monoidal. The monoidal product of two systems X1

and X2 is the compound system consisting of X1 and X2. Symmetry means

switching the two systems, which is an adiabatic process. The unit is the empty

system. This monoidal product is strict.
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• The category is equipped with a family of endofunctors, which can be thought of

as mass. They correspond to scaling of a system by a factor λ ∈ R≥0, without

changing its thermodynamical state; for instance, if X is 100gr of hydrogen at

temperature T and pressure P , then 2X is 200gr of hydrogen at temperature T

and pressure P . These scaling operations have to be functorial, as any notion

of “scaling” a multistep process must apply to scaling each step of this process

individually (and, of course, doing nothing to a system of mass λm should, in

any sensible scaling model, be a scaled version of doing nothing to a system

of mass m). They are strict monoidal, as scaling a compound system is the

same as scaling each of its component subsystems.3 They are symmetric, because

switching components around has the same effect no matter what the mass of the

system is. Lastly, anything with 0 mass is the empty system.

• The category has a “splitting and recombination” property, which means that

every system can be split into two parts with the same thermodynamical state

(inserting a partition) and then recombined into a single system (removing the

partition), or vice versa, with no net effect (invertibility); this is an adiabatic

process. Moreover, it makes no difference whether an adiabatic process takes

place before or after the splitting/recombination process (naturality). In the end,

we see that this is a natural isomorphism.

• Stability for Lieb and Yngvason means that if there exist adiabatic processes

X⊞ǫZ1 → Y ⊞ǫZ2 (where ǫ→ 0 in this homset sequence), essentially making the

components Z1 and Z2 infinitely small, then there must exist an adiabatic process

f : X → Y . In our framework, we have a notion of “basic stability” which is

stronger than the stability required by Lieb and Yngvason. The difference is that

3For an example of an adiabatic category where the scaling functors are not strict, see section on
topological weak semimodules.
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we further require f to arise as a function on an infinite sequence of “converging”

processes. In other words we posit that, given such an f and a homset sequence

of a specific type, there must exist specific processes fǫ : X⊞ ǫZ1 → Y ⊞ ǫZ2 that

“approximate” f , essentially “tracing out” the “vanishing” component.4

• Since we have required the existence of such a function, we must ensure that it

acts as a limit of a sequence in an appropriate space and that it has sensible

physical properties. These are “convergence” properties, which are sufficient and

necessary for the stability function to correspond exactly to topological conver-

gence [76], and “linearity” properties, which ensure that the topological space in

question cooperates with composition, identity, the monoidal structure and the

scaling endofunctors in a physically plausible way; in essence, this captures the

expectation that certain physical processes must be continuous in certain vari-

ables.

It is important to understand the usefulness of having the three different perspec-

tives. The Lieb-Yngvason perspective (adiabatic categories) is straightforward and

intuitive (after all, it arose from physical modelling) but offers little insight into the

properties of the category. The construction of topological weak semimodules, on the

other hand, while on the surface not bearing much resemblance to the underlying phys-

ical reality, is much more powerful and elegant, and opens the door to discovery of

possible hidden mathematical properties of the physical setup. There are two reasons

for this:

1. Even though our treatment restricts topological weak semimodules to the same

possible topologies as adiabatic categories, topological weak semimodules cap-

ture more topological properties of the physical system than adiabatic categories.

4In subsection 3.4.2 we shall see a concrete example of a physically relevant rational-like adia-
batic category as a traced monoidal category, where the stability property gives rise to a trace.
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This is because adiabatic categories arose from a generalisation of thin categories,

which limits the forms of convergent sequences (of morphisms) considered. This

fact is reflected in the fact that the relationship between the categories of adia-

batic categories and topological weak semimodules is not an equivalence, but an

adjunction.

It is important to note here that rational-like adiabatic categories model continu-

ity in terms of one quantity: mass. That is to say, supposing we repeat a process

on a composite system, each time removing some mass from one of the compo-

nents but keeping all intensive parameters equal, if each time the process remains

adiabatic no matter how much mass we remove, then we can eventually remove

the whole component and the process will remain adiabatic. This is precisely the

convergence property that yields Entropy, as it implies the existence of a subad-

ditive function (see Theorem 225). By contrast, topological weak semimodules

make no distinction between the topological properties of mass and those of any

other quantity; this makes the connection to Entropy far less clear, but also allows

us to model changes in any variable of the system state.

2. Topological weak semimodules combine two fundamental categorical notions:

• Topological categories are a sort of internal categories that not only has ex-

isted for a long time, but has also been extensively studied. As a result,

topological weak semimodules are more elegant from the topological stand-

point and we can use known properties of topological categories to study

them.

• On the other hand, weak semimodules are an intuitive categorification of

semimodules (equivalently, a weakening of 2-semimodules), another sort of

internal category. While weak semimodules are not themselves internal cate-
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gories, weak semimodules are similar enough to 2-semimodules that they are

easy to work with and in some ways can be thought of as semimodule-like

structures. We have a lot of theoretical tools at our disposal to deal with

such structures.

Moreover, the category WSM of weak semimodules has the property that

it has free constructions over the category SMC of symmetric monoidal

categories; more research into the properties of WSM is needed in order to

explore possible ways to exploit this.5 This partly motivates our decision

to frame our constructions and theorems in terms of more general semirings

rather than just R≥0.

Lastly, we establish a connection with traced monoidal categories. These categories

have an intuitive interpretation from the physical viewpoint (“erasing” part of a system

by means of an operation called the trace) but they offer nothing new in this respect,

as rational-like adiabatic categories (which, we remind, include adiabatic categories

over R≥0) have their own version of this operation (what Lieb and Yngvason call the

Cancellation Law); in fact, the Cancellation Law is more general than the trace. The

real usefulness here lies in the fact that the properties of traced monoidal categories have

been studied extensively, which again gives us yet another toolset to treat a physically

relevant subset of adiabatic categories.

3.1.2 Outline

This chapter comprises a lot of definitions and constructions, along with proofs of asso-

ciated properties. This outline aims to offer some insight into the underlying structure:

5For instance, it would be fruitful to find out if WSM has internal tensor products and is injectively
complete like the category of semimodules, in which case the injective envelope in WSM of a free
construction over SMC may tell us something about the symmetric monoidal category underlying the
free construction. This is one possible direction for a future project.
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save for a few tangential remarks and minor lemmas, this chapter actually follows a

focussed and directed path that the reader should be aware of.

Situated after some essential definitions in Section 3.2 and before presenting some

physically-motivated applications in Section 3.4, Section 3.3 is the crux of this chapter,

containing all the relevant constructions and theorems. Therein we show the relation-

ship between three different notions.

Subsection 3.3.1 introduces adiabatic categories, which are a direct generalisation

of a mathematical construction (introduced by Lieb and Yngvason [51]) that arose

naturally from Thermodynamics. These “adiabatic categories” (see Definitions 139 and

148, which are equivalent by Theorem 151) are categories combining something akin

to a linear structure (which we call weak linearity ; see Definition 136) and something

resembling a topological structure, defined in terms of a “convergence function” (in

fact a functor, as we shall see; see Definition 147) mapping infinite sequences to their

limit; these two structures are required to cooperate with each other. We show that the

convergence functor indeed gives rise to a topology on the set of objects and a topology

on the set of morphisms (see Lemma 157). We also show that some adiabatic categories

retain a property that Lieb and Yngvason call a Cancellation Law (see Theorem 161).

At this point, the reader may be reminded of topological vector spaces (where a

linear structure and a topological structure coexist cooperatively), of enriched cate-

gories, and of internal categories (specifically, topological categories). These intuitions

are validated in the following Subsections.

Subsection 3.3.2 introduces topological weak semimodules (see Definitions 166 and

176). These are much more general, fundamental and powerful constructions; specifi-

cally, weak semimodules are a categorification of semimodules (in fact, they generalise 2-

semimodules; see Remark 169) and their topological counterparts are weak semimodules

that are also topological categories. We mention some interesting properties of the cat-
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egories of weak semimodules and of topological weak semimodules, as well as some nice

examples that hint at their versatility and usefulness (see, for instance, Remark 187).

These two constructions (adiabatic categories and topological weak semimodules)

have very different origins (with the former coming from modelling physical systems

and the latter from a categorification of a familiar concept) and look nothing like each

other. However, Subsection 3.3.3 shows a definitive connection between the two (see

Theorem 204); in fact, an adjunction (see Theorem 217).

Subsection 3.3.4 restates some of Lieb and Yngvason’s results in this more general

setting.

Finally, Subsection 3.3.5 reveals certain links between adiabatic categories and

traced monoidal categories, as there are two classes of adiabatic categories that are

traced monoidal (see Remark 238 and Theorem 247). In one of these classes, Lieb and

Yngvason’s Cancellation Law is the trace operation.

In summary, the reader is advised to refer to the following diagram for Section 3.3.

Entropy
(3.3.4) //

(3.3.1)

adiabatic categoriesoo T //

Cancellation Law
��

Ring structure




(3.3.2)

topological weak semimodules

(3.3.3)oo

traced monoidal categories

(3.3.5)

3.2 Preliminary definitions

3.2.1 Algebraic structures

Recall the standard definitions of semiring and commutative semiring:

Definition 118. A semiring R(0, 1) is a set R equipped with two binary operations +
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and ·, called addition and multiplication, such that the following hold.

• (R,+) is a commutative monoid with identity element 0 (additive unit).

• (R, ·) is a monoid with identity element 1 (multiplication unit).

• Multiplication (left and right) distributes over addition.

• 0x = 0 for all x ∈ R.

A ring is a semiring that is an abelian group under addition.

Definition 119. The trivial semiring is the semiring with one element, 0=1.

Every semiring in this work will be assumed nontrivial; note that in any nontrivial

semiring we always have 0 6= 1.

Definition 120. A commutative semiring is a semiring where multiplication is com-

mutative.

From here on, we always denote semiring addition with + and multiplication with

concatenation. Furthermore, unless otherwise noted, the additive unit of the semiring

will always be denoted 0 or zero and the multiplicative unit will be denoted 1 or one;

this is to keep consistency with the usual notation on the semirings Q, R, Q≥0, R≥0, Z,

N, etc. with the usual multiplication and addition operations.

Definition 121. A semiring R is cancellative if for any x, y, z ∈ R we have x + y =

x+ z ⇒ y = z.

Any ring is cancellative; also, the semirings N, Q≥0 and R≥0 are cancellative.

In any cancellative semiring we define a partial subtraction function (written as −)

as the inverse of addition. Similarly, when multiplicative inverses are unique, we define

a partial division function (written as a fraction 1
r
) as the inverse of multiplication; if the
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semiring is also commutative, fractions are written in the usual form r1
r2
. Positive and

negative integer exponents will be used to denote repeated multiplication and (when

the operation is defined) repeated division.

In this work we are interested exclusively in commutative cancellative semirings, so

we shall use a shorthand.

Definition 122. Call a commutative cancellative semiring a CC-semiring.

(Semi)fields also play a crucial role in this work.

Definition 123. A semifield is a commutative semiring in which all nonzero elements

have a multiplicative inverse. A field is a ring that is also a semifield.

Lastly, we define algebraic substructures.

Definition 124. Given a semiring R, a subsemiring (subring, subfield, subsemifield) R′

of R is a semiring (ring, field, semifield) on a subset of R with the same addition and

multiplication operations. We equivalently say that R extends/is an extension of R′.

3.2.2 Topology

Firstly, a general note on terminology: In this work, whenever we use the adjective

“continuous” to describe a functor, we shall always mean a topological functor, i.e. a

functor whose underlying functions on objects and on morphisms are continuous in the

topological sense (precise definitions to follow in Subsection 3.3.2). We do not use

this term to refer to a functor that preserves small limits. This use of terminology

is consistent with the relevant paper by Baez, Fritz and Leinster [13] discussed in

Subsection 1.3.

Here we define a shorthand for a specific type of topological space that we shall use

throughout this work.
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Definition 125. A nice topological space (equivalently, a space equipped with a nice

topology) in this work will be understood as a topological space with the following

properties:

• Every convergent sequence has a unique limit (i.e. the space is a US-space).

• Every set X that contains the limits of all the convergent sequences contained in

X is closed (i.e. the topology of the space is sequential).

Recall [59, 2.17] that a topology satisfies the T1 separation axiom precisely when

singletons are closed. Note that a nice topology in the above sense is always T1.

Definition 126. We define Top as the category of topological spaces and continuous

maps.

Definition 127. We define NiceTop as the category of nice topological spaces and

continuous maps.

The category SeqTop of sequential spaces is a coreflective subcategory of Top [3,

Example 4.26A(2)]. Seeing as Top is complete and cocomplete [3, Examples 12.6],

and because a coreflective subcategory of a small complete and cocomplete accessible

category is itself complete and cocomplete [4, Corollaries 2.47, 6.18, 6.29], SeqTop is

also complete and cocomplete. We now offer a similar result for NiceTop.

Lemma 128. NiceTop is a reflective subcategory of the category SeqTop of sequential

spaces.

Proof. Let F : SeqTop → NiceTop be the functor that acts on a space X in the

following way:

• For every sequence S in X with a nonempty set of limits LS , F (LS) = ls, where

ls is a single point; in other words, we quotient by the equivalence relation where
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points x and y are equivalent if there exists a sequence that converges to both

x and y. Note that this accounts for all points in X , as each is the limit of a

constant sequence.

• A set Q ⊆ F (X) is closed if and only if F−1(Q) is closed.

We readily see that F (X) is indeed a topological space: the sets ∅ and F (X) are closed;

intersections of closed sets are closed; finite unions of closed sets are closed.

For a morphism f , set F (f)(x) = F (f(F−1(x))); this is a well-defined function

because continuous maps map limits to limits and therefore F (f(F−1(x))) is a single

point. Furthermore, F (f) is continuous by construction.

Note that F maps nice spaces to themselves and that a morphism whose target

is nice sends all limits of a given sequence to the same point. The latter means that

for every sequential space X and every nice space X ′ there is a 1-1 correspondence

between continuous maps X → X ′ and continuous maps F (X) → X ′; furthermore,

the mapping X → X ′ factors through the universal morphism X → F (X) sending

x 7→ F (x) for x ∈ X , which is continuous. Therefore, F is left adjoint to the inclusion

NiceTop → SeqTop.

Seeing as SeqTop is complete and cocomplete as noted above, and because a re-

flective subcategory of a small complete and cocomplete accessible category is itself

complete and cocomplete [4, Corollaries 2.47, 6.18, 6.24], the above lemma yields the

following corollary.

Corollary 129. NiceTop is complete and cocomplete.

We shall also make use of the following fact:

Remark 130. The discrete topology on a set X is an initial object in the full subcat-

egory of NiceTop of topologies on X .
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We shall also be using the following shorthand:

Definition 131. A topology τ on a semiring R will be called structure-respecting if

semiring addition and multiplication are continuous operations (R, τ)×(R, τ) → (R, τ).

Note that our structure-respecting condition is stronger than the one used in a lot

of the literature, which often only requires pointwise continuity.

Next we define topological semirings. We draw attention to the fact that we use

the term “topological semiring” only in conjunction with topologies we have termed

“nice”. Unlike most literature on topological ring-like structures, we do not require

the topology to be Hausdorff (recall [59, 2.17] that a topology satisfies the Hausdorff

separation axiom precisely when distinct points have disjoint neighbourhoods).

Definition 132. A topological semiring (R, τR) is defined to be a semiring R equipped

with a nice structure-respecting topology τR.

Sometimes we need to restrict to more convenient topological semirings, so we intro-

duce rational-like semirings (we shall explain the terminology shortly). In the following,

we slightly abuse our fraction notation, since we do not generally require inverses to be

unique; however, the fraction 1
x
can be thought of as the “canonical” inverse of x.

Definition 133. A topological semiring (Λ, τ) will be called rational-like when the

following hold:

1. There exists an element 1
2
∈ Λ such that6 1

2
+ 1

2
= 1.

2. In τ , the sequence {1
2
,
(
1
2

)2
,
(
1
2

)3
, . . .} converges to 0.

The notation 1
2
is used because an element satisfying 1

2
+ 1

2
= 1 is precisely a

multiplicative inverse to 2 := 1 + 1. Moreover, setting7 n := 1 + . . .+ 1︸ ︷︷ ︸
n

, the following

6In the context of commutative (cancellative) semirings, this makes Λ a (cancellative) midpoint

algebra [27] with respect to the operation m(a, b) := 1
2 (a+ b).

7Note that the notation 2n is unambiguous in this sense.
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lemma shows that all simple fractions whose denominators are powers of 2 (exist and)8

are distinct elements of Λ.

Lemma 134. For any rational-like topological semiring (Λ, τ), the semiring Λ extends

N.

Proof. Together with nontriviality, condition 1 implies that 2 6= 0 and condition 2

implies that 2 6= 1. Note that each element in the sequence of condition 2 must be

different, making the semiring necessarily infinite. Each element
(
1
2

)n
is an inverse of

2n [Proof: Base case for 1
2
; suppose x · 2n = 1, then 2n+1 · (x · 1

2
) = (2n + 2n) · (x · 1

2
) =

2n · x · 1
2
+ 2n · x · 1

2
= 1

2
+ 1

2
= 1; same for multiplication on the other side]. It follows

that 2, 22, 23, . . . are all different [Proof: Suppose 2m+n = 2n for some n > 0, then

2m+n · 1
2m

= 1; but 2m+n = 2m · 2n so we get 2n = 1, whence 1
2n

= 1, which we have

rejected], whence each n ∈ N∗ corresponds to a distinct element of Λ. Thus N ⊆ Λ and

furthermore N is a subsemiring of Λ.

Finally, we define topological subsemirings.

Definition 135. A topological semiring (R, τ) is a topological subsemiring of a topo-

logical semiring (R′, τ ′) if R is a subsemiring of R′ and τ is a subspace of τ ′. We then

say that (R′, τ ′) extends (R, τ).

Note that any topological semiring extending (Q≥0, τ) (where τ denotes the inherited

standard topology from R) is a rational-like semiring, hence the term. The converse

does not hold; a rational-like semiring need not contain, for instance, 1
3
.

8Multiplication with natural numbers in this sense is always commutative: x · (1 + . . . + 1) =
x+ . . .+ x = (1 + . . .+ 1) · x.
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3.3 Adiabatic categories, topological weak semimod-

ules and traced categories

Note on notation

Throughout this chapter, the term source will be used interchangeably with domain and

the term target will be used interchangeably with codomain. We caution the reader that

this differs from the use of the term source elsewhere in the literature [3].

3.3.1 Adiabatic categories: Definition and properties

In this section, we shall mainly work with what we shall call rational-like adiabatic cat-

egories. However, a few of the theorems that follow hold for a more general class of

categories, so we first define a generalisation called adiabatic categories. This generali-

sation will become more important in Subsection 3.3.2, where we introduce topological

weak semimodules.

For the definitions in the beginning of this section, we shall use the symbol x
.
= y to

denote that either x and y are both undefined or they are both defined and equal. We

shall also use the same notation for either a list or a set of indexed elements, i.e. {s}i

can denote either a set or a list of elements si, depending on context that will be made

clear. For the sake of brevity, a list is always assumed to be countably infinite unless

it is nonterminal in a concatenation operation (or unless otherwise noted), indices are

assumed to be the positive integers, and a list is assumed to be sorted by ascending

order of indices. We sometimes use {si} instead of {s}i; this is not meant to denote a

one-element list. Lastly, S1S2 will denote concatenation of lists S1 and S2 and S ′ ⊆ S

will denote that S ′ is an infinite subsequence of S.

Firstly we define a generalisation of adiabatic categories which embodies their linear
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structure.

Definition 136. Given a topological CC-semiring (Λ, τ), a weakly linear category over

Λ is a small category C equipped with the following:

• A monoidal product ⊞ with unit object Θ, associator a, left unit map l and right

unit map r. It is also equipped with a symmetry s.9

• A family of covariant symmetric monoidal endofunctors λ (with associated natural

transformations Jλ) indexed by elements of Λ such that λ1 · λ2 = λ1 ◦ λ2 (where

for clarity we have used · to denote semiring multiplication). Every object in the

image of 0 is isomorphic.

• The splitting and recombination property (SR): The λ functors are such that

for every X ∈ Ob(C) and every λ1, λ2 ∈ Λ, there exists a natural isomorphism

cX,λ1,λ2 : (λ1 + λ2)X → λ1X ⊞ λ2X .

We shall denote such a weakly linear category as (C,⊞,Θ, a, l, r, λ,Λ, τ, {J}λ, s, c).

Note that the above definition differs from the use of the term “weakly linear cate-

gory” elsewhere in the literature [72].

The reason we require a topology on the semiring is in order to define primary

sequences as below.

Definition 137. Let L be a list of n objects in a weakly linear category C and let I be

a subset of {1, 2, . . . , n}. Let M(L, I, λ) be the monoidal product ((F1(L1)⊞F2(L2))⊞

9Symmetry is necessary for the Cancellation Law below, as well as Theorem 225 that depends on
it; however, dropping symmetry retains most of the properties of these categories as well as a weaker
order-preserving version of the Cancellation Law. A version of weakly linear categories without the
symmetry may thus be useful and appropriate for some physical models.
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. . .)⊞ Fn(Ln), composed with any combination of associators, where

Fi =





λ, i ∈ I

1, otherwise
.

Given an infinite sequence λi → 0, define the primary sequence PS(L, I, {λi}) in C as

the infinite sequence of objects {M(L, I, λi)}i.

Given a list of morphisms fj between lists of objects xj and yj of the same length,

we define M(f, I, λ) in the same way as for objects. We can then construct a primary

sequence of morphisms in the same way.

Primary sequences are a straightforward generalisation of sequences of the form

a ⊞ λib, with λi → 0. We allow more “constant” terms like a, more “vanishing”

terms like b and in any order. This is in line with Lieb and Yngvason’s setup, as

the corresponding category (in our framework) is a strictly symmetric strict monoidal

preorder where the λ endofunctors are strict.

Before giving the definition of an adiabatic category, we define an auxiliary con-

struction.

Definition 138. Denote by AllInfiniteSequences[C] the category whose objects are

the infinite sequences {X}i of objects Xi in C, whose morphisms are the infinite se-

quences {f}i : {X}i → {Y }i of morphisms fi : Xi → Yi in C, and where composition

is defined pointwise by composition in C.

We are now ready to define an adiabatic category. We shall provide two equivalent

definitions. We start with the more explicit one, as it exemplifies the connection with

Lieb and Yngvason’s work and simplifies some of the proofs that follow, for instance by

using a familiar construction of a sequential space.
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Definition 139. Let (Λ, τ) be a topological CC-semiring. An adiabatic category C is

a weakly linear category C equipped with a partial function

conv : Mor(AllInfiniteSequences[C]) → Mor(C),

which satisfies the following stability/continuity properties:

• The basic stability/continuity property (Cont): The λ functors are such that

the following holds: Let SΛ := {λ}i be a sequence tending to 0 and let X =

PS(x, I, SΛ) and Y = PS(y, I, SΛ) be primary sequences, where x and y have

the same length. If for all i we have Hom(Xi, Yi) 6= ∅ then there exists at least

one sequence of morphisms fi ∈ Hom(Xi, Yi) that uniquely define a morphism

conv({f}i) :M(x, I, 0) →M(y, I, 0).

• The following “convergence” properties:

1. The function conv maps any constant sequence to the sole distinct element

of the sequence.

2. If conv(S) is defined and S ′ ⊆ S then conv(S ′) is defined and conv(S ′) =

conv(S).

3. If conv(S) is either undefined or conv(S) 6= f then there exists S ′ ⊆ S such

that there does not exist S ′′ ⊆ S ′ with conv(S ′′) = f .

• The following “linearity” properties:

(i) Given sequences S1 = {gi : Bi → Ci} and S2 = {hi : Ai → Bi}, suppose that

conv(S1) and conv(S2) are defined and construct the sequence S = {fi =

gi ◦ hi}. Then conv(S) is defined and conv(S) = conv(S1) ◦ conv(S2).

(ii) conv({idXi
}) = idM(LX ,I,0).
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(iii) (a) Given sequences S1 = {gi : Ai → Bi} and S2 = {hi : Ci → Di}, suppose

that conv(S1) and conv(S2) are defined and construct the sequence S =

{fi = gi ⊞ hi}. Then conv(S) is defined and conv(S) = conv(S1) ⊞

conv(S2).

(b) If A is a sequence of associators between primary sequences, conv(A) = a

where a is the appropriate associator.

(iv) conv({λxi})
.
= λconv({x}i).

(v) conv({fi ⊞ gi}i)
.
= sA,B ◦ conv({gi ⊞ fi}i) ◦ sB,A for the appropriate objects

B and A.

We shall collectively refer to the “convergence” and “linearity” properties of conv as

the extended stability/continuity properties.

Note that the notations λ1λ2 and λn for n ∈ Z are unambiguous in the categorical

context. Specifically, multiplication of the elements λ ∈ Λ is composition of the functors

λ; for n ≥ 0, raising the element λ ∈ Λ to the nth power is the same as applying the

λ functor n times; for n < 0, raising the element λ ∈ Λ to the nth power is the same

as applying the inverse of the λ functor n times (the latter may only be used if Λ is a

semifield).

We shall often refer to the left/right unitor associated to an object 0X as a unit.

This is defined by the composition of l (respectively r) with the unique isomorphism

uX : 0X → Θ.

The stability function conv is to be linked to convergent sequences in a certain

topological space (see Lemma 157).

Before giving the alternative definition, we advise the reader to revisit Remark 117

in light of Definition 139, and keep in mind the physical motivation behind each element

of the definition. The physical intuition applies to the following subcass of adiabatic
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categories.

Definition 140. A rational-like adiabatic category is an adiabatic category over a

rational-like topological semiring.

We now proceed to give an equivalent definition of adiabatic categories that is more

elegant and succinct. We first need some auxiliary constructions.

Definition 141. For any category C, a category S is defined to be a sequence category

of C if it is a subcategory of the category AllInfiniteSequences[C].

Sequence categories can help define convergent sequences. We are interested in

convergence related to the linear structure, so we shall focus on the following class of

sequence categories.

Lemma 142. Given a weakly linear category C, one can construct a weakly linear cat-

egory C as follows:

Let X = (X1, X2, . . .) and Y = (Y1, Y2, . . .) denote primary sequences in C.

• The objects of C are the primary sequences in C as well as all sequences of the

form (X1⊞Y1⊞ · · ·⊞Z1, X2⊞Y2⊞ · · ·⊞Z2, . . .) where each element of the infinite

sequence has the same number of terms.

• C is a full subcategory of AllInfiniteSequences[C].

• For X and Y as above, X⊞Y = (X1 ⊞ Y1, X2 ⊞ Y2, . . .).

• For X as above, λX = (λX1, λX2, . . .) for λ ∈ Λ.

Proof. We check that C is indeed a weakly linear category. This can be done by

inspection; we readily observe the following:

• C is a category where identities are sequences of identities in C.
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• ⊞ is indeed a symmetric monoidal product with Θ = (Θ,Θ, . . .). Concretely,

for X = (X1, X2, . . .), Y = (Y1, Y2, . . .) and Z = (Z1, Z2, . . .) we have lX =

(lX1, lX2 , . . .), rX = (rX1 , rX2, . . .), aX,Y,Z = (aX1,Y1,Z1, aX2,Y2,Z2 , . . .) and sX,Y =

(sX1,Y1, sX2,Y2, . . .).

• Any λ preserves composition and identity because λ does and is therefore also a

covariant functor. Similarly, the functors λ are symmetric monoidal, multiplica-

tion coincides with composition and 0 maps any object to some object isomorphic

to the unit; all these properties follow immediately form the fact that the functors

λ have the same properties. We also have Jλ,X,Y = (Jλ,X1,Y1, Jλ,X2,Y2, . . .).

• We have that cX,λ1,λ2 = (cX1,λ1,λ2 , cX2,λ1,λ2 , . . .); it is natural because c is natural.

Definition 143. Call C as constructed in Lemma 142 the primary sequence category

of C.

The idea here is to use sequence categories in order to define a notion of convergence,

and then use the primary sequence category as a “distinguished” sequence category

that links the convergence structure with the weakly linear structure and gives rise to

adiabatic categories.

Definition 144. We shall refer to monoidal products in the primary sequence category

of some weakly linear category C as monoidal products of primary sequences in C.

Note that if S is a primary sequence (of morphisms or of objects), then every

subsequence of S is also primary; if S is a monoidal product of primary sequences,

then every subsequence of S is also a monoidal product of primary sequences. More

generally, taking subsequences is functorial in C; we shall use this fact to recover a

categorical description of convergence.
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Definition 145. Let S be a sequence category of some category C. Let I be an

infinite list of strictly increasing positive integers; a subsequence endofunctor FI of S

is a functor acting on morphisms as follows: an infinite sequence S of morphisms of

C, with S ∈ Mor(S), is mapped to the infinite subsequence of S corresponding to the

elements with indices in I.

In the definition above, given a category C, note that for an arbitrary sequence

category S of C and for arbitrary I the functor FI : S → S may be undefined. Of

course, all subsequence endofunctors are defined when S = AllInfiniteSequences[C].

Crucially, we observe the following:

Remark 146. In the primary sequence category of a weakly linear category, the sub-

sequence endofunctors FI are defined for all infinite lists I of strictly increasing positive

integers.

We now define a class of categories with a convergence structure.

Definition 147. Given a category C, let S be a sequence category of C such that

subsequence endofunctors FI are defined for all infinite lists I of strictly increasing

positive integers. A convergence category (S′, conv) (with respect to S and C) is a

subcategory S′ of S (defined by the injection i : S′ → S) that is closed under all

subsequence endofunctors F and is equipped with a functor conv : S′ → C satisfying

the following properties:

• conv maps any constant sequence of morphisms to the sole distinct element of the

sequence.

• The following triangle commutes:

S′ F //

conv
  ❅

❅❅
❅❅

❅❅
❅ S′

conv
��
C
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• Let f be a morphism in S. If for every subsequence endofunctor Fk there exists

a subsequence endofunctor Fj such that (Fj ◦ Fk)(f) is in the image of i, then f

is also in the image of i and moreover conv((i−1 ◦ Fj ◦ Fk)(f)) = conv(i−1(f)).

So at this point we have categorical notions of both weak linearity and convergence.

Adiabatic categories integrate these two notions, as shown in their alternative definition:

Definition 148. An adiabatic category C is a weakly linear category C where the

following hold.

There exists a monoidal subcategory C
′
of C, called the stability category of C,

which is surjective on objects and closed under the λ endofunctors, such that C
′
has at

least one morphism in each homset that is nonempty in C and such that there exists

a symmetric strict monoidal functor conv : C
′
→ C, called the stability functor of C,

making the following square commute for each λ:

C
′ conv //

λ
��

C

λ
��

C
′ conv // C

Furthermore, (C
′
, conv) is a convergence category with respect to C and C.

Before showing the equivalence of the two definitions for adiabatic categories, we

note that we shall be using an extension of conv. This extension is based on a basic

property of convergence, encapsulated in the following two categories:

Definition 149. Define the extended primary sequence category of C as the category

where objects are sequences of the form QS, where S is an object in the primary

sequence category of C, and morphisms are sequences of the form QS, where S is a

morphism in the primary sequence category of C.
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Define the extended stability category CC
′
of C as the category where objects are

sequences of the form QS, where S is an object in the stability category of C, and

morphisms are sequences of the form QS, where S is a morphism in the stability

category of C.

Consider the following “category of convergence categories”.

Definition 150. Let S be a sequence category of a category C. By ConvCat[S,C]

denote the following category: An object of ConvCat[S,C] is a convergence category

(Ci, convi) of C and a morphism F : (C1, conv1) → (C2, conv2) in ConvCat[S,C] is

a functor F : C1 → C2 such that the following diagram commutes:

C1

conv1 //

F
��

C

C2

conv2

>>⑥⑥⑥⑥⑥⑥⑥⑥

For an adiabatic category C we define an extension conv : CC
′
→ C of conv :

C
′
→ C via the canonical embedding C

′
→ CC

′
, which induces a unique embedding

(C
′
, conv) → (CC

′
, conv) in ConvCat[S,C]. In practice, we shall not distinguish

between conv : C
′
→ C and conv : CC

′
→ C.

We now show that the two definitions of adiabatic categories are equivalent.

Lemma 151. Definitions 139 and 148 of an adiabatic category are equivalent.

Proof. Functoriality of conv: In Definition 139, conv is a partial function on infinite

sequences of morphisms. These morphisms are in the primary homsets and products

thereof (property (iii)), as well as the sequences that are eventually of that form (prop-

erty 3); these are precisely the homsets of an extended stability category. Furthermore,

conv preserves composition (property (i)) and identity (property (ii)).
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Stability category surjective on objects of primary sequence category: By Cont prop-

erty.

Symmetric strict monoidality of conv: Symmetry corresponds to property (v) and

strict monoidality corresponds to property (iii).

Commutative diagram: The commutative square in Definition 148 corresponds to

property (iv).

Convergence category: Property 1 is the same in Definitions 139 and 147, the com-

mutative triangle corresponds to property 2 and the last property in Definition 147

corresponds to property 3.

A sensible choice of functors between adiabatic categories is one that preserves the

monoidal structure and the action of the λ endofunctors.

Definition 152. Let (Λ1, τ1) and (Λ2, τ2) be topological CC-semirings with a continuous

semiring homomorphism h : (Λ1, τ1) → (Λ2, τ2). Define an adiabatic functor f : C1 →

C2 between adiabatic categories C1 and C2 over (Λ1, τ1) and (Λ2, τ2) respectively as a

strict monoidal functor such that the following squares commute in Cat for all λ ∈ Λ,

where C1

′
and C2

′
are the respective stability categories of C1 and C2:

C1

f

��

λ // C1

f

��

C1

′

f×f×···
��

conv1 // C1

f

��
C2

h(λ) // C2 C2

′ conv2 // C2

Definition 153. Define ad as the category of adiabatic categories and adiabatic func-

tors. Define adΛ as its subcategory of adiabatic categories over the topological semiring

Λ where all the semiring homomorphisms are identities.

To retrieve an exact analogue to Lieb and Yngvason’s framework, we introduce the

special case of LY-adiabatic categories, defined below.
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Definition 154. A category is thin if there is at most one morphism in each homset.

Definition 155. An LY-adiabatic category is a thin rational-like adiabatic category.

We may also define a generalised LY-adiabatic category as a thin adiabatic category,

which would be a different way to generalise Lieb and Yngvason’s work.

A special case that will later be linked to 2-semivector spaces is when the rational-

like adiabatic category has a strict monoidal structure with a strict symmetry, the

structural functors λ are strict monoidal and the isomorphism c is an identity.

Definition 156. A tyrannical adiabatic category is a strict symmetric strict monoidal

adiabatic category where the structural endofunctors λ are strict and the isomorphism

c is an identity.10

We now present some results about adiabatic categories, starting with a lemma that

offers some insight into the role of conv.

Lemma 157. Let C be any category admitting a convergence category (G, conv). Then

it is possible to define appropriate T1 topologies on Ob := Ob(C) and Mor := Mor(C)

such that in each the function conv maps each convergent sequence to its limit and is

undefined on divergent sequences.

In particular, given an adiabatic category with monoidal unit 0X (for some X ∈

Ob(C)), these are the finest topologies such that the topology on Ob agrees with τ on

the λ functors.

Proof. By Lemma 151, conv satisfies stability properties 1, 2 and 3 of Definition 139.

The fact that these specific properties of the conv function give rise to a topology where

conv yields the limit of a sequence, as well as the definition of said topology, can be

found in earlier literature [41]; here we also provide a brief proof of correctness for the

sake of completeness.

10The term “tyrannical” was chosen as a reminder that every aspect of these categories is strict.
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Firstly, we define a closed-set topology on Ob×Ob.

Let S denote the set of all pairs of objects in G; for the specific application to

adiabatic categories, this is the set of all pairs X = {M(LX , I, λi)}, Y = {M(LY , I, λi)}

of primary sequences for which ∅ /∈ {Hom(Xi, Yi)}. For Q ⊆ Ob × Ob, let SQ denote

the set of all sequences in S contained in Q. Define π : S → Ob×Ob as π : (X, Y ) 7→

(conv(X), conv(Y ))11 and let the closed sets of the topology be those sets Q ⊆ Ob×Ob

where π(SQ) = Q.

We check that this family of sets is indeed a valid closed-set topology:

• The sets Ob×Ob and ∅ are closed:

This is immediate for ∅; for Ob × Ob, π(SOb×Ob) ⊆ Ob × Ob is immediate and

Ob × Ob ⊆ π(SOb×Ob) is seen to hold by functoriality of conv and stability

property 1 (in adiabatic categories, set λi = 0 for all i).

• Arbitrary intersections of closed sets are closed:

Let Pi denote a possibly infinite family of closed sets. S⋂
Pi

⊆
⋂
SPi

, therefore

π(S⋂
Pi
) ⊆ π(

⋂
SPi

) =
⋂
π(SPi

) ⊆
⋂
Pi,

where the last relation follows form the hypothesis. So
⋂
Pi is closed.

• Finite unions of closed sets are closed:

Let P and Q be closed sets; then π(SQ) ∪ π(SP ) ⊆ Q ∪ P , so it suffices to show

that π(SQ∪P ) ⊆ π(SQ) ∪ π(SP ).

For any sequence S ∈ SQ∪P − SQ − SP , each element of S is either in Q or

in P . Partition the elements of S into a subsequence SQ containing elements

of Q and a subsequence S̄Q containing elements of P − Q. If S̄Q is finite, it

must be that π(S) = π(SQ) ∈ π(SQ) and we are done; similarly if SQ is finite.

11Specifically for an adiabatic category, we note that π : (X,Y ) 7→ (M(LX , I, 0),M(LY , I, 0)).
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Otherwise, observe that SQ ∈ SQ and S̄Q ∈ SP by functoriality of conv and

stability property 2 (in adiabatic categories, this is owing to the fact that λi form

a convergent sequence, and therefore its subsequences must converge to the same

limit); it follows that π(S) = π(SQ) = π(S̄Q) ∈ π(SQ) ∩ π(SP ).

For adiabatic categories it is obvious that the function π coincides with the limit of

sequences in this space; in the general case, the argument is similar to Mor (see below).

Also note that the topology is T1, as singletons are closed.

We can now define the required topology on Ob as the one inherited from the

diagonal of Ob× Ob. This topology will also have the required properties (it is T1, π

is a limit function and sets containing their limits are closed).

Similarly to the above construction, define a closed-set topology on Mor as follows.

Let S denote the set of all infinite sequences {fi} with fi ∈ Hom(Xi, Yi), for which

conv({fi}) is defined. For R ⊆ Mor, let SR denote the set of all sequences in S

contained in R. Let the closed sets of the topology be those sets R ⊆ Mor for which

conv(SR) = R.

We check that this family of sets is indeed a valid closed-set topology:

• The sets Mor and ∅ are closed:

This is immediate for ∅; for Mor, conv(SMor) ⊆ Mor is immediate and Mor ⊆

conv(SMor) follows from stability property 1; for adiabatic categories, we see this

by setting λi = 0 for all i.

• Arbitrary intersections of closed sets are closed:

Let Pi denote a possibly infinite family of closed sets. S⋂
Pi

⊆
⋂
SPi

, therefore

conv(S⋂
Pi
) ⊆ conv(

⋂
SPi

) =
⋂
conv(SPi

) ⊆
⋂
Pi,

where the last relation follows form the hypothesis. So
⋂
Pi is closed.
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• Finite unions of closed sets are closed:

Let P and Q be closed sets; then conv(SQ) ∪ conv(SP ) ⊆ Q ∪ P , so it suffices to

show that conv(SQ∪P ) ⊆ conv(SQ) ∪ conv(SP ).

For any sequence S ∈ SR1∪R2 − SR1 − SR2 , each element of S is either in R1 or

in R2. Let S1 be the largest subsequence of S contained in R1 and S2 the largest

subsequence of S contained in R2. If S1 is infinite, from stability property 2 it

follows that conv(S) = conv(S1) ∈ conv(SR1); similarly if S2 is infinite.

Note that the topology is T1, as singletons are closed.

The function conv maps a convergent sequence to its limit and is undefined for

divergent sequences:

Open sets are defined as the complements of closed sets. Therefore, a set R is open

if and only if the following holds: If conv(S) ⊆ R for some sequence S then S ∩ Rc is

finite (where Rc denotes the complement of R). But that is the definition of the limit

of the sequence S.

The function conv is defined on all convergent sequences:

This was proven by Kisyński [41]; notably, the proof uses stability property 3.

Finally, observe that these topologies are indeed the finest topologies given the

convergent sequences in these spaces: In every space, a set contains the limits of the

sequences it contains if it is closed; here, the converse also holds, and therefore one

cannot add any more closed sets to the topology without violating the convergence.

Since the spaces constructed above are completely determined by their convergent

sequences, each has a sequential topology on the objects and morphisms of C respec-

tively.

A strong convexity property is introduced as an axiom on an associated topology in

Lieb and Yngvasson. However, a weaker property (given in the following lemma) can
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be proven from first principles independently of topology, and is actually sufficient for

the main result.

Lemma 158 (Convexity). For any objects X, Y1, Y2 in an adiabatic category

(C,⊞,Θ, a, l, r, λ,Λ, τ, {J}λ, s, c, conv) the following hold true:

1. If there exist morphisms f1 : X → Y1 and f2 : X → Y2 then there exists a

morphism g : X → λY1 ⊞ (1− λ)Y2 whenever 1− λ is defined.

2. If there exist morphisms f ′
1 : Y1 → X and f ′

2 : Y2 → X then there exists a

morphism g′ : λY1 ⊞ (1− λ)Y2 → X whenever 1− λ is defined.

Proof. Take g = (λf1 ⊞ (1− λ)f2) ◦ cX,λ,1−λ and g′ = c−1
X,λ,1−λ ◦ (λf

′
1 ⊞ (1− λ)f ′

2).

The lemma below lists equivalent statements whose physical interpretation is “it is

impossible to create something out of nothing”.

Lemma 159. Let Λ be a topological semiring extending (Q≥0, τ) where τ denotes the

inherited standard topology from R. For all objects X and Y in an adiabatic category

C over Λ, the following statements are equivalent:

1. For every Y ≇ Θ and for every X, Hom(X,X ⊞ Y ) = ∅.

2. For every X ≇ Θ, Hom(Θ, X) = ∅.

3. For every X ≇ Θ and λ > 1, Hom(X, λX) = ∅.

Any of the above statements imply that for X ≇ Θ and λ′ 6= 1, X ≇ λ′X (4).

Proof. 3 ⇒ 4 is obvious for λ′ > 1; for λ′ < 1, take 1
λ′
i (where i is the isomorphism

X → λ′X) for proof by contradiction.
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¬1 ⇒ ¬2: Given f : X → X⊞Y , one can construct the morphisms fn : 1
2n
X⊞Θ →

1
2n
X ⊞ Y ; explicitly, set

fn = (id 1
2n
X⊞c−1

Y, 1
2
, 1
2

)◦
1

2
(a−1

1
2n−1X,Y,Y

◦(fn−1⊞ idY )◦fn−1◦ l 1
2n−1X

)◦J−1
1
2n
,X,Θ

◦(id 1
2n
X⊞ǫ 1

2n
)

where f0 = f , ǫ 1
2n

is the isomorphism Θ → 1
2n
Θ and n ∈ N tends to infinity. Then by

Cont there exists a sequence S of morphisms in Hom( 1
2n
X ⊞ Θ, 1

2n
X ⊞ Y ) such that

conv(S) = g : 0X ⊞ Θ → 0X ⊞ Y . So l0X,Y ◦ g ◦ l−1
0X,Θ gives us a morphism Θ → Y ,

where by l0X we denote the isomorphism associated to 0X as a unit.

¬3 ⇒ ¬2: Given f : X → λX , construct

(ǫ−1
1

λn
⊞ id 1

λn
X) ◦ l

−1
X ◦

1

λ
f ◦

1

λ2
f ◦ . . . ◦

1

λn
f ◦ r 1

λn
X :

1

λn
X ⊞Θ →

1

λn
Θ⊞X

where n ∈ N tends to infinity. Then by Cont there exists a sequence S of morphisms

in Hom( 1
λn
X ⊞ Θ, 1

λn
Θ ⊞ X) such that conv(S) = g : 0X ⊞ Θ → 0Θ ⊞ X . Then

l0Θ,X ◦ g ◦ l−1
0X,Θ gives us a morphism Θ → X .

¬2 ⇒ ¬1: Given f : Θ → X , construct (f ⊞ idX) ◦ l
−1
X : X → (X,X).

¬2 ⇒ ¬3: Given f : Θ → X , construct 2(c−1
X, 1

2
, 1
2

◦ 1
2
((f ⊞ idX) ◦ l

−1
X )) : X → 2X .

Similarly to the above, the corollary below lists equivalent statements whose physical

interpretation is “it is impossible to make something disappear”. It is given without

proof, as it is the dual of Lemma 159.

Lemma 160. Let Λ be a topological semiring extending (Q≥0, τ) where τ denotes the

inherited standard topology from R. For all objects X and Y in an adiabatic category

C over Λ, the following statements are equivalent:

1. For every Y ≇ Θ and for every X, Hom(X ⊞ Y,X) = ∅.

2. For every X ≇ Θ, Hom(X,Θ) = ∅.
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3. For every X ≇ Θ and λ < 1, Hom(X, λX) = ∅.

Any of the above statements imply that for X ≇ Θ and λ′ 6= 1, X ≇ λ′X (4).

Call a set “continuously infinite” if it has the cardinality of the real numbers. A

morphism X → λX with λ 6= 1 induces a continuously infinite set of countably infinite

chains; call such a chain a stream. A stream goes upwards if λ > 1 and downwards if

λ < 1.

The theorem that follows is a generalisation of an observation by Lieb and Yngva-

son [51].

Theorem 161 (Cancellation law). In a rational-like adiabatic category, given a mor-

phism

f : X ⊞ Z → Y ⊞ Z,

there exists a morphism X → Y .

Proof. Construct the morphism f1 by this chain:

X ⊞
1
2
Z

c
X,12 , 12

⊞id1
2Z

// (1
2
X ⊞

1
2
X)⊞ 1

2
Z

a−1
1
2X, 12X, 12Z

// 1
2
X ⊞ (1

2
X ⊞

1
2
Z)

id 1
2X

⊞J−1
1
2 ,X,Z

��
1
2
X ⊞ (1

2
Y ⊞

1
2
Z)

a 1
2X, 12Y, 12Z

��

1
2
X ⊞

1
2
(Y ⊞ Z)

id 1
2X

⊞J 1
2 ,Y,Z

oo 1
2
X ⊞

1
2
(X ⊞ Z)

id 1
2X

⊞
1
2
f

oo

(1
2
X ⊞

1
2
Y )⊞ 1

2
Z

s 1
2X,12Y

⊞id1
2Z

// (1
2
Y ⊞

1
2
X)⊞ 1

2
Z

a−1
1
2Y, 12X,12Z

// 1
2
Y ⊞ (1

2
X ⊞

1
2
Z)

id 1
2Y

⊞J−1
1
2 ,X,Z

��
1
2
Y ⊞ (1

2
Y ⊞

1
2
Z)

a 1
2Y, 12Y, 12Z

��

1
2
Y ⊞

1
2
(Y ⊞ Z)

id 1
2Y

⊞J 1
2 ,Y,Z

oo 1
2
Y ⊞

1
2
(X ⊞ Z)

id 1
2Y

⊞
1
2
f

oo

(1
2
Y ⊞

1
2
Y )⊞ 1

2
Z

s 1
2Y, 12Y

⊞id 1
2Z

// (1
2
Y ⊞

1
2
Y )⊞ 1

2
Z

c−1

Y,12 , 12

⊞id 1
2Z

// Y ⊞
1
2
Z

So f : X ⊞ Z → Y ⊞ Z implies f1 : X ⊞
1
2
Z → Y ⊞

1
2
Z, and by extension the
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existence of a cancellation sequence fn : X ⊞
1
2n
Z → Y ⊞

1
2n
Z for n tending to infinity.

By Cont there must exist a sequence S of morphisms in Hom(X ⊞
1
2n
Z, Y ⊞

1
2n
Z) such

that conv(S) = g : X ⊞ 0Z → Y ⊞ 0Z. In the case that conv({fn}) is defined, we

set S = {fn}, otherwise there is in general no canonical choice.12 Define a morphism

CLZ(f) : X → Y by the following commutative diagram:

X
CLZ(f) // Y

X ⊞ 0Z

r0Z,X

OO

conv(S) // Y ⊞ 0Z

r0Z,Y

OO

where r0Z is the isomorphism associated to 0Z as a unit.

We shall always use the notation CLZ(f) for a morphism constructed as above.

Similarly, given a morphism f : Z ⊞ X → Z ⊞ Y , there exists a morphism X → Y ;

call the morphism X → Y arising from the application of this law CL′
Z(f). Lastly,

observe that one may similarly construct a cancellation sequence for a morphism f :

(X ⊞ Z) ⊞ X ′ → (Y ⊞ Z) ⊞ Y ′ to get a morphism X ⊞ X ′ → Y ⊞ Y ′; call this mor-

phism CL′′
Z(f). When we refer to cancellation sequences, we collectively refer to these

three cancellation laws; a right-cancellation sequence of f is the cancellation sequence

of CL(f), a left-cancellation sequence of f is the cancellation sequence of CL′(f), and a

middle-cancellation sequence of f is the cancellation sequence of CL′′(f) (with appro-

priate indices depending on the type of f). When we refer to “the” cancellation law,

we always mean CL.

We close this section with an observation on weakly linear categories over a ring.

This will play a role later in Section 3.3.5.

Recall [37] tortile monoidal categories:

12This is not a problem. None of the theorems concerning rational-like adiabatic categories require
CL to be a well-defined deterministic function, except for the section on traced categories. In that
section we shall revisit the cancellation law in this light.
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Definition 162. A braided monoidal category (with braiding σ, monoidal structure

(⊗, a, l, r) and unit object I) is called tortile when it is equipped with the following

structure:

• A twist, that is to say, a natural isomorphism θA : A → A which makes the

following square commute

A⊗ B
σAB //

θA⊗B

��

B ⊗ A

θB⊗θA
��

A⊗ B B ⊗ AσBA

oo

and which satisfies θI = idI .

• Right duals, that is to say, for every object A an object A∗ (its right dual) and

morphisms ǫ : A∗ ⊗ A → I (the co-unit or evaluation) and η : I → A ⊗ A∗ (the

unit or co-evaluation) making the following diagrams commute:

A∗ ⊗ (A⊗ A∗)

aA∗,A,A∗

��

A∗ ⊗ I
idA∗⊗ηAoo

rA∗

��

(A⊗ A∗)⊗ A

a−1
A,A∗,A

��

I ⊗ A
ηA⊗idAoo

lA
��

A∗

l−1
A∗

��

A∗

r−1
A

��
(A∗ ⊗ A)⊗ A∗ǫA⊗idA∗// I ⊗ A∗ A⊗ (A∗ ⊗ A)

idA⊗ǫA// A⊗ I

If additionally every object A is the right dual of its right dual A∗ then the

category has duals.

For a morphism f : A→ B define its right dual f ∗ : B∗ → A∗ to be the following
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chain of morphisms:

B∗ rB // B∗ ⊗ I
idB∗⊗ηA // B∗ ⊗ (A⊗ A∗)

idB∗⊗(f⊗idA∗)
��

I ⊗ A∗

lA∗
��

(B∗ ⊗ B)⊗ A∗ǫB⊗idA∗oo B∗ ⊗ (B ⊗ A∗)
aB∗,B,A∗
oo

A∗

• The twist satisfies θA∗ = θ∗A.

Remark 163. Observe that a weakly linear category over a ring is a tortile monoidal

category: any weakly linear category is symmetric, and if it is over a ring then any

object X has the dual −1X , with X = −1(−1X). Finally, the SR maps of the form

cX,λ,−λ are the co-evaluation maps of the tortile structure.

3.3.2 Topological weak semimodules: Definition and proper-

ties

So far we have more or less blindly translated a physical modelling scheme into category-

theoretic language. We now define a new class of categories. This time, our starting

point is abstract mathematical objects, based on the two fundamental notions that

appeared in the previous section: linearity and convergence. We introduce a categori-

fication of a semimodule (definition to follow) in order to reconstruct a weakly linear

category, and we assign topological structures to this category in order to reconstruct

a convergent category. In the next section, we shall connect the new structure with

adiabatic categories.

We begin with the linear-like structure, whose physical meaning is still to be thought

of as “scaling”, “putting systems together” and “splitting/recombining”. We then move

on to the topological structure, whose physical intuition is continuity of various variables
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that determine physical states. Lastly, we combine these two structures so that they

cooperate.

We shall need some preliminary definitions.

Definition 164. Given a semiring Λ we define the category Λ to be the discrete cat-

egory whose objects are the semiring elements, equipped with a (primary) monoidal

product ⊕ corresponding to the addition in Λ. We also define a (secondary) monoidal

structure ⊗ corresponding to multiplication. Whenever we refer to the monoidal struc-

ture of Λ (eg with reference to monoidal functors) we shall always mean the primary

monoidal structure, unless we explicitly indicate otherwise.

Observe that the monoidal unit in this category is the 0 of Λ and the secondary

monoidal unit is the 1 of Λ. Both monoidal products are strict and are equipped with

a strict symmetry.

Recall the standard definition of a (semi)module:

Definition 165. Given a semiring R, a semimodule over R consists of a commutative

monoid (M,⊞) (semimodule addition ⊞) and an operation · : R×M →M (semimodule

multiplication ·) such that for all r, s ∈ R and x, y ∈M we have:

1. r · (x⊞ y) = (r · x)⊞ (r · y)

2. (r + s) · x = (r · x)⊞ (s · x)

3. (rs) · x = r · (s · x)

4. 1 · x = x

If R is a ring, the semimodule is called a module. If R is a semifield, the semimodule is

called a semivector space. If R is a field, the semimodule is called a vector space.
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We now present a weakening of the above notion (which, we note, we shall restrict

to CC-semirings):

Definition 166. Let (C, a, l, r, s) be a symmetric monoidal category and let Λ be the

category of a CC-semiring Λ (as per Definition 164). A weak semimodule over Λ is (the

codomain of) a covariant functor · : Λ×C → C such that for every f ∈ Mor(C) we have

·(1, f) 7→ f , for every λ ∈ Ob(Λ) the functor 1×C
λ×idC// Λ×C · // C is symmetric

monoidal, for every c ∈ Ob(C) the functor Λ× 1
idΛ×c// Λ×C

· // C is monoidal and

the following diagram commutes in Cat:

Λ×Λ×C

idΛ×·
��

⊗×idC// Λ×C

·
��

Λ×C
· // C

We may refer to the weak semimodule as (C, a, l, r, s, {J·(λ, )}λ, {c·( ,x)}x), where J and

c are the natural isomorphisms associated to the corresponding monoidal functors.

If Λ is a ring then · is called a weak module. If Λ is a semifield then · is called a

weak semivector space. If Λ is a field then · is called a weak vector space.

In different terms [78, Chapter IV, Definition 4.7] we may say that (Λ,⊗) acts on

C. Note that, even though the two functors ·(λ, ) and ·( , f) induced by the action of

the secondary structure are monoidal with respect to the primary structure, the action

itself is not monoidal in this sense. This sets weak semimodules apart from the so-called

module categories [61].

Definition 167. A linear function f : (·1 : Λ × C1 → C1) → (·2 : Λ × C2 → C2)

between weak semimodules over Λ is defined to be a symmetric strict monoidal functor
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f : C1 → C2 that makes the following diagram commute in Cat:

Λ×C1

·1 //

idΛ×f
��

C1

f
��

Λ×C2

·2 // C2

Note that linear functions are defined in the same way as strong module functors [61],

but the underlying structure of the action on C is different (see previous comment).

In our context, linear functions generalise 2-semimodule homomorphisms (where we

restrict to 2-semimodules over CC-semirings).

Definition 168 ([11]). Let K be a category with pullbacks. We define a category C

internal to K as follows:

• Ob(C) ∈ Ob(K) and Mor(C) ∈ Ob(K).

• The following morphisms of K

source : Mor → Ob (f : A→ B) 7→ A

target : Mor → Ob (f : A→ B) 7→ B

identity : Ob → Mor X 7→ idX

composition : Psource,target → Mor (f, g) 7→ f ◦ g

(where Psource,target denotes the pullback of source and target in K) satisfy all the

necessary commutative diagrams13 such that C is a category.

An internal functor F : C → D between internal categories is a pair of morphisms

Mor(C) → Mor(D) and Ob(C) → Ob(D) that satisfies all the necessary commutative

13For a full list, see original paper [11, Definition 2.1].

136



diagrams14 that guarantee functoriality. Similarly for an internal natural transforma-

tion15.

Remark 169. A weak semimodule · : Λ×C → C whereC is strict monoidal with strict

symmetry and the functors 1×C
λ×idC// Λ×C · // C and Λ× 1

idΛ×x// Λ×C · // C

are strict monoidal is precisely a category C internal to the category of (semi)modules

or (semi)vector spaces over Λ; the linear functions coincide with the usual definition of

a linear function. Call such a weak semimodule a 2-semimodule in accordance with the

notion of a 2-vector space; the latter has been explored by Baez and Crans [11]. Define

2-modules and 2-semivector spaces in the obvious way.

Definition 170. Define a topological category C(τOb, τMor) as a category internal to

NiceTop. The set Ob of objects of C is endowed with a nice topology τOb and the set

Mor of morphisms of C is endowed with a nice topology τMor.

Remark 171. By Corollary 129, seeing as the category Cat[C] of internal cate-

gories to a complete category C is finitely complete [17, Exercise 8.4.1], the category

Cat[NiceTop] of topological categories is finitely complete.

Note that in a topological category C(τOb, τMor), the set I = {idX}X∈Ob endowed

with the topology τMor is isomorphic to (Ob, τOb) with

source|I = target|I = identity−1 : I → Ob.

Therefore, in all that follows, we may assume that we are always working within τMor;

just substitute I for Ob and pre- or post-compose with identity accordingly.

With regards to a topological semiring (Λ, τΛ), we may speak of the associated

topological semiring category, which is the semiring category Λ that is topological with

14For a full list, see original paper [11, Definition 2.2].
15For a full list, see original paper [11, Definition 2.3].
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the topology τΛ. We may often omit τΛ for brevity, especially when it is understood

from context.

Lemma 172. In a topological category C(τOb, τMor), the homsets are closed sets in τMor.

Proof. Observe that any singleton set {(X, Y )} in Ob × Ob is closed in τOb × τOb

because the topology is T1. Moreover, 〈source, target〉 : f 7→ (source(f), target(f))

is continuous because the functions source and target are continuous. Therefore, the

preimage of {(X, Y )} under 〈source, target〉 must be closed in τMor. But that is exactly

Hom(X, Y ).

Lemma 173. In a topological category C(τOb, τMor), let H be a nonempty set of mor-

phisms together with the inherited topology τMor. Then H is a homset in C if and only if

there exists a unique rH : 1 → Ob×Ob that makes the following a pullback in NiceTop,

where the inclusion is canonical and 1 is the unique topology on the one-element set:

H //� _

��

1

rH
��

Mor
〈source,target〉 // Ob×Ob

Proof. Let rH = 〈s, t〉 for some objects s and t of C. Substituting Hom(s, t) for H we

can see that the square commutes for unique s and t. Moreover, in order for any such

square to commute, it has to be that H ⊆ Hom(s, t), making Hom(s, t) a pullback.

Remark 174. This is reminiscent of the subobject classifier t : 1 → Ω in a topos (1

being the terminal object), defined by the property that there exists a unique morphism

χs making the following a pullback for any monomorphism s : S → A:

S //� _

s
��

1

t
��

A
χs // Ω
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Definition 175. Given topological categories C(τOb(C), τMor(C)) andD(τOb(D), τMor(D)),

a functor F : C → D is defined to be a topological functor if it is an internal functor in

NiceTop.

Definition 176. Let Λ be a topological CC-semiring category. A topological weak

semivector space over Λ is a weak semivector space on a topological category, where

the monoidal product, the symmetry and the functors 1×C
λ×idC// Λ×C · // C and

Λ× 1
idΛ×x// Λ×C

· // C are continuous with respect to the topologies involved (pre-

suming the product to be endowed with the topology constituting the categorical prod-

uct in NiceTop). We may in general speak of a topological weak semimodule when the

semiring Λ is not a semifield; similarly for topological weak modules and topological

weak vector spaces.

Whenever we refer to a topological semiring category Λ where Λ is a subsemiring

of R, we shall always imply the topology to be inherited from the standard topology

on R. Unless Λ is dense in some interval, the associated continuity requirement holds

trivially.

Note that Λ is a topological 2-semimodule over itself, since its monoidal product is

a topological functor.

Remark 177. It is easy to check that (topological) linear functions are the morphisms

of a category where the objects are (topological) weak semimodules or weak semivec-

tor spaces over Λ, or their restriction to (topological) 2-semimodules or 2-semivector

spaces over Λ. In any such category, monomorphisms are preserved and reflected from

Cat.

This remark hints to a possible generalisation of linear functions between weak

semimodules:
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Definition 178. A generalised linear function (l, f) : (·1 : Λ × C1 → C1) → (·2 :

Λ′ × C2 → C2) between weak semimodules over semirings Λ and Λ′ respectively is

defined to be a pair (l, f) comprising a semiring homomorphism l : Λ → Λ′ and a

symmetric strict monoidal functor f : C1 → C2, such that makes the following diagram

commute in Cat:

Λ×C1

·1 //

l×f
��

C1

f
��

Λ′ ×C2

·2 // C2

When l is known from context and no confusion arises, we may abbreviate the

terminology from (l, f) to f as with linear functions.

Remark 179. We note that it is possible to define a category with all (topological)

weak semimodules as objects and pick (topological) generalised linear functions as the

morphisms of that category. Monomorphisms of that category are still preserved and

reflected from Cat. The monomorphisms here correspond to a notion of a (continuous)

linear extension of the action of a semiring.

Lemma 180. Let (C, τOb, τMor,⊞,Λ) be a category defined as follows:

• It is a topological category with object topology τOb and morphism topology τMor.

• The set of objects Ob forms a semimodule (semimodule addition ⊞Ob and semi-

module multiplication ·Ob, zero element Θ) over a semiring Λ, and so does the

set of morphisms Mor (semimodule addition ⊞Mor and semimodule multiplication

·Mor).

• 0 · f = idΘ.

• The semimodule operations are topological functors (viewing the semiring as a

topological category).
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In this category, the functions source, target, composition and identity are linear with

respect to the semimodule operations.

Proof. Functoriality of ⊞ and λ· means precisely that composition and identity are

preserved. That is, if f ◦ h and g ◦ j are defined, we have:

(f ⊞ g) ◦ (h⊞ j) = (f ◦ h)⊞ (g ◦ j)

idX ⊞ idY = idX⊞Y

λ · (f ◦ h) = (λ · f) ◦ (λ · h)

λ · idX = idλ·X

which are precisely the relations for linearity of composition and identity. Moreover,

composability dictates that if composition is linear then the source and target functions

must also be linear.

Corollary 181. A category defined as above is precisely a topological 2-semimodule

over Λ.

It is easy to check that the following structure is always a weak semimodule over N.

Definition 182. Given a symmetric monoidal category (C,⊗, I, a, l, r, s), define the

free weak semimodule of C as the semimodule (C,⊗,N, I, a, l, r, Jn, s, c) (using the

notation of Definition 166) where the action of n ∈ N∗ on f ∈ Mor(C) is f ⊗ f ⊗ · · · ⊗ f︸ ︷︷ ︸
n

and 0 maps every morphism to idI .

We need not specify the natural transforms cX and Jn in the above definition,

because they are uniquely defined by the action of N; the former as a composition of

associators and the latter as an appropriate sequence of tensor products of n symmetries

and identities.
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Let WSM denote the category of weak semimodules and linear extensions and

let SMC denote the category of symmetric monoidal categories and symmetric strict

monoidal functors.

Remark 183. Note that the free weak semimodule of a symmetric monoidal category

C is an initial object in the full subcategory of WSM consisting of weak semimodules

with the symmetric monoidal structure of C. This is in view of the fact that N is an

initial object in the category of semirings. [69]

There is of course a reason we named this weak semimodule “free”. Observe that

taking the free weak semimodule of a symmetric monoidal category extends to a functor

F : SMC → WSM (by sending each symmetric strict monoidal functor between SMCs

to itself). Further observe that F is left adjoint to the forgetful functor U : WSM →

SMC, and the monad of the adjunction is the identity functor (hence the comonad of

the adjunction is idempotent).

Moreover, the free weak semimodule of a symmetric strict monoidal category has

c = id and the free weak semimodule of a strict symmetric monoidal category has

J = id.

Proof. Firstly, we establish that F is indeed a well-defined functor. Observe that if

f : C → D is a symmetric strict monoidal functor then Ff is linear, as by strict

monoidality F (m ⊞C . . . ⊞C m) = (Fm) ⊞D . . . ⊞D (Fm), for m ∈ Mor(C), which

is precisely the semiring action, thereby satisfying the defining property; composition

is preserved because commutative squares compose; identity is preserved because the

identity functor is trivially linear.

Secondly, we establish the adjunction. Take any weak semimodule W over an arbi-

trary semiring Λ and any symmetric monoidal category C. For a natural isomorphism

between Hom(C,UW) and Hom(FC,W), we need only check that the homsets are

isomorphic, as naturality would then hold by construction of the functors F and U .
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It is immediate that any generalised linear functor f̂ : FC → W induces a symmetric

strict monoidal functor f : C → UW. Because N is initial in the category of semirings,

there exists exactly one homomorphism l : N → Λ, therefore f̂ is the unique generalised

linear function that gives f . Conversely, assuming an arbitrary symmetric monoidal

functor f : C → UW, pick n ∈ N and m ∈ Mor(C). Then, using ·1 for FC and ·2 for

W as in the diagram of Definition 178, we get:

(n,m) ✤
·1 /m⊞ . . .⊞m︸ ︷︷ ︸

n

✤ f / f(m⊞ . . .⊞m) = (fm)⊞ . . .⊞ (fm)︸ ︷︷ ︸
n

(n,m) ✤
l×f / (1Λ + . . .+ 1Λ︸ ︷︷ ︸

n

, fm) ✤
·2 / (1Λ + . . .+ 1Λ︸ ︷︷ ︸

n

) ·2 (fm) =

(1Λ ·2 (fm))⊞ . . .⊞ (1Λ ·2 (fm))︸ ︷︷ ︸
n

= (fm)⊞ . . .⊞ (fm)︸ ︷︷ ︸
n

So in the end the diagram commutes, giving a generalised linear function.

The observation that U ◦ F = idSMC is immediate.

We now give an example of a free weak semimodule.

Definition 184. Let (Mb,⊗) denote the following category:

• The objects are positive integers k.

• The morphisms are bk × bk matrices.

• Composition is matrix multiplication.

• The monoidal product ⊗ is the Kronecker product.

Remark 185. One can easily check that there is a weak semimodule

(Mb,⊗,N, 1, id, id, id, Jn, s, id),
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with the structure of (Mb,⊗), where

• The matrix s is defined by the relation s ◦ (M1 ⊗M2) = M2 ⊗M1; this is easily

seen to be a permutation [32] defined by the dimensions of M1 and M2.

• There is a family of monoidal endofunctors n with natural transforms Jn, indexed

by the natural numbers, acting as Kronecker powers. Denote the action of such

a functor n on a morphism M by M⊗n. 0 sends every morphism to the 1-by-1

matrix (1). The natural transforms Jn are appropriate permutations, where the

required relation s⊗n ◦ Jn = Jn ◦ s obviously holds.

This is the free weak semimodule of (Mb,⊗).

Let (N, τ) be a topological semiring with the discrete topology. It is straightforward

to make a free weak semimodule into a topological weak semimodule over (N, τ) by

endowing both the objects and the morphisms with the discrete topology. We can also

pick a more interesting topology for the morphisms; we give such an example using Mb.

Definition 186. Let (M′
b
,⊗, | · |) denote the category defined as (Mb,⊗) but where

each matrix M is assigned a norm |M |.

Remark 187. The category M′
b
uniquely defines a topological weak semimodule

(M′
b
, τ ′Ob, τ

′
Mor,⊗,N, τ, 1, id, id, id, Jn, s, id), where τ is the discrete topology, in the fol-

lowing manner:

• τ ′Ob = τ is the discrete topology (and therefore in τ ′Mor the homsets are clopen).

• Within each homset the norm defines a distance d(M1,M2) = |M1 −M2| that in

turn yields a metric space on the homset; this, together with the fact that the

homsets are clopen, completes the definition of τ ′Mor.

At this point, we pause to introduce some necessary notation.
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Definition 188. From this point on, we adopt the following convention:

• Denote by PΛ,τΛ the category of topological weak semimodules over a topological

semiring (Λ, τΛ) and continuous linear functions.

• Denote by P the category of topological weak semimodules and continuous linear

extensions and by Φ its full subcategory of weak modules. Denote by P and Φ the

full subcategories of weak semivector spaces and weak vector spaces respectively.

When we want to restrict one of these categories to its full subcategory over a

single semiring, we use the modifier [·] (as in P[Λ,τΛ]) to avoid confusion with the

non-full subcategory PΛ,τΛ.

• In accordance with existing literature, denote by the modifier 2 the correspond-

ing subcategories of topological 2-(semi)modules and 2-(semi)vector spaces (eg

2PΛ,τΛ). These are restricted to CC-semirings.

Continuing our discussion on free constructions, we note that our observation on

weak semimodules extends to their topological counterparts.

Definition 189. Given a symmetric monoidal category (C,⊗, I, a, l, r, s), define the

free topological weak semimodule of C as the topological weak semimodule with the

structure of the free weak semimodule of C where τN = τOb = τMor is the discrete

topology.

Remark 190. Note that the free topological weak semimodule of a symmetric monoidal

category C is an initial object in the full subcategory of P consisting of topological

weak semimodules with the symmetric monoidal structure of C. This is in view of

Remarks 130 and 183.

As before, we note that taking the free topological weak semimodule of a symmetric

monoidal category extends (in the obvious way) to a functor F ′ : SMC → P, and

moreover that F ′ is left adjoint to the forgetful functor U ′ : P → SMC.
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The monad of the adjunction is idempotent.

We end this section with some examples of topological 2-semimodules:

Definition 191. For K ∈ {Q,Q≥0}, let the category U′
K

be the discrete category

defined as follows.

• Objects of U′
K

are nonnegative real numbers.

• The monoidal product ⊞ is multiplication.

• There is a family of symmetric monoidal commutative endofunctors λ ∈ K

equipped with the topology τΛ, which is defined to be τR restricted to K; these

endofunctors act as exponentiation, where 1
n
takes the principal nth root.

• We set τOb = τMor as τR restricted to R≥0.

Definition 192. For K ∈ {Z,N}, let the category L′
K
be the discrete category defined

as follows.

• Objects of L′
K

are real numbers.

• The monoidal product ⊞ is multiplication.

• There is a family of symmetric monoidal commutative endofunctors λ ∈ K

(equipped with the trivial topology) corresponding to exponentiation.

• We set τOb = τMor = τR.

Definition 193. Let the category Z′ be the discrete category defined as follows.

• An object (z, n) of Z′ is the n-element set of the nth roots of the complex number

z.

146



• The monoidal product (z1, n1) ⊞ (z2, n2) is the n1n2-element set of products of

elements of (z1, n1) and (z2, n2).

• There is a family of symmetric monoidal commutative endofunctors λ ∈ Q

equipped with the topology τR restricted to Q such that l
p
{x1, x2, . . . , xm} 7→

⋃m
k=1(x

l
k, p), where l and p are coprime.

• Let τC be the standard topology on the complex numbers; this defines a metric

space with distance function d. The topology τOb = τMor is defined by the metric

space where the distance between two sets S and Q of points on the complex

plane is defined to be maxs∈S minq∈Q d(s, q).

3.3.3 Adiabatic categories versus topological weak semimod-

ules

At this point we are going to relate topological weak semivector spaces and adia-

batic categories. This connection is important from both a conceptual and a prag-

matical standpoint. Conceptually, topological weak semivector spaces are more elegant

and intuitive, which serves to make Lieb and Yngvason’s work more accessible. Prag-

matically, topological weak semivector spaces are more general and allow for more

structure, which has potential use in applications.

The connection we are about to show only exists for certain semifields, defined thus:

Definition 194. Let Λ be a topological semifield. Call Λ stable if the following is true

for all topological weak semivector spaces χ and ψ over Λ: if f : χ → ψ is a linear

continuous function surjective on a sequence S = {yi = y ⊞ λiy
′} with λi → 0 then

there exists a sequence {xi} in χ, with f(xi) ∼= yi, converging to some point x ∈ f−1(y).

We shall later use the fact that, for discrete categories, the isomorphism in the above

definition becomes an equality. Before our main result we offer two preliminary results,
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the first about topological weak modules and the second about a more general class

of topological weak semimodules, which show a range of topological semifields to be

stable.

In the following theorem, given a linear function, we construct a convergent sequence

in the preimage of a convergent sequence by taking advantage of the map’s linearity.

The geometrical intuition is that we construct a line of points by fixing two of those

points, essentially treating the mapping as a usual linear function.

Theorem 195. Topological fields are stable.

Proof. Let f : χ(aχ, lχ, rχ, sχ, Jχ, cχ) → ψ(aψ, lψ, rψ, sψ, Jψ, cψ) be a linear continuous

function between topological weak vector spaces over a topological field Λ. We show

that if f is surjective on a sequence S = {yi = y ⊞ λiy
′} with λi → 0 then there exists

a sequence {xi} in χ, with f(xi) ∼= yi, converging to some point x ∈ f−1(y).

Note that, by our definition of linearity, f is such that for φ ∈ {a, l, r, s, J, c} and

for every x ∈ χ we have φψ(f(x))
.
= f(φχ(x)).

Pick some x1 ∈ f−1(y1) and some x2 ∈ f−1(y2) and set

xi =
λ2 − λi
λ2 − λ1

x1 ⊞
λ1 − λi
λ1 − λ2

x2.

We show that this sequence has the desired property:

f(xi) = f

(
λ2 − λi
λ2 − λ1

x1 ⊞
λ1 − λi
λ1 − λ2

x2

)

=
λ2 − λi
λ2 − λ1

f(x1)⊞
λ1 − λi
λ1 − λ2

f(x2) (linearity of f)

=
λ2 − λi
λ2 − λ1

yi ⊞
λ1 − λi
λ1 − λ2

y2

=
λ2 − λi
λ2 − λ1

(y ⊞ λ1y
′)⊞

λ1 − λi
λ1 − λ2

(y ⊞ λ2y
′)

148



∼=

(
λ2 − λi
λ2 − λ1

y ⊞
λ2 − λi
λ2 − λ1

λ1y
′

)
⊞

(
λ1 − λi
λ1 − λ2

y ⊞
λ1 − λi
λ1 − λ2

λ2y
′

)
(J ⊞ J)

∼=

((
λ2 − λi
λ2 − λ1

y ⊞
λ2 − λi
λ2 − λ1

λ1y
′

)
⊞
λ1 − λi
λ1 − λ2

y

)
⊞
λ1 − λi
λ1 − λ2

λ2y
′ (a)

∼=

(
λ2 − λi
λ2 − λ1

y ⊞

(
λ2 − λi
λ2 − λ1

λ1y
′
⊞
λ1 − λi
λ1 − λ2

y

))
⊞
λ1 − λi
λ1 − λ2

λ2y
′ (a−1

⊞ id)

∼=

(
λ2 − λi
λ2 − λ1

y ⊞

(
λ1 − λi
λ1 − λ2

y ⊞
λ2 − λi
λ2 − λ1

λ1y
′

))
⊞
λ1 − λi
λ1 − λ2

λ2y
′ ((id ⊞ s)⊞ id)

∼=

((
λ2 − λi
λ2 − λ1

y ⊞
λ1 − λi
λ1 − λ2

y

)
⊞
λ2 − λi
λ2 − λ1

λ1y
′

)
⊞
λ1 − λi
λ1 − λ2

λ2y
′ (a⊞ id)

∼=

(
λ2 − λi
λ2 − λ1

y ⊞
λ1 − λi
λ1 − λ2

y

)
⊞

(
λ2 − λi
λ2 − λ1

λ1y
′
⊞
λ1 − λi
λ1 − λ2

λ2y
′

)
(a−1)

∼=

(
λ2 − λi
λ2 − λ1

+
λ1 − λi
λ1 − λ2

)
y ⊞

(
λ2 − λi
λ2 − λ1

λ1 +
λ1 − λi
λ1 − λ2

λ2

)
y′ (c−1

⊞ c−1)

= 1y ⊞ λiy
′ = y ⊞ λiy

′ = yi

The linear combination above is not convex, so it cannot be used for general weak

semivector spaces. To deal with the latter, we first define an auxiliary notion.

Definition 196. Let S = {x}i be an infinite sequence in a cancellative semiring. Call

S a downwards sequence if for every i there exists x′i such that xi = xi+1 + x′i.

The following proposition uses the construction of the previous theorem to show

that there must exist a convex combination, for which we also give the formula. The

intuition behind the formula is exactly the same as in the previous case, except that

instead of two sequence points we define the line by the first sequence point and the

limit point.

Proposition 197. Let f : χ(aχ, lχ, rχ, sχ, Jχ, cχ) → ψ(aψ, lψ, rψ, sψ, Jψ, cψ) be a linear

continuous function between topological weak semivector spaces over a topological can-

cellative semifield Λ. If f is surjective on a sequence S = {yi = y⊞λiy
′} with λi → 0 a

149



downwards sequence then there exists a sequence {xi} in χ, with f(xi) ∼= yi, converging

to some point x ∈ f−1(y).

Proof. Note that, by our definition of linearity, f is such that for φ ∈ {a, l, r, s, J, c}

and for every x ∈ χ we have that φψ(f(x))
.
= f(φχ(x)).

We treat a simple case first. If we are guaranteed from the beginning that f−1(y) 6= ∅

then there is a constructive proof as above: We can construct such a sequence by picking

some x ∈ f−1(y) and some x1 ∈ f−1(y1) and setting

xi =
λ1 − λi
λ1

x⊞
λi
λ1
x1. (*)

We show that this sequence has the desired property:

f(xi) = f

(
λ1 − λi
λ1

x⊞
λi
λ1
x1

)

=
λ1 − λi
λ1

f(x)⊞
λi
λ1
f(x1) (linearity of f)

=
λ1 − λi
λ1

y ⊞
λi
λ1
y1

=
λ1 − λi
λ1

y ⊞
λi
λ1

(y ⊞ λ1y
′)

∼=
λ1 − λi
λ1

y ⊞

(
λi
λ1
y ⊞

λi
λ1
λ1y

′

)
(id ⊞ J)

∼=

(
λ1 − λi
λ1

y ⊞
λi
λ1
y

)
⊞
λi
λ1
λ1y

′ (a)

∼=

(
λ1 − λi
λ1

+
λi
λ1

)
y ⊞

λi
λ1
λ1y

′ (c−1
⊞ id)

= 1y ⊞ λiy
′ = y ⊞ λiy

′ = yi

In the general case where the fact that f−1(y) 6= ∅ is not given, we proceed as

follows.
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The set S∪{y} is closed, as every convergent subsequence of S necessarily converges

to y. Therefore, the preimage of S ∪ {y} under f must also be closed; so the set

X := f−1(y) ∪
⋃
i f

−1(yi) is closed. Let x′i ∈ f−1(yi) be such that the sequence {x′i}

does not diverge; by construction it cannot converge on a point in any of the f−1(yi),

and because X is closed it must converge on a point of X , so it has to converge on

a point of f−1(y). We conclude that any convergent sequence of x′i ∈ f−1(yi) must

converge on a point in f−1(y). So we only have to show that there exists a sequence of

x′i ∈ f−1(yi) that does not diverge.

Denote by ξ the chain of isomorphisms described in Theorem 195. Choose integers

k > j > 1 and let Xj,k be the subset of f−1(ξ(yj)) for which there exists xk ∈ f−1(yk)

such that xj =
λj−λk
λ1−λk

x1⊞
λ1−λj
λ1−λk

xk. Set Xj :=
⋂
kXj,k. Let Sk denote the set of sequences

of xj ∈ Xj for j ≤ k such that xj =
λj−λk
λ1−λk

x1 ⊞
λ1−λj
λ1−λk

xk. Note that there is a canonical

injection ιk2,k1 : Sk2 → Sk1 for k2 ≥ k1, as every element of Sk1 can have at most one

possible extension S ∈ Sk2. Set

S :=
⋂

k≥2

ιk,2(Sk).

This set is nonempty as an intersection of nonempty sets and as we have shown in

Theorem 195 each of its elements defines a convergent sequence.

The elements of any such sequence can be obtained by (*).

Finally, we generalise to the case where λi → 0 is not downwards.

Definition 198. Let (R, τR) be a topological cancellative semiring; (R, τR) is well-

behaved if every infinite sequence tending to 0 in τR can be partitioned into downwards

sequences (apart from a finite number of points).

Remark 199. Many topological semirings of interest are well-behaved in the above
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sense. Notably, each of N, Q≥0, R≥0 with the topology inherited from τR is well-

behaved.

Proof. For N the fact is rather obvious: Every sequence S that converges to 0 is even-

tually 0 and is therefore downwards apart from a finite number of points.

For either Q≥0 or R≥0: For any sequence S that converges to 0 it suffices to show

that every element of S belongs to a downwards subsequence of S; then forming a

partition is just a matter of partitioning the elements of each subsequence. If there is

an infinite number of elements of S equal to 0, form a downwards sequence S0 with these

elements, else ignore them. Take the (nonzero) element Sn; by the defining property

of convergence in a metric space, there exists an element Sf(n) such that Si ≤ Sn for

i ≥ f(n); form the downwards sequence {Sn, Sf(n), Sf(f(n)) . . .}; obviously, every nonzero

element of S is contained in such a sequence.

Corollary 200. Well-behaved topological semifields are stable.

Now that we have established that the stability prerequisite is satisfied by many

physically relevant semifields, we go on to show the connection between topological

weak semimodules and adiabatic categories.

Firstly, we observe that weak semimodules and weakly linear categories are the same

entity.

Remark 201. It is easy to check that a weak semimodule is precisely a weakly lin-

ear category, as their definitions contain exactly the same data: they both have a sym-

metric monoidal structure, the structural endofunctors λ of the weakly linear category

coincide with the functors (λ, ) of the weak semimodule and the natural isomorphism

c of the weakly linear category coincides with the natural isomorphisms associated to

the monoidal functors ( , x) of the weak semimodule.
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Secondly, we observe that topological categories and convergence categories have

the same data.

Lemma 202. There is a one-to-one correspondence between topological categories and

categories C together with a convergence category (G, conv) on C.

Proof. Given C, Lemma 157 guarantees the existence of nice topologies on the objects

and morphisms; these are unique because they are sequential. Conversely, it is easy

to see that the partial function induced by the convergence in any nice topology is

a function satisfying the 3 relevant stability properties (again refer to Lemma 157).

Continuity of identity, composition, source and target implies functoriality of conv and

vice versa, as in sequential spaces sequential continuity implies continuity.

Corollary 203. In an adiabatic category endowed with topologies τMor and τOb as in

Lemma 157, homsets are open sets in τMor if and only if τOb is the discrete topology.

We are now ready to show a correspondence between topological weak semimodules

and adiabatic categories.

Theorem 204. Let Λ be a stable topological semifield. From a topological weak semivec-

tor space C over Λ one can construct an adiabatic category D over Λ such that the

underlying weak semivector space and weakly linear category coincide and such that the

conv function associated to D agrees with the convergence in the topologies τOb and τMor

associated to C. Moreover, an adiabatic category D over Λ yields a topological weak

semivector space C′ over Λ where the linear structures agree and conv specifies τ ′Ob and

τ ′Mor.

Proof. We already know from Remark 201 and Lemma 202 that an adiabatic category

is both a weak semimodule and a topological category, where conv gives the limit of

a convergent sequence in Mor. It remains to show that the topological and linear

structures cooperate in the same way in C and D.
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Part 1:

We first construct an adiabatic category from a topological weak semivector space.

To get the Cont property: The functions source and target are continuous and

linear, and therefore so is 〈source, target〉. Take a convergent sequence S of elements

(x, y)⊞λi(x
′, y′) in Ob×Ob such that 〈source, target〉 is surjective on S. This mapping

is topologically isomorphic to a linear function Dis(Mor) → Dis(Ob × Ob) between

the discrete topological weak semivector space categories whose objects are respectively

the morphisms and the pairs of objects of C with the same topology. We know that

conv gives us exactly the limits of sequences of the form fi ∈ Hom(Xi, Yi), with Xi, Yi

primary sequences. Stability of Λ hence ensures the basic stability property (taking

into account the fact that the stability isomorphism becomes an identity in the case of

discrete categories).

We now check that the properties of the continuity function hold for this construc-

tion. Property (iii) holds by continuity of ⊞. Property (iv) holds by continuity of λ·.

Property (v) holds by continuity of symmetry. The rest hold by Lemma 202.

Part 2:

We now construct a topological weak semimodule from an adiabatic category. Let

τ ′Ob and τ ′Mor be the sequential topologies as constructed in Lemma 157; we check that

the weak semimodule operations are continuous. Using the closed-set criterion and the

stability properties of Definition 139, ⊞ is continuous by stability property (iii), λ are

continuous by stability property (iv) and symmetry is continuous by stability property

(v).

Remark 205. Note that if the semifield is not stable, then the above correspon-

dence necessarily fails. Therefore, stability of the semifield characterises the topological

weak semimodules that give rise to an adiabatic category.

In view of Lemma 181, which states that the source and target functions in a
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topological 2-semivector space are continuous and linear, we get the following corollary.

Corollary 206. Let Λ be a stable topological semifield. From a topological 2-semivector

space C over Λ one can construct a tyrannical adiabatic category D over Λ such that

the underlying 2-semivector space and weakly linear category coincide and such that the

conv function associated to D agrees with the convergence in the topologies τOb and τMor

associated to C. Moreover, a tyrannical adiabatic category D over Λ yields a topological

2-semivector space C′ over Λ where the linear structures agree and conv specifies τ ′Ob

and τ ′Mor.

There is more to be said about this correspondence. First of all, we give these

constructions a name.

Definition 207. Given a stable topological semifield Λ := (Λ, τΛ), the primary topo-

logical weak semivector space of an adiabatic category D over Λ is defined as the

topological weak semivector space arising from D as in Theorem 204. A topological

weak semivector space arising in this way will be called O-primary.

The prefix “O” refers to objects and will be expanded upon later.

One might wonder which objects of P are O-primary. We have shown in Lemma

157 that, given a topology on the λ functors, the adiabatic category defines the con-

vergent sequences of a specific form in Ob and Mor. Since the topologies of the weak

semivector space are taken to be sequential, they are completely determined by their

convergent sequences. So a weak semivector space is O-primary if and only if all its

convergent sequences are of this form. This is an important class of sequences, so we

give it a name.

Definition 208. In a topological weak semivector space, define an O-primary sequence

as follows: An O-primary sequence in Ob is a sequence that is eventually a monoidal
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product of (0, 1 or more) primary sequences of objects (where “monoidal product of

primary sequences” is defined in the same way as for adiabatic categories); an O-primary

sequence in Mor is a sequence in Homsets between O-primary sequences of objects.

Remark 209. Subsequences of O-primary sequences are O-primary.

The O-primary convergent sequences are those convergent sequences that arise as

part of the linear structure on the objects of the topological weak semivector space. In

particular, O-primary convergent sequences in Ob are precisely the necessary convergent

sequences imposed by the linear structure and the topology of the semifield; they cap-

ture, in a sense, the “minimal convergence” that the topological weak semivector space

must have, hence the finest possible topology.16 In Mor they describe a topological weak

semivector space’s behaviour in the necessarily convergent homsets; this behaviour is

encapsulated in the conv function of the associated adiabatic category. Every sequence

that is not O-primary corresponds to additional structure.

From the above discussion it is evident that there is an even more basic notion than

O-primary sequences and O-primary spaces.

Definition 210. In a topological weak semivector space, define an M-primary sequence

(in Mor or in Ob) as a sequence that is eventually a monoidal product of (0, 1 or more)

primary sequences of the form {M(Lf , I, λi)}i (where “monoidal product of primary

sequences” is defined in the same way as for adiabatic categories).

Definition 211. Define an M-primary topological weak semivector space as a topo-

logical weak semivector space where all the convergent sequences are M-primary.

Remark 212. Linear functions and linear extensions map M-primary sequences to

M-primary sequences and O-primary sequences to O-primary sequences.

16A characterisation of finest topological vector spaces can be found online [35]; in the case where
the field is R or C, a characterisation in terms of F-seminorms is known [68, 26.31].
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Note that every M-primary sequence is O-primary; likewise, every M-primary topo-

logical weak semivector space is O-primary. These spaces correspond to the adia-

batic categories where the conv function is only defined for M-primary sequences of

morphisms; in other words, these are the adiabatic categories where the convergence

for both objects and morphisms is completely defined by the linear structure, so that

conv contains no additional information.

Definition 213. Define an M-adiabatic category as an adiabatic category equipped

with a trivial conv function that is only defined for M-primary sequences of morphisms.

Explicitly, in the case of an M-adiabatic category, the conv functor maps {f ⊞

λig}i 7→ f (with λi → 0) and is undefined everywhere else.

In some physical contexts, M-adiabatic categories may be a more appropriate model

than adiabatic categories. For processes on a compound system A ⊞ B, observe that

any process that requires the components A and B to interact nontrivially with each

other (thereby altering each other’s state) is not a monoidal product of a process on

A and a process on B. Depending on which classifier we use for the processes in the

category (i.e. which parameter determines which physical processes are represented

by the same morphism), it may be the case that such “nonseparable” processes on

compound systems never form a convergent sequence in the corresponding primary

homset sequence.

Observe that the construction of an adiabatic category from a topological weak

semivector space and vice versa as in Theorem 204 is functorial. Therefore, we may

proceed with the following definitions, which encapsulate the correspondence between

adiabatic categories and weak semivector spaces.

Definition 214. Define the following categories and functors:

• Let P̂ be the subcategory of P restricted to topological weak semivector spaces
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over stable topological semifields. Let âd denote the subcategory of ad restricted

to adiabatic categories over stable topological semifields.

• Let the functor Seq′ : P̂ → ad send each topological weak semivector space to

the unique adiabatic category where the conv function gives exactly the limits

of primary convergent sequences in Mor. Functors are mapped onto themselves.

Denote by Seq the corestriction of Seq′ to âd.

• Let the functor Prim′ : âd → P send each adiabatic category to its primary

topological weak semivector space. Functors are mapped onto themselves. Denote

by Prim the corestriction of Prim′ to P̂.

It is easy to see that Prim(′) is an embedding and that Seq ◦ Prim = id. In other

words, âd is precisely the full subcategory of P̂ where the objects are the O-primary

topological weak semivector spaces.

We now offer a simple example of an M-primary and a nonprimary topological weak

semivector space that map to the same adiabatic category via Seq.

Example 215. Let τR be the standard topology on R. Let τQ be the restriction of τR to

Q. Let V be the discrete topological 2-vector space (V, τR, τR,+,Q, τQ) with Ob = R

where elements of Q act as multiplication. Then W := Prim(Seq(V)) is given by the

discrete topological 2-vector space (W, τ, τ,+,Q, τQ), with Ob = R and where elements

of Q act as multiplication, where the topology τ on R is defined as follows.

Call a countable set of real numbers {r}i linearly dependent if its elements are

linearly dependent in R as a vector space over Q; that is, if there exist qi ∈ Q such that

∑
i qiri = 0 with qk 6= 0 for some k. Call an uncountable set of real numbers linearly

dependent if it has a linearly dependent countable subset. Let I ⊂ R−Q be a maximal

set of linearly independent numbers. We define the basis topology τI as follows. Let

R be a collection of sets of real numbers such that each possible finite subset of I is
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contained in a member of R. Every set of the form

XR,a,b =

(⋃

R∈R

[Q(R)− FR]

)
∩ (a, b) (3.1)

is a basis of τI , where Q(R) denotes the field extension of Q by the elements of R and

FR is a finite subset of Q(R)−Q. Notice that for any set I ′ with the defining property,

τI′ = τI so the topology is actually independent of the choice of I. We set τ = τI .

The adiabatic category R := Seq(V) = Seq(W) is the discrete tyrannical adia-

batic category given by (R,+, 0, q,Q, τQ, lim), with Ob(R) = R and with multiplication

as the action of q.

Proof. Firstly, observe thatV andW are indeed topological 2-vector spaces, as addition

and multiplication are continuous operations, and their topologies are nice.

Secondly, observe that V is not O-primary: denote by S the set of all primary

sequences on Ob(V); explicitly, all sequences Sr1,{rk}k ,j of the form {r1 +
∑n

k=2 qi,krk}i,

for r1, rk ∈ R and qi,k ∈ Q, with qi,k → 0 as i→ ∞ for each k (where we index by j the

different possible sequences of qi,k). In V, every sequence Sr1,{rk}k ,j ∈ S converges to r1,

but there also exist convergent sequences S /∈ S, for instance any convergent sequence

of algebraically independent real numbers. So this is not an O-primary topological

2-vector space.

Thirdly, observe that for W to be O-primary, τ must have the property that all

its convergent sequences are in S. Since the category is discrete, this also makes it

M-primary.

We now provide a proof that τ has the desired property. Denote by SX the set of

all sequences in S contained in a set X ⊆ R and define lim({r1 +
∑n

k=2 qi,krk}i) := r1

for qi,k → 0 as i → ∞ for each k. Call a set X ⊆ R S-open if for all S ∈ S with

lim(S) ∈ X , all of the elements of S apart from a finite number belong to X . We claim
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that the open sets of τ (i.e. unions of basis sets) are precisely the S-open sets.

Open sets in τ are S-open: Note that elements of any convergent sequence Sr1,{rk}k,j

are in Q(r1, {rk}k) and therefore all but a finite number of these elements are in any set

of the form (3.1) containing r1, so sets of the form (3.1) are also S-open. It is immediate

that all unions of basis sets are also S-open.

S-open sets are open in τ : We shall show that any set “smaller” than those of the

form (3.1) is not S-open. Consider a set of the form

X ′
R,a,b =

(⋃

R∈R

[Q(R)− FR]−G{r′1}∪{r
′
k
}k

)
∩ (a, b) (3.2)

for some fixed set {r′1}∪{r
′
k}k ⊆ I with r′1 ∈ (a, b); the set G{r′1}∪{r

′
k
}k ⊆ Q({r′1}, {r

′
k}k)−

Q is this time infinite with r′1 /∈ G{r′1}∪{r
′
k
}k . Now consider a convergent sequence

Sr′1,{r′k}k,j containing G{r′1}∪{r
′
k}k

. Then lim(Sr′1,{r′k}k,j) = r′1 ∈ X ′
a,b and G{r′1}∪{r

′
k}k

is

an infinite set of elements of Sr′1,{r′k}k ,j that X ′
a,b does not contain, hence X ′

a,b is not

S-open.

We now move on to the major result for this section: that the relation between

adiabatic categories and topological weak semimodules is in fact an adjunction. For

this we shall need the following lemma.

Lemma 216. Let X and Y be sequential spaces over the same underlying set. Let lS

be the function mapping every convergent sequence of a sequential space S to its limit.

The map i : X → Y sending each element to itself is continuous if and only if lX is a

restriction of lY .

Proof. The “only if” is a basic property of convergence and holds in all spaces. For the

“if”, it suffices to show that the set of closed sets of Y is a subset of the set of closed

sets of X . Let Q be a set that is not closed in X . Then there must exist a convergent
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sequence S in Q ⊆ X whose limit is not in Q. Then S would also be a convergent

sequence in Q ⊆ Y with the same limit, making Q not closed in Y .

We now give the main result.

Theorem 217. There is an adjunction Prim ⊣ Seq.

Proof. We shall show the existence of a couniversal morphism ǫV : Prim(Seq(V)) → V

for every V ∈ Ob(P̂).

Let ǫV be the functor mapping every morphism to itself. Note that the linear

structure in V and Prim(Seq(V)) is the same, as both Seq and Prim respect the linear

structure; this makes ǫV trivially linear. For the topological structure, note that the set

of convergent sequences of Mor(Prim(Seq(V))) (respectively of Ob(Prim(Seq(V)))) is

a subset of the set of convergent sequences of Mor(V) (respectively of Ob(V)) and the

limits agree. Therefore, as the topologies are sequential, by Lemma 216 we get that ǫV

a topological functor. In conclusion, the functor ǫV is always a morphism in P̂.

Now we show the couniversal property. Pick D ∈ Ob(âd) such that there exists

f : Prim(D) → V in P̂. Clearly, there is a unique factorisation f = ǫV ◦ f̂ that respects

the linear structure, namely the factorisation where the underlying linear extension

maps of f and f̂ are the same. It remains to show that f̂ is a topological functor.

Let X be a set that is not closed in Mor(Prim(D)) (respectively in Ob(Prim(D)))

and such that f(X) not closed in Mor(V) (respectively in Ob(V)); we shall show that

f̂(X) cannot be closed in Mor(Prim(Seq(V))) (respectively in Ob(Prim(Seq(V)))).

There must exist a convergent sequence Q in X ⊆ Mor(Prim(D)) (respectively in

X ⊆ Ob(Prim(D))) with limit q /∈ X ; Q must be an O-primary sequence because

Prim(D) is an O-primary topological weak semivector space. Because f is contin-

uous, f(Q) must converge to f(q) /∈ f(X) for f(X) ⊆ Mor(V) (respectively for

f(X) ⊆ Ob(V)); because f is linear, by Remark 212 f(Q) must also be an O-primary
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sequence. But all O-primary convergent sequences have limits the same in Mor(V) as

in Mor(Prim(Seq(V))) (respectively in Ob(V) as in Ob(Prim(Seq(V)))), so f̂(X) is

not closed in Mor(Prim(Seq(V))) (respectively in Ob(Prim(Seq(V)))).

Corollary 218. Let Λ := (Λ, τ) be a stable topological semifield. Let PrimΛ : adΛ →

PΛ be the restriction of Prim and SeqΛ : PΛ → adΛ be the restriction of Seq. Then

PrimΛ ⊣ SeqΛ.

Example 219. Consider the topological 2-vector spaces V and W from Example 215

and the functor i : W → V mapping each real number to itself. This functor is trivially

linear; to see that it is a topological functor, set R = {I} and FR = ∅ for all R ⊆ I in

equation (3.1) to retrieve the family of bases of V as a subset of the bases of W. This

functor i is the couniversal arrow of V with respect to the adjunction.

Remark 220. Since Seq is the right adjoint to an injection, âd is a coreflective sub-

category of P̂.

Finally, we note that the above discussion on O-primary spaces is also valid for

M-primary spaces.

Definition 221. Define the following categories and functors:

• LetMad denote the full subcategory of ad where the objects are M-adiabatic cat-

egories. Define M̂ad and MadΛ analogously to âd and adΛ.

• Let the functor MSeq′ : P̂ → Mad send each topological weak semivector space

to the unique M-adiabatic category with the same linear structure. Functors are

mapped onto themselves. Denote by MSeq the corestriction of MSeq′ to M̂ad.

• Let the functor MPrim′ : M̂ad → P send each M-adiabatic category to the

M-primary topological weak semivector space with the same linear structure.
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Functors are mapped onto themselves. Denote by MPrim the corestriction of

MPrim′ to P̂.

We then obtain the following results for M-primary spaces, identically to the ones

for O-primary spaces.

Corollary 222.

• MPrim ⊣ MSeq.

• Let Λ := (Λ, τ) be a stable topological semifield. Let MPrimΛ : MadΛ → PΛ be

the restriction of MPrim and MSeqΛ : PΛ → MadΛ be the restriction of MSeq.

Then MPrimΛ ⊣ MSeqΛ.

• M̂ad is a coreflective subcategory of P̂.

Observe that the comonads of the adjunctions Prim ⊣ Seq and MPrim ⊣ MSeq are

idempotent.

3.3.4 Further insights on Lieb and Yngvason

Morphisms C → Λ in PΛ map all the connected parts of C to the same object of

Λ. Note that, in a setting where the morphisms represent physical processes, this is

tantamount to a conservation law (such as mass in a closed system). In a streamed

category, every object within (or connected to) a stream would have 0 of the conserved

quantity.

Let us now consider morphisms C → R≥0

ord
in PR≥0, where R≥0

ord
is a thin category

with the objects and monoidal structures of R≥0, with a morphism a → b if and only

if a ≤ b. Then morphisms S : C → R≥0

ord
correspond to a nondecreasing quantity

(entropy) in the sense that, for connected parts of C, S satisfies the following: For
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∑
i λi =

∑
j λj there exists a morphism

λi1Xi1 ⊞ λi2Xi2 ⊞ · · ·⊞ λinXin → λj1Xj1 ⊞ λj2Xj2 ⊞ · · ·⊞ λjmXjm

if and only if
∑

i λiS(Xi) ≤
∑

j λjS(Xj).

It turns out that this can always be done, i.e. Hom(C,R≥0

ord
) 6= ∅, and furthermore

that S is unique up to multiplication by a factor17; this was the main achievement of

Lieb and Yngvason’s work, to which we now return.

Definition 223. Call a category strongly connected if Hom(X, Y ) 6= ∅ or Hom(Y,X) 6=

∅ for every pair of objects X , Y .

Remark 224. Given an entropy function S as described above, call the condition

S(source(f)) ≤ S(target(f)) for f ∈ Mor(C) the “adiabaticity rule”. Let C be a con-

nected rational-like adiabatic category; let us add one morphism that does not follow

the adiabaticity rule, then add in all necessary morphisms to make the new category

a rational-like adiabatic category. The result of Lieb and Yngvason implies that this

process would create morphisms in every homset, making C strongly connected. In the

case of LY-adiabatic categories, this would make the category trivial. In conclusion,

the LY-adiabatic structure ensures compliance with such an adiabaticity rule; hence

the physical connection to the class of adiabatic processes as opposed to all thermody-

namical processes.

All that follows in this subsection is a categorical reformulation of Lieb and Yng-

vason’s results. We name the theorems in the same way as Lieb and Yngvason, except

where indicated otherwise in a footnote.

17Lieb and Yngvason did not have a concept of a unit, or any other special object that must map to
0; therefore, their function is unique only up to affine equivalence, i.e. multiplication by a factor and
addition of a constant.
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Let (C,⊞,Θ, a, l, r, λ, {J}λ, s, c, conv) be a rational-like adiabatic category. Let

{Xi} ⊆ Ob(C). Write Γλ1i × Γλ2j for the full subcategory of C involving objects

λ1Xi ⊞ λ2Xj ; write Γλi for Γλi × Γ0
j and Γi or Γ for Γ1

i .

Theorem 225 (Equivalence of entropy and strongly connected rational-like adia-

batic categories18). Let Xi be objects in a rational-like adiabatic category. Then the

following are equivalent:

• Each induced subcategory Γ1−λ
i × Γλj is strongly connected for all λ ≤ 1, i, j.

• There exists a function S : Ob(Γ) → R, unique up to affine equivalence, such that

for
∑

i λi =
∑

j λj there exists a morphism

λi1Xi1 ⊞ λi2Xi2 ⊞ · · ·⊞ λinXin → λj1Xj1 ⊞ λj2Xj2 ⊞ · · ·⊞ λjmXjm

if and only if
∑

i λiS(Xi) ≤
∑

j λjS(Xj).

Proof. That the function S induces the strong-connectedness of the diagrams is obvious.

We need only prove that the connectivity of the diagrams induces the function S.

If all objects Xi are connected with a pair of morphisms going both ways then we

may choose a constant function S(X) = w for all X . Suppose they do not all have

morphisms between them both ways; pick objects X0 ≇ X1. By hypothesis, there exists

a morphism f : X0 → X1. Consider a factorisation of f through an object X , that is,

f = f1 ◦ f0, where f0 : X0 → X and f1 : X → X1. For at most one of f0 and f1 can we

get a morphism with the target and source reversed.

Uniqueness up to affine transformation: If S exists, then S(X0) < S(X1) and

S(X0) ≤ S(X) ≤ S(X1) hence there exists a unique λ that satisfies the relation

S(X) = (1 − λ)S(X0) + λS(X1). This implies that they have morphisms between

18Original reference: “Equivalence of entropy and A1-A5, given CH”.
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them both ways, so by SR′we get composite morphisms between them both ways.

Clearly, any function S ′ that satisfies S(X) = (1−λ)S(X0)+λS(X1) must be an affine

transformation of S.

Existence: Produce unique λ such that they have morphisms between them both

ways.

• Uniqueness of λ: It suffices to show that there exists a morphism

g : (1− λ)X0 ⊞ λX1 → (1− λ′)X0 ⊞ λ′X1

if and only if λ ≤ λ′.

– For the “if”: Construct g as the morphism that makes the following pentagon

commute:

(1− λ)X0 ⊞ λX1
g //

c
(1−λ)X0,

1−λ′

1−λ
,
λ′

−λ
1−λ

⊞λidX1

��

(1− λ′)X0 ⊞ λ′X1

((1 − λ′)X0 ⊞ (λ′ − λ)X0)⊞ λX1

((1−λ′)idX0⊞(λ−λ′)f)⊞λidX1 ++❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳
(1− λ′)X0 ⊞ ((λ′ − λ)X1 ⊞ λX1)

(1−λ′)idX0⊞c
−1

λ′X1,
λ′

−λ

λ′
, λ
λ′

OO

((1− λ′)X0 ⊞ (λ′ − λ)X1)⊞ λX1

a(1−λ′)X0,(λ′
−λ)X1,λX1

OO

– For the “only if” we need the cancellation law. If λ > λ′ then construct

h = c
(1−λ′)X0,

1−λ

1−λ′ ,
λ−λ′
1−λ′

⊞ g ⊞ c
λX1,

λ′
λ
,λ−λ′

λ

.

Then applying the cancellation law twice yields

g′ =
1

λ− λ′
CL′

(1−λ)X0
(CLλ′X1(h))

which by hypothesis cannot exist; therefore λ ≤ λ′.
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• Existence of λ: This proof only holds if the proof for the uniqueness of λ holds.

Set

λmax = sup{λ : ∃aλ : (1− λ)X0 ⊞ λX1 → X}

and

λmin = inf{λ : ∃bλ : X → (1− λ)X0 ⊞ λX1}.

Because of Cont, these are achieved, so we get the morphisms

aλmax : (1− λmax)X0 ⊞ λmaxX1 → X

and

bλmin
: X → (1− λmin)X0 ⊞ λminX1.

The morphism

bλmin
◦ aλmax : (1− λmax)X0 ⊞ λmaxX1 → (1− λmin)X0 ⊞ λminX1

implies that λmax ≤ λmin by the proof for uniqueness of λ. For every λ with

λmax ≤ λ ≤ λmin the required relation holds (because by connectedness since

there is no morphism (1 − λ)X0 ⊞ λX1 → X there must be a morphism X →

(1− λ)X0 ⊞ λX1, and likewise for the other way).

By Theorem 225, one can define a functor S : ∆ → T from a full strongly connected

subcategory ∆ of a rational-like adiabatic category C to a poset category T where the

objects are the nonnegative real numbers and the morphisms are ≤.

We give an adjusted definition of the following quantities from Lieb and Yngvason’s

paper.
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Definition 226. Given a partition of the objects of a rational-like adiabatic category

C into strongly connected full subcategories Γi, associate a function Si to each one.

Fix Γ and Γ′; for every A ∈ Ob(Γ) and B ∈ Ob(Γ′), for every morphism f : A → B,

consider all chains c of n morphisms fi for which f = fn◦fn−1◦ . . .◦f1, where every part

of the chain fi ◦ . . . ◦ fj 6= idZ for any object Z (nontrivial), such that the morphisms

within it have no nontrivial decomposition. This chain passes through N of these Γi.

Define the following:

E(Γ,Γ′) = inf
c
{
N−1∑

i=1

inf
X,Y

{Si+1(Y )− Si(X) : X ∈ Γi, Y ∈ Γi+1,Hom(X, Y ) 6= ∅}}

F (Γ,Γ′) = inf
Γ0

{E(Γ× Γ0,Γ
′ × Γ0)}

where we assume inf{Si+1(Y ) − Si(X) : X ∈ Γi, Y ∈ Γi+1,Hom(X, Y ) 6= ∅} = ∞ if

there are no morphisms between any of the pairs.

Lemma 227 (Constant entropy differences). Given a partition of the objects of a

rational-like adiabatic category C into strongly connected full subcategories (“parts”)

Γi, if Γ and Γ′ are two strongly connected parts of C then for every X ∈ Ob(Γ) and

Y ∈ Ob(Γ′) the following holds:

Hom(X, Y ) 6= ∅ ⇔ SΓ(X) + F (Γ,Γ′) ≤ SΓ′(Y )

Proof. ⇒ is obvious. We show ⇐.

• Special case: All three infima in the definition of F are minima. That is,

F (Γ,Γ′) =min
X,Y

{S1(Y )− SΓ×Γ0(X) : X ∈ Γ× Γ0, Y ∈ Γ1,Hom(X, Y ) 6= ∅}
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+min
X,Y

{SΓ′×Γ0(Y )− SN(X) : X ∈ ΓN , Y ∈ Γ′ × Γ0,Hom(X, Y ) 6= ∅}

+
N−1∑

i=1

min
X,Y

{Si+1(Y )− Si(X) : X ∈ Γi, Y ∈ Γi+1,Hom(X, Y ) 6= ∅}

=S1(Y1)− SΓ×Γ0(X ⊞X0) + SΓ′×Γ0(Y ⊞ Y0)− SN(XN)

+

N−1∑

i=1

(Si+1(Yi+1)− Si(Xi))

=S1(Y1)− SΓ(X)− S0(X0) + SΓ′(Y ) + S0(Y0)− SN(XN)

+

N−1∑

i=1

(Si+1(Yi+1)− Si(Xi)) =

=SΓ′(Y ) +
N∑

i=0

Si(Yi)− SΓ(X)−
N∑

i=0

Si(Xi)

for objects Xi, Yi ∈ Γi, X ∈ Γ and Y ∈ Γ′ with morphisms

f : X ⊞X0 → Y1, fi : Xi → Yi+1, g : XN → Y ⊞ Y0.

So from the assumption we have

SΓ(X) + SΓ′(Y ) +

N∑

i=0

Si(Yi) ≤ SΓ(X) + SΓ′(Y ) +

N∑

i=0

Si(Xi)

or equivalently

SΓ×Γ′×Γ0×Γ1×...×ΓN
(X ⊞ Y ⊞ Y0 ⊞ . . .⊞ YN) ≤

SΓ×Γ′×Γ0×Γ1×...×ΓN
(X ⊞ Y ⊞X0 ⊞ . . .⊞XN )

so there exists a morphism

h : X ⊞ Y ⊞ Y0 ⊞ . . .⊞ YN → X ⊞ Y ⊞X0 ⊞ . . .⊞XN
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But there must also exist a morphism

h′ : X ⊞X0 ⊞ . . .⊞XN → Y ⊞ Y0 ⊞ . . .⊞ YN

which arises from f⊞f1⊞f2⊞ . . .⊞fN−1⊞g composed with a chain of morphisms

of the form id ⊞ id ⊞ . . .⊞ s ⊞ . . .⊞ id ⊞ id. We then have

sY ,Y ◦ (idY ⊞ h′) ◦ sX,Y : X ⊞ Y ⊞X0 ⊞ . . .⊞XN → Y ⊞ Y ⊞ Y0 ⊞ . . .⊞ YN

hence the composition

sY ,Y ◦ (idY ⊞ h′) ◦ sX,Y ◦ h : X ⊞ Y ⊞ Y0 ⊞ . . .⊞ YN → Y ⊞ Y ⊞ Y0 ⊞ . . .⊞ YN

Apply the cancellation law to get

CLY ⊞Y0⊞...⊞YN
(sY ,Y ◦ (idY ⊞ h′) ◦ sX,Y ◦ h) : X → Y

• General case: We can choose Xi, Yi, X and Y arbitrarily close to achieving the

infima, so that to arbitrary precision ǫ we have

SΓ×Γ′×Γ0×Γ1×...×ΓN
(X ⊞ Y ⊞ Y0 ⊞ . . .⊞ YN)− ǫ ≤

SΓ×Γ′×Γ0×Γ1×...×ΓN
(X ⊞ Y ⊞X0 ⊞ . . .⊞XN )

therefore by Cont we have

SΓ×Γ′×Γ0×Γ1×...×ΓN
(X ⊞ Y ⊞ Y0 ⊞ . . .⊞ YN) <

SΓ×Γ′×Γ0×Γ1×...×ΓN
(X ⊞ Y ⊞X0 ⊞ . . .⊞XN )
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so then we can proceed according to the previous case.

Lieb and Yngvason note that F satisfies the following properties:

−F (Γ′,Γ) ≤ F (Γ,Γ′) (3.3)

F (Γ,Γ) = 0 (3.4)

F (tΓ, tΓ′) = tF (Γ,Γ′) for t > 0 (3.5)

F (Γ1 × Γ2,Γ
′
1 × Γ′

2) ≤ F (Γ1,Γ
′
1) + F (Γ2,Γ

′
2) (3.6)

F (Γ× Γ0,Γ
′ × Γ0) = F (Γ,Γ′) for all Γ0 (3.7)

We conclude the section with a theorem which asserts the possibility of defining an

entropy functor on the entirety of a rational-like adiabatic category C. There are three

steps to the process of constructing said functor. If every connected full subcategory

of C is strongly connected, the theorem can be applied as-is. If this is not the case,

however, the second step of the theorem requires C to satisfy an additional axiom.

Definition 228. Partition a rational-like adiabatic category C into strongly connected

full subcategories (“parts”) Γi. The partition is sink-free19 if it satisfies the following

requirement: If there exists a morphism f : X⊞X0 → X ′ and a morphism g : Y ′ → Y ⊞

Y0 where X ′ and Y ′ are weakly connected and X0, Y0 ∈ Γ0 then there exist morphisms

f ′ : X ′′ → X ⊞X1 and g′ : Y ⊞ Y1 → Y ′′ where X ′′ and Y ′′ are weakly connected and

X1, Y1 ∈ Γ1.

Definition 229. A rational-like adiabatic category is sink-free if it admits a sink-free

partition.

19We caution the reader that this differs from the use of the term sink elsewhere in the literature [3].

171



The requirement that a rational-like adiabatic category be sink-free ensures that

F (Γ,Γ′) 6= −∞.

We now give the theorem.

Theorem 230 (Consistent entropy scales - Universal entropy). Let C be a rational-

like adiabatic category that satisfies either of the following properties:

• C is sink-free.

• Every connected full subcategory of C is strongly connected.

Then there is a functor S : C → T (with T defined as above).

Proof. Since T is a poset, it suffices to define S on the objects of C.

Partition the objects of C into as few strongly connected full subcategories (“parts”)

Γi as possible, as long as the partition is sink-free.

• One can define functions SΓ for every strongly connected part Γi of the category.

• For (weakly) connected parts, we can find an appropriate S as follows. Let S be

the set of pairs (Γ,Γ′). On S define the equivalence relation (Γ,Γ′) ∼= (Γ×Γ0,Γ
′×

Γ0) for all Γ0 and denote by [Γ,Γ′] the associated equivalence class. On the set

L of these equivalence classes we define multiplication by t[Γ,Γ′] = [|t|Γ, |t|Γ′]

with t ∈ R and addition by [Γ1,Γ
′
1] + [Γ2,Γ

′
2] = [Γ1 × Γ2,Γ

′
1 × Γ′

2], making it into

a vector space. Define the function H([Γ,Γ′]) = F (Γ,Γ′); this is homogeneous

and subadditive by the properties of F . Then by the Hahn-Banach theorem there

exists a real-valued linear function L on L with −F (Γ,Γ′) ≤ L([Γ,Γ′]) ≤ F (Γ,Γ′).

Pick one strongly connected part Γ0 and define B(Γ) = L([Γ0 × Γ,Γ0]). Set

these B(Γ) as the additive constants of SΓ of each strongly connected part Γ.

Since the B(Γ) satisfy B(Γ
(λ1)
1 × Γ

(λ2)
2 ) = λ1B(Γ1) + λ2B(Γ2) and −F (Γ,Γ′) ≤
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B(Γ)− B(Γ′) ≤ F (Γ,Γ′), it follows that this assignment defines a function S for

the entire connected part.

• Now consider a different partitioning of C by joining the strongly connected parts

into the largest possible connected full subcategories (“connected parts”). Once

functions have been defined on the connected parts of C, pick one connected part

Γ′
0 containing objects Z0 and Z1 and an associated function S0 with S0(Z0) = 0

and S0(Z1) = 1. Pick objects XΓ from every connected part Γ. Extend S0 to the

rest of C as

S(X) = inf{λ : Hom(X ⊞ λZ0, XΓ ⊞ λZ1) 6= ∅}

for every object X of Γ.

3.3.5 Adiabatic categories versus traced monoidal categories

In this section we examine connections with an interesting class of categories. Re-

call [31]:

Definition 231 (Strict traced symmetric monoidal categories). A strict monoidal cat-

egory (C,⊗, I) with a symmetry s is traced if it is equipped with a trace; that is, a

natural family of functions TrXA,B : Hom(A⊗X,B ⊗X) → Hom(A,B) satisfying three

axioms:

1. Vanishing: TrIA,B(f) = f and TrX⊗Y
A,B (g) = TrXA,B(Tr

Y
A⊗X,B⊗X(g)), with f : A→ B

and g : A⊗X ⊗ Y → B ⊗X ⊗ Y .

2. Superposing: TrXC⊗A,C⊗B(idC ⊗ f) = idC ⊗ TrXA,B(f), with

f : A⊗X → B ⊗X.
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3. Yanking: TrXX,X(sX,X) = idX .

Traditionally, literature on traced monoidal categories (including in the paper where

they were first introduced [38]) uses the strict definition to simplify notation. Since we

would like to characterise the nonstrict case, we reintroduce associators and unit maps.20

Definition 232 (Traced symmetric monoidal categories). A monoidal category

(C,⊗, I, a, l, r) with a symmetry s is traced if it is equipped with a trace; that is, a

natural family of functions

TrXA,B : Hom(A⊗X,B ⊗X) → Hom(A,B)

satisfying three axioms:

1. Vanishing: TrIA,B(f) = rB ◦ f ◦ r−1
A and

TrX⊗Y
A,B (a−1

B,X,Y ◦ g ◦ aA,X,Y ) = TrXA,B(Tr
Y
A⊗X,B⊗X(g)),

with f : A⊗ I → B ⊗ I and g : (A⊗X)⊗ Y → (B ⊗X)⊗ Y .

2. Superposing: TrXC⊗A,C⊗B(aC,B,X ◦ (idC ⊗ f) ◦ a−1
C,A,X) = idC ⊗ TrXA,B(f), with

f : A⊗X → B ⊗X .

3. Yanking: TrXX,X(sX,X) = idX .

We shall have to introduce some additional axioms that will ensure the compatibility

of rational-like adiabatic categories with traced categories. We first formulate these

axioms in the context of topological weak semimodules, as the intuition behind them

20For our proof of the main theorem of this section (Theorem 247), these structural morphisms are
essential up to the point where appropriate sequences are constructed as input to the conv function;
then they can be safely ignored in light of stability properties (i) and (iii), hence we switch to string
diagrams (more on string diagrams to follow).
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becomes more clear: as we shall discuss after the definition that follows, these axioms

correspond to the commutativity of two “distributivity” structures.

We now define a concept that links topological weak semimodules to traced cate-

gories.

Definition 233. A T-weak semimodule is a weak semimodule where:

• The following diagram commutes:

κ(λ1 + λ2) ·X
κ(cX,λ1,λ2

)
//

cX,κλ1,κλ2

��

κ(λ1 ·X ⊞ λ2 ·X)

Jκ,λ1·X,λ2·Xtt❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥

κλ1 ·X ⊞ κλ2 ·X

• If 1− λ is defined, the following diagram commutes:

(λ ·X ⊞ (1− λ) ·X)⊞ (λ · Y ⊞ (1− λ) · Y )
aλ·X⊞(1−λ)·X,λ·Y,(1−λ)·Y

,,❨❨❨❨❨❨
❨❨❨❨❨❨

❨❨❨❨❨❨
❨❨❨❨❨❨

❨❨❨❨❨

X ⊞ Y

cX,λ,1−λ⊞cY,λ,1−λ

OO

cX⊞Y,λ,1−λ

��

((λ ·X ⊞ (1− λ) ·X)⊞ λ · Y )⊞ (1− λ) · Y

a−1
λ·X,(1−λ)·X,λ·Y ⊞id(1−λ)·Y

��
λ · (X ⊞ Y )⊞ (1− λ) · (X ⊞ Y )

Jλ,X,Y ⊞J1−λ,X,Y

��

(λ ·X ⊞ ((1− λ) ·X ⊞ λ · Y ))⊞ (1− λ) · Y

(idλ·X⊞s(1−λ)·X,λ·Y )⊞id(1−λ)·Y
��

(λ ·X ⊞ λ · Y )⊞ ((1 − λ) ·X ⊞ (1− λ) · Y ) (λ ·X ⊞ (λ · Y ⊞ (1− λ) ·X)) ⊞ (1− λ) · Y

aλ·X,λ·Y,(1−λ)·X⊞id(1−λ)·Yrr❡❡❡❡❡❡❡
❡❡❡❡❡❡

❡❡❡❡❡❡
❡❡❡❡❡❡

❡❡❡❡

((λ ·X ⊞ λ · Y )⊞ (1− λ) ·X)⊞ (1− λ) · Y

a−1
λ·X⊞λ·Y,(1−λ)·X,(1−λ)·Y

OO

We now offer some more insight into the two above diagrams. The first of the above

diagrams essentially says that the two distributivity properties (of Λ and C) commute.

This becomes apparent when the diagram is rewritten as follows:

κ(λ1 + λ2) ·X
κ(cX,λ1,λ2

)
//

=

��

κ(λ1 ·X ⊞ λ2 ·X)

Jκ,λ1·X,λ2·X
��

(κλ1 + κλ2) ·X
cX,κλ1,κλ2// κλ1 ·X ⊞ κλ2 ·X
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The second of the above diagrams expresses a notion of these structures being

“jointly symmetric” in the following sense. We have already required that

Λ× 1
idΛ×x// Λ×C

· // C

be symmetric monoidal; explicitly, we have required that

λ · (X ⊞ Y )
λ·sX,Y //

Jλ,X,Y

��

λ · (Y ⊞X)

Jλ,Y,X

��
λ ·X ⊞ λ · Y

sλ·X,λ·Y// λ · Y ⊞ λ ·X

commute. By this additional diagram, ignoring for a moment the associators and

assuming that Λ is a semifield, we also have

(λ1 + λ2) · (X ⊞ Y )
cX⊞Y,λ1,λ2

ss❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤
J(λ1+λ2),X,Y

++❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱

λ1 · (X ⊞ Y )⊞ λ2 · (X ⊞ Y )

Jλ1,X,Y ⊞Jλ2,X,Y

��

(λ1 + λ2) ·X ⊞ (λ1 + λ2) · Y

cX,λ1,λ2
⊞cY,λ1,λ2

��
λ1 ·X ⊞ λ1 · Y ⊞ λ2 ·X ⊞ λ2 · Y

idλ1·X⊞sλ1·Y,λ2·X⊞idλ2·Y // λ1 ·X ⊞ λ2 ·X ⊞ λ1 · Y ⊞ λ2 · Y

commute.

Remark 234. Any (topological) 2-semimodule over a CC-semiring is a (topological)

T-weak semimodule.

Note that the converse does not hold. For example, Mb is a T-weak semimodule that

is not a 2-semimodule.

As another general remark, we note that (topological) T-weak semimodules are

closed under (continuous) linear functions and extensions.

We now give the axioms in terms of rational-like adiabatic categories; the corre-

spondence is straightforward:
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Definition 235. A T-adiabatic category is an adiabatic category where:

• The diagram

X
λ1(cλ2,X)

//

cλ2,λ1X

��

λ1(λ2x⊞ (1− λ2)X)

Jλ1,λ2X,(1−λ2)Xtt✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

✐

λ2λ1X ⊞ (1− λ2)λ1X

commutes whenever 1− λ2 is defined.

• The diagram

(λX ⊞ (1− λ)X)⊞ (λY ⊞ (1− λ)Y )
aλX⊞(1−λ)X,λY,(1−λ)Y

,,❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨
❨

X ⊞ Y

cλ,X⊞cλ,Y

OO

cλ,X⊞Y

��

((λX ⊞ (1− λ)X)⊞ λY )⊞ (1− λ)Y

a−1
λX,(1−λ)X,λY

⊞id(1−λ)Y

��
λ(X ⊞ Y )⊞ (1− λ)(X ⊞ Y )

Jλ,X,Y ⊞J1−λ,X,Y

��

(λX ⊞ ((1− λ)X ⊞ λY ))⊞ (1− λ)Y

(idλX⊞s(1−λ)X,λY )⊞id(1−λ)Y

��
(λX ⊞ λY )⊞ ((1− λ)X ⊞ (1− λ)Y ) (λX ⊞ (λY ⊞ (1− λ)X))⊞ (1− λ)Y

aλX,λY,(1−λ)X⊞id(1−λ)Yrr❡❡❡❡❡❡
❡❡❡❡❡

❡❡❡❡❡
❡❡❡❡❡

❡❡❡❡❡

((λX ⊞ λY )⊞ (1− λ)X)⊞ (1− λ)Y

a−1
λX⊞λY,(1−λ)X,(1−λ)Y

OO

commutes whenever 1− λ is defined.

Remark 236. Any tyrannical adiabatic category is a T-adiabatic category.

Based on the above definitions, Theorem 204 yields the following corollary.

Corollary 237. Given a stable semifield Λ, a topological T-weak semivector space over

Λ is a T-adiabatic category. Conversely, a T-adiabatic category over Λ gives rise to a

topological T-weak semivector space.

We shall link T-rational-like adiabatic categories (in the case that the semiring is also

a stable semifield, the result can be generalised to topological T-weak semivector spaces)
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to traced categories. We can readily observe one link between adiabatic categories and

traced conoidal categories.

Remark 238. By Remark 163, every adiabatic category over a ring is tortile monoidal,

hence traced monoidal [37].

However, these are not the only adiabatic categories that are traced monoidal. We

shall present another class of traced adiabatic categories, where the trace is given by

the cancellation law. Before proceeding, we pause to introduce the graphical calculus

we shall use later.

The reader is assumed to be familiar with standard graphical calculus for monoidal

categories, braided monoidal categories and symmetric monoidal categories [71]. Mc-

Curdy has extended the graphical calculus to cover monoidal functors and monads [57].

Here we use McCurdy’s graphical calculus (where each functor corresponds to a colour)

with the further convention that composition of commutative endofunctors is depicted

by composition of colours.

Let (C,⊞, I, a, l, r, s) and (C′,⊞, I ′, a′, l′, r′, s′) be symmetric monoidal categories

and let F : C → C′ be a monoidal functor with associated natural transform J .

Representing F by green, we may depict F (sX,Y ) as

X

Y

Y

X

and s′FX,FY as
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X

Y

Y

X

where the direction of the braiding of the coloured areas is meaningless. Then F is

a symmetric monoidal functor if and only if it satisfies the equation

X

Y

Y

X

=

X

Y

Y

X

namely s′FX,FY = JY,X ◦ F (sX,Y ) ◦ J
−1
X,Y .

In this work, we often encounter strictly commutative endofunctors. A weak notion

of commutativity between G (red) and F (blue) is a natural isomorphism

L:

GFX

GFX

∼=

FGX

FGX

but when the commutativity is strict, L = id, so we can simply write:

GFX

GFX
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We now move on to notation specific to adiabatic categories. We denote the natural

transform c as follows:

X

depicted: cX,λ,1−λ

X

depicted: c−1
X,λ,1−λ

where λ is depicted by green and 1− λ by blue.

Naturality of c means precisely the following equation.

X

f f

=
f

X

Note that in the left-hand side of the equation we do not use the notation λf and

(1− λ)f , as the functor is implied by the colour of the area underneath the morphism.

This is in line with McCurdy’s convention.

The T-adiabatic category axioms (depicting λ with green and 1 − λ with blue as

above) are as follows:

• X

=

X where red is used for κ.
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• X Y

=

X Y

We note at this point that, while in the graphical calculus for symmetric monoidal

categories two morphisms are equal if and only if their string diagrams are equal up

to four-dimensional isotopy [71], the new notation introduced by McCurdy and by us

has no such interpretation. Therefore in our manipulations of the coloured areas we

shall proceed step by stem, explicitly following the axioms. When our manipulations

concern only the symmetric monoidal structure, we shall instead use isotopy as usual.

Having defined our graphical calculus, we discuss a few more properties before giving

our main theorem.

It is a common experience that the third axiom of trace is the one that usually fails.

This time, unfortunately, is no exception; no matter how one constructs a cancellation

sequence, the permutations of objects involved will not approach the trivial permutation

in the limit. This is not a big problem in our case, because in the physical applications

we consider we expect the symmetry to be strict. We therefore only show a weaker

property, defined as follows.

Definition 239. Call a symmetric monoidal category nearly-traced if it is equipped

with a near-trace, that is, a natural family of functions of the same type as a trace,

satisfying the first two axioms of Definition 232.

Up to this point, the cancellation law has only been used to show existence of a

morphism in a homset and did not need to be a well-defined deterministic function. We
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now require it to be a function, and furthermore, we examine categories where every

cancellation sequence is convergent.

Definition 240. Call a rational-like adiabatic category cancellative if every cancellation

sequence therein is convergent.

We shall also require the conv function to behave “sensibly” in a sense.

Definition 241. Call an adiabatic category sensible if the following holds: For object

sequences x and y of the same length, let fj be a list of morphisms xj → yj; then

conv({M(f, I, λi)}i) =M(f, I, 0) for any sequence λi → 0.

This is an intuitive principle that we expect to hold true in physical applications.

Mathematically, it can follow from simpler axioms, as we shall show. One is what we

shall call “near-faithfulness of 0”:

Definition 242. In an adiabatic category over a semiring Λ, we say that “0 is nearly

faithful” if

0f = 0g ⇔ λ1f = λ2g

for some nonzero λ1, λ2 ∈ Λ.

At first glance, this axiom may seem strange. The intuition behind it is that the

morphisms of a category have a property that is shared by “multiples” and retained

when they are acted upon by 0. We shall try to motivate it with the following example,

which is based on the traditional formulation of 2-dimensional real vectors as a pair

of a norm and an angle, with the caveat that the 0 vector can be ascribed any angle.

Note that the following example is not an adiabatic category, as the requirement that

(λ1λ2)x = λ1(λ2x) has been dropped; this problem could perhaps be fixed by taking

only the upper half of the plane and fixing the morphisms accordingly, but such an
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alteration would likely make the category too complicated to serve its purpose as an

intuitive example.

Example 243. Consider the following category. Objects C are pairs (vC , aC) where

vC is a 2-dimensional real vector and aC is defined as follows:

• For vC 6= 0, aC = vC
|vC |

.

• For vC = 0, aC can have any value on the unit circle.

The idea is that the objects are vectors, but the zero vector is not unique, as it has

a “direction”. In a similar vein, morphisms encapsulate the direction of a vector;

concretely, they are 2-dimensional real vectors of norm 1 or 0 such that, for f : A→ B:

• If vA 6= vB, f = vB−vA
|vB−vA|

(i.e. there is only one morphism allowed in the homset).

• If vA = vB, f = 0 if and only if A = B and f = idA. All points of the unit circle

are in Hom(A,B).

Note that, if a morphism starts and ends at the same point on the plane (which, in the

case of the 0 point, may or may not be the same object), it can have any direction, but

0 (to be understood as lack of direction) is reserved for the identity. Composition g ◦ f

of f : A→ B and g : B → C is defined as follows:

• If vA 6= vC , there is a unique way to define the composition.

• If vA = vC , define g ◦ f as follows:

– If A = C and g = idA, then g ◦ f = f .

– Otherwise, g ◦ f has the same value as g.

It is easy to see that this is indeed a category, as identity and associativity are satisfied.

We now equip it with a monoidal structure that amounts to taking an average; where
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this average is 0, we pick the direction in a manner that consistently prefers the direction

closest to (0,1), so that functoriality and associativity are satisfied. Explicitly, the

monoidal structure is defined as follows:

• vA⊞B = vA+vB
2

, whence A ⊞ B is fully defined for vA + vB 6= 0. If vA + vB = 0

but vA and vB are nonzero, for aA⊞B we pick whichever of aA and aB lies in the

upper half of the plane, including (1,0) and excluding (-1,0). If vA = vB = 0

and only one of aA and aB lies in the upper half of the plane, pick that value for

aA⊞B, otherwise pick whichever is closest to (0,1), preferring the first and fourth

quadrants in case the distances are equal.

• From the definition of the monoidal product on objects it follows that, when

f + g 6= 0, f ⊞ g = f+g
|f+g|

. When f and g are both identities, let f ⊞ g be an

identity. Otherwise, let f ⊞ g take the value of whichever of f and g lies in the

upper half of the plane, including (1,0) and excluding (-1,0).

It is easy to check that this is indeed a monoidal structure, and furthermore that it is

strict with strict symmetry. The monoidal unit is (0,(0,-1)).

Now let the real numbers act on an object C as scalar multiplication on vC ; it is

immediate then that then that a number x acts on aC as multiplication by x
|x|
, and acts

similarly on a morphism f . Then 0 is a nearly faithful functor.

The following lemma then holds.

Lemma 244. An adiabatic category is sensible if one of the following holds true.

1. 0 is nearly faithful.

2. any morphism g between objects in the image of 0 is of the form g = 0f for some

morphism f (“0 is nearly full”).
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Proof. Assume that either of the enumerated properties holds. For object sequences

x and y of the same length, let fj be a list of morphisms xj → yj; we show that

conv({M(f, I, λi)}i) =M(f, I, 0) for any sequence λi → 0.

In view of stability properties 1 and (iii) it suffices to show that conv({λif}i) = 0f .

Since (by properties 1 and (iv)) 0conv({λif}i) = conv({0f}) = 0f , the result follows if

0 is nearly faithful; otherwise, note that it suffices that conv({λif}i) be in the image of

0, which is true if 0 is nearly full.

As we have mentioned, the third axiom of trace does not hold for adiabatic cat-

egories unless they are strict-symmetric. We shall show that for a certain class of

adiabatic categories the cancellation law satisfies the three naturality conditions, the

second axiom of trace and the first part of the first axiom of trace. Whether it satisfies

the second part of the first axiom remains an open problem for the time being, so for

the purposes of this treatment we shall add it as an “extra” requirement.

Definition 245. We shall say that a rational-like adiabatic category satisfies the extra

property if the following holds: Given a morphism g : (X ⊞ U) ⊞W → (Y ⊞ U) ⊞W ,

the cancellation law satisfies CLU⊗W (a−1
Y,U,W ◦ g ◦ aX,U,W ) = CLU(CLW (g)).

Definition 246. A sensible cancellative T-rational-like adiabatic category that satisfies

the extra property will be called a nearly-traceable category.

We now give our main theorem for this section.

Theorem 247. In a nearly-traceable category D (with monoidal unit 0A), the cancel-

lation law is a near-trace; furthermore, if the symmetry is strict, D is traced monoidal

with trace operation TrZX,Y (f) = CLZ(f) for f : X ⊞ Z → Y ⊞ Z.

Proof. Check the three axioms of trace:
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1. (a) Recall [58, Proposition 4.1.1] that in any monoidal category with unit Θ

for every morphism f : X ⊞ Θ → Y ⊞ Θ we have f = f ′
⊞ idΘ for some

morphism f ′ : X → Y , as the endofunctor ⊞ idΘ is full and faithful. So we

have CL0A(f) = CL0A(f
′
⊞ id0A) hence its cancellation law is defined by the

commutative diagram

X ⊞ 0A

rX
��

conv({f ′⊞ 1
2i

id0A})
// Y ⊞ 0A

rY
��

X
CL0A(f) // Y

which simplifies to

X ⊞ 0A

rX
��

conv({f ′⊞id0A}) // Y ⊞ 0A

rY
��

X
CL0A(f) // Y

which by stability property 1 becomes

X ⊞ 0A

rX
��

f ′⊞id0A // Y ⊞ 0A

rY
��

X
CL0A(f) // Y

which by definition is

X ⊞ 0A

rX
��

f // Y ⊞ 0A

rY
��

X
CL0A(f) // Y

In the end we have Tr0AX,Y (f) = CL0A(f) = rY ◦ f ◦ r−1
X .

(b) This is true because of the extra property.

2. Let f : X ⊞W → Y ⊞W , let F denote the right-cancellation sequence of f and
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let S denote the right-cancellation sequence of aZ,Y,W ◦ (idZ ⊞ f) ◦ a−1
Z,X,W . Then

CLW (aZ,Y,W ◦ (idZ ⊞ f) ◦ a−1
Z,X,W ) is defined by the commutative diagram

(Z ⊞X)⊞ 0W

r0W,Z⊞X

��

conv(S) // (Z ⊞ Y )⊞ 0W

r0W,Z⊞Y

��
Z ⊞X

CLW (aZ,Y,W ◦(idZ⊞f)◦a−1
Z,X,W

)
// Z ⊞ Y

The first term of the right-cancellation sequence equals the chain

(Z ⊞ X) ⊞
1
2
W

c
Z⊞X, 1

2
, 1
2

⊞id 1
2
W

// ( 1
2
(Z ⊞ X) ⊞

1
2
(Z ⊞ X)) ⊞

1
2
W

a
−1
1
2
(Z⊞X), 1

2
(Z⊞X), 1

2
W
// 1
2
(Z ⊞ X) ⊞ ( 1

2
(Z ⊞ X) ⊞

1
2
W )

id 1
2
(Z⊞X)

⊞J
−1
1
2
,Z⊞X,W

��
1
2
(Z ⊞ X) ⊞ ( 1

2
(Z ⊞ Y ) ⊞

1
2
W )

a 1
2
(Z⊞X), 1

2
(Z⊞Y ), 1

2
W

��

1
2
(Z ⊞ X) ⊞

1
2
((Z ⊞ Y ) ⊞ W )

id 1
2
(Z⊞X)

⊞J 1
2
,Z⊞Y,W

oo 1
2
(Z ⊞ X) ⊞

1
2
((Z ⊞ X) ⊞ W )

id 1
2
(Z⊞X)

⊞ 1
2
(aZ,Y,W ◦(idZ⊞f)◦a

−1
Z,X,W

)

oo

( 1
2
(Z ⊞ X) ⊞

1
2
(Z ⊞ Y )) ⊞

1
2
W

s 1
2
(Z⊞X), 1

2
(Z⊞Y )

⊞id 1
2
W

// ( 1
2
(Z ⊞ Y ) ⊞

1
2
(Z ⊞ X)) ⊞ 1

2
W

a
−1
1
2
(Z⊞Y ), 1

2
(Z⊞X), 1

2
W
// 1
2
(Z ⊞ Y ) ⊞ ( 1

2
(Z ⊞ X) ⊞

1
2
W )

id 1
2
(Z⊞Y )

⊞J
−1
1
2
,Z⊞X,W

��
1
2
(Z ⊞ Y ) ⊞ ( 1

2
(Z ⊞ Y ) ⊞

1
2
W )

a 1
2
(Z⊞Y ), 1

2
(Z⊞Y ), 1

2
W

��

1
2
(Z ⊞ Y ) ⊞

1
2
((Z ⊞ Y ) ⊞ W )

id 1
2
(Z⊞Y )

⊞J 1
2
,Z⊞Y,W

oo 1
2
(Z ⊞ Y ) ⊞

1
2
((Z ⊞ X) ⊞ W )

id 1
2
(Z⊞Y )

⊞ 1
2
(aZ,Y,W ◦(idZ⊞f)◦a

−1
Z,X,W

)

oo

( 1
2
(Z ⊞ Y ) ⊞

1
2
(Z ⊞ Y )) ⊞

1
2
W

s 1
2
(Z⊞Y ), 1

2
(Z⊞Y )

⊞id 1
2
W

// ( 1
2
(Z ⊞ Y ) ⊞

1
2
(Z ⊞ Y )) ⊞

1
2
W

c
−1

Z⊞Y, 1
2
, 1
2

⊞id 1
2
W

// (Z ⊞ Y ) ⊞
1
2
W

or

(Z ⊞ X) ⊞
1
2
W

c
Z⊞X, 1

2
, 1
2

⊞id 1
2
W

// ( 1
2
(Z ⊞ X) ⊞

1
2
(Z ⊞ X)) ⊞

1
2
W

a
−1
1
2
(Z⊞X), 1

2
(Z⊞X), 1

2
W
// 1
2
(Z ⊞ X) ⊞ ( 1

2
(Z ⊞ X) ⊞ 1

2
W )

id 1
2
(Z⊞X)

⊞J
−1
1
2
,Z⊞X,W

��
1
2
(Z ⊞ X) ⊞

1
2
(Z ⊞ (Y ⊞ W ))

id 1
2
(Z⊞X)

⊞ 1
2
aZ,Y,W

��

1
2
(Z ⊞ X) ⊞

1
2
(Z ⊞ (X ⊞ W ))

id 1
2
(Z⊞X)

⊞ 1
2
(idZ⊞f)

oo 1
2
(Z ⊞ X) ⊞

1
2
((Z ⊞ X) ⊞ W )

id 1
2
(Z⊞X)

⊞ 1
2
a
−1
Z,X,W

oo

1
2
(Z ⊞ X) ⊞

1
2
((Z ⊞ Y ) ⊞ W )

id 1
2
(Z⊞X)

⊞J 1
2
,Z⊞Y,W

// 1
2
(Z ⊞ X) ⊞ ( 1

2
(Z ⊞ Y ) ⊞

1
2
W )

a 1
2
(Z⊞X), 1

2
(Z⊞Y ), 1

2
W
// ( 1

2
(Z ⊞ X) ⊞

1
2
(Z ⊞ Y )) ⊞

1
2
W

s 1
2
(Z⊞X), 1

2
(Z⊞Y )

⊞id 1
2
W

��
1
2
(Z ⊞ Y ) ⊞

1
2
((Z ⊞ X) ⊞ W )

id 1
2
(Z⊞Y )

⊞ 1
2
a
−1
Z,X,W

��

1
2
(Z ⊞ Y ) ⊞ ( 1

2
(Z ⊞ X) ⊞

1
2
W )

id 1
2
(Z⊞Y )

⊞J
−1
1
2
,Z⊞X,W

oo ( 1
2
(Z ⊞ Y ) ⊞

1
2
(Z ⊞ X)) ⊞

1
2
W

a
−1
1
2
(Z⊞Y ), 1

2
(Z⊞X), 1

2
W

oo

1
2
(Z ⊞ Y ) ⊞

1
2
(Z ⊞ (X ⊞ W ))

id 1
2
(Z⊞Y )

⊞ 1
2
(idZ⊞f)

// 1
2
(Z ⊞ Y ) ⊞

1
2
(Z ⊞ (Y ⊞ W ))

id 1
2
(Z⊞Y )

⊞ 1
2
aZ,Y,W

// 1
2
(Z ⊞ Y ) ⊞

1
2
((Z ⊞ Y ) ⊞ W )

id 1
2
(Z⊞Y )

⊞J 1
2
,Z⊞Y,W

��
( 1
2
(Z ⊞ Y ) ⊞

1
2
(Z ⊞ Y )) ⊞

1
2
W

c
−1

Z⊞Y, 1
2
, 1
2

⊞id 1
2
W

��

( 1
2
(Z ⊞ Y ) ⊞

1
2
(Z ⊞ Y )) ⊞

1
2
W

s 1
2
(Z⊞Y ), 1

2
(Z⊞Y )

⊞id 1
2
W

oo 1
2
(Z ⊞ Y ) ⊞ ( 1

2
(Z ⊞ Y ) ⊞

1
2
W )

a 1
2
(Z⊞Y ), 1

2
(Z⊞Y ), 1

2
W

oo

(Z ⊞ Y ) ⊞
1
2
W

We can convert the above to the language of string diagrams, using our extended
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graphical calculus. In this calculation, the functor 1
2
is depicted by green.

f

f

Z Y

Z X

1
2
W

1
2
W

1
2
Z 1

2
X 1

2
Z 1

2
X

1
2
Z 1

2
X 1

2
Z 1

2
Y

1
2
Z 1

2
Y 1

2
Z 1

2
X

1
2
Z 1

2
Y 1

2
Z 1

2
Y

1
2
Z 1

2
Y 1

2
Z 1

2
Y

(1
2
symmetric)

=

f

f

Z Y

Z X

1
2
W

1
2
W

1
2
Z 1

2
X 1

2
Z 1

2
X

1
2
Z 1

2
X 1

2
Z 1

2
Y

1
2
Z 1

2
Y 1

2
Z 1

2
X

1
2
Z 1

2
Y 1

2
Z 1

2
Y

1
2
Z 1

2
Y 1

2
Z 1

2
Y

which by naturality of J in 4 operations becomes
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f

f

Z Y

Z X

1
2
W

1
2
W

1
2
Z 1

2
X 1

2
Z 1

2
X

1
2
Z 1

2
X 1

2
Z 1

2
Y

1
2
Z 1

2
Y 1

2
Z 1

2
X

1
2
Z 1

2
Y 1

2
Z 1

2
Y

1
2
Z 1

2
Y 1

2
Z 1

2
Y

=
f

f

Z Y

Z X

1
2
W

1
2
W

1
2
Z 1

2
X 1

2
Z 1

2
X

1
2
Z 1

2
X 1

2
Z 1

2
Y

1
2
Z 1

2
Y 1

2
Z 1

2
X

1
2
Z 1

2
Y 1

2
Z 1

2
Y

1
2
Z 1

2
Y 1

2
Z 1

2
Y

which in turn becomes
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f

f

Z Y

Z X

1
2
W

1
2
W

1
2
Z 1

2
X 1

2
Z 1

2
X

1
2
Z 1

2
X 1

2
Z 1

2
Y

1
2
Z 1

2
Z 1

2
Y 1

2
X

1
2
Z 1

2
Z 1

2
Y 1

2
Y

1
2
Z 1

2
Y 1

2
Z 1

2
Y

=
f

f

Z Y

Z X

1
2
W

1
2
W

1
2
Z 1

2
X 1

2
Z 1

2
X

1
2
Z 1

2
Z 1

2
X 1

2
Y

1
2
Z 1

2
Z 1

2
Y 1

2
X

1
2
Z 1

2
Z 1

2
Y 1

2
Y

1
2
Z 1

2
Y 1

2
Z 1

2
Y

which by naturality of J can be rewritten as
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f

f

Z Y

Z X

1
2
W

1
2
W

1
2
Z 1

2
X 1

2
Z 1

2
X

1
2
Z 1

2
Z 1

2
X 1

2
Y

1
2
Z 1

2
Z 1

2
Y 1

2
X

1
2
Z 1

2
Z 1

2
Y 1

2
Y

1
2
Z 1

2
Y 1

2
Z 1

2
Y

(1
2
symmetric)

=

f

f

Z Y

Z X

1
2
W

1
2
W

1
2
Z 1

2
X 1

2
Z 1

2
X

1
2
Z 1

2
Z 1

2
X 1

2
Y

1
2
Z 1

2
Z 1

2
Y 1

2
X

1
2
Z 1

2
Z 1

2
Y 1

2
Y

1
2
Z 1

2
Y 1

2
Z 1

2
Y

which by the second axiom of T-rational-like adiabatic categories becomes
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f

f

1
2
W

1
2
W

Z

Z

X

Y

(J natural)

=

f

f

1
2
W

1
2
W

Z

Z

X

Y

which of course equals

f

f

1
2
W

1
2
W

Z

Z

X

Y

(J natural)

= f

f

1
2
W

1
2
W

Z

Z

X

Y

which because 1
2
is symmetric equals
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f

f

1
2
W

1
2
W

Z

Z

X

Y

So in the end we have that S1 = idZ ⊞ F1 hence by construction of the right-

cancellation sequence Si = idZ ⊞Fi. Then by stability properties (iii) and (ii) we

get conv(S) = idZ ⊞ conv(F ).

In the end, TrWZ⊞X,Z⊞Y (aZ,Y,W ◦ (idZ ⊞ f) ◦ a−1
Z,X,W ) = idZ ⊞ TrWX,Y (f).

3. If the symmetry is strict, this condition is immediate from stability property (ii).

Naturality in source of trace (Left Tightening):

We need to show that TrZX,Y (f ◦(g⊞ idZ)) = TrZX′,Y (f)◦g, where f : X ′
⊞Z → Y ⊞Z

and g : X → X ′; equivalently, that CLZ(f ◦ (g ⊞ idZ)) = CLZ(f) ◦ g. Let S denote the

right-cancellation sequence of f ◦ (g ⊞ idZ) and F the right-cancellation sequence of f .

The left-hand side of the equation is defined by the commutative diagram

X ⊞ 0Z

r0Z,X

��

conv(S) // Y ⊞ 0Z

r0Z,Y

��
X

CLZ (f◦(g⊞idZ)) // Y
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whereas the right-hand side by the commutative diagram

X ′
⊞ 0Z

r0Z,X′
��

conv(F ) // Y ⊞ 0Z

r0Z,Y

��
X

g //

CLZ(f)◦g

00X ′ CLZ (f) // Y

Identifying the bottom edges and simplifying, in the end we want

X ⊞ 0Z
conv(S)//

g⊞id0Z
��

Y ⊞ 0Z

X ′
⊞ 0Z

conv(F )

88♣♣♣♣♣♣♣♣♣♣

Similarly to the superposing principle, we can rewrite this diagram as

X ⊞ 0Z
conv(S)//

conv({g⊞id 1
2i

Z
}i)

��

Y ⊞ 0Z

X ′
⊞ 0Z

conv(F )

88♣♣♣♣♣♣♣♣♣♣

which by stability property (i) becomes

X ⊞ 0Z
conv(S)//

conv({Fi◦(g⊞id 1
2i

Z
}i))

11 Y ⊞ 0Z

We need only show that S1 = F1 ◦ (g ⊞ id 1
2
Z) and then by construction of the right-

cancellation sequence the rest of the terms are also equal, making the diagram commute.

In string diagram language,
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S1 =

f

g

f

g

1
2
Z

1
2
Z

X

Y

(s natural)

=

f

g

f

g

1
2
Z

1
2
Z

X

Y

(c natural)

=

f

f

1
2
Z

1
2
Z

X

g

Y

= F1 ◦ (g ⊞ id 1
2
Z)

Naturality in target of trace (Right Tightening):

This proof is completely analogous to the left tightening.

Naturality in traced object (Sliding):

We need to show that TrZX,Y ((idY ⊞g)◦f) = TrZ
′

X,Y (f ◦(idX⊞g)), where f : X⊞Z →

Y ⊞ Z ′ and g : Z ′ → Z; equivalently, that CLZ((idY ⊞ g) ◦ f) = CLZ′(f ◦ (idX ⊞ g));

equivalently, that r0Z,Y ◦ conv(S) ◦ r−1
0Z,X = r0Z′,Y ◦ conv(Q) ◦ r−1

0Z′,X , where S and Q are

the right-cancellation sequences for (idY ⊞ g) ◦ f and f ◦ (idX ⊞ g) respectively.

We rewrite Si = (idY ⊞
1
2i
g) ◦Hi and Qi = Hi ◦ (idX ⊞

1
2i
g), where Hi is defined to

be the following chain (with f0 = f):
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X ⊞
1
2i
Z

c
X,12 , 12

⊞id 1
2i

Z

// (12X ⊞
1
2X)⊞ 1

2i
Z

a−1
1
2X, 12X, 1

2i
Z

// 1
2X ⊞ (12X ⊞

1
2i
Z)

id 1
2X

⊞J−1
1
2 ,X,Z

��
1
2X ⊞ (12Y ⊞

1
2i
Z ′)

a 1
2X, 12Y, 1

2i
Z′

��

1
2X ⊞

1
2(Y ⊞

1
2i−1Z

′)

id1
2X

⊞J 1
2 ,Y, 1

2i−1 Z′
oo 1

2X ⊞
1
2 (X ⊞

1
2i−1Z)

id 1
2X

⊞
1
2
fi−1

oo

(12X ⊞
1
2Y )⊞ 1

2i
Z ′

s 1
2X, 12Y

⊞
1
2i
g
// (12Y ⊞

1
2X)⊞ 1

2i
Z

a−1
1
2Y, 12X, 1

2i
Z

// 1
2Y ⊞ (12X ⊞

1
2i
Z)

id 1
2Y

⊞J−1
1
2 ,X, 1

2i−1
Z

��
1
2Y ⊞ (12Y ⊞

1
2i
Z ′)

a 1
2Y, 12Y, 1

2i
Z′

��

1
2Y ⊞

1
2(Y ⊞

1
2i−1Z

′)

id 1
2Y

⊞J 1
2 ,Y, 1

2i−1
Z′

oo 1
2Y ⊞

1
2(X ⊞

1
2i−1Z)

id1
2Y

⊞
1
2
fi−1

oo

(12Y ⊞
1
2Y )⊞ 1

2i
Z ′

s 1
2Y, 12Y

⊞id 1
2i

Z′
// (12Y ⊞

1
2Y )⊞ 1

2i
Z ′

c−1

Y, 12 , 12

⊞id 1
2i

Z′
// Y ⊞

1
2i
Z ′

Sequence H is similar to the right-cancellation sequence of f , with the crucial dif-

ference that 1
2i
g acts on the traced object (third row, first morphism). Note that, since

the right-cancellation sequence of f converges by hypothesis, so must H ; indeed, we can

check that in this case each of the component morphisms in Hi converges (by stability

properties (ii), (iv) and (iii) combined with the sensibility property) and therefore the

composition converges by stability property (i).

So by stability property (i) we have

conv(S) = conv({idY ⊞
1

2i
g}i) ◦ conv(H) = (idY ⊞ 0g) ◦ conv(H)

and

conv(Q) = conv(H) ◦ conv({idX ⊞
1

2i
g}i) = conv(H) ◦ (idX ⊞ 0g),

where the last equalities for each sequence arise from stability property (iii) and the

sensibility property. In the end we require that the following diagram commute.
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X ⊞ 0Z

r0Z,X

��

conv(H)// Y ⊞ 0Z ′ idY ⊞0g// Y ⊞ 0Z

r0Z,Y

��
X

r−1
0Z′,X

��

Y

r−1
0Z′,Y

��
X ⊞ 0Z ′idX⊞0g// X ⊞ 0Z

conv(H)// Y ⊞ 0Z ′

Once again using the fact that the functor ⊞ id0A is full and faithful, and taking

into account that there exists a unique morphism between the canonical unit 0A and

any other unit such as 0Z and 0Z ′, we deduce that each of the horizontal compositions

of the diagram can be rewritten as follows, for some m,n : X → Y :

conv(H) ◦ (idX ⊞ 0g) = m⊞ id0Z′

(idY ⊞ 0g) ◦ conv(H) = n⊞ id0Z

and the lateral compositions of the diagram can be rewritten as idX ⊞ uZ,Z′ (left) and

idY ⊞ uZ,Z′ (right), where u is the unique isomorphism between units.

In the end, n⊞ uZ,Z′ = m⊞ uZ,Z′, so we arrive at m = n, which makes the diagram

commute.

Corollary 248. In a strict nearly-traceable category D, the cancellation law is a near-

trace; furthermore, if the symmetry is strict, D is strict traced monoidal with trace

operation TrZX,Y (f) = CLZ(f) for f : X ⊞ Z → Y ⊞ Z.

Remark 249. For a nearly-traceable category D, if the underlying semiring is a stable

semifield, the properties of Theorem 247 and Corollary 248 hold for any topological T-

weak semivector space C in Seq−1(D) by replacing the conv function in the cancellation

law with the function mapping sequences to their limit in Mor(C). This is immediate

from the fact that conv is a restriction of the function mapping sequences to their limit

in Mor(C), namely restricted to the homsets on which trace is defined, which makes
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the theorem stated in the adiabatic category context equivalent to its statement in the

topological weak semimodule context.

Remark 250. In this section we have discussed trace as an operation that “erases” an

object on the right-hand side, and for this we have used right-cancellation. Obviously,

we can similarly define an alternative “trace” that “erases” something on the left-hand

side using left-cancellation, or even a “trace” that “erases” something in the middle

using middle-cancellation. We effectively have three different “trace-like” operations.

3.4 Use of adiabatic categories in Physics

We now apply LY-adiabatic categories in the way Lieb and Yngvason intended, and

then do the same with more general rational-like adiabatic categories. The aim of this

section is to showcase how both these models are used to describe physical processes. In

each application, we first describe a physical setup, then define a category that describes

it, and finally show how it fits the framework.

Of course, this framework is contingent on certain assumptions on the system. The

main caveat here is continuous scalability. For a setup of a few molecules, this would not

be a good approximation, and would be beyond the limit of the model’s applicability.

Similarly for the continuous behaviour of processes, in the case of thick models; we

assume that if a system of mass m undergoes a process f , then a system of mass

m − ǫ (where ǫ is arbitrarily small) at the same state can undergo a process f ′ such

that the results only differ in mass, and such that f ′ continues a cancellation sequence

starting from f . Intuitively, this means that all “similar” processes must be included

in the model: for example, assuming that the state is defined by temperature and

pressure, if we are allowed to, say, compress a system of mass m at temperature T

and pressure P , we must be allowed to compress systems of any mass at temperature

198



T and pressure P . Other assumptions can be safely assumed to hold (at least within

reasonable approximation), such as symmetry or splitting and recombination; it would

indeed be very surprising to discover that something fundamentally changes in a box

filled with gas just by inserting a partition and then removing it, or that the order of

components in a compound thermodynamical system is somehow meaningful.

The reader is cautioned that, in what follows, we take the meaning of “adiabatic”

to be the same as Lieb and Yngvason [51]. That is, by “adiabatic process” we do

not mean a process done on a system isolated by means of an adiabatic barrier, but

rather we use Definition 1 as discussed in Subsection 3.1.1. The systems in question

are assumed to be finite (i.e. the auxiliary system cannot be a heat bath).

3.4.1 Unlabelled adiabatic processes (LY-adiabatic categories)

This subsection describes thin models. That is to say, we follow precisely the setup

of Lieb and Yngvason, which is only concerned with whether an adiabatic process

with given initial and final state exists. The nuance here is how one should define the

way in which systems are allowed to interact to form a combined system, so that the

following basic axiom (as posited by Lieb and Yngvason) holds: If there is an adiabatic

process X → Y and an adiabatic process X ′ → Y ′, then there is an adiabatic process

X ⊞ X ′ → Y ⊞ Y ′. This is the key consideration so that this operation is indeed a

monoidal product as required.

In Lieb and Yngvason’s setup, the interacting systems remained physically indepen-

dent. This is conceptually simpler than our examples, but would make for a category

whose objects are complicated. This is because each object would have to keep track

of its component systems, and thus contain a lot of data. For this reason, in the ap-

plications below, we have opted for appropriate mixing regimes such that adiabaticity
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should21 be preserved if it is also preserved in Lieb and Yngvason’s setup. One may of

course define the combining operation in such a category as they see fit, as long as they

ensure that adiabaticity is preserved in this way.

A thermodynamical system with only one degree of freedom (mass) would yield a

discrete category and would be of no interest. In order to provide examples of simple

but nontrivial LY-adiabatic categories, we examine two and three degrees of freedom.

A system with two degrees of freedom

We shall first describe a simple physical setup and then define an associated category

that, as we shall show, is an LY-adiabatic category.

We deal with a homogeneous thermal system of mass M at temperature T and en-

ergy E, composed of distinguishable particles of the pure substance Hypotheticum that

obey statistics specified by a function ǫ(T ) (for example, Maxwell-Boltzmann statistics).

The system can be thought of as, for example, a gas in an incompressible insulated vial

with a stirrer attached; the role of the stirrer is to do dissipative work on the system.

We consider triplets (M,T,E) of positive real numbers, varying two of these variables

(the third one being dependent); we also consider empty systems (0, T, 0), where T can

be assigned an arbitrary positive real value.22 Two states are the same either if all three

of their properties are equal or if both states refer to an empty system.

We consider adiabatic processes (M,T,E) → (M,T ′, E ′) where the equalities E =

Mǫ(T ) and E ′ = Mǫ(T ′) are satisfied. By definition of internal energy and the adi-

abaticity condition we have that E ′ − E = W , where W denotes work done on the

system. In this system there are no work variables, so the total work equals the dis-

21The choice of words here is not accidental: this is not something that we have rigorously proven,
and we do not assume it. As we shall see below, we have only been able to prove monoidality for a
system with two degrees of freedom.

22Note that mass, energy and temperature are all finite. As we shall see at the end of this subsection,
the fact that we do not allow infinite energy is crucial to H being an LY-adiabatic category.
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sipative work Wd. Note that, since Wd ≥ 0, we require that E ′ ≥ E or equivalently

that ǫ(T ′) ≥ ǫ(T ). We shall require ǫ to be a strictly monotone function, so that T

is defined by M and E; in other words, M and E give a complete description of the

system. Then the adiabaticity condition is equivalent to the condition T ′ ≥ T .

We now define the category.

Definition 251. The category Hǫ is defined as follows:

• Objects are triplets (M,T,E), with M ≥ 0, T > 0 and E ≥ 0, obeying the

statistics rule for this category: E = Mǫ(T ), where ǫ is a strictly monotone

function. These objects represent physical systems of mass M , temperature T

and energy E.

• It is thin; morphisms f : (M,T,E) → (M ′, T ′, E ′) exist if and only ifM =M ′ and

E ≤ E ′ (which for nonempty systems is equivalent to M = M ′ and, depending

on whether ǫ increases or decreases, either T ≤ T ′ or T ≥ T ′). Call this condition

the adiabaticity rule for this category. Morphisms physically correspond to the

existence of adiabatic processes.

• It is equipped with a strict monoidal product ⊞, defined thus:

– For nonempty objects A = (MA, TA, EA) and B = (MB, TB, EB), define

A⊞B = (MA+MB, TA⊞B, EA+EB), where TA⊞B is defined to be the solution

to the equation MAǫ(TA) +MBǫ(TB) = (MA +MB)ǫ(TA⊞B); it follows that

⊞ is equipped with a strict symmetry. This monoidal product physically

corresponds to a merge of systems A and B.

– As for morphisms, since the category is thin, for f : A→ A′ and g : B → B′,

f ⊞ g can only be the unique morphism A⊞ B → A′
⊞ B′.23

23The existence of this morphism is immediate from the definition of the monoidal product on objects
and from the adiabaticity rule.
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– Empty systems (0, T, 0) with arbitrary T are all units; furthermore, we iden-

tify them all to be the same object O.

• It is equipped with a family of strict monoidal covariant endofunctors Fλ, λ ∈ R≥0,

which take (M,T,E) to (λM, T, λE).24 It is evident that Fλ1Fλ2 = Fλ1λ2 , that

Fλ1+λ2X = Fλ1X ⊞ Fλ2X and that F0X = O for any X . We also write λ for Fλ

as there is no ambiguity in the notation. Physically, these functors correspond to

scaling a system by some factor.

Now we show that Hǫ is an LY-adiabatic category.

Theorem 252. The category Hǫ is an LY-adiabatic category.

Proof. It is immediate that Hǫ is thin and weakly linear over R≥0. We need only

establish the basic stability condition; the extended stability conditions then follow

from thinness.

Concretely, what we need to show is that, given a sequence of morphismsX⊞λiX
′ →

Y ⊞ λiY
′ with λi → 0, there exists a morphism X → Y . Equivalently, setting X =

(MX , TX , EX), X
′ = (MX′ , TX′, EX′), Y = (MY , TY , EY ) and Y

′ = (MY ′, TY ′ , EY ′), we

must show that if MX + λiMX′ = MY + λiMY ′ and EX + λiEX′ ≤ EY + λiEY ′ for a

sequence λi → 0 then MX =MY and EX ≤ EY .

If the sequence is eventually 0, the result is immediate. Suppose that the sequence

is not eventually 0.

The first part of the adiabaticity rule is straightforward. Pick λ1 > λ2 > 0 in the

sequence:

MX + λ1MX′ =MY + λ1MY ′

MX + λ2MX′ =MY + λ2MY ′





⇔





MX =MY

MX′ =MY ′

.

24It is immediately apparent that existence of f : (M,TX , EX) → (M,TY , EY ) implies existence
of λf : (λM, TX , λEX) → (λM, TY , λEY ) and that (λMX , TX , λEX) ⊞ (λMY , TY , λEY ) = (λ(MX +
MY ), TX⊞Y , λ(EX + EY )). Therefore, the Fλ are well-defined strict monoidal functors.
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For the second part, suppose that EX > EY . Then EX = EY + E with E > 0.

EX + λiEX′ ≤ EY + λiEY ′ ⇔ E + λiEX′ ≤ λiEY ′ ⇔ E ≤ λi(EY ′ − EX′) for every λi.

But this is impossible because EY ′ − EX′ is finite and λi → 0. So EX ≤ EY .

This completes the proof.

Example 253. For a concrete example, let us consider the category Hb that corre-

sponds to Maxwell-Boltzmann statistics. Let us assume infinite energy levels ǫi, which

we fix at ǫi = i (as we have not allowed any degrees of freedom that can affect them).

As per Maxwell-Boltzmann statistics, b(T ) =
∑

i ǫi
gie

− ǫi
kT

m
∑

j gje
−

ǫj
kT

, where m is the atomic

mass, k is Boltzmann’s constant and the degeneracies gi are known constants; for the

LY-adiabatic category approximation, we must assume that m is an infinitely small

quantity and treat the total mass as a continuous variable.

Furthermore, we shall define the degeneracies as gi = Ti+1 = (i+1)(i+2)
2

, where Tn is

the nth triangular number. This stems from the physical assumption that the energy

levels are due to momentum, hence depend on movement in three spatial dimensions,

so the states of a given energy level i correspond to the distinct ways to express i

as the sum of three nonnegative integers. Using these degeneracies we get b(T ) =

3e
3
kT

m(e
1
kT −1)(1−3e

1
kT +3e

2
kT )

.

Ignoring k and m, set b(T ) = 3e
3
T

(e
1
T −1)(1−3e

1
T +3e

2
T )
. The resulting expressions for

T (M,E) and for TA⊞B are very complicated, and are only included here for the sake of

completeness. What follows was calculated by Mathematica; the reader is not expected

to go through these formulas in detail.

T (M,E) =
1

log(a + b + c)

a =
4 3√2EM

(E − M)
3

√

27E3 + 162E2M +
√

(

27E3 + 162E2M + 243EM2
)2 − 186624E3M3 + 243EM2

b =

3
√

27E3 + 162E2M +
√

(

27E3 + 162E2M + 243EM2
)2 − 186624E3M3 + 243EM2

9 3√2(E − M)

c =
2E

3(E − M)
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TA⊞B =
1

log(
n1

d1,1d1,2
+

n2
d2

+
n3
d3

)

n1 = 4
3√
2(MA + MB)













3e
3

TA MA
(

−1 + e

1
TA

)(

1 − 3e
1

TA + 3e
2

TA

) +
3e

3
TB MB

(

−1 + e

1
TB

)(

1 − 3e
1

TB + 3e
2

TB

)













d1,1 =
3e

3
TA MA

(

−1 + e

1
TA

)(

1 − 3e
1

TA + 3e
2

TA

) − MA +
3e

3
TB MB

(

−1 + e

1
TB

)(

1 − 3e
1

TB + 3e
2

TB

) − MB

d1,2 = 3
√

k1 + k2 + k3 + k4

k1 = 27













3e
3

TA MA
(

−1 + e
1

TA

)(

1 − 3e
1

TA + 3e
2

TA

) +
3e

3
TB MB

(

−1 + e
1

TB

)(

1 − 3e
1

TB + 3e
2

TB

)













3

k2 = 162(MA + MB)













3e
3

TA MA
(

−1 + e

1
TA

)(

1 − 3e
1

TA + 3e
2

TA

) +
3e

3
TB MB

(

−1 + e

1
TB

)(

1 − 3e
1

TB + 3e
2

TB

)













2

k3 = 243(MA + MB)
2













3e
3

TA MA
(

−1 + e

1
TA

)(

1 − 3e
1

TA + 3e
2

TA

) +
3e

3
TB MB

(

−1 + e

1
TB

)(

1 − 3e
1

TB + 3e
2

TB

)













k4 =

√

√

√

√

√

√

√

√

√

(k1 + k2 + k3)
2 − 186624(MA + MB)3













3e
3

TA MA
(

−1 + e
1

TA

)(

1 − 3e
1

TA + 3e
2

TA

) +
3e

3
TB MB

(

−1 + e
1

TB

)(

1 − 3e
1

TB + 3e
2

TB

)













3

n2 = 2













3e
3

TA MA
(

−1 + e
1

TA

)(

1 − 3e
1

TA + 3e
2

TA

) +
3e

3
TB MB

(

−1 + e
1

TB

)(

1 − 3e
1

TB + 3e
2

TB

)













d2 = 3













3e
3

TA MA
(

−1 + e

1
TA

)(

1 − 3e
1

TA + 3e
2

TA

) − MA +
3e

3
TB MB

(

−1 + e

1
TB

)(

1 − 3e
1

TB + 3e
2

TB

) − MB













n3 = 3
√

k1 + k2 + k3 + k4

d3 = 9
3√
2













3e
3

TA MA
(

−1 + e

1
TA

)(

1 − 3e
1

TA + 3e
2

TA

) − MA +
3e

3
TB MB

(

−1 + e

1
TB

)(

1 − 3e
1

TB + 3e
2

TB

) − MB













A note on systems with three or more degrees of freedom

For our framework to make sense as a physical model, we would naturally like to

show that it applies to arbitrarily complicated adiabatic processes. Unfortunately, the

calculations quickly become extremely complicated, even for the case of three degrees

of freedom. This section presents the settings for which we would like to prove relevant

conjectures; it has been included for context and as an indication of intended future
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work.

Here we present the case of three degrees of freedom. We begin by describing the

physical setup, continue to define an associated category, then conjecture that it is an

LY-adiabatic category.

We deal with a homogeneous thermal system of mass M at temperature T , volume

V , pressure P and energy E, composed of distinguishable particles of the substance

Fantasticum (which is characterised by its specific heat cv(T, P ) at constant volume v

as a function of temperature T and pressure P or equivalently25 its specific heat cπ(T, V )

at constant pressure π as a function of temperature T and volume V ) that obey statistics

specified by a function ǫ(V, T ) (for example, Maxwell-Boltzmann statistics). Pressure

in nonempty systems is defined by mass, volume and temperature by some equation of

state P = Mp(V, T ); we require p to be strictly monotone in V and T . We consider

quintuples (M,T, V, P, E) of positive real numbers, varying three of these variables (the

other two being dependent); we also consider empty systems (0, T, 0, P, 0), where T and

P can be assigned an arbitrary positive real value. Two states are the same either if

all three of their properties are equal or if they both refer to an empty system.

Since p is monotone in V and T , we may express V (or T ) as a function of P
M

and

T (or V ). We write V = υ( P
M
, T ) and T = τ(V, P

M
). In the end, given p, all partial

derivatives of the form
(
∂x1
∂x2

)
x3

(where xi is P , V or T ) are known.

We consider adiabatic (in the same sense as above) processes (M,T, V, P, E) →

(M,T ′, V ′, P ′, E ′), where the equalities E = Mǫ(V, T ) and E ′ = Mǫ(V ′, T ′) are satis-

fied. We require ǫ to be strictly monotone in V and T . Since ǫ(V, T ) is monotone in T ,

we can express T = θ( E
M
, V ) and volume V = a( E

M
, T ).

25These two functions contain the same information in view of the fact that we are also given the
equation of state (see below), using which we can connect these two quantities [70, Equation (4-6)];
note that the partial derivative

(
∂u
∂v

)
T
appearing in the referenced equation can also be expressed in

terms of the equation of state [18, Table II].
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Example 254. For a concrete example, let us consider an ideal gas obeying Maxwell-

Boltzmann statistics. We set p(V, T ) = RT
mV

, where R is the universal gas constant

and m is the atomic mass. There are infinite energy levels ǫi(V ); for a fairly typical

system, let us assume the relation ǫi(V ) = (i2+2)h2

8mV
2
3
, where h is Planck’s constant. As per

Maxwell-Boltzmann statistics, ǫ(V, T ) =
∑

i ǫi(V ) gie
− ǫi(V )

kT

m
∑

j gje
−

ǫj (V )

kT

, where k is Boltzmann’s

constant and the degeneracies gi are known constants; for this system to yield an LY-

adiabatic category, we must assume that m is an infinitely small quantity and treat the

total mass as a continuous variable. Similarly to the previous case, we shall define the

degeneracies as gi = Ti+1 =
(i+1)(i+2)

2
, where Tn is the nth triangular number.

By definition of internal energy and the adiabaticity condition we have that E ′−E =

W , where W denotes work done on the system. We further distinguish dissipative work

Wd and configurative work Wc, so that E ′ −E = Wd +Wc. Since Wd ≥ 0 we have

Wc ≤ E ′ − E. (3.8)

For the purpose of determining if a process f : (M,T, V, P, E) → (M,T ′, V ′, P ′, E ′) is

adiabatic, the path makes no difference; only the initial and final state matter. We

may therefore replace f with a sequence of two processes, a reversible adiabatic process

fad : (M,T, V, P, E) → (M,T ′, V ′′, P ′′, E ′′) (i.e. with dissipation Wd,ad = 0) followed by

an irreversible isothermal process fth : (M,T ′, V ′′, P ′′, E ′′) → (M,T ′, V ′, P ′, E ′) with

dissipation Wd,th = Wd. We can then compute the middle state and reformulate the

adiabaticity condition in terms of state variables and the specific heat function cv.

More specifically (momentarily switching to v for volume and t for temperature so as

not to confuse the variable with its value in the first state), using Wc =M
∫ V1
V2
p(v, t)dv

we can in principle compute Wc,ad, Wc,th and Wd,th [18, Table II]. This can be compli-

cated in the general case, but is straightforward for an ideal gas.
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Example 255. For a concrete example, consider an ideal gas, where cv is just a con-

stant:

E ′′ = E +Mcv(T
′ − T )

V ′′ =

(
T

T ′

) cv
R

V

P ′′ =

(
T

T ′

)− cπ
R

P

The configurative work of the isothermal process is Wc,th = M
m
RT ′ ln

(
V ′′

V ′

)
. So by

Wc = Wc,ad +Wc,th Equation (3.8) becomes

Mcv(T
′ − T ) +

M

m
RT ′ ln

((
T
T ′

) cv
R V

V ′

)
≤ E ′ − E,

which is the explicit form of the adiabaticity condition.

In line with the previous example, we have to assume that m << M in the sense

that we treat M as a continuous variable.

Remark 256. We can reformulate the adiabaticity condition in terms of the initial

entropy S and final entropy S ′. Specifically, we want S ≤ S ′. The reversible adiabatic

process does not change the entropy, and the isothermal process satisfies ∆S =
Wd,th

T ′ =

E′−E′′−Wc,th

T ′ =
E′−E−Wc,ad−Wc,th

T ′ . This yields the same inequality.

Before defining the category, we need to make the following conjecture, which cor-

responds to the axiom discussed in the introduction of this subsection.

Conjecture 257. Suppose that we have two systems of Fantasticum, sitting side by

side in a box, separated by a rigid partition such that the two systems do not ex-

change energy in any form, at respective states A = (MA, TA, VA, PA, EA) and B =
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(MB, TB, VB, PB, EB). Further suppose that each of these systems can undergo re-

spectively adiabatic process fA : A → A′ and adiabatic process fB : B → B′, where

A′ = (MA, T
′
A, V

′
A, P

′
A, E

′
A) and B = (MB, T

′
B, V

′
B, P

′
B, E

′
B). Let A ⊞ B denote the sys-

tem resulting from removing the partition from the box (i.e. mixing A and B at constant

total volume) and similarly define the system A′
⊞ B′. Then there exists an adiabatic

process A⊞ B → A′
⊞ B′.

This is where the calculations become extremely complicated, even for an ideal gas.

We intend to return to this calculation in a future project.

We now define the category. Parts of the following definition are contingent on

Conjecture 257.

Definition 258. The category Fγ , where γ > 1, is defined as follows:

• Objects are quintuples (M,T, V, P, E), with M ≥ 0, T > 0, V > 0, P ≥ 0

and E ≥ 0, obeying the state rule for this category P = Mp(V, T ) = MT
V

and

the Maxwell-Boltzmann rule for this category E = Mǫ(V, T ), where ǫ(V, T ) =

∑
i ǫi(V ) gie

− ǫi(V )
T

∑
j gje

−
ǫj (V )

T

, where gi = (i+1)(i+2)
2

and ǫi(V ) is a function that grows

with i and is proportional to V − 2
3 (for example, ǫi(V ) =

i2+2

8V
2
3
).26 These objects

represent physical systems of mass M , temperature T , volume V , pressure P and

energy E.

• It is thin; morphisms f : (M,T, V, P, E) → (M ′, T ′, V ′, P ′, E ′) exist if and only if

M =M ′ and

M

γ − 1
(T ′ − T ) +MT ′ ln



(
T
T ′

) 1
γ−1 V

V ′


 ≤ E ′ − E.

26We ignore R, k and m for this treatment.
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Call this condition the adiabaticity rule for this category. Morphisms physically

correspond to the existence of adiabatic processes.

• It is equipped with a strict monoidal product ⊞, defined thus:

– For objects A = (MA, TA, VA, PA, EA) and B = (MB, TB, VB, PB, EB), where

A,B are nonempty, define A⊞B = (MA+MB, TA⊞B, VA+VB, PA⊞B, EA+EB),

where TA⊞B and PA⊞B are derived from the state rule and the Maxwell-

Boltzmann rule; it follows that ⊞ is equipped with a strict symmetry. This

monoidal product physically corresponds to a merge of systems A and B

with constant total volume.

– As for morphisms, since the category is thin, for f : A→ A′ and g : B → B′,

f ⊞ g can only be the unique morphism A ⊞ B → A′
⊞ B′, which exist if

Conjecture 257 holds.

– Empty systems (0, T, 0, P, 0) with arbitrary T and P are all units; further-

more, we identify them all to be the same object O.

• It is equipped with a family of strict monoidal covariant endofunctors Fλ, λ ∈ R≥0,

which take (M,T, V, P, E) to (λM, T, λV, P, λE).27 It is evident that we have

Fλ1Fλ2 = Fλ1λ2 , that Fλ1+λ2X = Fλ1X ⊞ Fλ2X and that F0X = O for any X .

We also write λ for Fλ as there is no ambiguity in the notation. Physically, these

functors correspond to scaling a system by some factor.

Contingent on Conjecture 257, this is an LY-adiabatic category.

27It is immediately apparent that existence of f : (M,TX , VX , PX , EX) → (M,TY , VY , PY , EY )
implies existence of λf : (λM, TX , λVX , PX , λEX) → (λM, TY , λVY , PY , λEY ) and that

(λMX , TX , λVX , PX , λEX)⊞ (λMY , TY , λVY , PY , λEY ) =

(λ(MX +MY ), TX⊞Y , λ(VX + VY ), PX⊞Y , λ(EX + EY )).

Therefore, the Fλ are well-defined strict monoidal functors.
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Theorem 259. If Conjecture 257 holds, the category F is an LY-adiabatic category.

Proof. Provided Conjecture 257, most of the axioms of LY-adiabatic categories are im-

mediate for F, or easy to show. It is immediate that F is thin and weakly linear over

R≥0. We need only establish the basic stability condition; the extended stability con-

ditions then follow from thinness.

Concretely, what we need to show is that, given a sequence of morphisms X ⊞

λiX
′ → Y ⊞ λiY

′ with λi → 0, there exists a morphism X → Y . Equivalently, setting

X = (MX , TX , VX , PX , EX), X
′ = (MX′ , TX′, VX′ , PX′, EX′), Y = (MY , TY , VY , PY , EY )

and Y ′ = (MY ′ , TY ′ , VY ′, PY ′ , EY ′), we must show that if

MX + λiMX′ =MY + λiMY ′ (3.9)

MX + λiMX′

γ − 1
(TY ⊞λiY ′ − TX⊞λiX′)+

(MX + λiMX′)TY ⊞λiY ′ ln




(
TX⊞λiX

′

TY ⊞λiY
′

) 1
γ−1

(VX + λiVX′)

VY + λiVY ′




≤ EY + λiEY ′ −EX − λiEX′ (3.10)

for a sequence λi → 0, then

MX =MY (3.11)

MX

γ − 1
(TY − TX) +MXTY ln




(
TX
TY

) 1
γ−1

VX

VY


 ≤ EY −EX . (3.12)

This is true because all the functions involved are continuous and all the quantities

involved are finite.
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3.4.2 Labelled adiabatic processes (rational-like adiabatic cat-

egories)

We now look at a category where the morphisms do not correspond to mere existence

of an adiabatic process, but rather to classes of adiabatic processes labelled by a set

of parameters. As discussed in Subsection 3.1.1, in our choice of classifier we are con-

strained to properties that cannot be used to extract work. We repeat our observation

that possible contradictions between the model and physical reality would hint at an

undiscovered process or hidden variable of the system such that a seemingly unrelated

property is somehow used to extract work.

Here we have chosen time (as in, duration of the process) as a classifier. We only

examine the case of two degrees of freedom. We see that our generalised model can be

used to describe this simple system, and furthermore check that it is a traced category.

A system with two degrees of freedom

We define a category H′
ǫ, fashioned after Hǫ, with the same objects but where each

morphism ft is a class of “strictly nontrivial” processes labelled by their duration t.

This category is no longer thin.

We briefly remind the reader of the setup for two degrees of freedom, as described

in the previous subsection: We deal with a pure substance at state (M,T,E) obeying

statistics as described by the strictly monotone ǫ(T ), undergoing adiabatic processes

wherein we do dissipative work on the system. Again, one may think of a gas in an

incompressible insulated vial with a stirrer attached, where the stirrer serves as a way

to do dissipative work on the system.

Now we embellish the setup with distinct classes of processes. Each morphism ft will

now have the physical interpretation of a set of processes with duration t. This gives
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each homset a topology inherited from this time variable, namely that of the positive

real numbers. Physically, the different morphisms in a homset equivalently correspond

to stirrers with different average power, powered by a rising and falling weight subject

to a greater or smaller force.

The new category is defined as follows.

Definition 260. The category H′
ǫ is defined as follows:

• Objects are triplets (M,T,E), with M ≥ 0, T > 0 and E ≥ 0, obeying the

statistics rule for this category: E =Mǫ(T ), where ǫ is strictly monotone. These

objects represent physical systems of mass M , temperature T and energy E.

• Hom((M,T,E), (M ′, T ′, E ′)) 6= ∅ if and only if M = M ′ and E ≤ E ′ (which

for nonempty systems is equivalent to M = M ′ and either T ≤ T ′ or T ≥ T ′).

Call this condition the adiabaticity rule for this category. Each morphism ft is

characterised by an index t ∈ R≥0 (i.e. no two morphisms in a given homset share

this index) and the index 0 is reserved for identities. Each morphism physically

corresponds to a class of processes labelled by their duration t; we only consider

strictly nontrivial processes, in the sense that at every stage of the process some

variable of the system changes. Identity morphisms correspond to doing nothing,

which by strict nontriviality forces their duration to 0.

• Composition works as follows. Let Hom(A,B) = {f}t, Hom(B,C) = {g}t and

Hom(A,C) = {h}t. Then gt2 ◦ ft1 = ht1+t2 . Composition physically corresponds

to performing one process after the other.

• It is equipped with a strict monoidal product ⊞, defined thus:

– For nonempty objects A = (MA, TA, EA) and B = (MB, TB, EB), define

A⊞B = (MA+MB, TA⊞B, EA+EB), where TA⊞B is defined to be the solution
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to the equation MAǫ(TA) +MBǫ(TB) = (MA +MB)ǫ(TA⊞B); it follows that

⊞ is equipped with a strict symmetry. This monoidal product physically

corresponds to a merge of systems A and B.

– For objects A = (MA, TA, EA), B = (MB, TB, EB), A
′ = (M ′

A, T
′
A, E

′
A) and

B′ = (M ′
B, T

′
B, E

′
B), where A,B,A

′, B′ nonempty, and morphisms ftA : A→

A′ and gtB : B → B′, set ftA ⊞gtB = htA+tB : A⊞B → A′
⊞B′. This process

has no special physical meaning.28

– Empty systems (0, T, 0) with arbitrary T are all units; furthermore, we iden-

tify them all to be the same object O.

• It is equipped with a family of strict monoidal covariant endofunctors Fλ, λ ∈

R≥0, which take (M,T,E) to (λM, T, λE) and take each morphism ft to the

morphism gλt in the appropriate homset.29 It is immediate that Fλ1Fλ2 = Fλ1λ2 ,

that Fλ1+λ2ft = Fλ1ft ⊞ Fλ2ft for any morphism ft, that identities are preserved

and that F0X = O for any object X . We also write λ for Fλ as there is no

ambiguity in the notation. Physically, these functors correspond to scaling the

systems by some factor without changing the average power of the heating process

between them.

• Let {fti : X ⊞ λiX
′ → Y ⊞ λiY

′}i be a sequence of morphisms where λi → 0. If

the corresponding sequence ti converges to t, then let conv({fti}) = ft : X → Y .30

Now we show that H′
ǫ is a tyrannical rational-like adiabatic category.

Theorem 261. The category H′
ǫ is a tyrannical rational-like adiabatic category with

monoidal product ⊞, monoidal unit O and convergence function conv.

28The existence of this morphism is immediate.
29These are well-defined strict monoidal functors as in the thin case.
30This must exist by the same rationale that the category H of the previous section is an LY-

adiabatic category and because our stirrer can be as powerful as we want.
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Proof. It is immediate that H′
ǫ is weakly linear over R≥0, that the monoidal product is

strict with strict symmetry, that the monoidal functors are strict and that the SR iso-

morphism is strict. The basic stability condition is also satisfied. It remains to show

the extended stability conditions.

Properties 1, 2 and 3 must hold because conv reduces to convergence of ti. Property

(i) holds because addition is a continuous operation in τR. Property (ii) holds because

identities are precisely the processes with zero duration. The first part of property (iii)

holds because, like composition, we have defined the monoidal product in terms of added

durations; the second part holds because of strictness. Property (iv) holds because

the scaling functors act as multiplication on the time indices, which is a continuous

operation in τR. Finally, property (v) holds because the symmetry is strict.

Note that cancellation sequences are convergent in this category: the duration of

each term of the cancellation sequence is equal to the duration t of the whole process,

therefore there is a limit; namely, the morphism with duration t in the appropriate

homset.

Theorem 262. The cancellation operation in H′
ǫ is a (strict) trace.

Proof. We check the axioms of trace (Definition 231):

1. (a) The cancellation of ft : A ⊞ O → B ⊞ O produces the constant sequence

{ft : A⊞ O → B ⊞O}, which converges to ft itself.

(b) The cancellation of ft : A⊞X ⊞ Y → B ⊞X ⊞ Y with respect to Y yields

f ′
t : A⊞X → B⊞X , whose cancellation with respect to X yields f ′′

t : A→ B;

as does the cancellation of ft with respect to X ⊞ Y .

2. Given ft : A⊞X → B⊞X and f0 = idC , the cancellation of f0⊞ft : C⊞A⊞X →

C ⊞B ⊞X with respect to X yields f ′′
t : C ⊞A→ C ⊞B; but f ′′

t = f0 ⊞ f ′
t with

f ′
t : A→ B, where the latter is the cancellation of ft with respect to X .
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3. The symmetry axiom holds because the category has strict symmetry.

3.4.3 Discussion on examples given

From these initial applications of our model we have seen that an adiabatic category

corresponds to a physical model of adiabatic processes with two degrees of freedom, and

is furthermore traced. We have also seen the difficulty of extending this correspondence

to larger degrees of freedom. Unsurprisingly, Entropy does appear as a nondecreasing

quantity: in the case of two degrees of freedom, Energy is also nondecreasing, so Entropy

was not explicitly mentioned; in the case of three degrees of freedom, Entropy is clearly

linked to the adiabaticity criterion (Remark 256).

In the examples we have seen, we are mainly working within Classical Thermo-

dynamics, but we have borrowed notions from Statistical Mechanics to simplify the

picture; namely, we have assumed that there exists a statistical distribution underpin-

ning the system’s behaviour, which gives us a convenient function we can work with in

the abstract.

We would like to have a more complete result on applicability of adiabatic cate-

gories for arbitrary degrees of freedom. Unfortunately, however, as discussed in the

introduction to this section, the choice of an appropriate monoidal product straddles a

precarious line between making the objects too complicated to handle and making the

proofs too difficult.
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Chapter 4

Conclusion

We begin this chapter by making explicit the connection between the two strands of

this work.

On the one hand, Chapter 2 is very general in scope. Matroids are about as abstract

as any mathematical entity, on par with topological spaces in terms of generality, thus

extremely versatile. As we have noted, however, the fact that they capture the essence of

dependence connects them to probabilistic conditional dependence. More specifically,

it has been pointed out [30] that Shannon Entropy induces a “generalised matroid”

structure1 by virtue of being a nondecreasing submodular function, and that many

results from Matroid Theory transfer to that setting. Hence our work on Matroids

ultimately provides a foundation for the study of Shannon Entropy, and consequently

Entropy in its Statistical Mechanics formulation.

On the other hand, Chapter 3 explores the categorical implications of Entropy being

a nondecreasing submodular continuous function, and provides a basis for recovering

the Statistical Mechanics formulation of Entropy as a limiting case.

In the end, these two projects are set to converge on uniting the various facets

1These generalisations are called polymatroids.
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of Entropy under their shared abstract properties (monotonicity, submodularity and

continuity). This could not have happened in the context of this thesis, but rather is

reserved for future work.

4.1 Matroids

4.1.1 Our contribution

We have worked out many interesting properties of a useful category of matroids; in

the process, we have also corrected some mistakes in the literature (see Propositions 30

and 42, as well as the first footnote of Section 2.5).

Most of our results on matroids are negative; that is, neither the category of all

matroids nor any notable subcategories is very well behaved, as it does not have many

limits and colimits (Section 2.3), and moreover most of the commonly used matroid

constructions are not functorial. This is of course helpful information, but also a rather

unfortunate fact, since it constrains the properties of functors one might exploit. On a

more positive note, taking minors did turn out to be functorial (Section 2.8). We have

also found many adjunctions between matroids and notable subcategories (Section 2.4),

and simplification turned out to be monadic (Section 2.7).

We have also examined properties of functors between matroids and other categories,

most notably vector spaces and geometric lattices, and discovered that the associated

functors L ◦ M and L• exhibit properties “close” to fullness and faithfulness; these

properties may perhaps be of use. Shifting momentarily our focus from Physics, we

note that these functors also carry implications for matroid representability; a major

topic in matroid theory, with longstanding open problems. It would be interesting if

Category Theory turned out to be the key to progress towards their solutions.

We have shown that this category features two orthogonal factorisation systems and
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(Co)limit present
Products ✗

Equalisers ✓

Pullbacks ✗

Coproducts ✓

Coequalisers ✗

Pushouts ✗

Exponentials ✗

Construction functorial
Duality ✗

Free addition ✓

Deletion ✓

Contraction ✓

Minor ✓

(Free) Extension ✗

(Free) Coextension ✗

(Higgs) Lift ✗

Truncation ✗

Quotient ✗

Erection ✗

Construction monoidal
Union ✗

Intersection ✗

Half-dual union ✗

Intertwining ✗

Parallel connection ✓

Series connection ✓

Figure 4.1: Overview of the categorical nature of matroids

a double factorisation system (Section 2.6); a further notable result of this project is

that this category inherits orthogonal factorisation systems from a category of geometric

lattices, which is simpler in some sense (Corollary 86).

Finally, we have offered a categorical characterisation of the ubiquitous greedy al-

gorithm (Section 2.9).

Our results are summarised in Figures 4.1 and 4.2.

4.1.2 Future work

Duality is a fundamental aspect of matroid theory that we have not covered. We

conjecture that if taking duals can be somehow cast as a functor, it must be in the

context of a category of “strong relations”; that is, a category that arises from the

category of matroids and strong maps as the category of sets and relations arises from
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Figure 4.2: Overview of adjunctions involving the category of matroids

the category of sets and functions. This seems a worthwhile pursuit, because duality is

so central to matroid theory that, in any model of a physical system involving matroids,

duality would almost certainly have some physical meaning.

Another direction of future work is closer to our work on Entropy. Our results

on adjunctions, limits and colimits could be extended to subcategories of matroids

representable over some field, aiming to provide some categorical insight into matroid

representability. Representability has been linked [30] to so-called probabilistic repre-

sentability, which connects matroids to probabilistic structures, providing insight into

Statistical Mechanics.

Other possible directions of future research might be determining which of our re-

sults extend to infinite matroids, examining generalisations of matroids, or searching

further for possible functors between graphs and matroids.

As a final point of interest, we note that there exist matroids with additional struc-

ture called bimatroids [47] that form a 2-category (albeit a trivial one).
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4.2 Entropy

4.2.1 Our contribution

Chapter 3 offers a categorical framework to model adiabatic processes between ther-

modynamical states, along with examples of application. We have described a class

of categories that arises from physical modelling, based on work by Lieb and Yng-

vason [51], shown that it is a special case of a more elegant and powerful class of

categories (topological weak semimodules), and shown that under certain physically

plausible constraints it also exhibits the well-studied trace property. More precisely,

our main achievements are the following:

• We have generalised Lieb and Yngvason’s result in two ways to conclude the

existence of an Entropy functor for rational-like semirings and for categories that

are not preorders (Theorems 225 and 230).

• Defining a set of “stable” semifields L, with R,R≥0 ∈ L, we have proven that

for Λ ∈ L there exists an adjunction between adiabatic categories over Λ and

topological weak semimodules over Λ (Theorem 217). This ties into the existence

of an Entropy functor (which exists when Λ = R≥0, as it is rational-like).

• We have shown (Remark 238 and Theorem 247) that two classes of adiabatic cat-

egories are traced monoidal; in view of the adjunction mentioned in the previ-

ous point, this implies that certain topological weak semimodules are also traced

monoidal (Remark 249). Of these two classes of adiabatic categories involved,

we are mainly interested in the ones over rational-like semirings, as these are

equipped with an Entropy functor.

• We have shown that our model applies to some physical systems.
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4.2.2 Future work

As we discuss in Chapter 1 and expand on in Chapter 3, there are strong links between

the properties of our category and Entropy in classical Thermodynamics. A way of

recovering the familiar Entropy formula from Statistical Thermodynamics is discussed

in Section 1.3; since there are complications that require a higher categorical approach,

this is one of our future goals.

The long-term goal of this project is to encompass all notions of Entropy through

different “theory” functors. The precise formulation of the Entropy function we re-

cover depends on the choice of objects of the codomain of the “theory” functor: a

macroscopic description of a thermodynamical system yields the macroscopic defini-

tion; discrete probability measures on finite sets of microstates yields the statistical

formulation; continuous probability measures on infinite sets of microstates yields the

Entropy formula for the continuous case. Another way to phrase this, which offers

some insight in light of the above discussion, is that we seek a functor from the general

category we construct to a category System, such that the functor is a “theory” func-

tor for adiabatic processes (in the sense discussed above); here, System is either the

category of macroscopic states and all processes, or the category of all finite probability

measures and stochastic maps, or the category of all continuous probability measures

and continuous stochastic maps. That is to say, there is a general notion of an “Entropy

functor” from our category to R≥0 that factorises uniquely through System via the

“theory” functor and the relevant Entropy formula.

The potential usefulness of this approach is that, in this abstract setting, we may

consider “theory” functors from our category with a variety of different codomains (in

other words, “plugging in” different objects into our category) and examine similar

factorisations of the “Entropy functor”. This is an objective for future work, with the

long-term goal of integrating all notions of Entropy (classical and quantum) into this
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categorical approach. The basic insight behind this is that subadditivity is a basic

property of any notion of Entropy [50], and is precisely the property that is captured

by our “Entropy functor”.

The first step is to complete our framework for the macroscopic case by working out

a concrete example involving general adiabatic processes (which at this point has only

been worked out for the simple case of two degrees of freedom). The second step is to

set up a framework for the microscopic case, which is significantly more complicated

and necessitates the use of bicategories as successive approximations; here, recovering

an adiabatic category in the limiting case immediately yields the statistical formulation

of Entropy via Faddeev’s theorem (as discussed in Section 1.3), which would already

be a nice result linking the macroscopic and microscopic notions of Entropy. A further

step would then be to examine the quantum regime, which for the time being is at the

speculative stage.

There is also a possibility of refining our results on the relation between our class

of categories and traced categories. We would like to recover a set of minimal sufficient

and necessary conditions that turn a certain trace-like operation of our categories into

a trace.

Meanwhile, there is another possible direction of future work (mentioned in passing

in the Introduction to Chapter 3), which is not directly relevant to Physics but is of

mathematical interest. One of the constructions introduced in Chapter 3, called a weak

semimodule, is a categorification of a semimodule. Weak semimodules form a category

that turns out to have free objects over the category of symmetric monoidal categories

and symmetric strict monoidal functors, while at the same time they inherit some useful

properties of semimodules. It would be worth exploring whether these properties can be

taken advantage of to construct transforms in the service of solving problems involving

symmetric monoidal categories.
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de l’IHÉS, 98(1):167–212, 2003.

[54] S. Mac Lane. Some interpretations of abstract linear independence in terms of

projective geometry. American Journal of Mathematics, 58(1):236–240, 1936.

[55] Keye Martin and Prakash Panangaden. A domain of spacetime intervals in general

relativity. Communications in mathematical physics, 267(3):563–586, 2006.
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