
Homology, Hopf Algebras and
Quantum Code Surgery

Alexander Cowtan
Wolfson College

Department of Computer Science
University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Trinity 2024





Abstract
This thesis is a study of quantum error-correction codes from an algebraic perspective. We
concern ourselves not only with quantum codes but also protocols to perform logical quan-
tum computation using such codes. We derive new methods of performing fault-tolerant
quantum computation, rooted in abstract algebra and category theory. We also generalise
known constructions of quantum codes and rigorously formalise existing constructions.

At its core, the main question this thesis asks is: what is lattice surgery? For quantum
computer scientists, the easiest answer is that it is a method of performing quantum
computation with a famous family of quantum error-correction codes, called surface codes.
The method is extremely efficient and preserves the tolerance of the codes to errors
throughout.

Upon further inspection, however, lattice surgery has connections to some interesting
abstract mathematics. It functions, at the basic level, by taking patches of code, each
of which protects some logical information, and ‘glues’ them together, or ‘tears’ them
apart, yielding operations on the encoded information. This gluing bears similarity to
connected sums in topology, a geometric modification on topological spaces whereby we join
two manifolds together using a local submanifold. On the encoded information, lattice
surgery yields operations which can be seen as multiplication and comultiplication of
the Hopf algebra CZ2 or its dual, where gluing gives multiplication and tearing gives
comultiplication. Given these facts, we would like to understand lattice surgery purely in
these algebraic terms.

We can think of surface codes, in some sense, as being the combination of the cellulation
of a manifold and an algebra CZ2. This understanding naturally leads us to generalisations
of lattice surgery. Loosening the definition leads us, in the first case, to abandon cellulations
of manifolds and get quantum error-correction codes which are homological but not based
explicitly on manifolds. Happily, surgery still works in this wider setting, in much the
same way. In the second case, we can consider Kitaev’s quantum double models, which
are described by CG for some finite group G, and can be defined by other Hopf algebras
more generally. Lattice surgery according to (co)multiplication of Hopf algebras can still
be performed in this case, albeit with several caveats. On the way, we find and clarify
many algebraic intricacies of such models. We now describe these two directions in more
detail.

In the first direction, we define code maps between Calderbank-Shor-Steane (CSS) codes
using maps between chain complexes, and generalise the technique of lattice surgery to
such codes. We describe how to ‘merge’ and ‘split’ along a shared X or Z operator between
arbitrary CSS codes in an error-corrected manner, so long as conditions concerning gauge-
fixing and systolic distance are satisfied. To do this, we introduce a formalism based on
colimits from category theory. As well as describing a surgery operation, this gives a
general recipe for new codes. We prove that such merges and splits on quantum Low-
Density Parity Check (qLDPC) codes yield codes which are themselves qLDPC. We then
present open-source software, called SSIP (Safe Surgery by Identifying Pushouts), which
automates the procedure of finding and performing valid code surgeries. We demonstrate



iv Abstract

on qLDPC codes, which are not topological codes in general, and are of interest for near-
term fault-tolerant quantum computing. Such qLDPC codes include lift-connected surface
codes, generalised bicycle codes and bivariate bicycle codes. We show empirically that
various logical measurements can be performed cheaply by surgery without sacrificing the
high code distance.

In the second direction, we then move to the Kitaev quantum double model. We ap-
proach this topic in a formal algebraic manner, emphasising the quantum double D(G)
symmetry for G a finite group. We use the description of quasiparticles as irreducible
representations and combine this with the D(G)-bimodule properties of open ribbon exci-
tation spaces to show how open ribbons can be used to teleport information between sites.
We show how our constructions generalise to D(H) models based on a finite-dimensional
Hopf algebra H, including site actions of D(H) and partial results on ribbon equivari-
ance even when the Hopf algebra is not semisimple. We take a diversion to prove that
lattice surgery can be performed using any Kitaev model on a patch, where G is finite
Abelian. We relate the surgery procedures to the qudit ZX-calculus, a graphical language
for reasoning about qudit quantum computing.

Returning to the Kitaev model with non-Abelian G, we then provide a systematic
treatment of boundaries based on subgroups K ⊆ G with the Kitaev model in the bulk.
The boundary sites are representations of a ∗-subalgebra Ξ and we explicate its structure
as a strong ∗-quasi-Hopf algebra dependent on a choice of transversal R. We provide
decomposition formulae for irreducible representations of D(G) pulled back to Ξ. We also
provide explicitly the monoidal equivalence of the category of Ξ-modules and the category
of G-graded K-bimodules and use this to prove that different choices of R are related
by Drinfeld cochain twists. Examples include Sn−1 ⊂ Sn and an example related to the
octonions where Ξ is also a Hopf quasigroup. As an application of our treatment, we
study patches with boundaries based on K = G horizontally and K = {e} vertically and
give a partial description of how these could be used in a quantum computer using lattice
surgery.



Acknowledgements
I first owe my supervisor, Aleks Kissinger. I greatly appreciate his guidance, encouragement
and warmth, and for many useful discussions about the ZX-calculus and quantum error-
correction, which informed much of this thesis.

I am also indebted to Shahn Majid, who taught me much about quantum groups during
the difficult lockdown period and wrote sections of the papers which became the latter
half of this thesis. Shahn’s patience, rigour and keen eye for detail were invaluable.

The work on chain complexes is in large part due to the input of Simon Burton. I am
inspired by his ideas, passion and breadth of knowledge of stabiliser codes.

The fourth key influence on this thesis is Ross Duncan, who set me on this path, whether
he intended to or not. There are too many ways in which I learned from Ross to put into
words, and I am beyond grateful. If I could do it all again, I would in a heartbeat, with
the possible exception of getting a bit lost in a Boston snowstorm.

In the Quantum Group, I will miss fruitful discussions and good times with many
colleagues, such as John van de Wetering, Lia Yeh, Will Simmons, Nihil Shah, Stefano
Gogioso, Matty Hoban, Nick Ormrod, Nicola Pinzani, Tein van der Lugt, Amin Karam-
lou, Razin Shaikh, Jan G lowacki and Richie Yeung. In Quantinuum, I am grateful for
the company and friendship of Seyon Sivarajah, Silas Dilkes, Nathan Fitzpatrick, Alec
Edgington, Dan Mills, Steven Herbet, Ben Criger, John Children, Sherilyn Wright, Carys
Harvey and many more.

Much of the follow-on work from this thesis was sparked by thought-provoking discus-
sions at the Fault-Tolerant Quantum Technologies 2024 conference in Benasque. I would
like to thank Nikolas Breuckmann, Armando Quintavelle, Michael Vasmer and Christophe
Vuillot for organising, and the attendees who asked such interesting questions.

Outside of my profession, special thanks go to Ben Johnson, Kostja Junglas, Rage and
others in Oxford, and to all my friends elsewhere, for bringing light and joy to my life.

I benefited from the immense financial generosity of Simon Harrison, through the
Wolfson Harrison UK Research Council Quantum Foundation Scholarship.

To Rory Green and the rest of my family, thank you. Without your boundless love and
encouragement I would never have made it this far.





Contents
Abstract iii

Acknowledgements v

Contents v

1 Introduction 1
Part A: Homological codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Part B: Hopf algebraic codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Quantum error correction . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Universal properties . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Monoidal categories . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 String diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Homological algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Lattice surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A Homological codes 27

2 CSS code surgery as a universal construction 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Quantum codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Codes as chain complexes . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Basic quantum codes . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 Code maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 CSS code surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.1 Tensor products of classical codes . . . . . . . . . . . . . . . . . . 39
2.3.2 Colimits in Ch(MatF2) . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.3 Generic code surgery . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.4 Surgery along a logical operator . . . . . . . . . . . . . . . . . . . 46
2.3.5 Examples of surgery . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Error-corrected logical operations . . . . . . . . . . . . . . . . . . . . . . 53
2.4.1 Procedure summary . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.2 Full description of procedure . . . . . . . . . . . . . . . . . . . . . 54

2.5 Conclusions and further work . . . . . . . . . . . . . . . . . . . . . . . . 59

3 SSIP: automated surgery with quantum LDPC codes 61
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



viii Contents

3.1.2 General software description . . . . . . . . . . . . . . . . . . . . . 63
3.2 The CSS code-homology correspondence . . . . . . . . . . . . . . . . . . 63

3.2.1 Code distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.2 Lifted products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.3 CSS code surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Automated external surgery . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.1 Small examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.2 Lift-connected surface codes . . . . . . . . . . . . . . . . . . . . . 75
3.3.3 The gross code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Automated internal surgery . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4.1 The gross code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.5.1 Basis-changing ancillae . . . . . . . . . . . . . . . . . . . . . . . . 89

B Hopf algebraic codes 97

4 Quantum double aspects of Kitaev models 99
4.1 Preliminaries: D(Zn) model . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1.1 Quasiparticle creation and transportation . . . . . . . . . . . . . . 104
4.2 D(G) models and example of D(S3) . . . . . . . . . . . . . . . . . . . . . 106

4.2.1 Vacuum space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2.2 Quasiparticles and projection operators to detect them . . . . . . 108
4.2.3 D(G) ribbon operators . . . . . . . . . . . . . . . . . . . . . . . . 114
4.2.4 Reduction to Abelian model for G = Zn . . . . . . . . . . . . . . 122
4.2.5 Details for D(S3) and applications . . . . . . . . . . . . . . . . . . 128

4.3 Aspects of general D(H) models . . . . . . . . . . . . . . . . . . . . . . . 132
4.3.1 D(H) site operators. . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.3.2 D(H) triangle and ribbon operators . . . . . . . . . . . . . . . . . 137
4.3.3 Quasiparticle spaces for D(H) ribbons . . . . . . . . . . . . . . . 147

4.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5 Qudit lattice surgery 151
5.1 Lattice surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.1.1 Splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.1.2 Merges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.1.3 Units and deletion . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.1.4 Antipode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2 The ZX-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.2.1 Gate synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6 Algebraic aspects of boundaries in quantum double models 159
6.1 Preliminaries: recap of the Kitaev model in the bulk . . . . . . . . . . . . 161

6.1.1 Quantum double . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.1.2 Bulk lattice model . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2 Gapped boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2.1 The boundary subalgebra Ξ(R,K) . . . . . . . . . . . . . . . . . 166
6.2.2 Boundary lattice model . . . . . . . . . . . . . . . . . . . . . . . . 173



Contents ix

6.2.3 Quasiparticle condensation . . . . . . . . . . . . . . . . . . . . . . 176
6.3 Lattice surgery with patches . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.3.1 Nonabelian lattice surgery . . . . . . . . . . . . . . . . . . . . . . 188
6.4 Quasi-Hopf algebra structure of Ξ(R,K) . . . . . . . . . . . . . . . . . . 195

6.4.1 Ξ(R,K) as a quasi-bialgebra . . . . . . . . . . . . . . . . . . . . . 198
6.4.2 Ξ(R,K) as a quasi-Hopf algebra . . . . . . . . . . . . . . . . . . . 201

6.5 Categorical justification and twisting theorem . . . . . . . . . . . . . . . 205
6.5.1 G-graded K-bimodules. . . . . . . . . . . . . . . . . . . . . . . . 205
6.5.2 Drinfeld twists induced by change of transversal . . . . . . . . . . 207
6.5.3 Module categories context . . . . . . . . . . . . . . . . . . . . . . 216

6.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Appendix 231
1 Graphs and cell complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 231
2 Pushouts and properties of codes . . . . . . . . . . . . . . . . . . . . . . 236
3 Octagonal surface code patch . . . . . . . . . . . . . . . . . . . . . . . . 237
4 A Z-merge map which is not distance preserving . . . . . . . . . . . . . . 238
5 A merged code with larger logical space . . . . . . . . . . . . . . . . . . . 239
6 Irreducibility is gauge-fixability . . . . . . . . . . . . . . . . . . . . . . . 240
7 Error-corrected Z-merge with the Shor code . . . . . . . . . . . . . . . . 242
8 Subsystem code distance calculation . . . . . . . . . . . . . . . . . . . . . 245
9 Computing colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
10 Generalised bicycle codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

10.1 Individual merges . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
10.2 Parallel merges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
10.3 Individual single-qubit measurements . . . . . . . . . . . . . . . . 249
10.4 Parallel single-qubit measurements . . . . . . . . . . . . . . . . . 249

11 Detailed SSIP results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
12 The vacuum space of D(G) models . . . . . . . . . . . . . . . . . . . . . 249
13 Proof of part (2) of Proposition 4.2.10 . . . . . . . . . . . . . . . . . . . 261
14 Universal Quantum Computation with D(S3) . . . . . . . . . . . . . . . 264
15 Fourier basis for patches . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
16 Proof of lattice merges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
17 Proof of lattice counits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
18 Qudit ZX-calculus axioms . . . . . . . . . . . . . . . . . . . . . . . . . . 268
19 The logical block depiction . . . . . . . . . . . . . . . . . . . . . . . . . . 269
20 Logical CX gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
21 Generalisations and Hopf algebras . . . . . . . . . . . . . . . . . . . . . . 273
22 Boundary ribbon operators with Ξ(R,K)? . . . . . . . . . . . . . . . . . 274
23 Measurements and nonabelian lattice surgery . . . . . . . . . . . . . . . . 276
24 Ξ(R,K) as a ∗-quasi-Hopf algebra . . . . . . . . . . . . . . . . . . . . . . 280





Chapter 1

Introduction

We would like to construct large quantum computers which are capable of running quantum
algorithms at large problem sizes, a project which is well under way at the time of writing
[AAA24, R-ABB24]. Many of these quantum algorithms are substantially faster than their
best-known classical counterparts, to the extent that a variety of problems at sufficiently
large sizes are essentially impossible to solve classically yet are, in theory, highly tractable
with quantum computers [Mon16]. These problems range from cryptography to quantum
chemistry, and solving them would have important scientific and societal implications.

While the study of such quantum algorithms is a large and fascinating field in its own
right, we concern ourselves here with the construction of quantum computers.

The greatest obstacle to the deployment of large quantum computers is the presence
of quantum errors. These are not due to the mistakes of a user of a quantum computer,
but instead emerge naturally because of the environment, or because of precision errors
in device calibration. Storing and manipulating quantum data is necessarily a noisy
affair, and quantum components will interact in undesirable ways. Despite this, it is still
theoretically possible to build a large quantum computer which is fault-tolerant, meaning
it can accommodate quantum errors up to a certain threshold.

The most promising method for accommodating for quantum errors is via quantum
error correction, which works by using redundancy of quantum components. That is, there
are many interconnected quantum components, and should errors arise in some limited
number of them, they can be detected and corrected for by some error correction protocol.
Such protocols are often dictated by quantum error correction codes, or ‘quantum codes’
for short. In such codes, a smaller amount of logical data is stored within a larger amount
of physical data. This is analogous to classical error correction, used extensively in data
transmission over unreliable or noisy channels [MS83]. As one might expect, the quantum
version is substantially more complicated due to basic principles of quantum mechanics
such as the no-cloning theorem.

In this thesis, we are not only concerned with storing quantum data safely in memory
using quantum codes, but also performing computation in a fully error-corrected fashion.
We approach this problem abstractly, in an algebraic fashion. We use tools from homology,
Hopf algebras and category theory.

We will give a rigorous but brief introduction to quantum errors, before moving on
to the algebraic notions required to understand the thesis. Unfortunately for reasons of
brevity we do not include an introduction to quantum mechanics or quantum information,
but there are excellent textbooks on these topics with different foci [NC10, CK17].

We will study two broad classes of quantum codes: those which can be described using
homological algebra, and those which can be described by Hopf algebras. We have divided
the thesis into two halves correspondingly.



2 Chapter 1. Introduction

Part A: Homological codes

Part B: Hopf algebraic codes
There is not a precise delineation between the two, as we will use some basic Hopf algebra
notions when defining surgery between homological codes, and also some homology for
proofs about Hopf algebraic codes.

1.1 Attribution
This thesis is composed of the following Chapters, which are each based on a publication
or preprint:

• Chapter 2: Based on [CB24], a paper with Dr. Simon Burton, published in Quantum
8 (2024). In Section 2.2.3 we elaborate on the relationship between code maps at the
logical and physical levels. This is not in the published work, and we thank Clément
Poirson, Robert I. Booth and Christophe Vuillot for bringing this omission to our
attention.

• Chapter 3: Based on [Cow24], a solo-author preprint. In Section 3.5.1 we provide
an extension, which is not in the preprint, on ‘basis-changing’ logical measurements.
We thank Zhiyang He for helpful discussions in this direction.

• Chapter 4: Based on [CM22], a paper with Prof. Shahn Majid, published in the
Journal of Mathematical Physics 63 (2022).

• Chapter 5: Based on [Cow22], a solo-author paper, accepted to Quantum Physics &
Logic 2022.

• Chapter 6: Based on [CM23], a paper with Prof. Shahn Majid, published in the
Journal of Mathematical Physics 64 (2023).

The information contained in the introduction is relevant to both halves of the thesis,
and so we have included it here. All of the introductory material is well-known, and not
our original work. We give examples and some intuition but only occasional proofs.

1.2 Quantum error correction
While we cover the basic notions of quantum error correction here, we will later abstract
away from inspecting the low-level behaviour of individual errors, and instead study the
high-level algebraic structure of quantum codes. Nevertheless, this low-level behaviour is
fundamentally important to the topic.

We skim over these notions briskly. For much more comprehensive introductory treat-
ments see [LB13, Got24].

To start with, we can consider the state space of a pure quantum system to be a
complex Hilbert space H. A state |ψ〉 is then a vector in H, which at times we require
to be normalised, and typically we are unconcerned with global phase, so |ψ〉 ∼ |φ〉 ⇐⇒
|ψ〉 = α |φ〉 for some α ∈ C×. In quantum computing, H is typically (but not always)



1.2. Quantum error correction 3

taken to be finite-dimensional, so H ∼= Cd for some d ∈ N. For example, a qubit is C2. In
this thesis we only deal with the finite-dimensional case. A pure quantum map is then a
linear map L : HA → HB between Hilbert spaces. Throughout we use the term ‘operator’
interchangeably with ‘linear map’.

To treat quantum errors, however, we must consider mixed quantum systems, that is
systems with states which are a statistical mixture of pure quantum states. These systems
are represented by a subset of B(H), the space of linear maps on H. The subset we use
is the set of density operators, which are positive semi-definite, self-adjoint operators.
Recall that a positive semi-definite operator’s eigenvalues are real and positive. A density
operator ρ can always be represented as

ρ =
∑
j

pj |ψj〉 〈ψj| ,

for pj ∈ R. We can view |ψj〉 〈ψj| as a kind of ‘doubling’ of the pure quantum system,
appearing in the statistical mixture ρ with probability pj. This doubling conveniently
erases the distinction between global phases. See [CK17] for a diagrammatic treatment
of this doubling.

A quantum channel is a completely positive trace-preserving (CPTP) map Φ between
density operators. Every CPTP map can be expressed as

Φ(ρ) =
∑
i

AiρA
†
i .

This is the Kraus form of a quantum channel, where we have decomposed the channel into
Kraus operators Ai, such that

∑
iAiA

†
i = id. Each Kraus operator occurs with probability

Tr
(
AiρA

†
i

)
. Assuming we would like to put in a quantum state and receive that same state

afterwards, we can consider each Kraus operator which is not equal to the identity (up to
a scalar factor) as being a possible error. Different factorisations of Φ give decompositions
into different errors, which are related by unitaries so are equivalent in a suitable sense.

One might want to relax the definition of quantum errors to account for the fact that
we may not want to apply the identity channel. We may wish to apply a quantum logic
gate but end up inadvertently with a different one.

The nomenclature would imply that the quantum channel is something through which
we send quantum information between two locations, but this is not generally the case.
If we wish to hold quantum data in memory in a single location, it too will undergo a
process determined by the quantum channel.

Example 1.2.1. [Got24, Sec. 1.2.3] Let the quantum system be a qubit, i.e. C2. We can
have the depolarising channel on the qubit. Recalling that a mixed qubit state is a density
operator ρ ∈ B(C2), the unbiased depolarising channel is

Φp(ρ) = (1− p)ρ+ p

3XρX + p

3Y ρY + p

3ZρZ

with X, Y , Z being the Pauli matrices.
This channel has equal probability of an X, Y or Z error. If p = 3/4, the channel

deterministically sends any density operator to the maximally mixed state id2, up to
normalisation.



4 Chapter 1. Introduction

In that example, the individual Kraus operators were Paulis, which are unitary and
self-adjoint; errors are not required to have these properties in general.

The core of quantum error correction is to take a quantum channel, say E , representing
the errors on our system, and implement a recovery channel, i.e. CPTP map, R such
that (R ◦ E)(ρ) = ρ for relevant states ρ. When this is possible is determined by the
Knill-Laflamme quantum error-correction criterion.

Theorem 1.2.2. [KL00] Let L ⊂ H be a subspace of a larger, physical space. Let E be
a quantum channel with errors {Aa}, and let L have a basis {|i〉}. Then there exists a
recovery operation R such that (R ◦ E)(ρL) = ρL if and only if

〈i|A†aAb|j〉 = cab〈i|j〉

where ρL has support only on the subspace, and cab are coefficients uniquely determined
by Aa and Ab.

Incidentally, this defines quantum error-correction codes for us. A code is the subspace
L, which we call the logical space, along with its inclusion into H and the quantum channel
E it is subjected to. Happily, this lets us specify a quantum error-correction code without
reference to the recovery operation; we only need know that it exists.

We sometimes refer to the logical space as the codespace, and a state in this space as a
codeword. It is also common to define a quantum error-correction code without reference
to the error set, just the logical space, and the error set can be inferred.

In addition to relaxing the definition of a quantum error-correction code, we may want
to give additional information. For example, we commonly associate a set of measurements,
described by self-adjoint operators, such that the codespace L is the mutual +1 eigenspace
of these measurements. We may wish to assign a tensor decomposition of the codespace
into components; for example if dimL = dk, we can assign an isomorphism L ∼= (Cd)⊗k.
The implementation of such codes on a gate-based quantum computer also requires a
compilation into quantum circuits, i.e. a composition of quantum gates.

There is one last helpful consequence of the quantum error-correction criterion. If a
code can correct for the errors {Aa}, then it can also correct arbitrary linear sums thereof.
This linearity is the fundamental reason why quantum error-correction works: despite the
set of possible errors being continuous, it can be discretised into finite generators.

It is common to consider physical spaces which are tensor products of components, so
that H = (Cd)⊗n for some qudits of dimension d. In this case, we say that the weight of
an operator A in B(H) is the number of components on which A acts nontrivially.

Example 1.2.3. Let H = (C2)⊗5 and A = X ⊗ Y ⊗ I ⊗ I ⊗ Z. Then A has weight 3.

Definition 1.2.4. The distance of a quantum error-correction code is the lowest weight
error A such that

〈i|A|j〉 6= c(A)〈i|j〉

for some c(A) which depends only on A, and where i, j run over all basis elements of L.

The distance is denoted dQ or just d, and is distinct from the qudit dimension d. The
two are not to be confused, and throughout we will be careful to make the distinction
clear from context.



1.2. Quantum error correction 5

Definition 1.2.5. (Stabiliser code)
Let (C2)⊗n be the physical Hilbert space. We call the C2 components the data qubits.

Define a logical subspace as follows. Let S ⊂ Pn be a subgroup of the n-qubit Pauli
group on (C2)⊗n. Let L ⊂ (C2)⊗n be the space of states such that

U |ψ〉 = |ψ〉, ∀U ∈ S , |ψ〉 ∈ L,

so L is stabilised by S .

For this space to have non-zero dimension, S must be abelian and not contain −I. As
S is a group we can define a generating set G, which is not unique or minimal in general.
Elements of G are then tensor products of Pauli operators, which are self-adjoint; these
become the measurements on our code, such that L is the mutual +1 eigenspace of G.

Lemma 1.2.6. [Got24, Sec. 3.3.3]
Let r be the number of independent generators of S , so |S | = 2r. Then

dimL = 2k,

where k = n− r.

Hence there are k logical qubits in the logical space L.
Qubit stabiliser codes are ubiquitous in quantum error-correction, for their practical

applicability, algebraic simplicity, wide variety and ease to simulate using the stabiliser for-
malism [AG04]. They are straightforward to generalise to qudits, depending slightly on the
dimension [Got24, Sec. 8], and requiring some bookkeeping as the natural generalisations
of Paulis to qudits are not self-adjoint.

Because the Paulis form a basis of B(C2), any error on a qubit can be decomposed
into a linear combination of Paulis. The quantum error-correction criterion then implies
that for qubit codes we only need to consider correction of Paulis, and tensor products
thereof. Stabiliser codes are precisely those codes which detect Pauli errors, so are the
most natural quantum codes on qubits.

Definition 1.2.7. We say that the parameters of a stabiliser code are Jn, k, dK, with n
the number of data qubits, k the number of logical qubits and d the code distance.

These do not uniquely characterise a code; there will generally be several different codes
with the same parameters.

In Part A we devote our attention to a subclass of stabiliser codes, called Calderbank-
Shor-Steane codes. In Part B we tackle quantum codes which come from condensed matter
and Hopf algebras; these are not generally stabiliser codes.

There is a great deal more to be said about quantum codes which we have not touched
on. If we wish to compute with a gate-based quantum computer then the codes must
be compiled into quantum circuits. The real question at this lower level of abstraction
is then how tolerant the circuits are to errors, which is related to but not the same
as how tolerant the codes are to errors. As the compiled quantum circuits perform a
combination of component initialisation, entanglement between quantum components, and
then measurement, typically using ancillae, i.e. extra components, environmental errors
can occur at every step, including the measurements. Other sources of error which do not
come from the environment are coherent errors, unitary errors which occur due to faulty
control of the device. For example, we could intend to apply a RZ(θ) gate to a physical



6 Chapter 1. Introduction

qubit but instead apply an RZ(θ + ε) gate, for some small angle ε. Precise calibration of
devices is vital to prevent such errors, and calibration of the many parameters which go
into device control is extremely difficult. Lastly, one more source of error is leakage, when
the size of physical system considered H is actually inadequate due to coupling to the
external world, and the evolution of the computation is described by some operator which
includes components outside of the physical system we have considered. Thus, amplitudes
may drop such that the state is no longer normalised when considered only in H. We do
not consider such detailed and accurate error models in this thesis.

Classical computation is required in tandem with the quantum computer to decode
measurement results and return likely candidates for errors, which can then be corrected.
Such decoders can be designed for specific code families [Hig22, PK21, Del14].

A code which is compiled down to the hardware level only satisfies the properties of a
quantum memory. For this to be useful we must then be able to perform operations with
the quantum memory in a way which does not destroy the carefully implemented error-
correction. Several quantum codes admit transversal gates [Got24, Sec. 11], which perform
separable unitary operations on physical quantum components to apply logical unitary
operations to the encoded data, in a manner which does not spread errors uncontrollably
throughout the code. Unfortunately, this is always insufficient for universal quantum
computation [EK09], so for the quantum computers to be useful we must modify the
physical and logical spaces throughout computation in a non-unitary manner.

This problem of performing modifications of the spaces while maintaining error-correction
is central to this thesis, and we will see different approaches to this in later sections.

1.3 Category theory
Category theory is a large and algebraically dense subject. Quoting Leinster’s textbook
[Lei14], “category theory takes a bird’s eye view of mathematics”. It is less about particular
mathematical objects and more about how objects related to each other. Composition of
functions, operators etc. are crucial.

In this thesis, we use relatively basic category theory to study composition of quantum
codes in Part A, as well as to take a bird’s eye view of quasiparticles in Part B. Here we
pick out a select few aspects of category theory which we will use. For more introductory
material, see e.g. [Lei14, Mac78, HV19].

Definition 1.3.1. A category C contains the following data:

• a collection of objects Obj(C ),

• for each pair of objects A,B ∈ Obj(C ) a collection of morphisms Hom(A,B) from A
to B, such that morphisms from Hom(B,C) and Hom(A,B) compose associatively,

• an identity morphism idA ∈ Hom(A,A).

Associativity means that for any morphisms f ∈ Hom(A,B), g ∈ Hom(B,C), h ∈
Hom(C,D), we have

(h ◦ g) ◦ f = h ◦ (g ◦ f)

and the identity morphism satisfies f ◦ idA = f = idB ◦ f for any f ∈ Hom(A,B).



1.3. Category theory 7

We say ‘collection’ rather than ‘set’ of objects and morphisms to avoid size problems,
à la Russell’s paradox and similar. These are irrelevant to our work here, so we do not
dwell on it.

Definition 1.3.2. An isomorphism f : A→ B satisfies g ◦ f = idA and f ◦ g = idB for
some g : B → A.

Example 1.3.3. Some basic examples of categories are:

• Set, with sets as objects and functions as morphisms,

• Grp, with groups as objects and group homomorphisms as morphisms,

• Vectk, with vector spaces over a field k as objects and linear maps as morphisms,

• CPM, with density operators as objects and completely-positive maps as morphisms.

All these examples are ‘Set-like’, in that their objects are sets with possible extra
structure, and morphisms are functions which are compatible with this structure. While
not all categories are of this form, the ones we use in this thesis are. These are called
concrete categories.

Definition 1.3.4. Let C and D be categories. A functor F : C → D has the following
data:

• a function on objects F : Obj(C )→ D ,

• a function Hom(A,B)→ Hom(F (A), F (B)), written F (f) for f ∈ Hom(A,B), such
that F (g ◦ f) = F (g) ◦ F (f) and F (idA) = idF (A).

For example, there are forgetful functors G : Grp→ Set and F : Vectk → Grp, which
forget the relevant extra structure of the domain. So, to every group we can associate its
set of group elements. To every vector space we can associate its group of vectors under
linear composition. Such functors also compose, so we have G ◦ F : Vectk → Set.

Consequently we have the definition of an isomorphic functor. That is, for every cat-
egory C we have the identity functor idC , acting as identity on objects and morphisms.
Isomorphisms satisfy G ◦ F = idC , F ◦G = idD for functors F : C → D , G : D → C .

This implies another category, that of Cat, with (small) categories as objects and functors
as morphisms. Cat is in fact a 2-category or bicategory, that is a ‘higher’ version of category,
as functors also have morphisms between them, called natural transformations. We do
not deal with higher categories in detail here, but we will use natural transformations.

Definition 1.3.5. Given two functors F,G : C → D , a natural transformation ζ : F ⇒ G
is the assignment of a morphism between objects F (A) → G(A) for every A ∈ Obj(C ),
such that the following diagram commutes:

F (A) G(A)

F (B) G(B)

ζA

F (f) G(f)

ζB

for every morphism f in C .



8 Chapter 1. Introduction

By “commuting” we simply mean that all paths around the diagram are equal, so
ζB ◦ F (f) = G(f) ◦ ζA in this case.

If every ζA is an isomorphism then ζ is said to be a natural isomorphism.
Intuitively, if functors are maps between categories which preserve internal categorical

structure, then natural transformations are maps between functors which preserve internal
functorial structure.

We can use natural transformations to define successively weaker versions of an isomor-
phism between categories. The first of these is an equivalence.
Definition 1.3.6. An equivalence of categories C , D is a pair of functors F : C → D ,
G : D → C , such that G ◦ F ∼= idC and F ◦G ∼= idD .

When the natural isomorphisms are identities this reduces to an isomorphism of cate-
gories again. The next weaker version is an adjunction.
Definition 1.3.7. An adjunction of categories C , D is a pair of functors F : C → D ,
G : D → C , such that there is a pair of natural transformations η : idC → G ◦ F ,
ε : F ◦G→ idD satisfying

F FGF

F

Fη

idF
εF

G GFG

G

ηG

idG
Gε

We say that F a G. F is left adjoint, and G is right adjoint.
Example 1.3.8. Free and forgetful functors tend to form an adjunction, with the free
functor being the left adjoint and forgetful the right. IfG is the forgetful functor Grp→ Set,
then F is the free functor Set→ Grp sending each set S to its free group F (S).

1.3.1 Universal properties
Universal constructions and properties are useful when we would like to have an object
which is canonical in some sense. That is, an object which is the only one (up to iso-
morphism) which satisfies some conditions. Examples include taking subsets, subgroups
and subspaces, as well as quotients and ‘gluings’ of algebraic structures. There are many
different but equivalent ways of defining universal properties [Lei14]. We use the most
straightforward, by way of (co)cones.

Let A and I be categories. A functor D : I → A is called a diagram in A of shape
I .1

Definition 1.3.9. (Cone) Let D : I → A be a diagram in A . A cone on D is an object
A ∈ A and a family (A → D(I))I∈I of morphisms in A , such that for all morphisms
u : I → J in I the following triangle commutes:

D(I)

A

D(J)

D(u)

fI

fJ

1Strictly speaking, we require I to be small to avoid size problems but in this thesis all (co)limits we
use are finite anyway.



1.3. Category theory 9

Definition 1.3.10. (Limit) A limit of D is a cone (pI : L→ D(I))I∈I such that for any
cone on D there is a unique morphism f : A→ L satisfying pI ◦ f = fI for all I ∈ I .

D(I)

A L

D(J)

D(u)

fI

fJ

f
pI

pJ

That is, a limit is a cone which satisfies the universal property described above, so
a limit is called a universal construction. The dotted arrow is called a mediating map.
The intuition in concrete categories is that a limit is the ‘minimal’ object L in A which
satisfies the commutation relations of the cone, and any other object A which satisfies
those relations is ‘at least as large’ and factors through L. This is only defined up to
isomorphism, as A and L could have unique morphisms g : A→ L and h : L→ A such
that h ◦ g = idA and g ◦ h = idL, and hence both A and L could be described as ‘the’
limit.

Example 1.3.11. A categorical product in A is the limit of the diagram D : I → A ,
where I has only two objects and no non-identity morphisms.

This coincides with the cartesian product × of sets and groups in Set and Grp, and
the direct sum ⊕ of vector spaces in Vectk. The maps pI and pJ are the projections onto
the component sets, groups and spaces.

We can also take the product × of (small) categories in Cat, which is just the product
of the sets of objects, extended to also take products of morphisms in the same way.

There are many more examples of limits, including terminal objects, equalisers and
pullbacks. Generally, not all limits necessarily exist in an arbitrary category.

A finite limit is one in which I is a finite category, having a finite number of objects
and morphisms. The categorical product is a finite limit. In this work all our limits are
finite.

Definition 1.3.12. (Cocone) Let D : I → A be a diagram in A . A cocone on D is
an object A ∈ A and a family (D(I) → A)I∈I of morphisms in A , such that for all
morphisms u : I → J in I the following triangle commutes:

D(I)

A

D(J)

D(u)

fI

fJ

Definition 1.3.13. (Colimit) A colimit of D is a cocone (pI : D(I)→ L)I∈I such that
for any cocone on D there is a unique morphism f : L→ A satisfying f ◦ pI = fI for all



10 Chapter 1. Introduction

I ∈ I .
D(I)

A L

D(J)

D(u)
fI

pI

f

fJ
pJ

Colimits are dual to limits in a sense which can be made formal, but we do not go into
that here. The intuition of colimits in concrete categories is that a colimit is the ‘maximal’
object L in A which satisfies the commutation relations of the cocone, and any other
object A which satisfies those relations is ‘at least as small’ and factors through L. Like
limits, colimits are defined only up to isomorphism.
Example 1.3.14. A categorical coproduct in A is the colimit of the diagram D : I → A ,
where I has only two objects and no non-identity morphisms.

This coincides with the disjoint union t of sets in Set, the free product ∗ of groups in
Grp, and the direct sum ⊕ of vector spaces in Vectk; note that the product and coproduct
of vector spaces coincide. Other examples of colimits include initial objects, coequalisers
and pushouts. We shall meet these later on.

1.3.2 Monoidal categories
Apart from the usage of category theory to give algebraic structures which are canonical,
we can take another perspective. In this perspective we rely less on universality and
instead focus on parallel, in addition to sequential, composition of objects and morphisms.
This perspective starts with monoidal categories. For further introductory material on
monoidal categories for quantum theory, see [HV19, CK17]. In some cases, monoidal
category theory can be more easily understood using string diagrams. We will see this in
the context of the ZX-calculus in Section 1.5.
Definition 1.3.15. (Monoidal category) A monoidal category is a category C equipped
with:

• a monoidal product functor ⊗ : C × C → C ,

• a distinguished object 1 ∈ Obj(C ) called the monoidal unit,

• an associator natural isomorphism α with components

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C),

• left and right unitor natural isomorphisms λ, ρ with components

λA : 1⊗ A→ A ρA : A⊗ I → A,

such that the triangle and pentagon equations are satisfied for all objects A,B,C,D in
Obj(C ):

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA⊗idB idA⊗λB



1.3. Category theory 11

(A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D)) ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

αA⊗B,C,DαA,B,C⊗D

idA⊗αB,C,D
αA,B⊗C,D

αA,B,C⊗idD

As the associator and unitors are natural isomorphisms they must satisfy Definition 1.3.5
appropriately.

Example 1.3.16. Monoidal structures are common in categories. For example,

• Set and Grp are monoidal w.r.t. the cartesian product ×,

• Vectk and CPM are both monoidal w.r.t. to the direct sum ⊕ and the tensor product
⊗.

Definition 1.3.17. A monoidal category is strict if all the natural isomorphisms are
identity transformations, meaning that all arrows in the equations above are equalities.

It is commonly sufficient to think of monoidal categories as being strict, even if they tech-
nically are not. Formally, every monoidal category is monoidally equivalent to some strict
monoidal category [Mac78, Sec. VII], a well-known result which for concrete categories
can be made even stronger [Sch01]. Sometimes we do care about the actual associators
and unitors, however.

Definition 1.3.18. A braided monoidal category is equipped with a natural isomorphism

σA,B : A⊗B → B ⊗ A

such that the following conditions hold:

A⊗ (B ⊗ C) (B ⊗ C)⊗ A

(A⊗B)⊗ C B ⊗ (C ⊗ A)

(B ⊗ A)⊗ C B ⊗ (A⊗ C)

σA,B⊗C

αB,C,AαA,B,C

σA,B⊗idC
αB,A,C

idB⊗σA,C

(A⊗B)⊗ C C ⊗ (A⊗B)

A⊗ (B ⊗ C) (C ⊗ A)⊗B

A⊗ (C ⊗B) (A⊗ C)⊗B

σA⊗B,C

α−1
C,A,B

idA⊗σB,C

α−1
A,B,C

α−1
A,C,B

σA,C⊗idB



12 Chapter 1. Introduction

That is, a braided monoidal category has a braiding σ which is compatible with asso-
ciativity, such that we can braid objects in both directions either ‘all at once’ or ‘one at
a time’. This is more-or-less the categorical version of the Yang-Baxter equation for braid
groups.

Definition 1.3.19. If σB,A ◦ σA,B = idA⊗B for all A,B ∈ Obj(C ) then C is a symmetric
monoidal category.

Example 1.3.20. All of our previous examples, Set, Grp, Vectk and CPM are symmetric
monoidal categories.

The category of Z3-graded vector spaces has a non-symmetric braided monoidal struc-
ture, where the braiding is given by a scalar obtained by multiplication of degrees of
elements. That is,

σA,B : x⊗ y 7→ ω|x||y|y ⊗ x

for elements x ∈ A, y ∈ B, where ω = e2πi/3 is the primitive 3rd root of unity.

We can also ask for a functor to preserve the monoidal structure, and for monoidal
equivalences, but we only need these for the very last section of the thesis. See [Mac78,
Sec. VII] for the relevant definitions.

The last piece we need is duality.

Definition 1.3.21. Given an object X in a monoidal category, an object X∗ is the left
dual of X (and X is the right dual of X∗) if there exist morphisms η : 1→ X ⊗X∗ and
ε : X∗ ⊗X → 1 such that the following diagrams commute:

1⊗X X

(X ⊗X∗)⊗X X ⊗ (X∗ ⊗X) X ⊗ 1

η⊗id

λ

α id⊗ε

ρ

X∗ ⊗ 1 X∗

X∗ ⊗ (X ⊗X∗) (X∗ ⊗X)⊗X∗ 1⊗X∗
id⊗η

ρ

α−1 ε⊗id

λ

In practice, all our categories have objects being finite-dimensional vector spaces with
extra structure, so they have all duals – such categories are called ‘rigid’ or ‘autonomous’
categories – and moreover we do not have to worry about which of X and X∗ is left or
right dual; that they are dual to each other is enough. Using the duals of objects, we
can also take the dual of a morphism φ : A → B, which will become φ∗ : B∗ → A∗. In
particular,

φ∗ = (εB ⊗ idA∗) ◦ (idB∗ ⊗ φ⊗ idA∗) ◦ (idB∗ ⊗ ηA),

which will be clearer in terms of string diagrams.

1.3.3 String diagrams
It can be instructive and at times helpful in calculations to use string diagrams to describe
monoidal categories. String diagrams date back to Penrose diagrams [Pen63] and were
used for proofs in quantum algebra as far back as the mid 90s [Maj95, Ch. 9]. Many of



1.3. Category theory 13

the ways in which they are used today, see [Wet12], are direct descendants of these early
works. As we shall see, string diagrams look quite different to the commutative diagrams
earlier.

With string diagrams, an object in a monoidal category is represented by a ‘string’;
here we use the convention going from bottom to top. We may label the string with the
name of the object, say A, or leave it implicit. A morphism f : A → A is a box on the
string.

f

A

A

We can also have morphisms between different objects, say g : A ⊗ B → C ⊗ D, or
h : 1→ A, where 1 is the monoidal unit:

g

A B

C D

h

A

The morphism h : 1 → A can then be identified with a state in A; equally, a morphism
A→ 1 can be identified with an effect on A. Objects and morphisms in a tensor product
are just placed in adjacency, so that the above diagram represents

g ⊗ h : A⊗B ⊗ 1→ C ⊗D ⊗ A.

In a symmetric monoidal category, we allow for wire crossings.

The properties of symmetric monoidal categories, such as the interchange law, and functo-
riality of the monoidal product, are inherent in the diagrams, as we can slide boxes along
wires, and past crossings.

f

=

f

We can also use diagrams for nontrivially braided monoidal categories, but in this thesis
we only use string diagrams in the symmetric context. We can also incorporate duals into
string diagrams, with the dual of a morphism φ : A→ B being φ∗ : B∗ → A∗

φφ∗ =

B∗

A∗

A∗A

B∗ B



14 Chapter 1. Introduction

where we have ‘cups’ and ‘caps’ as the duality morphisms ηA : 1 → A ⊗ A∗ and ε :
B∗ ⊗ B → 1 respectively. These are presented as bends in the wires, rather than boxes,
to highlight their special ‘yanking’ property

= A

A

A

which encapsulates the first commutative diagram of Definition 1.3.21. The second is the
flipped version.

That these diagrams are sound, and hence can be used to reason formally about monoidal
categories, is a consequence of work by Mac Lane [Mac78] and Joyal & Street [JS91]. Read-
ers familiar with quantum computing will see that quantum circuits live in a symmetric
monoidal category, albeit traditionally going from left to right, and quantum gates are
morphisms on qubits, or more generally qudits. Of course, the quantum circuit model is
somewhat limited, in that gates traditionally take the form of either unitaries, such as the
Paulis, Hadamard, CNOT, CZ etc., or single-qubit preparations and measurements. In
this thesis, we only use string diagrams in a rudimentary manner, but use the ZX-calculus,
which ‘natively’ captures isometries and Kraus operators.

There are other categories we make use of in this thesis which are braided or symmetric
monoidal, such as categories of chain complexes, and representation categories of certain
algebras, but we do not use string diagrams for these.

1.4 Homological algebra
Homology arose out of the study of topology, and in that context can be thought of as a
way of assigning invariants to topological spaces. Homological algebra has extended far
beyond that, however, influencing many other areas of algebra [Wei84]. In this thesis, as
with category theory, we only require elementary homological algebra, and only describe
the aspects relevant to us. We treat it purely in terms of linear algebra over F2, while
homology theory in general can be applied to any Abelian category.

Let MatF2 be the category which has as objects linearised finite sets over F2, so each
object is a finite-dimensional vector space V equipped with a specified basis Ṽ such that
V = F2Ṽ . Each element of Ṽ corresponds to an entry for vectors in V . Importantly, we
require the vector spaces to have this form on the nose for later applications. Throughout,
we will call these based vector spaces. A morphism f : V → W in MatF2 is a dimW×dim V
matrix valued in F2.

Let Ch(MatF2) be the category of bounded chain complexes in MatF2 . We now recap
some of the basic properties of this category. A chain complex C• has the following form:

· · · Cn+1 Cn Cn−1 · · ·∂n+1 ∂n

where each component Ci is a based vector space and n ∈ Z is called the degree of
the component in C•. C• has F2-matrices as differentials ∂n+1 : Cn+1 → Cn such that
∂n ◦ ∂n+1 = 0 (mod 2), ∀n ∈ Z. To disambiguate differentials between chain complexes
we will use ∂C•n := ∂n ∈ C• when necessary.



1.4. Homological algebra 15

All our chain complexes are bounded, meaning there is some k ∈ Z such that Cn>k = 0
and l ∈ Z such that Cn<l = 0, i.e. it is bounded above and below. We call k− l the length
of C• for k and l the smallest and largest possible values respectively.

Definition 1.4.1. Given a chain complex C• we let

Zn(C•) = ker(∂n); Bn(C•) = im(∂n+1)

and call Zn, Bn the n-cycles and n-boundaries. We also define a quotient Hn(C•) =
Zn(C•)/Bn(C•), and call Hn the nth homology space of C•.

Recall that dim(ker(∂n)) = null(∂n) = dimCn − rank(∂n). Throughout we sometimes
use ker(f) of a matrix f to mean the kernel object, i.e. subspace, and sometimes the kernel
morphism, i.e. inclusion map. It should be clear from context which is meant.

Example 1.4.2. Let Γ = (V,E) be a finite simple undirected graph. We can form the
incidence chain complex C• of Γ, which has C0 = F2V , C1 = F2E. All other components
are zero. The sole nonzero differential ∂1 is the incidence matrix of Γ, with (∂1)ij = 1 if
the jth edge is attached to the ith vertex, and 0 otherwise. H1(C•) is determined by the
graph homology of Γ [Wei84].

Definition 1.4.3. A morphism f• : C• → D• in Ch(MatF2) is called a chain map, and
consists of a collection of matrices {fi : Ci → Di}i∈Z such that each resultant square of
maps commutes:

· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · ·

∂C•n+1

fn+1

∂C•n

fn fn−1

∂D•n+1 ∂D•n

As we specified bounded chain complexes only a finite number of the fi matrices will be
non-zero. A chain map f• is an isomorphism in Ch(MatF2) iff all fi are invertible, in which
case one can think of the isomorphism as being a ‘change of basis’ for all components, which
thus transforms the differential matrices appropriately. Every pair of chain complexes
has at least two chain maps, the zero chain maps, between them, given by a collection of
entirely zero matrices either way.

Lemma 1.4.4. A chain map at a component fn : Cn → Dn restricts and then lifts to a
matrix Hn(f•) : Hn(C•)→ Hn(D•).

Proof. It is easy to check that fn induces matrices from Zn(C•)→ Zn(D•) and the same
for Bn. �

This lemma is equivalent to saying that Hn(−) is a functor from Ch(MatF2)→ MatF2 .
Ch(MatF2) has several known categorical properties which will be useful to us. One way

to see a chain complex C• in MatF2 is as a Z-graded F2-vector space, with a specified
basis and a distinguished map ∂ : C• → C• with components ∂i : Ci+1 → Ci, such that
∂◦∂ = 0. Many of the properties of Ch(MatF2) are inherited directly from those of Z-graded
F2-vector spaces.

Ch(MatF2) is an additive category, i.e. its morphisms can add together, and it has all
finite biproducts, i.e. direct sums. These have components

(C ⊕D)n = Cn ⊕Dn



16 Chapter 1. Introduction

and the same for differentials. This is both a categorical product and coproduct. Homology
preserves direct sums: given chain complexes C• and D•,

Hn((C ⊕D)•) ∼= Hn(C•)⊕Hn(D•)

This is obvious, considering the blocks of each differential in (C ⊕D)•.
Lemma 1.4.5. The category of chain complexes is Abelian.

Proof. Recall that an Abelian category is an additive category such that:

1. Every morphism has a kernel and cokernel.

2. Every monomorphism is the kernel of its cokernel.

3. Every epimorphism is the cokernel of its kernel.

Recall that MatF2 has all kernels and cokernels, i.e. subspaces and quotient spaces. Then
given a chain map f : C• → D• we define ker(f) with

· · · Kn+1 Kn · · ·

· · · Cn+1 Cn · · ·

· · · Dn+1 Dn · · ·

∂K•n+1

ker(fn+1) ker(fn)
∂C•n+1

fn+1 fn

∂D•n+1

where ∂K•n always exists and is uniquely defined, because

fn ◦ ∂C•n+1 ◦ ker(fn+1) = ∂D•n+1 ◦ fn+1 ◦ ker(fn+1) = 0

and so by the universal property of ker(fn) there is a unique matrix ∂K•n+1 : Kn+1 → Kn.
These satisfy ∂K•n+1 ◦ ∂K•n+1 = 0 as

ker(fn) ◦ ∂K•n+1 ◦ ∂K•n+2 = ∂C•n+1 ◦ ∂C•n+2 ◦ ker(fn+2) = 0

and then kernels are monic. Kn = {v ∈ Cn | fn(v) = 0} by the definition of kernels in
MatF2 . Given the correct choice of basis, ∂K•n is thus just ∂C•n ◦ ker(fn) as a matrix but
without the all-zero rows which map into Cn/Kn.

That ker(f) is a genuine kernel in Ch(MatF2) is straightforward to check but we do not
give further details.

The reversed argument applies for cokernels, giving quotient complexes D•/im(f) with
components Dn/im(fn) etc.

The other two conditions, that every monomorphism is the kernel of its cokernel and
every epimorphism is the cokernel of its kernel, follow using the fact that they hold
degree-wise in MatF2 . �

Remark 1.4.6. As Ch(MatF2) is additive, equalisers and coequalisers can be seen as
special cases of kernels and cokernels by defining eq(f, g) = ker(f − g) and coeq(f, g) =
coker(f − g), for f, g : C• → D•. For the chain complex part E• of an equaliser we have
components En = {c | f(c) = g(c)} ⊆ Cn. For the chain complex part F• of a coequaliser,
we have components Fn = Dn/f(c) ∼ g(c), for c ∈ Cn.



1.4. Homological algebra 17

Corollary 1.4.7. An immediate consequence of Ch(MatF2) being Abelian is that it has
all finite limits and colimits [Mac78, Sec. VIII].

Ch(MatF2) also has a monoidal structure.

Definition 1.4.8. [Wei84, Sec. 2.7] Let C•, D• be chain complexes in Ch(MatF2). Define
(C ⊗D)• with components

(C ⊗D)n =
⊕
i+j=n

Ci⊗Dj

where the latter tensor product is the normal tensor product in MatF2 . Differentials between
components are given for ∂(C⊗D)

l by matrices(
∂Ci ⊗ I
I ⊗ ∂Dj

)
for a given i, j, then stacked horizontally for each term i, j | i+ j = l, and vertically for
each i′, j′ | i′ + j′ = l − 1. One can check that ∂(C⊗D)

l−1 ◦ ∂(C⊗D)
l = 0 (mod 2), as desired.

Also define the object 1• ∈ Ch(MatF2) as

1• = · · · 0 10 0 · · ·

where 10 = F2, and all other 1i are 0.

One can check that (C ⊗D)• is a monoidal product ⊗ in Ch(MatF2), which follows from
associativity and distributivity of ⊕ and ⊗ in MatF2 . For the unit, observe that

(C ⊗1)n = Cn⊗ 1 = Cn; ∂(C⊗1)•
n =

(
∂C•n ⊗ id10

idCn ⊗ ∂1•
0

)
= ∂C•n ,

where in the last matrix all other contributions are zero.

Example 1.4.9. Consider two chain complexes of length 1:

C• = · · · 0 C1 C0 0 · · ·
∂C•1

D• = · · · 0 D1 D0 0 · · ·
∂D•1

In this case we have

(C ⊗D)0 = C0⊗D0; (C ⊗D)1 = (C1⊗D0)⊕ (C0⊗D1); (C ⊗D)2 = C1⊗D1

for nonzero components, and

∂
(C⊗D)•
1 =

(
idC0 ⊗ ∂D•1 ∂C•1 ⊗ idD0

)
; ∂

(C⊗D)•
2 =

(
∂C•1 ⊗ idD1

idC1 ⊗ ∂D•1

)
for nonzero differentials. Then

∂
(C⊗D)•
1 ◦ ∂(C⊗D)•

2 = ∂C•1 ⊗ ∂D•1 + ∂C•1 ⊗ ∂D•1 = 0 (mod 2)

as the matrix partitions factor upon multiplication.



18 Chapter 1. Introduction

This example illustrates an interesting property of ⊗ in Ch(MatF2): both C•, D• have
only one nonzero differential, but (C ⊗D)• has two. It is easy to see that given two
complexes of lengths s, t the tensor product will have length s+ t.
Lemma 1.4.10. [Wei84]

Hn((C ⊗D)•) ∼=
⊕
i+j=n

Hi(C•)⊗Hj(D•)

That is, the homology subspaces factor through the tensor product conveniently. This
is also called the Künneth formula. The manner in which the homology factors through
does not make Hn(−) a monoidal functor with respect to the tensor product.

A co-chain complex is similar to a chain complex, with some notational differences.
Definition 1.4.11. Given a chain complex C•, where all the components are finite-
dimensional, the co-chain complex C• has components

Cn = Cn

and differentials
δn−1 = ∂ᵀn.

We also have co-cycles Zn = ker(δn), co-boundaries Bn = im(δn−1) and co-homology
spaces Hn = Zn/Bn. It is easy to show that Hn(C•) ∼= Hn(C•).

A co-chain map is defined similarly to a chain map:

· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · ·

δn
C• δn−1

C•

fn−1 fn

δn
D•

fn+1

δn−1
D•

and these are morphisms in the category Coch(MatF2). There is a functor Hn(−) :
Coch(MatF2) → MatF2 . Given a chain map f•, we automatically also have the cochain
map f •, with components fn = fᵀn .

A bounded cochain complex, where the components are all finite-dimensional, can
be thought of as the ‘dual’ to a chain complex. If we took the categorical dual from
Definition 1.3.21 of a chain complex then we would get the cochain complex but indexed
differently.

1.5 Hopf algebras
Hopf algebras can be thought of as generalisations of groups, and so are sometimes called
‘quantum groups’ [Maj95]. They have a variety of applications in areas like quantum field
theory [HHTBP92], quantum gravity [PST06], quantum computing [Kit03] and models of
noncommutative differential geometry [BM20]. We use Hopf algebras to study merges and
splits of codes, as well as various properties of quantum double models. The representation
theory of Hopf algebras is particularly useful in that case.

To start, recall that an algebra is a monoid in the category of k-vector spaces. That is,
if A is an algebra we have an associative multiplication · : A⊗A→ A and a unit 1A ∈ A
such that 1A ·a = a = a ·1A for every a ∈ A. We normally drop the · so that multiplication



1.5. Hopf algebras 19

is ab := a · b. Also, recall that the state 1A ∈ A can be seen instead as a map µ : k→ A. A
coalgebra is then the dual structure, with an associative comultiplication ∆ : A→ A⊗ A
and counit ε : A → k, such that (ε ⊗ id)∆(a) = (id ⊗ ε)∆(a) = a for every a ∈ A. All
maps are linear in the field k, which for our purposes we can always think of as being C.
Definition 1.5.1. A bialgebra is a vector space which is both an algebra and coalgebra,
such that multiplication and comultiplication commute. That is,

∆(ab) = ∆(a)∆(b).

In addition, we require that the unit and counit are coalgebra and algebra morphisms
respectively, i.e.

∆(1A) = 1A ⊗ 1A; ε(ab) = ε(a)ε(b); ε(1A) = 1.

It can be useful to express the comultiplication of a coalgebra using Sweedler notation.
Here, we have ∆(a) := a1 ⊗ a2, where a sum is implied. In full, we would have ∆(a) =∑

i ∆(ai) =
∑

i(ai)1 ⊗ (ai)2 for basis elements ai of a, and where each (ai)1 and (ai)2
could also contain sums, but this is unnecessarily cumbersome. We shuffle indices around
to handle coassociativity, e.g.

(∆⊗ id)∆(a) = a11 ⊗ a12 ⊗ a2 = a1 ⊗ a2 ⊗ a3 = a1 ⊗ a21 ⊗ a22 = (id⊗∆)∆(a).

Definition 1.5.2. A Hopf algebra is a bialgebra with an antipode map S : A→ A, such
that

a1S(a2) = S(a1)a2 = 1Aε(a),
for every a ∈ A.

The antipode takes the place of the inverse in a group. The definition of a Hopf algebra
can alternatively be seen in the commuting diagram:

A⊗ A A⊗ A

A k A

A⊗ A A⊗ A

S⊗id

·

ε

∆

∆
µ

id⊗S

·

The other definitions, of algebras, coalgebras and bialgebras, can also be couched in terms
of commuting diagrams, but this is not how we will use them in practice so we stick with
traditional algebraic notation, and occasionally string diagrams when dealing with the
ZX-calculus.

We give a dictionary relating the morphisms of a Hopf algebra A in algebraic notation to
their string diagram form in Table 1.1. Rather than the boxes from Section 1.3.3 we have
chosen red and green circles to represent the morphisms, as they are the same depiction
used in the ZX-calculus, where they are called spiders. We shall meet the ZX-calculus
presently.
Example 1.5.3. Let G be a finite group. Then CG is a group algebra with basis elements
labelled by elements of G, and multiplication just given by group multiplication linearised
over C. The other morphisms are as follows:

∆g = g ⊗ g; ε(g) = 1; Sg = g−1



20 Chapter 1. Introduction

Algebra notation String diagram

1A

a⊗ b 7→ ab

a 7→ a1 ⊗ a2

a 7→ εA(a)

S S

1A∗

a∗ ⊗ b∗ 7→ a∗b∗

a∗ 7→ a∗1 ⊗ a∗2

a∗ 7→ εA∗(a∗)

S∗ S∗

Table 1.1: Dictionary of algebraic notation, incl. Sweedler notation, to string diagrams.



1.5. Hopf algebras 21

Example 1.5.4. Let G be a finite group. Then C(G) is the function algebra on G, with
basis elements labelled by delta functions δg. Multiplication is δgδh = δg,hδg, and the unit
is 1
|G|
∑

g δg. For the coalgebra and antipode we have

∆δg =
∑
h

δh⊗ δh−1g; ε(δg) = δg,e; Sδg = δg−1

Definition 1.5.5. The dual of a finite-dimensional Hopf algebra A takes every morphism
f of the algebra and converts it to its dual f ∗, which is now a morphism of A∗.

Thus every unit 1A ∈ A becomes a counit ε on A∗, every multiplication in A becomes
comultiplication in A∗ and so on, using the ‘cups’ and ‘caps’ of Definition 1.3.21.
Example 1.5.6. C(G) is the dual of CG, where η =

∑
g g ⊗ δg and ε(δg ⊗ h) = δg,h.

Definition 1.5.7. An integral in a Hopf algebra is an element Λ such that Λh = Λε(h) =
hΛ.
Remark 1.5.8. One may wish to consider left integrals, which satisfy the first equality,
separately from right integrals, which satisfy the second. This distinction is not important
for our purposes, as all semisimple Hopf algebras, including group algebras, are unimodular.
The only exception in this thesis is the non-semisimple Hopf algebras in Section 4.3.

CG has the integral 1
|G|
∑

g g ∈ CG, while C(G) has the integral δe ∈ C(G).
Recall that a complex left representation of a group G is a vector space V equipped

with an action . : G⊗ V → V , such that e.v = v and gh.v = g.(h.v), for every v ∈ V .
As generalisations of groups, Hopf algebras also have representations.
Definition 1.5.9. Let A be an algebra. A left representation, or left module, of A is a
vector space V with a left action ., such that 1A.v = v and ab.v = a.(b.v).

It is well known that if A is a bialgebra then we have tensor products of representations,
where . : A⊗ V ⊗W → V ⊗W is defined by a.(V ⊗W ) = a1.V ⊗ a2.W . Similarly, if A
is Hopf then we have duals of representations, with (h.f)(v) = f((S(h)).v).

As the representation theory of Hopf algebras is quite a dense subject, we do not
describe it here, despite relying on it in Part B. Instead, we recommend [Maj95, Ch. 9].
We will also end up working with quasi-triangular and quasi-Hopf algebras, which are Hopf
algebras with relaxed cocommutativity and coassociativity conditions on the coalgebra
part respectively, for which we recommend [Maj95, Ch. 2]. In short, the representation
category of a quasi-triangular Hopf algebra is non-trivially braided, and the representation
category of a quasi-Hopf algebra has non-trivial monoidal associators.

The ZX-calculus

The ZX-calculus is a formal diagrammatic calculus for qubit quantum computing [Wet12],
although it has since been extended in many directions, such as to qudits in various ways
[Wan21]. For our purposes, the qubit ZX-calculus can be thought of as an instantiation
of the simplest Hopf algebras, CZ2 and C(Z2), sitting on the same vector space. Before
explaining further, let us take a moment to consider these algebras. First, observe that
SCZ2 = SC(Z2) = id. Next, as Z2 is Abelian, CZ2 enjoys a Fourier isomorphism which is
just the Hadamard gate, i.e. the matrix

H = 1√
2

(
1 1
1 −1

)
,



22 Chapter 1. Introduction

which is also an isomorphism between CZ2 and C(Z2). To emphasise, CZ2 and C(Z2) are
not only dual but also isomorphic. More complicated algebras with duals do not enjoy
such an isomorphism; if an algebra is semi-simple the Fourier isomorphism then becomes a
Peter-Weyl-like isomorphism [PW27], defined by the representation theory of the algebra.

As a consequence, if we let

δe = 1√
2

(e+ g); δg = 1√
2

(e− g)

and consider the morphisms from each algebra, we have, say, the comultiplication of CZ2 –
but by the Fourier isomorphism this is the same as comultiplication of C(Z2) in the other
basis. We would like to have expand our selection of morphisms available. To this end,
we instead set

|0〉 = δe = e; |1〉 = δg = g

i.e. use the isomorphism of vector spaces (but not of algebras) to put CZ2 and C(Z2) on
the same qubit space, with the same basis. For comultiplication we then have

∆CZ2 : |i〉 7→ |i〉 ⊗ |i〉; ∆C(Z2) : |i〉 7→
∑
j

|j〉 ⊗ |i− j〉

which are different. Of course, if we consider the X basis {|+〉, |−〉}, then the comultipli-
cations swap, and |i〉 7→ |i〉 ⊗ |i〉 gives

|+〉 7→ 1√
2

(|+〉 ⊗ |+〉+ |−〉 ⊗ |−〉)

|−〉 7→ 1√
2

(|+〉 ⊗ |−〉+ |−〉 ⊗ |+〉),

the comultiplication of C(Z2), where the factor of 1√
2 comes from the Fourier transform.

We now have access to all the Hopf algebra morphisms from both algebras. When
viewed as diagrams the algebraic structure entails rewrite rules, whereby a diagram can
be rewritten by using, say, ∆(ab) = ∆(a)∆(b) (a bialgebra rule). The bialgebra rules
would then be expressed as

= = =

In addition to those coming from Hopf algebras, it transpires that all finite-dimensional
Hopf algebras including CZ2 and C(Z2) are automatically Frobenius algebras [Par71],
so those rewrite rules are included as well. We do not include all of the rewrite rules
here, but see [Wet12]. Substantial effort has gone into proving that the ZX-calculus is
[Bac16, PSW24]:

• sound – every valid rewrite on a ZX-diagram using the calculus is an equality in
terms of linear maps between qubits,

• universal – every linear map between qubits has a presentation as a ZX-diagram,
and



1.6. Lattice surgery 23

• complete – every equality between different diagrammatic presentations of the same
linear map can be found by valid rewrites.

Universality is only possible given the phase group; with only the morphisms given in
Table 1.1, and even with the addition of other Pauli basis elements of C2, one cannot
represent every linear map between qubits.

1.6 Lattice surgery

Having taken a detour through various aspects of algebra, we now return to quantum
error-correction. A famous family of quantum stabiliser codes is surface codes [FMMC12].
Such codes are defined by tessellating surfaces. A patch of surface code has the following
presentation2:

To each edge we associate a qubit. To each interior vertex – that is, vertex not on a
boundary – we associated a stabiliser generator, of the form X⊗X⊗X⊗X, with support
on its incident edges. To each interior face we also associate a stabiliser generator, of the
form Z ⊗ Z ⊗ Z ⊗ Z, with support on its incident edges. To boundary vertices and faces,
on the left, right, top and bottom, we associate generators of the form X ⊗X ⊗X and
Z ⊗ Z ⊗ Z respectively. One can check that these all commute.

Logical operators take the form of ‘strings’ extending from top to bottom (Z), passing
through vertices, or left to right (X), passing through faces. In particular, any string
which extends from top to bottom is equivalent, by applying Z stabilisers, to any other
string which extends from top to bottom, assuming the two strings each touch the top
and bottom only once. The same is true for strings from left to right. We illustrate both
cases below,

∼

2This is the ‘unrotated’ surface code. The ‘rotated’ surface code has a slightly different definition
[BM-D07B].



24 Chapter 1. Introduction

∼

where blue lines are Z Paulis and red lines X Paulis.
We assert that these are the only logical Pauli operators available, and the X operators

anticommute with the Z operators. As a consequence, the code has k = 1, that is one
logical qubit. The shortest length string which extends from left to right or top to bottom
is length 4, and so this code has distance d = 4. There are 25 edges, so the code has
parameters J25, 1, 4K.

Now, readers familiar with cell and chain complexes may recognise that, as generators
made of only Xs are assigned to edges incident to vertices, and the same for Zs but for
faces, the commutation rules imply that the code can be described by a chain complex
over F2. This is a well-known insight [BM-D07A, BE21B] and there is a much wider class
of codes which do not have to be defined on lattices, but can be similarly described using
homology. These codes will be the focus of Part A.

Alternatively, readers familiar with Hopf algebras may see that the X-type Paulis can be
seen as an action of CZ2. Specifically we have . : CZ2 ⊗ (CZ2)⊗4 → (CZ2)⊗4, identifying
C2 ∼= CZ2 as vector spaces, sending |0〉 7→ e, |1〉 7→ g, where g is the non-identity element
in Z2. The action is then

g.(h1 ⊗ h2 ⊗ h3 ⊗ h4) = gh1 ⊗ gh2 ⊗ gh3 ⊗ gh4,

that is a tensor product of regular representations, on the edges incident to a vertex. We
have similar for the Z-type Paulis on edges incident to faces, but where the action is of
the element δe − δg ∈ C(Z2), as a consequence of the Fourier isomorphism. It turns out
that in addition the logical space satisfies

L ∼= C2 ∼= CZ2 ∼= C(Z2)

as vector spaces. It is equally well-known that this instance belongs to a much wider
class of codes which are defined on lattices, but use actions of more interesting algebras
[Kit03, Meu17]. These in turn are the focus of Part B.

Before we discuss lattice surgery, we assert that patches of surface code may be prepared
in the logical |+〉 or |0〉 states by initialising the data qubits in that same state and then
measuring all stabilisers. This procedure is fault-tolerant [FMMC12]. Ditto for single-qubit
logical measurements, where instead one measures out all qubits in the X or Z basis. One
can check that these are correct by considering strings across the lattice.

To perform lattice surgery as per [HFDM12], we either take a patch and split it into
two, or take two patches and merge them into one. A Z-merge (or ‘smooth’ merge) is as



1.6. Lattice surgery 25

follows. Take two adjacent patches of surface code,

then initialise a new intermediate section between them,

where all new qubits (edges) are initialised in the |+〉 state. Then immediately being mea-
suring the stabilisers, including all the new faces. Despite only initialising new qubits and
stabilisers (and modifying some X stabilisers), this performs a Z⊗Z measurement on the
logical qubits, quotienting down to one logical qubit afterwards. The logical measurement
outcome is dictated by the parity of the new Z stabilisers.

One can reason about the logical operation performed by considering the blue strings
from top to bottom: previously, they belonged to two separate equivalence classes, but
afterwards they belong to the same one. The +1 and −1 logical measurement outcomes
can be computed straightforwardly, and are dependent on the parity of the measurement
outcomes of the new Z stabilisers corresponding to new faces. From the perspective of
homology, we have taken an injection of chain complexes into the new chain complex, but
a surjection on the homology space at degree 1. From the perspective of Hopf algebras,
we have only added new copies of CZ2 with appropriate representations, but in the +1
outcome case yielded a logical operation of the form

on the two initial logical qubits [dBH20], that is the map |i〉 ⊗ |j〉 7→ δi,j|i〉. This is
multiplication in C(Z2).

A ‘smooth’ split is the adjoint of this procedure. Given one initial patch we measure
out a layer of edges, from top to bottom, and split the patch in twain. This yields the
logical operation

that is |i〉 7→ |i〉⊗ |i〉. This is performing a surjection of chain complexes, but an injection
on the homology space. It is also the comultiplication of CZ2. Similar rules dictate X-
merges (‘rough’ merges) and splits.



26 Chapter 1. Introduction

One can use these operations to build up unitary gates, such as the CNOT, which has
the map on basis states

|i〉 ⊗ |j〉 7→ |i〉 ⊗ |i+ j〉

by observing that

= = =

for example, where the first two diagrams are well-known to be equal to a CNOT [dBH20].
Alternatively, one can use merges to inject magic states from patches of surface code upon
which magic states have been distilled or cultivated [BK05, GSJ24].

For a more in-depth look at this simple case of lattice surgery but for d-dimensional
qudits see Chapter 5. There are many more Pauli measurements one can perform using
surgery, for which see [Lit19, CKBB22], but we focus on those with a nice algebraic
correspondence.



Part A

Homological codes





Chapter 2

CSS code surgery as a universal
construction

2.1 Introduction
In this Chapter we construct generalisations of lattice surgery to Calderbank-Shor-Steane
(CSS) codes. There are several equivalent ways of defining CSS codes, but for our purposes
we shall describe them as codes which are all homological in a suitable sense [BE21B,
BM-D07A].

This means that we can study CSS codes using the tools of homological algebra [Wei84].
This approach has recently seen much success, for example in the construction of so-called
good quantum low-density parity check (LDPC) code families using a lifted product of
chain complexes [PK22A]. Such code families have an encoding rate k/n of logical to
physical qubits which is constant in the code size, while maintaining a linear code distance
d, a substantial asymptotic improvement over simpler examples such as the toric code.
The main caveat is, informally, that the connectivity between physical qubits is non-local.
This complicates the architecture of the system, and also complicates the protocols for
performing logical gates.

There have been several recent works on protocols for logical gates in CSS codes
[KP21, CKBB22, BB24, QWV23, HJY23, ZSP23], of varying generality. Here, we build
on this work by defining surgery, in the abstract, using arbitrary CSS codes which form
a categorical span, although the practical implementation of such surgery has several
important caveats. The idea is that merging two codes works by identifying a common
structure in each code and quotienting it out. CSS code surgery is particularly convenient
when the CSS codes are compatible, in the sense that they have at least one identical Z or
X logical operator. In this case, the common structure being quotiented out is the logical
operator. In order to formalise this, we use the category of chain complexes Ch(MatF2).
Remark 2.1.1. The protocols defined in [CKBB22] are also generalisations of surgery
to CSS codes. Here, our perspective is more algebraic, which we will see can allow us to
prove certain things in a very general manner. Our surgeries are also different, and are in a
certain sense a more direct generalisation of the lattice surgery defined in [HFDM12]. On
the other hand, the constructions of [CKBB22] are somewhat more general, in that they
allow arbitrary Pauli product measurements, in principle. For example, one can measure
the operator X ⊗ Y ⊗ Z. Such arbitrary Pauli product measurements take us out of CSS
codes, and so cannot be described using the homological formalism.
Remark 2.1.2. Since this Chapter and its corresponding paper [CB24] was published, a se-
ries of preprints studying the same topic have appeared on the arXiv. First, Ref. [CHRY24]
showed that the qubit overhead can be reduced greatly by gauge-fixing and considering



30 Chapter 2. CSS code surgery as a universal construction

the expansion properties of logical operators. Next, Ref. [ZL24] gave a construction for
parallelising the scheme of [CKBB22] by ‘branching’ and taking more subtle measurement
‘stickers’. Lastly, Refs. [IGND24, WY24] further developed the use of expander graphs for
the ancilla patches, vastly reducing overhead for single-qubit measurements. In thesis we
do not make use of expanders or expansion properties of graphs.

We start by giving a recap of classical linear binary codes and qubit CSS codes using
chain complexes. We then define code maps between CSS codes using morphisms between
chain complexes. These are maps which send X-checks to X-checks and Z-checks to Z-
checks in a coherent way, and have a convenient presentation as phase-free ZX diagrams,
which we prove in Proposition 2.2.12.

We believe that code maps crop up throughout the CSS code literature. We see 3
primary use-cases for code maps:

1. Encoders/decoders [D-CP10, Del14, HWH21].

2. Constructing new codes.

3. Designing fault-tolerant logical operations [HJY23].

We define CSS code merges as a colimit – specifically, a coequaliser/pushout – in the
category of chain complexes. Not only does the construction describe a surgery operation,
but it also gives a general recipe for new codes. An application of our treatment is the
description of certain classes of code surgery whereby the codes are merged or split along
a Z or X operator. This is closely related to the notion of ‘welding’ in [Mic14], and
generalises the cases for 2D topological codes given in [HFDM12, NFB17]1. We prove that
merging two LDPC codes in such a manner still yields an LDPC code. We give a series
of examples, including the specific case of lattice surgery between surface codes. Lastly,
we discuss how to apply such protocols in practice. We prove that when two technical
conditions are satisfied then code surgery can be performed while maintaining the error-
correcting properties of the code, allowing us to perform logical parity measurements on
codes.

2.2 Quantum codes
Here we introduce classes of both classical and quantum codes as chain complexes. We
give easy examples such as the surface and toric codes. Up until Section 2.2.3, this part
is also well-known, although we describe the relationship between Z and X operators in
greater detail than we have found elsewhere.

2.2.1 Codes as chain complexes
Binary linear classical codes which encode k bits using n bits can be described by a m×n
parity check F2-matrix P . The parity check matrix P , when applied to any codeword of
length n, gives Pc = 0, and thus k = dim ker(P ); if the result is non-zero then an error has
been detected, and under certain assumptions can be corrected. The distance d of a binary
linear classical code is the minimum Hamming weight of its nonzero codewords, and one

1It is, however, different from surgery with colour codes [LR-A14] and rotated surface codes [BM-D07B].



2.2. Quantum codes 31

characterisation of codes is by the parameters [n, k, d]. We may trivially view a binary
linear classical code as a length 1 chain complex, with indices chosen for convenience:

C• = C1 C0
∂1

where C1 = Fn2 , C0 = Fm2 , and ∂1 = P , the chosen m × n parity check matrix. Then we
have k = dimH1(C•) = dimZ1(C•), where Z1(C•) is the codespace.

Example 2.2.1. Let C• be a [3, 1, 3] repetition code, encoding 1 bit into 3 bits. In this
case, let

P =
(

1 1 0
1 0 1

)
Example 2.2.2. Let C• be the [7, 4, 3] Hamming code. Then let

P =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


We now move on to quantum codes. Qubit Calderbank-Shor-Steane (CSS) codes are a

type of stabiliser quantum code [CS96], for which see Definition 1.2.5. Let Pn = P⊗n be
the Pauli group over n qubits. Stabiliser codes start by specifying an Abelian subgroup
S ⊂ Pn, called a stabiliser subgroup, such that the codespace H is the mutual +1
eigenspace of all operators in S . That is,

U |ψ〉 = |ψ〉 ∀U ∈ S , |ψ〉 ∈H

We then specify a generating set of S , of size m. For CSS codes, this generating set has
as elements tensor product strings of either {I,X} or {I, Z} Pauli terms, with no scalars
other than 1. One can define two parity check F2-matrices PX , PZ , for the Xs and Zs,
which together define a particular code. Each column in PX and PZ represents a physical
qubit, and each row a measurement/stabiliser generator. PX and PZ thus map Z and
X operators on physical qubits respectively to sets of measurement outcomes, with a 1
outcome if the operators anticommute with a given stabiliser generator, and 0 otherwise;
these outcomes are also called syndromes. PX is a mX ×n matrix, and PZ is mZ ×n, with
mX ,mZ marking the division of the generating set into Xs and Zs respectively, satisfying
m = mX +mZ . We do not require the generating set to be minimal, and hence PX and
PZ need not be full rank.

Definition 2.2.3. We say that wZ is the maximal weight of all Z-type generators and
wX the same for the X-type generators. These are the highest weight rows of PZ and
PX respectively. Similarly, we say that qZ , qX is the maximal number of Z, X generators
sharing a single qubit. These are the highest weight columns of PZ and PX .

CSS codes are described by parameters Jn, k, dK, with k the number of encoded qubits
and d the code distance, which we define presently.

That the stabilisers must commute is equivalent to the requirement that PXP ᵀZ =
PZP

ᵀ
X = 0. We may therefore view these matrices as differentials in a length 2 chain

complex:
C• = C2 C1 C0

∂2 ∂1



32 Chapter 2. CSS code surgery as a universal construction

where ∂2 = P ᵀZ and ∂1 = PX , or the other way round (∂2 = P ᵀX , ∂1 = PZ) if desired, but we
use the former for consistency with the literature. The quantum code then has C1 = Fn2 ,
and thus:

C• = FmZ2 Fn2 FmX2
P ᵀ
Z PX

The code also has k = dim H1(C•). To see this, observe first that C1 represents the
space of Z Paulis on the set of physical qubits, with a vector being a Pauli string e.g.
v =

(
1 0 1

)ᵀ
 Z ⊗ I ⊗Z. Each vector in H1(C•) can be interpreted as an equivalence

class [v] of Z operators on the set of physical qubits, modulo Z operators which arise as
Z stabilisers. That this vector is in Z1(C•) means that the Z operators commute with all
X stabilisers, and when the vector is not in [0] = B1(C•) it means that the Z operators
act nontrivially on the logical space. A basis of H1(C•) constitutes a choice of individual
logical Paulis Z, that is a tensor product decomposition of the space of logical Z operators,
and we set Z1 = Z ⊗ I · · · ⊗ I on logical qubits, Z2 = I ⊗Z · · · ⊗ I etc. There is a logical
qubit for every logical Z, hence k = dimH1(C•).

To get the logical X operators, consider the cochain complex C•. The vectors in H1(C•)
then correspond to X operators in the same manner. As Hi(C•) ∼= H i(C•) there must be
an X operator for every Z operator and vice versa.
Lemma 2.2.4. A choice of basis {[v]i}i≤k for H1(C•) implies a choice of basis {[w]j}j≤k
for H1(C•).

Proof. First, recall that we have the nondegenerate bilinear form

· : Fn2 × Fn2 → F2; u · v = uᵀv

which is equivalent to · : C1×C1 → F2; computationally, this tells us whether a Z operator
commutes or anticommutes with an X operator. Now, let u ∈ Z1(C•) be a (possibly trivial)
logical Z operator, and v ∈ B1(C•) be a product of X stabilisers. Then PXu = 0, and
v = P ᵀXw for some w ∈ C2. Thus u · v = uᵀv = uᵀP ᵀXw = (PXu)ᵀw = 0, and so products
of X stabilisers commute with logical Z operators. The same applies for Z stabilisers and
logical X operators.

As a consequence, v ·w = (v+ s) · (w+ t) for any v ∈ Z1(C•), w ∈ Z1(C•), s ∈ B1(C•),
t ∈ B1(C•), and so we may define [v] · [w] = v · w for any [v] ∈ H1(C•), [w] ∈ H1(C•)
with representatives v, w. The duality pairing of C1, C

1 thus lifts to H1(C•), H1(C•), and
a choice of basis {[v]i}i≤k for H1(C•) implies a choice of basis of H1(C•), determined
uniquely by [v]i · [w]j = δi,j. �

The above lemma ensures that picking a tensor product decomposition of logical Z
operators also entails the same tensor product decomposition of logical X operators, so
that X iZj = (−1)δi,jZjX i, for operators on the ith and jth logical qubits.

Let
dZ = min

v∈Z1(C•)\B1(C•)
|v|; dX = min

w∈Z1(C•)\B1(C•)
|w|

where | · | is the Hamming weight of a vector, then the code distance d = min(dZ , dX). dZ
and dX are called the systolic and cosystolic distances, and represent the lowest weight
nontrivial Z and X logical operators respectively.

As all the data required for a CSS code is contained within the chain complex C• – and
potentially a choice of basis of H1(C•) – we could define a CSS code as just the single
chain complex, but it will be convenient to have direct access to the cochain complex as
well.



2.2. Quantum codes 33

Definition 2.2.5. A CSS code is a pair (C•, C•), with C• a length 2 chain complex
centred at degree 1, so we have:

C• = C2 C1 C0
P ᵀ
Z PX ; C• = C0 C1 C2P ᵀ

X PZ

We call the first of the pair the Z-type complex, as vectors in C1 correspond to Z-operators,
and the second the X-type complex. A based CSS code additionally has a choice of basis
for H1(C•), and hence for H1(C•).

Employing the direct sum (C ⊕D)• of chain complexes we have the CSS code ((C ⊕
D)•, (C ⊕D)•), which means the CSS codes (C•, C•) and (D•, D•) perform in parallel on
disjoint sets of qubits, without any interaction. The Z and X operators will then be the
tensor product of operators in each.

In summary, there is a bijection between length 1 chain complexes in Ch(MatF2) and
binary linear classical codes, and between length 2 chain complexes in Ch(MatF2) and CSS
codes. There are CSS codes for higher dimensional qudits, but for simplicity we stick to
qubits.

Rather than just individual codes we tend to be interested in families of codes, where
n, k, d scale with the size of code in the family. Of particular practical interest are quantum
low density parity check (LDPC) CSS codes, which are families of codes where all wZ ,
wX , qZ and qX in the family are bounded from above by a constant. Equivalently, this
means the Hamming weight of each column and row in each differential is bounded by
that constant.
Definition 2.2.6. A subsystem CSS code is a CSS code where some of the logical qubits
are not used for storing logical data. These qubits are instead called gauge qubits [KLP05].
In this case the first homology space divides into H1(C•) = L⊕G, with L being the space
used for storing data and G the space of gauge qubits.

Importantly, we can at times relegate logical qubits to be gauge qubits instead in order
to increase the distance of the code. The nontrivial Z logicals which act on the logical
data must have some support in L, not just G. These belong to the set H1(C•)\G and are
called dressed logical operators. Dressed logicals can still have support in G. The same
applies to H1(C•).

The distance d of a subsystem CSS code is therefore the smallest weight of the dressed
logical operators.

2.2.2 Basic quantum codes
Example 2.2.7. Let (C•, C•) be the J9, 1, 3K Shor code, so we have C2 = F2

2, C1 = F9
2,

C0 = F6
2. The parity check matrices are given by

PX =
(

1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1

)
; PZ =


1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 1


We then have dimZ1(C•) = dimC1−rank(PX) = 9−2 = 7 and dimB1(C•) = rank(P ᵀZ) =
6. Thus k = dimH1(C•) = 1. There is a single nonzero equivalence class [v] ∈ H1(C•), with



34 Chapter 2. CSS code surgery as a universal construction

a representative v =
(
1 1 1 1 1 1 1 1 1

)ᵀ. Similarly there is the nonzero vector
w =

(
1 1 1 1 1 1 1 1 1

)ᵀ, which is a representative of [w] ∈ H1(C•). Hence, we
have two logical operators Z =

⊗9
i Zi, X =

⊗9
i Xi with Zi on the ith qubit and the

same for Xi. We equally have, say, Z = Z1⊗Z4⊗Z7 and X = X1⊗X2⊗X3 in the same
equivalence classes as those above, [v] and [w].

We now consider two examples which come from square lattices. This can be done much
more generally. In Appendix 1 we formalise categorically the procedure of acquiring chain
complexes – and therefore CSS codes – from square lattices, which are a certain type of
cell complex.

Example 2.2.8. Consider the following square lattice:

Edges in the lattice are qubits, so n = 18, the 9 X-checks are associated with vertices
and the 9 Z-checks are associated with faces, which are indicated by white circles. Grey
vertices indicate periodic boundary conditions, so the lattice can be embedded on a torus.
This is an instance of the standard toric code [Kit03].

The abstracted categorical homology from before is now the homology of the tessellated
torus, with cycles, boundaries etc. having their usual meanings. k = dimH1(C•) = 2, and
(co)systolic distances are the lengths of the essential cycles of the torus.

Example 2.2.9. Now consider a different square lattice:

This represents a patch of surface code (D•, D•), where we have two smooth sides, on
the left and right, and two rough sides to the patch, on the top and bottom. There are
‘dangling’ edges at the top and bottom, which do not terminate at vertices. We have

dimD2 = dimD0 = 6; n = dimD1 = 13; k = dimH1(D•) = 1

The systolic distance is 3, the length of the shortest path from the top to bottom boundary,
and the cosystolic distance 3, the same but from left to right.

2.2.3 Code maps
One may wish to convert one code into another, making a series of changes to the set
of stabiliser generators to be measured, and potentially also to the physical qubits. The
motivation behind such protocols is typically to perform logical operations which are not



2.2. Quantum codes 35

available natively to the code; not only might the target code have other logical operations,
but the protocol is itself a map between logical spaces when chosen carefully. An example
of a change to the measurements and qubits is code deformation. We do not formalise
code deformation here, as that has some specific connotations [VLC19]. Instead we define
a related notion, called a code map, which has some overlap. A code map is also related
to, but not the same as, the ‘homomorphic gadgets’ from [HJY23].
Definition 2.2.10. A Z-preserving code map FZ from a CSS code (C•, C•) to (D•, D•)
is a paired chain map and cochain map (f•, f •), for f• : C• → D• and f • : D• → C•.

(C•, C•)

(D•, D•)
FZ f• f•

Note that the cochain map is strictly speaking redundant, as all the data is contained
in a single chain map f•, but as with CSS codes it will be handy to keep both around.

Let us unpack this definition. FZ first maps Z-operators in C1 to Z-operators in D1,
using f1. It may map a single Z on a qubit to a tensor product of Zs, or to I. It then
has a map f2 on Z generators, and another f0 on X checks. Recalling Definition 1.4.3, we
have:

C2 C1 C0

D2 D1 D0

∂C•2

f2

∂C•1

f1 f0

∂D•2 ∂D•1

I II

With two commuting squares labelled I and II. I stipulates that applying products of Z
stabiliser generators on the code and then performing the code map should be equivalent
to performing the code map and then applying products of Z stabiliser generators, i.e.
f1 ◦ ∂C•2 = ∂D•2 ◦ f2. II stipulates that performing the X measurements and then mapping
the code should be equivalent to mapping the code and then performing X measurements,
so there is a consistent mapping between all measurement outcomes, i.e. f0◦∂C•1 = ∂D•1 ◦f1.

Then there is the cochain map f •. This has the component f 1 = fᵀ1 : D1 → C1, which
maps an X-operator in D1 back to an X-operator in C1. Similarly for f 0 and fᵀ2 , each of
which come with commuting squares which are just the transposed conditions of those in
f•, so they say nothing new. This is not surprising, as all the data for f • is given by f•
already.

We now show that this definition entails some elementary properties. For a start,
Lemma 1.4.4 implies that a code map gives a map from a Z operator in H1(C•) to Zs in
H1(D•); this can also map to a product of logical Zs, and in particular map Z to zero
i.e. I, but it must not map a Z to an operator which can be detected by the X stabiliser
measurements. Hence (f•, f •) preserves the fact that any Z is an undetectable operator on
the codespace. A similar requirement holds for X operators, but this time the condition
is inverted. Every X in H1(D•) must have a map only to logical operators in H1(C•), but
the other way is not guaranteed.

Let nC and nD be the number of physical qubits in codes (C•, C•) and (D•, D•) re-
spectively. We may interpret FZ as a C-linear map M in FHilb, the category of Hilbert
spaces. This C-linear map has the property that MUZ = U ′ZM , where UZ is a tensor
product of Z Paulis on nC qubits and U ′Z is a tensor product of Z Paulis on nD qubits.



36 Chapter 2. CSS code surgery as a universal construction

In particular, given any UZ we have a specified U ′Z . The same is not true the other way
round, as the map f1 is not necessarily injective or surjective. Similarly, MUX = U ′XM .
This time, however, given any unique U ′X on nD qubits we have a specified UX but vice
versa is not guaranteed, depending on fᵀ1 .

As a consequence, the linear map M is stabiliser, in the sense that it maps Paulis to
Paulis, but not unitary in general. M is unitary iff f1 is invertible.

If M is not even an isometry, it cannot be performed deterministically, and the code
map must include measurements on physical qubits. There will in general be Kraus
operators corresponding to different measurement outcomes which will determine whether
the code map has been implemented as desired; for now we assume that M is performed
deterministically, and leave this complication for Section 2.4. Similarly, while the code
map can be interpreted as a circuit between two codes, we do not claim that such a circuit
can be performed fault-tolerantly in general.
Remark 2.2.11. For the following proposition, and at various points throughout the rest
of this Chapter, we will use the ZX-calculus, a formal graphical language for reasoning
about computation with qubits. See Section 1.5 for a short introduction, or see Sections
1-3 of [Wet12]. Our use of ZX diagrams is unsophisticated, and primarily for convenience.
Proposition 2.2.12. Let FZ be a Z-preserving code map between codes (C•, C•) and
(D•, D•) with qubit counts nC and nD. The interpretation of FZ as a C-linear map M in
FHilb has a presentation as a circuit with gates drawn from {CNOT, |+〉 , 〈0|}.

Proof. We start with the linear map M : (C2)⊗nC → (C2)⊗nD :

M
nC nD

By employing the partial transpose in the computational basis we convert it into the state

nD

nC

|ψ〉 =
M

i.e. inserting nC Bell pairs. By the definition of f1 we know that this has an independent
stabiliser, with one Z and nC − 1 Is followed by some nD-fold tensor product of Z and
I, for each of the nC qubits. From fᵀ1 it also has an independent stabiliser, with some
nC-fold tensor product of X and I followed by nD − 1 Is and one X, for each of the nD
qubits. |ψ〉 is therefore a stabiliser state. Further, from Theorem 5.1 of [Kis22] it has a
presentation as a ‘phase-free ZX diagram’, of the form

...

...

...

...

...
nC

nD

|ψ〉 =

where the top nC qubits do not have a green spider. We perform the partial transpose
again to convert the state |ψ〉 back into the map M , which has the form

...

... ...M
nC nD =



2.2. Quantum codes 37

Any ZX diagram of this form can be expressed as a matrix over F2, mapping X-basis
states from (C2)⊗nC to (C2)⊗nD . The example above, ignoring the ellipses, has the matrix(

1 0 1
1 1 1

)
which is equal to f1; the point of the above rigmarole is thus to say that f1 is precisely a
linear map between X-basis states, which one can check easily. One can explicitly calculate

M as a matrix in the X-basis in FHilb. For the first column, we compute f1

0
0
0

 =
(

0
0

)
,

so M |+〉 |+〉 |+〉 = |+〉 |+〉. Overall, we have

M =


1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0


which again is in the X-basis, not the (computational) Z-basis.

Returning to f1, we can perform Gaussian elimination, performing row operations,
which produce CNOTs on the r.h.s. of the diagram in the manner of [KM-v20], until the
matrix is in reduced row echelon form. We then perform column operations producing
CNOTs on the l.h.s. of the diagram, until the matrix has at most one 1 in each row and
column. This can be performed using the leading coefficients to remove all other 1s in
that row. The final matrix just represents a permutation of qubits with some states and
effects. An empty column corresponds to a 〈0| effect, and an empty row a |+〉 state. We
thus end up with a presentation of M in the form

CNOT

nC nD

... ...

On our example, this is then

=

which one can check maps Z ⊗ I ⊗ I 7→ Z ⊗Z etc. �

As a consequence M̄ = M , i.e. the conjugate of M is just M .
Corollary 2.2.13. If nC = 0 then the map M is actually a stabiliser state of the form
M = |+〉⊗nD . When nD = 0 then M = 〈0|⊗nC .

Proof. When nC = 0 we see that M has exactly nD independent stabilisers with 1 X and
nD − 1 Is, for each qubit to put X on. The flipped argument applies when nD = 0. �

Definition 2.2.14. An X-preserving code map FX from a CSS code (D•, D•) to (C•, C•)
is a paired chain map and cochain map (f•, f •), for f• : C• → D• and f • : D• → C•.

(C•, C•)

(D•, D•)
FX f• f•



38 Chapter 2. CSS code surgery as a universal construction

So FX is just mapping in the other direction to FZ from before, and we say that FX
is opposite to FZ . In this case, when we interpret FX as a C-linear map L, it has the
property that LUX = U ′XL and that any UX gives a specified U ′X , and LUZ = U ′ZL, but
that any U ′Z gives a specified UZ but not vice versa.

By inspecting the stabilisers we see that, for FZ with interpretation M and FX with
interpretation L, L = M † = Mᵀ.

Corollary 2.2.15. Let FX be an X-preserving code map between codes (D•, D•) and
(C•, C•) with qubit counts nD and nC . The interpretation of FX as a C-linear map L in
FHilb has a presentation as a circuit with gates drawn from {CNOT, |0〉 , 〈+|}.

Corollary 2.2.16. If nD = 0 then L = |0〉⊗nC , and if nC = 0 then L = 〈+|⊗nD .

Corollary 2.2.17. The restrictions ofFZ andFX to use onlyH1(f•) andH1(f •) also have
interpretations as C-linear maps on logical qubits in the same way, and Proposition 2.2.12
and Corollary 2.2.15 also apply to such interpretations.

Lemma 2.2.18. Let Ω : (C2)⊗kC → (C2)⊗kD and M : (C2)⊗nC → (C2)⊗nD be the
interpretations of the Z-preserving maps

(H1(f•), H1(f •)) : (H1(C•), H1(C•))⇒ (H1(D•), H1(D•))

and
FZ : (C•, C•)⇒ (D•, D•)

in FHilb respectively. Recall that there are encoding embeddings for any CSS codes,
EC : (C2)⊗kC ↪→ (C2)⊗nC and ED : (C2)⊗kD ↪→ (C2)⊗nD . Then there is a commuting
square,

(C2)⊗kC (C2)⊗nC

(C2)⊗kD (C2)⊗nD
Ω

EC

PSD◦M

ED

where PSD is the projector onto the +1 eigenspace of the stabilisers of (D•, D•).

Proof. Consider an arbitrary logical computational basis state
∣∣ψ〉 ∈ (C2)⊗kC , where

ψ ∈ {0, 1}kC . This is stabilised by kC Z logicals, where the signs are + or − depending on
the basis element 0 or 1. Mapping into (C2)⊗nC , EC

∣∣ψ〉 is stabilised by representatives of
the same Zs, with the appropriate signs, as well as SC , the set of stabilisers in (C•, C•).

Ω
∣∣ψ〉 is stabilised by the Z andX logicals in (C2)⊗kD defined by the map (H1(f•), H1(f •)).

The state ED◦Ω
∣∣ψ〉 is stabilised by those Z and X logicals and all stabilisers in SD. Mean-

while, M ◦EC
∣∣ψ〉 is stabilised by the Z and X logicals determined by (H1(f•), H1(f •))2,

and other stabilisers in the image of (f1, f
1).

Thus M ◦EC
∣∣ψ〉 6= ED ◦Ω

∣∣ψ〉 in general, as there may be additional stabilisers in SD
which are not in the image of (f1, f

1). However,

PSD ◦M ◦ EC
∣∣ψ〉 = ED ◦ Ω

∣∣ψ〉 ,
as projecting into the eigenspace adds the missing stabilisers. Note that M ◦ EC

∣∣ψ〉
must still be a stabiliser state, as M is a stabiliser map, so the addition of these missing

2The -1 sign on any Z logicals does not matter for the maps EC or M as they are over C.



2.3. CSS code surgery 39

stabilisers must replace existing stabilisers of M ◦ EC
∣∣ψ〉 which are not in SD. In fact,

one does not require the projector of all the independent stabilisers of (D•, D•), merely
those missing from im(M).

As the set of logical computational basis states spans the logical space (C2)⊗kC , we thus
have

PSD ◦M ◦ EC = ED ◦ Ω.
�

This fits with the computational interpretation, as in code deformation the map on
physical Hilbert spaces can initially place the initial state outside the logical space of the
deformed code, which then must be projected back inside by performing stabiliser checks.
A dual result to Lemma 2.2.18 applies to X-preserving code maps, as expected.

While our definitions in this section are for chain complexes of length 2, in principle one
can map between any two codes with an arbitrary number of meta-checks, or between a
classical code and quantum code, which could be interpreted as ‘switching on/off’ either
X or Z stabiliser measurements.

Code maps are related to code deformations, but we are aware of code deformation
protocols which do not appear to fit in the model of chain maps described. For example,
when moving defects around on the surface code for the purpose of, say, defect braiding
[FMMC12], neither Z nor X operators are preserved in the sense we give here.

2.3 CSS code surgery
To understand code surgery we require some additional chain complex technology, namely
tensor products and colimits.

2.3.1 Tensor products of classical codes
Here we recap tensor products [AC19] of classical codes from the perspective of homological
algebra. This can be deduced from Definition 1.4.8, but this particular case deserves further
inspection. Let C• and D• be two linear binary codes

C• = C1 C0
A ; D• = D1 D0

B

where A and B are parity matrices. The dual codes C•, D• are the codes obtained
by transposing the parity-check matrices. The codes have parameters [nA, kA, dA] and
[nB, kB, dB], and their dual codes have parameters [nᵀA, k

ᵀ
A, d

ᵀ
A] and [nᵀB, k

ᵀ
B, d

ᵀ
B]. Explicitly,

nA = dimC1; kA = dim ker(A); nᵀA = dimC0; kᵀA = dim ker(Aᵀ) = dimC0/im(A),

so nA, kA are the length and dimension of the code C•, and nᵀA, k
ᵀ
A are the length and

dimension of the dual code C•. We will also use the respective distances dA, dᵀA. Similar
definitions apply to B.

The tensor product quantum code is given by the chain complex:

(C ⊗D)• = C1 ⊗D1 C0 ⊗D1 ⊕ C1 ⊗D0 C0 ⊗D0
∂2 ∂1

where by convention we say that ∂2 = P ᵀZ and ∂1 = PX , and

PZ =
(
Aᵀ⊗ idD1 idC1 ⊗Bᵀ

)
; PX =

(
idC0 ⊗B A⊗ idD0

)



40 Chapter 2. CSS code surgery as a universal construction

We will use some straightforward facts about this code. It has parameters

JnᵀAnB + nAn
ᵀ
B, k

ᵀ
AkB + kAk

ᵀ
B,min(dA, dB, dᵀA, d

ᵀ
B)K.

That n(C⊗D) = nᵀAnB+nAnᵀB is obvious from dim(C ⊗D)1. k(C⊗D) = dimH1((C ⊗D)•) =
dim ker(PX)/im(P ᵀZ), which can be found using the Künneth formula [Wei84]:

H1((C ⊗D)•) ∼= H0(C•)⊗H1(D•)⊕H1(C•)⊗H0(D•)

In particular we have the decomposition

ker(PX) = ker(PX)/im(P ᵀZ)⊕im(P ᵀZ) = C0/im(A)⊗ker(B)⊕ker(A)⊗D0/im(B)⊕im(P ᵀZ).
(2.1)

The distance can be obtained easily using this expression for ker(PX) and a similar one
for ker(PZ):

ker(PZ) = ker(Aᵀ)⊗D1/im(Bᵀ)⊕ C1/im(Aᵀ)⊗ ker(Bᵀ)⊕ im(P ᵀX) (2.2)

These equations are only required by the Künneth formula to hold up to isomorphism,
but one can check using a simple counting argument that they hold on the nose.

Toric and surface codes, see Example 2.2.8 and Example 2.2.9 are basic examples of
tensor product codes, where the input classical codes are repetition codes.

Considering families of tensor product codes built from families of classical codes, the
products will be qLDPC iff the classical codes are also LDPC, and the parameters above
mean that the scaling have d ∈ O(

√
n) and k ∈ O(n). These bounds are saturated by

quantum expander codes [LTZ15], using the fact that hypergraph product codes [TZ14]
are tensor product codes with one of the classical codes dualised.

Tensor product codes are important to us because we will use them to ‘glue’ other codes
together, and for performing single-qubit logical measurements.

2.3.2 Colimits in Ch(MatF2)

Coproducts, pushouts and coequalisers are directly relevant for our applications. Coprod-
ucts are just direct sums, so we describe pushouts and coequalisers here.

Definition 2.3.1. The pushout of chain maps f• : A• → C• and g• : A• → D• gives the
chain complex Q•, where each component is the pushout Qn of fn and gn. The differentials
∂Q•n are given by the unique mediating map from each component’s pushout. Specifically,
if we have the pushout

A• D•

C• Q•

g•

f• l•

k•



2.3. CSS code surgery 41

then for degrees n, n+ 1 we have

An Dn

An+1 Dn+1

Cn+1 Qn+1

Cn Qn

gn

fn ln

∂A•n+1 gn+1

fn+1

∂D•n+1

ln+1

∂C•n+1

kn+1
∂Q•n+1

kn

where
Qn = (C ⊕D)n/fn ∼ gn; kn(c) = [c] ∈ Qn; ln(d) = [d] ∈ Qn.

with [c] being the equivalence class in Qn having c as a representative, and the same for
[d]. As kn ◦ ∂C•n+1 ◦ fn+1 = ln ◦ ∂D•n+1 ◦ gn+1 and the inner square is a pushout in MatF2 , there
is a unique matrix ∂Q•n+1. The differentials satisfy ∂Q•n ◦ ∂

Q•
n+1 = 0, and one can additionally

check that this is indeed a pushout in Ch(MatF2) by considering the universal property at
each component.

Definition 2.3.2. The coequaliser of chain maps C• D•
f

g
is a chain complex E•

and chain map coeq(f, g)• : D• → E•, which we will just call coeq•. We have En =
Dn/fn ∼ gn and coeqn(d) = [d].

Doing some minor diagram chasing one can check that this is indeed a coequaliser in
Ch(MatF2).
Remark 2.3.3. We can view the pushout

A• D•

C• Q•

g•

f• l•

k•

as the coequaliser of A• (C ⊕D)•
τ•◦f•

ω•◦g•
for the inclusion maps C• (C ⊕D)•

τ• ,

D• (C ⊕D)•
ω• . The difference is that the pair of chain maps k•, l• have been

replaced with the single map coeq•, so we have

A• (C ⊕D)• Q•
τ•◦f•

ω•◦g•

coeq•

We can view coequalisers as instances of pushouts as well, doing a sort of reverse of the
procedure above.

As with all colimits, those above are defined by the category theory only up to isomor-
phism. Because we are working over a field, the isomorphism class of a chain complex Q•
is completely determined by the dimensions of the underlying vector spaces {dimQi}i and
its Betti numbers, which is the set {dimHi(Q•)}i of dimensions of the homology spaces.



42 Chapter 2. CSS code surgery as a universal construction

This is a homological version of the rank-nullity theorem. These are very large iso-classes,
and we require more fine-grained control over which chain complexes are chosen by the
colimits.

One way to choose a specific pushout of chain maps is via an explicit definition of the
coequaliser of two based linear maps. For this we need not just a basis for our vector
spaces, but an ordered basis. Using these coequalisers we can then construct pushouts of
linear maps and their universal arrows, which is used in turn to define the pushout of chain
maps. For the coequaliser of linear maps r, s : V → W , we may take s = 0 by linearity.
Then we let r+ be the reflexive generalised inverse of r, which always exists by [WD98],
and see that P = I − rr+ is a projector P : W → W that coequalizes r, 0 : V → W. To
make this a universal projector we need to row-reduce the matrix of P , i.e. put P into row
echelon form and remove all-zero rows, which is where we use the order on the basis of
W . This row-reduced matrix will then have full rank and will be a universal coequaliser.

Alternatively, there is a straightforward way to choose the representatives we want from
these iso-classes when the chain maps f•, g• in the span are basis-preserving.
Definition 2.3.4. We say that a chain map is basis-preserving when every matrix at
each component maps basis elements to basis elements.

This does not require that the map is either monic or epic, and is a property associated
only with based vector spaces, as it evidently does not arise with abstract vector spaces.
We can equivalently see this property as the case when the chain map is a collection of
functions between the underlying sets {f̃i : C̃i → D̃i}i∈Z. We can also ask for co-chain
maps to be basis-preserving, with the same definition.
Lemma 2.3.5. Let the chain maps f•, g• be basis-preserving. Then there is always a
choice of pushout such that the chain maps k•, l• are also basis-preserving.

Proof. Let Qn = (C ⊕ D)n/fn ∼ gn. Then, for any basis element a ∈ An, the elements
fn(a) and gn(a) are mapped by kn and ln respectively to the same basis element in Qn.
For basis elements in Cn, Dn which are not in the images of fn and gn, kn and ln will map
them to distinct basis elements in Qn. So this choice of representative of the isomorphism
class of pushouts has k•, l• being basis-preserving. �

We can think of the pushout at each component as being a pushout in the category
Set, freely promoted to MatF2 . The differentials are then defined by the universal property.
All of the choices of pushout such that k•, l• are basis-preserving are equivalent up to
a relabelling of basis elements in each component, hence (coherent) row and column
permutation of the differential matrices. Computationally, this means that the choice of
pushout is defined up to relabelling qubits, Z-checks and X-checks, and hence properties
like code distance and being LDPC are well-defined for such pushouts. This will be
important later.

Lemma 2.3.5 also applies to coequalisers, following Remark 2.3.3.
Lemma 2.3.6. Ch(MatF2) is an Abelian category, and thus is finitely complete and
cocomplete, meaning that it has all finite limits and colimits.

This is reiterating Lemma 1.4.5 from the introduction. This lemma does not mean that
every span has a basis-preserving pushout, but whenever there is a basis-preserving span
there is a basis-preserving pushout. The same applies to coequalisers. From now on every
example of a span we use will be basis-preserving, so we assume that the pushouts and
coequalisers are also basis-preserving and will no longer mention this property.



2.3. CSS code surgery 43

2.3.3 Generic code surgery
We now give a general set of definitions for surgery between arbitrary compatible CSS
codes; the condition for compatibility is very weak here. Working at this level of generality
means that we cannot prove very much about the output codes or relevant logical maps.
As a consequence, we will then focus on particular surgeries which make use of ‘gluing’
or ‘tearing’ along logical Z or X operators in Section 2.3.4.
Definition 2.3.7. Let (C•, C•), (D•, D•) and (A•, A•) be CSS codes, such that there is
a basis-preserving span of chain complexes

A• D•

C•

g•

f•

The Z-type merged code of (C•, C•) and (D•, D•) along f•, g• is the code (Q•, Q•) such
that Q• is the pushout of the above diagram.

Recall from Remark 2.3.3 that we can view any pushout as a coequaliser. We thus have

A• (C ⊕D)• Q•
ιC◦f•

ιD◦g•

coeq•

and we call coeq• the Z-merge chain map. We can bundle this up into a Z-merge code
map:

((C ⊕D)•, (C ⊕D)•)

(Q•, Q•)
FZ

coeq• coeq• (2.3)

We then call coeq• : Q• → (C ⊕ D)• an X-split cochain map, and hence we have an
X-split code map too:

((C ⊕D)•, (C ⊕D)•)

(Q•, Q•)
FX

coeq• coeq• (2.4)

Definition 2.3.8. Let (C•, C•), (D•, D•) and (A•, A•) be CSS codes, such that there is
a span of cochain complexes

A• D•

C•

g•

f•

the X-type merged code of (C•, C•) and (D•, D•) along f •, g• is the code (Q•, Q•) such
that Q• is the pushout of the above diagram.

We have an X-merge cochain map and thus X-merge code map using the coequaliser
picture, so

(Q•, Q•)

((C ⊕D)•, (C ⊕D)•)
EX

coeq• coeq•



44 Chapter 2. CSS code surgery as a universal construction

We also have a Z-split chain map and the Z-split code map EZ by taking the opposite.

(Q•, Q•)

((C ⊕D)•, (C ⊕D)•)
EZ

coeq• coeq•

This is rather abstract, so let’s see a small concrete example.
Example 2.3.9. Consider the following pushout of square lattices:

We have not properly formalised pushouts of square lattices in the main body for brevity,
but we do so in Appendix 1. Informally, we are just ‘gluing along’ the graph in the top
left corner, where the edges to be glued are coloured in blue.

We can consider this pushout to be in Ch(MatF2) 3, giving the pushout:

A• D•

C• Q•

g•

f• q•

p•

with
A• = F2 F2

2
∂A•1

C• = F2 F3
2 F2

2
∂C•2 ∂C•1

D• = F2 F3
2 F2

2
∂D•2 ∂D•1

and

∂A•1 =
(

1
1

)
; ∂C•2 = ∂D•2 =

1
1
1

 ; ∂C•1 =
(

1 1 0
0 1 1

)
; ∂D•1 =

(
1 0 1
0 1 1

)
.

One can see from the cell complexes that we have

Q• = F2
2 F5

2 F2
2

∂Q•2 ∂Q•1

3Categorically, this is because there is a cocontinuous functor from the appropriate category of square
lattices to Ch(MatF2).



2.3. CSS code surgery 45

with

∂Q•2 =


1 0
1 1
1 0
0 1
0 1

 ; ∂Q•1 =
(

1 1 0 1 0
0 1 1 0 1

)

Rather than compute the pushout maps, let us instead give the coequaliser coeq•:

(C ⊕D)2 (C ⊕D)1 (C ⊕D)0

Q2 Q1 Q0

∂
(C⊕D)•
2

coeq2

∂
(C⊕D)•
1

coeq1 coeq0

∂Q•2 ∂Q•1

We immediately see that coeq2 = id. For the other two surjections we have

coeq1 =


1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 ; coeq0 =
(

1 0 1 0
0 1 0 1

)

Finally we interpret all the chain complexes in this pushout as being the Z-type complexes
of CSS codes (A•, A•), (C•, C•) etc. Thus we have a Z-merge code map FZ , with an
interpretation M as a C-linear map, using coeq1 and coeqᵀ1. We refrain from writing out
the full 32-by-64 matrix, but as a ZX-diagram using gates from {CNOT, |+〉 , 〈0|} we have
simply

=M
6 5

We know from Lemma 1.4.4 that this map must restrict to a map on logical qubits.
However, easy calculations show that H1((C ⊕D)•) = 0, while H1(Q•) = 1. That is, in
the code ((C ⊕D)•, (C ⊕D)•) there are no logical qubits – there are still operators which
show up as errors and some which don’t, but all of those which don’t are products of
Z or X stabiliser generators. By Corollary 2.2.13 and Corollary 2.2.17 the logical map
in FHilb is then just |+〉. This trivially preserves both Z and X operators, although its
opposite code map FX does not preserve Z operators.

This example was very simple, but the idea extends in a general way. To convey how
general this notion of CSS code surgery is, consider the balanced product codes from
[BE21A, PK22A, PK22B]. The balanced product of codes is by definition a coequaliser
in Ch(MatF2), and so we can convert it into a pushout using routine category theory. The
coequaliser is

(C ⊗A⊗D)• (C ⊗D)• (C ⊗AD)•
g•

f• coeq•



46 Chapter 2. CSS code surgery as a universal construction

where g• and f• represent left and right actions of A• respectively; in all the cases from
[BE21A, PK22A, PK22B] these actions are basis-preserving. We have not explicitly defined
the tensor product of chain complexes in the main body for brevity, but see Definition 1.4.8.
Then to this coequaliser we can associate a pushout,

((C ⊗A⊗D)⊕ (C ⊗D))• (C ⊗D)•

(C ⊗D)• (C ⊗AD)•

(g• | id•)

(f• | id•) l•

k•

where one can check that the universal property is the same in both cases. Thus we can
think of a balanced product as a merge of tensor product codes, with the apex being
two adjacent tensor product codes. As the maps in the span are evidently not monic, the
merge is of a distinctly different sort from Example 2.3.9, and also the Z- and X-merges
we will describe in Section 2.3.4.

It would be convenient if we could guarantee some properties of pushouts in general;
for example, if the pushout of LDPC codes was also LDPC, or if the homologies were
always preserved. Unfortunately, the definition is general enough that neither of these are
true. We discuss this in slightly greater detail in Appendix 2, but the gist is that we need
to stipulate some additional conditions to guarantee bounds on these quantities.

2.3.4 Surgery along a logical operator
The procedure of merging here is closely related to that of ‘welding’ in [Mic14]. Our focus
is not just on the resultant codes, but the maps on physical and logical data. On codes
generated from square lattices, the merges here will correspond to a pushout along a
‘string’ through the lattice.

Definition 2.3.10. Let C• = C2 C1 C0
∂1 ∂1 be a length 2 chain complex. Let

v ∈ C1 be a vector such that v ∈ ker(∂C•1 )\im(∂C•2 ). We now construct the logical operator
subcomplex V•. This has:

Ṽ1 = supp v; ∂V•1 = ∂C•1 �supp v; Ṽ0 =
⋃

u∈im(∂V•1 )

supp u

where supp v is the set of basis vectors in the support of v, and ∂i �S is the restriction of
a differential to a subset S of its domain. All other components and differentials of V• are
zero.

There is a monic f• : V• ↪→ C• given by the inclusion maps of V1 ⊆ C1 etc.

Definition 2.3.11. Let V• be a logical operator subcomplex of two chain complexes

C• = C2 C1 C0
∂2 ∂1

and
D• = D2 D1 D0

∂2 ∂1



2.3. CSS code surgery 47

simultaneously, so there is a basis-preserving monic span

V• D•

C•

g•

f•

This monic span has the pushout

V• D•

C• Q•

g•

f• q•

p•

with components

Q2 = C2 ⊕D2; Q1 = C1 ⊕D1/(supp v ∼ supp w); Q0 = C0 ⊕D0/(f̃0 ∼ g̃0),

where w is the logical operator associated to im(g1) ∈ D1.
The construction here is inspired by [CKBB22].

Definition 2.3.12. Let (C•, C•) and (D•, D•) be CSS codes. Let (V•, V •) be a CSS code
such that V• is a logical operator subcomplex of C• and D•; this means that (V•, V •) can
be seen as merely a classical code, as V2 = 0. Then the Z-type merged CSS code (Q•, Q•)
is called the Z- merged code of (C•, C•) and (D•, D•) along (V•, V •).
Definition 2.3.13. (Irreducible) Let V• be a logical operator subcomplex such that for
the inclusion maps f• and g•, im(f1) and im(g1) contain only one operator in Z1(C•),
Z1(D•) respectively, with those operators being v, w. Then we say that these operators
are irreducible, as they contain no other logicals in their support, and the pushout satisfies
the irreducibility property.

The intuition here, following [CKBB22], is that it is convenient when the logical opera-
tors we glue along do not themselves contain any nontrivial logical operators belonging
to a different logical qubit; if they do, the gluing procedure may yield a more complicated
output code, as we could be merging along multiple logical operators simultaneously. In
Appendix 3 we demonstrate that it is possible for this condition to not be satisfied, using
a patch of octagonal surface code. Additionally, we do not want the gluing procedure to
send any logical Z operators to stabilisers.

We would like to study not only the resultant code given some Z-merge, but also the
map on the logical space. We can freely switch between pushouts and coequalisers. Recall
the Z-merge code map FZ from Equation 2.3. We call this a Z-merge code map when
the merge is along a Z-operator as above, and from now on we assume that all merges
are irreducible unless otherwise stated.
Lemma 2.3.14. Let (Q•, Q•) be a irreducible Z-merged code with parameters JnQ, kQ, dQK,
and let JnC , kC , dCK, JnD, kD, dDK be the parameters of (C•, C•) and (D•, D•) respectively.
Let nV = dimV0. Then

nQ = nC + nD − nV ; kQ ≥ kC + kD − 1

Further, let {[u]i} and {[v]j} be the bases for H1(C•) and H1(D•) respectively, and say
w.l.o.g. that u ∈ [u]1 and v ∈ [v]1 are the vectors quotiented by the pushout. Then H1(Q•)



48 Chapter 2. CSS code surgery as a universal construction

has a basis {[w]l} for l ≤ kQ, where [w]1 = [u]1 = [v]1, [w]l = [u]l when 1 < l ≤ kC and
[w]l = [v]l−kC+1 for kC < l ≤ kC + kD − 1.

Proof. nQ is immediate by the definition. Given u ∈ [u]1 and v ∈ [v]1, any other represen-
tatives y ∈ [u]1, x ∈ [v]1 belong to the same equivalence class in H1(Q•), as y ∼ u ∼ v ∼ x.

All other equivalence classes remain distinct, as they would be in ((C ⊕D)•, (C ⊕D)•).
However, it is possible to introduce new equivalence classes, without a preimage in

H1((C ⊕D)•). Despite coeq• being surjective, the lift H1(coeq•) is not always surjective,
as the restriction of coeq1 to ker(∂(C⊕D)•

1 ) is not always surjective. �

This last case is subtle, and rarely occurs with small codes or topological codes. We
present an explicit example in Appendix 5. Should it be useful, we can swap to subsystem
codes after the merge, and not store any data in the new logical qubits, relegating them
to gauge qubits, as done in [CKBB22].
Lemma 2.3.15. Let the Z-merge code map

((C ⊕D)•, (C ⊕D)•)

(Q•, Q•)
FZ

coeq• coeq•

of an irreducible Z-merged code have its interpretation M as a C-linear map. Then M
acts as

=
(

1 0 0 0
0 0 0 1

)
on each pair of qubits in ((C ⊕D)•, (C ⊕D)•) which are equivalent in (Q•, Q•) and M
acts as identity on all other qubits.

Proof. M must have the following maps on Paulis on each pair of qubits being merged:

Z ⊗ I 7→ Z; I ⊗Z 7→ Z; X ⊗X 7→ X

which uniquely defines the matrix above. In other words we have |00〉 7→ |0〉, |11〉 7→ |1〉,
|01〉 7→ |0〉 , |10〉 7→ |0〉 etc, which has the convenient presentation as the ZX diagram on
the left above. �

Lemma 2.3.16. Let (Q•, Q•) be an irreducible Z-merged code of (C•, C•) and (D•, D•)
along (V•, V •). Call f = H1(coeq•). Then

f([u]i + [v]j) = [w]l

where [w]l was defined in Lemma 2.3.14.
This is obvious by considering the surjection in question and using Lemma 2.3.14. It

essentially says that on the pair of logical operators in ((C ⊕D)•, (C ⊕D)•) which are
being quotiented together, FZ acts as:

Z ⊗ I 7→ Z; I ⊗Z 7→ Z; X ⊗X 7→ X

where the map on Xs is inferred from the dual. In the case where new logical qubits
are introduced, as described in Lemma 2.3.14, it can be easily checked that these are
initialised in the logical |+〉 state, as they are not in the image of the H1(coeq•).



2.3. CSS code surgery 49

Lemma 2.3.17. Let the merged code have no new logical qubits, i.e. kQ = kC + kD − 1.
Then,

dXQ ≥ min(dXC , dXD)

Proof. By considering the code map FZ , we see that any X logical operator u in (Q•, Q•)
has a preimage w which is also an X logical operator in ((C ⊕ D)•, (C ⊕ D)•), s.t.
|w| ≤ |u|. This is because coeq• can be restricted to fᵀ = H1(coeq•), and any logical in
((C ⊕D)•, (C ⊕D)•) has sublogicals in (C•, C•) and (D•, D•). �

The proof fails when the merged code has new logical qubits, as there can be a X logical
operator u whose image under coeq• is in [0], which gives no bound on the weight of u.

Remark 2.3.18. Note that we do not in general have a lower bound on dZQ in terms of
dZC and dZD. We can see this from the discussion in Section 2.2.3. Given the code map
FZ , the chain map f1 : (C ⊕ D)1 → Q1 restricts to H1(f), but this does not preclude
there being other vectors in (C ⊕ D)1\ ker ∂(C⊕D)•

1 which are mapped into one of the
equivalence classes in H1(Q•). In computational terms, while we cannot have detectable
X operators in the initial codes which are mapped to logicals by the code map FZ , this
is unfortunately possible with detectable Z operators. We illustrate this with an example
in Appendix 4.

We now show that, if we consider two codes to be merged as instances of LDPC families,
their combined Z-merged code code is also LDPC. Recall Definition 2.2.3.

Lemma 2.3.19. (LDPC) Say our input codes (C•, C•), (D•, D•) have maximal weights
of generators labelled wZC , wXC and wZD, wXD respectively. Let (Q•, Q•) be an irreducible
Z-merged code of (C•, C•) and (D•, D•) along (V•, V •). Then

wZQ = max(wZC , wZD); wXQ < wXC + wXD .

Similarly, letting the input codes have maximal number of shared generators on a single
qubit qZC , qXC and qZD, qXD we have

qZQ ≤ qZC + qZD; qXQ = max(qXC , qXD )

Proof. None of the Z-type generators are quotiented by a Z-merge map, so wZQ = wZ(C⊕D) =
max(wZC , wZD). For the X-type generators, in the worst case the two generators which are
made to be equivalent by the merge are the highest weight ones. For these generators to
appear in V0 they must have at least two qubits in each of their support which is in V1,
and thus these qubits are merged together, so wXQ < wXC + wXD .

Next, using again the fact that none of the Z-type generators are quotiented, a single
qubit could in the worst case be the result of merging two qubits in (C•, C•) and (D•, D•)
which each have the maximal number of shared Z-type generators, so qZQ ≤ qZC + qZD. For
the X case, if a qubit is in V1 then all X-type generators it is in the support of must
appear in V0. Therefore, when any two qubits are merged all of their X-type generators
are also merged. Thus qXQ = qX(C⊕D) = max(qXC , qXD ). �

Note that as wZ , wX and qZ , qX are at worst additive in those of the input codes, the
Z-merge of two LDPC codes is still LDPC, assuming the pushout is still well-defined using
matching Z operators for each member of the code families. Next, we dualise everything,
and talk about X-merges.



50 Chapter 2. CSS code surgery as a universal construction

Definition 2.3.20. Let (C•, C•) and (D•, D•) be CSS codes. Let (V•, V •) be a CSS
code such that V • is a logical operator subcomplex of C• and D•, and Q• is the merged
complex along V •. Then the CSS code (Q•, Q•) is called the X- merged code of (C•, C•)
and (D•, D•) along (V•, V •).

In this case we glue along an X logical operator instead. The notions of irreducibility,
Lemma 2.3.14 and Lemma 2.3.19 carry over by transposing appropriately.

An X-merge map EX can be defined similarly, and a similar result as Lemma 2.3.15
applies to irreducible X-merged codes.

Lemma 2.3.21. Let the X-merge code map of an irreducible X-merged code have its
interpretation L as a C-linear map. Then L acts as

= 1√
2

(
1 0 0 1
0 1 1 0

)
on each pair of qubits in ((C ⊕ D)•, (C ⊕ D)•) which are equivalent in (Q•, Q•), i.e.
|++〉 7→ |+〉, |−−〉 7→ |−〉, and L acts as identity on all other qubits.

Proof. This time, L must have the maps

X ⊗ I 7→ X; I ⊗X 7→ X; Z ⊗Z 7→ Z

�

Similarly, the maps on logical operators are

X ⊗ I 7→ X; I ⊗X 7→ X; Z ⊗Z 7→ Z

and, when new logical qubits are generated, they are initialised in the |0〉 state.
Having discussed Z- and X-merged codes, we briefly mention splits. These are just

the opposite code maps to FZ and EX . In both cases, all the mappings are determined
entirely by Lemma 2.3.14 by taking transposes or adjoints when appropriate.

Remark 2.3.22. In practice, when the CSS codes in question hold multiple logical qubits
it may be preferable to merge/split along multiple disjoint Z or X operators at the same
time. Such a protocol is entirely viable within our framework, and requires only minor
tweaks to the above results. The same is true should one wish to merge/split along
operators within the same code.

We now look at a short series of examples.

2.3.5 Examples of surgery
Lattice surgery

Lattice surgery is the prototypical instance of CSS code surgery. It starts with patches of
surface code and then employs irreducible splits and merges to perform non-unitary logical
operations [HFDM12]. The presentation we give of lattice surgery is idiosyncratic, in the
sense that we perform the merges on physical edges/qubits, whereas the standard method
is to introduce additional edges between patches to join them together. We remedy this
in Section 2.4.



2.3. CSS code surgery 51

Consider the pushout of cell complexes below:

As before, we informally consider this to be ‘gluing along’ the graph in the top left, but
for completeness it is formalised in Appendix 1. By considering the pushout to be in
Ch(MatF2), we have:

V• D•

C• Q•

g•

f• q•

p•

Letting coeq• : (C ⊕ D)• → Q• be the relevant coequaliser map, we see that FZ =
(coeq•, coeq•) constitutes an irreducible Z-merge map. In particular, observe that FZ
sends the logical operators:

Z ⊗ I 7→ Z

I ⊗Z 7→ Z

X ⊗X 7→ X

as predicted by Lemma 2.3.16.
The first two give H1(coeq•) =

(
1 1

)
and the last H1(coeq•) =

(
1
1

)
. FZ is evidently

Z-preserving but not X-preserving, as X ⊗ I is taken to an operation which is detected
by the Z stabilisers. Observe that we end up with a greater cosystolic distance of (Q•, Q•)
than we started with in ((C ⊕D)•, (C ⊕D)•).

If we instead consider the pair (coeq•, coeq•) as an X-preserving code map FX , then
it is an irreducible X-split map. In terms of cell complexes we would have 4

→

4Pedantically, this is a morphism in the opposite category of cell complexes OACCop.



52 Chapter 2. CSS code surgery as a universal construction

We similarly have an irreducible X-merge map and irreducible Z-split map with the
obvious forms by dualising appropriately.
Remark 2.3.23. While it is convenient to choose logical operators along patch boundaries
to glue along, so that the complexes can all be embedded on the 2D plane, this is not
necessary. One could intersect two patches along any matching operator.

Recall the toric code from Example 2.2.8. We can merge two copies of the code along
a logical Z operator, which corresponds to an essential cycle of each torus. The resultant
code will then look like two tori intersecting, depending somewhat on the choices of
essential cycle:

The Z-merge map on logical qubits will be the same as for patches.

Shor code surgery

Of course, the pushout we take does not have to come from square lattices. Let C• and D•
be two copies of Shor codes from Example 2.2.7.5 We can perform merges between them.
We give two examples. First, for a Z-merge, we take the logical Z operator Z =

⊗8
i Zi

and apply Definition 2.3.10 to get the logical operator subcomplex:

V• = V1 V0
PX

with V1 = F9
2, V0 = F2

2, and all other components zero. This is just C• from Example 2.2.7
truncated to be length 1, as this logical Z operator has support on all physical qubits;
this logical is not irreducible. The monic chain map f• given by inclusion into the Shor
code is just

0 V1 V0

C2 C1 C0

0

0

PX

id id
P ᵀ
Z PX

and the same for g•. The pushout of

V• D•

C•

g•

f•

5The Shor code can be constructed as a cellulation of the projective plane, so it is actually not wholly
dissimilar from the lattice codes [FM01].



2.4. Error-corrected logical operations 53

will then be
Q• = F12

2 F9
2 F2

2
∂Q•2 ∂Q•1

where ∂Q•1 = PX and ∂Q•2 =
(
P ᵀZ |P

ᵀ
Z

)
. We have ended up with virtually the same code

as the Shor code, except that we have a duplicate for every Z-type generator, i.e. every
measurement of Z stabilisers is performed twice and the result noted separately. While
this example is very simple, it highlights that the result of a merge can have somewhat
subtle features, such as duplicating measurements, which the two input codes do not. This
merge did not use irreducible logical operators.

For our second case, we use a different (but equivalent) logical operator,Z = Z1⊗Z4⊗Z7.
We still glue two copies of the Shor code, but now we have V1 = F3

2, V0 = F2
2 and

∂V•1 =
(

1 1 0
1 0 1

)
. That is, our logical operator subcomplex is just the repetition code

from Example 2.2.1. The logical is irreducible. We then have

0 V1 V0

C2 C1 C0

0

0

∂V•1

f1 id
P ᵀ
Z PX

where

f1 =



1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0


and the same for g1, forming again a monic span of chain complexes. The resultant
Z-merged code is then

Q• = F12
2 F15

2 F2
2

∂Q•2 ∂Q•1

and the large matrices ∂Q•2 and ∂Q•1 are easily obtained by quotienting out rows and
columns from ∂C•2 ⊕ ∂D•2 and ∂C•1 ⊕ ∂D•1 .

2.4 Error-corrected logical operations
We now describe how our abstract formalism leads to a general set of error-corrected logical
operations for CSS codes. We consider this to be a good application of the homological
algebraic formalism, as we suspect these logical operations would be challenging to derive
without the machinery of Ch(MatF2). 6 So far in our description of code maps there are
two main assumptions baked in: that one can perform linear maps between CSS codes (a)
deterministically and (b) while maintaining error-correction, both of which are desired
for performing quantum computation.

6An alternative approach could be to use Tanner graphs.



54 Chapter 2. CSS code surgery as a universal construction

For assumption (a), we can only implement code maps which are interpreted as an
isometry deterministically. If they are not, instead we must perform measurements on
physical qubits. Recall from Proposition 2.2.12 that every code map has an interpretation
constructed from CNOTs and some additional states and effects taken from {|+〉 , 〈0|} for
a Z-preserving code map or {〈+| , |0〉} for an X-preserving code map. This means that
in order to implement the code map non-deterministically, one need only apply CNOTs
and measure some qubits in the Z-basis (for a Z-preserving code map) or the X-basis
(X-preserving code map). Of course, should we acquire the undesired measurement result,
we induce errors in our code map. There is no protocol for correcting these errors in
all generality. For assumption (b), there is no protocol for performing arbitrary CNOT
circuits on physical qubits in a code fault-tolerantly. However, when performing CSS code
surgery which is an irreducible Z- or X-merge, we have a protocol which addresses both
(a) and (b).

2.4.1 Procedure summary
Our procedure for performing an error-corrected Z ⊗Z measurement is as follows:

1. Find a matching Z logical operator which belongs to both initial codes, in the sense
of Definition 2.3.10.

2. Verify that this logical operator satisfies the irreducibility property of Definition 2.3.13
in both codes.

3. Verify that the merge is bounded below, in the sense of Definition 2.4.8 below.

4. Perform the merge as described in Proposition 2.4.10.

We do not know how difficult it will be in general to perform the verification in steps (2)
and (3) for codes (or families of codes) of interest.

2.4.2 Full description of procedure
We will first describe gauge fixing. Luckily this does not become an additional condition,
as we will show it coincides precisely with irreducibility. For reasons of brevity we do not
describe the connection between lattice surgery and gauge fixing, but refer the interested
reader to [VLC19]. Briefly, we will consider the whole system to be a subsystem code, and
fix the gauges of the Z operators we are gluing along.

Definition 2.4.1. Let C• be a chain complex and u be a representative of the equivalence
class [u] ∈ H1(C•), which is a basis vector of H1(C•). Let x be a vector in C1 such that
|x| = 1 and x·u = 1. We say that x is a qubit in the support of u. Recall from Lemma 2.2.4
that u has a unique paired basis vector [v] ∈ H1(C•) such that [u] · [v] = 1. It is possible to
safely correct a qubit x when there is a vector v ∈ [v] such that x · v = 1 and y · v = 0 for
all other qubits y in the support of u. We say that u is gauge-fixable when it is possible
to safely correct all qubits in the support of u.

Example 2.4.2. Consider the Shor code from Example 2.2.7 and Section 2.3.5. The Z
operator

v =
(
1 1 1 1 1 1 1 1 1

)ᵀ



2.4. Error-corrected logical operations 55

has qubits in its support for which it is not possible to safely correct, as there are only
4 representatives of the nonzero equivalence class [w] ∈ H1(C•) but 9 qubits for which
being able to safely correct is necessary. However, it is possible to safely correct all qubits
in the support of the Z operator

u =
(
1 0 0 1 0 0 1 0 0

)ᵀ
,

where u ∈ [v], with the fixing operators:(
1 1 1 0 0 0 0 0 0

)ᵀ ;
(
0 0 0 1 1 1 0 0 0

)ᵀ ;
(
0 0 0 0 0 0 1 1 1

)ᵀ
The same definition of gauge-fixability applies if we exchange X and Z appropriately.

Lemma 2.4.3. Every irreducible logical operator is also gauge-fixable, and vice versa.

Proof. See Appendix 6. �

Next we will require the tensor product of chain complexes, for which see Definition 1.4.8.

Definition 2.4.4. Let V• = V1 V0 and P• = P1 P0

1

1


be length 1 chain

complexes. Then we can make the tensor product chain complex W• = (P ⊗V )•. Explic-
itly,

W• = W2 W1 W0

with

W2 = P1⊗V1 = V1; W1 = (P0⊗V1)⊕(P1⊗V0) = (F2
2⊗V1)⊕V0; W0 = P0⊗V0 = F2

2⊗V0

Also, ∂W•2 =

idV1

idV1

∂V•1

 and ∂W•1 =
(
idF2

2
⊗ ∂V•1 ∂P•1 ⊗ idV0

)
=
(
∂V•1 0 idV0

0 ∂V•1 idV0

)
.

In the case where V• is a string along a patch of surface code, say of the form:

V•  

then W• will be of the form

W•  

as a square lattice, see Definition 1.8. We can see this as the ‘intermediate section’ used
to perform lattice surgery.



56 Chapter 2. CSS code surgery as a universal construction

Lemma 2.4.5. Let V• be a Z logical operator subcomplex of a chain complex C•, and
let V• satisfy the irreducibility property from Definition 2.3.13. Then

wXW = wXC + 1; wZW = qXC + 2; qXW = max(qXC , 2); qZW = wXC

and dimH1(W•) = dimH1(V•) = 1.

Proof. Observe that ∂V•1 has maximum row weight wXC and column weight qXC . Then
inspect the matrices ∂W•2 and ∂W•1 from Definition 2.2.3. For dimH1(W•), we use the
Künneth formula, for which see Lemma 1.4.10, which in this case says H1((P ⊗V )•) =
(H0(P•)⊗H1(V•))⊕ (H1(P•)⊗H0(V•)). We then have

dimH0(P•) = 1; dimH1(P•) = 0; dimH0(V•) = 0; dimH1(V•) = 1

where the last comes from the fact that V0 = im(∂V•1 ), using Definition 2.3.10. dimH1(V•) =
1 as B1(V•) = 0 and Z1(V•) = 1. �

Definition 2.4.6. Let V• be a simultaneous Z logical operator subcomplex of both C•
and D•, satisfying the irreducibility property. Then define the ‘sandwiched code’ (T•, T •),
with T• as the pushout of a pushout:

V• C•

V• W• R•

D• T•

where the middle term is W• = (P ⊗V )• from Definition 2.4.4 above, and the two inclusion
maps V• ↪→ W• map V1 into each of the copies of V1 in W1, and the same for V0. All maps
in the pushouts are basis-preserving, and one can check that they are all monic.

Colloquially, we are gluing first one side of the code W• to C•, and then the other side
to D•. 7

Lemma 2.4.7. The ‘sandwiched code’ (T•, T •) has

nT = nC + nD + r; kT ≥ kC + kD − 1

and

wXT ≤ wXC⊕D+1; wZT ≤ max(wZC⊕D, qXC⊕D+2); qZT ≤ qZC⊕D+wXC⊕D; qXT = max(qXC⊕D, 2).

If kT = kC + kD − 1 then dXT ≥ min(dXC , dXD).

Proof. For nT , just apply Lemma 2.3.14 twice. For kT , use Lemma 2.4.5 and apply
Lemma 2.3.14 twice.

For dXT , we first show that (R•, R•) has dXR ≥ dXC . Every X operator in (W•,W •) must
anticommute with the Z operator used to construct V•, and thus must have support on
those qubits. In addition, it must have a matched X operator in (C•, C•), which also has

7We could equally do it the other way, in which case the two pushouts would be flipped, but this does
not change T•.



2.4. Error-corrected logical operations 57

support on those qubits. As the only other X operators in (R•, R•) are those in (C•, C•)
which are unaffected by the merge, having no support on the qubits being merged, dXR ≥ dXC .
Then, if kT = kC + kD − 1, dXT ≥ min(dXC , dXD) using Lemma 2.3.17.

For wXT , the pushouts will glue each X type stabiliser generator in W• into those in
C• and D• in such a way that they will have exactly one extra qubit in the support, by
the product construction of W•; we can see this from ∂W•1 in Definition 2.4.4, as there is
exactly a single 1 which is not part of the ∂V•1 in any given row of the matrix.

For wZT , qZT and qXT we just use Lemma 2.4.5 and apply Lemma 2.3.19 twice. �

The intuition here is that rather than gluing two codes (C•, C•) and (D•, D•) together
directly along a logical operator, we have made a low distance hypergraph code (W•,W •)
and used that to sandwich the codes. A consequence of the above lemma is that this
‘sandwiching’ procedure maps LDPC codes to LDPC codes. Importantly, under suitable
conditions the two pushouts let us perform a code map on logical qubits in an error-
corrected manner.

Definition 2.4.8. Let (T•, T •) have no logical Z operators with weight lower than dC⊕D.
Then we say that the merged code has distance bounded below.

Remark 2.4.9. Note that the only Z operators which can lower the distance are those
with support on the logical Z which is used to construct V•, as all others will be unchanged
by the quotient. The condition for a merge to have distance bounded below is quite a
tricky one, as we do not know of a way to check this easily. Because of Lemma 2.4.7, this
problem is isolated to Z operators, as the distance is guaranteed to be bounded below for
X operators.

Proposition 2.4.10. Let (C•, C•) and (D•, D•) be CSS codes which share an irreducible
Z operator on m physical qubits and r X-type stabiliser generators each; let the relevant
logical qubits be i and j, and let V• be the logical operator subcomplex of C• and D•
such that the codes admit an irreducible Z-merge. Further, let d be the code distance
of ((C ⊕D)•, (C ⊕D)•), and let the merged code (T•, T •) have distance bounded below.
Then there is an error-corrected procedure with distance d for implementing a Z ⊗Z
measurement on the pair i, j of logical qubits, which gives the code (T•, T •). This procedure
requires r auxiliary clean qubits and an additional m Z-type stabiliser generators.

Proof. We aim to go from the code ((C ⊕D)•, (C ⊕D)•) to (T•, T •). The code map we
apply to physical qubits is as follows. We call the physical qubits in the support of the
logical operators to be glued together the participating qubits. We initialise a fresh qubit
in the |+〉 state for each pairing of X-measurements on the two logical operators of qubits
i and j, that is for each qubit in (W•,W •) which is not glued to a qubit in (C•, C•) or
(D•, D•).

We now modify the stabilisers to get to (T•, T •). To start, change the X stabiliser
generators with support on the participating qubits to have one additional fresh qubit
each, so that each pairing of X-measurements shares one fresh qubit. We add a new Z
stabiliser generator with weight a + 2 for each participating qubit in one of the logical
operators to be glued, where a is the number of X type generators of which that physical
qubit is in the support. One can see this using Definition 2.4.4, as on the middle code
(W•,W •) we have

PZ = (∂W•2 )ᵀ =
(
idFm2 idFm2 (∂V•1 )ᵀ

)



58 Chapter 2. CSS code surgery as a universal construction

We then measure d rounds of all stabilisers. All of the qubits in the domain of the last
block of PZ above are those which were initialised to |+〉. The only other qubits which
contribute to the new Z stabiliser generators are those on either side of the sandwiched
code, i.e. those along the Z logical operators of qubits i and j. Each of the physical qubits
in the support of these logical operators is measured exactly once by the new Z stabiliser
generators, and they are measured in pairs, one from each side; therefore performing these
measurements and recording the total product is equivalent to measuring Z ⊗Z. We will
now check this, and verify that it maintains error-correction.

Let the outcome of a new Z-type measurement be cλ ∈ {1,−1}, and the overall out-
come cL =

∏
λ≤m cλ. Whenever cλ = −1 we apply the gauge fixing operator Xλ =⊗

(i∈v | vi=1)Xi for the specified v ∈ C0 (or one could choose a gauge fixing operator using
D0 instead). We let XcL =

∏
(λ | cλ=−1)Xλ. On participating physical qubits, the merge

is then
XcL

∏
λ

I + cλZ

2 =
∏
λ

I + Z

2 XcL

where we abuse notation somewhat to let I and Z here refer to tensor products thereof.
As each Xλ belongs to the same equivalence class of logical X operators in H1(C•), if
cL = 1 then XcL acts as identity on the logical space; if cL = −1 then XcL acts as X
on logical qubit i in the code before merging. One can then see that these two branches
are precisely the branches of the logical Z ⊗Z measurement. As the measurements were
performed using d rounds of stabilisers, and the gauge fixing operators each have support
on at least d qubits, the overall procedure is error-protected with code distance d.

We also check that the procedure is insensitive to errors in the initialisation of fresh
qubits. If a qubit is initialised instead to |−〉, or equivalently suffers a Z error, then the
new Z stabiliser measurements are insensitive to this change, and it will just show up at
the X measurements on either side of the fresh qubit. If it suffers some other error, say
sending it to |1〉, then each new stabiliser measurement with that qubit in its support may
have its result flipped. By construction of V•, each fresh qubit is in the support of an even
number of new Z stabiliser measurements, and so initialising the fresh qubits incorrectly
will not change cL. �

As ZX diagrams, the branches are:

;
π

on logical qubits i and j, and all other logical qubits in the code are acted on as identity.
We can freely choose which logical qubit may have the red π spider, as it will differ only
up to a red π – i.e. a logical X – on the output logical qubit. In practice, depending on
the code there will typically be cheaper ways of fixing the gauges than using an X logical
operator for each −1 outcome, as there could be an X logical operator which has support
on multiple of the qubits belonging to new stabilisers. Moreover, one can just update the
Pauli frame rather than apply any actual X logical operators. The ability to do so is
necessary, however, so that the −1 outcome is well-defined.

The protocol obviates the problem of performing the code map on physical qubits
deterministically, as the only non-isometric transformations we perform are measurements
of stabiliser generators. However, the code map on logical qubits is still not isometric,
hence we have a logical measurement.



2.5. Conclusions and further work 59

For the prototypical example of lattice surgery we then have:

→

We also look at a less obvious example, that of error-corrected surgery of the Shor code,
in Appendix 7.

By dualising appropriately one can perform an X-merge by sandwiching in a similar
manner. We can also do the ‘inverse‘ of the merge operation:

Corollary 2.4.11. Let (T•, T •) be a CSS code formed by sandwiching codes (C•, C•)
and (D•, D•) together along a Z operator. Then there is an error-corrected procedure to
implement a code map on logical qubits EX from (T•, T •) to ((C ⊕D)•, (C ⊕D)•).

Proof. As the initial code is already a sandwiched code we can just take the opposite
of sandwiching. We delete the qubits belonging to the intermediate code (W•,W •) but
not (C•, C•) or (D•, D•) by measuring them out in the X-basis. The code map EX on
participating logical qubits is

by following precisely the same logic as for traditional lattice surgery [HFDM12]. �

Again, by dualising appropriately we get the last split operation.
Given a procedure for making Z ⊗Z andX ⊗X logical measurements and the isometries

from splits, one can easily construct a logical CNOT between suitable CSS codes following,
say, [dBH20] and observing that the same ZX diagrammatic arguments apply. Augmented
with some Clifford single-qubit gates and non-stabiliser logical states one can then perform
universal computation. As opposed to some other methods of performing entangling gates
with CSS codes, e.g. transversal 2-qubit gates, the schemes above require only the m
qubits from the respective Z or X operators to participate, and we expect m � n for
practical codes. Unlike that of [CKBB22], our method does not require a large ancillary
hypergraph product code, which can have significantly worse encoding rate and code
distance scaling than the LDPC codes holding data – the tradeoff is that we cannot
generally prove that the code distance will be maintained. Our method does not require
the code to be ‘self-ZX-dual’ in the sense of [BB24], and unlike [HJY23] our method does
not require the code to be defined on any kind of manifold.

2.5 Conclusions and further work
The pushouts we gave along logical operators are the most obvious cases. By taking
pushouts of more interesting spans other maps on logical data can be obtained, although
by Proposition 2.2.12 and Corollary 2.2.17 all code maps as we defined them are limited
and do not allow for universal quantum computation on their own; we also do not know
whether other pushouts would allow the maps on logical data to be performed fault-
tolerantly.



60 Chapter 2. CSS code surgery as a universal construction

In this Chapter we assumed that the two codes being ‘glued’ are different codes, but
the same principles apply if we have only one code we would like to perform internal
surgery on. In this case, the correct universal construction to use should be a coequaliser.
We meet this case in Chapter 3. It should be possible to extend the definitions of X- and
Z-merges straightforwardly to include metachecks [Cam19], by specifying that the logical
operator subcomplex V• now runs from V1 to V−1, so it has X-checks and then metachecks
on X-checks, but we have not proved how this affects metachecks in the merged code.

There are several ways in which our constructions could be generalised to other codes.
The obvious generalisation is to qudit CSS codes. For qudits of prime dimension q, every-
thing should generalise fairly straightforwardly using a different finite field Fq but in this
case the cell complexes will require additional data in the form of an orientation on edges,
as is familiar for qudit surface codes. When q is not prime, one formalism for CSS codes
with dimension q is chain complexes in Zq-FFMod, the category of free finite modules over
the ring Zq [Nov24]. As Zq is not generally a domain this complicates the homological
algebra.

Second, if we wish to upgrade to more general stabiliser codes we can no longer use
chain complexes. The differential composition PXP

ᵀ
Z is a special case of the symplectic

product ω(M,N) = MωNᵀ for ω =
(

0n In
−In 0n

)
[Haa16], but by generalising to such a

product we lose the separation of Z and X stabilisers to form a pair of differentials. It is
unclear what the appropriate notion of a quotient along an X or Z operator is for such
codes.



Chapter 3

SSIP: automated surgery with
quantum LDPC codes

3.1 Introduction
There are several desiderata for logical operations on codes. They should:

• Yield universality – commonly in conjunction with state injection.

• Be individually addressable on logical qubits.

• Be parallelisable.

• Not add significant overhead to the quantum memory – in terms of qubit count,
stabiliser weight, reduction in threshold etc.

We argue that generalised surgery can satisfy these desiderata. Here we present SSIP,
software which automates the procedure of identifying and performing CSS code surgery.
While we focus on the homological formalism in [CB24], the software is also capable of
performing some of the surgeries in [CKBB22] by converting the protocols defined using
Tanner graphs into chain complexes. SSIP has been extensively tested and benchmarked,
and we find that it is fast (and correct) on small-to-medium sized codes, while using lower
resource requirements than previously estimated [BCGMRY24].

The layout of this Chapter is as follows. We start by explaining how SSIP determines if
two logical operators from different codeblocks can be merged together, yielding a logical
parity measurement. This is an external code merge. SSIP does not explicitly handle
code splits, the adjoint operation to merges, because once a merge has been found we
have all the data required for its corresponding split. Upon performing a merge, SSIP can
optionally compute substantial additional data, such as which new ancillae data qubits,
stabilisers and logical qubits are introduced. We illustrate first with some very small codes,
including mildly interesting cases where we merge a triorthogonal code into other quantum
memories, allowing for magic state injection without distillation. All examples can be
found in the Github repository https://github.com/CQCL/SSIP. We then give results
for a variety of external merges with lift-connected surface codes [ORM24], generalised
bicycle codes [KP13], and bivariate bicycle codes [BCGMRY24].

We perform logical single-qubit and parity measurements in the X and Z bases. After a
merge is performed, we must ensure that the code distance is preserved; for small codes this
is straightforward to calculate using naive methods, such as enumerating over all logical
operators, but for codes with blocklengths in the hundreds of qubits such methods would
take too long. We use QDistRnd [PSK22] to upper bound the code distances. Where



62 Chapter 3. SSIP: automated surgery with quantum LDPC codes

possible we use the Satisfiability Modulo Theories (SMT) solver Z3 [dMB08] to give
explicit distances.

We demonstrate the developed techniques on the J144, 12, 12K gross code from [BCGMRY24],
which belongs to a family of bivariate bicycle codes. We find that we can measure any
logical qubit simultaneously in either the X or Z basis while maintaining d = 12, when
viewed as a subsystem code, using at most an additional 78 data qubits, and 72 syndrome
qubits, so 150 total ancillae. This is substantially lower than the 1380 additional qubits
described in [BCGMRY24, Sec. 9.4]. These results on the gross code are reliant on the
upper bound from QDistRnd being tight.

We then describe how one can perform internal merges within a CSS codeblock. Hap-
pily, the procedure is very similar to external merges, which we previously described in
[CB24], with almost the same prerequisites. We find that we can perform pairwise parity
measurements between many (but not all) of the logical qubits in the gross code in either
basis using a total of at most 150 extra qubits, maintaining code distance.

Importantly, there are several things which SSIP does not do. For fault-tolerance, we
must give circuits for syndrome measurements and other operations on the codes, and then
use an accurate error model to establish a (pseudo-)threshold [KLZ96]. Without circuits,
one can attempt to approximate the error tolerance of the code using phenomenological
noise. SSIP does neither of these things; it does not include methods for constructing
quantum circuits or modelling noise in any way. Additionally, codes should come with
good decoders, allowing us to extract a likely error from the outcomes of syndrome
measurements [PK21, WB24, RWBC20]. SSIP does not perform any decoding. Lastly,
quantum architectures commonly have geometric constraints, which put conditions on the
Tanner graphs of any implemented CSS codes. SSIP has no notion of geometric constraints
or architectures. For simplicity, it is solely concerned with code parameters and figures of
merit, such as code distances and stabiliser weights.

3.1.1 Related work
Cohen et al [CKBB22] first published generalisations of lattice surgery to arbitrary CSS
codes. Our work is directly inspired by theirs, although our approach is homological rather
than using Tanner graphs. Our surgeries, when performing logical parity measurements
and their adjoint splits, are also different. This makes performing an apples-to-apples com-
parison between the two difficult, but we do present some comparisons to their approach.

There are several different open-source repositories for reasoning about quantum CSS
and LDPC codes [Sab, Per23, Rof22]. These have different foci, and to the best of our
knowledge none are designed to reason about surgery.

Separately, LaSsynth has recently been developed for synthesising lattice surgeries
[TNG24]. This has a different scope to the present work. LaSsynth takes a desired quantum
routine and synthesises it into a sequence of lattice surgery operations, encoding the
synthesis problem as a SAT instance to exhaustively optimise the resources. It is designed
exclusively for surface codes. In a similar vein see [Wat24]. SSIP cannot compile quantum
routines, beyond a specified merge/split or sequence of merges/splits. It could be fruitful
to attempt to optimise resources when performing surgery with more elaborate codes
than surface codes in a similar manner.

Shortly after the preprint for this Chapter appeared on arXiv, a preprint appeared
which has some crossover with the present work [CHRY24]. In this later preprint, the
authors prove that by gauge-fixing the new logicals present in merged codes one can



3.2. The CSS code-homology correspondence 63

prove bounds on the size of the ancilla patch, conditional on the expansion properties of
a certain graph. As an application the authors focus on the gross code of [BCGMRY24],
while we benchmark a variety of different codes. Later works then further reduced the
overheads [IGND24, WY24].

3.1.2 General software description
The software is called Safe Surgery by Identifying Pushouts (SSIP) because its core
function is to find pushouts, and other colimits, between codes in order to perform surgery.
This surgery is ‘safe’ in the sense that it is guaranteed to perform logical measurements
on the logical qubits involved in the merge, without affecting logical data elsewhere in the
code. It is also safe in the sense that the distance can be checked afterwards, although
this becomes challenging for codes at high blocklengths and distances. As a consequence,
SSIP is best suited to codes with blocklengths in the low hundreds, i.e. for near-term
fault-tolerant computing.

SSIP is written in Python for ease of use, with occasional function calls to a library in
GAP [PSK22] for code distance estimates. SSIP is available from its Github repository
https://github.com/CQCL/SSIP or alternatively by calling pip install ssip, and is
fully open-source, released with a permissive MIT license. Documentation can be found
at https://cqcl.github.io/SSIP/api-docs/.

For simplicity, SSIP is entirely procedural. The only new classes defined in SSIP are
structs1, such as the CSScode, which merely contains the two parity-check matrices of a
CSS code, stored as numpy arrays. The codebase then operates by performing numerics
in functions, passing around the CSScode and other elementary data structures.

There are four main purposes of SSIP:

• Determine whether, given suitable data, a code merge is possible (and hence its
adjoint split).

• Perform code merges and return merged codes.

• Calculate additional data about the merge, such as the new stabilisers, data qubits
and logical qubits introduced.

• Calculate code parameters, either as CSS codes or as subsystem codes, once merges
have been performed.

All of these are extremely tedious to compute by hand, and so software is required for
practically relevant codes.

We will describe how SSIP performs all of these steps, but in order to explain our
algorithms and results we must give some algebraic background on CSS codes and surgery.

3.2 The CSS code-homology correspondence
First, recall the definition of CSS codes in terms of chain complexes from Chapter 2. In
a slight departure, we define CSS codes only in terms of a single chain complex, rather
than the chain complex and its dual cochain complex, to lighten notation.

1Python does not have structs, but as of Python 3.7 it has dataclasses, which are close to structs.



64 Chapter 3. SSIP: automated surgery with quantum LDPC codes

Recall that a CSS code is called ω-limited when the weights of rows and columns in
both parity-check matrices are bounded above by ω. It is common to consider infinite
families of codes of increasing size. If every member of the family is ω-limited for some
finite ω then the family is called quantum Low-Density Parity Check (qLDPC). A similar
definition applies to classical LDPC codes.

Throughout, we will refer to the ω of a code as being the maximum column or row
weight of its parity-check matrices.

We will also use subsystem codes in this Chapter, for which recall Definition 2.2.6.

3.2.1 Code distance
We take a brief aside to discuss the calculation of minimum distance for CSS codes. There
are at least 5 ways to perform this calculation for CSS codes, without relying on the codes
being 2D surface codes using e.g. [BVCKT17, App. B].

1. Enumerate over all logicals in the code and find the one(s) with the lowest weight.
The compute time of this will generally scale exponentially in n, and so it can only
reasonably be used for small codes. Evidently the compute time is insensitive to d,
as every operator is checked regardless.

2. Start by searching for any weight 1 logicals and then increment the weight until
a logical is found. This will also generally scale poorly but will perform better for
codes with low d, even if n is high.

3. Use QDistRnd to give an upper bound on the code distance [PSK22]. To calculate
dZ QDistRnd constructs a generator matrix whose rows are a basis of ker(PX), then
randomly permutes columns, performs Gaussian elimination, and un-permutes the
columns, leaving a random set of rows in ker(PX). Rows not in im(P ᵀZ) are then
considered for their lowest weight. The permutation is applied many times, improving
the upper bound on dZ . The same can then be done for dX .

4. Interpret the minimum distance problem as a binary programming problem. This
is a somewhat less common problem than the mixed integer programming problem,
so in certain cases one can convert the former into the latter to make use of mixed
integer programming solvers [LAR11, Sec. C 1.].

5. Perform distance verification with ensembles of codes with related properties [DKP17].

SSIP makes use of the first three methods. In our results, for small codes or codes for
which we already know the distance is modest, we use (1.) and (2.). For some codes we
upper bound the distance using (3.) first and then verify that the bound is tight using
(2.). In SSIP we offload the computation of finding logicals in (2.) to Z3 [dMB08], which is
written in C++ and so significantly faster than it would be to find logicals in Python. For
the largest codes, in the hundreds of qubits, we merely estimate the distance using (3.).
While there are no guarantees, we find that empirically QDistRnd is accurate compared
to exact results given a large enough number of information sets, say 104 for codes in the
low hundreds of qubits.

We will also calculate the distance of subsystem CSS codes. For computations with
methods (1.) and (2.) nothing much changes, we just add conditions to the logicals
to consider. For method (3.), we check in Appendix 8 that any black box method for



3.2. The CSS code-homology correspondence 65

calculating the code distance of a CSS code can be adapted to subsystem CSS codes,
and so by changing the input given to QDistRnd we can also use (3.) to upper bound
subsystem CSS code distances.

We do not use methods (4.) and (5.) in our results. To the best of our knowledge,
the conversion in (4.) to mixed integer programming requires the codes to have regular
stabiliser weights, which merged codes will generally not have. The methods in (5.) also
require the codes to have a certain structure.

3.2.2 Lifted products

Lifted products are a mild generalisation of tensor products, and we will make use of
lifted products extensively in our set of examples. Unlike tensor products, they are not
a necessary ingredient of our constructions, but many lifted product codes have good
parameters – in both the formal and informal senses [PK22A, PK22B, PK21, KP13,
ORM24, BCGMRY24, LP24, SHR24] – and so are a useful class of codes on which to
demonstrate our methods.

Recall that a chain complex is well-defined over any ring R. Differentials are R-module
homomorphisms. We assume that the components of the chain complexes are all free
R-modules of finite rank.

Then, fix R to be a commutative subring ofM`(F2), the ring of `-by-` matrices over F2,
with a specified basis. The tensor product of chain complexes is also well-defined for the
ring R. Taking two chain complexes over R and making the tensor product (C⊗

R
D)•, this

tensor product is also a valid chain complex when replacing each entry of the differentials
in R with its corresponding matrix over F2, and considering the whole chain complex over
F2. This is the lifted product. Explicitly, we have

(C ⊗
R
D)• = C1 ⊗

R
D1 C0 ⊗

R
D1 ⊕ C1 ⊗

R
D0 C0 ⊗

R
D0

when the input chain complexes C• and D• are length 1 chain complexes over R, that
is two classical codes with a free, coherent R-action. We do not generally know a priori
what the code parameters k and d of the lifted product code (C⊗

R
D)• will be when viewed

over F2, a marked difference from the tensor product. The straightforward facts derived
from the Künneth formula only apply to the complex viewed over R, and do not easily
translate to F2.

When R = F2, the lifted product coincides with the tensor product. Lifted products
are special cases of balanced products [BE21B] where the actions are free. A common
ring to use for generating codes is C`, the ring of `-by-` circulant matrices. This is
guaranteed to be commutative, so the tensor product is defined. Helpfully, C`

∼= F〈`〉2 ,
where F〈`〉2 := F2[x]/(x` − 1) is the ring of polynomials over F2 modulo x` − 1, by sending
the mth shift matrix to xm. This means that any circulant matrix can be denoted concisely
by its corresponding polynomial.

SSIP can generate a variety of different lifted products, but there are several families of
lifted product codes which one would have to generate elsewhere and import. Given that
a CSScode in SSIP is just a pair of numpy arrays, this is straightforward.



66 Chapter 3. SSIP: automated surgery with quantum LDPC codes

3.2.3 CSS code surgery
We recap the surgery from Chapter 2, but also extend some definitions for single qubit
measurements and larger ancilla patches.

The category Ch(MatF2) has as objects chain complexes over F2. Morphisms are chain
maps, matrices between components at the same degree, such that the matrices are
coherent in the sense that we have the following commuting squares:

· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · ·

∂C•n+1

fn+1

∂C•n

fn fn−1

∂D•n+1 ∂D•n

Definition 3.2.1. (Basis-preserving) We say that a chain map is basis-preserving when
each matrix sends basis elements to basis elements, i.e. they are functions on basis elements.

We can use universal properties in Ch(MatF2) to construct new codes from old ones; in
particular, we can perform surgery between CSS codes by using pushouts and coequalisers.
We give a quick recap of this procedure here. See [CB24] for a more detailed explanation.

We assume that we are performing Z-parity measurements, which merge codes in a
manner which uses Ch(MatF2); X-parity measurements can be inferred by duality, using
the category of cochain complexes instead. Similarly, splits of codes can be inferred by
reversing the procedure.

Definition 3.2.2. Let v ∈ ker(PX)\im(P ᵀZ) be such that no other vector in ker(PX) is
contained in the support of v. Then we call v an irreducible logical operator.

Definition 3.2.3. (Logical operator subcomplex) Given a logicalZ operator v ∈ ker(PX)\im(P ᵀZ),
we can construct a chain complex which represents this operator and its stabilisers, in a
suitable sense.
V• = V1 → V0, where:

Ṽ1 = supp v; ∂V•1 = ∂C•1 �supp v; Ṽ0 =
⋃

u∈im(∂V•1 )

supp u

where supp v is the set of basis vectors in the support of v, and ∂i �S is the restriction of
a differential to a subset S of its domain. V• is called a logical operator subcomplex.

We have a suitable dualised definition for a logical X operator in ker(PZ)\im(P ᵀX). We
will make repeated use of logical operator subcomplexes throughout. Observe that this
subcomplex only has one non-zero differential, i.e. it can be considered a classical code.

External merges

Given an irreducible logical operator v in a code we can construct its logical operator
subcomplex V•. Then, if we have a monic span:

V• C•

D•

f•

g•



3.2. The CSS code-homology correspondence 67

where both chain maps are basis-preserving, and V• is a logical operator subcomplex in
both codes C• and D•, then the logical operator is ‘present’ in both codes in a suitable
sense, and we can perform an external merge which performs a parity measurement on
the two logical qubits.

We do this by first generating a new tensor product code.
Definition 3.2.4. Let P• = Fr2 → Fr+1

2 be the classical code with parity-check matrix

∂P1 =



1 0 0 · · · 0
1 1 0 · · · 0
0 1 1 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 1 1
0 0 0 0 1


i.e. P• is the incidence matrix of the path graph Pr+1. We call r the depth.

We can see that dim ker(∂P1 ) = 0, and dim ker((∂P1 )ᵀ) = 1, with the non-zero codeword
1r+1.

Let W• = (P ⊗ V )• be the new tensor product code. Explicitly it is the chain complex

Fr2 ⊗ V1 → Fr+1
2 ⊗ V1 ⊕ Fr2 ⊗ V0 → Fr+1

2 ⊗ V0

with differentials

∂W2 =



idV1 0 0 · · ·
idV1 idV1 0 · · ·

0 idV1 idV1 · · ·
0 0 idV1 · · ·
... ... ... . . .
∂V1 0 0 · · ·
0 ∂V1 0 · · ·
0 0 ∂V1 · · ·
... ... ... . . .


, ∂W1 =


∂V1 0 0 0 · · · idV0 0 0 · · ·
0 ∂V1 0 0 · · · idV0 idV0 0 · · ·
0 0 ∂V1 0 · · · 0 idV0 idV0 · · ·
0 0 0 ∂V1 · · · 0 0 idV0 · · ·
... ... ... ... . . . ... ... ... . . .

 .

We can then make the composition of two pushouts,

V• C•

V• W• R•

D• T•

The diagram is drawn with two different instances of V• so that the diagram commutes.
The first inclusion of V• into W• sends V1 into the 1st copy of V1 in W1 and the same

for V0 in W0. The second inclusion of V• sends V1 into the (r+ 1)th copy of V1 in W1 and
the same for V0 in W0. The inclusions of V• into C• and D• are just inherited from the
monic span above. As all these inclusions are basis-preserving, the code T• can be uniquely



68 Chapter 3. SSIP: automated surgery with quantum LDPC codes

defined up to relabelling of basis elements [CB24, Lemma 5.4], so all weight-related notions
such as code distance, being ω-limited etc. are canonical.

In this way we make the merged code T• from the initial codes C• and D•, where two
logical operators in C• and D• respectively have been quotiented into the same equivalence
class, performing a Z⊗Z measurement. This is done purely by initialising new qubits and
stabilisers, so can be done in a fully error-corrected fashion, assuming the merge retains
the code distance.

This is not generally guaranteed, so we must check it separately. It is also possible to
introduce new logical qubits when doing this merge, for reasons described in [CKBB22,
Sec. C]. These new logicals are often of low weight, so it can be useful to switch to a
subsystem code [KLP05], labelling the newly introduced logicals as gauge qubits. As we
shall demonstrate, this frequently lets us increase the minimum distance of the merged
code, which is now the minimum dressed distance of the subsystem code. When the depth
r = d, the minimum distance of the codes beforehand, we assert that an external merge
always maintains the code distance, when viewed as a subsystem code. For brevity we
do not prove this here, but claim that it can be done by converting to the Tanner graph
formalism and using similar arguments as in [CKBB22, Sec. IV] pertaining to ‘cleaning’
[BT09].

Increasing the depth r of the code P• will increase the size of W• and hence the number
of new data qubits and stabilisers added to the code. We would like to do this if a low
depth results in a low distance.

Single-qubit measurements

In [CKBB22] new tensor product codes are also adjoined to the initial codes to perform
logical single-qubit measurements. We will now convert this protocol into the homological
picture. They also use their framework to perform logical multi-qubit Pauli measurements.
We omit these as they are harder to view in the homological picture, although for those
measurements which still yield CSS codes we assert that it can be done.

For single-qubit measurements, we only need one pushout. Again, say we are performing
a Z measurement. Given an irreducible logical operator, we will make a new tensor product
code.

Definition 3.2.5. Let S• = Fr2 → Fr2 be the classical code with parity-check matrix

∂S1 =


1 0 0 · · · 0 0
1 1 0 · · · 0 0
0 1 1 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 1 1


with 1s on diagonal elements, and 1s on the entries below the diagonal, apart from the
bottom-right diagonal entry which has no entry below it.

This is the incidence matrix of a ‘truncated’ path graph, where the last vertex has been
removed but its dangling incident edge remains. For example, if r = 3 then the graph is



3.2. The CSS code-homology correspondence 69

with

∂S1 =

1 0 0
1 1 0
0 1 1


Observe that ker(∂S1 ) = ker((∂S1 )ᵀ = 0, i.e. the classical code and its dual have no

codespace, for any r.
Given an irreducible logical operator subcomplex for a CSS code C•, we can then

make the code (S ⊗ V )•. Similar to with external merges above, we have an inclusion
V• ↪→ (S ⊗ V )•, where V1 is sent to the first copy of V1 in (S ⊗ V )1, and V0 is sent to the
first copy of V0 in (S ⊗ V )0.

We then have a basis-preserving monic span

V• (S ⊗ V )•

C•

g•

f•

and so we can construct a new code by a single pushout

V• (S ⊗ V )•

C• R•

.

This time, R• is the final code we are left with. We have initialised new qubits and
stabilisers as dictated by (S ⊗ V )•. As (S ⊗ V )• has no logical qubits, by the Künneth
formula, we have quotiented the Z logical operator v, which was used to construct V• and
so (S ⊗ V )•, into the [0] equivalence class. In other words, measuring the stabilisers of
the new code will also perform a Z measurement on that logical qubit. As before, it is
possible to incidentally introduce new logical qubits in the process.

If r = d, the distance of the initial code C•, then R• will always have minimum dressed
distance d when viewed as a subsystem code [CKBB22, Thm. 1], setting new logical qubits
to be gauge qubits. If r < d then this can still be the case, but it is not guaranteed. We
will show in later sections that it is common to be able to perform such logical single-qubit
measurements without requiring high depth r.

Internal merges

We can also perform surgery within a single codeblock C•, taking two logical Z operators
from different logical qubits and merging them together. As before, we start with an
irreducible logical operator subcomplex. This time, however, we have the diagram

V• C•
f•

g•

where f• and g• are basis preserving, and im(f•)∩ im(g•) = 0, i.e. there are no data qubits
in the two logical operators which overlap, and the same for X stabilisers.
Remark 3.2.6. It is possible to relax this condition of no overlap, by observing that when
there is overlap we can just take v being the logical operator Z ⊗ Z. If v is irreducible,
we can do ‘single-qubit surgery’ but for the two qubits, gluing in a single tensor product
patch with V• the logical operator subcomplex of v.



70 Chapter 3. SSIP: automated surgery with quantum LDPC codes

We can then construct the merged code using the same tensor product code W• =
(P ⊗ V )• from Section 3.2.3. This time, the merged code is the result of two coequalisers:

V• (W ⊕ C)• R• T•

V•

As with external merges, the diagram is drawn with two separate instances of V• so that
the diagram commutes.

The first two inclusions on the left take V• and map it into W• and C• respectively. The
C• inclusion is f•, and the W• inclusion takes V1 and V0 to their first copies in W1 and
W0, as with internal merges.

The second two inclusions of V• into R• are as follows. One is g• composed with the
inclusion C• → R•, and the second is the W• inclusion taking V1 and V0 to their (r+ 1)th
copies in W1 and W0, composed with the inclusion W• → R•.

The intuition is we glue first one side of W• into C• based on the irreducible logical
operator, then the same thing with the other side. It may be instructive to instead view
the two coequalisers as a single pushout as follows:

(V ⊕ V )• W•

C• T•

where the same data is contained in the universal construction. The inclusion (V ⊕
V )• ↪→ W• takes one V• to the first copy in W•, and the second V• to the (r + 1)th copy.
The inclusion (V ⊕ V )• ↪→ C• maps each V• to the chosen logical operators to merge.

In SSIP, the merged code is constructed using the two coequalisers diagram, so we stick
with this picture.

Of course, we can view any external merge as an internal merge by setting C• = (D⊕E)•
for some pair of codeblocks D•, E•. As for external merges, when the depth r = d, the
minimum distance of the codes beforehand, we assert that an internal merge always
maintains the code distance, when viewed as a subsystem code.

3.3 Automated external surgery
We can now explain how SSIP applies these universal constructions to perform surgery
and extract useful data from merged codes. We start with external surgery, present results
for external surgeries, then move on to internal surgery.

The basic data given to Algorithm 1 for performing external surgery is as follows:

• The parity-check matrices of the two codes C•, D• to be merged.

• The two irreducible logicals u ∈ C1 and v ∈ D1 we would like to merge.

• The basis (Z or X) to perform the merge in.

• The desired depth r of the merge.



3.3. Automated external surgery 71

The codes are entered as CSScode objects, while the logicals are vectors, and the depth
is an unsigned integer. Verifying that a vector is an irreducible logical is straightforward
linear algebra and is efficient to calculate, so we do not include this in the algorithm. We
assume that the chosen basis is Z; as always, the X version can be obtained by dualising
to cochain complexes.

Algorithm 1 External merge calculation
RM1 ← RestrictedMatrix(u, ∂C1 )
RM2 ← RestrictedMatrix(v, ∂D1 )
Span← FindMonicSpan(RM1, RM2)
if Span is None then

return None
V• ← RM1
P• ← ConstructP(r)
W• ← (P ⊗ V )•
NewSpan1← LHSspan(Span,W•)
NewSpan2← RHSspan(Span,W•)
R• ← Pushout(V•,W•, C•,NewSpan1)
T• ← Pushout(V•, R•, D•,NewSpan2)
return T•

Let us explain this algorithm in more detail. RestrictedMatrix simply takes a vector
u in C1 and the differential ∂1 : C1 → C0 and calculates R1 = ∂1 �supp u, by removing
columns with no support in u, and then removing any all-zero rows.

FindMonicSpan is more interesting. There exists a basis-preserving monic span

V• C•

D•

f•

g•

if (but not only if) there are permutation matrices M , N such that R1 = MR2N . That
is, we have two injections U• ↪→ C• and V• ↪→ D•, and we wish to find a basis-preserving
isomorphism U• ∼= V• such that we have an injection V• ∼= U• ↪→ C•. The basis-preserving
isomorphism is given precisely by the permutation matrices M and N , which dictate
where basis elements of V1 and V0 are mapped to. The isomorphism explicitly is

V1 V0

U1 U0

∼ ∼

Finding such permutation matrices is the hypergraph isomorphism problem. This in
turn can be expressed as a graph isomorphism problem between bipartite graphs [ADK15],
at the cost of some increased space. The graph isomorphism problem is neither known to
be poly-time nor NP-complete, but in practice is very fast to solve using VF2 [CFSV04].
SSIP uses NetworkX [HSS08] to represent the graphs and call VF2.
Remark 3.3.1. We do not need a hypergraph isomorphism, only a hypergraph inclusion,
to construct a basis-preserving monic span. However, isomorphism is necessary for V• to



72 Chapter 3. SSIP: automated surgery with quantum LDPC codes

be a logical operator subcomplex, see Definition 3.2.3, in both codes. We rely on this
property to perform logical parity measurements so throughout we assume our monic
spans are constructed by hypergraph isomorphisms, and hence the two logicals to be
merged are identical up to relabelling of qubits and checks.

There may not be a graph isomorphism, in which case we do not find a basis-preserving
monic span. In this case Algorithm 1 returns None. On the other hand, there may be many
graph isomorphisms. In this case Algorithm 1 just uses the first one found for simplicity.
At times we may know the monic span a priori, in which case this step can be skipped.

Once the monic span has been found the algorithm then performs the two pushouts.
Taking a pushout of a basis-preserving monic span with a logical operator subcomplex at
the apex is straightforward. Take the first pushout:

V• C•

W• R•

We can expand this into components:

V0 C0

V1 C1

0 C2

W2 R2

W1 R1

W0 R0

f0

l0

f1

l1

∂V1

∂C1

0
0

0

∂C2

∂W2

∂R2

∂W1

∂R1

The pushout at degree 2 is just R2 = W2⊕C2. At degree 1 we have R1 = W1⊕C1/im(l1) ∼
im(f1). To construct ∂R2 we therefore start with ∂W2 ⊕ ∂C2 and add the rows corresponding
to quotiented basis elements in R1 together. That is, if ei is an entry in V1, take the entries
l1(ei) and f1(ei) and add those rows together in ∂W2 ⊕ ∂C2 . All rows to be added together
have disjoint support, so the addition of rows is unambiguous.

At degree 0 we have R0 = W0⊕C0/im(l0) ∼ im(f0). To construct ∂R1 start with ∂W1 ⊕∂C1
then add rows corresponding to quotiented basis elements in R0 together. Then, take the
bitwise OR (logical inclusive) of columns corresponding to quotiented basis elements in
R1 together.

We verify in Appendix 9 that these differentials are the mediating maps given by the
universal properties of pushouts, and that the above diagram commutes. The second
pushout to acquire T• follows in the same fashion.

Optionally, Algorithm 1 can calculate some additional data to inform the user what the
effect of the merge has been. This is wrapped up into a MergeResult object. In addition
to the output CSScode, this object contains:



3.3. Automated external surgery 73

• The inclusion matrix C1 ⊕D1 ↪→ T1, i.e. the map on qubits from the initial codes
to the merged code.

• The row indices for any new Z stabilisers initialised in PZ .

• The row indices for any new X stabilisers initialised in PX .

• The indices of any new qubits initialised.

• A basis for any new Z logical operators introduced.

• A basis for any new X logical operators introduced.

• A basis for the kC + kD − 1 Z logical operators inherited from C• and D•, which we
call ‘old’ Z logical operators, as opposed to the ‘new’ Z logical operators which can
be incidentally introduced during a merge.

• A basis for the ‘old’ X logical operators.

We know the inclusion matrix immediately from the pushouts; the same is true for
the indices of new stabilisers and qubits. Calculating the new and old logical operators is
done by calculating logicals in the initial codes and multiplying through by the inclusion
matrix, then taking the appropriate quotient to find the new logicals.

Overall, aside from the graph isomorphism problem all of the subroutines in this section
have at worstO(n3) runtime, with the worst complexity being Gaussian elimination, which
is required for the additional data. We find in practice that graph isomorphism is not
a bottleneck using VF2. For codes with hundreds of qubits Algorithm 1 runs in a few
seconds or at most minutes on a Mac laptop. Given that most of the time is spent doing
linear algebra in Python, should the runtime become problematic then implementation
in a faster language such as C should let Algorithm 1 run in seconds for codes with many
thousands of qubits, until the graph isomorphism problem becomes challenging.

In practice, there is some hidden complexity here. Given two arbitrary CSS codes with
no additional knowledge of the code structure, the problem to solve is not just whether,
given two irreducible logical operators, we can perform an external merge. We would have
to work out which irreducible logical operators are available, and so could be paired up
to merge. Assuming we have no additional knowledge this will be a formidable problem
in general: the number of logical operators will typically scale exponentially with the
blocklength of the codes, and the number of possible pairings of logicals between the
codes will explode combinatorially. Even if running Algorithm 1 is extremely fast, the
combinatorial explosion makes exhaustively finding all monic spans between two large
codes implausible.

Thus for codes of high blocklength we would like to know in advance the structure
of the available irreducible logical operators. Fortunately, modern qLDPC codes are
not random, and in fact tend to be highly structured, such as lifted product codes. In
[BCGMRY24, ES24] this structure is leveraged to find irreducible Z and X logicals for
every qubit.

3.3.1 Small examples
We warm up to our results on external surgery with some small d = 3 codes with k = 1
each. We will use combinations of the



74 Chapter 3. SSIP: automated surgery with quantum LDPC codes

• J9, 1, 3K Shor code [Sho95],

• J15, 1, 3K Quantum Reed-Muller (QRM) code [KLZ96],

• J7, 1, 3K Steane code [Ste96],

• J9, 1, 3K rotated surface code [BM-D07B], and

• J13, 1, 3K unrotated surface code [Kit03],

which we call our small example set.
In addition to all having distance 3, these codes have the following property: there

exists a weight 3 Z logical operator v with the restricted matrix

∂C1 �supp v ∼
(

1 1 0
0 1 1

)
where ∼ means up to permutation of rows and columns. The restricted matrix is the
parity-check matrix of a repetition code; this will always be true for an irreducible logical
operator, as the only non-zero element in ker(∂C•1 �supp v) must be the all-1s vector, and
every minimum-weight logical operator must be irreducible.

The above restricted matrix has d − 1 rows (once all-zero rows have been removed).
We will always have a monic span with V• having the differential above. Thus we can
always do external surgery between any two of these codes, and the merged codes with
r = 1 will have 2 additional data qubits when compared to the disjoint initial codes, i.e.
dimT1 = dimC1 + dimD1 + 2. The same applies for δ1

C �supp v for X logicals instead, with
the exception of the QRM code which has dX = 7 so has no weight 3 X logicals.

Of course, not every restricted matrix of a weight d logical has d− 1 rows for any other
d = 3 CSS code, as there may be redundant checks on that logical. An example for which
Algorithm 1 would fail to find any monic spans for Z logicals with the codes in our small
example set, despite having distance 3, is the J18, 2, 3K toric code. The restricted matrix
for a weight 3 Z logical in the toric code is1 1 0

0 1 1
1 0 1


up to permutation, i.e. there is an extra X-check; the dual applies for a weight 3 X logical,
which will have an extra Z-check.

As it turns out, we can do surgery between any two of the codes in our example set in
the Z basis with depth r = 1 while maintaining d = 3 in the merged codes. All of the
merged codes have 1 logical qubit. For the X basis the same applies with the exception
of the QRM code.

The only remaining figure of merit is ω, the maximum weight of any column or row. We
show in Figure 3.1 that we increase ω by at most 1 when compared to the codes beforehand.
We do not claim that this is optimal – we can obviously do X merges between distance 3
surface codes without increasing ω, but this will depend on the choice of logical used.

Interestingly, the QRM code is triorthogonal [BH12], meaning that it admits a transver-
sal logical T gate. This means that one can use SSIP to generate merges between a
triorthogonal code and some other code to inject T states. One candidate for the other
code is the surface code, with which one can easily perform Cliffords [BKLW17]. The QRM



3.3. Automated external surgery 75

ωafter − ωbefore Shor QRM Steane Rotated surface Surface
Shor 1, 0 1 1, 0 1, 0 1, 0
QRM 1 1 1 1
Steane 1, 1 1, 1 1, 1

Rotated surface 1, 1 1, 1
Surface 0, 1

Figure 3.1: ωafter − ωbefore for merges between weight 3 logicals. Values for Z merges are
shown first and values for X merges second, when weight 3 logicals exist.

code is a small example of a 3D colour code [Bom15], and the merging protocol scales to
arbitrary distance d 3D colour codes and surface codes, using only d− 1 additional qubits
to perform the injection. 3D colour codes and surface codes are perhaps not the best
candidates for fault-tolerant computation for reasons of threshold and code parameter
scaling compared to other qLDPC codes, but the principle is interesting, and different
from Bombin’s code-switching protocol [Bom15].

It is unsurprising that one can do surgery with our small example set. They can all
be seen as topological codes. Other than those already mentioned, the Shor code is a
tessellation of RP 2 [FM01] and the Steane code is a 2D colour code [BM-D06]. In fact,
surgery between 2D colour codes and surface codes has already been described in [NFB17].

We could also perform logical single-qubit measurements with our small example set
using the method in Section 3.2.3, but this is uninteresting as every code in our set has
k = 1 so measuring the logical qubit in the Z or X basis can be done by measuring out
every data qubit in the Z or X basis. Similarly, it does not make sense to do internal
surgery with k = 1 codeblocks.

3.3.2 Lift-connected surface codes

Lift-connected surface (LCS) codes [ORM24] are lifted product codes where the com-
mutative matrix subring is C`, the ring of `-by-` circulant matrices. Intuitively, one can
think of LCS codes as disjoint surface codes which are then connected by some stabilisers.
They are interesting in part because their parameters can outperform those of surface
codes even at low blocklengths. They also perform comparably to surface codes against
phenomenological noise, and can be implemented with 3D local connectivity.

LCS codes are constructed using two variables: `, the size of the circulant matrices, and
L, the length of the ‘base’ code over C`.2

Let P (0) = id` and P (1) be the first right cyclic shift of id`, so for example

P (1) =

0 1 0
0 0 1
1 0 0


when ` = 3.

2In this Chapter we have swapped round the variable labelling compared to the original LCS paper
[ORM24] in order to conform to the notation in [PK21].



76 Chapter 3. SSIP: automated surgery with quantum LDPC codes

Then, construct the L-by-L+ 1 matrix

B =


P (0) P (0) + P (1) 0 · · · 0 0

0 P (0) P (0) + P (1) · · · 0 0
... . . . ... ...
0 0 · · · 0 P (0) P (0) + P (1)


and let A = Bᵀ. Take the tensor product over C`, recalling from Section 2.3.1 that this
gives

PZ =
(
B ⊗

C`
idL+1 idL ⊗

C`
A
)

; PX =
(

idL+1 ⊗
C`
B A⊗

C`
idL
)

which we then view over F2.
LCS codes have parameters J((L + 1)2 + L2)`, `,min(`, 2L + 1)K. Strictly speaking,

the parameter d = min(`, 2L + 1) has not been proven, just conjectured with empirical
evidence to support it. Under this conjecture, LCS codes have distance scaling linearly in
n until ` = 2L+ 1. This is shown to be true for LCS codes under a certain size [ORM24,
Sec. III A]. LCS codes are also ω-limited with ω = 6, so they are qLDPC codes.

Individual merges

We test individual merges between LCS codes, without considering parallelisation. We
take the set of LCS codes with L ∈ {1, 2, 3} and ` ∈ {L + 2, L + 3, L + 4}, except we
truncate at ` = 6. Our smallest initial code has L = 1, ` = 3 and parameters J15, 3, 3K.
Our largest initial code has L = 3, ` = 6 and parameters J150, 6, 6K. These blocklengths
are chosen such that our results are reproducible in a few hours on a personal computer,
and so that the initial codes are close to having the best possible parameters for LCS
codes, see [ORM24, Fig. 4].

Our method is simple. For each code C•, we find an arbitrary tensor product decompo-
sition of the logical space, i.e. a basis of the homology space H1(C•), and its consistent
basis for the cohomology space H1(C•). We then pick out representative logicals for each
one, which we call ui for ui ∈ [ui], recalling that the basis set is {[ui]}u∈I , such that the
logicals are irreducible. In principle, should we not find an irreducible logical for a given
qubit we would leave that qubit out, but we successfully find irreducible logicals for all
qubits in our benchmarking set.

We then test by taking two identical copies of C• and merging them along their shared
irreducible logical ui. Evidently this is guaranteed to give a monic span as the two codes
are identical. After the merge, there may be additional logical qubits introduced. We
relegate these to being gauge qubits and make the merged code a subsystem CSS code.

For every merge, we compute three figures of merit: (1) the depth r required for the
merges to leave the code distance unchanged, so d = min(`, 2L + 1) when viewed as a
subsystem code, (2) the total number of additional data qubits required as a proportion
of the total length of the original codes nancilla/ninitial, (3) the maximum weight of any
row or column in the parity-check matrices ω. In Figure 3.2 we present the mean av-
erage of these values over each of the X and Z logicals for a given pair of codes. For
example, the J15, 3, 3K code has 3 logical qubits, so we perform 3 different X-merges
and average out the values of r, nancilla/ninitial and ω for the 3 different merged codes.
For more fine-grained results, where we show the results of each merge rather than just
their averages, see Appendix 11. The scripts for running all benchmarks can be found



3.3. Automated external surgery 77

L ` 〈r〉 〈nancilla/ninitial〉 〈ω〉
1 3 1 0.16 6
1 4 1 0.14 6
1 5 1 0.12 6
2 4 1 0.1 7
2 5 2 0.36 7
2 6 2 0.3 7
3 5 2.6 0.37 7
3 6 2.8 0.31 7

L ` 〈r〉 〈nancilla/ninitial〉 〈ω〉
1 3 1 0.15 6
1 4 1 0.125 6
1 5 1 0.112 6
2 4 1.75 0.25 7
2 5 2.6 0.34 7
2 6 3 0.37 7
3 5 2.4 0.27 7
3 6 3 0.31 7

Figure 3.2: Figures of merit for individual X and Z merges between LCS codes.

at https://github.com/CQCL/SSIP/benchmarks. We explicitly calculated all subsystem
code distances using Z3, as the distance is low enough for this method to be practical.

Reading through the tables of Figure 3.2, we can see first that the average required
depth r increases as the size of the initial codes increases. This is not surprising, as the
larger the initial code the more likely it is that performing a low depth merge with another
code will incidentally add a logical, which does not belong wholly to the new logical qubits
introduced, with a lower distance. Regardless, the depth required remains low, with the
maximum required for any of the merges being 4. Similarly, as the size of the initial
codes increases so does the typical proportion of new qubits required for the merges. The
intermediate code being added is a tensor product code, which itself has vanishing rate
and poorer distance scaling when compared to the underlying quantum memories. Thus
when we have to increase the depth r we are adding more of a ‘worse’ code, slightly
inhibiting the efficiency of the merges.

There are cases at larger sizes where the merges can be performed at r = 1, and in these
cases nancilla/ninitial is extremely low. For instance, for L = 3, ` = 5, which makes nC = 125,
so ninitial = 250, there is a Z logical which gives an r = 1 merge at nancilla/ninitial = 0.072,
a marginal overhead of 18 ancillary data qubits compared to the overall blocksize of 250.
We expect that a greater understanding of the structure of LCS codes would yield more
logicals which admit low depth merges, but our rudimentary technique only finds these
occasionally.

Lastly, ω remains virtually constant throughout, at just above ω = 6 for the initial LCS
codes. In [CB24, Lem. 5.18] we showed that merges of qLDPC codes remain qLDPC, and
for LCS codes the row and column weights barely increase.

In Figure 3.3 we also compare to both lattice surgery and a naive application of



78 Chapter 3. SSIP: automated surgery with quantum LDPC codes

[CKBB22] to performing the same merges in the Z basis. That is, for lattice surgery we
generate 2k (unrotated) surface code patches with the same d as the LCS codes, then
perform a single merge between two patches and record the total overhead. For [CKBB22]
we use LCS codes, but then for merging we initialise large r = d tensor product ancillae
codes which are connected appropriately.

As mentioned in Section 3.1.1, comparisons between these different procedures will
generally be apples-to-oranges. The results here are for generating codeblocks and then
performing a single merge between them. The advantage of surface codes is that one can
easily parallelise lattice surgery, while the same is not true of our protocol. For example,
constructing 12 surface code patches, as in the L = 3, ` = 6 comparison case, and then
performing a single merge between two of them is quite a contrived scenario. Similarly,
for the approach of [CKBB22] one can do Pauli measurements using any combination of
logical qubits, while ours is more restricted. We also used the default procedure, where
the ancilla blocks of [CKBB22] have high depth, where in reality one could perhaps get
away with reducing the overhead while maintaining distance.

With those caveats out of the way, the main take away of Figure 3.3 is that for individual
merges at low blocklength, our homological approach requires much less overhead than
the other two methods. A common feature of both our procedure and that of [CKBB22]
is that, while the initial quantum memories have better parameters than those of surface
codes, some of the overhead is instead offloaded onto the ancillae used for surgery. Surface
codes require very small numbers of additional qubits.

Parallel merges

Now we present results for performing a logical merge between every pair of logical qubits
in the two codes simultaneously, as shown in the schematic below:

... ...

q1

q3

q2

qk

q1

q3

q2

qk

Code 1 Code 2

We use the same logicals as before. This time, our approach is as follows: take r = 1 for a
merge between logical qubits of the same index. Should this result in a merged code with
lower d than the initial codes, when viewed as a subsystem CSS code, then increment r to
2 for every merge, and so on until d = min(`, 2L+ 1). This is to avoid having to explore
the search space of different possible depths for each merge.

We follow the same procedure of using Z3 to calculate subsystem code distances. Results
are presented in Figure 3.4.

Here we see the cost of parallelisation. Not only does the overhead in terms of ancillae
data qubits increase, so too does ω. This is more-or-less unavoidable with efficient codes:
the logicals being used to perform merges are likely to have overlap on some data qubits
and stabilisers, so the new tensor product codes will increase stabiliser weights and the
number of stabilisers some data qubits are in the support of. Despite this, the depths
are encouraging. The largest LCS codes used have 6 logical qubits, but despite this only



3.3. Automated external surgery 79

L ` ninitial 〈nancilla〉 〈ntotal〉
1 3 30 4.5 34.5

78 2 80
30 49 79

1 4 40 5.6 45.6
104 2 106
40 55 95

1 5 50 5.6 55.6
130 2 132
50 60.6 110.6

2 4 104 26 130
200 3 203
104 142 246

2 5 130 44.2 174.2
410 4 414
130 199 329

2 6 156 57.7 213.7
492 4 496
156 209 365

3 5 250 67.5 317.5
410 4 414
250 316.6 566.6

3 6 300 93 393
732 5 737
300 404.3 704.3

Figure 3.3: Comparison of LCS code individual Z-merges to surface codes and [CKBB22].
The first row in each box is our homological approach using Algorithm 1.
The second is lattice surgery with surface code patches. The third is a naive
application of [CKBB22] to LCS codes.



80 Chapter 3. SSIP: automated surgery with quantum LDPC codes

L ` r nancilla/ninitial ω

1 3 1 0.47 8
1 4 1 0.55 9
1 5 1 0.62 10
2 4 2 1.27 10
2 5 3 2.51 11
2 6 3 2.6 12
3 5 2 1.34 11
3 6 2 1.37 12

L ` r nancilla/ninitial ω

1 3 1 0.43 8
1 4 1 0.5 9
1 5 1 0.56 10
2 4 2 1.15 9
2 5 3 2.08 10
2 6 2 1.33 11
3 5 1 0.34 11
3 6 2 1.1 11

Figure 3.4: Figures of merit for parallel X and Z merges between LCS codes.

a merge depth of r ≤ 2 was required for their parallel merges. We again compare the
overhead required to that of surface codes with the same k and d as the LCS codes, and
a naive application of Cohen et al. [CKBB22] in Figure 3.5.

While still comparing favourably in terms of overall qubit overhead to surface codes,
the advantage is significantly weakened. This is because surface codes make it extremely
easy to parallelise merges. We expect substantial gains could be made by considering the
logicals used more carefully, and lowering the level of parallelisation somewhat without
restricting ourselves to individual merges.

Naive application of [CKBB22] performs very poorly by contrast. This is because the
quantum memory is not yet large enough for its efficiency as a qLDPC code to outweigh
the large ancilla requirements when compared to surface codes, and because we can ‘get
away with’ having low depth merges in our homological approach.

Individual single-qubit measurements

We now retrace our steps for the same benchmarking set but performing single-qubit logical
measurements instead, following Section 3.2.3. Recall that we are claiming no novelty in
our approach here, it is merely that of [CKBB22] translated into chain complexes. It is still
interesting, however, because in [CKBB22, Table. 1] the results given are just estimates
at high depth. We show that it is possible to perform these single-qubit measurements
while incurring lower overhead.

We show figures of merit for single-qubit measurements in Figure 3.6. Overall, on the
LCS benchmarking set they tend to be more expensive than individual external merges,
both as a fraction of the initial blocklength and the raw number of ancilla qubits. Similarly,
in Figure 3.7 we see that while low depth measurements in this manner still compare



3.3. Automated external surgery 81

L ` ninitial nancilla ntotal

1 3 30 13 43
78 6 84
30 147 177

1 4 40 20 60
104 6 110
40 220 260

1 5 50 28 78
130 6 136
50 303 353

2 4 104 120 224
200 12 212
104 568 672

2 5 130 271 401
410 20 430
130 995 1125

2 6 156 207 363
492 24 416
156 1254 1410

3 5 250 91 341
410 20 430
250 1583 1833

3 6 300 331 631
732 30 762
300 2426 2726

Figure 3.5: Comparison of LCS code parallel Z-merges to surface codes and [CKBB22].
The first row in each box is our homological approach using Algorithm 1.
The second is lattice surgery with surface code patches. The third is a naive
application of [CKBB22] to LCS codes.



82 Chapter 3. SSIP: automated surgery with quantum LDPC codes

L ` 〈r〉 〈nancilla/ninitial〉 〈ω〉
1 3 1.67 0.8 6
1 4 1.75 0.75 6
1 5 1.8 0.7 6
2 4 1.5 0.5 7
2 5 2.6 1.03 7
2 6 2.5 0.82 7
3 5 3.8 1.12 7
3 6 3.3 0.81 7

L ` 〈r〉 〈nancilla/ninitial〉 〈ω〉
1 3 1.67 0.7 6
1 4 1.75 0.75 6
1 5 1.8 0.64 6
2 4 1.2 0.3 7
2 5 3.4 0.96 7
2 6 4 1.02 7
3 5 2.8 0.7 7
3 6 2.83 0.62 7

Figure 3.6: Figures of merit for individual single-qubit logical X and Z measurements
with LCS codes.

favourably to those of surface codes, the difference is much less pronounced, and again
one should bear in mind that surface codes favour parallelisation much better.

Parallel single-qubit measurements

We could consider performing single-qubit measurements in the same basis on every logical
qubit in parallel, but this would be a completely contrived benchmark, as this can always
be done in a CSS code by measuring out the existing data qubits, rather than adding
new data qubits. Instead, we consider the following: take the first half (rounded down) of
the logical qubits and perform logical single-qubit measurements on these in parallel. The
half of the logical qubits is chosen arbitrarily. We show figures of merit for doing this in
Figure 3.8, then show comparisons to surface codes and a naive application of [CKBB22]
in Figure 3.9.

In Appendix 10 we rerun this entire benchmarking procedure for generalised bicycle
(GB) codes [PK21, KP13]. We find a similar story there, but GB codes are even more
amenable to surgery and compare extremely favourably compared to surface codes and
the approach of [CKBB22].

3.3.3 The gross code
Bivariate bicycle (BB) codes [BCGMRY24] are lifted products over the ring C`⊗Cm, that
is the tensor product over rings of circulant matrices of different dimensions, but viewed
over F2.



3.3. Automated external surgery 83

L ` ninitial 〈nancilla〉 〈ntotal〉
1 3 15 10.5 25.5

39 0 39
15 23 38

1 4 20 15 35
52 0 52
20 26 46

1 5 25 16 41
65 0 65
25 28.8 53.8

2 4 52 15.6 77.6
100 0 100
52 69 121

2 5 65 62.4 127.4
205 0 205
65 97 162

2 6 78 79.6 157.7
246 0 246
78 102 180

3 5 125 87.5 212.5
205 0 205
125 155.8 280.8

3 6 150 93 243
366 0 366
150 199 349

Figure 3.7: Comparison of LCS code individual single-qubit logical Z-measurements to
surface codes and a naive application of [CKBB22]. The first row uses the
method described in Section 3.2.3. The second is lattice surgery with surface
code patches. The third is a naive application of [CKBB22] to LCS codes.



84 Chapter 3. SSIP: automated surgery with quantum LDPC codes

L ` r nancilla/ninitial ω

1 3 2 1.0 6
1 4 2 1.65 7
1 5 2 1.56 7
2 4 1 0.48 8
2 5 2 0.96 8
2 6 3 2.24 9
3 5 4 2.36 8
3 6 3 2.19 9

L ` r nancilla/ninitial ω

1 3 2 1.07 6
1 4 2 1.85 7
1 5 2 1.6 7
2 4 1 0.42 8
2 5 2 0.98 8
2 6 3 2.11 9
3 5 3 0.97 8
3 6 2 0.9 9

Figure 3.8: Figures of merit for parallel single-qubit logical X and Z measurements with
LCS codes.

Recalling that C`
∼= F〈`〉2 , it is immediate that

C` ⊗ Cm
∼= F〈`〉2 ⊗ F〈m〉2 ,

the ring of polynomials over two variables x and y modulo x`−1 and ym−1. The bijection
sends

P
(1)
` ⊗ idm 7→ x; id` ⊗ P (1)

m 7→ y,

and x` = ym = 1. Recall that P (1)
` is the right cyclic shift matrix of id`, as in Section 3.3.2.

Then, let
A = A1 + A2 + A3; B = B1 +B2 +B3

where each matrix Ai and Bj is a power of x or y, interpreted in C` ⊗ Cm. Bivariate
bicycle (BB) codes have PX =

(
A B

)
and PZ =

(
Bᵀ Aᵀ

)
for some matrices A and B.

Therefore each BB code is uniquely defined by a pair of polynomials in F〈`〉2 ⊗ F〈m〉2 , each
of which is the sum of three monomials in a single variable. Observe that n = 2`m for any
BB code. Call the first and second block of `m data qubits the ‘unprimed’ and ‘primed’
blocks respectively.

The example we focus on in this work is the “gross code”, a J144, 12, 12K code with
` = 12, m = 6, A = x3 + y+ y2 and B = y3 +x+x2. This code has a high error threshold
under circuit-level noise, its Tanner graph can be decomposed into two planar subgraphs,
which is important for planar architectures, and it is ω-limited with ω = 6.

As we are only using one code here, the benchmarking we perform will be a bit more
exhaustive. For this, we use another useful feature of BB codes: we can calculate a basis
of the logical space using the algebraic structure of the codes. In the case of the gross



3.3. Automated external surgery 85

L ` ninitial nancilla ntotal

1 3 15 16 31
39 0 39
15 27 42

1 4 20 37 57
52 0 52
20 62 82

1 5 25 40 65
65 0 65
25 67 92

2 4 52 21.8 73.8
100 0 100
52 145 197

2 5 65 64 129
205 0 205
65 190 255

2 6 78 164.6 242.6
246 0 246
78 294 372

3 5 125 121.3 246.3
205 0 205
125 217 342

3 6 150 135 285
366 0 366
150 491 641

Figure 3.9: Comparison of LCS code parallel single-qubit logical Z-measurements to sur-
face codes and a naive application of [CKBB22]. The first row uses the method
described in Section 3.2.3. The second is lattice surgery with surface code
patches. The third is a naive application of [CKBB22] to LCS codes.



86 Chapter 3. SSIP: automated surgery with quantum LDPC codes

code this gives us an immediate set of logical Paulis with weight 12, one Z and one X
for each logical qubit. As d = 12, these logicals are also irreducible. We forgo further
details but see [BCGMRY24, Sec. 9.1]. We use these logicals for all our benchmarking in
this section. These logicals split into primed and unprimed sets, with the (un)primed set
having support only in the (un)primed block.

First we find that there is a basis-preserving monic span between every pair of Z logicals
in the primed block; the same applies to every pair of logicals in the unprimed block, and
also to X logicals. Therefore, given two copies of the gross code we can perform individual
external merges between any of the logical qubits which belong to the same block, in
either basis. As d = 12 for the gross code, checking preservation of distance in merged
codes is out of reach of the Z3 algorithm in reasonable compute time, so we again rely
on QDistRnd. The upshot is that these individual merges can each be done with a depth
r = 1, requiring only 18 additional data qubits and increasing ω to 7, leaving the code
distance as a subsystem code at 12 assuming the bound from QDistRnd is tight.

Furthermore, we find that we can do parallel merges on all 12 logical qubits between two
copies of the gross code in either basis using only r = 1, requiring a total of 18× 12 = 216
extra data qubits. This raises ω to 12.

Similarly we can study individual single-qubit logical measurements. We find that single-
qubit logical X measurements on the unprimed block require a depth of r = 3, and so
78 extra data qubits. They also introduce 72 new stabiliser generators, so a total of 150
new qubits including syndrome qubits. X measurements on the primed block require
only a depth of r = 1, 18 extra data qubits, and 12 new generators so a total of 30 new
qubits. These all raise ω to 7. These overheads are far below that required by performing
such measurements naively, as it was predicted in [BCGMRY24, Sec. 9.4] that these
measurements would each require a total of 1380 extra qubits when including syndrome
qubits (although the authors did expect this value to be optimised significantly). The
flipped version applies to single-qubit logical Z measurements: those in the unprimed
block require a depth of r = 1, and a total of 30 new qubits. Those in the primed block
require r = 3 and 150 total new qubits.

Additionally, we can perform parallel single-qubit logical measurements. We can measure
every logical qubit in the unprimed block in the X basis with r = 3 using 468 new data
qubits and 432 new syndrome qubits, so 900 ancillae in total. This increases ω to 8. The
same applies to the primed block in the Z basis.

We can measure every logical qubit in the primed block in the X basis with r = 1 using
108 new data qubits and 72 new syndrome qubits, so 190 ancillae in total. This increases
ω to 11. The same applies to the unprimed block in the Z basis.

3.4 Automated internal surgery
As mentioned earlier we can also use SSIP to perform internal surgery, that is surgery
between logicals in the same codeblock. This is performed in a similar manner to external
surgery but with some minor differences. The basic data given to Algorithm 2 is as follows:

• The parity-check matrices of C•, the code within which internal surgery will be
performed.

• The two irreducible logicals u, v ∈ C1 we would like to merge.

• The basis (Z or X) to perform the merge in.



3.4. Automated internal surgery 87

• The desired depth r of the merge.

Algorithm 2 Internal merge calculation
RM1 ← RestrictedMatrix(u, ∂C1 )
RM2 ← RestrictedMatrix(v, ∂C1 )
if |RM1 ∩RM2| 6= 0 then

return None
Diagram← FindDiagram(RM1, RM2)
if Diagram is None then

return None
V• ← RM1
P• ← ConstructP(r)
W• ← (P ⊗ V )•
NewDiagram1← LHSdiagram(Diagram,W•)
R• ← Coequaliser(V•, (W ⊕ C)•,NewDiagram1)
NewDiagram2← RHSdiagram(Diagram,W•)
T• ← Coequaliser(V•, R•,NewDiagram2)
return T•

The first thing Algorithm 2 does is calculate the restrictions of PX to the support of
the logicals u and v. It then finds |RM1 ∩RM2|, by which we mean the set of data qubits
which have overlapping support, and the same for stabiliser generators. If there is any
overlap on either of these, Algorithm 2 rejects the merge and outputs None. The algorithm
then proceeds similarly to Algorithm 1: it computes a hypergraph isomorphism between
the restricted matrices, then computes a tensor product code to merge the two logicals
together. Finally, it computes the two coequalisers and returns the merged code T•. See
Appendix 9 for this computation. Optionally, Algorithm 2 can return a MergeResult
object, which contains the same additional data as in Algorithm 1.

3.4.1 The gross code
We return to the J144, 12, 12K gross code to conduct benchmarking on internal merges.
While we are guaranteed to have a diagram of the form

V• C•
f•

g•

whenever u and v are in the set of irreducible logicals given in [BCGMRY24, Sec. 9.1]
and belong to the same block (primed or unprimed), these will commonly have some
overlap in data qubits or stabilisers. Therefore we cannot perform internal merges using
any arbitrary pair of logical qubits in the same block, even if they have logicals of the
same shape. We emphasise that as stated in Remark 3.2.6, one can in this case do a
single-qubit logical measurement but in the homology basis where Z ⊗ Z is a single Z,
assuming that one can find a logical Z ⊗ Z operator which is irreducible, and where the
component Z operators have some support overlap. We do not test out that case here.

Remark 3.4.1. Of course, each logical qubit has many irreducible logicals associated to
it, and so we could try to find pairs which do or do not overlap. This is a large search
space so we just stick with the irreducible logicals given in [BCGMRY24, Sec. 9.1].



88 Chapter 3. SSIP: automated surgery with quantum LDPC codes

r 0 1 2 3 4 5 6 7 8 9 10 11
0 - 2 2 2 3 - - - - - - -
1 2 - - 2 3 2 - - - - - -
2 2 - - 3 2 2 - - - - - -
3 2 2 3 - - 2 - - - - - -
4 3 3 2 - - 2 - - - - - -
5 - 2 2 2 2 - - - - - - -
6 - - - - - - - - - - - -
7 - - - - - - - - - - - -
8 - - - - - - - - - - - -
9 - - - - - - - - - - - -
10 - - - - - - - - - - - -
11 - - - - - - - - - - - -

r 0 1 2 3 4 5 6 7 8 9 10 11
0 - - - - - 1 - - - - - -
1 - - - - - 1 - - - - - -
2 - - - - - - - - - - - -
3 - - - - - 1 - - - - - -
4 - - - - - - - - - - - -
5 1 1 - 1 - - - - - - - -
6 - - - - - - - 3 - 2 2 2
7 - - - - - - 3 - 3 2 2 -
8 - - - - - - - 3 - 2 3 2
9 - - - - - - 2 2 2 - - 2
10 - - - - - - 2 2 3 - - 3
11 - - - - - - 2 - 2 2 3 -

Figure 3.10: Depths required for individual internal X and Z merges between logical
qubits i and j in the gross code. Dashed entries have no internal merge for
the logical operators chosen.

In Figure 3.10 we show results for internal merges in the X and Z basis. All of the
possible merges increase ω to 7. At depth r = 1 we use 18 ancilla data qubits for a merge.
For r = 2 we use 48, and for r = 3 we use 78.

Of the possible 15 different internal merges one could do within a primed or unprimed
block, we find that 12 different X merges can be done in the unprimed block, as the
logicals have no overlap, while none can be done in the primed block. For Z merges, only
3 can be done in the unprimed block, while 12 can be done in the primed block.

3.5 Future directions
In order for surgeries identified with SSIP to be useful in practice we must tackle the
problems which SSIP does not handle, as stated in the introduction, namely: establishing
(pseudo-)thresholds for codes throughout the surgery process, along with circuits for the
syndrome measurements, and decoders which function throughout.



3.5. Future directions 89

There are recently developed classes of lifted product qLDPC codes which we have not
tested SSIP on, for which it could be interesting to do so [LP24, SHR24]. Beyond these, it
would be very interesting to consider the design of efficient qLDPC CSS codes which, in
addition to other useful properties such as low depth syndrome circuits, also admit surgery
between and within codeblocks with low overhead of additional qubits, while provably
retaining high code distance. This would allow us to avoid the problems of (a) trying
to find suitable logicals to construct merges, which results in a combinatorial explosion
when done naively, and (b) calculating distance after merges, which is always going to be
difficult without additional a priori knowledge of the code’s structure.

Arguably the most interesting use-case for surgery is merging different classes of codes,
such that we can achieve universality using the different logical operations available
natively to the codes. To that end it is an interesting question to consider large codes
which are triorthogonal or otherwise admit transversal logical non-Clifford gates, and which
have low thresholds and favourable code parameters. Given such large codes, performing
code merges could allow us to cheaply teleport magic states into quantum memories which
admit Clifford operations, or vice versa, thereby circumventing Eastin-Knill [EK09] without
requiring magic-state distillation or cultivation [GSJ24]. Previous resource estimates using
code-switching protocols with the 3D colour code have indicated that distillation is superior
[BKS21], but code-switching is somewhat different to magic state injection by surgery,
and those limitations may not apply when using different triorthogonal codes.

3.5.1 Basis-changing ancillae

In a different direction, while the chain complex formalism is perhaps more sophisticated
than ad hoc constructions with topological codes, the actual tensor product codes we
are using to perform merges are quite primitive; they are the obvious generalisation of
the small codes used to merge patches in lattice surgery. There is no reason why there
should not be more sophisticated ancilla codes which could be initialised to merge logicals,
in certain cases going beyond just parity measurements to many-qubit measurements
in certain codes, but which do not suffer from the higher overhead of ancillae used for
many-qubit measurements in [CKBB22].

To that end, in this subsection we present an extended description of basis-changing
the ancilla patch for a logical measurement. We thank Zhiyang He for helpful discussions
on this topic, and Aleks Kissinger for pointing out the right inverse of the repetition code
parity-check matrix which led to Lemma 3.5.5.

The first observation is that when making the pushout for a single-qubit Z measurement
with an irreducible Z logical,

V• (S ⊗ V )•

C• R•

we can relax the basis-preservation condition of Definition 2.3.4. One way to do this is to
consider the chain complex U• = U1 → U0, where ∂U1 is the ‘ideal’ parity-check matrix of
the repetition code, and dimU1 = dim V1. So U• has the same number of data qubits as
the logical operator subcomplex V•, but fewer X-checks (or the same number, if V• has



90 Chapter 3. SSIP: automated surgery with quantum LDPC codes

no redundant checks). Explicitly,

∂U1 =


1 1 0 · · · 0 0
0 1 1 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 1 0
0 0 0 · · · 1 1

 .

Then, there is an injection ι• : U• ↪→ V•, which explicitly is

U1 V1

U0 V0

∂U1

∼

∂V1

where, letting dimU1 = dim V1 = n, dim im(∂U1 ) = dim im(∂V1 ) = n− 1. The last equality
holds as V• is irreducible. We can choose the injection such that ι1 is an equality. Now, ι0
is an isomorphism between U0 and im(∂V1 ), hence im(ιᵀ0 � im(∂V1 )) = im(∂U1 ) = U0. But
this map is not basis-preserving: it sends single basis elements in U0 to multiple in V0.
Nevertheless, we can define the following pushout:

U• (U ⊗ S)•

V•

C• R•

g

ι

f

where, as dimU0 ≤ dim V0, the tensor product code (U ⊗ S)• is smaller, in both the
number of data qubits and the number of stabilisers, than (S ⊗ V )• would be. However,
because ι is not basis-preserving, the code R• is not uniquely defined by Lemma 2.3.5.

We can fix this in a simple manner, but to do so we have to inspect microscopic
behaviour of the code, and to do so it is helpful to use Tanner graphs.

Definition 3.5.1. The Tanner graph of a chain complex C• ∈ Ch(MatF2) is an undirected
graph G(V,E) where V is the set of all basis elements in C•, and there is an edge e ∈ E
between two vertices u, v iff v ∈ ∂(u) or u ∈ ∂(v) as basis elements.

Tanner graphs are used extensively in other approaches to code surgery [CKBB22,
CHRY24].



3.5. Future directions 91

Example 3.5.2. This is the Tanner graph of the J9, 1, 3K Shor code.

Z

Z

Z

Z

Z

Z

X

X

X and Z-checks are labelled, while qubits are left as circles.
Let us use an example of a logical Z operator which has redundant X-checks, in some

arbitrary CSS code.

X

X

X

X

· · ·

· · ·

Every vertex in the Tanner graph of this subcomplex V• has edges extending into the
rest of the code C•, indicated by ellipses. Ordinarily, a logical measurement using this
operator would look like:

X

X

X

X

· · ·

· · ·

Z

Z

Z

Z

Z

Z

Z

X

X

X

X

· · ·

· · · X

X

X

X

Z

Z

Z

Z

Z

Z

Z

where we have glued in the tensor product code (S ⊗ V )•.
If instead we start with U•, which has the Tanner graph

X

X



92 Chapter 3. SSIP: automated surgery with quantum LDPC codes

then (S ⊗ U)• has the Tanner graph

X

X

Z

Z

Z

X

X

Z

Z

Z

X

X· · ·

· · ·

Finding a suitable pushout code R• can then be done using the injection ι. In this case,
we have

∂V1 =


1 1 0
1 1 0
0 1 1
0 1 1

 ; ∂U1 =
(

1 1 0
0 1 1

)

and so ι0 =


1 0
1 0
0 1
0 1

.

We can then glue (S ⊗ U)• into C•, setting f0 ◦ ι0(ei) ∼ g0(ei) for each basis element
ei ∈ U0. The part of R• we are interested in can now be described by the Tanner graph

X

X

X

X

Z

Z

Z

X

X

Z

Z

Z

· · ·

· · ·

where qubits in the left-most slice of the tensor product code (S ⊗ U)• have now been
quotiented with qubits as normal, but the X-checks are quotiented with multiple X-checks,
as shown by the extra edges. The incidence matrix of the subgraph connecting the X-
checks to the qubits in the next slice is exactly ι0. In this way, we have traded away
qubits for extra connectivity into the ancilla layer. There is another side-effect: we have
not introduced any new logical qubits. If we had glued in (S ⊗ V )• then the redundant
checks would have the consequence of introducing new logicals in the intermediate slices;
as we have glued in a smaller tensor product code and eliminated the redundancy in
intermediate layers we have also eliminated any new logicals. This is a general property
of a basis change to the repetition code.

Proposition 3.5.3. A single-qubit logical measurement which changes basis to the repe-
tition code tensor product (S ⊗ U)• has no additional logical qubits.



3.5. Future directions 93

Proof. We first show it for the first slice, then the proof extends iteratively. For the first
slice we have:

X

X

X

X

Z

Z

Z

· · ·

· · ·

There are no new logicals in the old code C•. There is evidently not a new X logical wholly
contained on the second slice in the Tanner graph above, as there are too many Z-checks.
Phrased differently, any new X logical wholly in that slice must be in ker((∂U1 )ᵀ), but
dim ker((∂U1 )ᵀ) = 0. If there are new X logicals, then, they must have support on both
the first and second slices.

If a qubit in the first slice has an X Pauli on it, to make it a logical it must also have
support on some qubits in the second slice. In particular, let u be the set of X Paulis on
the first slice which are applied as part of a logical. Then to satisfy the stabilisers in the
second slice it must also have support on qubits defined by v = ∂U1 u, as we have ‘switched
on’ |u| Z stabilisers in slice two, which must be switched off by X Paulis on the qubits in
that slice. Now, v = ιᵀ0 ◦ ∂V1 u. This is because ιᵀ0 � im(∂V1 ) = im(∂U1 ) = U0 by construction.

Applying the set of stabilisers ∂V1 u will therefore remove the X logical from both slices
entirely, moving the logical into the old code. As there can be no new logicals wholly
contained in the old code, there are no new X logicals; hence there are no new logical
qubits.

Further slices work similarly, but more easily as there is now a 1-to-1 map between
qubits in the second slice and checks in the third slice. Hence, even if there are m slices,
there are no new logical qubits. �

This is a different approach to the gauge-fixing of [CHRY24], which eliminates the new
logicals by adding stabilisers.
Corollary 3.5.4. A single-qubit logical measurement which changes basis to the repetition
code tensor product (S ⊗ U)• preserves the X-distance of C•.

Proof. First, by using the flexibility of pushouts, we change from the pushout

U• (U ⊗ S)•

C• R•

g

f◦ι

to
V• D•

C• R•

where D• has the Tanner graph shown above, i.e. it already includes the basis change,
and thus all morphisms are basis-preserving.



94 Chapter 3. SSIP: automated surgery with quantum LDPC codes

Then, we extend Lemma 2.3.17 to the case where one of the logicals is actually a
stabiliser. In this case, we have the coequaliser

V• (C ⊕D)• R•
ιC◦f•

ιD◦g•

coeq•

The cochain map coeq• then maps X operators from R• → (C ⊕ D)•, such that all
nontrivial operators are mapped to nontrivial operators, as the only element of H1(R•)
mapped to [0] ∈ H1((C ⊕D)•) is [0] ∈ H1(R•). Then, take any X in R• and map it using
H1(coeq•). On D• this will be mapped to a stabiliser, as it has no logical qubits, but on
C• it must be mapped to a nontrivial logical. The map to C• is 1-to-1 on those qubits,
so the logical in C• must have weight at least as small as the original X-logical, so the
distance is preserved by the logical measurement.

Note that this does not apply when new logicals are introduced for the same reason as
Lemma 2.3.17. �

We now comment on the LDPC property.

Lemma 3.5.5. If C• is ω-limited then the basis-changing logical measurement code R•
is not generally limited.

Proof. If the original code is ω-limited, then ∂V1 is also ω-limited. If we take any bit ei in
V1 and map it to V0 then the result ∂V1 ei has weight at most ω. Take the same bit and,
using the equality U1 = V1, map it to U0. |∂U1 ei| ≤ 2. Then the map ι0 takes ∂U1 ei and
maps it to ∂V1 ei, so the column weight of ι0 is at most ω.

For the row weight, however, we must be careful. ι0 ◦ ∂U1 = ∂V1 , and ∂U1 has a right
inverse (∂U1 )R of the form 

1 1 1 · · · 1 1
0 1 1 · · · 1 1
0 0 1 · · · 1 1
... ... ... . . . ... ...
0 0 0 · · · 1 1
0 0 0 · · · 0 1
0 0 0 · · · 0 0


and so ι0 = ∂V1 ◦ (∂U1 )R. As (∂U1 )R is not limited in column weight, ι0 is not limited in row
weight.

Because ι0 determines the connectivity of the first slice X-checks with the second slice
qubits, the code R• is not limited by the initial weights, and so is not generally LDPC. �

Evidently, there are cases where R• is LDPC, for example if V• = U•, as then ι0 = idn−1.
For the structure of ∂V1 to maintain the LDPC property there must be enough collisions
to zero out columns of (∂U1 )R. It would be interesting to know what class of classical codes
this is.

It is interesting that both this basis-change method and the gauge-fixing approach of
[CHRY24] can eliminate new logicals, but cannot guarantee that the LDPC property will
be preserved in general.

We can attempt to fix this by decomposing the basis change over multiple layers,
instead of changing to the repetition code immediately. As this becomes substantially
more complicated, we leave this for future work. Similarly, we will generalise to a basis



3.5. Future directions 95

changes to other codes – not just the ideal repetition code – in order to ‘convert’ from
one logical to another to perform parity measurements in a single ancilla patch without
requiring the basis-preserving monic span of Definition 2.3.11. Lastly, we aim to generalise
to logicals with differing numbers of qubits, so that the injection ι is nontrivial at degree
1 as well.





Part B

Hopf algebraic codes





Chapter 4

Quantum double aspects of Kitaev
models
The idea of fault-tolerant quantum computing using topological methods has been around
for some years now, notably the Kitaev model in the original work[Kit03] and important
sequels such as [BM-D08, BSW11, BMCA13, Meu17]. Here we add to this growing body
of literature with a renewed focus on the quantum double D(G) Hopf algebra symmetry
implicit in the original Kitaev model, where G is a finite group. The model here is built
on a suitable oriented graph but for our purposes we focus on a fixed oriented square
lattice. The Hilbert space H of the system is then the tensor product over all arrows of
a vector space with basis G at every arrow. Every site, by which we mean a choice of a
face and vertex on it, carries a representation of the quantum group D(G). In general
‘quasiparticles’ in the model are defined as irreducible representations of this quantum
group and we explain how these can be detected using certain projection operators PC,π,
where C is a conjugacy class in G and π is an irreducible representation of the isotropy
group. We then study quasiparticles at the end-points s0, s1 of an open ribbon ξ, again
taking a D(G) approach to the ribbon operator commutation relations. Most of these
results are in Section 4.2 but a more sophisticated view of ribbon operators as left and
right module maps Fξ : D(G)∗ → End(H) is deferred to Section 4.3 as a warm up for the
generalisation there.

Of particular interest in this Chapter is the space L(s0, s1) of states created from a local
vacuum by all possible ribbon operations Fξ for a fixed ξ. This was a key ingredient in
[Kit03] and its independence as a subspace of H on deformations of the ribbon expresses
the topological nature of the model. Our results here build on ideas in [BSW11] whereby
this space carries the left action of D(G) at s0 and another action, which we view as a
right action, at s1. The space is then isomorphic to D(G) itself as a bimodule under left
and right multiplication and hence subject to its Peter-Weyl decomposition as a direct
sum of End(VC,π) over all quasiparticle irrep spaces VC,π. We use this to create a state
|Bell; ξ〉 ∈ L(s0, s1) and show that this can be used to teleport information between s0, s1.
We illustrate the theory further as well as give more details and examples of quantum
computations for D(S3) in Section 4.2.5, where S3 is the group of permutations on 3
elements. Likewise, the theory simplifies but carries some of the same structures in the
toric case D(Zn) for which the ribbon theory is in Section 4.2.4.

The Chapter begins with a preliminary warm up Section 4.1 which sets up the basic
ideas as this easier level of D(Zn) but from the point of view of this as Zn × Zn with a
certain factorisable quastiriangular structure in the sense of Drinfeld[Dri87]. The body
of the Chapter concludes in Section 4.3 with some partial results going the other way
to D(H), where H is a finite-dimensional Hopf algebra. The Kitaev theory at this level
but with H semisimple so that (over C) we have S2 = id was introduced in [BMCA13]



100 Chapter 4. Quantum double aspects of Kitaev models

where it was was shown that one has a D(H) action at every site, but without explicitly
considering ribbons. The latter, however, are special cases of ‘holonomy maps’ in the
follow-up work [Meu17], again in the semisimple case. This work focusses more on the
topological and ‘gauge theory’ aspects rather than ribbon operators specifically, thus at
the very least we aim in the semisimple case for a much more explicit treatment of what
is already known in some form. Thus, our main result of the section on ribbon operators
as left and right module maps D(H)∗ → End(H) is similar to [Meu17, Thm 8.1] except
that that applies to a special class of holonomy operators that explicitly do not include
ribbon ones, and our proofs are much more explicit. For example, the equivariance of the
smallest open ribbons (which are base for our induction) is proven in Figures 4.8, 4.9 by
Hopf algebra calculations.

The bottom line, however, is that the theory is known to generalise well to H semisimple
and the most novel aspect of Section 4.3 is that we do as much as we can without assuming
this. Computationally speaking, the H non-semisimple case loses the interpretation of the
integral actions as check operators which are measured to detect unwanted excitations.
In addition, ribbon operators on the vacuum are no longer in general equivalent up to
isotopy. For this reason, the logical space does not enjoy the same ‘topological protection’
as the semisimple case. On the other hand, we find that there is no problem with a D(H)
action at every site, but for dual-triangle operators and ribbon operators involving them,
we need two versions (±)L depending one whether we use S±1 at the relevant incoming
arrow. That means that the same ribbon operator is not a module map from both the left
and the right at the same time. This obstruction can also be put on the faces and is not
a deal breaker, but requires more study for a fully worked out theory. For example, in the
quasitriangular Hopf algebra case the two are equivalent by conjugation, S = uS−1( )u−1

for Drinfeld’s element u ∈ H in [Dri87]. Thus, this aspect of Section 4.3 should be seen
as first steps in a fully general Kitaev theory.

In fact such a more general theory is needed in order to apply to quantum groups
such as uq(sl2) at roots of unity, which in turn would be needed to connect up to ideas
for quantum computing based on modular tensor categories associated to such non-semi-
simple quantum groups. For example, the Fibonacci anyons surveyed in [TTWL08] are
based on uq(sl2) at q5 = 1. The double D(uq(sl2)) here also underlies the Turaev-Viro
invariant of 3-manifolds and hence this should certainly be a source of topological stability
if the Kitaev model can be extended to such cases. If so, it would then be related closely
to 2 + 1 quantum gravity with point sources, which is a viable theory and another reason
to expect that this is ultimately possible. There are many other obstacles also, however,
to such a programme, some of which are discussed in the final Section 4.4. We also discuss
there other issues for topological quantum computing and possible links with ZX-calculus.

Remark 4.0.1. While completing the writing of other parts of the Chapter, there ap-
peared the preprint [YCC22] which covers some of the same ground as Section 4 with
regard to the ribbon operators in the semisimple case where S2 = id. Our approach is
different and is, moreover, directed to exposing the issues for the general non-semisimple
case.

4.1 Preliminaries: D(Zn) model
Let CZn denote the group Hopf algebra with generator h where hn = 1 and ∆h = h⊗h,
εh = 1, Sh = h−1 for the coproduct, counit and antipode. Let C(Zn) be the Hopf algebra of



4.1. Preliminaries: D(Zn) model 101

functions on Zn with a basis of δ-functions on Zn = 0, 1, · · · , n− 1 and ∆δi =
∑

j δj ⊗ δi−j,
ε(δi) = δi,0, Sδi = δ−i for the Hopf algebra structure. The normalised integrals in these
Hopf algebras are

Λ = 1
n

∑
i

hi ∈ CZn, Λ∗ = δ0 ∈ C(Zn).

The quantum double D(Zn) = C(Zn)⊗CZn ∼= CZn ⊗ CZn ∼= C.Zn × Zn as Hopf
algebras, since the groups are Abelian, and since (over C) CZn ∼= C(Zn) by the Fourier
isomorphism

g 7→
∑
i

qiδi, δi 7→
1
n

∑
k

q−ikgk, (4.1)

where q is a primitive nth root of unity. Now the double is CZn ⊗ CZn with generators
g, h respectively for the two copies, commuting and obeying hn = gn = 1. Under this
isomorphism, the general D(G) theory in Section 4.2 looks much simpler and we therefore
treat this case first as a model for the later sections.

Denoting the generators of the two copies of CZn in this form of the double by g, h
respectively, the D(Zn) quasitriangular structure is

R = 1
n

∑
i,j

q−ijgi⊗hj,

where we will see R =
∑

j δj ⊗ hj for D(Zn) according to 4.2 given later.
Now let Σ = Σ(V,E, P ) be a square lattice viewed as a directed graph with its usual

(cartesian) orientation. The Hilbert space will be a tensor product of vector spaces with
one copy of CZn at each arrow e ∈ E. We denote the basis of each copy by |i〉. Next, for
each vertex v ∈ V and each face p ∈ P we define an action of Zn which acts on the vector
spaces around the vertex or around the face, and trivially elsewhere, according to

h ▹ ∙v
g1 ∙= a ▹ p =

∙
∙∙

∙ ∙
∙∙

g2

g3
g4

g1h− 1
hg4

hg3

g2h− 1

g1

g2

g3

g4v∙
a(g1g2(g3)− 1(g4)− 1) g1

g2

g3

g4

h ▹ ∙v
| i⟩

| j⟩
|k⟩

| l⟩
∙

| j + 1⟩

|k + 1⟩
| l − 1⟩

| i − 1⟩= g ▹
∙

p| i⟩

| j⟩

|k⟩
| l⟩

=∙
∙∙

∙| i⟩

| j⟩

|k⟩

| l⟩ ∙
∙∙

qi+ j− k− l

These are built from four-fold copies of the operator X and its adjoint and of Z and its
adjoint, where X|i〉 = |i + 1〉 and Z|i〉 = qi|i〉 obey ZX = qXZ. Here h. subtracts in
the case of arrows pointing towards the vertex and g. has k, l entering negatively in the
exponent because these are contra to a clockwise flow around the face in our conventions.
These combine to an action of Zn × Zn at every ‘site’ (v, p) defined as a vertex v and an
adjacent face p (the exact placement of v in relation to p is not relevant in an Abelian
group model such as this).

Lemma 4.1.1. For every site (v, p), the operators g. and h. commute and give a repre-
sentation of Zn × Zn on the Hilbert space H.

Proof. This is a direct calculation acting on the 6 relevant vector spaces, of which two are



102 Chapter 4. Quantum double aspects of Kitaev models

in common to the two actions, see

a2 ▹ h2 ▹ v

g1

∙=
p

g2

g3

g4
h4g6

g4Sh5

g1S− 1h2

h3g5
a2 ▹

∙ ∙
∙ ∙ g5

g6

g2

g3

∙ ∙
p

⟨Sh1, a1⟩
⟨h3, a3⟩

⟨Sh1, a1⟩⟨h6, a3⟩

∙=

h4g6
g42Sh51

g11S− 1h22

h3g5

g21

g32∙ ∙
⟨Sh1(S(g12S− 1h21))(Sg22)g31g41(Sh52)h6, a⟩

∙=
h3g6

g42Sh4

g11S− 1h1

h2g5

g21

g32∙ ∙
⟨(Sg12)(Sg22)g31g41, a⟩

= ∙
g6

g42

g11

g5

g21

g32∙ ∙
⟨(Sg12)(Sg22)g31g41, a⟩

h ▹ v = ∙
g6

g4

g1

g5

g2

g3

∙ ∙
h ▹ a ▹ v

p

∙ ∙

∙ ∙ ∙

v

p| j⟩∙ ∙
∙ ∙

| i⟩ |k⟩
| l⟩

|m⟩
|s⟩

h ▹ p| j + 1⟩
∙ ∙
∙ ∙

| i − 1⟩ |k + 1⟩
| l − 1⟩

|m⟩
|s⟩ g ▹ p| j + 1⟩

∙ ∙
∙ ∙

| i − 1⟩ |k + 1⟩
| l − 1⟩

|m⟩
|s⟩

qj+ 1+ m− s− (k+ 1)

g ▹
v

p| j⟩∙ ∙
∙ ∙

| i⟩ |k⟩
| l⟩

|m⟩
|s⟩

qj+ m− s− k h ▹

�

The same applies trivially if v and p are not adjacent (as they have no arrow in common).
Thus, we can in fact consider h. determined by a vertex v and g. determined by a face p
independently. With this in mind, we define

A(v) = Λ. = 1
n

∑
m

(h.)m, B(p) = Λ∗. = 1
n

∑
m

(g.)m

where now Λ∗ = n−1∑
i g

i according to (5.1), and these necessarily commute. In fact it
is easy to see that

A(v)2 = A(v), B(p)2 = B(p), [A(v), A(v′)] = [B(p), B(p′)] = [A(v), B(p)] = 0.

We then define the Hamiltonian

H =
∑
v

(1− A(v)) +
∑
p

(1−B(p)) = −(
∑
v

A(v) +
∑
p

B(p)) + const.

and define the set of vacuum states

Hvac = {|ξ〉 ∈ H | A(v)|ξ〉 = B(p)|ξ〉 = |ξ〉,∀v, p}.

Vacuum states are ‘topologically protected’ from errors which are sufficiently local,
which we will make precise later.

Next, the irreducible representations of the double in this form are

πij(g) = qi, πij(h) = qj,

which as all 1-dimensional. We denote these by

1 = π00, ei = π0i, mi = πi0, εij = πij, i, j ∈ 1, · · · , n− 1

with braiding

Ψ1,∗ = Ψ∗,1 = Ψei,ej = Ψmi,mj = Ψei,mj = Ψεjk,mi = Ψei,εjk = 1,

Ψmi,ej = qij, Ψmi,εjk = qik, Ψεjk,ei = qij, Ψεij ,εkl = qil

where Ψu,v = R(2).v ⊗ R(1).u = 1
n

∑
i,j q

−ijhj.v ⊗ gi.u. Next, we define projectors

associated to πij namely

Pij = 1
n2

∑
kl

(Trπijg−kh−l)gkhl = P g
i P

h
j , P g

i = 1
n

∑
k

q−ikgk



4.1. Preliminaries: D(Zn) model 103

in the group algebra of Zn × Zn, built from projectors in each Zn (here P h
j is defined in

the same way on the other copy). The projectors on one copy obey P g
i P

g
j = δijP

g
i and∑

i P
g
i = 1 and similarly for P h

j , so that

PijPi′j′ = δii′δjj′Pij,
∑
i,j

Pij = 1.

At every vertex v, every face p and every site (v, p), we have specific projection operators
on H given by

Pi(p) = P g
i ., Pj(v) = P h

j ., Pij(v, p) = Pij.

for the actions above on the relevant arrows. We consider these orthogonal projectors as
measurement outcomes dictating, for i, j 6= 0:

• Pi(p) – there is a quasiparticle of type mi occupying face p

• Pj(v) – there is a quasiparticle of type ej occupying vertex v

• Pij(v, p) – there is a quasiparticle of type εij occupying site (v, p)

which, combined, make two projective measurements at a site (v, p), as the outcomes for
mi and ej are independent. The corresponding quantum mechanical observables are the
self-adjoint operators Op =

∑
i riPi(p) and Ov =

∑
j tjPj(v), where each ri ∈ R is distinct

and the same for each tj. In particular we acquire the outcome P00(v, p) when there is
a trivial representation quasiparticle at (v, p), which is equivalent to the absence of the
above excitations, i.e. we regard it as a local vacuum. Note also that

P0(v) = A(v), P0(p) = B(p), P00(v, p) = A(v)B(p)

which gives the meaning of these. Thus A(v) specifies that there is no excitation at the
vertex independently of the face, etc.

Lemma 4.1.2. Let |ψ〉 ∈ H. For all i, j ∈ Zn:

1. Pi(p)|ψ〉 = |ψ〉 if and only if g.|ψ〉 = qi|ψ〉 for the four arrows around p.

2. Pj(v)|ψ〉 = |ψ〉 if and only if h.|ψ〉 = qj|ψ〉 for the four arrows around v.

3. Pij(v, p)|ψ〉 = |ψ〉 if and only if g.|ψ〉 = qi|ψ〉 and h.|ψ〉 = qj|ψ〉 for the six arrows
at the site.

4. |vac〉 ∈ Hvac if and only if Pij(v, p)|vac〉 = 0 for all (i, j) 6= (0, 0) and at all sites
(v, p).

On a ‘closed plane’, which we can consider to be a plane where we ignore boundary effects,
there is a unique vacuum state (up to normalisation):

|vac〉 =
∏
v∈V

A(v)
⊗
E

|0〉

where 0 is the group identity of Zn.



104 Chapter 4. Quantum double aspects of Kitaev models

Proof. (1) Pi(p) acts on the four-arrow state |i1〉⊗ |i2〉⊗ |i3〉⊗ |i4〉 in order around the
face by 1

n

∑
k q
−iaqa(i1+i2−i3−i4) = δi,i1+i2−i3−i4 . So invariant states are linear combinations

of ones with i1 + i2− i3− i4 = i going around the face. These are precisely the local states
where g.|ψ〉 = qi|ψ〉.

(2) Linear combinations of |ii〉⊗ |i2〉⊗ |i3〉⊗ |i4〉 in order around the vertex that are
invariant under Pj(v) are of the form

|ψ〉 =
∑
b

q−jb|i1 − b〉⊗ |i2 + b〉⊗ |i3 + b〉⊗ |i4 − b〉

and these are also the local states where

h.|ψ〉 =
∑
b

q−jb|i1 − b− 1〉⊗ |i2 + b+ 1〉⊗ |i3 + b+ 1〉⊗ |i4 − b− 1〉 = qj|ψ〉

(3) Considering the site (v, p) with p to the upper right of v as before, the joint eigen-
vectors for (1) and (2) are of the form

|ψ〉 =
∑
b

q−jb|i1 − b〉⊗ |i2 + b〉⊗ |i3 + b〉⊗ |i4 − b〉⊗ |i5〉⊗ |i6〉; i2 + i5 − i6 − i3 = i

where we take them in order round the vertex then around the face. These are also the
local states where g.|ψ〉 = qi|ψ〉 and h.|ψ〉 = qj|ψ〉.

(4) We just note that P0(v) = A(v), P0(p) = B(p) so P00(v, p) = A(v)B(p). So if
|ψ〉 ∈ Hvac then P00|ψ〉 = |ψ〉 i.e. there are no excitations, at every site (v, p). Moreover,
for (i, j) 6= (0, 0), Pij|ψ〉 = PijP00|ψ〉 = 0 by the projector orthogonalilty, again at every
site. Conversely, if Pij|ψ〉 = 0 for all (i, j) 6= (0, 0) at (v, p) then P00|ψ〉 = |ψ > as∑

ij Pij = 1 while A(v)|ψ〉 =
∑

i Pi0|ψ〉 = P00|ψ〉 = |ψ〉 and similarly for B(p). If this is
true at every site then |ψ〉 ∈ Hvac.

Note that (4) is the same as saying that if the system is in a vacuum state there is no
excitation at any site. We can see this directly as h.◦Λ. = Λ. at a given vertex. So if |vac〉
is in Hvac as defined above then h.|vac〉 = h.A(v)|vac〉 = hΛ.|vac〉 = Λ.|vac〉 = |vac〉.
Similarly for g.|vac〉 = |vac〉. This agrees with the analysis above. The vacuum state |vac〉
may be verified by directly checking the definition of Hvac. We will see later that this
state is unique in Hvac as a special case of Corollary 4.2.3.

4.1.1 Quasiparticle creation and transportation

We now consider concretely how to create quasiparticles on the lattice. Assume the system
has state |vac〉 ∈ Hvac. Consider the arrow between vertices v2 and v1 on the boundary
of faces p1 and p2,

|s〉p1
p2

v2

v1

|t〉
|u〉 p3

v3



4.1. Preliminaries: D(Zn) model 105

For some j ∈ Zn, consider Z−j acting on |s〉, which we denote Z−js and takes |s〉 7→ q−sj|s〉:

|s〉p1
p2

v2

v1

|t〉
|u〉 p3

v3

q−js

Then,h.v1Z
−j
s |vac〉 = qjZ−js h.v1|vac〉 = qjZ−js |vac〉 and similarly h.v2Z

−j
s |vac〉 = q−jZ−js |vac〉,

which is easy to check using commutation relations. By Lemma 4.1.2, all neighbouring
sites (v1, pa) and (v2, pa) are occupied by mj and m−j, where pa is any neighbouring face.
Let X−i further act on Z−js |s〉 alone, for some i ∈ Zn:

|s− i〉p1
p2

v2

v1

|t〉
|u〉 p3

v3

q−js

Now, g.p1(X−iZ−j)s|vac〉 = qi(X−iZ−j)sg.p1|vac〉 = qi(X−iZ−j)s|vac〉 and g.p2(X−iZ−j)s|vac〉 =
q−i(X−iZ−j)s|vac〉. All neighbouring sites (vb, p1) and (vb, p2) are now occupied by a quasi-
particle ei and e−i respectively, where vb is any neighbouring vertex. In particular, (v1, p1)
is occupied by πi,j, while (v2, p2) is occupied by π−i,−j.

Quasiparticles may be moved on the surface by X and Z edge operations. We next
apply X i to |t〉:

|s− i〉p1
p2

v2

v1

|t+ i〉
|u〉 p3

v3

q−js

Now, g.p2X
i
t ⊗ (X−iZ−j)s|vac〉 = X i

t ⊗ (X−iZ−j)s|vac〉 (being careful about edge orienta-
tion). Site (v2, p2) is now only occupied by m−j. However, the previously unoccupied site
(v3, p3) is now occupied by e−i, as g.p3X

i
t |~p3〉 = qiX i

t |~p3〉. Now further apply Z−j acting
on |u〉:

|s− i〉p1
p2

v2

v1

|t+ i〉
|u〉 p3

v3

q−j(s+u)

h.v2Z
−j
u ⊗ X i

t ⊗ (X−iZ−j)s|vac〉 = Z−ju ⊗ X i
t ⊗ (X−iZ−j)s|vac〉, and so site (v2, p2) is

now unoccupied. Site (v3, p3) is occupied by π−i,−j, as h.v3Z
−j
u ⊗X i

t ⊗ (X−iZ−j)s|vac〉 =
q−jZ−ju ⊗X i

t ⊗ (X−iZ−j)s|vac〉. This explanation of creation and transport is quite ad hoc.
In fact, the above operators are specific instances of ribbon operators, which we describe
in Section 4.2. We delay discussing braiding until then, as it is clearer in terms of ribbons.



106 Chapter 4. Quantum double aspects of Kitaev models

4.2 D(G) models and example of D(S3)
The models described in this Section are the primary subject of Kitaev’s original paper
[Kit03], and while some of the results here have been described in some form either there
or elsewhere, see [BSW11, BM-D08], we aim to be explicit and formal in the presentation.
In addition, we believe that our account of how to utilise the Peter-Weyl isomorphism for
ribbon operators is novel at least in its level of detail, as is the description of a generalised
quantum teleportation-like protocol.

Let G be a finite group with identity e ∈ G. We recall that the group Hopf algebra CG
base basis G with product extended linearly and ∆h = h⊗h, εh = 1 and Sh = h−1 for
the Hopf algebra structure. Its dual Hopf algebra C(G) of functions on G has basis of
δ-functions {δg} with ∆δg =

∑
h δh⊗ δh−1g, εδg = δg,e and Sδg = δg−1 for the Hopf algebra

structure. The normalised integrals are

Λ = 1
|G|

∑
h∈G

h ∈ CG, Λ∗ = δe ∈ C(G).

For the Drinfeld double we have D(G) = C(G)>/CG, see [Maj95], with CG and C(G)
subalgebras and the cross relations hδg = δhgh−1h (a semidirect product). We will often
prefer to refer to D(G) explicitly on the tensor product vector space, then for example the
cross relation appears explicitly as (1⊗h)(δg⊗ 1) = (δhgh−1 ⊗ 1)(1⊗h) = δhgh−1 ⊗h and
antipode as S(δg⊗h) = δh−1g−1h⊗h−1. There is also a quasitriangular structure which in
the subalgebra notation is

R =
∑
h∈G

δh⊗h ∈ D(G)⊗D(G). (4.2)

More relevant to us is the representation on Hilbert space H, which now is a tensor
product of CG at each arrow. As before, this is associated to a pair (v, p) (a ‘site’) where
v is a vertex on the boundary of the face p. What is different from the Abelian group case
in Section 4.1 is that now for the a. action on H we have to pay attention to the exact
placement of v in relation to p by drawing dashed line (the ‘cilium’) between v and the
interior of p and taking the group elements in order around the face according to

h ▹ ∙v
g1 ∙= a ▹ p =

∙
∙∙

∙ ∙
∙∙

g2

g3
g4

g1h− 1
hg4

hg3

g2h− 1

g1

g2

g3

g4v∙
a(g1g2(g3)− 1(g4)− 1) g1

g2

g3

g4

h ▹ ∙v
| i⟩

| j⟩
|k⟩

| l⟩
∙

| j + 1⟩

|k + 1⟩
| l − 1⟩

| i − 1⟩= g ▹
∙

p| i⟩

| j⟩

|k⟩
| l⟩

=∙
∙∙

∙| i⟩

| j⟩

|k⟩

| l⟩ ∙
∙∙

qi+ j− k− l

Lemma 4.2.1. h. and a. for all h ∈ G and a ∈ C(G) define a representation of D(G)
on H associated to each site (v, p).

Proof. This follows from the definitions and a check acting on the six affected arrow
spaces, see

v

pg4

∙ ∙
∙ ∙

g1 g3

g2

g5

g6
h ▹ p∙ ∙

∙ ∙ δg ▹

∙ ∙
∙ ∙

δh−1gh ▹
v∙ ∙
∙ ∙

h ▹

hg4

g1h−1 hg3

g2h−1

g5

g6

g4
g1

g3

g2

g5

g6

hg4

g1h−1 hg3

g2h−1

g5

g6

δh−1gh(g4g5(g6)−1(g3)−1)

δg(hg4g5(g6)−1(hg3)−1)



4.2. D(G) models and example of D(S3) 107

�

We next define

A(v) = Λ. = 1
|G|

∑
h∈G

h., B(p) = Λ∗. = δe.

where δe(g1g2g3g4) = 1 iff g1g2g3g4 = e which is iff (g4)−1 = g1g2g3 which is iff g4g1g2g3 =
e. Hence δe(g1g2g3g4) = δe(g4g1g2g3) is invariant under cyclic rotations, hence Λ∗. com-
puted at site (v, p) does not depend on the location of v on the boundary of p. Moreover,

A(v)B(p) = |G|−1
∑
h

hδe. = |G|−1
∑
h

δheh−1h. = |G|−1
∑
h

δeh. = B(p)A(v)

if v is a vertex on the boundary of p by Lemma 4.2.1, and more trivially if not. We also
have the rest of

A(v)2 = A(v), B(p)2 = B(p), [A(v), A(v′)] = [B(p), B(p′)] = [A(v), B(p)] = 0

for all v 6= v′ and p 6= p′, as easily checked. We then define

H =
∑
v

(1− A(v)) +
∑
p

(1−B(p))

and the space of vacuum states

Hvac = {|ψ〉 ∈ H | A(v)|ψ〉 = B(p)|ψ〉 = |ψ〉, ∀v, p}.

4.2.1 Vacuum space
The vacuum space degeneracy depends on the surface topology. Here and throughout the
Chapter, we describe everything very concretely using a square lattice for convenience.
While this is obviously possible for a plane, more general surfaces may not admit such
a tiling. Precisely, the only 2-dimensional closed orientable surface which admits a (4,
4) tessellation is the torus, which follows from [EEK82, Thm 1]. However, the following
well-known theorem, and results throughout this Chapter, apply for other (ciliated, ribbon)
graphs embedded into a closed orientable surface. We avoid getting into the weeds on the
subject of topological graph theory, but observe that while the lattice will primarily be
square, in some places there will have to be irregular faces or vertices. Face and vertex
operators generalise straightforwardly to such irregularities.
Theorem 4.2.2. Let Σ be a closed, orientable surface. Then

dim(Hvac) = |Hom(π1(Σ), G)/G|.

where the G-action on any φ ∈ Hom(π1(Σ), G) is φ 7→ {hφh−1 | h ∈ G}.
For completeness we prove this in the Appendix 12, mostly following [CDH20], and in

the process presenting an orthogonal basis for Hvac. This implies, in particular:
Corollary 4.2.3. Let Σ be planar, with no boundaries. Then the vacuum state |vac〉 is
unique up to normalisation, and

|vac〉 =
∏
v∈V

A(v)
⊗
E

e

where e is the group identity of G and ⊗ is over the arrows.



108 Chapter 4. Quantum double aspects of Kitaev models

Proof. We have assumed that π1(Σ) = {e} and clearly Hom({e}, G) = {e}, {e}/G = {e}.
Hence, the vacuum is unique. To find it, define g :=

⊗
E e, and observe that B(p)g = g for

all p ∈ P , so g ∈ S. Since B(p) commutes with every A(v) commute with, it follows that
B(p)|vac〉 = |vac〉. Moreover, applying A(v) for a fixed v to |vac〉, this combines with A(v)
in the product to give A(v) again, hence A(v)|vac〉 = |vac〉. Hence, we have constructed
the vacuum state. �

We specify that the plane has no boundaries for Corollary 4.2.3 because Theorem 4.2.2
holds only for closed surfaces; the ‘plane’ can then be thought of as an infinite sphere.
The treatment of boundaries requires adding more algebraic structure to the model, and
in general splits vacuum degeneracy [BSW11]. It is also obvious that if Σ is a closed
orientable surface and G is Abelian so that the G-action by conjugation is trivial, then

dim(Hvac) = |Hom(π1(Σ), G)|.

The Kitaev model may be used to perform fault-tolerant quantum computation – indeed,
the D(G) model corresponds to a class of quantum error-correcting codes in the sense
of [KL00], according to [CDH20]. If we consider the vacuum to be the logical space of
a quantum computer and by following the proof of Theorem 4.2.2, we observe that the
only non-trivial operators in End(Hvac) are non-contractible closed loops on the lattice.
Operators which do not form closed paths take the system out of Hvac, and introduce
excitations. In particular, considering the quantum computer to be operating in a noisy
environment, errors on the lattice which introduce unwanted excitations may be detected
using the projectors A(v), B(p) and corrected. Undetectable errors must therefore be
sufficiently non-local as to form undetectable non-trivial holonomies; we thus refer to the
logical state of the computer as being ‘topologically protected’.

To run algorithms of practical interest, the model must be capable of supporting a large
Hilbert space, but Corollary 4.2.3 tells us that a boundary-less plane is only capable of
supporting a single vacuum state. There are therefore 3 methods of encoding data in
Kitaev models:

1. Build the lattice Σ as a torus with k holes, which can encode data in the degenerate
vacuum state using π1(Σ).

2. Incorporate gapped boundaries or topological defects into the lattice, which are com-
patible (in some suitable sense) with the algebra of D(G) and allow for additional
vacuum states [BSW11, BM-D08].

3. Use excited states to encode data. This method requires that G be non-Abelian, as
the D(G) model does not admit degenerate excited states on the plane when G is
Abelian without the addition of topological features such as boundaries [Kit03].

4.2.2 Quasiparticles and projection operators to detect them
We now return to the underlying algebra of the Kitaev model. The ‘quasiparticles’ in the
theory are labelled by irreducible representations of D(G). A couple of standard but not
generally irreducible right representations of D(G) on CG itself are

(i) g/h = gh, g/δh = gδh,e; (ii) g/h = h−1gh, g/δh = gδg,h.



4.2. D(G) models and example of D(S3) 109

More generally, as a semidirect product, irreducible representations of D(G) are given by
standard theory as labelled by pairs (C, π) consisting of an orbit under the action (i.e. by
a conjugacy class C ⊂ G in the present case) and an irrep π of the isotropy subgroup CG
of a fixed element rC ∈ C (in our case its centraliser i.e. n ∈ G such that nrC = rCn),
the choice of which does not change the group up to isomorphism but does change how it
sits inside G. Here C is called the ‘magnetic charge’ and π is called the ‘electric charge’.
Special cases corresponding to ei and mi respectively in the D(Zn) case are

chargeons ({e}, π), δgh.w = δg,eπ(h)w; fluxions (C, 1), δgh.c = δg,hch−1hch−1

acting on the representation space Vπ of π as an irrep of G, and the span CC of the
conjugacy class, respectively. The braiding of two fluxions or a fluxion with a chargeon,
for example, are

Ψ(f ⊗ f ′) =
∑
g

g.f ′⊗ δg.f = ff ′f−1⊗ f, Ψ(f ⊗w) =
∑
g

g.w⊗ δg.f = π(f)w⊗ f.

The irrep associated to general (C, π) can be described as follows[Maj04]. First, fix a map

q : C → G, qcrCq
−1
c = c, ∀c ∈ C, (4.3)

and define from this a ‘cocycle’ ζ : C ×G→ CG respectively defined and characterised by

ζc(g) = q−1
gcg−1gqc; ζc(gh) = ζhch−1(g)ζc(h)

for all c ∈ C and g, h ∈ G. The quantum double action on CC ⊗Vπ is then

δgh.(c⊗w) = δg,hch−1hch−1⊗ π(ζc(h))w. (4.4)

This is irreducible and although the formulae depend on the choice of q, different choices
give isomorphic representations. In particular, we can right multiply qc by any element
nc ∈ CG, and using this freedom we can suppose that

qrC = e (4.5)

which, in particular, ensures that (e, π) recovers the chargeon representation rather than
an equivalent conjugate of it. Also note G is partitioned into the right cosets of CG with
the quotient space G/CG identified with C by its action on rC . This implies that every
element g ∈ G can be uniquely factorised as g = qcn for some c ∈ C and n ∈ CG.

We now describe the projectors[Maj04] that detect the presence of such quasiparticles,
focussing first on the electric/chargeon sector. Then for each irrep π, such quasiparticles
will be detected by measuring an observable O =

∑
π rπPπ.v, where rπ ∈ R are all distinct,

and v is a vertex; Pπ is a central projection element (central idempotent) in the group
algebra CG given by

Pπ = dim Vπ
|G|

∑
g

(Trπ g−1)g (4.6)

These obey PπPπ′ = δπ,π′Pπ by the orthogonality of characters on finite groups, as well as∑
π Pπ = 1 and P1 = Λ. Centrality is immediate by changing the variable g and symmetry

of the trace. For reference, the orthogonality relations for characters on any finite group
are ∑

h∈G

Trπ(h−1) Trπ′(hg) = δπ,π′
|G|

dim(Vπ) Trπ(g) (4.7)



110 Chapter 4. Quantum double aspects of Kitaev models

∑
π∈Ĝ

Trπ(g−1) Trπ(h) = δCg ,Ch|CG(g)| (4.8)

for all h, g ∈ G and π, π′ ∈ Ĝ the set of irreps up to equivalence. Here Cg denotes the
conjugacy class containing g. We likewise have a projection element χC in C(G) defined
as the characteristic function of C and PC(v) = χC.v for all v ∈ H acting at any site. The
general case is

PC,π =
∑
c∈C

δc⊗ qcPπq−1
c = dim Vπ

|CG|
∑
c∈C

∑
n∈CG

Trπ(n−1)δc⊗ qcnq−1
c (4.9)

where Pπ ∈ CCG is for π as a representation of CG, and associated site projection operators
PC,π(v) = PC,π.v for v ∈ H and action at a site. Here dim(Vπ)/|CG| = dim(VC,π)/|G|.
Also note that

Pe,1 = Λ∗⊗Λ, Pe,π = Λ∗⊗Pπ, PC,1 =
∑
c∈C

δc⊗ qcΛCGq
−1
c ,

the last of which in the Abelian case is δc⊗Λ and recovers the chargeon and fluxion
projections to the extent possible. We can also define for a fixed C,∑

π∈ĈG

PC,π =
∑
c∈C

δc⊗ qc(
∑
π∈ĈG

Pπ)q−1
c = χC ⊗ 1.

What we can not do in the nonAbelian case is sum over C for a fixed nontrivial π as these
depend on C, so we do not have a formula like

∑
C PC,π = 1⊗Pπ.

Lemma 4.2.4. In D(G), the PC,π are central and form a complete orthogonal set of
projections,

PC,πPC ′,π′ = δC,C ′δπ,π′PC,π,
∑
C,π

PC,π = 1 (4.10)

Proof. This is due to [Maj04], but for completeness we now provide more explicit proofs
than given there. Thus,

PC,πPC ′,π′ =
∑

c∈C,d∈C ′
(δc⊗ qcPπq−1

c )(δd⊗ q′dPπ′q′−1
d )

= dim Vπ
|CG|

∑
c∈C,d∈C ′

δc
∑
n∈CG

Trπ(n−1)δc,qcnq−1
c dqcn−1q−1

c
⊗ qcnq−1

c q′dPπq
′−1
d

= dim Vπ
|CG|

∑
c∈C,d∈C ′

δc
∑
n∈CG

Trπ(n−1)δc,d⊗ qcnq−1
c q′dPπ′q

′−1
d

= δC,C ′
∑
c∈C

δc⊗ qcPπPπ′q−1
c = δC,C ′δπ,π′

∑
c∈C

δc⊗ qcPπ′q−1
c = δC,C ′δπ,π′PC,π

where CG = CG(rC) and c = qcnq
−1
c dqcn

−1q−1
c iff d = qcn

−1q−1
c cqcnq

−1
c = qcn

−1rCnq
−1
c =

qcrCq
−1
c = c. Note that if C = C ′, which is needed for c = d, then q = q′ are the same

function and we can cancel qcq′−1
d in this case. We also have

∑
C,π

PC,π =
∑
C

∑
c∈C

δc⊗ qc

(∑
π

Pπ

)
q−1
c =

∑
C

∑
c∈C

δc⊗ 1 =
∑
C
χC ⊗ 1 = 1⊗ 1



4.2. D(G) models and example of D(S3) 111

where we sum over irreps π of CG for each C. For centrality,

PC,π(δh⊗ g) = dim Vπ
|CG|

∑
c∈C

∑
n∈CG

δc Trπ(n−1)δc,qcnq−1
c hqcn−1q−1

c
⊗ qcnq−1

c g

= dim Vπ
|CG|

δhχC(h)⊗
∑
n∈CG

Trπ(n−1)qhnq−1
h g = χC(h)δh⊗ qhPπq−1

h g

(δh⊗ g)PC,π = (δh⊗ g)
∑
c∈C

δc⊗Pπq−1
c =

∑
c

δhδgcg−1,h⊗ gqcPπq−1
c = χC(h)δh⊗ gqg−1dgPπq

−1
g−1dg

where for the second equality c = qcnq
−1
c hqcn

−1q−1
c iff c = h by the same calculation

as above. But q−1
h gqg−1hgrCq

−1
g−1hgg

−1qh = q−1
h gg−1hgg−1qh = rC so q−1

h gqg−1hg ∈ CG and
therefore commutes with Pπ. �

The origin of these projection operators is the Peter-Weyl decomposition which applies
to group algebras and other semisimple Hopf algebras including D(G). We look at the
group algebra case first in some detail. Thus, for CG, there is an isomorphism CG∼=⊕π
End(Vπ) where the map to each component is to send g 7→ π(g)ijei⊗ f j where ei is a
basis of Vπ and f j is a dual basis. Here, ei⊗ f j is the elementary matrix with 1 at the
i, j row/column if we identify End(Vπ) = Mdim(Vπ)(C). We check conventions: if v = viei
then π(g)v = viπkjek〈f j, ei〉 = ekπkiv

i so that π(g) acts by matrix multiplication on (vi)
as a column vector. In the converse direction we define

ΦCG : ⊕πEnd(Vπ)→ CG, Φ(ei⊗ f j) = dim Vπ
|G|

∑
g∈G

π(g−1)jig

which we see obeys Φ(ei⊗ f i) = Pπ. One can check that the map Φ is an isomorphism
of bimodules where CG acts on itself from the left and the right and acts on End(Vπ) =
Vπ⊗V ∗π on the left by π and on the right by its adjoint. Here h.ei = ekπ(h)ki and
f j/h = π(h)jkfk (the dual basis elements transform the same way as vectors) and ΦCG
is necessarily surjective as the image of

∑
π

∑
i ei⊗ f i =

∑
Pπ = 1, given that is is a

bimodule map. Moreover, under π′, the element Φ(ei⊗ f j) maps to

dim Vπ
|G|

∑
g∈G

π(g−1)jiπ′(g)klek⊗ f l = δπ,π′ei⊗ f j (4.11)

as required for the inverse in one direction, which proves that ΦCG is injective. The equality
(4.11) used here is equivalent to a stronger version of the orthogonality relations for matrix
entries of unitary irreducible representations over C, of which (4.7) is a consequence. This
also implies that π′(Pπ) = idδπ,π′ and hence that

Pπ.ei = ekπ(Pπ)ki = ei, f j/Pπ = π(Pπ)jkfk = f j (4.12)

if ei ∈ Vπ and fj ∈ V ∗π respectively, or zero if these are in one of the other components.
By the equivariance, these actions are equivalent to the projectors Pπ acting by left or
right multiplication, hence PπCG = (CG)Pπ∼=End(Vπ) via Φ.

We now similarly let D(G) act on End(VC,π) = VC,π⊗V
∗
C,π from the left and right by

the given left representation and its adjoint as a right one. It also acts on itself by left
and right multiplication.



112 Chapter 4. Quantum double aspects of Kitaev models

Theorem 4.2.5. Taking a basis {c⊗ ei} of the D(G) representation VC,π, with dual basis
{δd⊗ f j}, the map Φ : ⊕C,πEnd(VC,π)→ D(G) given on End(VC,π) by

Φ(c⊗ ei⊗ δd⊗ f j) = δc⊗ qcΦCCG(ei⊗ f j)q−1
d = dim Vπ

|CG|
∑
n∈CG

π(n−1)jiδc⊗ qcnq−1
d

is an isomorphism of bimodules.

Proof. Using the action (4.4) of D(G) on VC,π in basis terms

(δh⊗ g).(c⊗ ei) = δh,gcg−1gcg−1⊗ π(q−1
gcg−1gqc)kiek, (4.13)

the left module property of Φ is

Φ((δh⊗ g).(c⊗ ei)⊗ δd⊗ f j) = Φ(δh,gcg−1gcg−1⊗ π(q−1
gcg−1gqc)kiek⊗ δd⊗ f j)

= δh,gcg−1
dim Vπ
|CG|

∑
n∈CG

π(n−1)jkπ(q−1
gcg−1gqc)kiδgcg−1 ⊗ qgcg−1nq−1

d

= δh,gcg−1
dim Vπ
|CG|

∑
n′∈CG

π(n′−1)kiδgcg−1 ⊗ gqcn′q−1
d

= (δh⊗ g)Φ(c⊗ ei⊗ δd⊗ f j)

where n′ = q−1
c g−1qgcg−1n. We check that n′rCn′−1 = q−1

c g−1qgcg−1rCq
−1
gcg−1gqc = q−1

c g−1(gcg−1)gqc =
rC so n′ ∈ CG in our change of variables. For the other side we first use

〈(δd⊗ f j)/(δh⊗ g), c⊗ ei〉 := 〈δd⊗ f j, (δh⊗ g).(c⊗ ei)
= 〈δg⊗ f j, δh,gcg−1gcg−1⊗ π(q−1

gcg−1gqc)kiek〉 = δd,hδd,gcg−1π(q−1
gcg−1gqc)ji

= δd,h〈δg−1dg⊗ π(q−1
d gqg−1dg)jkfk, c⊗ ei〉

for all c, ei, from which we find the dual action

(δd⊗ f j)/(δh⊗ g) = δh,dδg−1dg⊗ π(q−1
d gqg−1dg)jkfk (4.14)

We then proceed similarly for the right module property

Φ(c⊗ ei⊗(δd⊗ f j)/(δh⊗ g)) = Φ(c⊗ ei⊗ δh,dδg−1dg⊗ π(q−1
d gqg−1dg)jkfk)

= δh,d
dim Vπ
|CG|

∑
n∈CG

δc⊗ π(q−1
d gqg−1dg)jkπ(n−1)jiqcnq−1

g−1dg

= δh,d
dim Vπ
|CG|

∑
n′∈CG

δc⊗ π(n′−1)jiqcn′q−1
d g

= Φ(c⊗ ei⊗ δd⊗ f j)(δh⊗ g)

where n′ = nq−1
g−1dgg

−1qd and one can check that this is in CG. For the last line to identify
the product in D(G), we need for any n ∈ CG that qcnq−1

d hqdn
−1q−1

c = c if and only if
h = d.

We now check that Φ is inverse to the composite of the representations (C, π) as maps
D(G)→ End(VC,π). It is already surjective as it is a bimodule map and Φ(

∑
C,π
∑

c,i c⊗ ei⊗ δc⊗ f i) =



4.2. D(G) models and example of D(S3) 113

v

pg4

∙ ∙
∙ ∙

g1 g3

g2

g5

g6
h ▹ p∙ ∙

∙ ∙ δg ▹

∙ ∙
∙ ∙

δh−1gh ▹
v∙ ∙
∙ ∙

h ▹

hg4

g1h−1 hg3

g2h−1

g5

g6

g4
g1

g3

g2

g5

g6

hg4

g1h−1 hg3

g2h−1

g5

g6

δh−1gh(g4g5(g6)−1(g3)−1)

δg(hg4g5(g6)−1(hg3)−1)

∙
∙∙∙v0

p0
v1

h1 h2

h3
g1 g2

g3

g4

Fh,g
ξ = g1 h−1

g2 (h1 )−1 h−
1 h1

g3 h3 (h2 )−1 (h1 )−1 h−
1 h1 h2 (h3 )−1

δg(h1h2(h3)−1h4)
h4 ∙
p1

∙
∙∙∙v0

p0
v1

h1 h2

h3
h4 ∙
p1

g4 h3 (h2 )−1 (h1 )−1 h−
1 h1 h2 (h3 )−1

∙
∙∙∙v0

p0
v1

| i⟩
Fa,b

ξ = δb,i+ j−k+ l∙
p1

∙
∙∙∙v0

p0
v1∙

p1

| j⟩

|k⟩
| l⟩

| i⟩ | j⟩

|k⟩
| l⟩

|m⟩
|p⟩

|r⟩
|s⟩

|m − a⟩ |r − a⟩
|s − a⟩

|p − a⟩
Figure 4.1: Example of a ribbon operator for a ribbon ξ starting at s0 = (v0, p0) to

s1 = (v1, p1).

∑
C,π PC,π = 1 ∈ D(G). Therefore it suffices to check that applying the representa-

tion (4.13) undoes Φ. Focussing on the block End(VC,π) and acting with its image on
c′⊗ ei′ ∈ VC ′,π′ ,

Φ(c⊗ ei⊗δd⊗ f j).(c′⊗ ei′) = dim Vπ
|CG|

∑
n∈CG

π(n−1)ji(δc⊗ qcnq−1
d ).(c′⊗ ei′)

= dim Vπ
|CG|

∑
n∈CG

π(n−1)jiδc,qcnq−1
d c′qdn−1q−1

c
c⊗ π′(q−1

c qcnq
−1
d qc′)j′i′ej′

= δC,C ′δd,c′c⊗
dim Vπ
|CG|

∑
n∈CG

π(n−1)jiπ′(n)j′i′ej′

= δC,C ′δπ,π′δd,c′δj,i′c⊗ ei

as required. Here, c = qcnq
−1
d c′qdn

−1q−1
c iff n−1rC = q−1

d c′qdn
−1 which is iff qdrCq

−1
d = c′

which is iff c = c′. This is zero unless C = C ′ also. We then used the full orthogonality
(4.11) for the group CG.

By general arguments as in the group case, it follows that PC,π acts as the identity
on VC,π and V ∗C,π (and zero on other components). One can also check this explicitly, for
example,

PC,π.(c⊗ ei) = dim Vπ
|CG|

∑
d∈C

∑
n∈CG

Trπ(n−1)δd,qdnq−1
d cqdn−1q−1

d
d⊗ ejπ(ζc(qdnq−1

d )ji

= dim Vπ
|CG|

∑
n∈CG

Trπ(n−1)c⊗ ejπ(n)ji = c⊗ ei

since d = qdnq
−1
d cqdn

−1q−1
d iff c = qdnq

−1
d dqdn

−1q−1
d = qdnrcn

−1q−1
d = qdrCq

−1
d = d. We

used the strong orthogonality relations. Likewise for f v/PC,π = f v. �

We see that, while Φ clearly sends the identity element or ‘maximally entangled state’
of VC,π⊗V ∗C,π to PC,π, it also implies a basis of all of D(G) broken down into irreps (C, π)
and elements Φ(c⊗ ei⊗ δd⊗ f j) for each block. We will need this result for the discussion
of ribbon teleportation.



114 Chapter 4. Quantum double aspects of Kitaev models

4.2.3 D(G) ribbon operators
To discuss the physics further, one needs the notion of a ribbon operator. By definition,
a ribbon ξ is a strip of face width that connects two sites s0 = (v0, p0) to s1 = (v1, p1) by
a sequence of sites (shown dashed) as for example in Figure 4.1. We call a ribbon closed
if its endpoints are at the same site, and open if the endpoints are at disjoint sites with
no intersection. Note that there exist ribbons which are neither open nor closed, which
end at the same vertex but with different faces, say, but we are not concerned with this
case. In Figure 4.1 we also show an associated ribbon operator F h,g

ξ acting on the spaces
associated to the participating arrows and trivially elsewhere. The ribbon has an edge
along which we transport h from the initial vertex by conjugation along the path, at each
vertex of which we apply the conjugated h in the manner of a vertex operation but only
to the cross arrow that comes anticlockwise from the dashed site marker. It follows that
if we concatenate ribbon ξ′ following on from ribbon ξ then we have the first of

F h,g
ξ′◦ξ =

∑
f∈G

F f−1hf,f−1g
ξ′ ◦ F h,f

ξ ; F h,g
ξ ◦ F h′,g′

ξ = δg,g′F
hh′,g
ξ , (4.15)

where we see the coproduct ∆δg of C(G). The latter implies the adjointness

(F h,g
ξ )† = F h−1,g

ξ (4.16)

with respect to the inner product of H.
Example 4.2.6. Let the state on the l.h.s. of Figure 4.1 be |ψ〉, and take the inner
product with another state:

h′1 h′2

h′3
h′4g′1 g′2

g′3

g′4

|ψ′〉:=

〈ψ′|(F h,g
ξ |ψ〉) = δg(h1h2(h3)−1h4)δh′1(h1)δh′2(h2)δh′3(h3)δh′4(h4)δg′1(g1h−1)

δg′2(g2(h1)−1h−1h1)δg′3(g3h3(h2)−1(h1)−1h−1h1h2(h3)−1)
δg′4(g4h3(h2)−1(h1)−1h−1h1h2(h3)−1)
= δg(h′1h′2(h′3)−1h′4)δh′1(h1)δh′2(h2)δh′3(h3)δh′4(h4)δg1(g′1h)
δg2(g′2(h1)−1hh1)δg3(g′3h3(h2)−1(h1)−1hh1h2(h3)−1)
δg4(g′4h3(h2)−1(h1)−1hh1h2(h3)−1)
= (〈ψ′|F h−1,g

ξ )|ψ〉

and by (4.15), (F h,g
ξ )†F h,g

ξ = F h,g
ξ (F h,g

ξ )† = F e,g
ξ .

Ribbon operators of the form F e,g
ξ produce only a scalar δg(· · · ) when applied to a

lattice state. It is easy to see that

[F e,g
ξ , F e,g′

ξ′ ] = 0 (4.17)

for all g, g′ ∈ G and ribbons ξ, ξ′.
Another important property of ribbon operators is that closed, contractible ribbons

admit a trivial action of the corresponding ribbon operator on a vacuum state.



4.2. D(G) models and example of D(S3) 115

v
h4

∙ ∙
∙ ∙

h1

g1

h3

h2Fh,g
ζ =

g1h− 1 g2(h1)− 1h− 1h1

δg(h1h2(h3)− 1(h4)− 1)

p
g2

g3

g4

g5g6

g7

g8 v
h4

∙ ∙
∙ ∙

h1

h3

h2

p
(h1)− 1hh1g3

(h2)− 1(h1)− 1hh1h2g4

(h2)− 1(h1)− 1hh1h2g5h3(h2)− 1(h1)− 1hh1h2(h3)− 1g6

g7h3(h2)− 1(h1)− 1h− 1h1h2(h3)− 1

g8h4h3(h2)− 1(h1)− 1h− 1h1h2(h3)− 1(h4)− 1

hδg − 1 ▹

p0

hh4

∙ ∙
∙ ∙

hh1

g1h− 1

h3

h2

g2

g3

g4

g5g6

g7

g8h− 1

(h1) − 1hh1▹
v1

hh4

∙ ∙
∙ ∙

h1

g1h− 1

h3

g2(h1)− 1h− 1h1

(h1)− 1hh1g3

g4

g5g6

g7

g8h− 1

v2
(h1)− 1hh1h2

(h2)− 1(h1)− 1hh1h2 ▹

δg− 1(h4h3(h2)− 1(h1)− 1) δg− 1(h4h3(h2)− 1(h1)− 1)

hh4

∙ ∙
∙ ∙

h1

g1h− 1 g2(h1)− 1h− 1h1

(h1)− 1hh1g3

(h2)− 1(h1)− 1hh1h2g5g6

g7

g8h− 1

v3
h2

δg− 1(h4h3(h2)− 1(h1)− 1)

h3(h2)− 1(h1)− 1hh1h2(h3)− 1 ▹

(h2)− 1(h1)− 1hh1h2g4h3 (h2 )−1
(h1 )−1

h−1
h1 h2

hh4h3(h2)− 1(h1)− 1h− 1h1h2(h3)− 1

∙ ∙
∙ ∙

h1

g1h− 1 g2(h1)− 1h− 1h1

(h1)− 1hh1g3

(h2)− 1(h1)− 1hh1h2g5h3(h2)− 1(h1)− 1hh1h2(h3)− 1g6

g8h− 1

h2

δg− 1(h4h3(h2)− 1(h1)− 1)

(h2)− 1(h1)− 1hh1h2g4h3g7h3(h2)− 1(h1)− 1h− 1h1h2(h3)− 1

Figure 4.2: (a) Example of a circular ribbon starting at (v, p) and going anticlockwise,
and (b) proof that this acts trivially on a vacuum state

Example 4.2.7. An example of a closed ribbon operator F h,g
ζ from site (v, p) going

anticlockwise back to itself is shown in Figure 4.2. We compare this with the follow-
ing sequence of operations (i) δg. at site (v, p0), (ii) h. at v, (iii) (h1)−1hh1. at v1 (iv)
(h2)−1(h1)−1hh1h2. at v2, and (v) h3(h2)−1(h1)−1hh1h2(h3)−1. at v3. The final results dif-
fer only on the initial arrows (h4, g8) where the ribbon sends these to (h4, g8h−1hg−1h−1g)
(given the δg) while the sequence by contrast sends these to (hg−1h−1gh4, g8h−1). Thus,
the two act the same as long as the state they act on forces δg,e. This is true for a vacuum
state where δg.|vac〉 = δgΛ∗.|vac〉 = δg,eΛ∗|vac〉 = δg,e|vac〉 and where F h,g

ζ can be viewed
as starting with δg., as does our sequence. We have h.|vac〉 = hΛ.|vac〉 = Λ.|vac〉 = |vac〉
similarly, hence the action of the sequence (i)-(v) on the vacuum is δg,e|vac〉. We conclude
that F h,g

ζ |vac〉 = δg,e|vac〉.

Lemma 4.2.8. Let ξ be a ribbon between sites s0 = (v0, p0) and s1 = (v1, p1). Then

[F h,g
ξ , f.v] = 0, [F h,g

ξ , δe.p] = 0,

for all v /∈ {v0, v1} and p /∈ {p0, p1}.

f.s0 ◦ F
h,g
ξ = F fhf−1,fg

ξ ◦ f.s0 , δf.s0 ◦ F
h,g
ξ = F h,g

ξ ◦ δh−1f.s0 ,

f.s1 ◦ F
h,g
ξ = F h,gf−1

ξ ◦ f.s1 , δf.s1 ◦ F
h,g
ξ = F h,g

ξ ◦ δfg−1hg.s1

for all ribbons where s0, s1 are disjoint, i.e. when s0 and s1 share neither vertices or faces.



116 Chapter 4. Quantum double aspects of Kitaev models

Proof. We refer to the example in Figure 4.1 to be concrete, but the arguments are general.
(1) Commutation of the ribbon with f. at sites across from the main path is automatic
because the ribbon acts on the states on the cross arrows (g1, . . . , g4 in the example) like
a vertex operator on the main path, which has an opposite relative orientation to a vertex
at the other end of the relevant cross arrow. Hence the two actions are from opposite sides
and commute. f. between h1, h2 changes these to h1f−1, fh2 in the illustration which
does not change the product when it comes to parts of a subsequent ribbon operator
at later vertices. It also changes g2 to g2f−1. When we then apply the ribbon operator
this changes to g2f−1(h1f−1)−1h−1h1f−1 = g2(h1)−1h−1h1f−1 which is what we get if we
apply the ribbon first and then f. at this vertex. The same cancellation applies at other
vertices on the main path other than the endpoints.

(2) The action of δf. at a face depends on the cyclic order determined by the vertex
part of the site; commutation only holds in general if we chose this correctly or if we
restrict to δe as stated (this disagrees with [BSW11]). For faces on the other side of the
main path δf. has the form of δf (...hi...) where the ... are states on arrows unaffected by
the ribbon. The ribbon op does not change hi so commutes with δf.. The other relevant
faces are those in the body of the ribbon itself and we look at all three in detail. (i) The
face bounded by g1, h1, g2 and an unkown x has δf. = δf(g1h1(g2)−1x−1) in some cyclic
order. But if we apply the ribbon first then δf. = δf (g1h−1h1(g2(h1)−1h−1h1)−1x−1) in the
same cyclic order, which we see is the same unless we started at g2. (ii) The face bounded
by g2, h2, h3, g3 has δf. = δf (g2h2(h3)−1(g3)−1) in some cyclic order. But if we apply the
ribbon first then δf. = δf(g2(h1)−1h−1h1h2h3(g3h3(h2)−1(h1)−1h−1h1h2(h3)−1)−1) in the
same order which again cancels (but only for the order shown). (iii) The face bounded by
g3, g4 and unknowns x, y say has δf. = δf (g3(g4)−1x−1y), say, in some cyclic order. If we
apply the ribbon first then g3 is replaced by g3w for a certain expression w but so is g4,
so δf. is the same as long as we do not start at g4.

(3) We have four remaining cases and again we refer to Figure 4.1 to be concrete. (i) f. at
vertex v0 sends (h1, g1) to (fh1, g1f−1) (the other two arrows are also changed but this com-
mutes with the ribbon operation). Applying F fhf−1,fg

ξ changes this to (fh1, g1f−1(fhf−1)−1)
with a factor δfg(fh1 · · · ). If we apply F h,g

ξ first then we have (h1, g1h−1) and a factor
δg(h1 · · · ) and applying f. turns the former to (fh1, g1h−1f−1), which is the same. (ii)
Similarly, f. at vertex v1 sends h4 to h4f−1 (the action on other, unmarked, arrows
commutes with the ribbon operator). The ribbon operator F h,gf−1

ξ then gives a factor
δgf−1(· · ·h4f−1). If we apply the ribbon first, we have δg(· · ·h4) and then f. gives the same
as before. (iii) δh−1f. at v0 gives factor δh−1f ((g1)−1...) (for three unmarked arrows around
the rest of the face) and the ribbon then gives a factor sends gives a factor δg(h1 · · · ). It
also acts on g1. If we apply the ribbon first, then this gives δg(h1 · · · ) and changes g1 to
g1h−1. Then applying δf. gives a factor δf ((g1h−1)−1 · · · ), which is the same. (iv) δfg−1hg.
at v1 gives a factor δfg−1hg(· · · g4h4) for two unmarked arrows at the start of the face). The
ribbon then imposes δg(zh4) where z is the product along the ribbon main path up to h4

(in our case, h1h2(h3)−1). If we apply the ribbon first then g4 gets changed to g4z−1h−1z
and then δf. gives δf (· · · g4z−1h−1zh4), which is the same, given the δg(zh4) factor. �

This means that F h,g
ξ commutes with all terms of the Hamiltonian except those at s0, s1,

where the nontrivial commutation relations will be used to create a quasiparticle at s0 and
its antiparticle at s1. In this sense, a ribbon operator is a generalisation of the creation
operators discussed in Section 4.1. We briefly consider so-called triangle operators, as they
will be useful in future proofs.



4.2. D(G) models and example of D(S3) 117

Definition 4.2.9. The direct-triangle and dual-triangle operators T gτ and Lhτ∗ respectively
are defined by

∙ ∙s0 s1
∙ ∙s0 s1

= a(h11)
h1 h12Ta

τ ∙ ∙s0 s1
∙ ∙s0 s1

= a(Sh12)
h1 h11Ta

τ

∙ s1s0 ∙ s1s0=
g1 hg1

(± )Lh
τ*

∙ s1s0 ∙ s1s0=
g1 g1S± 1h

(± )Lh
τ*

∙
∙∙∙v0

v1

h1 h2

h3
g1 g2

g3

g4

Fh,g
ξ

h4 ∙
s0

s1∙ s1s0 ∙ s1s0=
g1 g1h− 1Lh

τ*

∙ ∙s0 s1
∙ ∙s0 s1=

h1 h1

δg(h1)Tg
τ

We also show how a ribbon can be built as a sequence of triangle operations.
Here the dual lattice inherits an orientation by anticlockwise rotation of the unique

arrow that crosses a dual arrow. If the flow around either triangle is clockwise then h or
g enters as shown, otherwise their opposite version much as before. For the dual triangle,
this is the same as the arrow pointing inwards towards the vertex. Triangle operations can
be viewed as atomic instances of ribbon operators, where the start and end are adjacent
sites, namely the associated ribbons are F h,g

τ = T gτ and F h,g
τ∗ = δg,eL

h
τ∗ respectively and

convolving these via (4.15) gives the composite F h,g
ξ . However, triangle operators are not

open ribbons due to s0, s1 not being disjoint, so they have different commutation relations
from those in Lemma 4.2.8, which we study in full later. It is clear that we have have
algebras Aτ := span{T gτ | g ∈ G}∼=C(G) and Aτ∗ := span{Lhτ∗ | h ∈ G}∼=CG in view of
the composition rules

T gτ ◦ T g
′

τ = δg,g′T
g
τ , Lhτ∗ ◦ Lh

′

τ∗ = Lhh
′

τ∗ .

Proposition 4.2.10. Let |vac〉 be a vacuum vector on a plane Σ. Let ξ be a ribbon
between fixed sites s0 := (v0, p0), s1 := (v1, p1) and

|ψh,g〉 := F h,g
ξ |vac〉.

(1) |ψh,g〉 is independent of the choice of ribbon between fixed sites s0, s1.
(2) The space

L(s0, s1) := {|ψ〉 ∈ H | A(v)|ψ〉 = B(p)|ψ〉 = |ψ〉, ∀v /∈ {v0, v1}, p /∈ {p0, p1}}

is spanned by {|ψh,g〉 | h, g ∈ G}.
(3) When sites s0 and s1 are disjoint, {|ψh,g〉 | h, g ∈ G} is an orthogonal basis of
L(s0, s1). We call this the ‘group basis’ of L(s0, s1).

(4) L(s0, s1) ⊂ H inherits actions at disjoint sites s0, s1,

f.s0|ψh,g〉 = |ψfhf−1,fg〉, δf.s0|ψh,g〉 = δf,h|ψh,g〉

f.s1|ψh,g〉 = |ψh,gf−1〉, δf.s1|ψh,g〉 = δf,g−1h−1g|ψh,g〉
isomorphic to the left and right regular representation of D(G) by |ψh,g〉 7→ δhg.

Proof. (1) Acting on the vacuum, a contractible, closed ribbon acts trivially as we have
illustrated. Then if ξ, ξ′ are two ribbons between the same sites, we regard the composite
of the reverse of ξ′ with ξ as a contractible, closed ribbon, as Σ is a plane. We then use
equation (4.15).

(2) We leave this proof to Appendix 13, as it is lengthy and similar in some respects to
[BM-D08].



118 Chapter 4. Quantum double aspects of Kitaev models

(3) This proof can be found in [BSW11], but we include it to clarify that it applies only
when s0, s1 are disjoint. Thus,

〈ψh,g|ψh′,g′〉 = 〈vac|(F h,g
ξ )†F h′,g′

ξ |vac〉 = 〈vac|F h−1,g
ξ F h′,g′

ξ |vac〉 = δg,g′〈vac|F h−1h′,g
ξ |vac〉

and, if s0, s1 are disjoint,

〈vac|F h,g
ξ |vac〉 = 〈vac|(δe.p1)†F h,g

ξ |vac〉 = 〈vac|δe.p1F
h,g
ξ |vac〉 = 〈vac|F h,g

ξ δg−1hg.p1 |vac〉

so that 〈vac|F h,g
ξ |vac〉 = 0 if h 6= e. When h = e,

〈vac|F e,g
ξ |vac〉 = 〈vac|(k.v1)†F e,g

ξ |vac〉 = 〈vac|F e,gk
ξ k−1.|vac〉 = 〈vac|F e,gk

ξ |vac〉

for every k, from which we deduce that 〈vac|F e,g
ξ |vac〉 is independent of g. Since

∑
g∈G F

e,g
ξ =

id, it follows that 〈vac|F h,g
ξ |vac〉 = δh,e

|G| and hence that

〈ψh,g|ψh′,g′〉 = δg,g′〈vac|F h−1h′,g
ξ |vac〉 = 1

|G|
δh,h′δg,g′ .

Combined with (2), {|ψh,g〉 | h, g ∈ G} is then an orthogonal basis of L(s0, s1).
If s0, s1 are not disjoint then Lemma 4.2.8 no longer applies, and the commutation

relations are different. For example, if s0 and s1 are joined by a direct triangle τ then
F h,g
τ = T gτ so {|ψh,g〉 | h, g ∈ G} are no longer orthogonal.
(4) This follows from the commutation relations in Lemma 4.2.8 at s0 and s1 using

f.|vac〉 = |vac〉 and δf.|vac〉 = δf,e|vac〉 replacing f as modified by the commutation
relations. Making the identification with D(G) we compare the s0 action with the left
regular representation δf.(δhg) = δfδhg = δf,hδhg and f.(δhg) = fδhg = δfhf−1fg using
the D(G) commutation relations. The right regular representation is made into a left action
via the antipode, so δf.(δhg) = δhgδf−1 = δhδgf−1g−1g = δf,g−1h−1gg and f.(δhg) = δhgf

−1.
These match the stated D(G) actions at the end sites. �

Remark 4.2.11. The above Proposition 4.2.10 is known in the literature, albeit in
different forms, see [BSW11], and is included to be precise in our set up. It assumes that we
begin with a vacuum state |vac〉 on Σ. It is immediate, however, that the same arguments
apply for a state |ϑ〉 which is merely locally vacuum – that is, B(p)|ϑ〉 = A(v)|ϑ〉 = |ϑ〉 for
v, p at sites along the ribbon path and in the region between if we change the ribbon path.
Thus, (1) now becomes more precisely that |ϑh,g〉 := F h,g

ξ |ϑ〉 is invariant under choice of
ribbons ξ and ξ′ between fixed sites s0, s1 iff the composite of ξ with reversed ξ′ forms a
closed, contractible ribbon ξ′′, and where A(v)|ϑ〉 = B(p)|ϑ〉 = |ϑ〉 for all p and v adjacent
to ξ′′ and in the region enclosed by ξ′′. The intuition is that the ribbons may be smoothly
deformed into one another, and thus leave the state invariant by previous arguments.
The subspace L′(s0, s1) is then defined in the natural way, ignoring excitations outwith
the local neighbourhood of consideration, and actions are inherited on the sites s0, s1 in
the identical manner to L(s0, s1). This locality of the Hamiltonian H allows us to create
quasiparticles at distance without being concerned about the compounding effects: they
may be considered entirely separately. While we don’t refer to it explicitly, this remark
applies to the corollaries and applications throughout the Chapter in this context.

The last part of Proposition 4.2.10 implies a new basis of L(s0, s1) in terms of the
quasiparticle content at the two ends.



4.2. D(G) models and example of D(S3) 119

Corollary 4.2.12. Let ξ be an open ribbon from s0 to s1. Then L(s0, s1) has an alternative
‘quasiparticle basis’ consisting for each irrep C, π of D(G) of the elements

|u, v; C, π〉 = dim Vπ
|CG|

F
′C,π;u,v
ξ |vac〉; F

′C,π;u,v
ξ :=

∑
n∈CG

π(n−1)jiF
c,qcnq

−1
d

ξ

where u = (c, i) and v = (d, j) with c, d ∈ C and i, j = 1, · · · dim Vπ.

Proof. Here |u, v; C, π〉 = Φ̃(eu⊗ f v) by which we mean Φ(eu⊗ ev) in Theorem 4.2.5, where
eu = c⊗ ei and f v = δd⊗ f j are basis elements of VC,π and V ∗C,π respectively, then identified
with an element of L(s0, s1) by the inverse of the last part of Proposition 4.2.10. �

These states behave for the left site action .s0 on L(s0, s1) according to a quasiparticle
state labelled by basis element eu and for the right action at s1 according to an anti-
quasiparticle state labelled by the dual basis element f v. Recall that we view the left site
action .s1 as a right one via the antipode S of D(G). The ribbon operators F

′C,π;u,v
ξ that

create these states from the vacuum are also of interest in their own right and it is claimed
in [BM-D08] that they form a basis of the space of operators that commute with almost
all A(v) and B(p) in the same way that L(s0, s1) is defined.

Corollary 4.2.13. If |ψ〉 ∈ L(s0, s1) and we detect in it a quasiparticle of type C, π at
s0 by nonzero projection PC,π.s0|ψ〉 then

PC,π.s0|ψ〉 = |ψ〉/s1PC,π,

hence we also automatically detect it at s1, and vice-versa. In particular, the state

|Bell, ξ〉 =
∑
h∈G

F h,e
ξ |vac〉

has a nonzero projection PC,π.s0 |Bell, ξ〉 = |Bell, ξ〉/s1PC,π 6= 0 for all C, π.

Proof. This is essentially a block version of teleportation. A general state is highly entan-
gled in a superposition between the different particle types,

|ψ〉 =
∑
C,π

∑
u,v

φ(C, π, u, v)Φ̃(eu⊗ f v)

where, as above, Φ̃ : End(VC,π) → L(s0, s1) denotes Φ combined with the inverse of
the identification in Proposition 4.2.10. Here {eu} are a basis of VC,π and {fu} a dual
basis. Applying PC ′,π′.s0 and /s1PC ′,π′ becomes via the bimodule properties respectively
PC ′,π′.eu and f v/PC ′,π′ . But these projections are zero unless (C ′, π′) = (C, π), in which
case they act as the identity, as in the proof of Theorem 4.2.5. Hence

PC,π.s0 |ψ〉 =
∑
u,v

φ(C, π, u, v)Φ̃(eu⊗ f v) = |ψ〉/s1PC,π.

In particular,

PC ′,π′.s0|u, v; C, π, ξ〉 = |u, v; C, π, ξ〉/s1PC ′,π′ = δC ′,Cδπ′,π|u, v; C, π, ξ〉. (4.18)



120 Chapter 4. Quantum double aspects of Kitaev models

For the ‘block Bell state’, we consider 1D(G) =
∑

h∈G δh⊗ e which map to
∑

h |ψh,e〉
according to the last part of Proposition 4.2.10. On the other hand, this is

∑
C,π PC,π by

Lemma 4.2.4 and hence each term is the image under Φ of
∑
eu⊗ fu in Theorem 4.2.5.

Thus,
|Bell; ξ〉 =

∑
C,π

∑
u

Φ̃(eu⊗ fu) =
∑
C,π

∑
u

|u, u; C, π〉

and from (4.18) we have

PC,π.s0|Bell, ξ〉 = |Bell; C, π, ξ〉 = |Bell, ξ〉/s1PC,π 6= 0

where
|Bell; C, π, ξ〉 =

∑
u

Φ̃(eu⊗ fu) =
∑
u

|u, u; C, π〉

is the claimed nonzero state projected out from |Bell; ξ〉. �

We recall that in teleportation one has an entangled ‘Bell state’,
∑

i |vi〉⊗〈vi| for a basis
and dual basis of a Hilbert space, and if we apply from the left a projection |v1〉〈v1| say
then the state collapses to |v1〉⊗〈v1| so that the right factor is an eigenstate if we apply
|v1〉〈v1| from the right. Equivalently, if we evaluate against any 〈ψ| on the left then the
result is 〈ψ| in the right factor. We see a similar phenomenon with the block VC,π⊗V ∗C,π
in place of |vi〉⊗〈vi|. In the D(Zn) case discussed below, each block will be 1-dimensional
so that we are then a bit closer to the standard case.

We can also potentially look inside each block, i.e. for each fixed C, π, regard |Bell; C, π, ξ〉 ∈
L(s0, s1) as a ‘mini Bell state’ that can similarly transport a single particle state across
the ribbon. We saw in the proof above that this is

∑
u Φ(eu⊗ fu) = PC,π mapped over to

this space by the inverse of the identification in the last part of Proposition 4.2.10. We
can also write

|Bell; C, π, ξ〉 = dim Vπ
|CG|

WC,πξ |vac〉; WC,πξ :=
∑
u

F
′C,π;u,u
ξ . (4.19)

so that the ‘ribbon trace operator’ WC,πξ has the physical interpretation of creating a
maximally entangled quasiparticle/anti-quasiparticle pair (the mini Bell state) of only the
specified type C, π. The issue for teleportation of a single quasiparticle state vector using
a such mini Bell state would be how, in a quantum computer, to create a single particle
state or its dual and evaluate it against eu at s0 or against fu at s1.
Lemma 4.2.14. Let ξ : s0 → s1 and ξ′ : s1 → s2 be open ribbons. Then

F
′C,π;u,v
ξ′◦ξ =

∑
w

F
′C,π;w,v
ξ′ ◦ F

′C,π;u,w
ξ

Proof. We have using (4.15),

F
′C,π;(c,i),(d,j)
ξ′◦ξ =

∑
n∈CG

π(n−1)jiF
c,qcnq

−1
d

ξ′◦ξ

=
∑
f∈G

∑
n∈CG

π(n−1)jiF
f−1cf,f−1qcnq

−1
d

ξ′ ◦ F c,f
ξ

=
∑
b∈C

∑
k

∑
m,n∈CG

π((m−1n)−1)jkπ(m−1)kiF
b,qbm

−1nq−1
d

ξ′ F
c,qcmq

−1
d

ξ



4.2. D(G) models and example of D(S3) 121

where we uniquely factorised f−1qc = qbm
−1 in terms of some b ∈ C and m ∈ CG. We

then change variables to n′ = m−1n and recognise the answer with w = (b, k). �

This reflects that F ′ξ are a kind of (nonAbelian) Fourier transform of the original Fξ
with convolution as in (4.15) becoming multiplication. Invertibility of Fourier transform
implies that the space spanned by such operators is the same as the space spanned by
the original Fξ, now organised according to the quasiparticle type. In addition, we have:
Lemma 4.2.15.

W e,π
ξ ◦W

e,π′

ξ = W e,π⊗π′
ξ

Proof. Using (4.19), Corollary 4.2.12 and (4.15) in that order,

W e,π
ξ ◦W

e,π′

ξ =
∑
n,n′∈G

Trπ(n−1)F e,n
ξ Trπ′(n′−1)F e,n′

ξ

=
∑
n,n′∈G

Trπ(n−1)Trπ′(n′−1)δn,n′F e,n
ξ

=
∑
n

Trπ⊗π′(n−1)F e,n
ξ

which we recognise as stated. �

We will also need the following.

Lemma 4.2.16. Let ξ : s0 → s1 be an open ribbon. Then W
′C,π
ξ

† = W
′C∗,π∗
ξ where π∗ is

the conjugate unitary representation of CG and C∗ = C−1 equipped with rC∗ = r−1
C and

q : C−1 → G given by qc−1 = qc for all c ∈ C.

Proof. Here

F
′C,π;(c,i),(d,j)
ξ

† =
∑
n∈CG

π(n−1)jiF
c−1,qcnq

−1
d

ξ =
∑
n∈CG

π∗(n−1)ijF
c−1,qcnq

−1
d

ξ = F
′C−1

,π∗;(c−1,j),(d−1,i)
ξ

where C∗ is the C−1 with the basepoint and q function data as stated and the same CG.
We now take the trace by summing over c = d and i = j. �

Note that it could be that C = C−1 as a set but is not C∗ due to a different base point
(this happens for the order two conjugacy class of S3).

The last ingredient we need for applications is a generalisation of the space L(s0, s1).
If s0, s1, · · · , sn are n+ 1 sites, define the subspace

L(s0, s1, · · · , sn) := {|ψ〉 ∈ H |A(v)|ψ〉 = B(p)|ψ〉 = |ψ〉,∀v /∈ {v0, v1, · · · , vn}, p /∈ {p0, p1, · · · , pn}}.

Lemma 4.2.17. Given a D(G) model on a borderless planar lattice Σ, let s0, s1, · · · , sn
be n+ 1 disjoint sites. Then

dim(L(s0, s1, · · · , sn)) = |G|2n

with an orthogonal basis

{|ψ{h1,h2,··· ,hn},{g1,g2,··· ,gn}〉 | h1, h2, · · · , hn, g1, g2, · · · , gn ∈ G}

generalising the group basis of L(s0, s1). There is another orthogonal basis that is the
equivalent generalisation of the quasiparticle basis.



122 Chapter 4. Quantum double aspects of Kitaev models

Proof. As we saw in the proof of Proposition 4.2.10, the only operations which take the
vacuum to states with excitations only at any two sites, say s0, s1, are ribbon operators
along a ribbon ξ : s0 → s1. Now, let A be a complete graph, with sites s0, s1, · · · , sn as
vertices. We then have a contribution to dim(L(s0, s1, · · · , sn)) of |G|2 = dim(L(s0, s1))
from an edge in A between s0, s1, corresponding to some ribbon ξ : s0 → s1; we can give
this the group basis with labels {h1, g1 | h1, g1 ∈ G} or the equivalent quasiparticle basis.
Edges in A between other vertices/sites contribute similarly, so for example there are
another |G|2 orthogonal ribbon operators along the ribbon ξ′ : s1 → s2, which multiplies
with the initial |G|2 from ξ. However, by Lemma 4.2.8, if we have already counted the
operators along ribbons ξ : s0 → s1 and ξ′ : s1 → s2 then any ribbon operator F h,g

ξ′′ for
ξ′′ : s0 → s2 has a decomposition into ribbons along ξ and ξ′ iff ξ′′ is isotopic to ξ′ ◦ ξ.
Therefore the only edges which contribute are between vertices which have no alternative
path along previously visited edges. In particular, we define T as any maximally spanning
tree on A. Then dim(L(s0, s1, · · · , sn)) receives contributions from exactly the n edges
in T , and we may for example give the group basis with labels {hi, gi | hi, gi ∈ G} from
each edge. �

We note that while the dimensions multiply, it is not true that L(s0, s1, · · · , sn) can be
presented as L(s0, s1)⊗· · ·⊗L(sn−1, s1) where the tensor product is along each edge in T .
This is because, for example, ribbon operators F h,g

ξ and F h′,g′

ξ′ meet at the endpoint s1 and
need not commute. On the other hand, if we have some disjoint subsets of {s0, · · · , sn−1}
then the tensor product of the logical spaces associated to each subset form a subspace.
For example

L(s0, s1)⊗L(s2, s3) ⊂ L(s0, s1, s2, s3)

by sending F h,g
ξ |vac〉⊗F h′,g′

ξ′ |vac〉 7→ F h,g
ξ ◦ F h′,g′

ξ′ |vac〉.

4.2.4 Reduction to Abelian model for G = Zn
In this section, we verify that everything above reduces correctly to the Abelian case
already covered in Section 4.1 via the Fourier correspondence (5.1). Here D(Zn) =
C(Zn)⊗CZn∼=C.Zn × Zn = C[g, h]/〈gn − 1, hn − 1〉 and we recall that we set q = e

2πı
n .

Clearly, at a face

g. =
∑
m

qmδm. =
∑
m

qmδm,i+j−k−l = qi+j−k−l

if the state around the face is |i〉, |j〉, |k〉, |l〉 with orientations as displayed before. This no
longer depends on the starting point. Moreover h. around a vertex is the action of 1 ∈ Zn
so acts as before. This clearly gives gives A(v) as before and B(p) = δ0. = 1

n

∑
k g

k. as
before.

The vacuum degeneracy of the Abelian model is straightforward to calculate.
Lemma 4.2.18. Let Σ be a closed, orientable surface, and let G = Zn. Then

dim(Hvac) = n2k,

where k is the genus of Σ.

Proof. The fundamental group π1(Σ) ∼= Z2k. Z2k is a 2k-biproduct of Z in the category of
groups, so Hom(Z2k,Zn) ∼= Hom(Z,Zn)2k. Now, |Hom(Z,Zn)| = n, so |Hom(Z2k,Zn)| =
n2k. The G-action is trivial, so we are done. �



4.2. D(G) models and example of D(S3) 123

For representations, the conjugacy classes are singletons {i}, say, with isotropy group
all of Zn, with irrep πj say. The carrier space is 1-dimensional and the irrep is

g.{i} =
∑
m

qmδm,i{i} = qi{i}, h.{i} = qj{i}

as employed before. Projectors simplify to those from Section 4.1. Thus,

Pj = dim Vπ
|G|

∑
g

(Trj g−1)g = 1
n

∑
k

q−jkgk

P{i},j = δi⊗Pj = δi⊗
1
n

∑
l∈G

q−jlgl ∼= Pi⊗Pj = 1
n2

∑
k,l

q−(ik+jl)hkgl = Pij

by Fourier isomorphism between CZn and C(Zn).
The ribbon operators are now labelled as F a,b

ξ say, where a, b ∈ Zn and have a simpler
form. For example,

v

pg4

∙ ∙
∙ ∙

g1 g3

g2

g5

g6
h ▹ p∙ ∙

∙ ∙ δg ▹

∙ ∙
∙ ∙

δh−1gh ▹
v∙ ∙
∙ ∙

h ▹

hg4

g1h−1 hg3

g2h−1

g5

g6

g4
g1

g3

g2

g5

g6

hg4

g1h−1 hg3

g2h−1

g5

g6

δh−1gh(g4g5(g6)−1(g3)−1)

δg(hg4g5(g6)−1(hg3)−1)

∙
∙∙∙v0

p0
v1

h1 h2

h3
g1 g2

g3

g4

Fh,g
ξ = g1 h−1

g2 (h1 )−1 h−
1 h1

g3 h3 (h2 )−1 (h1 )−1 h−
1 h1 h2 (h3 )−1

δg(h1h2(h3)−1h4)
h4 ∙
p1

∙
∙∙∙v0

p0
v1

h1 h2

h3
h4 ∙
p1

g4 h3 (h2 )−1 (h1 )−1 h−
1 h1 h2 (h3 )−1

∙
∙∙∙v0

p0
v1

| i⟩
Fa,b

ξ = δb,i+ j−k+ l∙
p1

∙
∙∙∙v0

p0
v1∙

p1

| j⟩

|k⟩
| l⟩

| i⟩ | j⟩

|k⟩
| l⟩

|m⟩
|p⟩

|r⟩
|s⟩

|m − a⟩ |r − a⟩
|s − a⟩

|p − a⟩

for the ribbon in Figure 4.1. Concatenation of ribbon operators simplifies to:

F a,b
ξ′◦ξ =

∑
f∈G

F a,b−f
ξ′ ◦ F a,f

ξ . (4.20)

The commutation relations in Lemma 4.2.8 simplify to
h.s0 ◦ F

a,b
ξ = F a,b+1

ξ ◦ h.s0 , g.s0F
a,b
ξ = qaF a,b

ξ g.s0

h.s1 ◦ F
a,b
ξ = F a,b−1

ξ ◦ h.s0 , g.s0F
a,b
ξ = q−aF a,b

ξ g.s0

i.e. these ‘q-commute’. For example,

g.s0 ◦ F
a,b
ξ =

∑
m

qmδm.s0 ◦ F
a,b
ξ =

∑
m

qmF a,bδm−a.s0 = 1
n

∑
m,k

qmF a,b
ξ q−(m−q)kgk.s0 .

The sum over m forces k = 1 which then gives the answer stated. Consequently, on states
|ψa,b〉 = F a,b

ξ |vac〉 we just have that

h.s0|ψa,b〉 = |ψa,b+1〉, g.s0|ψa,b〉 = qa|ψa,b〉
which commute, and similarly at s1.

For the quasiparticle basis, the relevant ribbon operator and its adjoint are

F
′i,j
ξ :=

∑
k

q−jkF i,k
ξ , F

′i,j
ξ
† = F

′−i,−j
ξ

where we omit u, v as these are trivial and the i, j play the role of C, π respectively in
the construction of Pij above. We see that F ′ξ is just a Fourier transform in the second
argument, which takes convolution to multiplication so that (4.20) becomes

F
′i,j
ξ′◦ξ =

∑
k

q−j(k−l)−jl
∑
l

F i,k−l
ξ′ ◦ F i,l

ξ = F ′i,jξ′ ◦ F
′i,j
ξ . (4.21)

Also, since there are no u, v indices, W i,j
ξ = F

′i,j
ξ . The following three subsections show

how the above might be used in practice to perform operations relevant to quantum
computation.



124 Chapter 4. Quantum double aspects of Kitaev models

Abelian Bell state and teleportation

According to our general theory and our calculations above, the state which is maximally
entangled between the particle types is

|Bell; ξ〉 =
∑
i,j

1
n
F
′i,j
ξ |vac〉 = 1

n

∑
i,j,k

q−jk|ψi,k〉 =
∑
i

F i,0
ξ |vac〉 =

∑
i

|ψi,0〉,

where the second-to-last step is the Fourier transform. Here 〈Bell; ξ|Bell; ξ〉 = n. For a
concrete example, consider

s0

s1

|f〉
|k〉
|l〉

|p〉

|m〉

=|Bell; ξ〉 =
∑

i F
i,0
ξ δ0(k + l +m)

∑
i

s0

s1

|f + i〉
|k〉 |p− i〉

|l〉 |m〉

|a〉

|b〉

|c〉 |a〉

|b〉

|c〉

|d〉 |d〉

for a ribbon ξ : s0 → s1, where s0 = (v0, p0), s1 = (v1, p1) and a generic term in |vac〉 with
relevant arrow values |a〉⊗ · · · ⊗ |p〉 as shown. We also know that

|i, j〉 := |Bell; i, j, ξ〉 = Pij.s0|Bell; ξ〉 = |Bell; ξ〉/s1Pij = 1
n
W i,j
ξ |vac〉

are the ‘mini-Bell’ states associated to each i, j. In our case (as there are no u, v indices)
these have no internal substructure as an entangled sum of internal states and we just
regard them as a basis of L(s0, s1) as we vary i, j. To illustrate how this goes explicitly,
consider Pij = 1

n2

∑
x,y q

−ix−jygxhy as above, acting at s0, say. Then, renaming the dummy
index i in |Bell; ξ〉 as z,

Pij.s0|Bell; ξ〉 = 1
n2

∑
x,y,z

q−ix−jyδ0,k+l+mq
x(f+z+y−c−b+a−y)

|f + z + y〉⊗ |k + y〉⊗ |d− y〉⊗ |a− y〉⊗ |p− z〉

= 1
n

∑
y

q−jyδ0,k+l+m|i+ c+ b− a+ y〉⊗ |k + y〉⊗ |d− y〉⊗ |a− y〉⊗ |p− i+ f − c− b+ a〉

= 1
n

∑
y

q−jyδ0,k+l+m|i+ f + y〉⊗ |k + y〉⊗ |d− y〉⊗ |a− y〉⊗ |p− i〉

= 1
n

∑
y

q−jyδy,k+l+m|f + i〉⊗ |k〉⊗ |d〉⊗ |a〉⊗ |p− i〉

= 1
n

∑
y

q−jyF i,y
ξ |vac〉 = 1

n
W i,j
ξ |vac〉

for the affected arrows located in line with the previous diagram. The sum over x forced
the value z = i− f + c + b− a for the second equality. We then used that δ0.s0 acts as
the identity on the vacuum so that f + c + b − a = 0 around the face p0 for the third
equality. Likewise, we use that h−y.s0 is the identity on the vacuum for the fourth (this
shifts the original values f, k, d, a around the vertex v0 by ∓y). We then recognise the
action of W i,j

ξ as expected. Similarly for /s1Pij.



4.2. D(G) models and example of D(S3) 125

We now explain our teleportation point of view in this Abelian case. Here {|i, j〉} are a
basis of L(s0, s1) and we have seen that Pij(s0) applied to |Bell; ξ〉 collapses the ribbon
state to |i, j〉, and a quasi-particle of type (i, j) now occupies s0. This is a local operation
at s0 but the resulting state when measured at P−i,−j(s1) = /s1Pij is also an eigenstate
and detects a quasiparticle of type (−i,−j) locally at s1. Here the right action of Pij
is the left action of S(Pij), where S is the antipode of the group algebra of Zn × Zn.
Although the details are not the same as usual quantum teleportation, we follow the same
principle of using a maximally entangled state to transfer information along the length of
an extended object, our case the ribbon. We can use this to transmit any state vector in
the vector space spanned by the particle types, i.e. a vector ~ψ = (ψij). We set up a state
|Bell; ξ〉 and apply the operator

∑
i,j ψijPij(s0) to it locally at s0. This results in

|ψ〉 :=
∑
i,j

ψijPij(s0)|Bell; ξ〉 =
∑
i,j

ψij|i, j〉 ∈ L(s0, s1)

as a ribbon state that encodes our vector ~ψ. We can then read off the latter at the other
end by applying the operator P−i,−j(s1) locally at s1, where

P−i,−j(s1)|ψ〉 = |ψ〉/s1Pij = Pij.s0|ψ〉 =
∑
k,l

ψklPij(s0)|k, l〉 = ψijPi,j(s0)|Bell; ξ〉

This is the component of |ψ〉 that contains the ψij coefficient. It is also equal to ψijP−i,−j(s1)|Bell; ξ〉
making it clear that we can extract the coefficient by local operations at s1.

While such a teleportation scheme is possible when the projectors Pij can be applied to
the lattice, in reality such projectors can only be applied probabilistically, by performing
measurements. In particular, assuming that application of projectors can be performed
deterministically in general has grave complexity-theoretic consequences, such as allowing
NP-complete problems to always be solved in polynomial time on a quantum computer
[Aar05]. This means that, while the above scheme is illustrative of the entanglement
between sites s0 and s1, it is unclear how to leverage this property to be computationally
useful when the superposition may only be collapsed by a measurement.

Quasiparticle creation and transportation redux

Next, we show how to create and transport quasiparticles using the W i,j
ξ operators, which

are equal to F
′i,j
ξ in the Zn case, and relate this to the ad hoc description of Section 4.1.1.

This pertains to the following lattice in the vacuum state:

|s〉

|t〉
|u〉

s0

s1

with ξ : s0 → s1 as shown. We apply

|s〉

|t〉
|u〉

s0

s1
W i,j
ξ

=
|s− i〉

|t〉
|u〉

s0

s1

∑
k q
−jkδk(s)



126 Chapter 4. Quantum double aspects of Kitaev models

We see that only |s〉 is affected and
∑

k q
−jkδk(s) = q−js. In terms of our X,Z operations,

we have W i,j
ξ |s〉 = X−iZ−j|s〉. Recall from Section 4.1.1 that the effect of this is that

particles πi,j and π−i,−j appear at sites s0 and s1 respectively, which we tested using
projectors. In other words, we have the mini-Bell state |Bell; i, j, ξ〉.

Next, we consider a further site s2

|t〉
|u〉

s0

s1

s2

then the further effect of a operator W i,j
ξ′ for an open ribbon ξ′ : s1 → s2 is

|t〉
|u〉

s1

s2

W i,j
ξ′

= q−ju
|t+ i〉

|u〉

s1

s2

We see that W i,j
ξ′ : |t〉 ⊗ |u〉 7→ X i|t〉 ⊗ Z−j|u〉 while leaving the other states unchanged.

We saw in Section 4.1.1 that quasiparticles πi,j and π−i,−j now occupy sites s0 and s2
respectively. So the effect of this second ribbon operator is to transport the π−i,−j excitation
from s1 to s2. We also know from (4.21) that these two ribbon operations compose to
W i,j
ξ′◦ξ along the composite ribbon, so we create the state |Bell; i, j, ξ′ ◦ ξ〉. In other words,

creation at sites s0 and s1 followed by transport from s1 to s2 is equal to creation at sites
s0 and s2. The combined operation is

|s〉

|t〉
|u〉

s0

s1

s2

W i,j
ξ′◦ξ =

|u〉

s0

s1

s2
|t+ i〉

|s− i〉
q−j(u+s)

which we see affects only the states |s〉⊗ |t〉⊗ |u〉 along the ribbon and has the particle
content at the ends as previously analysed.

Quasiparticle braiding

This section gives an example of braiding on the lattice, and relates it to the braiding
of irreducible representations of D(G) given at the start of Section 4.1. We do not prove
explicitly that all such lattice braidings correspond to braids in the representation category,
but the broad arguments are easy to see. Let ξ : s0 → s1 be the following ribbon acting
on a vacuum state |vac〉,

|n〉|m〉|k〉
s0 s1

|l〉

|o〉

|p〉
|q〉

where we have labelled the relevant edges |k〉 to |q〉 as shown. W 0,−j
ξ creates quasiparticles

e−j, ej at s0, s1, and takes the vacuum to
|n〉Zj|m〉Zj|k〉Zj|l〉

|o〉

|p〉
|q〉



4.2. D(G) models and example of D(S3) 127

Also consider another ribbon operator W−i,0
ξ′ for ξ′ : s2 → s3, creating m−i, mi quasipar-

ticles at s2, s3 according to

Zj|m〉Zj|k〉Zj|l〉

|q〉 s2s3

|n〉

|o〉

|p〉

The combined effect of these is the state |ψ〉 := W−i,0
ξ′ ⊗W 0,−j

ξ |vac〉

Zj|m〉Zj|k〉Zj|l〉

X i|q〉

|n〉

|o〉

|p〉

Now let ξ′′ be a ribbon rotating anti-clockwise from s1 back to s1 around the face of s3,
according to

|n〉Zj|m〉Zj|k〉Zj|l〉

|o〉

|p〉
X i|q〉

s1

Acting on |ψ〉, we move the ej quasiparticle at s1 around the mi at s3 using W 0,−j
ξ′′ and

resulting in
Zj|m〉Zj|k〉Zj|l〉

ZjX i|q〉

Z−j|n〉

Z−j|o〉
Zj|p〉

Now use ZjX i = qijX iZj on |q〉 so that the Z±j operators that make up W 0,−j
ξ′′ act on

|vac〉. But the latter is a face operator g−j. around the face of s3 and acts trivially on
the vacuum. Hence the effect of W 0,−j

ξ′′ on |ψ〉 is to send

|ψ〉 7→ qij|ψ〉

as expected for the braiding of mi with ej. To visualise this braiding, we should think in
terms of worldlines to take account of the temporal aspect: we first create the quasiparticles,
and then transport one around the other. We identify the map above with

Ψmi,ej ◦Ψej ,mi : ej ⊗mi → ej ⊗mi

and have braided the worldline of the ej quasiparticle around that of the mi quasiparticle
and back again.

While this is only one instance of braiding, any ribbon operator on the plane which
forms a closed loop around another occupied site will admit a similar braiding, as the
same argument from above applies but taking a product of vertex and face operators,
rather than just g−j. in this example. We assert that the state at the occupied site will
always admit commutation relations such that the appropriate phase factor is produced.



128 Chapter 4. Quantum double aspects of Kitaev models

4.2.5 Details for D(S3) and applications
S3 is the smallest nonAbelian group. We let S3 be generated by u = (12), v = (23)
with relations u2 = v2 = e and uvu = vuv (= w = (13)). This has three irreducible
representations:

1, σ = sign, τ ; σ⊗σ = 1, σ⊗ τ = τ ⊗σ = τ, τ ⊗ τ = 1⊕ σ ⊕ τ

where τ is the only 2-dimensional one and sign = −1 on u, v, w and +1 otherwise. The
irreps of D(S3) are given by pairs (C, π), where C is a conjugacy class in S3 and π is an
irrep of the centraliser of a distinguished element rC in C, i.e. an isotropy subgroup, and
we also need to fix qc for each c ∈ C such that c = qcrCq

−1
c . We take these as follows:

1. The trivial conjugacy class C = {e}, rC = qc = e and CG = S3, giving exactly 3
chargeons ({e}, 1), ({e}, σ) and ({e}, τ) as D(S3) irreps.

2. C = {u, v, w}, rC = u, qu = e, qv = w, qw = v and CG = Z2 = {e, u}, giving
({u, v, w}, 1) and ({u, v, w},−1) as 2 irreps of D(S3), where we indicate the repre-
sentation π−1(u) = −1 of CG.

3. C = {uv, vu}, with rC = uv, quv = e, qvu = v and CG = Z3 = {e, uv, vu}, giving
({uv, vu}, 1), ({uv, vu}, ω), ({uv, vu}, ω∗) as 3 irreps of D(S3), where ω = e

2πı
3 and

we indicate irreps πω(uv) = ω and πω∗(uv) = ω−1 of CG.

Thus, there are 8 irreps of D(S3). To describe the projectors, we denote the conjugacy
class C by its chosen element rC as shorthand, for example Pu,π := P{u,v,w},π. The chargeons
have projectors

P1 = 1
6
∑
g

g, Pσ = 1
6(e− u− v − w + uv + vu), Pτ = 1

6(2e− uv − vu)

in CS3 with actual D(S3) projectors Pe,1 = δe ⊗ P1, Pe,σ = δe ⊗ Pσ, Pe,τ = δe ⊗ Pτ . The
fluxion projectors are

Pu,1 =
∑
c∈C

δc⊗ qcΛCGq
−1
c = 1

2(δu ⊗ (e+ u) + δv ⊗ (e+ v) + δw ⊗ (e+ w))

Puv,1 = 1
3(δuv + δvu)(e+ uv + vu)

along with Pe,1 from before which can be viewed as either. The remaining projectors after
a short computation are

Pu,−1 = 1
2(δu ⊗ (e− u) + δv ⊗ (e− v) + δw ⊗ (e− w))

Puv,ω = 1
3(δuv ⊗ (e+ ω−1uv + ωvu) + δvu ⊗ (e+ ωuv + ω−1vu))

Puv,ω−1 = 1
3(δuv ⊗ (e+ ωuv + ω−1vu) + δvu ⊗ (e+ ω−1uv + ωvu))

On a lattice Σ where each edge has an associated state in CS3, L(s0, s1) has the
quasiparticle basis |u, v; C, π〉 from Corollary 4.2.12, where unlike the Zn case u = (c, i), v =
(d, j) can have different i, j as not all irreps are 1-dimensional. To avoid a clash with group



4.2. D(G) models and example of D(S3) 129

elements of S3, we will refer to the pairs (c, i), (d, j) directly. We again refer to C by its
representative. Then in our case, the ribbon operators required to create these bases from
vacuum for each chargeon are

F
′e,1
ξ =

∑
n∈S3

F e,n
ξ = id, F

′e,σ
ξ =

∑
n∈S3

sign(n)F e,n
ξ , F

′e,τ ;i,j
ξ =

∑
n∈S3

τ(n−1)jiF e,n
ξ

The last of these is the only case with i, j indices as the other π are 1-dimensional. Similarly,
for fluxions:

F
′u,1;c,d
ξ = F

c,qcq
−1
d

ξ + F
c,qcuq

−1
d

ξ , F
′uv,1;c,d
ξ = F

c,qcq
−1
d

ξ + F
c,qcuvq

−1
d

ξ + F
c,qcvuq

−1
d

ξ

where in the first case have indices c, d ∈ {u, v, w} and in the second case c, d ∈ {uv, vu}.
The remaining quasiparticle basis operators are

F
′u,−1;c,d
ξ = F

c,qcq
−1
d

ξ − F c,qcuq
−1
d

ξ

F
′uv,ω;c,d
ξ = F

c,qcq
−1
d

ξ + ω−1F
c,qcuvq

−1
d

ξ + ωF
c,qcvuq

−1
d

ξ

F
′uv,ω∗;c,d
ξ = F

c,qcq
−1
d

ξ + ωF
c,qcuvq

−1
d

ξ + ω−1F
c,qcvuq

−1
d

ξ

with corresponding indices as before.
We will mainly need the traces WC,πξ of these defined in (4.19). Up to normalisation,

these are just the PC,π already computed but converted to ribbon operators according to
the last part of Proposition 4.2.10. For chargeons these come out as

W e,1
ξ = id, W e,σ

ξ =
∑
n∈S3

sign(n)F e,n
ξ , W e,τ

ξ =
∑
j

F
′e,τ ;j,j
ξ = 2F e,e

ξ − F
e,uv
ξ − F e,vu

ξ .

For fluxions we have

W u,1
ξ =

∑
c∈{u,v,w}

F c,e
ξ + F c,c

ξ , W uv,1
ξ =

∑
c∈{uv,vu}

F c,e
ξ + F c,uv

ξ + F c,vu
ξ

and the other ones are

W u,−1
ξ =

∑
c∈{u,v,w}

F c,e
ξ − F

c,c
ξ

W uv,ω
ξ = F uv,e

ξ + F vu,e
ξ + ω(F uv,vu

ξ + F vu,uv
ξ ) + ω−1(F uv,uv

ξ + F vu,vu
ξ )

W uv,ω∗

ξ = F uv,e
ξ + F vu,e

ξ + ω(F uv,uv
ξ + F vu,vu

ξ ) + ω−1(F uv,vu
ξ + F vu,uv

ξ )

Note that the C = {uv, vu} class is self-inverse but its elements are not self-inverse, so
C∗ is the same class C but with rC∗ = vu and q∗uv = qvu = v, q∗vu = quv = e. Hence
Lemma 4.2.16 says that

W uv,ω
ξ

† = W vu,ω∗

ξ =
∑
n

πω∗(n−1)(F uv,vnv−1 + F vu,n) = W uv,ω
ξ

so this works out as self-adjoint (as one can also check directly). Similarly for W uv,ω∗

ξ , and
more obviously for the other cases.



130 Chapter 4. Quantum double aspects of Kitaev models

The maximally entangled state is then

|Bell; ξ〉 =
(1

6(W e,1
ξ +W e,σ

ξ + 2W e,τ
ξ ) + 1

2(W u,1
ξ +W u,−1

ξ )

+ 1
3(W uv,1

ξ +W uv,ω
ξ +W uv,ω∗

ξ )
)
|vac〉

=
∑
h∈S3

F h,e
ξ |vac〉

as required by Corollary 4.2.13, the first expression being as a sum of 8 mini Bell states.

Protected qubit system using S3 ribbons

Here, we provide a concrete construction of a protected logical qubit within the D(S3)
Kitaev model, elaborating on ideas in [WLP09]. Let Σ be a lattice in the vacuum state.
Let ξ be a ribbon between sites s0 := (v0, p0) and s1 := (v1, p1).

s0 s1

This particular choice of ribbon and sites is just for illustrative purposes; any open ribbon
will do. We focus initially on the chargeon sector with W τ

ξ := W e,τ
ξ . If we apply this to the

vacuum the lattice is now occupied by quasiparticles π and π∗ at sites s0 and s1. Next,
let ξ′ : s2 → s3 be another ribbon and apply the ribbon operator W τ

ξ′

s2 s3

We call this state |0L〉 := W τ
ξ′ ◦ W τ

ξ |vac〉 for reasons which will become clear. |0L〉 ∈
L(s0, s1, s2, s3), and now τ quasiparticles occupy the lattice at sites s0, s1, s2, s3, which is
obvious as Pτ.siW τ

ξ′ ◦W τ
ξ |vac〉 = W τ

ξ′ ◦W τ
ξ |vac〉 for all i.

Next, let ξ′′ : s0 → s2 connect across as

s2

s0

and apply the ribbon operator W σ
ξ′′ to |0L〉, defining |1L〉 := W σ

ξ′′ |0L〉. We claim that 1L〉



4.2. D(G) models and example of D(S3) 131

still has only τ excitations at s0, s1, s2, s3. We check this by expanding Pτ and W σ
ξ′′ :

Pτ.s0W
σ
ξ′′ = 1

6(2e.s0 − uv.s0 − vu.s0)(F e,e
ξ′′ − F

e,u
ξ′′ − F

e,v
ξ′′ − F

e,w
ξ′′ + F e,uv

ξ′′ + F e,vu
ξ′′ )

= 1
6(2(F e,e

ξ′′ − F
e,u
ξ′′ − F

e,v
ξ′′ − F

e,w
ξ′′ + F e,uv

ξ′′ + F e,vu
ξ′′ )e.s0

− (F e,vu
ξ′′ − F

e,w
ξ′′ − F

e,u
ξ′′ − F

e,v
ξ′′ + F e,e

ξ′′ + F e,vu
ξ′′ )uv.s0

− (F e,uv
ξ′′ − F

e,v
ξ′′ − F

e,w
ξ′′ − F

e,u
ξ′′ + F e,vu

ξ′′ + F e,e
ξ′′ )vu.s0)

= (F e,e
ξ′′ − F

e,u
ξ′′ − F

e,v
ξ′′ − F

e,w
ξ′′ + F e,uv

ξ′′ + F e,vu
ξ′′ )1

6(2e.s0 − uv.s0 − vu.s0)

= W σ
ξ′′ ◦ Pτ.s0

by Lemma 4.2.8. Therefore
Pτ.s0|1L〉 = Pτ.s0W

σ
ξ′′ ◦W τ

ξ′ ◦W τ
ξ |vac〉

= W σ
ξ′′ ◦ Pτ.s0W

τ
ξ′ ◦W τ

ξ |vac〉
= W σ

ξ′′ ◦ Pτ.s0 |0L〉 = W σ
ξ′′ |0L〉 = |1L〉

and an identical calculation applies at s1.
The states |0L〉 and |1L〉 are therefore indistinguishable by local projectors, as the

orthogonality of projectors shown in Lemma 4.2.4 means that for all PC,π, PC,π.si|0L〉 =
PC,π.si|1L〉 = 0, ∀si iff C, π 6= e, τ , and Pe,τ.si |0L〉 = |0L〉, Pe,τ.si |1L〉 = |1L〉. A physical
explanation is that the σ quasiparticles generated by W σ

ξ′′ at sites s0, s2 ‘fuse’ with the
extant τ quasiparticles, as we have σ ⊗ τ = τ . Now, |0L〉 and |1L〉 are orthogonal since

〈0L|1L〉 = 〈vac|W τ
ξ
† ◦W τ

ξ′
† ◦W σ

ξ′′ ◦W τ
ξ′ ◦W τ

ξ |vac〉
= 〈vac|W σ

ξ′′ ◦W τ
ξ ◦W τ

ξ′ ◦W τ
ξ′ ◦W τ

ξ |vac〉
= 〈vac|W σ

ξ′′ ◦W τ⊗τ
ξ′ ◦W

τ⊗τ
ξ |vac〉

by (4.17), Lemma 4.2.15 and Lemma 4.2.16. By the arguments of Lemma 4.2.17,W τ⊗τ
ξ′ W τ⊗τ

ξ |vac〉
has no support in L(s0, s2), while W σ

ξ′′|vac〉 has no support in L(s0, s1) or L(s2, s3), and
so

〈0L|1L〉 = 0.
Thus, HL := span({|0L〉, |1L〉}) is a 2-dimensional subspace of L(s0, s1, s2, s3) that is
degenerate under H. We call HL a logical qubit on the lattice. By similar arguments as
for the vacuum in Section 4.2.1, any state in HL is ‘topologically protected’; local errors
leave the state unaffected. In this case, the two types of errors which are undetectable
and affect HL are (a) loops enclosing at least one occupied site and (b) ribbon operators
extending between occupied sites. Therefore, quasiparticles should be placed at distant
locations to minimise errors.

We then identify W σ
ξ′′ with XL, the logical X gate, which is justified as

W σ
ξ′′ ◦W σ

ξ′′ = W σ⊗σ
ξ′′ = W 1

ξ′′ = id
by Lemma 4.2.15. Therefore, XL is involutive as desired for any implementation of a
qubit computation within the model, for example by ZX-calculus based on CZ2 as a
quasiFrobenius algebra. Clearly, we can obtain any XL basis rotation on the logical
qubit by exponentiation. In [WLP09] it is argued that we can in fact acquire universal
quantum computation by an implementation of the logical Hadamard, entangling gates
and measurements. For completeness, we outline some aspects of these further steps in
Appendix 14.



132 Chapter 4. Quantum double aspects of Kitaev models

4.3 Aspects of general D(H) models
The Kitaev model is known to generalise with CG replaced by any finite-dimensional Hopf
algebra H with antipode S obeying S2 = id (which over C or another field of characteristic
zero is equivalent to H semisimple or cosemisimple). Although less well studied, that one
can obtain topological invariants as a version of the Turaev-Viro invariant was shown in
[BK12, Meu17]. That one has an action of the Drinfeld quantum double D(H) [Dri87] at
each site is more immediate and was first noted in [BMCA13]. We just replace the group
action g. by h. acting in the tensor product representation with factors in order going
around the vertex as in Figure 4.3, which now depends on where p is located. We likewise
replace the action of δg by a. for a ∈ H∗ and likewise just take the tensor product action
around the face in the order depending on where v is located. We use the Hopf algebra
regular and coregular representations

h.g = hg or h.g = gSh; a.g = a(g1)g2 or a.g = a(Sg2)g1 (4.22)

with the first choice if the arrow is outbound for the vertex /in the same direction as the
rotation around the face. Here ∆g = g1⊗ g2 (sum understood) denotes the coproduct
∆ : H → H ⊗H and a. is a right action of H∗ viewed as a left action of H∗op. The
antipode S : H → H is characterised by (Sh1)h2 = h1Sh2 = 1ε(h) for all h ∈ H, where
ε ∈ H∗ is the counit. We refer to [Maj95] for more details.

We have also used better conventions for D(H), namely the double cross product
construction introduced by the 2nd author in [Maj90]. Here D(H)∼=H∗op./H, where H
left acts on H∗ and H∗ left acts on H by the coadjoint actions

h.a = a2〈h, (Sa1)a3)〉, h/a = h2〈a, (Sh1)h3〉

with the left action of H∗ viewed as a right action of H∗op. The numerical suffices denote
iterated coproducts (sums understood) and 〈 , 〉 is the duality pairing or evaluation. These
then form a matched pair of Hopf algebras[Maj90] and give the Drinfeld double explicitly
as [Maj95, Thm 7.1.1],

(a⊗h)(b⊗ g) = b2a⊗h2g〈Sh1, b1〉〈h3, b3〉, ∆(a⊗h) = a1⊗h1⊗ a2⊗h2.

S(a⊗h) = S−1a2⊗Sh2〈h1, a1〉〈Sh3, a3〉, R =
∑
a

fa⊗ 1⊗ 1⊗ ea,

where we also give the factorisable quasitriangular structure. Here {ea} is a basis of H
and {fa} is a dual basis. We will also sometimes employ a subalgebra notation where h, a
are viewed in D(H) with cross relations ha = a2h2〈Sh1, a1〉〈h3, a3〉 and R =

∑
a f

a⊗ ea.
While this much is clear, explicit properties of ribbon operators have not been much
studied as far as we can tell even for S2 = id, and we do so here. Moreover, we will explore
how much can be done without this semisimplicity assumption.

From Hopf algebra theory, we will particularly need that every finite-dimensional Hopf
algebra H has, uniquely up to normalisation, a left integral element Λ ∈ H such that
hΛ = ε(h)Λ and a right-invariant integral map

∫
∈ H∗ such that (

∫
h1)h2 = 1

∫
h for all

h. Ditto with left-right swapped. In the semisimple case in characteristic zero the integrals
can be normalised so that ε(Λ) =

∫
1 = 1, are both left and right integrals at the same

time, and obey
∫
hg =

∫
gh and ∆Λ = flip∆Λ (here

∫
= TrH / dimH is the normalised

trace in the left regular representation), see [Sch95] for an account (the general theory



4.3. Aspects of general D(H) models 133

underlying this goes back to the work of Larson and Radford). If we denote irreps of H by
(π, Vπ) then analogously to the group case, one has a complete orthogonal set of central
idempotents Pπ given by

Pπ = dim(Vπ)Λ1 Trπ(SΛ2) (4.23)
whereby PπH = HPπ∼=EndVπ. Note that

∑
π Pπ = Λ1

∫
SΛ2 dimH = 1 as part of the

Frobenius structure where Λ is currently normalised so that
∫

Λ = 1/ dimH compared
to usual normalisation in [Sch95, Maj21]. We omit the proof but part of the theory is
the orthogonality relation TrH∗(χπχπ′) = δπ,π′ dimH for normalised characters χπ =
Trπ / dim Vπ. Moreover, in this case of H semisimple, D(H) is also, with integrals ΛD =∫
⊗Λ and

∫
D

= Λ⊗
∫

. Hence the same result applied to D(H) tells us that D(H)∼=⊕π̃
End(Vπ̃) now for irreps (π̃, Vπ̃) of D(H). Hence our ideas about Bell states and ribbon
teleportation still apply in this case, with quasiparticles detected by projectors Pπ̃.

Also note that a representation of D(H) can also be described as a H-crossed [Maj95,
Maj02] or ‘Drinfeld-Yetter’ module consisting of a left action or representation π of H
and a compatible left coaction of H ∆L (this is equivalent to a compatible right action
of H∗ or left action of H∗op on the same vector space, these being two subalgebras from
which D(H) is built). If Vπ̃ has basis {ei} then the structures for a crossed module are
∆Lei = ρij ⊗ ej where a.ei = 〈a, ρij〉ej is the corresponding action, and h.ei = π(h)kiek
as usual. We sum over the repeated k and ρij ∈ H is required to obey

∆ρij = ρik⊗ ρkj, ερij = δij, h1ρikπ(h2)jk = π(h1)kiρkjh2

for all h ∈ H, again summing over k.
Lemma 4.3.1. Let S2 = id and π̃ an irrep of D(H) with π, ρ its associated crossed
module data with respect to a basis {ei} as above. Then

Pπ̃ = dim(Vπ̃)
∑
a,i,j

fa⊗Λ1π(SΛ2)ij(
∫
eaSρij).

Moreover, when specialised to D(G), we recover the projectors PC,π in (4.9).

Proof. The general formula for the tensor product integral becomes

Pπ̃ = dim(Vπ̃)
∫

1
⊗Λ1 Trπ̃((S

∫
2
)SΛ2) = dim(Vπ̃)fa

∫
1
ea⊗Λ1〈S

∫
2
, ρkj〉〈f i, ej〉π(SΛ2)ki

which becomes as stated using Hopf algebra duality. In the D(G) case, we let π̃ = (C, π)
as before and go back to (4.23). Then

Pπ̃ =
dim(VC,π)
|G|

∑
h,g∈G

(δh⊗ g) Trπ̃(S(δh−1 ⊗ g))

= dim Vπ
|CG|

∑
h,g∈G

∑
c∈C,i

(δh⊗ g)〈δc⊗ f i, (δg−1hg⊗ g−1).(c⊗ ei)〉

= dim Vπ
|CG|

∑
h,g∈G

∑
c∈C

(δh⊗ g)δg−1hg,g−1cgδc,g−1cg Trπ(q−1
g−1cgg

−1qc) = PC,π

where . is the action (4.13). We view the restrictions setting h = c and g ∈ CG(c).
Changing variables to n = qcgq

−1
c , this is equivalent to a sum over n ∈ CG(rC) as usual

and n−1 in the trace. �



134 Chapter 4. Quantum double aspects of Kitaev models

How exactly to construct and classify irreps π̃, however, depends on the structure of
D(H), which is no longer generally a semidirect product. This therefore has to be handled
on a case by case basis before one can do practical quantum computations.
Example 4.3.2. Let G = G+.G− be a finite group that factorises into two subgroups G±,
neither of which need be normal and H = C(G−)I/CG+ the associated bicrossproduct
(or ‘bismash product’) quantum group[Tak81, Maj90, Maj95], which is semisimple. It is
shown in [BGM96] that D(H)∼=D(G)F , where the latter is a Drinfeld twist of D(G) by a
2-cocycle

F =
∑
g∈G

1⊗ g−⊗ δg−1 ⊗ 1 ∈ D(G)⊗D(G)

in the sense of [Maj95]. We write g = g+g− for the unique factorisation of any element of
G. Explicitly, D(G)F has the same algebra as D(G) but a conjugated coproduct

∆(δg⊗h) = F (∆D(G)(δg⊗h))F−1 =
∑
f∈G

δf−gff−1
−
⊗ f−h(h−1fh)−1

− ⊗ δf−1 ⊗h

after a short computation. The nontrivial isomorphism with D(H) in [BGM96] is needed
to identify the H and H∗op subalgebras but where this is not required, we can work
directly with this twisted description. In particular, irreps of D(G)F are the same as those
of D(G) (since the algebra is not changed) and can be identified with irreps of D(H) by
the isomorphism. The braided tensor category is different from but monoidally equivalent
to that of D(G).

We will be concerned more with the formalism with explicit models, such as based on
this construction, deferred to a sequel. We see, however, that there are plenty of examples.
Note that G.<G by Ad is an example with one subgroup normal, so H = D(G) is covered
by this analysis and D(D(G))∼=D(G.<G)F .

4.3.1 D(H) site operators.
By working with the above cleaner form of the Drinfeld double, our modest new obser-
vation in this section is that the same format for the Kitaev model works in the general
case without assuming S2 = id provided we use additional information from the lattice
geometry to distinguish the four cases (a)-(d) in Figure 4.3 which follow the same rules
as above but sometimes specify to use S−1. We focus on the case of a square lattice with
its standard orientation as this is most relevant to computer science, rather than on a
general ciliated ribbon graph.
Theorem 4.3.3. If (v, p) is a site in the lattice then the actions for the form in Figure 4.3,
where we act as shown and by the identity on other arrows, is a representation of D(H)
provided we use (as shown) S−1 if the first arrow going around the vertex is inward and
S if the last arrow is inward. We can freely choose S or S−1 if the inward arrow is in one
of the intermediate places.

Proof. We have to check the relations a2h2〈Sh1, a1〉〈h3, a3〉 = ha for all h ∈ H and a ∈ H∗.
The proof of the hardest case (c) is in Figure 4.4 and for the cancellation for the 3rd
equality, we see that we need S−1 when the first vertex going around is inward and S
when the last vertex is, as is the case here. The other cases are similar but slightly easier
as unconstrained on the choice of S where there is no inward arrow in one or both of
these positions. �



4.3. Aspects of general D(H) models 135

a ▹ p g 3 =∙
∙∙

∙
∙∙

v
g 1

g 2

g 4

a(g 11g 21(Sg 32)Sg 42) g 12

g 22

g 41

g 31h ▹ v

g 1

∙=
(a)

p
g 2

g 3

g 4
h1g 1

g 2Sh2

g 3Sh3

h4g 4

(b)

h ▹ v g 1 ∙=
p

g 2

g 3

g 4

h2g 2
g 3Sh3

g 4Sh4

h1g 1

(c)

h ▹ v

g 1
∙=

p

g 2
g 3

g 4
h3g 3

g 4Sh4

g 1S− 1h1

h2g 2

(d )

h ▹ v
g 1 ∙=
p

g 2

g 3
g 4 h4g 4

g 1S− 1h1

g 2Sh2

h3g 3

a ▹ ∙
p

g 3

=∙
∙

∙ ∙
∙∙v g 1

g 2
g 4 a(g 11(Sg 22)(Sg 32)g 41)

g 12

g 21g 42

g 31

a ▹ ∙
pg 3 =∙

∙
∙ ∙

∙∙
g 1

g 2

g 4

a((Sg 12)(Sg 22)g 31g 41) g 11

g 21

g 42

g 32

v

a ▹
∙

p

g 3

=
∙∙

∙ ∙
∙∙

g 1

g 2 g 4 a((Sg 12)g 21g 31Sg 42)
g 11

g 22 g 41

g 32

v
∙

∙

∙

∙ ∙∙
∙

∙

∙

Figure 4.3: Kitaev model representation of D(H) at a site (v, p) for general not necessarily
semisimple Hopf algebras. Most instances of the antipode S can be equally
S−1 but if we use S in all the a. then we have to use S−1 in h. if this occurs
in the first arrow encountered in going around the vertex.

a2 ▹ h2 ▹ v

g1

∙=
p

g2

g3

g4
h4g6

g4Sh5

g1S− 1h2

h3g5
a2 ▹

∙ ∙
∙ ∙ g5

g6

g2

g3

∙ ∙
p

⟨Sh1, a1⟩
⟨h3, a3⟩

⟨Sh1, a1⟩⟨h6, a3⟩

∙=

h4g6
g42Sh51

g11S− 1h22

h3g5

g21

g32∙ ∙
⟨Sh1(S(g12S− 1h21))(Sg22)g31g41(Sh52)h6, a⟩

∙=
h3g6

g42Sh4

g11S− 1h1

h2g5

g21

g32∙ ∙
⟨(Sg12)(Sg22)g31g41, a⟩

= ∙
g6

g42

g11

g5

g21

g32∙ ∙
⟨(Sg12)(Sg22)g31g41, a⟩

h ▹ v = ∙
g6

g4

g1

g5

g2

g3

∙ ∙
h ▹ a ▹ v

p

∙ ∙

∙ ∙ ∙

v

p| j⟩∙ ∙
∙ ∙

| i⟩ |k⟩
| l⟩

|m⟩
|s⟩

h ▹ p| j + 1⟩
∙ ∙
∙ ∙

| i − 1⟩ |k + 1⟩
| l − 1⟩

|m⟩
|s⟩ g ▹ p| j + 1⟩

∙ ∙
∙ ∙

| i − 1⟩ |k + 1⟩
| l − 1⟩

|m⟩
|s⟩

qj+ 1+ m− s− (k+ 1)

g ▹
v

p| j⟩∙ ∙
∙ ∙

| i⟩ |k⟩
| l⟩

|m⟩
|s⟩

qj+ m− s− k h ▹

Figure 4.4: Proof that case (c) of Figure 4.3 works in Theorem 4.3.3.



136 Chapter 4. Quantum double aspects of Kitaev models

We could equally well decide to always use S for h. and use S−1 in a. if the contraflowing
is in first position going around the face and S if it is in last position. (This is the same as
above in the dual lattice and faces and arrows interchanged and with the roles of H,H∗
interchanged.) We see that in the non-involutive S case there is still some freedom in
the choice of S or S−1, which we need to fix by what we want to do with these D(H)-
representations.

We also know that our finite dimensional Hopf algebra has up to scale a unique right
integral Λ ∈ H and a unique right-invariant integral

∫
: H → k so we can proceed to

define operators
A(v, p) = Λ., B(v, p) =

∫
.

on H. It is striking that exactly this integral data is also key to a Frobenius Hopf algebra
interacting pair for ZX calculus based on H, see [CD19, Maj21] at this level of generality.
Clearly

A(v, p)2 = ε(Λ)A(v, p), B(v, p)2 = (
∫

1)B(v, p)

but without further assumptions, both operators depend on both parts of the site. One
can also check that

[A(v, p), A(v′, p′)] = 0, [B(v, p), B(v′, p′)] = 0

for all v, v′, p, p′ with in the first case v 6= v′ and in the second case p 6= p′. The first is
because if, in the worst case, the vertices are adjacent then the common arrow is pointing
in for one vertex and out for the other, hence the element g in the middle gets multiplied
by something on the left and something on the right, which does not depend on the order
by associativity. Similarly for two faces with an arrow in common. We do not in general
have that [A(v, p), B(v, p)] = 0.

For the Hamiltonian, there are two possible approaches. (i) we could we fix the vertex
of all site to be at the bottom left of the face (Case (a) in Figure 4.3). Thus if v is a
vertex, we define pv as the face to its upper right. Then

H =
∑
v

(1− A(v, pv) + 1−B(v, pv))

makes sense. (ii) Alternatively, motivated by [Meu17] we can define

HK =
∏
(v,p)

A(v, p)B(v, p)

The D(G) model admits a Hamiltonian which is necessarily frustration-free, meaning that
any vacuum state is also the lowest energy state of any given local term. This condition
is broken by general D(H) models. Let A(v1, p1) be a local term. First, consider the
Hamiltonian from (i), ignoring the additive constant:

A(v1,pv1)|vac〉 = −A(v1, pv1)
∑
v

(A(v, pv) +B(v, pv))|vac〉

= −(ε(Λ)A(v1, pv1) + A(v1, pv1)B(v1, pv1) +
∑
v 6=v1

(A(v, pv) +B(v, pv)))|vac〉



4.3. Aspects of general D(H) models 137

So in general, A(v1, pv1)|vac〉 6= |vac〉. Next, consider the Hamiltonian from (ii):

A(v1, pv1)|vac〉 = A(v1, pv1)
∏
(v,p)

A(v, p)B(v, p)|vac〉 = ε(Λ)|vac〉

The fact that the integral actions are no longer idempotent also breaks the interpretation
of these actions as ‘check operators’ to be measured and detect unwanted excitations. In
these more general models, it is unclear what error-correcting capabilities still exist on the
lattice, or whether there are alternative methods of preserving fault-tolerance. They don’t
appear to fit under the umbrella of ‘surface codes’ in the usual sense. We still preserve
some locality as a feature of the model, in the sense that a locally vacuum state can be
defined for example in case (ii) as being the image of

∏
(v∈VR,p∈PR) A(v, p)B(v, p), where

VR and PR are sets of vertices and faces in some region R.
In the semisimple case where S2 = id, we have already noted that ∆Λ = flip∆Λ and that

the integrals can be normalised so that ε(Λ) =
∫

1 = 1. This implies that A(v, p) = A(v)
independently of p and B(v, p) = B(p) independently of v, are projectors and, using the
commutation relations of D(H) and Theorem 4.3.3 that [A(v), B(p)] = 0. Therefore, we
recover both the frustration-free property of H and the interpretation of the lattice as a
fault-tolerant quantum memory. In this case, it is claimed in [Meu17] that

HK =
∏
v

A(v) ◦
∏
p

B(p), Hvac = image(HK)

results in the latter ‘protected space’ being a topological invariant of the surface obtained
by gluing discs on the faces of a ribbon graph. This motivates the definition above. It is
also claimed in [Meu17] that a particle at (v, p) corresponds to a defect where we leave
out the site (v, p) in the product.

While the D(G) model on a lattice Σ allows for the convenient expression in Theo-
rem 4.2.2 for dim(Hvac) in terms of the fundamental group π1(Σ), the proof of this relies on
the invertibility of group elements and the invariance under orientation of δe.. The topo-
logical content for D(H) models can similarly be related to holonomy as in [Meu17] but
is more complicated. The topological content in the D(H) model in the non-semisimple
case is less clear and will be more indirect. For example, reversal of orientation cannot be
expressed simply via the antipode as this no longer squares to the identity.

4.3.2 D(H) triangle and ribbon operators
Canonical representations of D(H) that we will need are left and right actions of D(H)
on H, [Maj95, Ex. 7.1.8]

h.g = h1gSh2, a.g = a(g1)g2; g/h = (Sh1)gh2, g/a = g1a(g2) (4.24)

and left and right actions of D(H) on H∗,

h.b = 〈Sh, b1〉b2, a.b = (S−1a2)ba1; b/h = b1〈Sh, b2〉, b/a = a2bS
−1a1 (4.25)

which is essentially the same construction with the roles of H,H∗op swapped. Moreover,
in the quasitriangular case, there is a braided monoidal functor HM → D(H)M, see
[Maj95, Maj02], which can be used to obtain a class of nice representations of D(H) from
irreps of H.



138 Chapter 4. Quantum double aspects of Kitaev models

Also note that if D is any Hopf algebra, for example D = D(H), it acts on its dual as
a module algebra by the left and right coregular representations

d.φ = 〈Sd, φ1〉φ2, φ/d = φ1〈Sd, φ2〉 (4.26)

for all d ∈ D and φ ∈ D∗. These already feature in (4.25) for the action of H. Also, if
D acts from the left (say) on a vector space H by an action . then it acts on the linear
operators End(H) as a module algebra from both the left and the right [Maj95].

(d.L)(ψ) = d1.L(Sd2.ψ), (L/d)(ψ) = Sd1.L(d2.ψ) (4.27)

for all d in the Hopf algebra and L ∈ End(H). We will use (4.27) with different site actions
of D(H) in Theorem 4.3.3 for example .s0 and .s1 for the two halves. These commute if
s0, s1 are far enough apart. In the case of D(H), its dual is H ⊗H∗ as an algebra and has
the coproduct

∆D(H)∗(h⊗ a) =
∑
a,b

h2⊗ faa1f
b⊗Seah1eb⊗ a2. (4.28)

Next, we define Hopf algebra triangle and ribbon operators at least in the case S2 =
id. Before attempting this, we need to better understand the D(G) case, both ribbon
covariance properties and the construction of a ribbon a sequence of triangle and dual
triangle ops as defined in Definition 4.2.9.
Lemma 4.3.4. For D(G) and with left and right actions on End(H) induced as in (4.27)
by the initial and final site actions:

1. If τ ∗ is a dual triangle, the triangle operator Lhτ∗ =
∑

g F
h⊗ δg
τ∗ is a left and right

module map Lτ∗ : CG→ End(H), where D(G) acts as in (4.24) by

(δa⊗ b).h = δa,bhb−1bhb−1, h/(δa⊗ b) = b−1hb δa,h.

2. If τ is a direct triangle, the triangle operator T δgτ = F
h⊗ δg
τ for any h is a left and

right module map Tτ : C(G)→ End(H), where D(G) acts as in (4.25) by

(δa⊗ b).δg = δa,eδbg, δg/(δa⊗ b) = δa,eδgb.

3. If ξ is an open ribbon then F̃
h⊗ δg
ξ := F h−1,g

ξ is a left and right module map F̃ :
D(G)∗ → End(H), where D(G) acts by (4.26). Moreover, if ξ, ξ′ are composeable
ribbons then

F̃
h⊗ δg
ξ′◦ξ = F̃

(h⊗ δg)2
ξ′ ◦ F̃ (h⊗ δg)1

ξ

using the coproduct (4.28) of D(G)∗. This also applies to F h⊗ δg
ξ = F h,g

ξ .

Proof. (1) The relations we find for dual triangles are

(δa⊗ b).s0◦F̃ b−1hb⊗ δg = F̃ h⊗ δg◦(δha⊗ b).s0 , (δah⊗ b).s1◦F̃ b−1hb⊗ δg = F̃ h⊗ δg◦(δa⊗ b).s1

which we interpret as stated.
(2) The relations we find for direct triangles are

(δa⊗ b).s0 ◦ F̃ h⊗ δg = F̃ h⊗ δbg ◦ (δa⊗ b).s0 , F̃ h⊗ δg ◦ (δa⊗ b).s1 = (δa⊗ b).s1 ◦ F̃ h⊗ δgb



4.3. Aspects of general D(H) models 139

which we interpret as stated. These same commutation rules hold for the action .t at
any site t that has the same vertex as s0, s1 respectively, while the action at other sites
commutes with the triangle operator.

(3) Here D(G)∗ = CG⊗C(G) as an algebra while its coproduct dual to the product of
D(G) is

∆D(G)∗(h⊗ δg) =
∑
f∈G

h⊗ δf ⊗ f−1hf ⊗ δf−1g

Then the composition rule in equation (4.15) for Fξ is already in the form stated. The
same then applies F̃ξ as S⊗ id is clearly a coalgebra map. For equivariance, we have from
Lemma 4.2.8,

〈S(δa⊗ b)1, (h⊗ δg)1〉F̃
(h⊗ δg)(2)
ξ ◦ (δa⊗ b)1.s0

=
∑
x,f

〈S(δx−1 ⊗ b), h⊗ δf〉F̃
f−1hf ⊗ δf−1g
ξ ◦ (δxa⊗ b)1.s0

=
∑
x,f

〈δb−1xb⊗ b−1, h⊗ δf〉F̃
f−1hf ⊗ δf−1g
ξ ◦ (δxa⊗ b)1.s0

= F̃
bhb−1⊗ δfg
ξ ◦ (δbhb−1a⊗ b).s0 = δa.F̃

bhb−1⊗ δbg
ξ ◦ b.s0

= (δa⊗ b).s0F̃
h⊗ δg
ξ

where f = b−1 and x = bhb−1. We used the commutation relations from Lemma 4.2.8.
Similarly for the other side,

(δa⊗ b)1.s1 ◦ F̃
(h⊗ δg)1
ξ 〈S(δa⊗ b)(2), (h⊗ δg)(2)〉

=
∑
x,f

(δax⊗ b).s1 ◦ F̃
h⊗ δf
ξ 〈S(δx−1 ⊗ b), f−1hf ⊗ δf−1g〉

=
∑
x,f

(δax⊗ b).s1 ◦ F̃
h⊗ δf
ξ 〈δb−1xb⊗ b−1, f−1hf ⊗ δf−1g〉

= (δag−1hg⊗ b).s1 ◦ F̃
h⊗ δgb
ξ = δag−1hg.s1 ◦ F̃

h⊗ δg
ξ ◦ b.s1 = F̃

h⊗ δg
ξ ◦ (δa⊗ b).s1

where gb = f and x = bf−1hfb−1 = g−1hg. �

The additional commutation relations for Tτ mentioned in the proof can best be said
as the action on it as an operator in End(H),

(δa⊗ b).t(T δg) = T (δa⊗ b).tδg ; (δa⊗ b).tδg = δa,e


δbg

δgb−1

δg

where we act as per Lb at vertex t on g regarded effectively as living on the arrow of
the direct triangle, i.e. bg if the arrow in relation to the vertex of t is outgoing, gb−1 if
incoming and g otherwise. We can then derive the left and right module properties for
ribbon operators by iterating those for triangle operators. To illustrate this, consider

F̃
h⊗ δg
τ2◦τ∗1

= T δgτ2 ◦ L
h−1

τ∗1
=
∑
f

F̃
f−1hf ⊗ δf−1g
τ2 ◦ F̃ h⊗ δf

τ∗1
= (F̃τ2 ◦ F̃τ∗1 )(h⊗ δg)



140 Chapter 4. Quantum double aspects of Kitaev models

where τ ∗1 : s0 → s1 and τ2 : s1 → s2 and F̃
h⊗ δg
τ = T

δg
τ and F̃

h⊗ δg
τ∗ = δg,eL

h−1
τ∗ are the

associated ribbon operators which we convolve as in part (3) of the lemma. Using the first
expression and the triangle operator left module properties

(δa⊗ b).s0(F̃ h⊗ δg
τ2◦τ∗1

) = (δa⊗ b)1.(T δgτ2 ) ◦ (δa⊗ b)2.(Lh
−1

τ∗1
)

=
∑
x

T
(δax−1 ⊗ b).s0δg
τ2 ◦ L(δx⊗ b).h−1

τ∗1

= T
δbg
τ2 ◦ L

δa,bh−1b−1bh−1b−1

τ∗1
= δa−1,bhb−1F̃

bhb−1⊗ δbg
τ2◦τ∗1

= F̃
(δa⊗ b).(h⊗ δg)
τ2◦τ∗1

where from (4.26),

(δa⊗ b).(h⊗ δg) =
∑
f

〈δb−1a−1b⊗ b−1, h⊗ δf〉f−1hf ⊗ δf−1g = δh,b−1a−1bbhb
−1⊗ δbg

The similar calculation for (F̃ h⊗ δg
τ2◦τ∗1

)/s2(δa⊗ b) is not so easy as /s2 does not enjoy simple
commutation relations with Lh

−1 . There is a similar story for

F̃
h⊗ δg
τ∗2 ◦τ1

= Lg
−1h−1g
τ∗2

◦ T δgτ1 =
∑
f

F̃
f−1hf ⊗ δf−1g
τ∗2

◦ F̃ h⊗ δf
τ1 = (F̃τ∗2 ◦ F̃τ1)(h⊗ δg)

as the other smallest open ribbon.
Now proceeding to the Hopf algebra case, we define triangle operations in the obvi-

ous manner as partial vertex and face operators, with left multiplication by h or right
multiplication by S±1h for dual triangles, depending on orientation,

∙ ∙s0 s1

∙ s1s0
∙ s1s0

∙ ∙s0 s1
Tδg

τ = δg(h1)
h1 h1

Lh
τ* =

g1 g1h− 1
∙
∙∙∙v0

v1

h1 h2

h3
g1 g2

g3

g4

F̃h⊗δg
ξ

h4 ∙
s0

s1

∙ ∙s0 s1
∙ ∙s0 s1

= a(h11)
h1 h12Ta

τ ∙ ∙s0 s1
∙ ∙s0 s1

= a(Sh12)
h1 h11Ta

τ

∙ s1s0 ∙ s1s0=
g1 hg1

(± )Lh
τ*

∙ s1s0 ∙ s1s0=
g1 g1S± 1h

(± )Lh
τ*

Recall that we have chosen to use S throughout the face operations but S−1 if the first
arrow was inward in a vertex operation. As a result, we need both versions (±)Lhτ∗ to
express both left and right covariance. We could equally well have put this complication
on the T aτ side.

Lemma 4.3.5. Let H be a finite-dimensional Hopf algebra, D(H) act on H, H∗ as in
(4.24) and (4.25) and act on End(H) as in (4.27) from the left induced by .s0 and from
the right induced by .s1 .

1. For dual triangles, (−)Lτ∗ : H → End(H) is a left module map and (+)Lτ∗ : H →
End(H) is right module map.

2. The direct triangle operator Tτ : H∗ → End(H) is a left and right module map.

Proof. This is shown in Figure 4.5 and Figure 4.6 for sample orientations where S±

appears in the dual triangle operation. The other orientations are similar with less work.
We use the definitions and the actions of D(H) on H and H∗. �



4.3. Aspects of general D(H) models 141

(a)
L(a1⊗f1)▹h

τ* ∘ (a2 ⊗ f2) ▹s0

∙
∙∙ h 4

h 1

h 3

s0
h 2

h 5
h 6

=
⟨a1, f1h 1Sf4⟩ Lf2h 2Sf3

τ*

∙
∙∙h 42Sf9

h 11S− 1f6

f8h 3

s0
f7h 2

h 51

h 62
⟨a2, S(h 12S− 1f5)(Sh 52)h 61h 41Sf10⟩

=

∙
∙∙h 42Sf9

h 11(S− 1f6)S± 1( f2h 2Sf3)

f8h 3

s0
f7h 2

h 51

h 62

⟨a, f1h 1(Sf4)S(h 12S− 1f5)(Sh 52)h 61h 41Sf10⟩

=
f6h 3

∙
∙∙h 42Sf7

h 11(S− 1f4)S± 1( f2h 2Sf3)
s0

f5h 2

h 51

h 62

⟨a, f1h 1(Sh 12)(Sh 52)h 61h 41Sf8⟩
∙
∙∙h 42Sf5

h 11(S− 1h 2)S− 1f2

f4h 3

s0
f3h 2

h 51

h 62

=

⟨a, f1h 1(Sh 12)(Sh 52)h 61h 41Sf6⟩

=

h 51
∙
∙∙h 41Sf5

h 11(S− 1h 2)S− 1f2

f4h 3

s0
f3h 2

h 62

= (a ⊗ f ) ▹s0 ∘Lh
τ*

∙
∙∙ h 4

h 1
s0

h 2

h 5
h 6

h 3

⟨a, S(h 12(S− 1h 1)(S− 1f1))(Sh 52)h 61h 41Sf6⟩

(b)

(a1 ⊗ f1) ▹s1 ∘Lh ◃(a2⊗f2)
τ* ∙

∙∙
h 4

h 1h 3
s1

h 2

h 5

h 6 ∙
∙∙

h 4

h 1h 3
s1

h 2

h 5

h 6

= (a1 ⊗ f1) ▹s1 ∘L(Sf2)h 1 f3
τ*⟨a2, h 2⟩

=
(a1 ⊗ f1) ▹s1

⟨a2, h 2⟩

∙
∙∙

h 4S± 1((Sf2)h 1 f3)

h 1h 3
s1

h 2

h 5

h 6

⟨a, f1h 11(Sh 52)(Sh 62)(h 4S± 1((Sf6)h 1 f7)Sf5)1h 2⟩
⟨a, f1h 11(Sh 52)(Sh 62)h 41(Sf6)(Sh 2)h 3⟩

∙
∙∙

h 42(Sf5)Sh 1

f2h 12h 3Sf4
s1

f3h 2

h 51

h 61

=
∙
∙∙

(h 4S± 1((Sf6)h 1 f7)Sf5)2

f2h 12h 3Sf4
s1

f3h 2

h 51

h 61

= =

∙
∙∙

h 42Sf5

f2h 12h 3Sf4
s1

f3h 2

h 51

h 61

Lh
τ*

⟨a, f1h 11(Sh 52)(Sh 62)h 41(Sf6)⟩

=
Lh

τ* ∘ (a ⊗ f ) ▹s1

∙
∙∙

h 4

h 1h 3
s1

h 2

h 5

h 6

fig 5

Figure 4.5: (a) Proof of left covariance of dual triangle operator needing the (−) version
for the 3rd equality. (b) Proof of right covariance needing the (+) version.
They coincide when S2 = id.

(a)
T (a1⊗f1)▹b

τ ∘ (a2 ⊗ f2) ▹s0 ∙∙ h 4

h 1

h 3

s0
h 2

h 6 ∙h 5

= TS− 1a2b2a1
τ ∙∙h 42Sf6

h 11S− 1f3

f5h 3

s0
f4h 2

h 62 ∙h 51

=
⟨Sf1, b1⟩
⟨a3, S(h 12S− 1f2)(Sh 52)h 61h 41Sf7⟩

∙∙h 42Sf7

h 11S− 1f4

f6h 3

s0
f5h 2

h 62 ∙h 51
⟨Sf1, b1⟩

⟨a3, f2(Sh 13)(Sh 52)h 61h 41Sf8⟩
⟨(S− 1a2)b2a1, S(h 12S− 1f3)⟩

= ∙∙h 42Sf7

h 11S− 1f4

f6h 3

s0
f5h 2

h 62 ∙h 51
⟨a, f33(Sh 121)h 123(S− 1f31)f2(Sh 13)(Sh 52)h 61h 41Sf8⟩
⟨b, (Sf1)f32Sh 122⟩

= ∙∙h 42Sf5

h 11S− 1f2

f4h 3

s0
f3h 2

h 62 ∙h 51⟨a, f1(Sh 12)(Sh 52)h 61h 41Sf6⟩

⟨b, Sh 13⟩ = (a ⊗ f ) ▹s0 ∘Tb
τ ∙∙ h 4

h 1

h 3

s0
h 2

h 6 ∙h 5

(b)

(a1 ⊗ f1) ▹s1 ∘Tb◃(a2⊗f2)
τ h 2

=

∙
∙

h 4

h 1
h 3h 5

h 6

s1
∙
∙

h 4

h 1
h 3

h 2

h 5

h 6

=s1
(a1 ⊗ f1) ▹s1 ∘Ta4b1S− 1a3

τ

⟨Sf2, a5b2S− 1a2⟩
(a1 ⊗ f1) ▹s1

⟨Sf2, a5b2S− 1a2⟩
⟨a4b1S− 1a3, Sh 42⟩

∙
∙

h 41

h 1
h 3

h 2

h 5

h 6

s1

=
⟨Sf7, a5b2S− 1a2⟩
⟨a4b1S− 1a3, Sh 43⟩

∙
∙

f5h 41

h 11S− 1f2

f4h 3

h 2Sf3

h 52

h 62

s1

⟨a1, f1(Sh 12)h 51h 61(Sh 42)Sf6⟩

=

⟨b, (Sh 432)Sf72⟩

∙
∙

f5h 41

h 11S− 1f2

f4h 3

h 2Sf3

h 52

h 62

s1

⟨a, f1(Sh 12)h 51h 61(Sh 42)(Sf6)f71h 431(Sh 433)Sf73⟩

=
⟨b, (Sh 42)Sf6⟩

∙
∙

f5h 41

h 11S− 1f2

f4h 3

h 2Sf3

h 52

h 62

s1

⟨a, f1(Sh 12)h 51h 61(Sh 43)Sf7⟩

=
Tb

τ ∘ (a ⊗ f ) ▹s1

∙
∙

h 4

h 1
h 3h 5

h 6

s1

h 2

Figure 4.6: Proof of (a) left covariance and (b) right covariance of direct triangle operator.



142 Chapter 4. Quantum double aspects of Kitaev models

Next, we define ribbon operators F h⊗ a
ξ associated to a ribbon ξ by convolution-composition

of triangle operations, where h ∈ H and a ∈ H∗. They are a special case of the ‘holonomy’
maps defined in [Meu17] but even so, it is nontrivial to write them out explicitly in our
case and in our notations. The first step it to view triangle operators as ribbon operators
by

F̃ h⊗ a
τ = ε(h)T aτ , (±)F̃ h⊗ a

τ∗ = ε(a)(±)LS
−1h

τ∗ . (4.29)

Next, the ribbon operators for two composeable ribbons can be convolution-composed by

F̃ φ
ξ′◦ξ = F̃ φ2

ξ′ ◦ F̃
φ1
ξ (4.30)

where now we use the coproduct (4.28) on φ ∈ D(H)∗. This is an associative operation, so
starting with a triangle operation viewed as a ribbon operator and extending to a ribbon
by composing a series of these, we correspondingly define the associated ribbon operator
by iterating this formula. Because ε⊗ id and id⊗ ε are coalgebra maps from D(H)∗ to
H∗, Hcop respectively, the convolution of direct triangle operators viewed as ribbons is the
same as convolution of T s via the coproduct of H∗ and (due to the S−1) the convolution
of dual triangle operators as ribbons is the same as convolution of Ls via the coproduct
of H. It follows that the D(H) site actions in Theorem 4.3.3 can be viewed as ribbon
operators, where for our default conventions a. = T a4 ◦ · · · ◦ T a1 going clockwise around
a face and h. = (+)Lh4 ◦ · · · (+)Lh2 ◦ (−)Lh1 going anticlockwise around a vertex. The sign
refers to the use of S±1 if applicable and as noted, we can also have different patterns of
signs, including in the T ’s, and still get an action of D(H).

In particular, this means that we no longer have a clear route to topological invariance as
we can construct a contractible, closed ribbon equal to A(v, p) (or B(v, p)). A(v, p)|vac〉 6=
|vac〉 in general, so ribbon operators are no longer invariant up to isotopy. As a consequence,
it is not clear that dim(Hvac) is a topological invariant in general, albeit it is known to
be one in the semisimple case.

Next, we wish to prove a generalisation of Lemma 4.2.8 from Section 4.2. However, we
could previously rely on topological invariance to justify claims in our proofs by bending
ribbons into a convenient shape and eliminating contractible loops. In the non-semisimple
case, we need to specify a new class of ribbon for which our generalisation applies and
where these steps are not needed.
Definition 4.3.6. Recall that a ribbon is a sequence of triangles between sites. Let us
represent it as a list of sites in order [s0, s1, · · · , sn] := [(v0, p0), (v1, p1), · · · , (vn, pn)], which
must change either the vertex or face between each site. A strongly open ribbon ξ is an
open ribbon which satisfies the following condition: any two sites si := (vi, pi), sj := (vj, pj)
inside ξ may have vi = vj only if every site in the sequence of sites [si+1, · · · , sj−1] between
si, sj also has vi+1 = · · · = vj−1. Similarly, pi = pj is only allowed if pi+1 = · · · = pj−1.

The intuition behind this is that the ribbon ξ does not bend ‘too quickly’ or get ‘too
close’ to itself; equivalently, it is saying that all subribbons of ξ are either on a single
vertex/face or are themselves open.
Example 4.3.7. Figure 4.7a shows a strongly open ribbon. While it has rotations at a
vertex and a face, it never returns to previously seen vertices or faces. However, Figure 4.7b
is an open ribbon which is not strongly open: at the self-crossing of the ribbon, there
are sites s2, s3 such that s2 = s3 but they are not sequentially adjacent in the ribbon.
Similarly, Figure 4.7c is an open ribbon which does not cross itself but gets ‘too close’ –
sites s4, s5 intersect at p4.



4.3. Aspects of general D(H) models 143

s0

sn

(a)

s0

sn

s2
s3

(b)

s0

s2 s3

sn

(c)

Figure 4.7: (A) is a strongly open ribbon. (B) and (C) are open, but not strongly open.

(a) Tb2
τ2 ∘ LS− 1((S2f4)h 1Sf2)

τ*1 ∘ (a2 ⊗ f6) ▹s0

∙
∙∙ h 4

h 1

h 3

s0
h 2

h 6
s1

h 5

= ⟨b, (Sf3)f71h 21⟩ ∙
∙∙ h 42Sf9

h 11(S− 1f62)f4(S− 2h 1)S− 1f2

f8h 3

s0
f72h 22

h 62
s1

h 51

=
⟨a, f1(S− 1h 2)(Sh 12)(Sh 52)h 61h 41Sf6⟩ ∙

∙∙ h 42Sf9

h 11(S− 2h 1)S− 1f2

f8h 3

s0
f3h 22

h 62
s1

h 51

(a ⊗ f ) ▹s0 ∘Tb
τ2 ∘ LS− 1h

τ*1

∙
∙∙ h 4

h 1

h 3

s0
h 2

h 6
s1

h 5(b)

⟨a1, f1(S− 1h 2)Sf5⟩⟨b1, Sf3⟩

⟨a, f1(S− 1h 2)(Sf5)(S(h 12S− 1f61)(Sh 52)h 61h 41Sf10⟩

⟨b, h 21⟩

⟨a2, f2⟩⟨a4, S− 1h 1⟩⟨a6, Sf4⟩⟨b2, Sf3⟩
(a1 ⊗ f1) ▹s1 ∘Ta5b1S− 1a3

τ2 ∘ LS− 1h 2
τ*1

∙
∙∙ h 4

h 1

h 3

s0

h 2

h 6 s1
h 5

= ⟨a5b1S− 1a3, h 41⟩⟨a2, f5⟩

∙
∙∙h 43Sf41

h 11S− 1f12

f3h 3

s0

f2h 2

h 62h 3
s1

h 51

⟨a1, f11(Sh 12)(Sh 52)h 61(S− 2h 2)h 42Sf42⟩

⟨a4, S− 1h 1⟩⟨a6, Sf7⟩⟨b2, Sf6⟩

=

= ⟨a, f1(Sh 12)(Sh 52)h 61h 41Sf7⟩
⟨b, h 42Sf6⟩ ∙

∙∙h 43Sf5

h 11S− 1f2

f4h 3

s0

f3h 2

h 62h
s1

h 51

= Tb
τ2 ∘ LS− 1h

τ*1 ∘ (a ⊗ f ) ▹s1

∙
∙∙ h 4

h 1

h 3

s0

h 2

h 6 s1
h 5

Figure 4.8: Proof of covariance of the 1st elementary open ribbon (a) from the left using
(−)L (b) from the right using (+)L.



144 Chapter 4. Quantum double aspects of Kitaev models

(a)
L(S−1eb)(S−1((S2f4)h 1Sf2))ea

τ*2 ∘ Tf ab2 f b

τ1 ∘ (a2 ⊗ f6) ▹s0

(a ⊗ f ) ▹s0 ∘L(S−1eb)(S−1h )ea
τ*2 ∘ Tf abf b

τ1

(b)

⟨a1, f1(S−1h 2)Sf5⟩⟨b1, Sf3⟩

⟨a2, f2⟩⟨a4, S−1h 1⟩⟨a6, Sf4⟩⟨b2, Sf3⟩(a1 ⊗ f1) ▹s1 ∘L(S−1eb)(S−1h 2)ea
τ*2 ∘ Tf aa5b1S−1a3 f b

τ1

=

∙
∙∙ h 1

h 4

h 3

s0

h 2

h 6

s1
h 5

∙
∙∙ h 1

h 4

h 3

s0

h 2

h 6

s1
h 5

∙
∙∙ h 1

h 4

h 3

s1

h 2

h 6
s0 h 5

∙
∙∙ f3h 15

h 42Sf5

h 3Sf4
s0

f3h 2

h 61

s1
h 5(S−1h 13)(S−2h 1)S−2h 14

⟨a, f1(S−1h 2)h 11(Sh 52)(Sh 62)h 41Sf6⟩
⟨b, h 13⟩=

=

=

∙
∙∙ f621h 122

h 42Sf9

h 3Sf8
s0

f7h 2

h 61

s1
h 51(S−1ea)(S−2((S2f4)h 1Sf2))S−2eb

⟨a, f1(S−1h 2)(Sf5)f61h 11(Sh 52)(Sh 62)h 41Sf10⟩
⟨b1, f3⟩⟨ f ab2 f b, f621h 121⟩

=
L(S−1eb)(S−1h )ea

τ*2 ∘ Tf abf b

τ1 ∘ (a ⊗ f ) ▹s1 ∙
∙∙ h 1

h 4

h 3

s1

h 2

h 6
s0 h 5

∙
∙∙ f2h 12

h 42(Sh 31)h h 33Sf5

h 34Sf4
s1

f3h 2

h 61

s0 h 51

⟨a, f1h 11(Sh 52)(Sh 62)h 41Sf7⟩
⟨b, h 32Sf6⟩=

∙
∙∙ h 1

h 4S((S−1eb)(S−1h 2)ea)

h 32
s1

h 2

h 6
s0 h 5⟨ f aa5b1(S−1a3)f b, h 31⟩

⟨a2, f2⟩⟨a4, S−1h 1⟩⟨a6, Sf4⟩⟨b2, Sf3⟩ (a1 ⊗ f1) ▹s1

Figure 4.9: Proof of covariance of the 2nd elementary open ribbon (a) from the left using
(−)L (b) from the right using (+)L.

Proposition 4.3.8. Let ξ be a strongly open ribbon from site s0 to site s1. Then
F̃ξ : D(H)∗ → End(H) defined iteratively is a left and right module map under D(H),
where D(H) acts on itself by (4.24). The actions on End(H) are as before according to
.s0 and .s1 . Moreover, if Λ and Λ∗ are cocommutative then F̃ξ commutes with A(t) and
B(t) for all sites t disjoint from s0, s1.

Proof. The left and right module map properties to be proven are equivalent to

d.s0 ◦ F̃
φ
ξ = 〈Sd1, φ1〉F̃ φ2

ξ ◦ d2.s0 , F̃ φ
ξ ◦ d.s1 = d1.s1 ◦ F̃

φ1
ξ 〈Sd2, φ2〉 (4.31)

for d ∈ D(H), φ ∈ D(H)∗, which using (4.28) and the antipode of D(H) come down to

(a⊗ f).s0 ◦ F̃ h⊗ b = 〈a1, f1(S−1h2)Sf5〉〈b1, Sf3〉F̃ (S2f4)h1Sf2⊗ b2
ξ ◦ (a2⊗ f6).s0

F̃ h⊗ b
ξ ◦ (a⊗ f).s1 = 〈a2, f2〉〈a4, S

−1h1〉〈a6, Sf4〉〈b2, Sf3〉(a1⊗ f1).s1 ◦ F̃ h2⊗ a5b1S−1a3
ξ

(i) The elementary open ribbon operators

(±)F̃ h⊗ b
τ2◦τ∗1

= (F̃τ2 ◦ F̃τ∗1 )(h⊗ b) = T bτ2 ◦
(±)LS

−1h
τ∗1

(±)F̃ h⊗ b
τ∗2 ◦τ1

= (F̃τ∗2 ◦ F̃τ1)(h⊗ b) =
∑
a,b

(±)L
(S−1eb)(S−1h)ea
τ∗2

◦ T fabfbτ1

obey the s0 (left) module condition for the (−) case and the s1 (right) module condition
for the (+) case. These are shown for a sample orientation in Figures 4.8 and 4.9. In the
latter, we use the Hopf algebra duality axioms to identify 〈fa, 〉 〈f b, 〉 and transfer the
other sides to ea, eb respectively, then apply cancellations.



4.3. Aspects of general D(H) models 145

While these elementary ribbons are the smallest open ribbons, not every open ribbon
can be generated iteratively starting from one of these elementary ribbons. Any open
ribbon can be generated beginning from a rotation around a vertex or face, followed by
extension to further sites. However, we can just replace the first ±LS−1h

τ∗ in the equation
above with the appropriate convolution of L operators, and the same for the T case. The
left and right module properties will be preserved for the (+) and (−) cases respectively.

(ii) We proceed by induction. Let ξ : s0 → s2 be a strongly open ribbon. First observe
that if ξ′ : s0 → s1 and ξ′′ : s1 → s2 and F̃ξ′ is a left module map with respect to its start
then

(F̃ξ′′ ◦ F̃ξ′)d.φ = 〈Sd, φ1〉F̃ φ22
ξ′′ ◦ F̃

φ21
ξ′ = 〈Sd, φ11〉F̃ φ2

ξ′′ ◦ F̃
φ12
ξ′ = F̃ φ2

ξ′′ ◦ d1.s0 ◦ F̃
φ1
ξ′ ◦ Sd2.s0 .

Now, ξ′′ is disjoint from s0 as ξ is strongly open. Hence, F̃ξ′′ commutes with .s0 , and so
F̃ξ is a left module map with respect to its start.

Similarly, if F̃ξ′′ is a right module map with respect to its end then

(F̃ξ′′ ◦ F̃ξ′)φ/d = 〈Sd, φ2〉F̃ φ12
ξ′′ ◦ F̃

φ11
ξ′ = 〈Sd, φ22〉F̃ φ21

ξ′′ ◦ F̃
φ1
ξ′ = Sd1.s2F̃

φ2
ξ′′ ◦ d2.s2 ◦ F̃

φ1
ξ′ .

As before, ξ′ is disjoint from s2, as ξ is strongly open. Hence, F̃ξ′ commutes with .s2 and
F̃ξ is a right module map with respect to its start.

Now suppose that the left and right module property holds for strongly open ribbons
up to some number of triangles in length. Let ξ be a strongly open ribbon that is not an
elementary one from part (i). Then (a) we write ξ′′ ◦ ξ′ where ξ′′ = τ or τ ∗ and ξ′ is also
a strongly open ribbon. In that case our first observation applies and F̃ξ is a left module
map. And (b) we can write it as ξ′′ ◦ ξ′ where ξ′ = τ or τ ∗ and now ξ′′ is a strongly open
ribbon. Then F̃ξ is also a right module map, hence a left and right module map.

(iii) We also note that if F̃ξ′′ is a left module map and F̃ξ′ a right one then

d.s1 ◦ (F̃ξ′′ ◦ F̃ξ′)φ = d.s1 ◦ F̃
φ2
ξ′′ ◦ F̃

φ1
ξ′ = 〈Sd1, φ21〉F̃ φ22

ξ′′ ◦ d2.s1 ◦ F̃ φ1

= F̃ φ2
ξ′′ ◦ 〈Sd1, φ12〉d2.s1 ◦ F̃ φ11 = F̃ φ2

ξ′′ ◦ 〈Sd2, φ12〉d1.s1 ◦ F̃ φ11

= F̃ φ2
ξ′′ ◦ F̃

φ1
ξ′ ◦ d.s1 = (F̃ξ′′ ◦ F̃ξ′)φ ◦ d.s1

provided for the 4th equality we have d cocommutative in the sense d1⊗ d2 = d2⊗ d1.
As ξ′′ and ξ′ are both strongly open, this implies that the action by such elements d at
interior sites commute with F̃ξ. �

Observe that this argument holds because the ribbon ξ is strongly open: all subribbons
of ξ are either themselves (strongly) open or are rotations around a vertex/face. A ribbon
which is open but not strongly open may have subribbons which are not open but have
interior sites disjoint from the endpoints, and therefore the above inductive argument
breaks down. In the semisimple case, the condition of strongly open in Proposition 4.3.8
can be relaxed to just open, as we have topological invariance and so any subribbons
which are not open may be smoothly deformed to their shortest path, which will be a
rotation with no interior sites disjoint from the endpoints. We also know in the semisimple
case that Λ,Λ∗ are cocommutative, so the last part of the proposition applies.

The left and right module property and convolution of strongly open ribbons can also
be viewed as follows in terms of D = D(H). Recall that two left actions of D on H, as
was the case above using the site actions at the ends of open ribbons, induce left and right
D-module structures on A = End(H) as in (4.27) which are compatible with the product



146 Chapter 4. Quantum double aspects of Kitaev models

(i.e. A is a left and right D-module algebra). They commute (i.e. make A into bimodule)
if the end sites are far enough apart. Also recall that D acts on D∗ by (4.26) and on itself
by the product, so that D∗, D are D-bimodules. We will use a compact notation where
F̌ = F̌ 1⊗ F̌ 2 (summation understood) denotes an element of a tensor product over the
field and F̌21 = F̌ 2⊗ F̌ 1.
Lemma 4.3.9. Let D be a finite-dimensional Hopf algebra and A a left and right D-
module algebra with actions denoted by dot. We let {eα} be a basis of D and {fα} a dual
basis. The following are equivalent.

1. F̃ : D∗ → A is left and right D-module map.

2. F̌ := F̌ 1⊗ F̌ 2 =
∑

α S
−1eα⊗ F̃ fα ∈ D⊗A obeys dF̌ = F̌ .d and d.F̌21 = F̌21d for all

d ∈ D, using the product or action of D on the adjacent factor.

3. (S⊗ id)F̌ is invariant under the left and right tensor product D-actions.
If A is an algebra and F̃ ′′, F̃ ′ : D∗ → A are linear maps, their convolution product
(F̃ ′′ ◦ F̃ ′)φ = F̃ ′′φ2 ◦ F̃ ′φ1 is equivalent to the product of the corresponding F̌ ′′, F̌ ′ in the
tensor product algebra. If A is a bimodule and F̃ a bimodule map then f = F̌ 1.F̌ 2, g =
F̌ 2.F̌ 1 ∈ A are in the bimodule centre.

Proof. This is elementary but we give some details for completeness. First, as linear maps
it is obvious that F̃ : D∗ → A is equivalent to an element eα⊗ F̃α ∈ D⊗A (summation
over repeated labels understood). It is also clear that if F̃ ′′, F̃ ′ are two such linear maps
then eα⊗(F̃ ′′◦F̃ ′)fα = eα⊗ F̃ ′′f

α2F ′f
α1 = eβeα⊗ F̃ fαF fβ which is the product in Dop⊗A.

The S−1 means that the corresponding F̌ ′′, F̌ ′ multiply in D⊗A.
Moreover, suppose F̃ is a left and write D-module map. We denote the left and right

tensor product actions of D on D⊗A by ., /. Then
d.(eα⊗ F̃ fα) = d1ea⊗ d2.F̃

fa = d1ea⊗ F̃ d2.fa = d1eα⊗〈Sd1, f
α

1〉F̃ fα2

= d1eαeβ ⊗〈Sd1, f
α〉F̃ fβ = d1(Sd2)eβ ⊗ F̃ eβ = ε(d)(eα⊗F fα)

and similarly from the other side for the right action /. This argument can be reversed
to prove equivalence of (1) and (3). Similarly,
S−1eα⊗ d.F̃α = S−1eα⊗〈Sd, fα1〉F̃ fα2 = (S−1eβ)(S−1eα)⊗〈Sd, fα〉F̃ fβ = (S−1eβ)d⊗ F̃ β

S−1eα⊗ F̃α.d = S−1eα⊗〈Sd, fα2〉F̃ fα1 = (S−1eβ)(S−1eα)⊗〈Sd, fβ〉F̃ fα = d(S−1eα)⊗ F̃α

which can be reversed for the equivalence of (1) and (2). Then in the bimodule case,
d.f = d.(F̌ 1.F̌ 2) = F̌ 1.(F̌ 2.d) = f.d and g.d = (F̌ 2.F̌ 1).d = (d.F̌ 2).F̌ 1 = d.g for all
d ∈ D. �

This is relevant to us in the case where F̃ = F̃ξ for an open ribbon from s0 to s1
and A = End(H) with left and right module structures induced by the site actions on
H at s0, s1 of D = D(H). We write s0As1 for the algebra A with this left and right D-
module structure. For example, the associated f = fξ and g = gξ are in here. Moreover, if
ξ = ξ′′ ◦ ξ′ then F̌ ′ ∈ D⊗ s0As1 and F̌ ′′ ∈ D⊗ s1As2 while F̌ ′′F̌ ′ ∈ D⊗ s0As2 . This gives a
functor from the ‘ribbon path groupoid’ to the category of D-modules H with morphisms
given by elements of D⊗A. The composition of morphisms is given by the tensor product
algebra D⊗A plus an assignment of the left and right D-module structures on A for the
result. This is such that the product of s1As2 and s0As1 is deemed to lie in s0As2 . The
morphisms that arise from open ribbons also obey the centrality properties (2). This is
in the spirit of the ‘holonomy’ point of view in [Meu17].



4.3. Aspects of general D(H) models 147

4.3.3 Quasiparticle spaces for D(H) ribbons
Finally, we fix a vaccum state |vac〉 and consider quasiparticle spaces

Lξ(s0, s1) = {F̃ φ
ξ |vac〉 | φ ∈ D(H)∗} ⊂ H

much as before, where ξ : s0 → s1 is a fixed strongly open ribbon. We make H a
left and right D(H)-module where d acts from the left by d.s0ψ and from the right by
ψ/s1d := Sd.s1ψ. These commute on H so that we have a bimodule when s0, s1 are
sufficiently far apart, meaning that p0 and p1 do not share an edge, and neither do v0 and
v1. However the next proposition shows that they always commute when we restrict to
ψ ∈ Lξ(s0, s1). We moreover dualise the left and right actions to respectively right and
left actions on Lξ(s0, s1)∗ which then also form a bimodule. Recall that D(H)∗ is always
a D(H)-bimodule by (4.26) and D(H) a D(H)-bimodule by left and right multiplication.

Proposition 4.3.10. Let ξ : s0 → s1 be a strongly open ribbon and Lξ(s0, s1) as above.
This is a bimodule and

1. D(H)∗ � Lξ(s0, s1) sending φ 7→ F̃ φ
ξ |vac〉 is a bimodule map.

2. Lξ(s0, s1)∗ ↪→ D(H) sending 〈Φ| 7→ F̌ 1〈Φ|F̌ 2|vac〉 is a bimodule map.

Proof. If Λ ∈ H and Λ∗ ∈ H∗ are integral elements then ΛD := Λ∗⊗Λ ∈ D(H) is an
integral element in D(H) and if |vac〉 ∈ Hvac then ΛD.|vac〉 = |vac〉 at any site. It follows
that if d ∈ D = D(H) then d.|vac〉 = dΛD.|vac〉 = ε(d)ΛD.|vac〉 = ε(d)|vac〉 as we have
seen before. Then

d.s0 ◦ F̃
φ
ξ |vac〉 = 〈Sd1, φ1〉F̃ φ2

ξ ◦ d2.s0|vac〉 = 〈Sd, φ1〉F̃ φ2|vac〉 = F̃ d.φ|vac〉
Sd.s1 ◦ F̃ φ|vac〉 = Sd1.s1F̃

φ
ξ ◦ d2.s1|vac〉 = (Sd1)d2.s1 ◦ F̃

φ1
ξ |vac〉〈Sd3, φ2〉 = F̃ φ/d

ξ |vac〉

which implies that Lξ(s0, s1) is a bimodule and proves (1). Moreover, we can unpack the
centrality in Lemma 4.3.9 explicitly and apply it as

dF̌ξ|vac〉 = F̌ 1⊗(F̌ 2)/s1d|vac〉 = F̌ 1⊗Sd(1).s1 ◦ F̌ 2 ◦ d2.s1|vac〉 = F̌ 1⊗Sd.s1 ◦ F̌ 2|vac〉.

F̌ 1d⊗ F̌ 2|vac〉 = F̌ 1⊗ d.(F̌ 2)|vac〉 = F̌ 1⊗ d1.s0 ◦ F̌ 2 ◦ Sd2.s0|vac〉 = F̌ 1⊗ d.s0 ◦ F̌ 2|vac〉

so that
dF̌ 1〈Φ|F̌ 2|vac〉 = F̌ 1〈Φ|Sd.s1 ◦ F̌ 2|vac〉 = F̌ 1〈d.Φ|F̌ 2|vac〉

F̌ 1〈Φ|F̌ 2|vac〉d = F̌ 1〈Φ|d.s0 ◦ F̌ 2|vac〉 = F̌ 1〈Φ/d|F̌ 2|vac〉

which is (2). Here the left action on Lξ(s0, s1) dualises to the right action (Φ/d)(ψ) =
Φ(d.s0ψ) and the right action on Lξ(s0, s1) dualises to the left action (d.Φ)(ψ) =
Φ(ψ/s1d) = Φ(Sd.s1ψ). �

The maps in the proposition are expected to be isomorphisms in line with Proposi-
tion 4.2.10 for the D(G) case, but this requires more proof. For example, this follows if
F̃ φ
ξ |vac〉 = 0 implies that φ = 0, which is expected to follow from unitarity properties

with respect to a ∗-structure. Likewise, it is expected that Lξ(s0, s1) is independent of ξ
at least in the H semisimple case and characterised in terms of A(t), B(t) in the manner
that was done in Proposition 4.2.10.



148 Chapter 4. Quantum double aspects of Kitaev models

4.4 Concluding remarks

We have given a self-contained treatment of the Kitaev model for a finite group G, focussed
on the quasiparticle content and ribbon equivariance properties expressed in terms of
the quantum double D(G). This was largely avoided in works such as [Kit03, BM-D08],
while [BSW11] starts to take a quantum double view, and we built on this. As well
as a systematic treatment of the core of the theory, we have then demonstrated how
quasiparticles could be created and manipulated in practice, with details in the case of
D(S3) of the construction of logical operations and gates. We also showed the existence of
a ‘Bell state’ that exists in the ribbon space L(s0, s1) created by ribbon operations for an
open ribbon between s0, s1 and which can be used to teleport quasiparticle information
between the endpoints. We also illustrated these ideas for the Abelian case of D(Zn).

Beyond this practical side, we also looked closely as the obstruction to generalising
such models to the ‘quantum case’ where the group algebra CG is replaced by a finite-
dimensional Hopf algebra H. That this works when S2 = id (e.g. the Hopf algebra is
semisimple and we work over a field of characteristic zero such as C) is well known as are
its link to topological invariants [BK12, Meu17] such as the Turaev-Viro invariant and
the Kuperberg invariant[Kup91]. As far as we can tell, ribbon operators at this level have
not been studied very explicitly, athough contained in principle in [Meu17] as part of a
theory of ‘holonomy’, following the work of [BMCA13] for the site operations. As well as
our own work we have noted [YCC22]. We provided a self-contained treatment of the core
properties in the S2 = id case but we could also see by giving direct proofs what is involved
in the general case. We found that site operation work perfectly well but we must use S−1

in certain key places. To be concrete, we put this on the vertex side but this complication
can be put in different places leading in fact to a set of possible site operations all forming
representations of D(H). Dual triangle and ribbon equivariance properties then become
more complicated with −L needed in some places for good behaviour with respect to the
initial site action s0. We also noted that the Peter-Weyl decomposition whereby D(H) is a
direct sum of endomorphism spaces for the irreps holds when S2 = id. More generally, one
will have some blocks associated to irreps but these will not be the whole story. Hence our
ideas on ribbon teleportation will be more complicated in general. Likewise, the actions of
the integrals A(v, p) and B(v, p) are no longer projectors in the nonsemisimple case, but
square to zero, which considerably changes how the physics should be approached and
requires further work. It will also be necessary to look at ∗-structures needed to formulate
unitarity at this level, possibly using the notion of flip Hopf ∗-algebras as recently initiated
for ZX calculus in [Maj21].

Nevertheless, there are good reasons to persist with the general case, namely in order to
link up with 2+1 quantum gravity and the Turaev-Viro invariant of 3-manifolds in a graph
version. In quantum gravity, the relevant 3-manifold would be R×Σ where R is time and
Σ is a surface with marked points, but we would make a discrete approximation of the
latter by a (ciliated, ribbon) graph, or in the simplest case a square lattice as here. Since
the Turaev-Viro invariant is based on D(uq(sl2)), the goal would be to have a more Kitaev
model point of view in contrast to current Hamiltonian constructions[AGS96]. Going the
other way, it would be interesting to try to regard the D(S3) model as leading to a baby
version of quantum gravity in the context of discrete noncommutative geometry[Maj04].

Another longer term motivation for the current work is the need for some kind of compiler
or ‘functor’ from surface code models such as the Kitaev one to ZX-calculus[CD11] as
more widely used in quantum computing. The Z,X here are Fourier dual and it would



4.4. Concluding remarks 149

be useful to understand even in the Abelian case of D(Zn) ∼= CZ2
n how the surface code

theory relates to ZX calculus based on CZn as a quasispecial Frobenius algebra. There
are current ideas about this but they appear to require a notion of boundary defects.
This and the notion of condensates will both need to be studied more systematically by
the methods in the present work, building on current literature such as [BSW11]. We
also note that in topology, the Jones invariant and its underlying Chern-Simons theory
are based on the quantum group uq(sl2) and such invariants are related via surgery on
the knot to the Turaev-Viro invariant based on D(uq(sl2)), suggesting the possibility of
a general link between D(H) surface code theory and ZX calculus on H. The latter on
general Hopf algebras and braided-Hopf algebras was recently studied in [CD19, Maj21].
These are some directions for further work.





Chapter 5

Qudit lattice surgery

This is a short Chapter, which will give us a warm-up to the more complicated version of
boundaries and surgery in Kitaev models more generally. Throughout this Chapter, we
let Zd be the cyclic group with d elements labelled by integers 0, · · · , d− 1 with addition
as group multiplication. We assume d ≥ 2, as the d = 1 case is trivial. We occasionally
ignore normalisation (typically factors of d or 1

d
) when convenient. We have patches of

Kitaev models where G = Zd, and where the boundaries are described in the same manner
as in Section 1.6, but the Paulis are qudit versions instead.

One can see that because the underlying group is Abelian, the qudit surface codes are
CSS, and we could in principle treat this homologically. However, it leads into the case
where the group is nonAbelian in Chapter 6, which cannot be seen as a CSS code. We now
give a series of definitions for the Zd quantum double model, which recaps those given in
Section 4.1 but geared towards the application here.

Definition 5.0.1. Let CZd be the group Hopf algebra with basis states |i〉 for i ∈ Zd.
CZd has multiplication given by a linear extension of its native group multiplication, so
|i〉 ⊗ |j〉 7→ |i+ j〉, and the unit |0〉. It has comultiplication given by |i〉 7→ |i〉 ⊗ |i〉, and
the counit |i〉 7→ 1 ∈ C. It has the normalised integral element ΛCZd = 1

d

∑
i |i〉 and the

antipode is the group inverse. CZd is commutative and cocommutative.

Definition 5.0.2. Let C(Zd) be the function Hopf algebra with basis states |δi〉 for i ∈ Zd.
C(Zd) is the dual algebra to CZd. C(Zd) has multiplication |δi〉 ⊗ |δj〉 7→ δi,j|δi〉 and the
unit

∑
i |δi〉. It has comultiplication |δi〉 7→

∑
h∈Zd |δh〉 ⊗ |δi−h〉 and counit |δi〉 7→ δi,0. It

has the normalised integral element ΛC(Zd) = |δ0〉 and the antipode is also the inverse.
C(Zd) is commutative and cocommutative.

Lemma 5.0.3. The algebras are related by the Fourier isomorphism, so C(Zd) ∼= CZd as
Hopf algebras. In particular this isomorphism has maps

|j〉 7→
∑
k

qjk|δk〉, |δj〉 7→
1
d

∑
k

q−jk|k〉, (5.1)

where q = e
i2π
d is a primitive dth root of unity.

Definition 5.0.4. Now let Σ = Σ(V,E, P ) be a square lattice viewed as a directed graph
with its usual (cartesian) orientation. The corresponding Hilbert space H will be a tensor
product of vector spaces with one copy of CZd at each arrow in E, with basis denoted by
{|i〉}i∈Zd as before. Next, for each vertex v ∈ V and each face p ∈ P we define an action
of CZd and C(Zd), which acts on the vector spaces around the vertex or around the face,



152 Chapter 5. Qudit lattice surgery

and trivially elsewhere, according to

|a〉

|b〉

|c〉
|d〉

|l〉.v = |a− l〉

|b− l〉

|c+ l〉
|d+ l〉

and

|a〉

|b〉

|c〉

|d〉

|δj〉.p = δj(a+ b− c− d) |a〉

|b〉

|c〉

|d〉

for |l〉 ∈ CZd and |δj〉 ∈ C(Zd).

Here |l〉.v subtracts in the case of arrows pointing towards the vertex and |δj〉.p has
c, d entering negatively in the δ-function because these are contra to a clockwise flow
around the face in our conventions. The vertex actions are built from four-fold copies
of the operator X and X†, where X l|i〉 = |i + l〉. Consider the face actions of elements∑

j q
mj|δj〉, i.e. the Fourier transformed basis of C(Zd); these face actions are made up of

Z and Z†, where Zm|i〉 = qmi|i〉, and the Z, X obey ZX = qXZ.
Stabilisers on the lattice are given by measurements of the X ⊗ X ⊗ X† ⊗ X† and

Z ⊗ Z ⊗ Z† ⊗ Z† operators on vertices and faces respectively; that is, for the vertices
we non-deterministically perform one of the d projectors Pv(j) =

∑
k q

jk|k〉.v for j ∈ Zd,
according to each of the d measurement outcomes. Similarly for faces, we perform one of
the d projectors Pp(j) = |δj〉.p. In practice, this requires additional ‘syndrome’ qudits at
each vertex and face. At each round of measurement, we measure all of the stabilisers on
the whole lattice.

For a whole patch, including boundaries, we have

where the boundaries mean that some vertex and face actions are missing incident edges.
It is easy to compute that a patch of this shape has dimL = d, the same dimension as
the data qudits. Thus we can confer the bases of CZd and C(Zd) upon it, setting |0〉L as
the state where all data qudits are initialised in the |0〉 state and so on.

5.1 Lattice surgery

If we have two patches with logical spaces (Hvac)1 and (Hvac)2 which are disjoint in space
then we evidently have a combined logical space Hvac = (Hvac)1⊗(Hvac)2.

We may start with one patch and ‘split’ it to convert it into two patches.



5.1. Lattice surgery 153

5.1.1 Splits
To perform a smooth split, take a patch and measure out a string of intermediate qudits
from top to bottom in the {|δi〉} basis, like so:

×

×

Regardless of the measurement results we get, we now have two disjoint patches next to
each other. We can see the effect on the logical state by considering an X-type string
operator which had been extending across a string ξ from left to right on the original
patch. Previously it had been xF

i
ξ , say. Now, let ξ = ξ′′ ◦ ξ′, where ξ′ extends across the

left patch after the split and ξ′′ extends across right one. Then xF
i
ξ = xF

i
ξ′ ◦ xF i

ξ′′ ; our X i
L

gate on the original logical space is taken to X i
L⊗X i

L on (Hvac)1⊗(Hvac)2. It is easy to
see that this then gives the map:

∆s : |i〉L 7→ |i〉L ⊗ |i〉L

for i ∈ Zd. This is the same regardless of the measurement outcomes on the intermediate
qubits we measured out.

To perform a rough split, take a patch and measure out a string of qudits from left to
right in the {|i〉} basis. A similar analysis to before, but for Zi

L gates, shows that we have

∆r : |δi〉L 7→ |δi〉L ⊗ |δi〉L.

Remark 5.1.1. We now note a subtlety: for both smooth and rough splits we induce a copy
in the relevant bases, that is the comultiplication of CZd, rather than the comultiplication
of C(Zd) for the rough splits. This is because we are placing both algebras on the same
object, using the non-natural isomorphism V ∼= V ∗ for vector spaces V . Thus if we take
the rough split map in the other basis we get

∆r : |i〉L 7→
∑
h

|h〉L ⊗ |i− h〉L.

This follows directly from Lemma 5.0.3. The fact that both algebras are placed on the
same object allows us to relate the model to the ZX-calculus in Section 5.2.

5.1.2 Merges
To perform a smooth merge, we do the reverse operation. Start with two disjoint patches:



154 Chapter 5. Qudit lattice surgery

and then initialise between them a string of intermediate qudits, each in the
∑

i |i〉 state,
like so:

|i〉

|j〉
∑

i,j

Then measure the stabilisers at all sites on the now merged lattice. Now, assuming no
errors have occurred all the stabilisers are automatically satisfied everywhere except the
measurements which include the new edges. These measurements realise a measurement
of ZL⊗ZL on the logical space (Hvac)1⊗(Hvac)2. We prove this in Appendix 16. With
merges, the resultant logical state after merging is also dependent on the measurement
outcomes.

Depending on which ‘frame’ we choose we can have two different sets of possible maps
from the smooth merge, see [dBH20] for the easier qubit case. Here we choose to adopt the
Pauli frame of the second patch. In the Fourier basis we thus have the Kraus operators:

∇s : {|δi〉L⊗ |δj〉L 7→ qin|δi+j〉L}n∈{0,··· ,d−1}

where qin is a factor introduced by the ZL⊗ZL measurement; we have n ∈ {0, · · · , d− 1}
for the d different possible measurement outcomes. If we only consider the n = 0 case
for a moment, one can come to the conclusion that this is the correct map using the ZL
logical operators: ∑

j

qijzF
δj
ξ ◦

∑
j

qkjzF
δj
ξ =

∑
j

q(i+k)j
zF

δj
ξ

from earlier, where ξ extends from bottom to top on both original patches. Then when
we merge the patches, we get the combined string operator. In the other basis of logical
states, the smooth merge gives:

∇s : {|i〉L⊗ |j〉L 7→ δi+n,j|i+ n〉L}n∈{0,··· ,d−1},

Remark 5.1.2. It is common in categorical quantum mechanics to consider the so-called
multiplicative fragment of quantum mechanics. In this fragment, we may post-select rather
than just make measurements according to the traditional postulates. As such, there is a
choice of post-selection such that n = 0 and we acquire the multiplication of CZd or C(Zd)
depending on basis. While physically we cannot post-select, this is a useful toy model
in which algebraic notions may be more conveniently related to quantum mechanical
processes.

Considering the same convention of frame, a rough merge gives:

∇r : {|i〉L⊗ |j〉L 7→ qin|i+ j〉}n∈{0,··· ,d−1}

by a similar argument, this time performing a measurement of XL⊗XL to merge patches
at the top and bottom.



5.1. Lattice surgery 155

5.1.3 Units and deletion
While we are on the subject of measurements, we can delete a patch by measuring out
every qudit associated to its lattice in the Z-basis. If we do so, we obtain the maps

εr : {|i〉L 7→ δn,i}n∈{0,··· ,d−1}.

In the n = 0 outcome this is precisely the counit of C(Zd). We check this in Appendix 17.
If we instead measure out each qudit in the X-basis we get

εs : {|i〉L 7→ qin}n∈{0,··· ,d−1},

where we see the counit of CZd.
One can clearly also construct the units of C(Zd) and CZd, being ηs :

∑
i |i〉L and

ηr : |0〉L respectively. The last remaining pieces of the puzzle are the antipode and Fourier
transform on the logical space.

5.1.4 Antipode
First we demonstrate how to map between the |0〉L and |δi〉L states. If we apply a Fourier
transform H =

∑
j,k q

−jk|k〉〈j| to a qudit in the state |0〉 we have H|0〉 =
∑

i |i〉.1 As
HX = Z†H (and XH = HZ) all A(v) projectors are translated to B(p) projectors by
rotating the lattice to exchange vertices with faces

7→

such that the X,X† match up with Z†, Z appropriately when considering the clockwise
conventions from Def 5.0.4. This is just a conceptual rotation, and there does not need
to be any physical rotation in space. Thus we have

HL|0〉L = (
⊗
E

H)
∏
v

A(v)
⊗
E

|0〉 =
∏
p

B(p)
⊗
E

∑
i

|i〉 = |δ0〉L

where HL =
⊗

E H is the logical Fourier transform, and the lattice has been mapped:

7→

HL also takes X-type string operators to Z-type string operators in the quasiparticle
basis but with a sign change, and thus we have

HL|i〉L = HLX
i|0〉L = Z−iHL|0〉L =

∑
k

q−ik|k〉L = |δi〉L

1The H stands for Hadamard, which is what the qubit Fourier transform is commonly called. The qudit
Fourier transform is not a Hadamard matrix in general.



156 Chapter 5. Qudit lattice surgery

so it is genuinely a Fourier transform. Applying it twice gives

HLHL|i〉L =
∑
k,l

q−ikq−kl|l〉L =
∑
l

δl,−i|l〉L = | − i〉L

where the lattice is now as though the whole patch has been rotated in space by π by the
same argument as before. This is evidently the logical antipode, SL = HLHL.

This completes the set of fault-tolerant operations we may perform with the CZd lattice
surgery. One can create other states in a non-error corrected manner and then perform
state distillation to acquire the correct state with a high probability, but this is beyond
the scope of the Chapter and very similar to e.g. [FSG09].

5.2 The ZX-calculus
The ZX-calculus is based on Hopf-Frobenius algebras sitting on the same object. It imports
ideas from monoidal category theory to justify its graphical formalism [Sel11]. See [HV19]
for an introduction from the categorical point of view. Calculations may be performed by
transforming diagrams into one another, and the calculus may be thought of as a tensor
network theory equipped with rewriting rules.

Here we present the syntax and semantics of ZX-diagrams for CZd. We are unconcerned
with either universality or completeness [Bac16], and give only the necessary generators
for our purposes; moreover, we adopt a slightly simplified convention. First, we have
generators:

b

∑
i q
−ib|i〉

a
|a〉  

for elements, where the small red and green nodes are called ‘spiders’, and diagrams flow
from bottom to top.2 The labels associated to a spider are called phases. Then we have
the multiplication maps,

|i〉 ⊗ |j〉 7→ |i+ j〉 |i〉 ⊗ |j〉 7→ δi,j|i〉  

comultiplication,

 |i〉 7→ |i〉 ⊗ |i〉|i〉 7→
∑

h |h〉 ⊗ |i− h〉 

maps to C,
b |i〉 7→ qib

a |i〉 7→ δi,a  

and Fourier transform3 plus antipode:

|j〉 7→
∑

i q
−ij|i〉

|i〉 7→ | − i〉S

 

 

2Red and green are dark and light shades in greyscale.
3The Hadamard symbol here makes it look like it is vertically reversible, i.e. H† = H, but it is not; this

is just a notational flaw.



5.2. The ZX-calculus 157

Now, these generators obey all the normal Hopf rules: associativity of multiplication and
comultiplication, unit and counit, bialgebra and antipode laws, but that it is not all. The
ZX-calculus makes use of an old result by Pareigis [Par71], which states that all finite-
dimensional Hopf algebras on vector spaces automatically give two Frobenius structures,
which in the present case correspond to the red and green spiders above. In this case, they
are in fact so-called †-special commutative Frobenius algebras (†-SFCAs) [CPV12]. Such
algebras have a normal form, such that any connected set of green or red spiders may be
combined into a single green or red spider respectively, summing the phases [CD11]. This
is called the spider theorem. As an easy example, observe that we can define the Xa gate
in the ZX-calculus as:

=
a

a  |j〉 7→ |j + a〉

and similarly for a Zb gate,

=
a

a  |j〉 7→ q−bj|j〉
b

b

.

The Fourier transform then ‘changes colour’ between green and red spiders. We show
these axioms in Appendix 18. For a detailed exposition of the qudit ZX-calculus in greater
generality see [Wan21].

Now, one can immediately see that the generators are automatically (by virtue of the
CZd and C(Zd) structures) in bijection with the lattice surgery operations described
previously. The bijection between this fragment of the ZX-calculus and lattice surgery
was spotted by de Beaudrap and Horsman in the qubit case [dBH20]; however, their
presentation emphasises the Frobenius structures. The algebraic explanation for the
lattice surgery properties is all in the Hopf structure: in summary, it is because the string
operators are Hopf-like.4 The Frobenius structures are still useful diagrammatic reasoning
tools because of the spider theorem, and also because the two interacting Frobenius
algebras correspond to the rough (red spider) and smooth (green spider) operations.
There is a convenient 3-dimensional visualisation for this using ‘logical blocks’, which we
defer to Appendix 19. There we also include Table 1, which is a dictionary between lattice
operations, ZX-diagrams and linear maps.

5.2.1 Gate synthesis
Using the ZX-calculus we can thus design logical protocols in a straightforward manner.
We have already implicitly shown a state injection protocol, being the spider merges for
the Xa and Zb gates above, but we can go further. A common gate in the circuit model
is the controlled-X (CX) gate. In qudit quantum computing this is defined as the map

CX : |i〉 ⊗ |j〉 7→ |i〉 ⊗ |i+ j〉

which in the ZX-calculus we might represent as, say,

= = =S S .

4We formalise such operators as module maps in [CM22].



158 Chapter 5. Qudit lattice surgery

In the first diagram we perform a smooth split followed by a rough merge; in the second
we do the opposite. In the third and fourth we first generate a maximally entangled state
and then perform a smooth and rough merge on either side. The antipodes are necessary
because of a minor complication with duals in the qudit ZX-calculus. Rewrites using
the calculus show that these are equal, and conversions into linear maps do indeed yield
the CX. We check this in Appendix 20. Note that we implicitly assumed the n = 0
measurement outcomes for the merges, but we assert that in this case the protocol works
deterministically by applying corrections. This is a generalisation of protocols specified
in [dBH20], and the correction arguments are identical.

We can also easily see that the lattice surgery operations are not universal, even with the
addition of logical XL and ZL gates using string operators. All phases have integer values
and so we cannot even achieve all single-qudit gates in the 2nd level of the Clifford hierarchy
fault-tolerantly. For example, we cannot construct a

√
XL gate with the operations listed

here.
With this limitation in mind, in Appendix 21 we discuss the prospects for expanding

the scope of the model to other group algebras and to Hopf algebras more generally.

5.3 Conclusion
We have shown that lattice surgery is straightforward to generalise to qudits, assuming
an underlying abelian group structure. The particular Abelian group here was the cyclic
group Zd, but as any Abelian group can be factorised into a product of cyclic groups the
results extend in the obvious manner. The resultant diagrammatics which can be used to
describe computation are elegant, concise and powerful.



Chapter 6

Algebraic aspects of boundaries in
quantum double models
The Kitaev model[Kit03] for topologically fault-tolerant quantum computing is defined
by the quantum double D(G) of a finite group G. The irreducible representations of this
quantum group are quasiparticles corresponding to measurement outcomes at sites on a
lattice, and their dynamics correspond to linear maps on the data. The lattice can be
any ciliated ribbon graph embedded on a surface [Meu17], although throughout we will
assume a square lattice on the plane for convenience. The topological properties of the
Kitaev model derive from the ‘topological order’ in condensed matter terms[KZ22], which
is the braided category Z(C) given by the ‘dual’ or ‘centre’ construction’[Maj91] applied
to the monoidal category C =MG of G-graded vector spaces. This is then identified with
the category D(G)M of D(G)-modules for the explicit algebraic treatment. The Kitaev
model generalises to replace G by a finite-dimensional semisimple Hopf algebra, as well
as aspects that work of a general finite-dimensional Hopf algebra. We refer to [CM22] for
details of the relevant algebraic aspects of this theory, which applies in the bulk of the
Kitaev model.

In the present sequel, we extend from the bulk theory to a detailed study of a certain
quasi-Hopf algebra Ξ(R,K) that similarly governs the quasiparticle states on a boundary
as its representations, as in [CCW16]. In physical terms, a gapped boundary of a Kitaev
model preserves a finite energy gap between the vacuum and the lowest excited state(s),
which is independent of system size. There are two equivalent views of gapped boundaries,
as summarised in [JKT22, Sec 3.2]. The first is using a Lagrangian algebra L in D(G)M
and then constructing functors D(G)M→ LM to describe anyon condensation, with LM
defining the boundary phase. One can also use Frobenius algebras and take idempotent
completion of a relevant quotient category to acquire the boundary [CCW16]. In the second
view, which is the one we take, boundary conditions are defined by module categories of the
fusion category C. By definition, a (right) C-module means[Ost03B, KK12] a category V
equipped with a bifunctor V × C → V obeying coherence equations which are a polarised
version of the properties of ⊗ : C × C → C (in the same way that a right module of
an algebra obeys a polarised version of the axioms for the product). For our purposes,
we care about indecomposable module categories, that is module categories which are
not equivalent to a direct sum of other module categories. Excitations on the boundary
with condition V are then given by functors F ∈ EndC(V) that commute with the C
action[KK12], beyond the vacuum state which is the identity functor idV . More than just
the boundary conditions above, we care about these excitations, and so EndC(V) is the
category of interest. Finally, for the Kitaev model, indecomposable module categories
for C = MG are classified by subgroups K ⊆ G and cocycles α ∈ H2(K,C×) [Ost03A].
We will stick to the trivial α case here and just work with V = KMG, the G-graded



160 Chapter 6. Algebraic aspects of boundaries in quantum double models

K-modules where x ∈ K itself has grade |x| = x ∈ G. Then the excitations are governed
by objects of EndC(V) ' KMG

K , the category of G-graded bimodules over K. This is a
nontrivially monoidal category and by Tannaka-Krein arguments[Maj92] one can expect
a quasi-Hopf algebra Ξ(R,K) such that KMG

K ' Ξ(R,K)M, the modules of Ξ(R,K). Here
R is a choice of transversal for K ⊆ G so that every element of G factorises uniquely as
RK.

This categorical derivation of Ξ(R,K) is deferred to Section 6.5, while the quasi-Hopf
algebra Ξ(R,K) itself and its concrete application to gapped boundaries is the main focus
of the Chapter. The algebraic model provides a critical bridge between explicit on the
nose formulae that would be needed in any concrete implementation and the abstract
categorical picture, which is more qualitative being only defined up to isomorphisms, for
example up to equivalence of categories. After recapping the algebraic model for the
bulk in Section 6.1 as a warm up, we study the algebra Ξ(R,K) and its physical role
for boundary lattice models in Section 6.2. We provide in detail the construction of
its irreducible representations, their associated projections and (Proposition 6.2.8) the
induction-restriction multiplicities due to an algebra inclusion i : Ξ(R,K) ↪→ D(G). The
latter amounts to formulae for the decomposition of bulk quasiparticles into quasiparticles
on the boundary, in our case directly from the algebra and not relying on the abstract
categorical arguments of [Sch16]. We also demonstrate that these formulae hold explicitly
on the lattice. While much of this has been studied previously [BSW11, BM-D08, CCW16],
we give detailed proofs of results which have not been formally proven before to the best
of our knowledge. We also correct several inaccuracies found in the literature, including
in statements given without proof.

On the applications side, Section 6.3 develops the theory of lattice surgery for the
Kitaev model, which to our knowledge is the first description of quantum code surgery
which goes beyond stabiliser codes [HFDM12]. We give the maps on logical data and
find that they are precisely the morphisms of the Hopf algebras CG and C(G) on the
same space. Interestingly, this leaves open the possibility that there could be a method
of universal computation with Kitaev models which does not require anyons and can be
performed wholly on the vacuum space, unlike the methods of e.g. [Moc04, Moc03] which
use excited states. We leave the problem of determining lattice surgery’s computational
power to future work.

Section 6.4 then covers the further structure of Ξ(R,K) as a quasi-Hopf algebra, in
much more detail than we have found elsewhere and with proofs. The coproduct here is
well-known, for example it can be found in an equivalent form in [KM10A, Nat05], but
we include its proof for completeness in our conventions and without certain restrictions
previously assumed on R. The ‘standard’ antipode in Theorem 6.4.8 appears to be less
well-known but is identical (up to conventions) to the antipode of Ξ(R,K) as a Hopf
quasigroup in [KM10A], and appears under slightly more assumptions in [Nat05]. The
interaction between the coproduct and the standard antipode, in Proposition 6.4.9, is
particularly new and follows from the ∗-quasi-Hopf algebra structure in Appendix 24.
The antipode of a quasi-Hopf algebra[Dri87] is not unique but the standard one comes
closest to familiar formulae for ordinary Hopf algebras, up to certain conjugations. In
physical terms, the coproduct and antipode define the tensor product and dualisation
of representations, which in our case are the boundary quasiparticles. We also give an
extended series of examples, including one related to the octonions.

In Section 6.5, we give the promised categorical equivalence KMG
K ' Ξ(R,K)M concretely,

deriving the quasi-bialgebra structure of Ξ(R,K) precisely such that this works. Since



6.1. Preliminaries: recap of the Kitaev model in the bulk 161

the left hand side is independent of R, it should be that changing R changes Ξ(R,K) by
a Drinfeld cochain twist and we find this cochain, as a main result of the section. This
is important as Drinfeld twists do not change the category of modules up to equivalence,
so many aspects of the physics do not depend on R. Twisting arguments then imply that
we have an antipode more generally for any R. We also look at V = KMG as a module
category for C = MG. It can be shown further that Z(ΞM) ' Z(MG) ' D(G)M as
braided monoidal categories [Kon14], known as the bulk-boundary correspondence. At
our algebraic level this means that D(Ξ) is Drinfeld cochain twist equivalent to D(G),
using the double of a quasi-Hopf algebra[Maj98]. The algebra inclusion i : Ξ ↪→ D(G) is
a part of this, but the full isomorphism here is beyond our scope, albeit given explicitly
in [BGM96] in the case where R ⊆ G is a subgroup and hence Ξ(R,K) an ordinary
bicrossproduct Hopf algebra.

Section 6.6 provides some concluding remarks, including about generalisations of the
boundary theory to models based on other Hopf algebras [BMCA13, JKT22].

6.1 Preliminaries: recap of the Kitaev model in the
bulk

We begin with the model in the bulk. This is largely a recap of Chapter 4 and eg.
[Kit03, CM22].

6.1.1 Quantum double
Let G be a finite group with identity e, then CG is the group Hopf algebra with basis G.
Multiplication is extended linearly, and CG has comultiplication ∆h = h⊗ h and counit
εh = 1 on basis elements h ∈ G. The antipode is given by Sh = h−1. CG is a Hopf
∗-algebra with h∗ = h−1 extended antilinearly. Its dual Hopf algebra C(G) of functions on
G has basis of δ-functions {δg} with ∆δg =

∑
h δh⊗ δh−1g, εδg = δg,e and Sδg = δg−1 for

the Hopf algebra structure, and δ∗g = δg for all g ∈ G. The normalised integral elements
in CG and C(G) are

ΛCG = 1
|G|

∑
h∈G

h ∈ CG, ΛC(G) = δe ∈ C(G).

The integrals on CG and C(G) are∫
h = δh,e,

∫
δg = 1

normalised so that
∫

1 = 1 for CG and
∫

1 = |G| for C(G).
For the Drinfeld double we have D(G) = C(G)>/CG as in [Maj95], with CG and C(G)

sub-Hopf algebras and the cross relations hδg = δhgh−1h (a semidirect product). The Hopf
algebra antipode is S(δgh) = δh−1g−1hh

−1, and over C we have a Hopf ∗-algebra with
(δgh)∗ = δh−1ghh

−1. There is also a quasitriangular structure which in subalgebra notation
is

R =
∑
h∈G

δh⊗h ∈ D(G)⊗D(G). (6.1)

If we want to be totally explicit we can build D(G) on either the vector space C(G)⊗CG
or on the vector space CG⊗C(G). In fact the latter is more natural but we follow the



162 Chapter 6. Algebraic aspects of boundaries in quantum double models

conventions in [Maj95, CM22] and use the former. Then one can say the above more
explicitly as

(δg⊗h)(δf ⊗ k) = δgδhfh−1 ⊗hk = δg,hfh−1δg⊗hk, S(δg⊗h) = δh−1g−1h⊗h−1

etc. for the operations on the underlying vector space.
As a semidirect product, irreducible representations of D(G) are given by standard

theory as labelled by pairs (C, π) consisting of an orbit under the action (i.e. by a conjugacy
class C ⊂ G in this case) and an irrep π of the isotropy subgroup, in our case

Gc0 = {n ∈ G | nc0n
−1 = c0}

of a fixed element c0 ∈ C, i.e. the centraliser CG(c0). The choice of c0 does not change the
isotropy group up to isomorphism but does change how it sits inside G. We also fix data
qc ∈ G for each c ∈ C such that c = qcc0q

−1
c with qc0 = e and define from this a cocycle

ζc(h) = q−1
hch−1hqc as a map ζ : C ×G→ Gc0 . The associated irreducible representation is

then

WC,π = CC ⊗Wπ, δg.(c⊗w) = δg,cc⊗w, h.(c⊗w) = hch−1⊗ ζc(h).w

for all w ∈ Wπ, the carrier space of π. This constructs all irreps of D(G) and, over C, these
are unitary in a Hopf ∗-algebra sense if π is unitary. Moreover, D(G) is semisimple and
hence has a block decomposition D(G)∼=⊕C,π End(WC,π) given by a complete orthogonal
set of self-adjoint central idempotents

P(C,π) = dim(Wπ)
|Gc0|

∑
c∈C

∑
n∈Gc0

Trπ(n−1)δc⊗ qcnq−1
c . (6.2)

We refer to [CM22] for more details and proofs. Acting on a state, this will become a
projection operator that determines if a quasiparticle of type C, π is present. Chargeons
are quasiparticles with C = {e} and π an irrep of G, and fluxions are quasiparticles with
C a conjugacy class and π = 1, the trivial representation.

6.1.2 Bulk lattice model
Having established the prerequisite algebra, we move on to the lattice model itself. This
first part is largely a recap of [Kit03, CM22] and we use the notations of the latter. Let
Σ = Σ(V,E, P ) be a square lattice viewed as a directed graph with its usual (cartesian)
orientation, vertices V , directed edges E and faces P . The Hilbert space H will be a
tensor product of vector spaces with one copy of CG at each arrow in E. We have group
elements for the basis of each copy. Next, to each adjacent pair of vertex v and face p we
associate a site s = (v, p), or equivalently a line (the ‘cilium’) from p to v. We then define
an action of CG and C(G) at each site by

h ▹ ∙v
g1 ∙= a ▹ p =

∙
∙∙

∙ ∙
∙∙

g2

g3
g4

g1h− 1
hg4

hg3

g2h− 1

g1

g2

g3

g4v∙
a(g1g2(g3)− 1(g4)− 1) g1

g2

g3

g4

h ▹ ∙v
| i⟩

| j⟩
|k⟩

| l⟩
∙

| j + 1⟩

|k + 1⟩
| l − 1⟩

| i − 1⟩= g ▹
∙

p| i⟩

| j⟩

|k⟩
| l⟩

=∙
∙∙

∙| i⟩

| j⟩

|k⟩

| l⟩ ∙
∙∙

qi+ j− k− l

Here h ∈ CG, a ∈ C(G) and g1, · · · , g4 denote independent elements of G (not powers).
Observe that the vertex action is invariant under the location of p relative to its adjacent
v, so the red dashed line has been omitted.



6.1. Preliminaries: recap of the Kitaev model in the bulk 163

Lemma 6.1.1. [Kit03, CM22] h. and a. for all h ∈ G and a ∈ C(G) define a represen-
tation of D(G) on H associated to each site (v, p).

We next define

A(v) := ΛCG. = 1
|G|

∑
h∈G

h., B(p) := ΛC(G). = δe.

where δe(g1g2g3g4) = 1 iff g1g2g3g4 = e, which is iff (g4)−1 = g1g2g3, which is iff g4g1g2g3 =
e. Hence δe(g1g2g3g4) = δe(g4g1g2g3) is invariant under cyclic rotations, hence ΛC(G).
computed at site (v, p) does not depend on the location of v on the boundary of p.
Moreover,

A(v)B(p) = |G|−1
∑
h

hδe. = |G|−1
∑
h

δheh−1h. = |G|−1
∑
h

δeh. = B(p)A(v)

if v is a vertex on the boundary of p by Lemma 6.1.1, and more trivially if not. We also
have the rest of

A(v)2 = A(v), B(p)2 = B(p), [A(v), A(v′)] = [B(p), B(p′)] = [A(v), B(p)] = 0

for all v 6= v′ and p 6= p′, as easily checked. We then define the Hamiltonian

H =
∑
v

(1− A(v)) +
∑
p

(1−B(p))

and the space of vacuum states

Hvac = {|ψ〉 ∈ H | A(v)|ψ〉 = B(p)|ψ〉 = |ψ〉, ∀v, p}.

Quasiparticles in Kitaev models are labelled by representations of D(G) occupying a
given site (v, p), which take the system out of the vacuum. Detection of a quasiparticle
is via a projective measurement of the operator

∑
C,π pC,πPC,π acting at each site on the

lattice for distinct coefficients pC,π ∈ R. By definition, this is a process which yields the
classical value pC,π with a probability given by the likelihood of the state prior to the
measurement being in the subspace in the image of PC,π, and in so doing performs the
corresponding action of the projector PC,π at the site. The projector Pe,1 corresponds to
the vacuum quasiparticle.

In computing terms, this system of measurements encodes a logical Hilbert subspace,
which we will always take to be the vacuum space Hvac, within the larger physical Hilbert
space given by the lattice; this subspace is dependent on the topology of the surface
that the lattice is embedded in, but not the size of the lattice. For example, there is a
convenient closed-form expression for the dimension of Hvac when Σ occupies a closed,
orientable surface [CDH20]. Computation can then be performed on states in the logical
subspace in a fault-tolerant manner, with unwanted excitations constituting detectable
errors.

In the interest of brevity, we forgo a detailed exposition of such measurements, ribbon
operators and fault-tolerant quantum computation on the lattice. The interested reader
can learn about these in e.g. [Kit03, BM-D08, CCW16, CM22]. We do give a brief recap
of ribbon operators, although without much rigour, as these will be useful later.



164 Chapter 6. Algebraic aspects of boundaries in quantum double models

Figure 6.1: Example of a ribbon operator for a ribbon ξ from s0 = (v0, p0) to s1 = (v1, p1).

Definition 6.1.2. A ribbon ξ is a strip of face width that connects two sites s0 = (v0, p0)
and s1 = (v1, p1) on the lattice. A ribbon operator F h,g

ξ acts on the vector spaces associated
to the edges along the path of the ribbon, as shown in Fig 6.1. We call this basis of ribbon
operators labelled by h and g the group basis.

Lemma 6.1.3. If ξ′ is a ribbon concatenated with ξ, then the associated ribbon operators
in the group basis satisfy

F h,g
ξ′◦ξ =

∑
f∈G

F f−1hf,f−1g
ξ′ ◦ F h,f

ξ , F h,g
ξ ◦ F h′,g′

ξ = δg,g′F
hh′,g
ξ .

The first identity shows the role of the comultiplication of D(G)∗,

∆(hδg) =
∑
f∈G

hδf ⊗ f−1hfδf−1g.

using subalgebra notation, while the second identity implies that

(F h,g
ξ )† = F h−1,g

ξ .

Lemma 6.1.4. [Kit03] Let ξ be a ribbon with the orientation as shown in Figure 6.1
between sites s0 = (v0, p0) and s1 = (v1, p1). Then

[F h,g
ξ , f.v] = 0, [F h,g

ξ , δe.p] = 0,

for all v /∈ {v0, v1} and p /∈ {p0, p1}.

f.s0 ◦ F
h,g
ξ = F fhf−1,fg

ξ ◦ f.s0 , δf.s0 ◦ F
h,g
ξ = F h,g

ξ ◦ δh−1f.s0 ,

f.s1 ◦ F
h,g
ξ = F h,gf−1

ξ ◦ f.s1 , δf.s1 ◦ F
h,g
ξ = F h,g

ξ ◦ δfg−1hg.s1

for all ribbons where s0, s1 are disjoint, i.e. when s0 and s1 share neither vertices or faces.
The subscript notation f.v means the local action of f ∈ CG at vertex v, and the dual
for δf.s at a site s.

We call the above lemma the equivariance property of ribbon operators. Such ribbon
operators may be deformed according to a sort of discrete isotopy, so long as the endpoints
remain the same. We formalised ribbon operators as left and right module maps in [CM22],
but skim over any further details here. The physical interpretation of ribbon operators is
that they create, move and annihilate quasiparticles.



6.1. Preliminaries: recap of the Kitaev model in the bulk 165

Lemma 6.1.5. [Kit03] Let s0, s1 be two sites on the lattice. The only operators in End(H)
which change the states at these sites, and therefore create quasiparticles and change the
distribution of measurement outcomes, but leave the state in vacuum elsewhere, are ribbon
operators.

This lemma is somewhat hard to prove rigorously but a proof was sketched in [CM22].
Next, there is an alternate basis for these ribbon operators in which the physical interpre-
tation becomes more obvious. The quasiparticle basis has elements

F
′C,π;u,v
ξ =

∑
n∈Gc0

π(n−1)jiF
c,qcnq

−1
d

ξ , (6.3)

where C is a conjugacy class, π is an irrep of the associated isotropy subgroup Gc0 and
u = (c, i), v = (d, j) label basis elements of WC,π in which c, d ∈ C and i, j label a basis
of Wπ. This amounts to a nonabelian Fourier transform of the space of ribbons (that is,
the Peter-Weyl isomorphism of D(G)) and has inverse

F h,g
ξ =

∑
C,π∈Ĝc0

∑
c∈C

δh,gcg−1

dim(Wπ)∑
i,j=0

π(q−1
gcg−1gqc)ijF

′C,π;a,b
ξ , (6.4)

where a = (gcg−1, i) and b = (c, j). This reduces in the chargeon sector to the special
cases

F
′e,π;i,j
ξ =

∑
n∈G

π(n−1)jiF e,n
ξ (6.5)

and

F e,g
ξ =

∑
π∈Ĝ

dim(Wπ)∑
i,j=0

π(g)ijF
′e,π;i,j
ξ (6.6)

Meanwhile, in the fluxion sector we have

F
′C,1;c,d
ξ =

∑
n∈Gc0

F
c,qcnq

−1
d

ξ (6.7)

but there is no inverse in the fluxion sector. This is because the chargeon sector corre-
sponds to the irreps of CG, itself a semisimple algebra; the fluxion sector has no such
correspondence.

If G is Abelian then π are 1-dimensional and we do not have to worry about the indices
for the basis of Wπ; this then looks like a more usual Fourier transform.
Lemma 6.1.6. If ξ′ is a ribbon concatenated with ξ, then the associated ribbon operators
in the quasiparticle basis satisfy

F
′C,π;u,v
ξ′◦ξ =

∑
w

F
′C,π;w,v
ξ′ ◦ F

′C,π;u,w
ξ

and are such that the nonabelian Fourier transform takes convolution to multiplication
and vice versa, as it does in the abelian case.

In particular, we have the ribbon trace operators, WC,πξ :=
∑

u F
′C,π;u,u
ξ . Such ribbon

trace operators create exactly quasiparticles of the type C, π from the vacuum, meaning
that

P(C,π).s0W
C,π
ξ |vac〉 = WC,πξ |vac〉 = WC,πξ |vac〉/s1P(C,π).

We refer to [CM22] for more details and proofs of the above.



166 Chapter 6. Algebraic aspects of boundaries in quantum double models

Example 6.1.7. Our go-to example for our expositions will be G = S3 generated by
transpositions u = (12), v = (23) with w = (13) = uvu = vuv. There are then 8 irreducible
representations of D(S3) according to the choices C0 = {e}, C1 = {u, v, w}, C2 = {uv, vu}
for which we pick representatives c0 = e, qe = e, c1 = u, qu = e, qv = w, qw = v and
c2 = uv with quv = e, qvu = v (with the ci in the role of c0 in the general theory). Here
Gc0 = S3 with 3 representations π = trivial, sign and W2 the 2-dimensional one given
by (say) π(u) = σ3, π(v) = (

√
3σ1 − σ3)/2, Gc1 = {e, u} = Z2 with π(u) = ±1 and

Gc2 = {e, uv, vu} = Z3 with π(uv) = 1, ω, ω2 for ω = e
2πı

3 . See [CM22] for details and
calculations of the associated projectors and some WC,πξ operators.

6.2 Gapped boundaries
While D(G) is the relevant algebra for the bulk of the model, our focus is on the boundaries.
For these, we require a different class of algebras.

6.2.1 The boundary subalgebra Ξ(R,K)
Let K ⊆ G be a subgroup of a finite group G and G/K = {gK | g ∈ G} be the set of
left cosets. It is not necessary in this section, but convenient, to fix a representative r for
each coset and let R ⊆ G be the set of these, so there is a bijection between R and G/K
whereby r ↔ rK. We assume that e ∈ R and call such a subset (or section of the map
G → G/K) a transversal. Every element of G factorises uniquely as rx for r ∈ R and
x ∈ K, giving a coordinatisation of G which we will use. Next, as we quotiented by K
from the right, we still have an action of K from the left on G/K, which we denote ..
By the above bijection, this equivalently means an action . : K ×R→ R on R which in
terms of the factorisation is determined by xry = (x.r)y′, where we refactorise xry in the
form RK for some y′ ∈ K. There is much more information in this factorisation, as will
see in Section 6.4, but this action is all we need for now. Also note that we have chosen
to work with left cosets so as to be consistent with the literature [CCW16, BSW11], but
one could equally choose a right coset factorisation to build a class of algebras similar to
those in [KM10A]. We consider the algebra C(G/K)>/CK as the cross product by the
above action. Using our coordinatisation, this becomes the following algebra.

Definition 6.2.1. Ξ(R,K) = C(R)>/CK is generated by C(R) and CK with cross
relations xδr = δx.rx. Over C, this is a ∗-algebra with (δrx)∗ = x−1δr = δx−1.rx

−1.

If we choose a different transversal R then the algebra does not change up to an isomor-
phism which maps the δ-functions between the corresponding choices of representative.
Of relevance to the applications, we also have:

Lemma 6.2.2. Ξ(R,K) has the ‘integral element’

Λ := ΛC(R) ⊗ ΛCK = δe
1
|K|

∑
x∈K

x

characterised by ξΛ = ε(ξ)Λ = Λξ for all ξ ∈ Ξ, and ε(Λ) = 1, where ε(δs⊗x) = δs,e is
the counit.



6.2. Gapped boundaries 167

Proof. Let ξ = δsy w.l.o.g. We check that

ξΛ = (δsy)(δe
1
|K|

∑
x∈K

x) = δs,y.eδs
1
|K|

∑
x∈K

yx = δs,eδe
1
|K|

∑
x∈K

x

= ε(ξ)Λ = 1
|K|

∑
x∈K

δe,x.yδexy = 1
|K|

∑
x∈K

δe,yδex = Λξ.

And clearly, ε(Λ) = δe,e
|K|
|K| = 1. �

As a cross product algebra, we can take the same approach as with D(G) to the
classification of its irreps:
Lemma 6.2.3. Irreps of Ξ(R,K) are classified by pairs (O, ρ) where O ⊆ R is an orbit
under the action . and ρ is an irrep of the isotropy group Kr0 := {x ∈ K | x.r0 = r0}.
Here we fix a base point r0 ∈ O as well as κ : O → K a choice of lift such that

κr.r0 = r, ∀r ∈ O, κr0 = e.

Then
VO,ρ = CO⊗Vρ, δr(s⊗ v) = δr,ss⊗ v, x.(s⊗ v) = x.s⊗ ζs(x).v

for v ∈ Vρ, the carrier space for ρ, and

ζ : O ×K → Kr0 , ζr(x) = κ−1
x.rxκr.

Proof. One can check that ζr(x) lives in Kr0 ,

ζr(x).r0 = (κ−1
x.rxκr).r0 = κ−1

x.r.(x.r) = κ−1
x.r.(κx.r.r0) = r0

and the cocycle property

ζr(xy) = κ−1
x.y.rxκy.rκ

−1
y.ryκr = ζy.r(x)ζr(y),

from which it is easy to see that VO,ρ is a representation,

x.(y.(s⊗ v)) = x.(y.s⊗ ζs(y).v) = x.(y.s)⊗ ζy.s(x)ζs(y).v = xy.s⊗ ζs(xy).v = (xy).(s⊗ v),

x.(δr.(s⊗ v)) = δr,sx.s⊗ ζs(x).v = δx.r,x.sx.s⊗ ζs(x).v = δx.r.(x.(s⊗ v)).
That VO,π is irreducible is by similar arguments to the construction of irreps of semidi-

rect products groups (such as the Poincaré group), but we provide a short proof directly for
our case. Indeed, suppose that W ⊆ VO,ρ is a non-zero subrepresentation under Ξ(R,K).
Then W has the form W = ⊕

s∈Os⊗Ws for some subspaces Ws ⊆ Vρ and we show that
Ws = Vρ for all s so that W = VO,ρ. Let 0 6= w =

∑
t∈O t⊗ vt ∈ W with at least one

component say vt 6= 0 for some t. Let t = y−1.s for some y ∈ K, since O is a single orbit,
then yδt.w = y.(t⊗ vt) = s⊗ ζt(y).vt = s⊗ v ∈ W since W is closed under the action
of Ξ(R,K), for some element v = ζt(y).vt ∈ Ws which is nonzero since ζt(y) ∈ Kr0 is a
group element (so its action on vt is invertible). Now consider the set

κsCKr0κ−1
s .(s⊗ v) = s⊗CKr0 .v ⊆ s⊗Ws ⊆ s⊗Vρ

since κsxκ−1
s .s = κsx.r0 = κs.r0 = s for all x ∈ Kr0 and W is closed under the action of

Ξ(R,K). Here, κs( )κ−1
s is a bijection between Kr0 and the isotropy group Ks at s. Now

CKr0 .v ⊆ Vρ is a nonzero representation of Kr0 since we can act further from the left by
Kr0 , and hence equal to Vρ as the latter is irreducible. It follows that Ws = Vρ also since
this was in between the two spaces. One can further show that the stated construction
does not depend up to isomorphism on the choice of r0 or κr. �



168 Chapter 6. Algebraic aspects of boundaries in quantum double models

In the ∗-algebra case as here, we obtain a unitary representation if ρ is unitary. One
can also show that all irreps can be obtained this way. In fact the algebra Ξ(R,K) is
semisimple and has a block associated to the VO,π.

Lemma 6.2.4. Ξ(R,K) has a complete orthogonal set of central idempotents

P(O,ρ) = dim Vρ
|Kr0|

∑
r∈O

∑
n∈Kr0

Trρ(n−1)δr⊗κrnκ−1
r .

Proof. The proofs are similar to those for D(G) in [CM22]. That we have a projection is

P 2
(O,ρ) = dim(Vρ)2

|Kr0|2
∑

m,n∈Kr0

Trρ(m−1) Trρ(n−1)
∑
r,s∈O

(δr⊗κrmκ−1
r )(δs⊗κsnκ−1

s )

= dim(Vρ)2

|Kr0|2
∑

m,n∈Kr0

Trρ(m−1) Trρ(n−1)
∑
r,s∈O

δrδr,s⊗κrmκ−1
r κsnκ

−1
s

= dim(Vρ)2

|Kr0|2
∑

m,m′∈Kr0

Trρ(m−1) Trρ(mm′−1)
∑
r∈O

δr⊗κrm′κ−1
r = P(O,ρ)

where we used r = κrmκ
−1
r .s iff s = κrm

−1κ−1
r .r = κrm

−1.r0 = κr.r0 = r. We then
changed mn = m′ as a new variable and used the orthogonality formula for characters on
Kr0 . Similarly, for different projectors to be orthogonal. The sum of projectors is 1 since

∑
O,ρ

P(O,ρ) =
∑
O,r∈C

δr⊗κr
∑
ρ∈K̂r0

(
dim Vρ
|Kr0 |

∑
n∈Kr0

Trρ(n−1)n
)
κ−1
r =

∑
O,r∈O

δr⊗ 1 = 1,

where the bracketed expression is the projector Pρ for ρ in the group algebra of Kr0 , and
these sum to 1 by the Peter-Weyl decomposition of the latter. �

Remark 6.2.5. In the previous literature, the irreps have been described using double
cosets and representatives thereof [CCW16]. In fact a double coset in KGK is an orbit
for the left action of K on G/K and hence has the form OK corresponding to an orbit
O ⊂ R in our approach. We will say more about this later, in Proposition 6.5.3.

An important question for the physics is how representations on the bulk relate to those
on the boundary. This is afforded by functors in the two directions. Here we give a direct
approach to this issue as follows.

Proposition 6.2.6. There is an inclusion of algebras i : Ξ(R,K) ↪→ D(G)

i(x) = x, i(δr) =
∑
x∈K

δrx.

The pull-back or restriction of a D(G)-module W to a Ξ-module i∗(W ) is simply for
ξ ∈ Ξ to act by i(ξ). Going the other way, the induction functor sends a Ξ-module V to
a D(G)-module D(G)⊗Ξ V , where ξ ∈ Ξ right acts on D(G) by right multiplication by
i(ξ). These two functors are adjoint.



6.2. Gapped boundaries 169

Proof. We just need to check that i respects the relations of Ξ. Thus,

i(δr)i(δs) =
∑
x,y∈K

δrxδsy =
∑
x∈K

δr,sδrx = i(δrδs),

i(x)i(δr) =
∑
y∈K

xδry =
∑
y∈K

δxryx−1x =
∑
y∈K

δ(x.r)x′yx−1x =
∑
y′∈K

δ(x.r)y′x = i(δx.rx),

as required. For the first line, we used the unique factorisation G = RK to break down
the δ-functions. For the second line, we use this in the form xr = (x.r)x′ for some x′ ∈ K
and then changed variables from y to y′ = x′yx−1. The rest follows as for any algebra
inclusion. �

In fact, Ξ is a quasi-bialgebra and at least when ( )R is bijective a quasi-Hopf algebra,
as we see in Section 6.4. In the latter case, it has a quantum double D(Ξ) which contains
Ξ as a sub-quasi Hopf algebra. Moreover, it can be shown that D(Ξ) is a ‘Drinfeld cochain
twist’ of D(G), which implies it has the same algebra as D(G). This is the algebraic level
of the bulk-boundary correspondence [Kon14]. We do not need the full isomorphism here,
which is beyond our scope since the double of a quasi-Hopf algebra[Maj98] is itself quite
complicated to describe explicitly, but this is the abstract reason for the above inclusion.
(An explicit proof of this twisting result in the usual Hopf algebra case with R a group is
in [BGM96].) Meanwhile, the statement that the two functors in the lemma are adjoint
is that

homD(G)(D(G)⊗
Ξ
V,W )) = homΞ(V, i∗(W ))

for all Ξ-modules V and all D(G)-modules W . These functors do not take irreps to irreps
and of particular interest are the multiplicities for the decompositions back into irreps,
i.e. if Vi,Wa are respective irreps and D(G)⊗Ξ Vi = ⊕aniaWa then

dim(homD(G)(D(G)⊗
Ξ
Vi,Wa)) = dim(homΞ(Vi, i∗(Wa)))

and hence i∗(Wa) = ⊕iniaVi. It remains to give a formula for these multiplicities; here we
were not able to reproduce the formulae of [CCW16, Thm 2.12][CCW17, Thm 2.12] which
were stated without proof and referenced back to [Sch16]. Instead, our approach goes via
a general lemma. First, recall that a linear map

∫
: B → C is Frobenius if the bilinear

form (b, c) :=
∫
bc is nondegenerate, and is symmetric if this bilinear form is symmetric.

Also, let g = g1⊗ g2 ∈ B⊗B (in a notation with the sum of such terms understood) be
the associated ‘metric’ such that (

∫
bg1)g2 = b = g1 ∫ g2b for all b (it is the inverse matrix

in a basis of the algebra). We say that the Frobenius form is special if the algebra product
· obeys ·(g) = 1. It is well-known that there is a unique symmetric special Frobenius form
up to scale, given by the trace in the left regular representation, see [MR21] for a recent
study.
Lemma 6.2.7. Let i : A ↪→ B be an inclusion of finite-dimensional semisimple algebras
and

∫
the unique symmetric special Frobenius linear form on B such that

∫
1 = 1. Let Vi

be an irrep of A and Wa an irrep of B. Then the multiplicity Vi in the pull-back i∗(Wa)
(which is the same as the multiplicity of Wa in B⊗A Vi) is given by

nia = dim(B)
dim(Vi) dim(Wa)

∫
i(Pi)Pa,

where Pi ∈ A and Pa ∈ B are the associated central idempotents. Moreover, i(Pi)Pa = 0
if and only if nia = 0.



170 Chapter 6. Algebraic aspects of boundaries in quantum double models

Proof. In our case, over C, we know that a finite-dimensional semisimple algebra B is a
direct sum of matrix algebras End(Wa) associated to the irreps Wa of B. Then∫

i(Pi)Pa = 1
dim(B)

∑
α,β

〈fα⊗ eβ, i(Pi)Pa(eα⊗ fβ)〉

= 1
dim(B)

∑
α

dim(Wa)〈fα, i(Pi)eα〉 = dim(Wa) dim(Vi)
dim(B) nia.

where {eα} is a basis ofWa and {fβ} is a dual basis, and Pa acts as the identity on End(Wa)
and zero on the other blocks. We then used that if i∗(Wa) = ⊕iniaVi as A-modules, then
i(Pi) just picks out the Vi components where Pi acts as the identity.

For the last part, the forward direction is immediate given the first part of the lemma.
For the other direction, suppose nia = 0 so that i∗(Wa) = ⊕jnjaVj with j 6= a running
over the other irreps of A. Now, we can view Pa ∈ Wa⊗W ∗

a (as the identity element)
and left multiplication by i(Pi) is the same as Pi acting on Pa viewed as an element of
i∗(Wa)⊗W ∗

a , which is therefore zero. �

We apply Lemma 6.2.7 in our case of A = Ξ and B = D(G), where

dim(Vi) = |O| dim(Vρ), dim(Wa) = |C| dim(Wπ)

with i = (C, ρ) as described above and a = (C, π) as described in Section 6.1.
Proposition 6.2.8. For the inclusion i : Ξ ↪→ D(G) in Proposition 6.2.6, the multiplicities
for restriction and induction as above are given by

n
(O,ρ)
(C,π)

= |G|
|O||C||Kr0 ||Gc0|

∑
r∈O,c∈C
r−1c∈K

|Kr,c|
∑
τ∈ ˆKr,c

nτ,ρ̃|Kr,cnτ,π̃|Kr,c , Kr,c = Kr ∩Gc,

where π̃(m) = π(q−1
c mqc) and ρ̃(m) = ρ(κ−1

r mκr) are the corresponding representation of
Kr, Gc decomposing as Kr,c representations as

ρ̃|Kr,c
∼=⊕τ nτ,ρ̃|Kr,cτ, π̃|Kr,c

∼=⊕τ nτ,π̃|Kr,cτ.

Proof. We include the projector from Lemma 6.2.4 as

i(P(O,ρ)) = dim(Vρ)
|Kr0|

∑
r∈O,x∈K

∑
m∈Kr0

Trρ(m−1)δrx⊗κrmκ−1
r

and multiply this by P(C,π) from (6.2). In the latter, we write c = sy for the factorisation
of c. Then when we multiply these out, for (δrx⊗κrmκ−1

r )(δc⊗ qcnq−1
c ) we will need

κrmκ
−1
r .s = r or equivalently s = κrm

−1κ−1
r .r = r so we are actually summing not over

c but over y ∈ K such that ry ∈ C. Also then x is uniquely determined in terms of y.
Hence

i(P(O,ρ))P(C,π) = dim(Vρ)dim(Wπ)
|Kr0||Gc0 |

∑
m∈Kr0 ,n∈Gc0

∑
r∈O,y∈K|ry∈C

Trρ(m−1) Trπ(n−1)δrx⊗κrmκ−1
r qcnq

−1
c .

Now we apply the integral of D(G),
∫
δg⊗h = δh,e which requires

n = q−1
c κrm

−1κ−1
r qc



6.2. Gapped boundaries 171

and x = y for n ∈ Gc0 given that c = ry. We refer to this condition on y as (?).
Remembering that

∫
is normalised so that

∫
1 = |G|, we have from the lemma

n
(O,ρ)
(C,π)

= |G|
dim(Vi) dim(Wa)

∫
i(P(O,ρ))P(C,π)

= |G|
|O||C||Kr0||Gc0|

∑
m∈Kr0

∑
r∈O,y∈K

(∗),ry∈C

Trρ(m−1) Trπ(q−1
ry κrmκ

−1
r qry)

= |G|
|O||C||Kr0||Gc0|

∑
m∈Kr0

∑
r∈O,c∈C
r−1c∈K

∑
m′∈Kr∩Gc

Trρ(κ−1
r m′−1κr) Trπ(q−1

c mqc),

where we compute in G and view (?) as m′ := κrmκ
−1
r ∈ Gc. We then use the group

orthogonality formula ∑
m∈Kr,c

Trτ (m−1) Trτ ′(m) = δτ,τ ′ |Kr,c|

for any irreps τ, τ ′ of the group

Kr,c := Kr ∩Gc = {x ∈ K | x.r = r, xcx−1 = c}

to obtain the formula stated. �

This simplifies in four (overlapping) special cases as follows.
(i) Vi trivial:

n
({e},1)
(C,π)

= |G|
|C||K||Gc0 |

∑
c∈C∩K

∑
m∈K∩Gc

Trπ(q−1
c mqc) = |G|

|C||K||Gc0|
∑

c∈C∩K
|Kc|n1,π̃

as ρ = 1 implies ρ̃ = 1 and forces τ = 1. Here Kc is the centraliser of c ∈ K. If n1,π̃ is
independent of the choice of c then we can simplify this further as

n
({e},1)
(C,π)

= |G||(C ∩K)/K|
|C||Gc0|

n1,π|Kc0

using the orbit-counting lemma, where K acts on C ∩K by conjugation.
(ii) Wa trivial:

n
(O,ρ)
({e},1) = |G|

|O||Kr0||G|
∑

r∈O∩K

∑
m∈Kr0

Trρ(m−1) =
{

1 if O, ρ trivial
0 else

as O∩K = {e} ifO = {e} (but is otherwise empty) and in this case only r = e contributes.
This is consistent with the fact that if Wa is the trivial representation of D(G) then its
pull back is also trivial and hence contains only the trivial representation of Ξ.
(iii) Fluxion sector:

n
(O,1)
(C,1)

= |G|
|O||C||Kr0 ||Gc0|

∑
r∈O,c∈C
r−1c∈K

|Kr ∩Gc|.



172 Chapter 6. Algebraic aspects of boundaries in quantum double models

(iv) Chargeon sector:

n
({e},ρ)
({e},π) = nρ,π|K ,

where ρ, π are arbitrary irreps of K,G respectively and only r = c = e are allowed so
Kr,c = K, and then only τ = ρ contributes.

Example 6.2.9. (i) We take G = S3, K = {e, u} = Z2, where u = (12). Here G/K
consists of

G/K = {{e, u}, {w, uv}, {v, vu}}

and our standard choice of R will be R = {e, uv, vu}, where we take one from each coset
(but any other transversal will have the same irreps and their decompositions). This leads
to 3 irreps of Ξ(R,K) as follows. In R, we have two orbits O0 = {e}, O1 = {uv, vu} and
we choose representatives r0 = e, κe = e, r1 = uv, κuv = e, κvu = u since u.(uv) = vu
for the two cases (here r1 was denoted r0 in the general theory and is the choice for O1).
We also have u.(vu) = uv. Note that it happens that these orbits are also conjugacy
classes but this is an accident of S3 and not true for S4. We have Kr0 = K = Z2 with
representations ρ(u) = ±1 and Kr1 = {e} with only the trivial representation.

(ii) For D(S3), we have the 8 irreps in Example 6.1.7 and hence there is a 3× 8 table of
the {nia}. We can easily compute some of the special cases from the above. For example,
the trivial π restricted to K is ρ = 1, the sign representation restricted to K is the
ρ = −1 representation, the W2 restricted to K is 1⊕−1, which gives the upper left 2× 3
submatrix for the chargeon sector. Another 6 entries (four new ones) are given from the
fluxion formula. We also have C2 ∩K = ∅ so that the latter part of the first two rows is
zero by our first special case formula. For C1,±1 in the first row, we have C1 ∩K = {u}
with trivial action of K, so just one orbit. This gives us a nontrivial result in the +1 case
and 0 in the −1 case. The story for C1,±1 in the second row follows the same derivation,
but needs τ = −1 and hence π = −1 for the nonzero case. In the third row with C2, π, we
have Kr = {e} so G′ = {e} and we only have τ = 1 = ρ as well as π̃ = 1 independently of
π as this is 1-dimensional. So both n factors in the formula in Proposition 6.2.8 are 1. In
the sum over r, c, we need c = r so we sum over 2 possibilities, giving a nontrivial result
as shown. For C1, π, the first part goes the same way and we similarly have c determined
from r in the case of C1, π, so again two contributions in the sum, giving the answer shown
independently of π. Finally, for C0, π we have r = {uv, vu} and c = e, and can never meet
the condition r−1c ∈ K. So these all have 0. Thus, Proposition 6.2.8 in this example tells
us:

nia C0, 1 C0, sign C0,W2 C1, 1 C1,−1 C2, 1 C2, ω C2, ω
2

O0, 1 1 0 1 1 0 0 0 0
O0,−1 0 1 1 0 1 0 0 0
O1, 1 0 0 0 1 1 1 1 1

One can check for consistency that for each Wa, dim(Wa) is the sum of the dimensions of
the Vi that it contains, which determines one row from the other two.



6.2. Gapped boundaries 173

6.2.2 Boundary lattice model
Consider a vertex on the lattice Σ. Fixing a subgroup K ⊆ G, we define an action of CK
on H by

(6.8)

One can see that this is an action as it is a tensor product of representations on each edge,
or simply because it is the restriction to K of the vertex action of G in the bulk. Next,
we define the action of C(R) at a face relative to a cilium,

(6.9)

with a clockwise rotation. That this is indeed an action is also easy to check explicitly,
recalling that either rK = r′K when r = r′ or rK ∩ r′K = ∅ otherwise, for any r, r′ ∈ R.
These actions define a representation of Ξ(R,K), which is just the bulk D(G) action
restricted to Ξ(R,K) ⊆ D(G) by the inclusion in Proposition 6.2.6. This says that x ∈ K
acts as in G and C(R) acts on faces by the C(G) action after sending δr 7→

∑
a∈rK δa. To

connect the above representation to the topic at hand, we now define a boundary. We will
consider two different types, rough and smooth boundaries, which were first described in
the D(Z2) case in [BK98].

Smooth boundaries

Consider the lattice in the half-plane for simplicity,

where each solid black arrow still carries a copy of CG and ellipses indicate the lattice
extending infinitely. The boundary runs along the left hand side and we refer to the
rest of the lattice as the ‘bulk’. The grey dashed edges and vertices are there to indicate
empty space and the lattice borders the edge with faces; we will call this case a ‘smooth’
boundary. There is a site s0 indicated at the boundary.

There is an action of CK at the boundary vertex associated to s0, identical to the
action of CK defined above but with the left edge undefined. Similarly, there is an action



174 Chapter 6. Algebraic aspects of boundaries in quantum double models

of C(R) at the face associated to s0. However, this is more complicated, as the face has
three edges undefined and the action must be defined slightly differently from in the bulk:

where the action is given a superscript .b to differentiate it from the actions in the bulk.
In the first case, we follow the same clockwise rotation rule but skip over the undefined
values on the grey edges, but for the second case we go round round anticlockwise. The
resulting rule is then according to whether the cilium is associated to the top or bottom of
the edge. It is easy to check that this defines a representation of Ξ(R,K) on H associated
to each smooth boundary site, such as s0, and that the actions of C(R) have been chosen
such that this holds. A similar principle holds for .b in other orientations of the boundary.

The integral actions at a boundary vertex v and at a face s0 = (v, p) of a smooth
boundary are then

Ab1(v) := ΛCK.
b
v = 1
|K|

∑
k

k.bv, Bb
1(p) := ΛC(R).

b
p = δe.

b
p,

where the superscript b and subscript 1 label that these are at a smooth boundary. We
have the convenient property that

so both the vertex and face integral actions at a smooth face each depend only on the
vertex and face respectively, not the precise cilium, similar to the integral actions.
Remark 6.2.10. There is similarly an action of C(G)>/CK ⊆ D(G) on H at each site
in the next layer into the bulk, where the site has the vertex at the boundary but an
internal face. We mention this for completeness, and because using this fact it is easy to
show that

Ab1(v)B(p) = B(p)Ab1(v),
where B(p) is the usual integral action in the bulk.
Remark 6.2.11. In [BSW11] it is claimed that one can similarly introduce actions at
smooth boundaries defined not only by R and K but also a 2-cocycle α. This makes some
sense categorically, as the module categories of MG may also include such a 2-cocycle,
which enters by way of a twisted group algebra CαK [Ost03A]. However, in Figure 6 of
[BSW11] one can see that when the cocycle α is introduced all edges on the boundary
are assumed to be copies of CK, rather than CG. On closer inspection, it is evident that
this means that the action on faces of δe ∈ C(R) will always yield 1, and the action of
any other basis element of C(R) will yield 0. Similarly, the action on vertices is defined to
still be an action of CK, not CαK. Thus, the excitations on this boundary are restricted
to only the representations of CK, without either C(R) or α appearing, which appears to
defeat the purpose of the definition. It is not obvious to us that a cocycle can be included



6.2. Gapped boundaries 175

along these lines in a consistent manner. There are Hamiltonian models which use ‘tube
algebras’ to include cocycles [BD19], but it is unclear how these could be incorporated
into a system of measurements defining a quantum computer.

In quantum computational terms, in addition to the measurements in the bulk we now
measure the operator

∑
O,ρ pO,ρP(O,ρ).

b for distinct coefficients pO,ρ ∈ R at all sites
along the boundary.

Rough boundaries

We now consider the half-plane lattice with a different kind of boundary,

This time, there is an action of CK at the exterior vertex and an action of C(R) at the
face at the boundary with an edge undefined. Again, the former is just the usual action of
CK with three edges undefined, but the action of C(R) requires more care and is defined
as

All but the second action are just clockwise rotations as in the bulk, but with the greyed-
out edge missing from the δ-function. The second action goes counterclockwise in order to
have an associated representation of Ξ(R,K) at the bottom left. We have similar actions
for other orientations of the lattice.
Remark 6.2.12. Although one can check that one has a representation of Ξ(R,K) at
each site using these actions and the action of CK defined before, this requires g1 and
g2 on opposite sides of the δ-function, and g1 and g3 on opposite sides, respectively for



176 Chapter 6. Algebraic aspects of boundaries in quantum double models

the last two actions. This means that there is no way to get δe.b to always be invariant
under choice of site in the face. It is implicitly claimed in [CCW16, Rem 2.9] that δe.b at
a rough boundary can be defined in a way that depends only on the face, but this is not
the case.

The integral actions at a boundary vertex v and at a site s0 = (v, p) of a rough boundary
are then

Ab2(v) := ΛCK.
b
v = 1
|K|

∑
k

k.bv, Bb
2(v, p) := ΛC(R).

b
s0 = δe.

b
s0

where the superscript b and subscript 2 label that these are at a rough boundary. In
computational terms, we measure the operator

∑
O,ρ pO,ρP(O,ρ).

b at each site along the
boundary, as with smooth boundaries.

Unlike the smooth boundary case, there is not an action of, say, C(R)>/CG at each site
in the next layer into the bulk, with a boundary face but interior vertex. In particular,
we do not have Bb

2(v, p)A(v) = A(v)Bb
2(v, p) in general; this means that the model is not

a commuting projector model. When the action at v is restricted to CK we recover an
action of Ξ(R,K) again. Similarly, if K = {e}, as we will use in Section 6.3 later, then
the projectors commute and we recover a consistent definition of the vacuum in terms of
projectors.

As with the bulk, the Hamiltonian incorporating the boundaries uses the actions of the
integrals. We can accommodate both rough and smooth boundaries into the Hamiltonian.
Let V, P be the set of vertices and faces in the bulk, S1 the set of all sites (v, p) at smooth
boundaries, and S2 the same for rough boundaries. Then

H =
∑
vi∈V

(1− A(vi)) +
∑
pi∈P

(1−B(pi))

+
∑
sb1∈S1

((1− Ab1(sb1) + (1−Bb
1(sb1))) +

∑
sb2∈S2

((1− Ab2(sb2)) + (1−Bb
2(sb2)).

If the rough boundaries have K = {e}, or otherwise Bb
2(v, p)A(v) = A(v)Bb

2(v, p) we
can pick out two vacuum states immediately:

|vac1〉 :=
∏

vi,sb1 ,sb2

A(vi)Ab1(sb1)Ab2(sb2)
⊗
E

e (6.10)

and
|vac2〉 :=

∏
pi,sb1 ,sb2

B(pi)Bb
1(sb1)Bb

2(sb2)
⊗
E

∑
g∈G

g (6.11)

where the tensor product runs over all edges in the lattice.
Remark 6.2.13. There is no need for two different boundaries to correspond to the same
subgroup K, and the Hamiltonian can be defined accordingly. This principle is necessary
when performing quantum computation by braiding ‘defects’, i.e. finite holes in the lattice,
on the Abelian code [FMMC12], and also for the lattice surgery in Section 6.3. We do not
write out this Hamiltonian in all its generality here, but its form is obvious.

6.2.3 Quasiparticle condensation
Quasiparticles on the boundary correspond to irreps of Ξ(R,K). It is immediate from
Section 6.2.1 that when O = {e}, we must have r0 = e,Kr0 = K. We may choose the



6.2. Gapped boundaries 177

trivial representation of K and then we have Pe,1 = ΛC(R) ⊗ ΛCK . We say that this
particular measurement outcome corresponds to the absence of nontrivial quasiparticles,
as the states yielding this outcome are precisely the locally vacuum states with respect
to the Hamiltonian. This set of quasiparticles on the boundary will not in general be the
same as quasiparticles defined in the bulk, as Ξ(R,K)M 6' D(G)M for all nontrivial G.

Quasiparticles in the bulk can be created from a vacuum and moved using ribbon
operators [Kit03], where the ribbon operators are seen as left and right module maps
D(G)∗ → End(H), see [CM22]. Following [CCW16], we could similarly define a different set
of ribbon operators for the boundary excitations, which use Ξ(R,K)∗ rather than D(G)∗.
However, these have limited utility. For completeness we cover them in Appendix 22.
Instead, for our purposes we will keep using the normal ribbon operators.

Such normal ribbon operators can extend to boundaries, still using Definition 6.1.2,
so long as none of the edges involved in the definition are greyed-out. When a ribbon
operator ends at a boundary site s, we are not concerned with equivariance with respect
to the actions of C(G) and CG at s, as in Lemma 6.1.4. Instead we should calculate
equivariance with respect to the actions of C(R) and CK. We will study the matter in
more depth in Section 6.4, but note that if s, t ∈ R then unique factorisation means that
st = (s · t)τ(s, t) for unique elements s · t ∈ R and τ(s, t) ∈ K. Similarly, if y ∈ K and
r ∈ R then unique factorisation yr = (y.r)(y/r) defines y/r to be studied later.

Lemma 6.2.14. Let ξ be an open ribbon from s0 to s1, where s0 is located at a smooth
boundary, for example:

and where ξ begins at the specified orientation in the example, leading from s0 into the
bulk, rather than running along the boundary. Then

x.bs0 ◦ F
h,g
ξ = F xhx−1,xg

ξ ◦ x.bs0 ; δr.
b
s0 ◦ F

h,g
ξ = F h,g

ξ ◦ δs·(y.r).bs0

∀x ∈ K, r ∈ R, h, g ∈ G, and where sy is the unique factorisation of h−1.

Proof. The first is just the vertex action of CG restricted to CK, with an edge greyed-out



178 Chapter 6. Algebraic aspects of boundaries in quantum double models

which does not influence the result. For the second, expand δr.
b
s0 and verify explicitly:

where we see (s · (y.r))K = s(y.r)τ(s, y.r)−1K = s(y.r)K = s(y.r)(y/r)K = syrK =
h−1rK. We check the other site as well:

�



6.2. Gapped boundaries 179

Remark 6.2.15. One might be surprised that the equivariance property holds for the
latter case when s0 is attached to the vertex at the bottom of the face, as in this case δr.bs0

confers a δ-function in the counterclockwise direction, different from the bulk. This is
because the well-known equivariance properties in the bulk [Kit03] are not wholly correct,
depending on orientation, as pointed out in [YCC22, Section 3.3]. We accommodated for
this by specifying an orientation in Lemma 6.1.4.

Remark 6.2.16. We have a similar situation for a rough boundary, albeit we found only
one orientation for which the same equivariance property holds, which is:

In the reverse orientiation, where the ribbon crosses downwards instead, equivariance is
similar but with the introduction of an antipode. For other orientations we do not find an
equivariance property at all. We do not know of a physical interpretation for this oddity.

As with the bulk, we can define an excitation space using a ribbon between the two
endpoints s0, s1, although more care must be taken in the definition.

Lemma 6.2.17. Let |vac〉 be a vacuum state on a half-plane Σ, where there is one smooth
boundary beyond which there are no more edges. Let ξ be a ribbon between two endpoints
s0, s1 where s0 = {v0, p0} is on the boundary and s1 = {v1, p1} is in the bulk, such that
ξ interacts with the boundary only once, when crossing from s0 into the bulk; it cannot
cross back and forth multiple times. Let |ψh,g〉 := F h,g

ξ |vac〉, and T ξ(s0, s1) be the space
with basis |ψh,g〉.

(1)|ψh,g〉 is independent of the choice of ribbon through the bulk between fixed sites
s0, s1, so long as the ribbon still only interacts with the boundary at the chosen location.

(2)T ξ(s0, s1) ⊂ H inherits actions at disjoint sites s0, s1,

x.bs0|ψ
h,g〉 = |ψxhx−1,xg〉, δr.

b
s0|ψ

h,g〉 = δrK,hK |ψh,g〉

f.s1|ψh,g〉 = |ψh,gf−1〉, δf.s1|ψh,g〉 = δf,g−1h−1g|ψh,g〉

where we use the module isomorphism |ψh,g〉 7→ δhg to see the action at s0 as a representa-
tion of Ξ(R,K) on D(G). In particular it is the restriction of the left regular representation
of D(G) to Ξ(R,K), with inclusion map i from Lemma 6.2.6. The action at s1 is the right
regular representation of D(G), as in the bulk.

Proof. (1) is the same as the proof in [CM22, Prop.3.10], with the exception that if the
ribbon ξ′ crosses the boundary multiple times it will incur an additional energy penalty
from the Hamiltonian for each crossing, and thus T ξ′(s0, s1) 6= T ξ(s0, s1) in general.

(2) This follows by the commutation rules in Lemma 6.2.14 and Lemma 4.2.8 respec-
tively, using

x.bs0|vac〉 = δe.
b
s0|vac〉 = |vac〉; f.s1|vac〉 = δe.s1|vac〉 = |vac〉



180 Chapter 6. Algebraic aspects of boundaries in quantum double models

∀x ∈ K, f ∈ G. For the hardest case we have

δr.
b
s0F

h,g|vac〉 = F h,g
ξ ◦ δs·(y.r).bs0|vac〉

= F h,g
ξ δs·(y.r)K,K |vac〉

= F h,g
ξ δrK,hK |vac〉.

For the restriction of the action at s0 to Ξ(R,K), we have that

δr · δhg = δrK,hKδhg =
∑
a∈rK

δa,hδhg = i(δr)δhg.

and x · δhg = xδhg = i(x)δhg. �

In the bulk, the excitation space L(s0, s1) is totally independent of the ribbon ξ [Kit03,
CM22], but we do not know of a similar property for T ξ(s0, s1) when interacting with the
boundary without the restrictions stated.

We explained in Section 6.2.1 how representations of D(G) at sites in the bulk relate to
those of Ξ(R,K) in the boundary by functors in both directions. Physically, if we apply
ribbon trace operators, that is operators of the form WC,πξ , to the vacuum, then in the
bulk we create exactly a quasiparticle of type (C, π) and (C∗, π∗) at either end. Now let
us include a boundary.

Definition 6.2.18. Given an irrep of D(G) provided by (C, π), we define the boundary
projection P

i∗(C,π) ∈ Ξ(R,K) by

P
i∗(C,π) =

∑
(O,ρ) | n(O,ρ)

(C ,π)
6=0

P(O,ρ)

i.e. we sum over the projectors of all the types of irreps of Ξ(R,K) contained in the
restriction of the given D(G) irrep.

It is clear that P
i∗(C,π) is a projection as a sum of orthogonal projections.

Proposition 6.2.19. Let ξ be an open ribbon extending from an external site s0 on a
smooth boundary with associated algebra Ξ(R,K) to a site s1 in the bulk, for example:

Then
P(O,ρ).

b
s0W
C,π
ξ |vac〉 = 0 iff n

(O,ρ)
(C,π)

= 0.



6.2. Gapped boundaries 181

In addition, we have

P
i∗(C,π).

b
s0W
C,π
ξ |vac〉 = WC,πξ |vac〉 = WC,πξ |vac〉/s1P(C,π),

where we see the left action at s1 of P(C∗,π∗) as a right action using the antipode.

Proof. Under the isomorphism in Lemma 6.2.17 we have that WC,πξ |vac〉 7→ P(C,π) ∈ D(G).
For the first part we therefore have

P(O,ρ).
b
s0W
C,π
ξ |vac〉 7→ i(P(O,ρ))P(C,π)

so the result follows from the last part of Lemma 6.2.7. Since the sum of projectors over
the irreps of Ξ is 1, this then implies the second part:

WC,πξ |vac〉 =
∑
O,ρ

P(O,ρ).
b
s0W
C,π
ξ |vac〉 = P

i∗(C,π).
b
s0W
C,π
ξ |vac〉.

The action at s1 is the same as for bulk ribbon operators. �

The physical interpretation is that application of a ribbon trace operator WC,πξ to a
vacuum state creates a quasiparticle at s0 of all the types contained in i∗(C, π), while
still creating one of type (C∗, π∗) at s1; this is called the condensation of (C, π) at the
boundary. While we used a smooth boundary in this example, the proposition applies
equally to rough boundaries with the specified orientation in Remark 6.2.16 by similar
arguments.

Note that by Proposition 6.2.19, it does not make sense to have irreps with multiplicities
greater than 1 ‘living’ at a site. Thus, if one were to take the purely categorical model
and map irreps from D(G)M to Ξ(R,K)M this would yield unphysical representations at
the boundary; one must then truncate all multiplicities to 1. In [CCW17] this feature of
the model is called having multiple condensation channels.

Example 6.2.20. In the bulk, we take the D(S3) model. Then by Example 6.1.7, we
have exactly 8 irreps in the bulk. At the boundary, we take K = {e, u} = Z2 with
R = {e, uv, vu}. As per the table in Example 6.2.9 and Proposition 6.2.19 above, we then
have for example that

(PO0,−1 + PO1,1).bs0W
C1,−1
ξ |vac〉 = WC1,−1

ξ |vac〉 = WC1,−1
ξ |vac〉/s1PC1,−1.

We can see this explicitly. Recall that

ΛC(R).
b
s0 |vac〉 = ΛCK.

b
s0|vac〉 = |vac〉.

All other vertex and face actions give 0 by orthogonality. Then,

PO0,−1 = 1
2δe⊗(e− u); PO1,1 = (δuv + δvu)⊗ e

and
WC1,−1
ξ =

∑
c∈{u,v,w}

F c,e
ξ − F

c,c
ξ



182 Chapter 6. Algebraic aspects of boundaries in quantum double models

by Lemmas 6.2.4 and 6.1.6 respectively. For convenience, we break the calculation up
into two parts, one for each projector. Throughout, we will make use of Lemma 6.2.14 to
commute projectors through ribbon operators. First, we have that

PO0,−1.
b
s0W
C1,−1
ξ |vac〉 = 1

2(δe⊗(e− u)).bs0

∑
c∈{u,v,w}

(F c,e
ξ − F

c,c
ξ )|vac〉

= 1
2δe.

b
s0 [

∑
c∈{u,v,w}

(F c,e
ξ − F

c,c
ξ )− (F u,u

ξ − F e,u
ξ + F v,u

ξ − F v,uv
ξ + Fw,u

ξ − Fw,vu
ξ )]|vac〉

= 1
2[(F u,e

ξ − F
u,u
ξ )δe.bs0 + (F v,e

ξ − F
v,v
ξ )δvu.bs0 + (Fw,e

ξ − Fw,w
ξ )δuv.bs0

+ (F u,e
ξ − F

u,u
ξ )δe.bs0 + (F v,uv

ξ − F v,u
ξ )δvu.bs0 + (Fw,vu

ξ − Fw,u
ξ )δuv.bs0 ]|vac〉

= (F u,e
ξ − F

u,u
ξ )|vac〉

where we used the fact that u = eu, v = vuu, w = uvu to factorise these elements in terms
of R,K. Second,

PO1,1.
b
s0W
C1,−1
ξ |vac〉 = ((δuv + δvu)⊗ e).bs0

∑
c∈{u,v,w}

(F c,e
ξ − F

c,c
ξ )|vac〉

= (F v,e
ξ − F

v,v
ξ + Fw,e

ξ − Fw,w
ξ )(δe⊗ e).bs0|vac〉

= (F v,e
ξ − F

v,v
ξ + Fw,e

ξ − Fw,w
ξ )|vac〉.

The result follows immediately. All other boundary projections of D(S3) ribbon trace
operators can be worked out in a similar way.
Remark 6.2.21. Proposition 6.2.19 does not tell us exactly how all ribbon operators in
the quasiparticle basis are detected at the boundary, only the ribbon trace operators. A
similar general formula for all ribbon operators is given in [CCW17, Thm 2.12] without
proof.

Now, consider a lattice in the plane with two boundaries, namely to the left and right,

Recall that a lattice on an infinite plane admits a single ground state |vac〉 as explained
in[CM22]. However, in the present case, we may be able to also use ribbon operators in
the quasiparticle basis extending from one boundary, at s0 say, to the other, at s1 say,
such that no quasiparticles are detected at either end. These ribbon operators do not form
a closed, contractible loop, as all undetectable ones do in the bulk; the corresponding
states |ψ〉 are ground states and the vacuum has increased degeneracy. We can similarly
induce additional degeneracy of excited states. This justifies the term gapped boundaries,
as the boundaries give rise to additional states with energies that are ‘gapped’; that is,
they have a finite energy difference ∆ (which may be zero) independently of the width of
the lattice.



6.3. Lattice surgery with patches 183

6.3 Lattice surgery with patches
For any nontrivial group, G there are always at least two distinct choices of boundary
conditions, namely with K = {e} and K = G respectively. In these cases, we necessarily
have R = G and R = {e} respectively.

Considering K = {e} on a smooth boundary, we can calculate that Ab1(v) = id and
Bb

1(s)g = δe,gg, for g an element corresponding to the single edge associated with the
boundary site s. This means that after performing the measurements at a boundary, these
edges are totally constrained and not part of the large entangled state incorporating the
rest of the lattice, and hence do not contribute to the model whatsoever. If we remove
these edges then we are left with a rough boundary, in which all edges participate, and
therefore we may consider the K = {e} case to imply a rough boundary. A similar
argument applies for K = G when considered on a rough boundary, which has Ab2(v)g =
A(v)g = 1

|G|
∑

k kg = 1
|G|
∑

k k for an edge with state g and Bb
2(s) = id. K = G therefore

naturally corresponds instead to a smooth boundary, as otherwise the outer edges are
totally constrained by the projectors. From now on, we will accordingly use smooth to
refer always to the K = G condition, and rough for K = {e}.

These boundary conditions are convenient because the condensation of bulk excitations
to the vacuum at a boundary can be partially worked out in the group basis. For K = {e},
it is easy to see that the ribbon operators which are undetected at the boundary (and
therefore leave the system in a vaccum state) are exactly those of the form F e,g

ξ , for all
g ∈ G, as any nontrivial h in F h,g

ξ will be detected by the boundary face projectors. This
can also be worked out representation-theoretically using Proposition 6.2.8.

Lemma 6.3.1. Let K = {e}. Then the multiplicity of an irrep (C, π) of D(G) with
respect to the trivial representation of Ξ(G, {e}) is

n
({e},1)
(C,π)

= δC,{e}dim(Wπ)

Proof. Applying Proposition 6.2.8 in the case where Vi is trivial, we start with

n
({e},1)
(C,π)

= |G|
|C||Gc0|

∑
c∈C∩{e}

|{e}c|n1,π̃

where C ∩{e} = {e} iff C = {e}, or otherwise ∅. Also, π̃ = ⊕dim(Wπ)({e}, 1), and if C = {e}
then |Gc0| = |G|. �

The factor of dim(Wπ) in the r.h.s. implies that there are no other terms in the de-
composition of i∗({e}, π). In physical terms, this means that the trace ribbon operators
W e,π
ξ are the only undetectable trace ribbon operators, and any ribbon operators which

do not lie in the block associated to (e, π) are detectable. In fact, in this case we have a
further property which is that all ribbon operators in the chargeon sector are undetectable,
as by equation (6.5) chargeon sector ribbon operators are Fourier isomorphic to those
of the form F e,g

ξ in the group basis. In the more general case of a rough boundary for
an arbitrary choice of Ξ(R,K) the orientation of the ribbon is important for using the
representation-theoretic argument. When K = {e}, for F e,g

ξ one can check that regardless
of orientation the rough boundary version of Proposition 6.2.17 applies.

The K = G case is slightly more complicated:



184 Chapter 6. Algebraic aspects of boundaries in quantum double models

Lemma 6.3.2. Let K = G. Then the multiplicity of an irrep (C, π) of D(G) with respect
to the trivial representation of Ξ({e}, G) is

n
({e},1)
(C,π)

= δπ,1

Proof. We start with
n

({e},1)
(C,π)

= 1
|C||Gc0|

∑
c∈C
|Gc|n1,π̃.

Now, Kr,c = Gc and so π̃ = π, giving n1,π̃ = δ1,π. Then
∑

c∈C |G
c| = |C||Gc0|. �

This means that the only undetectable ribbon operators between smooth boundaries are
those in the fluxion sector, i.e. those with assocated irrep (C, 1). However, there is no factor
of |C| on the r.h.s. and so the decomposition of i∗(C, 1) will generally have additional terms
other than just ({e}, 1) in Ξ({e},G)M. As a consequence, a fluxion trace ribbon operator
WC,1ζ between smooth boundaries is undetectable iff its associated conjugacy class is a
singlet, say C = {c0}, and thus c0 ∈ Z(G), the centre of G.
Definition 6.3.3. A patch is a finite rectangular lattice segment with two opposite smooth
sides, each equipped with boundary conditions K = G, and two opposite rough sides,
each equipped with boundary conditions K = {e}, for example:

One can alternatively define patches with additional sides, such as in [Lit19], or with
other boundary conditions which depend on another subgroup K and transversal R, but
we find this definition convenient. Note that our definition does not put conditions on
the size of the lattice; the above diagram is just a conveniently small and yet nontrivial
example.

We would like to characterise the vacuum space Hvac of the patch. To do this, let us
begin with |vac1〉 from equation (6.10), and denote |e〉L := |vac1〉. This is the logical zero
state of the patch. We will use this as a reference state to calculate other states in Hvac.

Now, for any other state |ψ〉 in Hvac, there must exist some linear map D ∈ End(Hvac)
such thatD|e〉L = |ψ〉, and thus if we can characterise the algebra of linear maps End(Hvac),
we automatically characterise Hvac. To help with this, we have the following useful prop-
erty:
Lemma 6.3.4. Let F e,g

ξ be a ribbon operator for some g ∈ G, with ξ extending from
the top rough boundary to the bottom rough boundary. Then the endpoints of ξ may be
moved along the rough boundaries with G = {e} boundary conditions while leaving the
action invariant on any vacuum state.



6.3. Lattice surgery with patches 185

Proof. We explain this on an example patch with initial state |ψ〉 ∈ Hvac and a ribbon ξ.
|ψ〉 is a linear sum of terms of the following form, and so while this proof uses only one
term it applies to any |ψ〉 ∈ Hvac.

using the fact that a = cb and m = lk by the definition of Hvac for the second equality.
Thus, we see that the ribbon through the bulk may be deformed as usual. As the only
new component of the proof concerned the endpoints, we see that this property holds
regardless of the size of the patch. �

One can calculate in particular that F e,g
ξ |e〉L = δe,g|e〉L, which we will prove more

generally later. The undetectable ribbon operators between the smooth boundaries are of
the form

WC,1ξ =
∑
n∈G

F c0,n
ζ

when C = {c0} by Lemma 6.3.2, hence Gc0 = G. Technically, this lemma only tells
us the ribbon trace operators which are undetectable, but in the present case none of
the individual component operators are undetectable, only the trace operators. There are
thus exactly |Z(G)| orthogonal undetectable ribbon operators between smooth boundaries.
These do not play an important role, but we describe them to characterise the operator
algebra on Hvac. They obey a similar rule as Lemma 6.3.4, which one can check in the
same way.



186 Chapter 6. Algebraic aspects of boundaries in quantum double models

In addition to the ribbon operators between sides, we also have undetectable ribbon
operators between corners on the lattice. These corners connect smooth and rough bound-
aries, and thus careful application of specific ribbon operators can avoid detection from
either face or vertex measurements,

where one can check that these do indeed leave the system in a vacuum using familiar
arguments about B(p) and A(v). We could equally define such operators extending from
either left corner to either right corner, and they obey the discrete isotopy laws as in the
bulk. If we apply F h,g

ξ for any g 6= e then we have F h,g
ξ |ψ〉 = 0 for any |ψ〉 ∈ Hvac, and so

these are the only ribbon operators of this form.

Remark 6.3.5. Corners of boundaries are algebraically interesting themselves, and can
be used for quantum computation, but for brevity we skim over them. See e.g. [Bom10,
BKLW17] for details.

These corner to corner, left to right and top to bottom ribbon operators span End(Hvac),
the linear maps which leave the system in vacuum. Due to Lemma 6.1.5, all other linear
maps must decompose into ribbon operators, and these are the only ribbon operators in
End(Hvac) up to linearity.

As a consequence, we have well-defined patch states |h〉L :=
∑

g F
h,g
ξ |e〉L for each

h ∈ G, where ξ is any ribbon extending from the bottom left corner to right. Now,
working explicitly on the small patch below, we have



6.3. Lattice surgery with patches 187

to start with, then:

It is easy to see that we may always write |h〉L in this manner, for an arbitrary size of
patch. Now, ribbon operators which are undetectable when ξ extends from bottom to top
are those of the form F e,g

ξ , for example

and so F e,g
ξ |h〉L = δg,h|h〉L, where again if we take a larger patch all additional terms will

clearly cancel. Lastly, undetectable ribbon operators for a ribbon ζ extending from left
to right are exactly those of the form

∑
n∈G F

c0,n
ζ for any c0 ∈ Z(G). One can check that

|c0h〉L =
∑

n∈G F
c0,n
ζ |h〉L, thus these give us no new states in Hvac.

Lemma 6.3.6. For a patch with the D(G) model in the bulk, dim(Hvac) = |G|.

Proof. By the above characterisation of undetectable ribbon operators, the states {|h〉L}h∈G
span dim(Hvac). The result then follows from the adjointness of ribbon operators, which
means that the states {|h〉L}h∈G are orthogonal. �

We can also work out that for |vac2〉 from equation (6.11), we have |vac2〉 =
∑

h |h〉L.
More generally:

Corollary 6.3.7. Hvac has an alternative basis with states |π; i, j〉L, where π is an irre-
ducible representation of G and i, j are indices such that 0 ≤ i, j < dim(Vπ). We call this
the quasiparticle basis of the patch.

Proof. First, use the nonabelian Fourier transform on the ribbon operators F e,g
ξ , so we have

F
′e,π;i,j
ξ =

∑
n∈G π(n−1)jiF e,n

ξ . If we start from the reference state |1; 0, 0〉L :=
∑

h |h〉L =



188 Chapter 6. Algebraic aspects of boundaries in quantum double models

|vac2〉 and apply these operators with ξ from bottom to top of the patch then we get

|π; i, j〉L = F
′e,π;i,j
ξ |1; 0, 0〉L =

∑
n∈G

π(n−1)ji|n〉L

which are orthogonal. Now, as
∑

π∈Ĝ
∑dim(Vπ)

i,j=0 = |G| and we know dim(Hvac) = |G| by
the previous Lemma 6.3.6, {|π; i, j〉L}π,i,j forms a basis of dim(Hvac). �

Remark 6.3.8. Kitaev models are designed in general to detect and correct for errors.
The minimum number of component Hilbert spaces, that is copies of CG on edges, for
which simultaneous errors will undetectably change the logical state and cause errors in
the computation is called the ‘code distance’ d in the language of quantum codes. For
the standard method of computation using nonabelian anyons [Kit03], data is encoded
using excited states, which are states with nontrivial quasiparticles at certain sites. The
code distance can then be extremely small, and constant in the size of the lattice, as
the smallest errors need only take the form of ribbon operators winding round a single
quasiparticle at a site. This is no longer the case when encoding data in vacuum states
on patches, as the only logical operators are specific ribbon operators extending from top
to bottom, left to right or corner to corner. The code distance, and hence error resilience,
of any vacuum state of the patch therefore increases linearly with the width of the patch
as it is scaled, and so the square root of the number n of component Hilbert spaces in the
patch, that is d ∼

√
(n).

6.3.1 Nonabelian lattice surgery

Lattice surgery was invented as a method of fault-tolerant computation with the qubit, i.e.
CZ2, surface code [HFDM12]. The first author generalised it to qudit models using CZd in
[Cow22], and gave a fresh perspective on lattice surgery as ‘simulating’ the Hopf algebras
CZd and C(Zd) on the logical space Hvac of a patch. In this section, we prove that lattice
surgery generalises to arbitrary finite group models, and ‘simulates’ CG and C(G) in a
similar way. Throughout, we assume that the projectors A(v) and B(p) may be performed
deterministically for simplicity. In Appendix 23 we discuss the added complication that in
practice we may only perform measurements which yield projections nondeterministically.

Remark 6.3.9. When proving the linear maps that nonabelian lattice surgeries yield,
we will use specific examples, but the arguments clearly hold generally. For convenience,
we will also tend to omit normalising scalar factors, which do not impact the calculations
as the maps are C-linear.

Let us begin with a large rectangular patch. We now remove a line of edges from left



6.3. Lattice surgery with patches 189

to right by projecting each one onto e:

We call this a rough split, as we create two new rough boundaries. We no longer apply
A(v) to the vertices which have had attached edges removed. If we start with a small
patch in the state |l〉L for some l ∈ G then we can explicitly calculate the linear map.

where we have separated the two patches afterwards for clarity, showing that they have



190 Chapter 6. Algebraic aspects of boundaries in quantum double models

two separate vacuum spaces. We then have that the last expression is

Observe the factors of g in particular. The state is therefore now
∑

g |g−1〉L⊗|gl〉L, where
the l.h.s. of the tensor product is the Hilbert space corresponding to the top patch, and
the r.h.s. to the bottom. A change of variables gives

∑
g |g〉L ⊗ |g−1l〉L, the outcome of

comultiplication of C(G) on the logical state |l〉L of the original patch.
Similarly, we can measure out a line of edges from bottom to top, for example

We call this a smooth split, as we create two new smooth boundaries. Each deleted edge
is projected into the state 1

|G|
∑

g g. We also cease measurement of the faces which have
had edges removed, and so we end up with two adjacent but disjoint patches. Working



6.3. Lattice surgery with patches 191

on a small example, we start with |e〉L:

where in the last step we have taken b 7→ jc, g 7→ kh from the δ-functions and then a
change of variables j 7→ jc−1, k 7→ kh−1 in the summation. Thus, we have ended with two
disjoint patches, each in state |e〉L. One can see that this works for any |h〉L in exactly the
same way, and so the smooth split linear map is |h〉L 7→ |h〉L ⊗ |h〉L, the comultiplication
of CG.

The opposite of splits are merges, whereby we take two disjoint patches and introduce
edges to bring them together to a single patch. For the rough merge below, say we start
with the basis states |k〉L and |j〉L on the bottom and top. First, we introduce an additional



192 Chapter 6. Algebraic aspects of boundaries in quantum double models

joining edge in the state e.

This state |ψ〉 automatically satisfies B(p)|ψ〉 = |ψ〉 everywhere. But it does not satisfy
the conditions on vertices, so we apply A(v) to the two vertices adjacent to the newest
edge. Then we have the last expression



6.3. Lattice surgery with patches 193

which by performing repeated changes of variables yields

Thus the rough merge yields the map |j〉L⊗|k〉L 7→ |jk〉L, the multiplication of CG, where
again the tensor factors are in order from top to bottom.

Similarly, we perform a smooth merge with the states |j〉L, |k〉L as

We introduce a pair of edges connecting the two patches, each in the state
∑

mm,



194 Chapter 6. Algebraic aspects of boundaries in quantum double models

The resultant patch automatically satisfies the conditions relating to A(v), but we must
apply B(p) to the freshly created faces to acquire a state in Hvac, giving

where the B(p) applications introduced the δ-functions

δe(bf−1m−1), δe(dh−1n−1), δe(dj−1b−1bf−1fkh−1hd−1) = δe(j−1k).

In summary, the linear map on logical states is evidently |j〉L ⊗ |k〉L 7→ δj,k|j〉L, the
multiplication of C(G).

The units of CG and C(G) are given by the states |e〉L and |1; 0, 0〉L respectively. The
counits are given by the maps |g〉L 7→ 1 and |g〉L 7→ δg,e respectively. The logical antipode
SL is given by applying the antipode to each edge individually, i.e. inverting all group
elements. For example:

This state is now no longer in the original Hvac, so to compensate we must modify the



6.4. Quasi-Hopf algebra structure of Ξ(R,K) 195

lattice. We flip all arrows in the lattice:

This amounts to exchanging left and right regular representations, and redefining the
Hamiltonian accordingly. In the resultant new vacuum space, the state is now |g−1〉L =
F e,g−1

ξ |e〉L, with ξ running from the bottom left corner to bottom right as previously.

Remark 6.3.10. This trick of redefining the vacuum space is employed in [HFDM12] to
perform logical Hadamards, although in their case the lattice is rotated by π/2, and the
edges are directionless as the model is restricted to CZ2.

Thus, we have all the ingredients of the Hopf algebras CG and C(G) on the same vector
space Hvac. For applications, one should like to know which quantum computations can be
performed using these algebras (ignoring the subtlety with nondeterministic projectors).
Recall that a quantum computer is called approximately universal if for any target unitary
U and desired accuracy ε ∈ R, the computer can perform a unitary V such that ||V −U || ≤
ε, i.e. the operator norm error of V from U is no greater than ε.

We believe that when the computer is equipped with just the states {|h〉L}h∈G and
the maps from lattice surgery above then one cannot achieve approximately universal
computation [Gog22], but leave the proof to a further paper. If we also have access to all
matrix algebra states |π; i, j〉L as defined in Corollary 6.3.7, we do not know whether the
model of computation is then universal for some choice of G, and we do not know whether
these states can be prepared efficiently. In fact, how these states are defined depends on a
choice of basis for each irrep, so whether it is universal may depend not only on the choice
of G but also choices of basis. The computational power of nonabelian lattice surgery is
an interesting question for future work.

6.4 Quasi-Hopf algebra structure of Ξ(R,K)
We now return to our boundary algebra Ξ. It is known that Ξ has a great deal more struc-
ture. This structure generalises a well-known bicrossproduct Hopf algebra construction
for when a finite group G factorises as G = RK into two subgroups R,K. Then each acts
on the set of the other to form a matched pair of actions ., / and we use . to make a cross
product algebra CK.<C(R) (which has the same form as our algebra Ξ except that we
have chosen to flip the tensor factors) and / to make a cross product coalgebra CK>JC(R).
These fit together to form a bicrossproduct Hopf algebra CK.JC(R). This construction



196 Chapter 6. Algebraic aspects of boundaries in quantum double models

has been used in the Lie group version to construct quantum Poincaré groups for quantum
spacetimes[Maj95]. In this section we describe the more general Ξ(R,K) and in more
detail than we have seen elsewhere. In physical terms the ‘coproduct’ ∆ : Ξ → Ξ⊗Ξ
explicitly controls the tensor product of representations, not only up to isomorphism, and
the antialgebra ‘antipode’ S : Ξ → Ξ explicitly controls left-right conversion and hence
adjunction of representations.

In [Beg03] was considered the more general case where rather than R and K both being
subgroups we are just given a single subgroup K ⊆ G and a choice of transversal R with
the group identity e ∈ R. As we noted, we still have unique factorisation G = RK but
in general R need not be a group. We can still follow the same steps. First of all, unique
factorisation entails that R ∩K = {e}. It also implies maps

. : K ×R→ R, / : K ×R→ K, · : R×R→ R, τ : R×R→ K

defined by
xr = (x.r)(x/r), rs = r · sτ(r, s)

for all x ∈ K, r, s ∈ R, but this time these inherit the properties

(xy).r = x.(y.r), e.r = r,

x.(r · s) = (x.r) · ((x/r).s), x.e = e, (6.12)

(x/r)/s = τ
(
x.r, (x/r).s)−1(x/(r · s)

)
τ(r, s), x/e = x,

(xy)/r = (x/(y.r))(y/r), e/r = e, (6.13)

τ(r, s · t)τ(s, t) = τ (r · s, τ(r, s).t) (τ(r, s)/t), τ(e, r) = τ(r, e) = e,

r · (s · t) = (r · s) · (τ(r, s).t), r · e = e · r = r (6.14)

for all x, y ∈ K and r, s, t ∈ R. We see from (6.12) that . is indeed an action (we have been
using it in preceding sections) but / in (6.13) is only only up to τ (termed in [KM10A]
a ‘quasiaction’). Both ., / ‘act’ almost by automorphisms but with a back-reaction by
the other just as for a matched pair of groups. Meanwhile, we see from (6.14) that · is
associative only up to τ and τ itself obeys a kind of cocycle condition.

Clearly, R is a subgroup via · if and only if τ(r, s) = e for all r, s, and in this case
we already see that Ξ(R,K) is a bicrossproduct Hopf algebra, with the only difference
being that we prefer to build it on the flipped tensor factors. More generally, [Beg03]
showed that there is still a natural monoidal category associated to this data but with
nontrivial associators. This corresponds by Tannaka-Krein reconstruction to a Ξ as quasi-
bialgebra which in some cases is a quasi-Hopf algebra[Nat05]. Here we will give these
latter structures explicitly and in maximum generality compared to the literature (but
still needing a restriction on R for the antipode to be in a regular form). We will also show
that the obvious ∗-algebra structure makes a ∗-quasi-Hopf algebra in an appropriate sense
under restrictions on R. These aspects are new, but more importantly, we give direct proofs
at an algebraic level rather than categorical arguments, which we believe are essential for
detailed calculations. Related works on similar algebras and coset decompositions include
[Sch02A, KM10B] in addition to [Beg03, Nat05, KM10A].
Lemma 6.4.1. [Beg03, Nat05, KM10A] (R, ·) has the same unique identity e as G and
has the left division property, i.e. for all t, s ∈ R, there is a unique solution r ∈ R to the
equation s · r = t (one writes r = s\t). In particular, we let rR denote the unique solution
to r · rR = e, which we call a right inverse.



6.4. Quasi-Hopf algebra structure of Ξ(R,K) 197

This means that (R, ·) is a left loop (a left quasigroup with identity). The multiplication
table for (R, ·) has one of each element of R in each row, which is the left division property.
In particular, there is one instance of e in each row. One can recover G knowing (R, ·), K
and the data ., /, τ [KM10A, Prop.3.4]. Note that a parallel property of left inverse ( )L
need not be present.
Definition 6.4.2. We say that R is regular if ( )R is bijective.
R is regular iff it has both left and right inverses, and this is iff it satisfies RK = KR

by[KM10A, Prop. 3.5]. If there is also right division then we have a loop (a quasigroup with
identity) and under further conditions[KM10A, Prop. 3.6] we have rL = rR and a 2-sided
inverse property quasigroup. The case of regular R is studied in [Nat05] but this excludes
some interesting choices of R and we do not always assume it. Throughout, we will specify
when R is required to be regular for results to hold. Finally, if R obeys a further condition
x.(s · t) = (x.s).t in [KM10A] then Ξ is a Hopf quasigroup in the sense introduced in
[KM10B]. This is even more restrictive but will apply to our octonions-related example.
Here we just give the choices for our go-to cases for S3.
Example 6.4.3. G = S3 with K = {e, u} has four choices of transversal R meeting our
requirement that e ∈ R. Namely

1. R = {e, uv, vu} (our standard choice) is a subgroup R = Z3, so it is associative and
there is 2-sided division and a 2-sided inverse. We also have u.(uv) = vu, u.(vu) = uv
but /, τ trivial.

2. R = {e, w, v} which is not a subgroup and indeed τ(v, w) = τ(w, v) = u (and all
others are necessarily e). There is an action u.v = w, u.w = v but / is still trivial.
For examples

vw = wu⇒ v · w = w, τ(v, w) = u; wv = vu⇒ w · v = v, τ(w, v) = u

uv = wu⇒ u.v = w, u/v = u; uw = vu⇒ u.w = v, u/w = u.

This has left division/right inverses as it must but not right division as e·w = v·w = w
and e · v = w · v = v. We also have v · v = w · w = e and ( )R is bijective so this is
regular.

3. R = {e, uv, v} which is not a subgroup and τ, ., / are all nontrivial with

τ(uv, uv) = τ(v, uv) = τ(uv, v) = u, τ(v, v) = e,

v · v = e, v · uv = uv, uv · v = e, uv · uv = v,

u.v = uv, u.(uv) = v, u/v = e, u/uv = e

and all other cases determined from the properties of e. Here vR = v and (uv)R = v
so this is not regular.

4. R = {e, w, vu} which is analogous to the preceding case, so not a subgroup, τ, ., /
all nontrivial and not regular.

We will also need the following useful lemma in some of our proofs.
Lemma 6.4.4. [KM10A] For any transversal R with e ∈ R, we have

1. (x/r)−1 = x−1/(x.r);



198 Chapter 6. Algebraic aspects of boundaries in quantum double models

2. (x.r)R = (x/r).rR;

3. τ(r, rR)−1/r = τ(rR, rRR)−1;

4. τ(r, rR)−1/r = rRR;

for all x ∈ K, r ∈ R.

Proof. The first two items are elementary from the matched pair axioms. For (1), we
use e = (x−1x)/r = (x−1/(x.r))(x/r) and for (2) e = x.(r · rR) = (x.r) · ((x/r).rR).
The other two items are a left-right reversal of [KM10A, Lem. 3.2] but given here for
completeness. For (3),

e = (τ(r, rR)τ(r, rR)−1)/r = (τ(r, rR)/(τ(r, rR).r))(τ(r, rR)−1/r)
= (τ(r, rR)/rRR)(τ(r, rR)−1/r)

which we combine with

τ(rR, rRR) = τ(r·rR, rRR)τ(rR, rRR) = τ(r·rR, τ(r, rR).rRR)(τ(r, rR)/rRR) = τ(r, rR)/rRR

by the cocycle property. For (4), τ(r, rR)/rRR = (r · rR)τ(r, rR)/rRR = r · (rR · rRR) = r
by one of the matched pair conditions. �

Using this lemma, it is not hard to prove cf[KM10A, Prop.3.3] that

s\t = sR · τ−1(s, sR).t; s · (s\t) = s\(s · t) = t, (6.15)

which can also be useful in calculations.

6.4.1 Ξ(R,K) as a quasi-bialgebra
We recall that a quasi-bialgebra is a unital algebra H, a coproduct ∆ : H → H ⊗H which
is an algebra map but is no longer required to be coassociative, and ε : H → C a counit
for ∆ in the usual sense (id⊗ ε)∆ = (ε⊗ id)∆ = id. Instead, we have a weaker form of
coassociativity[Dri87, Maj95]

(id⊗∆)∆ = φ((∆⊗ id)∆( ))φ−1

for an invertible element φ ∈ H⊗ 3 obeying the 3-cocycle identity

(1⊗φ)((id⊗∆⊗ id)φ)(φ⊗ 1) = ((id⊗ id⊗∆)φ)(∆⊗ id⊗ id)φ, (id⊗ ε⊗ id)φ = 1⊗ 1

(it follows that ε in the other positions also gives 1⊗ 1). If V,W are representations then
V ⊗W is also, by h.(v⊗w) = (∆h).(v⊗w) where one copy of H acts on v ∈ V and the
other on w ∈ W . In our case, we already know that Ξ(R,K) is a unital algebra.
Lemma 6.4.5. Ξ(R,K) is a quasi-bialgebra with

∆x =
∑
s∈R

xδs⊗x/s, ∆δr =
∑
s,t∈R

δs·t,rδs ⊗ δt, εx = 1, εδr = δr,e

for all x ∈ K, r ∈ R, and

φ =
∑
r,s∈R

δr ⊗ δs ⊗ τ(r, s)−1, φ−1 =
∑
r,s∈R

δr ⊗ δs ⊗ τ(r, s).



6.4. Quasi-Hopf algebra structure of Ξ(R,K) 199

Proof. This follows by reconstruction arguments, but it is useful to check directly,

(∆x)(∆y) =
∑
s,r

(xδs⊗x/s)(yδr⊗ y/r) =
∑
s,r

(xδsyδr⊗x/s)(y/r)

=
∑
r,s

xyδy−1.sδr⊗(x/s)(y/r) =
∑
r

xyδr⊗(x/(y.r))(y/r) = ∆(xy)

as s = y.r and using the formula for (xy)/r at the end. Also,

∆(δx.sx) = (∆δx.s)(∆x) =
∑

r,p.t=x.s

δpxδr⊗ δtx/r

=
∑

r,p.t=x.s

xδx−1.pδr⊗x/rδ(x/r)−1.t =
∑

(x.r).t=x.s

xδr⊗x/rδ(x/r)−1.t

=
∑

(x.r).((x/r).t′)=x.s

xδr⊗x/rδt′ =
∑
r·t′=s

xδr⊗(x/r)δt′ = (∆x)(∆δs) = ∆(xδs)

using the formula for x.(r · t′). This says that the coproducts stated are compatible with
the algebra cross relations. Similarly, one can check that

(
∑
p,r

δp⊗ δr⊗τ(p, r))((id⊗∆)∆x) =
∑
p,r,s,t

(δp⊗ δr⊗ τ(p, r))(xδs⊗(x/s)δt⊗(x/s)/t)

=
∑
p,r,s,t

δpxδs⊗ δr(x/s)δt⊗ τ(p, r)((x/s)/t)

=
∑
s,t

xδs⊗(x/s)δt⊗ τ(x.s, (x/s).t)(x/s)/t)

=
∑
s,t

xδs⊗(x/s)δt⊗(x/(s.t))τ(s, t)

=
∑
p,r,s,t

(xδs⊗(x/s)δt⊗(x/(s.t))(δp⊗ δr⊗ τ(p, r)

= ((∆⊗ id)∆x)(
∑
p,r

δp⊗ δr⊗ τ(p, r))

as p = x.s and r = (x/s).t and using the formula for (x/s)/t. For the remaining cocycle
relations, we have

(id⊗ ε⊗ id)φ =
∑
r,s

δs,eδr⊗ τ(r, s)−1 =
∑
r

δr⊗ 1 = 1⊗ 1

and
(1⊗φ)((id⊗∆⊗ id)φ)(φ⊗ 1) =

∑
r,s,t

δr⊗ δs⊗ δtτ(r, s)−1⊗ τ(s, t)−1τ(r, s · t)

after multiplying out δ-functions and renaming variables. Using the value of ∆τ(r, s)−1

and similarly multiplying out, we obtain on the other side

((id⊗id⊗∆)φ)(∆⊗ id⊗ id)φ =
∑
r,s,t

δr⊗ δs⊗ τ(r, s)−1δt⊗(τ(r, s)−1/t)τ(r · s, t)−1

=
∑
r,s,t′

δr⊗ δs⊗ δt′τ(r, s)−1⊗(τ(r, s)−1/(τ(r, s).t′))τ(r · s, τ(r, s).t′)−1

=
∑
r,s,t′

δr⊗ δs⊗ δt′τ(r, s)−1⊗(τ(r, s)/t′)−1τ(r · s, τ(r, s).t′)−1,



200 Chapter 6. Algebraic aspects of boundaries in quantum double models

where we change summation to t′ = τ(r, s).t then use Lemma 6.4.4. Renaming t′ to t, the
two sides are equal in view of the cocycle identity for τ . Thus, we have a quasi-bialgebra
with φ as stated. �

This is of the same semidirect product (but dual) form as the coquasi-Hopf algebra
noted in [KM10A, Rem 4.3] and also known in [Nat05], however. A coproduct is also stated
in [CCW16] but in very different notations and without proof. Physically, recall that we
consider the representations of Ξ(R,K) to be quasiparticles located at the boundary of the
Kitaev model, with the restriction that we cannot have multiplicities of irreps greater than
1 as per Proposition 6.2.19. As Ξ(R,K) is a quasi-bialgebra, ΞM is monoidal, albeit with
a nontrivial associator, and hence we can have quasiparticles existing in separate locations;
considering time as well, this means parallel worldlines of boundary quasiparticles are
allowed by the theory, as one would expect. The nontrivial associator is an interesting
feature, and one which the bulk D(G)M model does not exhibit. We discuss this in further
detail in Section 6.5.
Remark 6.4.6. If we want to write the coproduct on Ξ explicitly as a vector space, the
above becomes

∆(δr⊗x) =
∑
s·t=r

δs⊗x⊗ δt⊗(x−1/s)−1, ε(δr⊗x) = δr,e

which is ugly due to our decision to build it on C(R)⊗CK. (2) If we built it on the other
order then we could have Ξ = CK.<C(R) as an algebra, where we have a right action

(f/x)(r) = f(x.r); δr/x = δx−1.r

on f ∈ C(R). Now make a right handed cross product
(x⊗ δr)(y⊗ δs) = xy⊗(δr/y)δs = xy⊗ δsδr,y.s

which has cross relations δry = yδy−1.r. These are the same relations as before. So this is
the same algebra, just we prioritise a basis {xδr} instead of the other way around. This
time, we have

∆(x⊗ δr) =
∑
s·t=r

x⊗ δs⊗x/s⊗ δt.

We do not do this in order to be compatible with the most common form of D(G) as
C(G)>/CG as in [CM22].
Lemma 6.4.7. The ∗-algebra structure on Ξ(R,K) commutes with the coproduct and
counit, ∆ ◦ ∗ = (∗⊗∗) ◦∆ and ε ◦ ∗ = ε( ). Moreover φ∗⊗∗⊗∗ = φ−1.

Proof. Since ∗ is an involution it is enough to check the assertion on x ∈ K and δr ∈ C(R)
separately. The latter is immediate from the form of ∆δr in Lemma 6.4.5 and δ∗r = δr. For
the other case, we have

(∗⊗∗)∆x =
∑
s

δsx
−1⊗(x/s)−1 =

∑
s

x−1δx.s⊗x−1/(x.s) =
∑
s′

x−1δs′ ⊗x−1/s′ = ∆x−1

which is ∆x∗. The remaining properties are more immediate. �

Note that this is not a usual property of ∗-quasi-balgebras as such a condition in general
would not be compatible with the quasi-coassociativity controlled by φ. But it is true for a
usual Hopf ∗-algebra where it is important for preserving unitarity (in a Hopf sense defined
by ∗) of tensor products of representations, hence it is convenient that it also applies to
Ξ(R,K). The latter is also a ∗-quasibialgebra but this is deferred to Appendix 24.



6.4. Quasi-Hopf algebra structure of Ξ(R,K) 201

6.4.2 Ξ(R,K) as a quasi-Hopf algebra
A quasi-bialgebra is a quasi-Hopf algebra if there are elements α, β ∈ H and an antialgebra
map S : H → H such that[Dri87, Maj95]

(Sξ1)αξ2 = ε(ξ)α, ξ1βSξ2 = ε(ξ)β, φ1β(Sφ2)αφ3 = 1, (Sφ−1)αφ−2βSφ−3 = 1

where ∆ξ = ξ1⊗ ξ2, φ = φ1⊗φ2⊗φ3 with inverse φ−1⊗φ−2⊗φ−3 is a compact notation
(sums of such terms to be understood). It is usual to assume S is bijective but we do
not require this. The α, β, S are not unique and can be changed to S ′ = U(S )U−1, α′ =
Uα, β′ = βU−1 for any invertible U . In particular, if α is invertible then we can transform
to a standard form replacing it by 1. For the purposes of this Chapter, we therefore
call the case of α invertible a (left) regular antipode. The antipode provides a kind of
linearised analogue of group inversion and is needed for example in the quantum adjoint
action and in the dualisation of representations. If H acts on V then it acts on V ∗ by
(h.f)(v) = f(Sh.v) for v ∈ V and f ∈ V ∗.

Theorem 6.4.8. If ( )R is bijective, Ξ(R,K) is a quasi-Hopf algebra with regular antipode

S(δr⊗x) = δ(x−1.r)R ⊗x−1/r, α =
∑
r∈R

δr⊗ 1, β =
∑
r

δr⊗ τ(r, rR).

Equivalently in subalgebra terms,

Sδr = δrR , Sx =
∑
s∈R

(x−1/s)δsR , α = 1, β =
∑
r∈R

δrτ(r, rR).

Proof. For the axioms involving φ, we have

φ1β(Sφ2)αφ3 =
∑
s,t,r

(δs⊗ 1)(δr⊗ τ(r, rR))(δtR ⊗ τ(s, t)−1)

=
∑
s,t

(δs⊗ τ(s, sR))(δtR ⊗ τ(s, t)−1) =
∑
s,t

δsδs,τ(s,sR).tR ⊗ τ(s, sR)τ(s, t)−1

=
∑

sR.tR=e

δs⊗ τ(s, sR)τ(s, t)−1 = 1,

where we used s · (sR · tR) = (s · sR) · τ(s, sR).tR = τ(s, sR).tR. So s = τ(s, sR).tR holds
iff sR · tR = e by left cancellation. In the sum, we can take t = sR which contributes δs⊗ e.
Here sR · tR = sR · (sR)R = e; there is a unique element tR which does this and hence a
unique t provided ( )R is injective, and hence a bijection.

S(φ−1)αφ−2βS(φ−3) =
∑
s,t,u,v

(δsR ⊗ 1)(δt ⊗ 1)(δu ⊗ τ(u, uR))(δ(τ(s,t)−1.v)R ⊗ (τ(s, t)−1/v))

=
∑
s,v

(δsR ⊗ τ(sR, sRR))(δ(τ(s,sR)−1.v)R ⊗ τ(s, sR)−1/v).

Upon multiplication, we will have a δ-function dictating that

sR = τ(sR, sRR).(τ(s, sR)−1.v)R,



202 Chapter 6. Algebraic aspects of boundaries in quantum double models

so we can use the fact that

s · sR = e = s · (τ(sR, sRR).(τ(s, sR)−1.v)R)
= s · (sR · (sRR · (τ(s, sR)−1.v)R))
= τ(s, sR).(sRR · (τ(s, sR).v)R),

where we use similar identities to before. Therefore sRR·(τ(s, sR)−1.v)R = e, so (τ(s, sR)−1.v)R =
sRRR. When ( )R is injective, this gives us v = τ(s, sR).sRR. Returning to our original
calculation we have that our previous expression is

· · · =
∑
s

δsR ⊗ τ(sR, sRR)(τ(s, sR)−1/(τ(s, sR).sRR))

=
∑
s

δsR ⊗ τ(sR, sRR)(τ(s, sR)/sRR)−1 =
∑
s

δsR ⊗ 1 = 1.

We now prove the antipode axiom involving α,

(S(δs⊗x)1)(δs ⊗ x)2 =
∑
r·t=s

(δ(x−1.r)R ⊗ (x−1/r))(δt ⊗ (x−1/r)−1)

=
∑
r·t=s

δ(x−1.r)R,(x−1/r).tδ(x−1.r)R ⊗ 1 = δe,s
∑
r

δ(x−1.r)R ⊗ 1 = ε(δs ⊗ x)1.

The condition from the δ-functions is

(x−1.r)R = (x−1/r).t

which by uniqueness of right inverses holds iff

e = (x−1.r) · (x−1/r).t = x−1.(r · t)

which is iff r · t = e, so t = rR. As we also need r · t = s, this becomes δs,e as required.
We now prove the axiom involving β, starting with

(δs⊗x)1βS((δs ⊗ x)2) =
∑
r·t=s,p

(δr⊗x)(δp⊗ τ(p, pR))S(δt⊗(x−1/r)−1)

=
∑
r·t=s,p

(δrδr,x.p⊗xτ(p, pR))(δ((x−1/r).t)R ⊗(x−1/r)/t)

=
∑
r·t=s

(δr⊗xτ(x−1.r, (x−1.r)R))(δ((x−1/r).t)R ⊗(x−1/r)/t).

When we multiply this out, we will need from the product of δ-functions that

τ(x−1.r, (x−1.r)R)−1.(x−1.r) = ((x−1/r).t)R,

but note that τ(q, qR)−1.q = qRR from Lemma 6.4.4. So the condition from the δ-functions
is

(x−1.r)RR = ((x−1/r).t)R,

so
(x−1.r)R = (x−1/r).t



6.4. Quasi-Hopf algebra structure of Ξ(R,K) 203

when ( )R is injective. By uniqueness of right inverses, this holds iff

e = (x−1.r) · ((x−1/r).t) = x−1.(r · t),

where the last equality is from the matched pair conditions. This holds iff r · t = e, that
is, t = rR. This also means in the sum that we need s = e. Hence, when we multiply out
our expression so far, we have

· · · = δs,e
∑
r

δr⊗xτ(x−1.r, (x−1.r)R)(x−1/r)/rR = δs,e
∑
r

δr⊗ τ(r, rR) = δs,eβ,

as required, where we used

xτ(x−1.r, (x−1.r)R)(x−1/r)/rR = τ(r, rR)

by the matched pair conditions. The subalgebra form of Sx is the same using the com-
mutation relations and Lemma 6.4.4 to reorder.

It remains to check that

S(δs⊗ y)S(δr⊗x) = (δ(y−1.s)R ⊗ y−1/s)(δ(x−1.x)R ⊗x−1/r)
= δr,x.sδ(y−1.s)R ⊗(y−1/s)(x−1/r) = δr,x.sδ(y−1x−1.r)R ⊗(y−1/(x−1.r))(x−1/r)
= S(δrδr,x.s⊗xy) = S((δr⊗x)(δs⊗ y)),

where the product of δ-functions requires (y−1.s)R = (y−1/s).(x−1.r)R, which is equiva-
lent to sR = (x−1.r)R using Lemma 6.4.4. This imposes δr,x.s. We then replace s = x−1.r
and recognise the answer using the matched pair identities. �

The antipode here has the identical form (after allowing for changes in conventions)
to the related Hopf quasi-algebra antipode in [KM10A]. An antipode is also stated in
[CCW16] but in very different notations and without proof. Moreover, we have the fol-
lowing novel results about this standard S on Ξ(R,K).
Proposition 6.4.9. There exist invertible γ ∈ Ξ(R,K) and G ∈ Ξ(R,K)⊗ 2 such that
the standard S in Theorem 6.4.8 obeys

∆ ◦ S = G−1((S⊗S) ◦∆op( ))G, ε ◦ S = ε, (∗ ◦ S)2 = γ( )γ−1

along with
Sγ = γ−1, ((S⊗S)G−1

21 )G = (γ⊗ γ)∆γ−1

and the ‘quasi-cocycle’ condition

(S⊗ 3φ−1
321)(1⊗G)((id⊗∆)G)φ = (G ⊗ 1)(∆⊗ id)G.

Moreover, γ∗ = γ−1, G∗⊗∗ = G−1. Here G21 and φ321 are G, φ with the tensor factors
taken in reverse order.

Proof. The proof is given in Appendix 24 where it follows from the ∗-quasi-Hopf structure
proven there given Lemma 6.4.7 proven above. Without φ, the ‘quasi-cocycle’ condition
would be the standard notion of a Drinfeld-twist 2-cocycle as in [Maj95, Chapter 2]. �

A usual Hopf algebra and Hopf ∗-algebra would obey these conditions with G = 1⊗ 1
and γ = 1 but we see how these familiar and key properties of the antipode still hold for
the standard antipode of Ξ(R,K), up to a certain conjugation.



204 Chapter 6. Algebraic aspects of boundaries in quantum double models

Example 6.4.10. ( i) Ξ(R,K) for S2 ⊂ S3 with its standard transversal. As an algebra,
this is generated by Z2, which means by an element u with u2 = e, and by δ0, δ1, δ2 for
δ-functions as the points of R = {e, uv, vu}. The relations are δi orthogonal and add to 1,
and cross relations

δ0u = uδ0, δ1u = uδ2, δ2u = uδ1.

The dot product is the additive group Z3, i.e. addition mod 3. The coproducts etc are

∆δi =
∑
j+k=i

δj ⊗ δk, ∆u = u⊗u, φ = 1⊗ 1⊗ 1

with addition mod 3. The cocycle and right action are trivial and the dot product is
that of Z3 as a subgroup generated by uv. This gives an ordinary cross product Hopf
algebra Ξ = C(Z3)>/CZ2. Here Sδi = δ−i and Su = u. The cocycle is trivial so γ = 1 and
G = 1⊗ 1 in Proposition 6.4.9 and we have an ordinary Hopf ∗-algebra.

( ii) Ξ(R,K) for S2 ⊂ S3 with its second transversal. For this R, the dot product is
specified by e the identity and v · w = w, w · v = v. The algebra has relations

δeu = uδe, δvu = uδw, δwu = uδv

and the quasi-Hopf algebra coproducts etc. are

∆δe = δe⊗ δe + δv⊗ δv + δw⊗ δw, ∆δv = δe⊗ δv + δv⊗ δe + δw⊗ δv,

∆δw = δe⊗ δw + δw⊗ δe + δv⊗ δw, ∆u = u⊗u,
φ = 1⊗ 1⊗ 1 + (δv⊗ δw + δw⊗ δv)⊗(u− 1) = φ−1.

The antipode is

Sδs = δsR = δs, Su =
∑
s

δ(u.s)Ru = u, α = 1, β =
∑
s

δs⊗ τ(s, s) = 1

from the antipode lemma, since the map ( )R happens to be injective and indeed acts as
the identity. In this case, we see that Ξ(R,K) is nontrivially a quasi-Hopf algebra. Only
τ(v, w) = τ(w, v) = u are nontrivial, hence we have

γ = 1, G = 1⊗ 1 + (δv⊗ δw + δw⊗ δv)(u⊗u− 1⊗ 1).

in Proposition 6.4.9. Moreover, ∗S acts as the identity on our basis (but is antilinear).
We also note that the algebras Ξ(R,K) here are manifestly isomorphic for the two R,

but the coproducts are different, so the tensor products of representations is different,
although they turn out isomorphic. The set of irreps does not change either, but how we
construct them can look different. We will see in the next that this is part of a monoidal
equivalence of categories.
Example 6.4.11. S2 ⊂ S3 with its 2nd transversal. Here R has two orbits: (a) C = {e}
with r0 = e,Kr0 = K with two 1-diml irreps Vρ as ρ=trivial and ρ = sign, and hence
two irreps of Ξ(R,K); (b) C = {w, v} with r0 = v or r0 = w, both with Kr0 = {e} and
hence only ρ trivial, leading to one 2-dimensional irrep of Ξ(R,K). So, altogether, there
are again three irreps of Ξ(R,K):

V({e},ρ) : δr.1 = δr,e, u.1 = ±1,
V({w,v}),1) : δr.v = δr,vv, δr.w = δr,ww, u.v = w, u.w = v

acting on C and on the span of v, w respectively. These irreps are equivalent to what we
had in Example 6.2.9 when computing irreps from the standard R.



6.5. Categorical justification and twisting theorem 205

6.5 Categorical justification and twisting theorem
We have shown that the boundaries can be defined using the action of the algebra Ξ(R,K)
and that one can perform novel methods of fault-tolerant quantum computation using
these boundaries. The full story, however, involves the quasi-Hopf algebra structure verified
in the preceding section and now we would like to connect back up to the category theory
behind this.

6.5.1 G-graded K-bimodules.
We start by proving the equivalence Ξ(R,K)M' KMG

K explicitly and use it to derive the
coproduct studied in Section 6.4. Although this equivalence is known[Sch02A], we believe
this to be a new and more direct derivation.

Lemma 6.5.1. If Vρ is a Kr0-module and VO,ρ the associated Ξ(R,K) irrep, then

ṼO,ρ = VO,ρ⊗CK, x.(r⊗ v⊗ z).y = x.r⊗ ζr(x).v⊗(x/r)zy, |r⊗ v⊗ z| = rz

is a G-graded K-bimodule. Here r ∈ O and v ∈ Vρ in the construction of VO,ρ.

Proof. That this is a G-graded right K-module commuting with the left action of K is
trivial. That the left action works and is G-graded is

x.(y.(r⊗ v⊗ z)) = x.(y.r⊗ ζr(y).v⊗(y/r)z) = xy.r⊗ ζr(xy).v⊗(x/(y.r))(y/r)z
= xy.r⊗ ζr(xy).v⊗((xy)/r)z

and
|x.(r⊗ v⊗ z).y| = (x.r)(x/r)zy = xrzy = x|r⊗ v⊗ z|y.

�

Remark 6.5.2. Recall that we can also think more abstractly of Ξ = C(G/K)>/CK
rather than using a transversal. In these terms, a representation of Ξ(R,K), which is an
R-graded K-module V such that |x.v| = x/|v|, now becomes a G/K-graded K-module.
This has that |x.v| = x|v|, where |v| ∈ G/K, and we multiply from the left by x ∈ K.
Moreover, the role of an orbit O above is played by a double coset T = OK ∈ KGK . In
these terms, the role of the isometry group Kr0 is played by

KrT := K ∩ rTKr−1
T ,

where rT is any representative of the same double coset. One can take rT = r0 but we can
also chose it more freely. Then an irrep is given by a double coset T and an irreducible
representation ρT of KrT . If we denote by VρT the carrier space for this then the associated
irrep of C(G/K)>/CK is VT,ρT = CK ⊗KrT VρT which is manifestly a K-module and we
give it the G/K-grading by |x⊗KrT v| = xK. The construction in the last lemma is then
equivalent to

ṼT,ρT = CK ⊗
KrT

VρT ⊗CK, |x ⊗
KrT

v⊗ z| = xz

as manifestly a G-graded K-bimodule. This is an equivalent point of view, but we prefer
our more explicit one based on R, hence details are omitted.



206 Chapter 6. Algebraic aspects of boundaries in quantum double models

Also note that the category KMG
K of G-graded K-bimodules has an obvious monoidal

structure inherited from that of K-bimodules, where we tensor product over CK. Here
|w⊗CK w

′| = |w||w′| in G is well-defined and x.(w⊗CK w
′).y = x.w⊗CK w

′.y has degree
x|w||w′|y = x|w⊗CK w

′|y as required.
Proposition 6.5.3. We let R be a transversal and W = V ⊗CK made into a G-graded
K-bimodule by

x.(v⊗ z).y = x.v⊗(x/|v|)zy, |v⊗ z| = |v|z ∈ G,

where now we view |v| ∈ R as the chosen representative of |v| ∈ G/K. This gives a functor
F : ΞM→ KMG

K which is a monoidal equivalence for a suitable quasibialgebra structure
on Ξ(R,K). The latter depends on R since F depends on R.

Proof. We define F (V ) as stated, which is clearly a right module that commutes with the
left action, and the latter is a module structure as

x.(y.(v⊗ z)) = x.(y.v⊗(y/|v|)z) = xy.v⊗(x/(y.|v|))(y/|v|)z = (xy).(v⊗ z)

using the matched pair axiom for (xy)/|v|. We also check that |x.(v⊗ z).y| = |x.v|zy =
(x.|v|)(x/|v|)zy = x|v|zy = x|v⊗ z|y. Hence, we have aG-gradedK-bimodule. Conversely,
if W is a G-graded K-bimodule, we let

V = {w ∈ W | |w| ∈ R}, x.v = xv(x/|v|)−1, δr.v = δr,|v|v,

where v on the right is viewed in W and we use the K-bimodule structure. This is
arranged so that x.v on the left lives in V . Indeed, |x.v| = x|v|(x/|v|)−1 = x.|v|
and x.(y.v) = xyv(y/|v|)−1(x/(y.|v|))−1 = xyv((xy)/|v|)−1 by the matched pair con-
dition, as required for a representation of Ξ(R,K). One can check that this is inverse
to the other direction. Thus, given W = ⊕rx∈GWrx = ⊕x∈KWRx, where we let WRx =
⊕r∈RWrx, the right action by x ∈ K gives an isomorphism WRx

∼=V ⊗x as vector spaces
and hence recovers W = V ⊗CK. This clearly has the correct right K-action and
from the left x.(v⊗ z) = xv(x/|v|)−1⊗(x/|v|)z, which under the identification maps
to xv(x/|v|)−1(x/|v|)z = xvz ∈ W as required given that v⊗ z maps to vz in W .

Now, if V, V ′ are Ξ(R,K) modules then as vector spaces,

F (V ) ⊗
CK

F (V ′) = (V ⊗CK) ⊗
CK

(V ′⊗CK) = V ⊗V ′⊗CK
fV,V ′∼= F (V ⊗V ′)

by the obvious identifications except that in the last step we allow ourselves the possibility
of a nontrivial isomorphism as vector spaces. For the actions on the two sides,

x.(v⊗ v′⊗ z).y = x.(v⊗ v′)⊗(x/|v⊗ v′|)zy = x.v⊗(x/|v|).v′⊗((x/|v|)/|v′|)zy,

where on the right, we have x.(v⊗ 1) = x.v⊗x/|v| and then take x/|v| via the ⊗CK to
act on v′⊗ z as per our identification. Comparing the x action on the V ⊗V ′ factor, we
need

∆x =
∑
r∈R

xδr⊗x/r =
∑
r∈R

δx.r⊗x⊗ 1⊗x/r

as a modified coproduct without requiring a nontrivial fV,V ′ for this to work. The first ex-
pression is viewed in Ξ(R,K)⊗ 2 and the second is on the underlying vector space. Likewise,
looking at the grading of F (V ⊗V ′) and comparing with the grading of F (V )⊗CK F (V ′),



6.5. Categorical justification and twisting theorem 207

we need to define |v⊗ v′| = |v| · |v′| ∈ R and use |v| · |v′|τ(|v|, |v′|) = |v||v′| to match the
degree on the left hand side. This amounts to the coproduct of δr in Ξ(R,K),

∆δr =
∑
s·t=r

δs⊗ δt =
∑
s·t=r

δs⊗ 1⊗ δt⊗ 1

and a further isomorphism

fV,V ′(v⊗ v′⊗ z) = v⊗ v′⊗ τ(|v|, |v′|)z

on the underlying vector space. After applying this, the degree of this element is |v⊗ v′|τ(|v|, |v′|)z =
|v||v′|z = |v⊗ 1||v′⊗ z|, which is the degree on the original F (V )⊗CK F (V ′) side. Now
we show that fV,V ′ respects associators on each side of F . Taking the associator on the
Ξ(R,K)-module side as

φV,V ′,V ′′ : (V ⊗V ′)⊗V ′′ → V ⊗(V ′⊗V ′′), φV,V ′,V ′′((v⊗ v′)⊗ v′′) = φ1.v⊗(φ2.v′⊗φ3.v′′)

and φ trivial on the G-graded K-bimodule side, for F to be monoidal with the stated
fV,V ′ etc, we need equality of

F (φV,V ′,V ′′)fV ⊗V ′,V ′′fV,V ′(v⊗ v′⊗ z)
= F (φV,V ′,V ′′)fV ⊗V ′,V ′′(v⊗ v′⊗ τ(|v|, |v′|).v′′⊗(τ(|v|, |v′|)/|v′′|)z)
= F (φV,V ′,V ′′)(v⊗ v′⊗ τ(|v|, |v′|).v′′⊗ τ(|v| · |v′|, τ(|v|, |v′|).|v′′|)(τ(|v|, |v′|)/|v′′|)z)
= F (φV,V ′,V ′′)(v⊗ v′⊗ τ(|v|, |v′|).v′′⊗ τ(|v|, |v′| · |v′′|)τ(|v′|, |v′′|)z,

fV,V ′⊗V ′′fV ′,V ′′(v⊗ v′⊗ v′′⊗ z) = fV,V ′⊗V ′′(v⊗ v′⊗ v′′⊗ τ(|v′|, |v′′|)z)
= v⊗ v′⊗ v′′⊗ τ(|v|, |v′⊗ v′′|)τ(|v′|, |v′′|)z = v⊗ v′⊗ v′′⊗ τ(|v|, |v′| · |v′′|)τ(|v′|, |v′′|)z,

where for the first equality we moved τ(|v|, |v′|) in the output of fV,V ′ via ⊗CK to act on
the v′′. We used the cocycle property of τ for the 3rd equality. Comparing results, we need

φV,V ′,V ′′((v⊗ v′)⊗ v′′) = v⊗(v′⊗ τ(|v|, |v′|)−1.v′′), φ =
∑
s,t∈R

(δs⊗ 1)⊗(δs⊗ 1)⊗(1⊗ τ(s, t)−1).

Note that we can write

fV,V ′(v⊗ v′⊗ z) = (
∑
s,t∈R

(δs⊗ 1)⊗(δt⊗ 1)⊗ τ(s, t)).(v⊗ v′⊗ z)

but we are not saying that φ is a coboundary since this is not given by the action of an
element of Ξ(R,K)⊗ 2. �

This derives the quasibialgebra structure on Ξ(R,K) used in Section 6.4 but now so as
to obtain an equivalence of categories.

6.5.2 Drinfeld twists induced by change of transversal
We recall that if H is a quasiHopf algebra and χ ∈ H ⊗H is a cochain in the sense of being
invertible and (id⊗ ε)χ = (ε⊗ id)χ = 1, then its Drinfeld twist H̄ is another quasi-Hopf
algebra

∆̄ = χ−1∆( )χ, φ̄ = χ−1
23 ((id⊗∆)χ−1)φ((∆⊗ id)χ)χ12, ε̄ = ε

S = S, ᾱ = (Sχ1)αχ2, β̄ = (χ−1)1βS(χ−1)2



208 Chapter 6. Algebraic aspects of boundaries in quantum double models

where χ = χ1⊗χ2 is with a sum of such terms understood and we use same notation
for χ−1, see [Maj95, Thm. 2.4.2] but note that our χ is denoted F−1 there. In categorical
terms, this twist corresponds to a monoidal equivalence G : HM → H̄M which is the
identity on objects and morphisms but has a nontrivial natural transformation

gV,V ′ : G(V )⊗̄G(V ′)∼=G(V ⊗V ′), gV,V ′(v⊗ v′) = χ1.v⊗χ2.v′.

The next theorem follows by the above reconstruction arguments, but here we check it
directly. The logic is that for different R, R̄ the category of modules are both monoidally
equivalent to KMG

K and hence monoidally equivalent but not in a manner that is com-
patible with the forgetful functor to Vect. Hence these should be related by a cochain
twist.
Theorem 6.5.4. Let R, R̄ be two transversals with r̄ ∈ R̄ representing the same coset as
r ∈ R. Then Ξ(R̄,K) is a cochain twist of Ξ(R,K) at least as quasi-bialgebras (and as
quasi-Hopf algebras if one of them is). The Drinfeld cochain is χ =

∑
r∈R(δr⊗ 1)⊗(1⊗ r−1r̄).

Proof. Let R, R̄ be two transversals. Then for each r ∈ R, the class rK has a unique
representative r̄K with r̄ ∈ R̄. Hence r̄ = rcr for some function c : R → K determined
by the two transversals as cr = r−1r̄ in G. One can show that the cocycle matched pairs
are related by

x.̄r̄ = (x.r)cx.r, x/̄r̄ = c−1
x.r(x/r)cr

among other identities. On using

s̄t̄ = scstct = s(cs.t)(cs/t)ct = (s · cs.t)τ(s, cs.t)(cs/t)ct
= s · (cs.t)c−1

s·cs.tτ(s, cs.t)(cs/t)ct

and factorising using R̄, we see that

s̄ ·̄ t̄ = s · cs.t, τ̄(s̄, t̄) = c−1
s·cs.tτ(s, cs.t)(cs/t)ct. (6.16)

We will construct a monoidal functor G : Ξ(R,K)M → Ξ(R̄,K)M with gV,V ′(v⊗ v′) =
χ1.v⊗χ2.v′ for a suitable χ ∈ Ξ(R,K)⊗ 2. First, let F : Ξ(R,K)M→ KMG

K be the monoidal
functor above with natural isomorphism fV,V ′ and F̄ : Ξ(R̄,K)M→ KMG

K the parallel for
Ξ(R̄,K) with isomorphism f̄V,V ′ . Then

C : F → F̄ ◦G, CV : F (V ) = V ⊗CK → V ⊗CK = F̄G(V ), CV (v⊗ z) = v⊗ c−1
|v| z

is a natural isomorphism. Check on the right we have, denoting the R̄ grading by || ||, the
G-grading and K-bimodule structure

|CV (v⊗ z)| = |v⊗ c−1
|v| z| = ||v||c

−1
|v| z = |v|z = |v⊗ z|,

x.CV (v⊗ z).y = x.(v⊗ c−1
|v| z).y = x.v⊗(x/̄||v||)c−1

|v| zy = x.v⊗ c−1
x.|v|(x/|v|)zy

= CV (x.(v⊗ z).y).

We want these two functors to not only be naturally isomorphic but for this to respect
that they are both monoidal functors. Here F̄ ◦G has the natural isomorphism

f̄ gV,V ′ = F̄ (gV,V ′) ◦ f̄G(V ),G(V ′)



6.5. Categorical justification and twisting theorem 209

by which it is a monoidal functor.
The natural condition on a natural isomorphism C between monoidal functors is that

C behaves in the obvious way on tensor product objects via the natural isomorphisms
associated to each monoidal functor. In our case, this means

f̄ gV,V ′ ◦ (CV ⊗CV ′) = CV ⊗V ′ ◦ fV,V ′ : F (V )⊗F (V ′)→ F̄G(V ⊗V ′).

Putting in the specific form of these maps, the right hand side is

CV ⊗V ′ ◦ fV,V ′(v⊗ 1⊗
K
v′⊗ z) = CV ⊗V ′(v⊗ v′⊗ τ(|v|, |v′|)z) = v⊗ v′⊗ c−1

|v⊗ v′|τ(|v|, |v′|)z,

while the left hand side is

f̄ gV,V ′ ◦ (CV ⊗CV ′)(v⊗ 1⊗
K
v′⊗ z) = f̄ gV,V ′(v⊗ c−1

|v| ⊗
K
v′⊗ c−1

|v′|z)

= f̄ gV,V ′(v⊗ 1⊗
K
c−1
|v| .v

′⊗(c−1
|v| .̄||v

′||)c−1
|v′|z)

= F̄ (gV,V ′)(v⊗ c−1
|v| .v

′⊗ τ̄(||v||, ||c−1
|v| .v

′||)(c−1
|v| .̄||v

′||)c−1
|v′|z)

= F̄ (gV,V ′)(v⊗ c−1
|v| .v

′⊗ c−1
|v⊗ v′|τ(|v|, |v′|)z,

using the second of (6.16) and |v⊗ v′| = |v| · |v′|. We also used f̄ gV,V ′ = F̄ (gV,V ′)f̄G(V ),G(V ′) :
F̄G(V )⊗ F̄G(V ′)→ F̄G(V ⊗V ′). Comparing, we need F̄ (gV,V ′) to be the action of the
element

χ =
∑
r∈R

δr⊗ cr ∈ Ξ(R,K)⊗ 2.

It follows from the arguments, but one can also check directly, that φ indeed twists as
stated to φ̄ when these are given by Lemma 6.4.5, again using (6.16). �

The twisting of a quasi-Hopf algebra is again one. Hence, we have:
Corollary 6.5.5. If R has ( )R bijective giving a quasi-Hopf algebra with regular antipode
S, α = 1, β as in Theorem 6.4.8 and R̄ is another transversal then Ξ(R̄,K) in the twisting
form of Theorem 6.5.4 has an antipode

S̄ = S, ᾱ =
∑
r

δrRcr, β̄ =
∑
r

δrτ(r, rR)(c−1
r /rR)−1.

This is a regular antipode if ( )R for R̄ is also bijective (i.e. ᾱ is then invertible and can
be transformed back to standard form to make it 1).

Proof. We work with the initial quasi-Hopf algebra Ξ(R,K) and ., /, τ refer to this but
note that Ξ(R̄,K) is the same algebra when δr is identified with the corresponding δr̄.
Then

ᾱ = (Sχ1)χ2 =
∑
r

Sδr⊗ cr = δrRcr

using the formula for Sδr = δrR in Theorem 6.4.8. Similarly, χ−1 =
∑

r δr⊗ c−1
r and we

use S, β from the above lemma, where

S(1⊗x) =
∑
s

δ(x−1.s)R ⊗x−1/s =
∑
t

δtR ⊗x−1/(x.t) =
∑
t

δtR ⊗(x/t)−1.



210 Chapter 6. Algebraic aspects of boundaries in quantum double models

Then

β̄ = χ−1βSχ−2 =
∑
r,s,t

δrδsτ(s, sR)δtR(c−1
r /t)−1

=
∑
r,t

δrτ(r, rR)δtR(c−1
r /t)−1 =

∑
r,t

δrδτ(r,rR).tRτ(r, rR)(c−1
r /t)−1.

Commuting the δ-functions to the left requires r = τ(r, rR).tR or rRR = τ(r, rR)−1.r = tR

so t = rR under our assumptions, giving the answer stated.
If ( )R is bijective then ᾱ−1 =

∑
r c
−1
r δrR =

∑
r δc−1

r .rRc
−1
r provides the left inverse. On

the other side, we need c−1
r .rR = c−1

s .sR iff r = s. This is true if ( )R for R̄ is also bijective.
That is because, if we write ( )R̄ for the right inverse with respect to R̄, one can show by
comparing the factorisations that

s̄R̄ = c−1
s .sR, sR = cs.̄s̄

R̄

and we use the first of these. �

Example 6.5.6. With reference to the list of transversals for S2 ⊂ S3, we have four
quasi-Hopf algebras of which two were already computed in Example 6.4.10.

( i) 2nd transversal as twist of the first. Here Ξ̄ is generated by Z2 as u again and δr̄
with R̄ = {e, w, v}. We have the same cosets represented by these with ē = e, uv = w
and vu = v, which means ce = e, cvu = u, cuv = u. To compare the algebras in the two
cases, we identify δ0 = δe, δ1 = δw, δ2 = δv as delta-functions on G/K (rather than on G)
in order to identify the algebras of Ξ̄ and Ξ. The cochain from Theorem 6.5.4 is

χ = δe⊗ e+ (δvu + δuv)⊗u = δ0⊗ 1 + (δ1 + δ2)⊗u = δ0⊗ 1 + (1− δ0)⊗u

as an element of Ξ⊗Ξ. One can check that this conjugates the two coproducts as claimed.
We also have

χ2 = 1⊗ 1, (ε⊗ id)χ = (id⊗ ε)χ = 1.
We spot check (6.16), for example v·̄w = vu ·̄uv = uv = vuvu = vu(u.(uv)), as it had to
be. We should therefore find that

((∆⊗ id)χ)χ12 = ((id⊗∆)χ)χ23φ̄.

We have checked directly that this indeed holds. Next, the antipode of the first transversal
should twist to

S̄ = S, ᾱ = δece + δuvcvu + δvucuv = δe(e− u) + u = δece + δvucvu + δuvcuv = β̄

by Corollary 6.5.5 for twisting the antipode. Here,U = ᾱ−1 = β̄ = U−1 and S̄ ′ = U(S )U−1

with ᾱ′ = β̄′ = 1 should also be an antipode. We can check this:

Uu = (δ0(e− u) + u)u = δ0(u− e) + e = u(δu−1.0(e− u) + u) = uU

so S̄ ′u = UuU−1 = u, and

S̄ ′δ1 = U(Sδ1)U = Uδ2U = (δ0(e− u) + u)δ2(δ0(e− u) + u) = δ1.



6.5. Categorical justification and twisting theorem 211

( ii) 3rd transversal as a twist of the first. A mixed up choice is R̄ = {e, uv, v} which is
not a subgroup so τ is nontrivial. One has

τ(uv, uv) = τ(v, uv) = τ(uv, v) = u, τ(v, v) = e, v·v = e, v·uv = uv, uv·v = e, uv.·uv = v,

u.v = uv, u.(uv) = v, u/v = e, u/uv = e

and all other cases implied from the properties of e. Here vR = v and (uv)R = v. These
are with respect to R̄, but note that twisting calculations will take place with respect to
R.

Writing δ0 = δe, δ1 = δuv, δ2 = δv we have the same algebra as before (as we had to)
and now the coproduct etc.,

∆̄u = u⊗ 1 + δ0u⊗(u− 1), ∆̄δ0 = δ0⊗ δ0 + δ2⊗ δ2 + δ1⊗ δ2

∆̄δ1 = δ0⊗ δ1 + δ1⊗ δ0 + δ2⊗ δ1, ∆̄δ2 = δ0⊗ δ2 + δ2⊗ δ0 + δ1⊗ δ1,

φ̄ = 1⊗ 1⊗ 1 + (δ1⊗ δ2 + δ2⊗ δ1 + δ1⊗ δ1)(u− 1) = φ̄−1

for the quasibialgebra. We used the τ, ., /, · for R̄ for these direct calculations.
Now we consider twisting with

c0 = e, c1 = (uv)−1uv = 1, c2 = v−1vu = u, χ = 1⊗ 1 + δ2⊗(u− 1) = χ−1

and check twisting the coproducts

(1⊗ 1 + δ2⊗(u− 1))(u⊗u)(1⊗ 1 + δ2u⊗(u− 1)) = u⊗ 1 + δ0⊗(u− 1) = ∆̄u,

(1⊗ 1 + δ2⊗(u− 1))(δ0⊗ δ0 + δ1⊗ δ2 + δ2⊗ δ1)(1⊗ 1 + δ2⊗(u− 1)) = ∆̄δ0,

(1⊗ 1 + δ2⊗(u− 1))(δ0⊗ δ1 + δ1⊗ δ0 + δ2⊗ δ2)(1⊗ 1 + δ2⊗(u− 1)) = ∆̄δ1,

(1⊗ 1 + δ2⊗(u− 1))(δ0⊗ δ2 + δ2⊗ δ0 + δ1⊗ δ1)(1⊗ 1 + δ2⊗(u− 1)) = ∆̄δ2.

One can also check that (6.16) hold, e.g. for the first half,

2̄ = 1̄̄·1̄ = 1 + c1.1 = 1 + 1, 0̄ = 1̄̄·2̄ = 1 + c1.2 = 1 + 2,

1̄ = 2̄̄·1̄ = 2 + c2.1 = 2 + 2, 0̄ = 2̄̄·2̄ = 2 + c2.2 = 2 + 1
as it must.

Now we apply the twisting of antipodes in Corollary 6.5.5, remembering to do calcula-
tions now with R where τ, / are trivial, to get

S̄ = S, ᾱ = δ0 + δ1c2 + δ2c1 = 1 + δ1(u− 1), β̄ = δ0 + δ2c2 + δ1c1 = 1 + δ2(u− 1),

which obey ᾱ2 = ᾱ and β̄2 = β̄ and are therefore not (left or right) invertible. Hence, we
cannot set either equal to 1 by U and there is an antipode, but it is not regular. One can
check the antipode indeed works:

(Su)α + (Su)(Sδ0)α(u− 1) = u(1 + δ1(u− 1)) + δ0u(1 + δ1(u− 1))(u− 1)
= u+ δ2(1− u) + δ0(1− u) = u+ (1− δ1)(1− u) = α

uβ + δ0uβS(u− 1) = u(1 + δ2(u− 1)) + δ0u(1 + δ2(u− 1))(u− 1)
= u+ δ1(1− u) + δ0(1− u) = u+ (1− δ2)(1− u) = β



212 Chapter 6. Algebraic aspects of boundaries in quantum double models

(Sδ0)αδ0 + (Sδ2)αδ2 + (Sδ1)αδ2 = δ0(1 + δ1(u− 1))δ0 + (1− δ0)(1 + δ1(u− 1))δ2

= δ0 + (1− δ0)δ2 + δ1(δ1u− δ2) = δ0 + δ2 + δ1u = α

δ0βSδ0 + δ2βSδ2 + δ1βSδ2 = δ0(1 + δ2(u− 1))δ0 + (1− δ0)(1 + δ2(u− 1))δ1

= δ0 + (1− δ0)δ1 + (1− δ0)δ2(u− 1)δ1 = δ0 + δ1 + δ2(δ2u− δ1) = β

and more simply on δ1, δ2.
The fourth transversal has a similar pattern to the 3rd, so we do not list its coproduct

etc. explicitly.
In general, there will be many different choices of transversal. For Sn−1 ⊂ Sn, the first

two transversals for S2 ⊂ S3 generalise as follows, giving a Hopf algebra and a strictly
quasi-Hopf algebra respectively.
Example 6.5.7. ( i) First transversal. Here R = Zn is a subgroup with i = 0, 1, · · · , n− 1
mod n corresponding to the elements (12 · · ·n)i. Neither subgroup is normal for n ≥ 4, so
both actions are nontrivial but τ is trivial. This expresses Sn as a double cross product
Zn./Sn−1 (with trivial τ) and the matched pair of actions

σ.i = σ(i), (σ/i)(j) = σ(i+ j)− σ(i)

for i, j = 1, · · · , n−1, where we add and subtract mod n but view the results in the range
1, · · · , n. This was actually found by twisting from the 2nd transversal below, but we can
check it directly as follows. First.

σ(1 · · ·n)i = (σ.i)(σ/i) = (12 · · ·n)σ(i) ((1 · · ·n)−σ(i)σ(12 · · ·n)i
)

and we check that the second factor sends n→ i→ σ(i)→ n, hence lies in Sn. It follows
by the known fact of unique factorisation into these subgroups that this factor is σ/i. Its
action on j = 1, · · · , n− 1 is

(σ.i)(j) = (12 · · ·n)−σ(i)σ(12 · · ·n)i(j) =
{
n− σ(i) i+ j = n

σ(i+ j)− σ(i) i+ j 6= n
= σ(i+ j)− σ(i),

where σ(i+ j) 6= σ(i) as i+ j 6= i and σ(n) = n as σ ∈ Sn−1. It also follows since the two
factors are subgroups that these are indeed a matched pair of actions. We can also check
the matched pair axioms directly. Clearly, . is an action and

σ(i) + (σ/i)(j) = σ(i) + σ(i+ j)− σ(i) = σ.(i+ j)

for i, j ∈ Zn. On the other side,

((σ/i)/j)(k) = (σ/i)(j + k)− (σ/i)(j) = σ(i+ (j + k))− σ(i)− σ(i+ j) + σ(i)
= σ((i+ j) + k)− σ(i+ j) = (σ/(i+ j))(k),

((σ/(τ.i))(τ/i))(j) = (σ/τ(i))(τ(i+ j))− τ(i)) = σ(τ(i) + τ(i+ j)− τ(i))− σ(τ(i))
= σ(τ(i+ j))− σ(τ(i)) = ((στ)/i)(j)

for i, j ∈ Zn and k ∈ 1, · · · , n− 1.
This gives CSn−1.JC(Zn) as a natural bicrossproduct Hopf algebra which we identify

with Ξ (which we prefer to build on the other tensor product order). From Lemma 6.4.5
and Theorem 6.4.8, this is spanned by products of δi for i = 0, · · ·n− 1 as our labelling



6.5. Categorical justification and twisting theorem 213

of R = Zn and σ ∈ Sn−1 = K, with cross relations σδi = δσ(i)σ, σδ0 = δ0σ, and coproduct
etc.,

∆δi =
∑
j∈Zn

δj ⊗ δi−j, ∆σ = σδ0 +
n−1∑
i=1

(σ/i), εδi = δi,0, εσ = 1,

Sδi = δ−i, Sσ = σ−1δ0 + (σ−1/i)δ−i,

where σ/i is as above for i = 1, · · · , n − 1. This is a usual Hopf ∗-algebra with δ∗i = δi
and σ∗ = σ−1.

( ii) 2nd transversal. Here R = {e, (1n), (2n), · · · , (n− 1n)}, which has nontrivial . in
which Sn−1 permutes the 2-cycles according to the i label, but again trivial / since

σ(i n) = (σ(i)n)σ, σ.(i n) = (σ(i)n)

for all i = 1, · · · , n− 1 and σ ∈ Sn−1. It has nontrivial τ as

(i n)(j n) = (j n)(i j)⇒ (i n) · (j n) = (j n), τ((i n), (j n)) = (ij)

for i 6= j and we see that · has right but not left division or left but not right cancellation.
We also have (in) · (in) = e and τ((in), (in)) = e so that ( )R is the identity map, hence
R is regular.

This transversal gives a cross-product quasiHopf algebra Ξ = CSn−1.<τC(R) where R
is a left quasigroup (i.e. unital and with left cancellation) except that we prefer to write
it with the tensor factors in the other order. From Lemma 6.4.5 and Theorem 6.4.8, this
is spanned by products of δi and σ ∈ Sn−1, where δ0 is the delta function at e ∈ R and δi
at (i, n) for i = 1, · · · , n − 1. The cross relations have the same algebra σδi = δσ(i)σ for
i = 1, · · · , n− 1 as before but now the tensor coproduct etc., and nontrivial associator

∆δ0 =
n−1∑
i=0

δi⊗ δi, ∆δi = 1⊗ δi + δi⊗ δ0, ∆σ = σ⊗σ, εδi = δi,0, εσ = 1,

Sδi = δi, Sσ = σ−1, α = β = 1,

φ = (1⊗ δ0 + δ0⊗(1− δ0) +
n−1∑
i=1

δi⊗ δi)⊗ 1 +
n−1∑
i,j=1
i 6=j

δi⊗ δj ⊗(ij).

This time we have nontrivial

γ = 1, G = 1⊗ δ0 + δ0⊗(1− δ0) +
n−1∑
i=1

δi⊗ δi +
n−1∑
i,j=1
i6=j

δi(ij)⊗ δj(ij)

in Proposition 6.4.9 from the ∗-quasi-Hopf structure in the Appendix 24.
( iii) Twisting between the above two transversals. We denote the first transversal

R = Zn, where i is identified with (12 · · ·n)i, and we denote the 2nd transversal by R̄
with corresponding elements ī = (i n). Then

ci = (12 · · ·n)−i(i n) ∈ Sn−1, ci(j) =
{
n− i j = i

j − i else



214 Chapter 6. Algebraic aspects of boundaries in quantum double models

for i, j = 1, · · · , n− 1. If we use the stated . for the first transversal then one can check
that the first half of (6.16) holds,

i+ ci.i = i+ n− i = e = ī̄·̄i, i+ ci.j = i+ j − i = j̄ = ī̄·j̄

as it must. We can also check that the actions are indeed related by twisting. Thus,

σ/̄i = c−1
σ.i(σ/i)ci = (σ(i), n)(12 · · ·n)σ(i)(σ/i)(12 · · ·n)−i(i, n) = (σ(i), n)σ(i, n) = σ

σ.̄̄i = (σ.i)cσ.i = (12 · · ·n)σ(i)(12 · · ·n)−σ(i)(σ(i), n) = (σ(i), n),
where we did the computation with Zn viewed in Sn.

It follows that the Hopf algebra from case (i) cochain twists to a simpler quasihopf
algebra in case (ii). The required cochain from Theorem 6.5.4 is

χ = δ0⊗ 1 +
n−1∑
i=1

δi⊗(12 · · ·n)−i(in).

The above example is a little similar to the Drinfeld Uq(g) as Hopf algebras which are
cochain twists of U(g) viewed as a quasi-Hopf algebra. We conclude with the promised
example related to the octonions. This is a version of [KM10A, Example 4.6], but with
left and right swapped and some cleaned up conventions.
Example 6.5.8. We let G = Cl3>/Z3

2, where Cl3 is generated by 1,−1 and ei, i = 1, 2, 3,
with relations

(−1)2 = 1, (−1)ei = ei(−1), e2
i = −1, eiej = −ejei

for i 6= j and the usual combination rules for the product of signs. Its elements can be
enumerated as ±e~a where ~a ∈ Z3

2 is viewed in the additive group of 3-vectors with entries
in the field F2 = {0, 1} of order 2 and

e~a = ea1
1 e

a2
2 e

a3
3 , e~ae~b = e~a+~b(−1)

∑
i≥j aibj .

This is the twisted group ring description of the 3-dimensional Clifford algebra over R
in [AM99], but now restricted to coefficients 0,±1 to give a group of order 16. For an
example,

e110e101 = e2e3e1e3 = e1e2e
2
3 = −e1e2 = −e011 = −e110+101

with the sign given by the formula.
We similarly write the elements of K = Z3

2 multiplicatively as g~a = ga1
1 g

a2
1 g

a3
3 labelled

by 3-vectors with values in F2. The generators gi commute and obey g2
i = e. The general

group product becomes the vector addition, and the cross relations are

(−1)gi = gi(−1), eigi = −giei, eigj = gjei

for i 6= j. This implies that G has order 128.
(i) If we take R = Cl3 itself then this will be a subgroup and we will have for Ξ(R,K)

an ordinary Hopf ∗-algebra as a semidirect product CZ3
2.<C(Cl3) except that we build it

on the opposite tensor product.
(ii) Instead, we take as representatives the eight elements again labelled by 3-vectors

over F2,
r000 = 1, r001 = e3, r010 = e2, r011 = e2e3g1



6.5. Categorical justification and twisting theorem 215

r100 = e1, r101 = e1e3g2, r110 = e1e2g3, r111 = e1e2e3g1g2g3

and their negations, as a version of [KM10A, Example 4.6]. This can be written compactly
as

r~a = e~ag
a2a3
1 ga1a3

2 ga1a2
3

Proposition 6.5.9. [KM10A] This choice of transversal makes (R, ·) the octonion two
sided inverse property quasigroupGO in the Albuquerque-Majid description of the octonions[AM99],

r~a · r~b = (−1)f(~a,~b)r~a+~b, f(~a,~b) =
∑
i≥j

aibj + a1a2b3 + a1b2a3 + b1a2a3

with the product on signed elements behaving as if bilinear. The action / is trivial, and
the left action and cocycle τ are

g~a.r~b = (−1)~a·~br~b, τ(r~a, r~b) = g~a×
~b = ga2b3+a3b2

1 ga3b1+a1b3
2 ga1b2+a2b1

3

with the action extended with signs as if linearly and τ independent of signs in either
argument.

Proof. We check in the group

r~ar~b = e~ag
a2a3
1 ga1a3

2 ga1a2
3 e~bg

b2b3
1 gb1b3

2 gb1b2
3

= e~ae~b(−1)b1a2a3+b2a1a3+b3a1a2ga2a3+b2b3
1 ga1a3+b1b3

2 ga1a2+b1b2
3

= (−1)f(a,b)r~a+~bg
a2a3+b2b3−(a2+b2)(a3+b3)
1 g

a1a3+b1b3−(a1+b1)(a3+b3)
2 g

a1a2+b1b2−(a1+b1)(a2+b2)
3

= (−1)f(a,b)r~a+~bg
a2b3+b2a3
1 ga1b3+b1a3

2 ga1b2+b1a2
3 ,

from which we read off · and τ . For the second equality, we moved the gi to the right
using the commutation rules in G. For the third equality we used the product in Cl3 in
our description above and then converted e~a+~b to r~a+~b. �

The product of the quasigroup GO here is the same as the octonions product as an
algebra over R in the description of [AM99], restricted to elements of the form ±r~a. The
cocycle-associativity property of (R, ·) says

r~a · (r~b · r~c) = (r~a · r~b) · τ(~a,~b).r~c = (r~a · r~b) · r~c(−1)(~a×~b)·~c

giving -1 exactly when the 3 vectors are linearly independent as 3-vectors over F2. One
also has r~a · r~b = ±r~b · r~a with −1 exactly when the two vectors are linearly independent,
which means both nonzero and not equal, and r~a · r~a = ±1 with −1 exactly when the
one vector is linearly independent, i.e. not zero. (These are exactly the quasiassociativity,
quasicommutativity and norm properties of the octonions algebra in the description of
[AM99].) The 2-sided inverse is

r−1
~a = (−1)n(~a)r~a, n(0) = 0, n(~a) = 1, ∀~a 6= 0

with the inversion operation extended as usual with respect to signs.
The quasi-Hopf algebra Ξ(R,K) is spanned by δ(±,~a) labelled by the points of R and

products of the gi with the relations g~aδ(±,~b) = δ(±(−1)~a·~b,~b)g
~a and tensor coproduct etc.,

∆δ(±,~a) =
∑
(±′,~b)

δ(±′,~b)⊗ δ(±±′(−1)n(~b),~a+~b), ∆g~a = g~a⊗ g~a, εδ(±,~a) = δ~a,0δ±,+, εg~a = 1,



216 Chapter 6. Algebraic aspects of boundaries in quantum double models

Sδ(±,~a) = δ(±(−1)n(~a),~a, Sg~a = g~a, α = β = 1, φ =
∑

(±,~a),(±′,~b)

δ(±,~a)⊗ δ(±′,~b)⊗ g
~a×~b

We also have ∗ the identity on δ(±,~a), g
~a and nontrivial

γ = 1, G =
∑

(±,~a),(±′,~b)

δ(±,~a)g
~a×~b⊗ δ(±′,~b)g

~a×~b

in Proposition 6.4.9. The general form here is not unlike our Sn example.

6.5.3 Module categories context
This section does not contain anything new beyond [Ost03A, EGNO10], but completes
the categorical picture that connects our algebra Ξ(R,K) to the more general context of
module categories, adapted to our notations.

Our first observation is that if ⊗ : C×V → V is a left action of a monoidal category C on
a category V (one says that V is a left C-module) then one can check that this is the same
thing as a monoidal functor F : C → End(V) where the set End(V) of endofunctors can be
viewed as a strict monoidal category with monoidal product the endofunctor composition
◦. Here End(V) has monoidal unit idV and its morphisms are natural transformations
between endofunctors. F just sends an object X ∈ C to X ⊗( ) as a monoidal functor
from V to V . A monoidal functor comes with natural isomorphisms {fX,Y } and these are
given tautologically by

fX,Y (V ) : F (X) ◦ F (Y )(V ) = X ⊗(Y ⊗V ) ∼= (X ⊗Y )⊗V = F (X ⊗Y )(V )

as part of the monoidal action. Conversely, if given a functor F , we define X ⊗V =
F (X)V and extend the monoidal associativity of C to mixed objects using fX,Y to define
X ⊗(Y ⊗V ) = F (X) ◦F (Y )V∼=F (X ⊗Y )V = (X ⊗Y )⊗V . The notion of a left module
category is a categorification of the bijection between an algebra action · : A⊗V → V
and a representation as an algebra map A → End(V ). There is an equally good notion
of a right C-module category extending ⊗ to V × C → V. In the same way as one uses ·
for both the algebra product and the module action, it is convenient to use ⊗ for both in
the categorified version. Similarly for the right module version.

Another general observation is that if V is a C-module category for a monoidal category
C then FunC(V ,V), the (left exact) functors from V to itself that are compatible with the
action of C, is another monoidal category. This is denoted C∗V in [EGNO10], but should
not be confused with the dual of a monoidal functor which was one of the origins[Maj91] of
the centre Z(C) construction as a special case. Also note that if A ∈ C is an algebra in the
category then V = AC, the left modules of A in the category, is a right C-module category.
If V is an A-module then we define V ⊗X as the tensor product in C equipped with an A-
action from the left on the first factor. Moreover, for certain ‘nice’ right module categories
V, there exists a suitable algebra A ∈ C such that V ' AC, see [Ost03A][EGNO10,
Thm 7.10.1] in other conventions. For such module categories, FunC(V ,V) ' ACA the
category of A-A-bimodules in C. Here, if given an A-A-bimodule E in C, the corresponding
endofunctor is given by E⊗A( ), where we require C to be Abelian so that we can define
⊗A. This turns V ∈ AC into another A-module in C and E⊗A(V ⊗X)∼=(E⊗A V )⊗X,
so the construction commutes with the right C-action.

Before we explain how these abstract ideas lead to KMG
K , a more ‘obvious’ case is the

study of left module categories for C = GM. If K ⊆ G is a subgroup, we set V = KM for i :



6.6. Concluding remarks 217

K ⊆ G. The functor C → End(V) just sends X ∈ C to i∗(X)⊗( ) as a functor on V , or more
simply V is a left C-module by X ⊗V = i∗(X)⊗V . More generally[Ost03A][EGNO10,
Example 7..4.9], one can include a cocycle α ∈ H2(K,C×) since we are only interested
in monoidal equivalence, and this data (K,α) parametrises all indecomposable left GM-
module categories. Moreover, here End(V) ' KMK , the category of K-bimodules, where
a bimodule E acts by E⊗CK( ). So the data we need for a GM-module category is a
monoidal functor GM→ KMK . This is of potential interest but is not the construction
we were looking for.

Rather, we are interested in right module categories of C = MG, the category of G-
graded vector spaces. It turns out that these are classified by the exact same data (K,α)
(this is related to the fact that the MG, GM have the same centre) but the construction
is different. Thus, if K ⊆ G is a subgroup, we consider A = CK regarded as an algebra
in C =MG by |x| = x viewed in G. One can also twist this by a cocycle α, but here we
stick to the trivial case. Then V = AC = KMG, the category of G-graded left K-modules,
is a right C-module category. Explicitly, if X ∈ C is a G-graded vector space and V ∈ V
a G-graded left K-module then

V ⊗X, x.(v⊗w) = v.x⊗w, |v⊗w| = |v||w|, ∀ v ∈ V, w ∈ X

is another G-graded left K-module. Finally, by the general theory, there is an associated
monoidal category

C∗V := FunC(V ,V) ' KMG
K ' Ξ(R,K)M.

which is the desired category to describe quasiparticles on boundaries in [KK12]. Con-
versely, if V is an indecomposable right C-module category for C =MG, it is explained
in [Ost03A][EGNO10, Example 7.4.10] (in other conventions) that the set of indecompos-
able objects has a transitive action of G and hence can be identified with G/K for some
subgroup K ⊆ G. This can be used to put the module category up to equivalence in the
above form (with some cocycle α).

6.6 Concluding remarks
We have given a detailed account of the algebra behind the treatment of boundaries in the
Kitaev model based on subgroups K of a finite group G, as well as how it sits between the
abstract categorical picture on the one hand and concrete applications on the other. New
results include the quasi-bialgebra Ξ(R,K) in full generality, a more direct derivation from
the category KMG

K that connects to the module category point of view, a theorem that
Ξ(R,K) changes by a Drinfeld twist as R changes, and a ∗-quasi-Hopf algebra structure
that ensures a nice properties for the category of representations (these form a strong
bar category) and for the standard antipode S. On the computer science side, we edged
towards how one might use these ideas in quantum computations and detect quasiparticles
across ribbons where one end is on a boundary. We also gave new decomposition formulae
relating representations of D(G) in the bulk to those of Ξ(R,K) in the boundary.

Both the algebraic and the computer science aspects can be taken much further. The
case treated here of trivial cocycle α is already complicated enough but the ideas do
extend to include these and should similarly be worked out. Whereas most of the abstract
literature on such matters is at the conceptual level only up to categorical equivalence,
we set out to give constructions more explicitly, which we believe is essential for concrete
calculations and should also be relevant to the physics. For example, much of the literature



218 Chapter 6. Algebraic aspects of boundaries in quantum double models

on anyons is devoted to so-called F -moves which express the associativity isomorphisms
even though, by Mac Lane’s theorem, monoidal categories are equivalent to strict ones. On
the physics side, the covariance properties of ribbon operators also involve the coproduct
and hence how they are realised depends on the choice of R. The same applies to how
∗ interacts with tensor products, which would be relevant to the unitarity properties of
composite systems. Of interest, for example, should be the case of a lattice divided into
two parts A,B with a boundary between them and how the entropy of states in the
total space relate to those in the subsystem. This is an idea of considerable interest in
quantum gravity, but the latter has certain parallels with quantum computing and could
be explored concretely using the results of the Chapter. We also would like to expand
further the concrete use of patches and lattice surgery, as we considered only the cases of
boundaries with K = {e} and K = G, and only a square geometry. Additionally, it would
be useful to know under what conditions the model gives universal quantum computation.
While there are broadly similar such ideas in the physics literature, e.g., [CCW16], we
believe our fully explicit treatment will help to take these forward.

Further on the algebra side, the Kitaev model generalises easily to replace G by a
finite-dimensional semisimple Hopf algebra, with some aspects also in the nonsemisimple
case[CM22]. The same applies easily enough to at least a quasi-bialgebra associated to
an inclusion L ⊆ H of finite-dimensional Hopf algebras[Sch02B] and to the corresponding
module category picture. Ultimately here, it is the nonsemisimple case that is of interest
as such Hopf algebras (e.g. of the form of reduced quantum groups uq(g)) generate the
categories where anyons as well as TQFT topological invariants live. It is also known that
by promoting the finite group input of the Kitaev model to a more general semisimple
weak Hopf algebra, one can obtain a unitary fusion category in the role of C[Cha14].
There remains a lot of work, therefore, to properly connect these theories to computer
science and in particular to established methods for quantum circuits. A step here could
be braided ZX-calculus[Maj21], although precisely how remains to be developed. These
are some directions for further work.



Bibliography
[Aar05] S. Aaronson, Quantum computing, postselection, and probabilistic

polynomial-time, Proc. R. Soc. A. 461 (2005) 3473-–3482

[AG04] S. Aaronson and D. Gottesman, Improved Simulation of Stabilizer Circuits,
Phys. Rev. A 70, 052328 (2004)

[AAA24] R. Acharya, L. Aghababaie-Beni, I. Aleiner et al., Quantum error correction
below the surface code threshold, arXiv:2408.13687 [quant-ph]

[AM99] H. Albuquerque and S. Majid, Quasialgebra structure of the octonions, J.
Algebra 220 (1999) 188–224

[AGS96] A. Alekseev, H. Grosse and V. Schomerus, Combinatorial quantization
of the Hamiltonian Chern–Simons theory II. Commun. Math. Phys. 174
(1996) 561–604

[ADK15] V. Arvind, B. Das, J. Köbler et al. Colored Hypergraph Isomor-
phism is Fixed Parameter Tractable. Algorithmica 71, 120–138 (2015),
https://doi.org/10.1007/s00453-013-9787-y

[AC19] B. Audoux and A. Couvreur, On tensor products of CSS Codes, Ann.
Inst. Henri Poincaré Comb. Phys. Interact. 6 (2019), no. 2, pp. 239–287,
https://doi.org/10.4171/aihpd/71

[Bac16] M. Backens, Completeness and the ZX-calculus, arXiv:1602.08954 [quant-
ph]

[BK12] B. Balsam and A. Kirillov, Jr., Kitaev’s lattice model and Turaev-Viro
TQFTs, arXiv:1206.2308

[Beg03] E. Beggs, Making non-trivially associated tensor categories from left coset
representatives, J. Pure. App. Alg. 177 (2003) 5–41

[BGM96] E. Beggs, J. Gould and S. Majid, Finite group factorisations and braiding
J. Algebra 181 (1996) 112–151

[BM09] E. Beggs and S. Majid, Bar categories and star operations, Alg. and Repn.
Theory 12 (2009) 103–152

[BM20] E. J. Beggs and S. Majid, Quantum Riemannian Geometry, Springer Inter-
national Publishing, 1 Feb 2020, https://doi.org/10.1007/978-3-030-30294-
8

[BSW11] S. Beigi and P. Shor and D. Whalen, The quantum double model with
boundary: condensations and symmetries, Comm. Math. Phys. 306 (2011)
663–694



220 Bibliography

[BKS21] M. E. Beverland, A. Kubica, and K. M. Svore, Cost of Universal-
ity: A Comparative Study of the Overhead of State Distillation and
Code Switching with Color Codes, PRX Quantum 2, 020341 (2021),
doi:10.1103/PRXQuantum.2.020341

[Bom15] H. Bombin, Gauge Color Codes: Optimal Transversal Gates and Gauge
Fixing in Topological Stabilizer Codes, New J. Phys. 17 (2015) 083002,
doi:10.1088/1367-2630/17/8/083002

[Bom10] H. Bombin, Topological Order with a Twist: Ising Anyons from an Abelian
Model, Phys. Rev. Lett. 105 (2010)

[BDMNPR21] H. Bombin, C. Dawson, R. V. Mishmash, N. Nickerson, F. Pastawski, S.
Roberts, Logical blocks for fault-tolerant topological quantum computation,
arXiv:2112.12160 [quant-ph]

[BM-D08] H. Bombin and M. A. Martin-Delgado, Family of non-Abelian Kitaev
models on a lattice: Topological condensation and confinement, Phys. Rev.
B 78 (2008) 115421

[BM-D07A] H. Bombin and M. A. Martin-Delgado, Homological error correction: Clas-
sical and quantum codes, Journal of Mathematical Physics, vol. 48, no. 5,
p. 052105 (2007), https://doi.org/10.1063/1.2731356

[BM-D07B] H. Bombin and M. A. Martin-Delgado, Optimal resources for topological
two-dimensional stabilizer codes: Comparative study, Physical Review A
76, (2007), doi:10.1103/PhysRevA.76.012305

[BM-D06] H. Bombin and M. A. Martin-Delgado, Topological Quan-
tum Distillation, Phys. Rev. Lett. 97, 180501 (2006),
https://doi.org/10.1103/PhysRevLett.97.180501

[BCGMRY24] S. Bravyi, A. W. Cross, J. M. Gambetta, D. Maslov, P. Rall, T. J. Yoder,
High-threshold and low-overhead fault-tolerant quantum memory, Nature
627, 778-782 (2024), https://doi.org/10.1038/s41586-024-07107-7

[BH12] S. Bravyi and J. Haah, Magic-state distillation with low overhead, Physical
Review A 86, (2012), https://doi.org/10.1103/PhysRevA.86.052329

[BKKK22] S. Bravyi, I. Kim, A. Kliesch and R. Koenig, Adaptive constant-depth
circuits for manipulating non-abelian anyons, arXiv:2205.01933 [quant-ph]

[BK98] S. Bravyi and A. Kitaev, Quantum codes on a lattice with boundary,
arXiv:quant-ph/9811052

[BK05] S. Bravyi and A. Kitaev, Universal quantum computation with ideal
Clifford gates and noisy ancillas, Phys. Rev. A 71 (2005), 022316,
https://doi.org/10.1103/PhysRevA.71.022316

[BT09] S. Bravyi and B. Terhal, A no-go theorem for a two-dimensional self-
correcting quantum memory based on stabilizer codes, New Journal of
Physics 11, 043029 (2009), doi:10.1088/1367-2630/11/4/043029



Bibliography 221

[BAC09] G. K. Brennen1, M. Aguado and J.I. Cirac, Simulations of quantum double
models, New J. Phys. 11 053009 (2009)

[BB24] N. P. Breuckmann and S. Burton, Fold-Transversal Clifford Gates for
Quantum Codes, Quantum 8, 1372 (2024), https://doi.org/10.22331/q-
2024-06-13-1372

[BE21A] N. P. Breuckmann and J. N. Eberhardt, Balanced Product Quan-
tum Codes, IEEE Transactions on Information Theory 2021,
https://doi.org/10.1109/TIT.2021.3097347

[BE21B] N. P. Breuckmann and J. N. Eberhardt, Quantum Low-
Density Parity-Check Codes, PRX Quantum 2 (4), 040101, 2021,
https://doi.org/10.1103/PRXQuantum.2.040101

[BVCKT17] N. P. Breuckmann, C. Vuillot, E. Campbell, A. Krishna and B. M.
Terhal, Hyperbolic and Semi-Hyperbolic Surface Codes for Quantum
Storage, Quantum Science and Technology, Volume 2, Number 3, 2017,
https://doi.org/10.1088/2058-9565/aa7d3b

[BKLW17] B. J. Brown, K. Laubscher, M. S. Kesselring and J. R. Woot-
ton, Poking Holes and Cutting Corners to Achieve Clifford
Gates with the Surface Code, Phys. Rev. X 7, 021029 (2017),
https://doi.org/10.1103/PhysRevX.7.021029

[BMCA13] O. Buerschaper, J.M. Mombelli, M. Christandl and M. Aguado, A hierarchy
of topological tensor network states, J. Math. Phys. 54 (2013) 012201

[BD19] A. Bullivant and C. Delcamp, Tube algebras, excitations statistics and
compactification in gauge models of topological phases, Journal of High
Energy Physics 10 (2019) 1–77

[CS96] A. R. Calderbank and P. W. Shor, Good quantum error-
correcting codes exist, Phys. Rev. A 54, 1098 (1996),
https://doi.org/10.1103/PhysRevA.54.1098

[Cam19] E. T. Campbell, A theory of single-shot error correction for ad-
versarial noise, Quantum Science and Technology 4, 025006 (2019),
https://doi.org/10.1088/2058-9565/aafc8f

[Cha14] L. Chang, Kitaev models based on unitary quantum groupoids, J. Math.
Phys. 55 (2014) 041703

[CD11] B. Coecke and R. Duncan, Interacting quantum observables: categorical
algebra and diagrammatics, New J. Phys. 13 (2011)

[CK17] B. Coecke and A. Kissinger, Picturing Quantum Processes, Cambridge
University Press (2017)

[CPV12] B. Coecke, D. Pavlovic and J. Vicary, A new description of orthogonal
bases, Mathematical Structures in Computer Science (2012)



222 Bibliography

[CKBB22] L. Z. Cohen, I. H. Kim, S. D. Bartlett and B. J. Brown, Low-overhead
fault-tolerant quantum computing using long-range connectivity, Sci. Adv.
8, eabn1717 (2022), https://doi.org/10.1126/sciadv.abn1717

[CD19] J Collins and R. Duncan, Hopf-Frobenius algebras and a simpler Drinfeld
double, in eds. B. Coecke and M. Leifer, Quantum Physics and Logic 2019,
EPTCS 318 (2020)150–180

[CCW17] I. Cong, M. Cheng and Z. Wang, Hamiltonian and algebraic theories of
gapped boundaries in topological phases of matter, Comm. Math. Phys.
355 (2), 645-689 (2017)

[CCW16] I. Cong, M. Cheng and Z. Wang, Topological Quantum Computation with
Gapped Boundaries, arXiv:1609.02037 [quant-ph]

[CFSV04] L. P. Cordella, P. Foggia, C. Sansone and M. Vento, A (sub)graph iso-
morphism algorithm for matching large graphs, in IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367-1372,
Oct. 2004, doi:10.1109/TPAMI.2004.75.

[Cow22] A. Cowtan, Qudit lattice surgery, Accepted to QPL 2022, arXiv:2204.13228
[quant-ph], https://doi.org/10.48550/arXiv.2204.13228

[Cow24] A. Cowtan, SSIP: automated surgery with quantum LDPC codes,
arXiv:2407.09423 [quant-ph]

[CB24] A. Cowtan and S. Burton, CSS code surgery as a universal construction,
Quantum 8, 1344 (2024), https://doi.org/10.22331/q-2024-05-14-1344

[CM23] A. Cowtan and S. Majid, Algebraic aspects of boundaries in the
Kitaev quantum double model, J. Math. Phys. 64, 102203 (2023),
https://doi.org/10.1063/5.0127285

[CM22] A. Cowtan and S. Majid, Quantum double aspects of surface code models,
J. Math. Phys. 63, 042202 (2022)

[CHRY24] A. Cross, Z. He, P. Rall and T. Yoder, Linear-Size Ancilla Systems for
Logical Measurements in QLDPC Codes, arXiv:2407.18393 [quant-ph]

[CDH20] S. Cui, D. Ding, X. Han, G. Penington, D. Ranard, B Rayhaun and Z.
Shangnan, Kitaev’s quantum double model as an error correcting code,
Quantum 4 (2020) 331–356

[CHW15] S. Cui, S. Hong and Z. Wang, Universal quantum computation with weakly
integral anyons, Quantum Inf Process 14 (2015) 2687-–2727

[dBH20] N. de Beaudrap and D. Horsman, The ZX calculus is a language for surface
code lattice surgery, Quantum 4, 218 (2020), https://doi.org/10.22331/q-
2020-01-09-218



Bibliography 223

[dMB08] L. de Moura and N. Bjorner, Z3: an efficient SMT solver. In Proceed-
ings of the Theory and practice of software, 14th international confer-
ence on Tools and algorithms for the construction and analysis of sys-
tems (TACAS’08/ETAPS’08), Springer-Verlag, Berlin, Heidelberg, 337–340
(2008), https://doi.org/10.1007/978-3-540-78800-3-24

[Del14] N. Delfosse, Decoding color codes by projection onto surface codes, Phys.
Rev. A 89, 012317 (2014), https://doi.org/10.1103/PhysRevA.89.012317

[Dri87] V.G. Drinfeld, Quantum groups, in Proc. ICM Berkeley. AMS, 1987

[D-CP10] G. Duclos-Cianci and D. Poulin, A renormalization group decod-
ing algorithm for topological quantum codes, Information Theory
Workshop (ITW), 2010 IEEE, pp.1-5, Aug. 30 2010-Sept. 3 2010,
https://doi.org/10.1109/CIG.2010.5592866

[DKP17] I. Dumer, A. A. Kovalev, and L. P. Pryadko, Distance verification for
classical and quantum LDPC codes, IEEE Transactions on Information
Theory, vol. 63, no. 7, pp. 4675-4686 (2017), doi: 10.1109/TIT.2017.2690381

[EK09] B. Eastin and E. Knill, Restrictions on Transversal Encoded
Quantum Gate Sets, Phys. Rev. Lett. 102, 110502 (2009),
doi:10.1103/PhysRevLett.102.110502

[ES24] J. N. Eberhardt and V. Steffan, Logical Operators and Fold-
Transversal Gates of Bivariate Bicycle Codes, arXiv:2407.03973 [quant-ph],
https://doi.org/10.48550/arXiv.2407.03973

[EEK82] A. L. Edmonds and J. H. Ewing and R. S. Kulkarni, Regular Tessellations
of Surfaces and (p, q, 2)-Triangle Groups, Annals of Mathematics 116
(1982) 113–132

[EGNO10] P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor Categories, Math-
ematical Surveys and Monographs 205 (2010)

[Far03] D. S. Farley, Finiteness and CAT(0) properties of diagram groups, Topol-
ogy, Vol. 42, Issue 5 (2003) pp. 1065-1082, https://doi.org/10.1016/S0040-
9383(02)00029-0

[FMMC12] A. G. Fowler, M. Mariantoni, J. M. Martinis and A. N. Cleland, Surface
codes: Towards practical large-scale quantum computation, Phys. Rev. A
86 (2012), https://doi.org/10.1103/PhysRevA.86.032324

[FSG09] A. G. Fowler, A. M. Stephens and Peter Groszkowski, High-threshold
universal quantum computation on the surface code, Phys. Rev. A 80
(2009) 052312

[FM01] M. H. Freedman and D. A. Meyer, Projective plane and planar quan-
tum codes, Foundations of Computational Mathematics 1, 325 (2001),
https://doi.org/10.1007/s102080010013

[FS03] J. Fuchs and C. Schweigert, Category theory for conformal boundary con-
ditions, Fields Institute Communications 39 (2003) 25–71



224 Bibliography

[GF09] C. Gidney and A. G. Fowler, Efficient magic state factories with a catalyzed
|CCZ〉 to 2|T 〉 transformation, Quantum 3, 135 (2019)

[GSJ24] C. Gidney, N. Shutty and C. Jones, Magic state cultivation: growing T
states as cheap as CNOT gates, https://arxiv.org/abs/2409.17595

[Gog22] S. Gogioso, private communication (2022)

[Got24] D. Gottesman, Surviving as a Quantum Computer in a Classical
World, https://www.cs.umd.edu/class/spring2024/cmsc858G/QECCbook-
2024-ch1-15.pdf (2024), accessed 27/09/2025

[Haa16] J. Haah, Algebraic Methods for Quantum Codes on Lattices,
Revista Colombiana de Matemáticas, 50(2), 299-349 (2016),
https://doi.org/10.15446/recolma.v50n2.62214

[HSS08] A. Hagberg, P. J. Swart and D. A. Schult, Exploring network structure,
dynamics, and function using NetworkX, United States: N. p., 2008

[HS97] G. Hahn and G. Sabidussi, Graph symmetry: algebraic methods and ap-
plications, NATO Advanced Science Institutes Series, vol. 497, Springer, p.
116 (1997) ISBN 978-0-7923-4668-5, https://doi.org/10.1007/978-94-015-
8937-6

[HHTBP92] F. D. M. Haldane, Z. N. C. Ha, J. C. Talstra, D. Bernard and V. Pasquier,
Yangian symmetry of integrable quantum chains with long-range interac-
tions and a new description of states in conformal field theory, Physical
Review Letters, 69 (1992)

[HV19] C. Heunen and J. Vicary, Categories for Quantum Theory: An Introduction,
Oxford University Press (2019) DOI:10.1093/oso/9780198739623.001.0001

[Hig22] O. Higgott, Pymatching: A python package for decoding quantum codes
with minimum-weight perfect matching, ACM Transactions on Quantum
Computing, Vol. 3, Issue 3 (2022), https://doi.org/10.1145/3505637

[HWH21] O. Higgott, M. Wilson, J. Hefford, J. Dborin, F. Hanif, S. Burton and D.
E. Browne, Optimal local unitary encoding circuits for the surface code,
Quantum 5, 517 (2021), https://doi.org/10.22331/q-2021-08-05-517

[HFDM12] D. Horsman, A. G. Fowler, S. Devitt and R. Van Meter, Surface code
quantum computing by lattice surgery, New J. Phys. 14 (2012) 123011,
https://doi.org/10.1088/1367-2630/14/12/123011

[HJY23] S. Huang, T. Jochym-O’Connor and T. J. Yoder, Homomor-
phic Logical Measurements, PRX Quantum 4, 030301 (2023),
https://doi.org/10.1103/PRXQuantum.4.030301

[IGND24] B. Ide, M. G. Gowda, P. J. Nadkarni and G. Dauphinais, Fault-tolerant log-
ical measurements via homological measurement, arXiv:2410.02753 [quant-
ph]



Bibliography 225

[JKT22] Z. Jia, D. Kaszlikowski and S. Tan, Boundary and domain wall theories
of 2d generalized quantum double model, arXiv:2207.03970 [quant-ph]

[JS91] A. Joyal and R. Street, The geometry of tensor calculus, I, Advances in
Mathematics, Volume 88, Issue 1, July 1991, https://doi.org/10.1016/0001-
8708(91)90003-P

[KS11] A. Kapustin and N. Saulina, Topological boundary conditions in abelian
Chern-Simons theory, Nucl.Phys.B845:393-435 (2011)

[Kis22] A. Kissinger, Phase-free ZX diagrams are CSS codes (...or how to graphi-
cally grok the surface code), In Proceedings QPL 2022, arXiv:2204.14038
[quant-ph], https://doi.org/10.48550/arXiv.2204.14038

[KM-v20] A. Kissinger, A. Meijer-van de Griend, CNOT circuit extraction for
topologically-constrained quantum memories, Quantum Information and
Computation, 20, 7& 8, (2020), https://doi.org/10.26421/QIC20.7-8

[Kit03] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys.
303 (2003) 3–20, https://doi.org/10.1016/S0003-4916

[KK12] A. Kitaev and L. Kong, Models for Gapped Boundaries and Domain Walls,
Commun. Math. Phys. 313 (2012) 351-–373

[KM10A] J. Klim and S. Majid, Bicrossproduct Hopf quasigroups, Comment. Math.
Univ. Carolin. 51 (2010) 287—304

[KM10B] J. Klim and S. Majid, Hopf quasigroups and the algebraic 7-sphere, Journal
of Algebra 323 (2010), doi:10.1016/j.jalgebra.2010.03.011

[KL00] E. Knill and R. Laflamme, A theory of quantum error correcting codes,
Phys. Rev. Lett. 84 (2000) 2525–2528

[KLZ96] E. Knill, R. Laflamme and W. Zurek, Threshold accuracy for quantum
computation, arXiv preprint quant-ph/9610011, doi:10.48550/arXiv.quant-
ph/9610011

[Koc03] J. Kock, Frobenius Algebras and 2-D Topological Quantum Field Theories
(London Mathematical Society Student Texts), Cambridge: Cambridge
University Press (2003) doi:10.1017/CBO9780511615443

[Kon14] L. Kong, Anyon condensation and tensor categories, Nuclear Physics B
886 (2014) 436–482

[KZ22] L. Kong, Z. Zhang, An invitation to topological orders and category theory,
arXiv:2205.05565 [cond-mat.str-el]

[KP13] A. A. Kovalev and L. P. Pryadko, Quantum Kronecker sum-product low-
density parity-check codes with finite rate, Phys. Rev. A 88, 012311 (2013),
https://doi.org/10.1103/PhysRevA.88.012311

[KLP05] D. Kribs, R. Laflamme, and D. Poulin, Unified and Generalized Ap-
proach to Quantum Error Correction, Physical Review Letters 94, (2005),
https://doi.org/10.1103/PhysRevLett.94.180501



226 Bibliography

[KP21] A. Krishna and D. Poulin, Fault-tolerant gates on hy-
pergraph product codes, Phys. Rev. X 11, 011023 (2021),
https://doi.org/10.1103/PhysRevX.11.011023

[Kup91] G. Kuperberg, Involutory hopf algebras and 3-manifold invariants, Int. J.
Math. 2 (1991), 41–66

[LAR11] A. J. Landahl, J. T. Anderson, and P. R. Rice, Fault-tolerant
quantum computing with color codes, arXiv:1108.5738 [quant-ph],
https://doi.org/10.48550/arXiv.1108.5738

[LR-A14] A. J. Landahl and C. Ryan-Anderson, Quantum comput-
ing by color-code lattice surgery, arXiv:1407.5103 [quant-ph],
https://doi.org/10.48550/arXiv.1407.5103

[Lau05] A. D. Lauda, Frobenius algebras and planar open string topological field
theories, arXiv:math/0508349 [math.QA]

[Lei14] T. Leinster, Basic Category Theory, Cambridge Studies in Ad-
vanced Mathematics, Vol. 143, Cambridge University Press, 2014,
https://doi.org/10.1017/CBO9781107360068

[LTZ15] A. Leverrier, J. P. Tillich and G. Zémor, Quantum Expander Codes, 2015
IEEE 56th Annual Symposium on Foundations of Computer Science, Berke-
ley, CA, USA, 2015, pp. 810-824, doi: 10.1109/FOCS.2015.55.

[LB13] D. Lidar and T. A. Brun, Quantum Error Correction, Cambridge University
Press (2013)

[LP24] H. Lin and L. P. Pryadko, Quantum two-block group algebra codes, Phys.
Rev. A 109, 022407 (2024), https://doi.org/10.1103/PhysRevA.109.022407

[Lit19] D. Litinski, A Game of Surface Codes: Large-Scale Quantum Computing
with Lattice Surgery, Quantum 3, 128 (2019)

[LHG11] Xi-W. Luo, Y-J. Han, G-C. Guo, X. Zhou and Z-W. Zhou, Simulation of
non-Abelian anyons using ribbon operators connected to a common base
site, Phys. Rev. A 84 (2011) 052314

[Mac78] S. Mac Lane, Categories for the working mathematician, Graduate Texts
in Mathematics vol. 5 (1978)

[MS83] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes, North Holland Mathematical Library: Volume 16 (1983)

[Maj02] S. Majid, A Quantum Groups Primer, L.M.S. Lect. Notes 292 (2002)

[Maj04] S. Majid, Classification of differentials on quantum doubles and finite
noncommutative geometry, Lect. Notes Pure Appl. Maths 239 (2004) 167-
188, Marcel Dekker

[Maj95] S. Majid, Foundations of Quantum Group Theory, Cambridge University
Press, (1995); paperback ed. (2000)



Bibliography 227

[Maj90] S. Majid, Physics for algebraists: non-commutative and non-cocommutative
Hopf algebras by a bicrossproduct construction, J. Algebra 130 (1990) 17–
64

[Maj21] S. Majid, Quantum and braided ZX-calculus, arXiv: 2103.07264 (math.qa)

[Maj98] S. Majid, Quantum double of quasi-Hopf algebras, Lett. Math. Phys. 45
(1998) 1-9

[Maj91] S. Majid, Representations, duals and quantum doubles of monoidal cate-
gories, Proceedings of the Winter School ”Geometry and Physics” (1991)
197–206

[Maj92] S. Majid, Tannaka-Krein Theorem for quasiHopf algebras and other results,
Contemp. Math. 134 (1992) 219–232

[MR21] S. Majid and K. Rietsch, Planar spider theorem and asymmetric Frobenius
algebras, arXiv:2109.12106 [math.QA]

[Mat] Math stackexchange, https://math.stackexchange.com/questions/1046209/pullbacks-
and-pushouts-in-the-category-of-graphs, accessed 25/10/2022

[Meu17] C. Meusburger, Kitaev lattice models as a Hopf algebra gauge theory, Com-
mun. Math. Phys. 353 (2017) 413–468, https://doi.org/10.1007/s00220-
017-2860-7

[Mic14] K. P. Michnicki, 3D Topological Quantum Memory with a
Power-Law Energy Barrier, Phys. Rev. Lett. 113, 130501 (2014),
https://doi.org/10.1103/PhysRevLett.113.130501

[Moc03] C. Mochon, Anyon computers with smaller groups, Phys. Rev. A 69 (2004)
032306

[Moc04] C. Mochon, Anyons from nonsolvable finite groups are sufficient for uni-
versal quantum computation, Phys. Rev. A 67(2003) 022315

[Mon16] A. Montanaro, Quantum algorithms: an overview, npj Quantum Inf 2,
15023 (2016), https://doi.org/10.1038/npjqi.2015.23

[NFB17] H. P. Nautrup, N. Friis and H. J. Briegel, Fault-tolerant interface between
quantum memories and quantum processors, Nat. Commun. 8, 1321 (2017),
https://doi.org/10.1038/s41467-017-01418-2

[Nat05] S. Natale, Frobenius–Schur indicators for a class of fusion categories, Pacific
J. Math. 221 (2005) 353–377,doi:10.2140/pjm.2005.221.353

[NC10] M. Nielsen and I. Chuang, Quantum Computation and Quantum Informa-
tion: 10th Anniversary Edition (2010), doi:10.1017/CBO9780511976667

[Nov24] S. Novák, Homological Quantum Error Correction with Torsion,
arXiv:2405.03559 [quant-ph]

[ORM24] J. Old, M. Rispler and M. Müller, Lift-Connected Surface Codes,
arXiv:2401.02911 [quant-ph], https://doi.org/10.48550/arXiv.2401.02911



228 Bibliography

[Ost03A] V. Ostrik, Module categories over the Drinfeld double of a finite
group, International Mathematics Research Notices 27 (2003) 1507—1520,
doi:10.1155/S1073792803205079

[Ost03B] V. Ostrik, Module categories, weak Hopf algebras and modular invariants,
Transform. Groups 8 (2003) 177—206

[PK22A] P. Panteleev and G. Kalachev, Asymptotically Good Quantum and
Locally Testable Classical LDPC Codes, STOC 2022: Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing,
https://doi.org/10.1145/3519935.3520017

[PK21] P. Panteleev and G. Kalachev, Degenerate Quantum LDPC Codes
With Good Finite Length Performance, Quantum 5, 585 (2021),
https://doi.org/10.22331/q-2021-11-22-585

[PK22B] P. Panteleev and G. Kalachev, Quantum LDPC Codes With Almost Linear
Minimum Distance, in IEEE Transactions on Information Theory, vol. 68,
no. 1, pp. 213-229, Jan. 2022, https://doi.org/10.1109/TIT.2021.3119384

[Par71] B. Pareigis, When Hopf algebras are Frobenius algebras, J. Alg., Volume
18, Issue 4 (1971) 588-596

[Pen63] R. Penrose, Asymptotic Properties of Fields and Space-Times, Phys. Rev.
Lett. 10, 66 (1963), https://doi.org/10.1103/PhysRevLett.10.66

[Per23] M. A. Perlin, qLDPC, https://github.com/Infleqtion/qLDPC, 2023, ac-
cessed 06/06/2024

[PW27] F. Peter and H. Weyl, Die Vollstandigkeit der primitiven Darstellungen
einer geschlossenen kontinuierlichen Gruppe, Math. Ann., 97: 737–755
(1927), doi:10.1007/BF01447892

[PST06] J. Plefka, F. Spill, A. Torrielli, Hopf algebra structure of
the AdS/CFT S-matrix, Phys. Rev. D74 (2006) 066008,
https://doi.org/10.1103/PhysRevD.74.066008

[PSW24] B. Poor, R. A. Shaikh and Q. Wang, ZX-calculus is Complete for Finite-
Dimensional Hilbert Spaces, arXiv:2405.10896 [quant-ph]

[PSK22] L P. Pryadko, V. A. Shabashov, V. K. Kozin, QDistRnd: A GAP
package for computing the distance of quantum error-correcting
codes, Journal of Open Source Software, 7(71) (2022) 4120,
https://doi.org/10.21105/joss.04120

[QWV23] A. O. Quintavalle, P. Webster and M. Vasmer, Partitioning qubits in
hypergraph product codes to implement logical gates, Quantum 7, 1153
(2023), https://doi.org/10.22331/q-2023-10-24-1153

[Reu19] D. Reutter, Higher linear algebra in topology and quantum information
theory, Oxford DPhil thesis (2019)



Bibliography 229

[Rof22] J. Roffe, LDPC: Python tools for low density parity check codes,
https://pypi.org/project/ldpc/, 2022, accessed 06/06/2024

[RWBC20] J. Roffe, D. R. White, S. Burton, and E. Campbell, Decoding across the
quantum low-density parity-check code landscape, Phys. Rev. Research 2,
043423 (2020), https://doi.org/10.1103/PhysRevResearch.2.043423

[R-ABB24] C. Ryan-Anderson, N. C. Brown, C. H. Baldwin et al., High-fidelity and
Fault-tolerant Teleportation of a Logical Qubit using Transversal Gates and
Lattice Surgery on a Trapped-ion Quantum Computer, arXiv:2404.16728
[quant-ph]

[Sab] E. Sabo, A basic coding theory library for Julia,
https://github.com/esabo/CodingTheory, accessed 06/06/2024

[Sch02A] P. Schauenburg, Hopf Algebra Extensions and Monoidal Categories, New
Dir. Hopf Alg. 43 (2002)

[Sch16] P. Schauenburg, Computing Higher Frobenius-Schur Indicators in Fusion
Categories Constructed from Inclusions of Finite Groups, Pacific J. Math.
280 (2016) 177–201

[Sch02B] P. Schauenburg, Hopf Bimodules, Coquasibialgebras, and an Exact Se-
quence of Kac, Advances in Mathematics 165 (2002) 194—263

[Sch01] P. Schauenburg, Turning Monoidal Categories into Strict Ones, New York
Journal of Mathematics 7 (2001) 257-265

[Sch95] H.-J. Schneider, Lectures on Hopf algebras; Notes by Sonia Natale, Traba-
jos de Matematica 31/95, FaMAF, 1995.

[SHR24] T. R. Scruby, T. Hillmann and J. Roffe, High-threshold, low-overhead and
single-shot decodable fault-tolerant quantum memory, arXiv:2406.14445
[quant-ph], https://doi.org/10.48550/arXiv.2406.14445

[Sel11] P. Selinger, A survey of graphical languages for monoidal categories,
Springer Lecture Notes in Physics 813, pp. 289-355, 2011

[Sho95] P. W. Shor, Scheme for reducing decoherence in quantum com-
puter memory, Physical Review A. 52 (4): R2493–R2496, 1995,
https://doi.org/10.1103/PhysRevA.52.R2493

[Ste96] A. Steane, Multiple-particle interference and quantum error correction,
Proceedings of the Royal Society of London, Series A: Mathematical,
Physical and Engineering Sciences 452(1954), pp. 2551–2577 (1996),
doi:10.1098/rspa.1996.0136.

[Tak81] M. Takeuchi, Matched pairs of groups and bismash products of Hopf alge-
bras, Comm. Algebra 9 (1981) 841

[TNG24] D. B. Tan, M. Y. Niu and C. Gidney, A SAT Scalpel for Lat-
tice Surgery: Representation and Synthesis of Subroutines for Surface-
Code Fault-Tolerant Quantum Computing, arXiv:2404.18369 [quant-ph],
https://doi.org/10.48550/arXiv.2404.18369



230 Bibliography

[TZ14] J.P. Tillich and G. Zémor, Quantum LDPC Codes With Positive Rate and
Minimum Distance Proportional to the Square Root of the Blocklength, in
IEEE Transactions on Information Theory, vol. 60, no. 2, pp. 1193-1202,
Feb. 2014, doi: 10.1109/TIT.2013.2292061.

[TTWL08] S. Trebst, M. Troyer, Z. Wang and A. Ludwig, A short introduction to
Fibonacci anyon models, Prog. Theor. Phys. Suppl. 176 (2008) 384–407

[Wet12] J. van de Wetering, ZX-calculus for the working quan-
tum computer scientist, arXiv:2012.13966 [quant-ph],
https://doi.org/10.48550/arXiv.2012.13966

[VLC19] C. Vuillot, L. Lao, B. Criger, C. G. Almudéver, K. Bertels and B. M. Terhal,
Code deformation and lattice surgery are gauge fixing, New J. Phys. 21
033028 (2019), https://doi.org/10.1088/1367-2630/ab0199

[Wan21] Q. Wang, Qufinite ZX-calculus: a unified framework of qudit ZX-calculi,
arXiv:2104.06429 [quant-ph]

[Wat24] G. Watkins et al., A High Performance Compiler for Very Large
Scale Surface Code Computations, Quantum 8, 1354 (2024),
https://doi.org/10.22331/q-2024-05-22-1354

[Wei84] C. A. Weibel, An Introduction to Homological Algebra (Cambridge
Studies in Advanced Mathematics), Cambridge University Press (1994),
https://doi.org/10.1017/CBO9781139644136

[WY24] D. J. Williamson and T. J. Yoder, Low-overhead fault-tolerant quantum
computation by gauging logical operators, arXiv:2410.02213 [quant-ph]

[WB24] S. Wolanski and B. Barber, Ambiguity Clustering: an accurate
and efficient decoder for qLDPC codes, arXiv:2406.14527 [quant-ph],
https://doi.org/10.48550/arXiv.2406.14527

[WLP09] J. R. Wootton, V. Lahtinen and J. K. Pachos, Universal quantum com-
putation with a non-Abelian topological memory, in Theory of Quantum
Computation, Communication, and Cryptography (2009) 56–65

[WD98] Chuan-Kun Wu and Ed Dawson, Existence of generalized inverse of linear
transformations over finite fields, Finite Fields and Their Applications 4
(1998) 307–315, https://doi.org/10.1006/ffta.1998.0215

[YCC22] B. Yan, P. Chen, S. X. Cui, Ribbon operators in the generalized Kitaev
quantum double model based on Hopf algebras, Journal of Physics A:
Mathematical and Theoretical 55 (2022) 185201

[ZL24] G. Zhang and Y. Li, Time-efficient logical operations on quantum LDPC
codes, arXiv:2408.01339 [quant-ph]

[ZSP23] G. Zhu, S. Sikander, E. Portnoy, A. W. Cross and B. J. Brown, Non-Clifford
and parallelizable fault-tolerant logical gates on constant and almost-
constant rate homological quantum LDPC codes via higher symmetries,
arXiv:2310.16982 [quant-ph], https://doi.org/10.48550/arXiv.2310.16982



Appendix

1 Graphs and cell complexes
In this appendix we give some categorical background on abstract cell complexes. This is
not necessary to define CSS code surgery, but codes obtained from cell complexes are an
important motivating example, as they include surface codes, toric codes [Kit03], hyper-
bolic codes [BVCKT17] and the expander lifted product codes from [PK22A]. In general,
if a CSS code comes from tessellating a manifold, it is likely to use cell complexes. Cell
complexes are important in the study of topological spaces, and many of the constructions
of CSS codes, such as balanced/lifted products, can also be phrased in the language of
topology, but we stick to cell complexes for brevity. As a warm-up, we describe certain
categories of graphs, and then move on to a specific kind of cell complex.

Let Γ be a finite simple undirected graph. Recall that as a simple graph, Γ has at most
one edge between any two vertices and no self-loops on vertices. Γ can be defined as a pair
of sets, V (Γ) and E(Γ), with E(Γ) ⊆ 2V (Γ), the powerset of vertices, where each e ∈ E(Γ)
has 2 elements i.e. it can be expressed as e = {v1, v2}. An example of a graph is Cn, the
cycle graph with n vertices and edges. We will also use Pn, the path graph with n edges
and n+ 1 vertices.
Definition 1.1. Let Grph be the category of finite simple undirected graphs. A mor-
phism Γ → ∆ in Grph is a function f : V (Γ) → V (∆) such that {v1, v2} ∈ E(Γ) =⇒
{f(v1), f(v2)} ∈ E(∆), i.e. the function respects the incidence of edges.

Grph has several different products and other categorical features. We are particularly
interested in colimits. Grph has a coproduct Γ+∆ being the disjoint union, with V (Γ+∆) =
V (Γ) t V (∆) and E(Γ + ∆) = E(Γ) t E(∆). It also has an initial object I given by the
empty graph. However, Grph is not cocomplete, as it does not have all pushouts.
Example 1.2. As a counterexample [Mat], given the diagram

no cocone exists, as the graphs are not allowed self-loops. Therefore, no pushout exists.
One can easily see that there are diagrams for which pushouts do exist, though.
More than just graphs, we would like to allow for open graphs, i.e. graphs which may

have edges which connect to only one vertex, but are not self-loops. For example,

We call G3 the 3rd open path graph, where the nth open path graph Gn has n edges in a
line with n − 1 vertices between them. We now give a particular formalisation of open
graphs.



232 Appendix

Definition 1.3. Let Γ be a finite simple undirected graph with two disjoint vertex sets
V (Γ) and B(Γ), where E(Γ) ⊆ 2V (Γ)∪B(Γ). We then say that Γ is an open graph. We call
V (Γ) the internal vertices and B(Γ) the boundary vertices.

So in the picture of G3 above there are vertices at either end of the open wires, but
they are considered ‘invisible’, i.e. they belong to B(Γ).

Definition 1.4. Let OGrph be the category of open graphs. A morphism Γ → ∆ in
OGrph is a function f : V (Γ) ∪ B(Γ) → V (∆) ∪ B(∆) such that {v1, v2} ∈ E(Γ) =⇒
{f(v1), f(v2)} ∈ E(∆) and f(x) ∈ V (∆) ⇐⇒ x ∈ V (Γ).

This restriction disallows internal vertices from being ‘created’ or ‘deleted’ by a graph
morphism by converting them to boundary vertices. OGrph has very similar properties to
Grph. Its initial object is the empty open graph. OGrph has a coproduct, where V (Γ+∆) =
V (Γ) t V (∆) and B(Γ + ∆) = B(Γ) t B(∆). Like Grph, OGrph is not cocomplete, as
Example 1.2 also works in the setting of open graphs. It is obvious that Grph is a
subcategory of OGrph.

We now move on to cell complexes, in particular abstract cubical complexes. These
are abstract cell complexes which are ‘square’, unlike their ‘triangular’ relatives simplicial
complexes.

Definition 1.5. The abstract d-cube is the set {0, 1}d, with the 0-cube {0, 1}0 := {0}.
A face of the abstract d-cube is a product A1 × · · · × Ad, where each Ai is a nonempty
subset of {0, 1}.

Definition 1.6. [Far03] Let S be a finite set and let Ω be a collection of nonempty subsets
of S such that:

• Ω covers S.

• For X, Y ∈ Ω, X ∩ Y ∈ Ω or X ∩ Y = ∅.

• For each X ∈ Ω, there is a bijection from X to the abstract d-cube for some choice
of d, such that any Y ⊂ X is in Ω iff it is mapped to a face of the d-cube.

Then Ω is an abstract cubical complex.

Abstract cubical complexes are combinatorial versions of cubical complexes, meaning
they are stripped of their associated geometry. The elements in Ω are still called faces.
We can consider Ω to be a graded poset, with subset inclusion as the partial order, and
the grading dim(X) = log2 |X|. We also call this grading the dimension d of X, and we
call X a d-face. The set of d-faces in Ω is called Ωd. There is a relation Ωd → Ωd−1 taking
a d-face to its (d− 1)-face subsets.

We call the vertex set V (Ω) = S = Ω0, and also define the dimension of a cubical
complex

dim(Ω) = max
X∈Ω

dim(X)

The d-skeleton of Ω is the maximal subcomplex Υ ⊆ Ω such that dim(Υ) = d. The 1-
skeleton of an abstract cubical complex is a finite simple undirected graph. The 2-skeleton
of an abstract cubical complex is ‘like’ a square lattice, in that it has 2-faces which each
have 4 0-faces as subsets and 4 1-faces.



1. Graphs and cell complexes 233

Definition 1.7. Let ACC be the category of abstract cubical complexes. A morphism
f : Ω → Υ in ACC is a function f : V (Ω) → V (Υ), such that {x, · · · , y} ∈ Ωd =⇒
{f(x), · · · , f(y)} ∈ Υd, i.e. incidence is preserved at each dimension.

Similar to Grph, ACC has coproduct given by (Ω + Υ)i = Ωi tΥi and an initial object
I = ∅, and does not generally have pushouts, where we can reuse the same counterexample
as Grph. Another categorical property we highlight here is that ACC has a monoidal product
called the box product.
Definition 1.8. Let Υ � Ω be the box product of abstract cubical complexes. Then

(Υ � Ω)n =
∑
i+j=n

Υi × Ωj.

We now check that Υ � Ω is indeed an abstract cubical complex.

Proof. First, it has a vertex set V (Υ � Ω) = V (Υ) × V (Ω), and thus trivially covers
Υ0×Ω0. Second, let X×Y ∈ Υi×Ωj and T ×U ∈ Υk×Ωl. This has (X×Y )∩ (T ×U) =
(X ∩ T )× (Y ∩ U) which is either in Υm × Ωn for some m ≤ i,m ≤ k and n ≤ j, n ≤ l,
and thus (X ∩ T )× (Y ∩U) ∈ Υ � Ω, or (X ∩ T )× (Y ∩U) = ∅. Third, if X and Y each
have a bijection to an i-cube and j-cube respectively, then X × Y has a bijection to an
(i+ j)-cube. Any W ⊂ X × Y can be expressed as T × U , for T ⊂ X and U ⊂ Y . Then
W is in Ω � Υ iff T is mapped to a face of the i-cube and U to a face of the j-cube, thus
W to a face of the (i+ j)-cube. �

Let us compile this into a more digestible form for the case when Υ and Ω are both graphs.
Given vertices (u, u′) and (v, v′) in V (Υ � Ω), the 1-face {(u, u′), (v, v′)} ∈ (Υ � Ω)1 iff
(u = v & (u′, v′) ∈ Ω) or ((u, v) ∈ Υ & u′ = v′). Then (Υ � Ω)2 ∼= E(Υ) × E(Ω). The
1-skeleton of Υ � Ω is just the normal box product of graphs [HS97].
Example 1.9. Let Cm and Cn be cycle graphs with m and n vertices respectively, consid-
ered as abstract cubical complexes. Then T = Cm � Cn admits an embedding as a square
lattice on the torus, and has dim(Cm � Cn) = 2. Setting m = n = 3 we have

where the grey dots indicate periodic boundary conditions and the white circles specify
2-faces. This example comes up in the form of the toric code in Section 2.2.

Obviously, Grph is a subcategory of ACC.
We are also interested in open abstract cubical complexes.

Definition 1.10. Let Υ be an open abstract cubical complex. Υ is an abstract cubical
complex where Υ0 is divided into two disjoint vertex sets V (Υ) and B(Υ).

The 1-skeleton of an open abstract cubical complex is an open graph.
Definition 1.11. Let OACC be the category of open abstract cubical complexes. A mor-
phism f : Ω → Υ in OACC is a function f : V (Ω) ∪ B(Ω) → V (Υ) ∪ B(Υ) such that
f(x) ∈ V (Υ) ⇐⇒ x ∈ V (Ω) and {x, · · · , y} ∈ Ωd =⇒ {f(x), · · · , f(y)} ∈ Υd.



234 Appendix

As in our previous examples, OACC has the obvious coproduct and initial object, and
does not have pushouts in general.

Example 1.12. Let Υ be a ‘patch’, a square lattice with two rough and two smooth
boundaries:

This patch has 6 2-faces, 13 1-faces and 6 0-faces.

Example 1.13. We can perform the pushout of two smaller open abstract cubical com-
plexes to acquire a patch:

where the apex is P1, the blue edge indicates where the apex is mapped to, and the
bottom right open abstract cubical complex is the object of the pushout.

Example 1.14. Let G3 be the open path graph, and let Ω be a patch. Then we have a
pushout

This example comes up in the context of lattice surgery on surface codes. Evidently,
both OGrph and ACC are subcategories of OACC, and one can define a box product for OACC
in the same way as we did for ACC in Definition 1.8.



1. Graphs and cell complexes 235

One can define quantum codes using abstract cell complexes more generally, but abstract
cubical complexes are the specific type which we make use of in examples in Section 2.2
and onwards. We now relate the above cell complexes to chain complexes by way of
functors.
Definition 1.15. Given an abstract cubical complex Ω we can define the incidence chain
complex C• in Ch(MatF2), where each nonzero component has a basis C̃n = Ωn, and each
nonzero differential ∂C•n+1 takes an n+ 1-face to its n-dimensional subsets. The differential
is thus a matrix with a 1 where an n-face is contained within an (n + 1)-face, and 0
elsewhere. It is an elementary fact that every (d− 2)-face in a d-face is the intersection of
exactly 2 (d−1)-faces, thus ∂C•n−1◦∂C•n = 0 mod 2. Clearly, the incidence chain complex of
a dimension 1 abstract cubical complex is just the incidence matrix of a simple undirected
graph.

We can do essentially the same thing given an open abstract cubical complex Υ. In
this case, each nonzero component has a basis C̃n = {X ∈ Ωn | X 6⊆ B(Ω)}, that is we
ignore all faces which are made up only of boundary vertices, and differentials are the
same matrices as above, with a 1 where an n-face which is not a subset of B(Ω) (and
therefore would be ‘invisible’) is contained in an (n+ 1)-face. It is easy to see that we still
have ∂C•n ◦ ∂C•n+1 = 0 mod 2, as making vertices ‘invisible’ corresponds to deleting rows in
∂C•1 , edges rows in ∂C•2 etc. The incidence chain complex of a dimension 1 open abstract
cubical complex is the incidence matrix of an open graph.
Definition 1.16. Let C• and D• be the incidence chain complexes of two abstract cubical
complexes Ω and Υ with a morphism f : Ω→ Υ, and set C̃0, D̃0 as V (Ω), V (Υ) respectively.
This induces a chain map g• : C• → D•, with the matrix g1 given by f , and all matrices
on higher components generated inductively. Degrees i < 1 are assumed to be zero.

As a consequence, we can define a functor ϕ : ACC→ Ch(MatF2), sending each abstract
cell complex to its free chain complex as described in Definition 1.15. One can check
that ϕ(f) ∈ Hom(ϕ(Ω), ϕ(Υ)) for any morphism f : Ω → Υ between abstract cubical
complexes. ϕ is faithful but not full, as there exist morphisms, such as the zero morphism,
which are not in the image of ϕ.
Definition 1.17. There is also a functor ϑ : OACC → Ch(MatF2). On objects, this again
follows Definition 1.15. On morphisms this is the same as ϕ except it must obviously
ignore maps between boundary vertices everywhere. Thus ϑ is not faithful.
Example 1.18. Let Ω and Υ be two abstract cubical complexes. Then ϕ(Ω + Υ) =
ϕ(Ω)⊕ ϕ(Υ), which is easy to check. Similarly, ϕ(∅) = 0•. The same is true of ϑ, except
that ϑ(Ξ) = 0• for any Ξ with V (Ξ) = ∅.
Lemma 1.19. The functors ϕ and ϑ are cocontinuous i.e. they preserve colimits.

Proof. We give a proof sketch here. We know already that ϕ preserves coproducts so it is
sufficient to check that it preserves pushouts. Let

Ξ Υ

Ω χ

g

f l

k

be a pushout in ACC. Then χ0 = Ω0 tΥ0/f ∼ g, and we have elements in χn of the form
([x], · · · , [y]), which can be seen as pushouts at each dimension. Also, (x, · · · , y) ∈ Ωn =⇒



236 Appendix

([x], · · · , [y]) ∈ χn, and the same for Υn. Then ˜ϕ(χ)0 = χ0. We then have basis elements
of the form ([x], · · · , [y]) ∈ ˜ϕ(χ)n, and differentials have their obvious form. If we take
the diagram in Ch(MatF2):

ϕ(Ξ) ϕ(Υ)

ϕ(Ω)

ϕ(g)

ϕ(f)

Then we have Q• as the pushout. Basis elements in Qn are then also of the form
([x], · · · , [y]) for [x], [y] ∈ χn. The differentials also match up correctly, and so Q• = ϕ(χ).

The same checks apply if we take ϑ : OACC→ Ch(MatF2) instead. Observe that in this
case f and g may have images only in B(Ω) and B(Υ), in which case Ξ must have empty
V (Ξ). Then the pushout in Ch(MatF2) will just be a direct sum, i.e. the pushout with
ϑ(Ξ) = 0• as the apex.

Recall that ACC and OACC do not themselves have all pushouts, and therefore all colimits,
but ϕ and ϑ preserve those which they do have. �

Definition 1.20. For any chain complex C• we have also the pth translation C[p]•, where
all indices are shifted down by p, i.e. C[p]n = Cn+p and ∂C[p]•

n = ∂C•n+p. This extends to an
invertible endofunctor p : Ch(MatF2)→ Ch(MatF2) in the obvious way.

Lemma 1.21. Let Υ and Ω be two open abstract cubical complexes. Recalling the functor
ϑ : OACC→ Ch(MatF2) from Definition 1.16, we have ϑ(Υ � Ω) = ϑ(Υ)⊗ ϑ(Ω), so ϑ is a
monoidal functor.

2 Pushouts and properties of codes
Here we describe a few problems with using general pushouts to construct new quantum
codes, even when the spans are basis-preserving. First, in a certain sense the pushout of
LDPC codes is not necessarily LDPC. To illustrate this, consider the following pushout
of graphs:

where the light dots indicate the graph morphisms. As ϑ is cocontinuous this pushout
exists also in Ch(MatF2). There, it represents a merge of two binary classical codes, although
we can consider a binary linear code to just be a CSS code without any Z measurements.
As a consequence, we have two initial codes with PX having maximal weights 1 each, and
the merged code has maximal weight 4. Evidently, one can scale this with the size of the
input graphs: here, the input graphs each have 3 edges, but if there are graphs with m



3. Octagonal surface code patch 237

edges each (and weight 1) and the apex with m vertices (and weight 0) then the pushout
graph will have maximal weight m+ 1. As a consequence the family of pushout graphs as
m scales is not bounded above by a constant, and so the corresponding family of codes is
not LDPC.

Conjecture 2.1. Let
A• D•

C•

g•

f•

be a basis-preserving monic span in Ch(MatF2), and let Q• be the pushout chain complex
of this monic span. Further, let the monic span be a representative of a family of monic
spans which are parameterised by some n ∈ N, and let A•, C• and D• be the Z-type
complexes of quantum LDPC codes. Then (Q•, Q•) is also LDPC.

Formulating this conjecture properly requires specifying what it means for a monic
span to be parameterised.

Lastly, taking pushouts evidently preserves neither homologies nor code distances, as
easy examples with lattice surgery demonstrate. Moreover, we do not know of a way
of giving bounds on these quantities for general pushouts, although again we suspect it
should be easier for monic spans.

3 Octagonal surface code patch
Consider the following patch of surface code:

where the bristled edges are rough boundaries, and the diagonal edges are smooth bound-
aries. We have abstracted away from the actual cell complex as the tessellation is not
important. Z-type logical operators take the form of strings extending from one rough
boundary to another, e.g.

Two strings belong to the same equivalence class iff they are isotopic on the surface,
allowing for the endpoints to slide up and down a rough boundary. There are exactly 3
nontrivial such classes out of which all other strings can be composed. As a consequence,



238 Appendix

this patch of surface code has logical space V with dim V = 23 = 8. 1 We can choose a
basis for this logical space, which has logical Z operators with representatives:

Z1 = Z2 = Z3 =

where the middle operator can be smoothly deformed to a vertical line from top to bottom
if desired. Recall that on the surface code an X operator anticommutes with a Z operator
iff the strings cross an odd number of times. Thus, given the basis above, the duality
pairing of Lemma 2.2.4 forces a similar basis of X operators, with representatives:

X1 = X2 = X3 =

We see that Z1 is contained entirely within Z2 on physical qubits. Thus it is possible to
construct a Z merge which is not irreducible, in the parlance of Definition 2.3.13. If we
choose a different representative, by deforming Z2 to be a vertical line, then we can also
perform a irreducible Z merge.

4 A Z-merge map which is not distance preserving
Here we provide an illustrative example to show that it is possible to create Z operators
in a Z-merged code which are of lower weight than any logical operator in the initial code.
Consider the following surface code patches:

where, as in the previous appendix, bristled edges represent rough boundaries and non-
bristled edges represent smooth boundaries. There is a hole in each patch, with bristled

1More generally, a patch with 2m edges, alternating rough and smooth, has dimV = 2m−1, i.e. the
number of edges in a minimal spanning tree on the complete graph with m vertices.



5. A merged code with larger logical space 239

edges around it. As a consequence, each patch has 2 logical qubits. We can assign Z
logical operators u2 and v2, representatives of each equivalence class [u2] and [v2] from
which all other classes can be composed, like so:

u2

v2

and the same for [u1], [v1] on the other patch. We quotient out a Z operator in [v1] and
[v2] going along the right and left boundaries, like so:

leaving a Z-merged code. This has new Z operators, which belong to the equivalence class
[u1 + u2]. These operators are of the form:

to see that these do belong to [u1 + u2], label this operator t and see that t+ u1 + u2 is
in [0], as it forms a contractible loop. Then [t] = [−u1 − u2] = [u1 + u2], recalling that
we are working over F2. This new operator t has a weight lower than any of those in the
original codes, which one can see from the diagrams.

5 A merged code with larger logical space
Take the lift-connected surface (LCS) codes from [ORM24] with ` = 1, L = 3. This is a
J15, 3, 3K code C•, with the parity-check matrices:



240 Appendix

PZ =


1 0 0 0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 1 0 1 0 1
0 0 0 0 1 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 1 0 0 0 1 0 1 0 1 1



PX =


1 0 0 1 1 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0 1 0
0 0 1 1 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 1 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1 1 0 1 0 1 1


This code has an irreducible Z-logical with support on qubits (2, 9, 14), starting from 0.

If we merge two copies of C• along this logical we obtain a J27, 6, 2K code, when naively one
would expect a code with 5 logical qubits. The additional logical has appeared because,
while quotienting the logicals together in the two codes, we have inadvertently increased
the size of ker(PX), increasing the size of the logical space.

One explanation for why this can occur is because of the complication of bases for our
chain complexes. In Definition 2.3.10, we set Ṽ0 =

⋃
u∈im(∂V•1 ) supp u, so we incorporated

all basis elements with support in the image of the logical operator; if we were to instead
set V0 = im(∂V•1 ) we believe that this occurrence would be impossible, as the only quotient
would be on precisely those vectors in the image of the logical operator, not those vectors’
basis elements. However, we cannot do this in general while keeping all chain maps
basis-preserving.

6 Irreducibility is gauge-fixability
We will prove in this section that for all CSS codes having irreducible and gauge-fixable
operators are equivalent properties.

Lemma 6.1. A vector u ∈ ker(PX)\im(P ᵀZ) is gauge-fixable iff for every pair (ei, ej) of
basis vectors in supp (u) there is a vector a in im(P ᵀX) such that u� a = ei + ej.

Proof. If there are two vectors v, w paired with u such that v � u = ei and w � u = ej
then v + w � u = ei + ej. As each basis vector in u must be safely correctable, u always
has a vector a = v + w ∈ im(P ᵀX) such that a� u = ei + ej. Going the other way, there
must be at least one paired vector v with u such that u · v = 1 – we don’t assume that
|u� v| = 1, just that the dot product is 1, i.e. they have an odd number of intersecting
basis vectors. This can be reduced to an intersection of 1 by applying a vector in im(P ᵀX)
corresponding to a pair (ei, ej) to each of the pairs of intersecting basis vectors apart from
the last one. This single basis vector can then be moved around u by further applications
of vectors in im(P ᵀX). �

We find this equivalent definition of gauge-fixing more helpful in practice, as it requires
only data about the X stabilisers, rather than paired logical operators, the choice of which
depends on the choice of basis of H1(C•).



6. Irreducibility is gauge-fixability 241

Lemma 6.2. Let ∂A : A1 → A0 be a matrix over F2. Then for any v ∈ ker(∂A), either for
any pair of basis vectors of A1 (ei, ej) ∈ supp(v) there is a vector b ∈ im(∂ᵀA) such that
v�b = ei+ej or there is another non-zero vector u ∈ ker(∂A) such that supp(u) ⊂ supp(v).

Proof. Define the vector space S = {w � v : w ∈ ker(∂A)⊥}. Observe that any vector in
S must have even Hamming weight, and that

S ∼= {w � v : w ∈ ker(∂A �supp v)⊥} = ker(∂A �supp v)⊥,

as any vectors in ker(∂A)⊥ wholly outside of supp(v) will not contribute to the Hadamard
product, and the isomorphism merely entails chopping off some entries which will always
be 0. Now, dim(S) ≤ |v| − 1, as dim(ker(∂A �supp v)) ≥ 1 by definition.

Suppose dim(S) = |v| − 1. Then v has no other vectors in ker(∂A) contained in its
support, as then dim(ker(∂A �supp v)) = 1, and for any pair of basis vectors of A1 (ei, ej) ∈
supp(v) there is a vector b ∈ im(∂ᵀA) such that v � b = ei + ej. To see this, view S as the
row space of a matrix: 

w1 � v
w2 � v

...
wm � v


where m = |v| − 1, with some chosen basis of S. Then, put the matrix in row echelon
form by performing Gaussian elimination:

1 ∗ ∗ ∗ · · · ∗
0 1 ∗ ∗ · · · ∗

...
0 0 0 0 · · · 1


where ∗ values are unknown. As dim(S) = |v| − 1, without knowing anything else about
the code, there will be exactly 1 row which is indented by 2 from the previous row. But
each row must have an even number of 1s in it, including the last row, so the matrix must
actually have the row echelon form:

1 ∗ ∗ · · · ∗ ∗
0 1 ∗ · · · ∗ ∗
0 0 1 · · · ∗ ∗

...
0 0 0 · · · 1 1


Then, add rows from the bottom to the top as necessary to give

1 0 0 · · · 0 ∗
0 1 0 · · · 0 ∗
0 0 1 · · · 0 ∗

...
0 0 0 · · · 1 1


i.e. an identity matrix with one column unknown to the right. But once again each row
must have an even number of non-zero entries, as S = ker(∂A �supp v)⊥, so the column to



242 Appendix

the right must have all entries equal to 1. Therefore, we have |v| − 1 different pairs, and
combinations of these suffice to give any pair in supp(v).

Now, suppose dim(S) < |v| − 1. Then, as dim(ker(∂A �supp v)⊥) > 1, there must be
another vector in ker(∂A) contained in supp(v). �

This means that a vector v in ker(∂A), with no other vectors in ker(∂A) contained in
supp(v), will always have the property that for any pair of basis vectors of A1 (ei, ej) ∈
supp(v) there is a vector b ∈ im(∂ᵀA) such that v � b = ei + ej.

This lemma implies that irreducibility and gauge-fixing coincide.

7 Error-corrected Z-merge with the Shor code
In this appendix we work through an example explicitly, using the techniques of Section 2.4
to perform a distance 3 error-corrected Z ⊗Z measurement between two copies of the
Shor code, for which see Example 2.2.7.

Let us say the two copies are labelled (C•, C•) and (D•, D•), with

C• = D• = F6
2 F9

2 F2
2

∂2 ∂1

and

∂C•2 = ∂D•2 =



1 1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 1 0
0 0 0 0 0 1


; ∂C•1 = ∂D•1 =

(
1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1

)
.

We will use the Z operator Z1⊗Z4⊗Z7, denoted u =
(
1 0 0 1 0 0 1 0 0

)ᵀ, with
u ∈ C1 and u ∈ D1, to glue along.

The logical operator subcomplex V• is then

V• = F3
2 F2

2
∂V•1

with ∂V•1 =
(

1 1 0
1 0 1

)
and all other components of V• being 0.

We now make the tensor product chain complex W• = (P ⊗V )• from Definition 2.4.4,

where P• = P1 P0

1

1


. We have

W• = F3
2 F8

2 F4
2

∂W•2 ∂W•1



7. Error-corrected Z-merge with the Shor code 243

with

∂W•2 =



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1


; ∂W•1 =


1 1 0 0 0 0 1 0
1 0 1 0 0 0 0 1
0 0 0 1 1 0 1 0
0 0 0 1 0 1 0 1



For T• we take the two pushouts from Definition 2.4.6. First, we have

V• C•

W• R•

g•

f• q•

p•

Giving

R• = F9
2 F14

2 F4
2

∂R•2 ∂R•1

with R2 = W2 ⊕ C2, as V2 = 0. The other components of R• require taking quotients,
identifying elements of W1 and C1, and the same for W0 and C0. One can then use
Definition 2.3.1 to show that

∂R•2 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



; ∂R•1 =


0 0 0 1 0 1 1 1 1 1 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 1 1 1
1 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0

 .

For the second pushout, that is

V• W• R•

D• T•

we then have

T• = F15
2 F20

2 F4
2

∂T•2 ∂T•1 .



244 Appendix

The differentials are somewhat unwieldy, but we include them for completeness:

∂T•2 =



1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



∂T•1 =


1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1


One can check the various properties of this code. For example, rank∂T•1 = 4 and

rank∂T•2 = 15. Thus dimH1(T•) = dimT1 − 4− 15 = 1, and so the code (T•, T •) encodes
one logical qubit.

We can compare this with (C ⊕D)• from before the merge:

(C ⊕D)• = F12
2 F18

2 F4
2

∂
(C⊕D)•
2 ∂

(C⊕D)•
1

where the differentials are easy to see from those of C• and D•, with ∂(C⊕D)•
2 = ∂C•2 ⊕ ∂D•2

etc. Evidently, ((C⊕D)•, (C⊕D)•) encodes 2 logical qubits. As expected, there are 2 new
qubits, and 3 new Z-measurements in (T•, T •). Each of the 2 new qubits participates in 2
of the new Z-measurements (and no other Z-measurements). We can check that dZT ≥ 3,
i.e. the code has distance bounded below.

For the error-corrected Z ⊗Z measurement, we therefore start with the code ((C ⊕
D)•, (C ⊕ D)•). Recall that this has d = 3. We then initialise the 2 new qubits in the
|+〉 state and measure 3 rounds of the stabilisers specified by ∂T•2 and ∂T•1 . As the 2 new
qubits each participate in 2 of the new Z-measurements, the product of the outcomes is
insensitive to initialisation errors. We apply the gauge-fixing operators from Example 2.4.2
to correct for the 3 new Z-measurements which may output the -1 measurement outcome.
We end up with the code (T•, T •).



8. Subsystem code distance calculation 245

8 Subsystem code distance calculation
Given a CSS code C• defined by two parity-check matrices PX ∈ FmX×n2 , PZ ∈ FmZ×n2 and
a function f which calculates or estimates the distance of a CSS code, we show that the
same function f can be called to calculate or estimate the distance of a subsystem CSS
code. For simplicity we assume that f can yield dZ , the Z-distance, or dX , the X-distance,
as desired, as this is what DistRandCSS can do [PSK22]. However, the method works even
if f outputs d = min(dZ , dX).

First, find a spanning set of the gauge Z logicals G ⊂ H1(C•). Typically this set will be
a basis, but it does not have to be. Say the set chosen has cardinality lZ . Then append
these logicals to PZ , making a new matrix P ′Z ∈ F(mZ+lZ)×n

2 . These gauge logicals must
commute with the X stabilisers, so we have a new CSS code C ′• with parity-check matrices
PX and P ′Z . Apply f to C ′• to acquire d′Z . This is the lowest weight Z logical which is not
in the image of P ′Z , and so is the lowest weight dressed Z logical in our subsystem code.

Then do the same the other way round. Make a new matrix P ′X ∈ F(mX+lX)×n
2 , giving a

new CSS code C ′′• with parity-check matrices P ′X and PZ . Apply f to acquire d′X . Then
the distance of our subsystem CSS code is d′ = min(d′Z , d′X).

9 Computing colimits
Here we show explicitly how to calculate the colimits necessary for Algorithms 1 and 2.
We only need to check it for coequalisers, as an external merge can always be viewed as
an internal merge within a direct sum codeblock.

We start off with the following diagram

V2 V1 V0

V2 V1 V0

R2 R1 R0

T2 T1 T0

g2 g1 g0

f2 f1 f0

coeq2 coeq1 coeq0

and our task is to find ∂T2 and ∂T1 . We know from the universal property that once
the components Ti are fixed, the mediating maps are also unique, so we need only find
differentials such that the diagram commutes.

Recall that g• and f• are basis-preserving chain maps, and coeqi := coeq(fi, gi) is the
coequaliser of matrices at degree i, which is also basis-preserving. V• is simultaneously
the operator subcomplex of two irreducible Z logicals in R•. The first observation is
that for all merges in the Z basis, V2 = 0, hence f2 = g2 = 0 and T2 = R2. Therefore
∂T2 = coeq1 ◦ ∂R2 . This can be computed simply be taking the XOR of pairs of rows in the
mutual image of g1 and f1 and assigning the new rows entries in ∂T2 – it does not matter
which so long as we are consistent.



246 Appendix

For ∂T1 , we have that ∂T1 ◦ coeq1 = coeq0 ◦ ∂R1 . We can compute ∂T1 ◦ coeq1 in the same
way, by taking XORs of pairs of rows. We must now find ∂T1 . This time we take the OR
(not XOR) of pairs of columns in ∂T1 ◦ coeq1 which correspond to basis elements in the
mutual image of g1 and f1. The assignment of new column entries must be consistent
with the assignment of row entries to ∂T2 so that coeq1 is identical to before.

One can check that the diagram now commutes everywhere, and so we have calculated
the mediating maps, i.e. differentials of T•, successfully. When performing an external
merge the matrices ofR• are block-diagonal and this procedure reduces to the computation
described in Section 3.3.

10 Generalised bicycle codes
Generalised bicycle (GB) codes are codes with PX =

(
A B

)
and PZ =

(
Bᵀ Aᵀ

)
where

A and B are elements of C`, the ring of circulant matrices [PK21, KP13]. GB codes are
a special case of lifted product codes where the classical codes over C` have the check
matrices A and B. In this sense they are smallest possible lifted product codes.

C`
∼= F〈`〉2 , so A and B can thus be described uniquely by polynomials over F2 in a single

variable x, where x` = 1.
There is no exact formula for all the parameters of GB codes, but certain input poly-

nomials have been found to yield exceptional parameters. For example, ` = 63 with
a(x) = 1 + x + x14 + x16 + x22 and b(x) = 1 + x3 + x13 + x20 + x42 gives a J126, 28, 8K
code. In all our benchmarks here we use the GB codes (A1) to (A5) from [PK21, App. B],
ranging from n = 46 to n = 254. For codes (A1) and (A5) the distance is not known, with
only upper and lower bounds given. We assume the upper bound is tight for the purposes
of the paper. The distances are large enough that we do not check distances of merged
codes using Z3 but instead rely solely on QDistRnd to estimate.

10.1 Individual merges
We perform the same benchmarking as in Section 3.3.2, but with GB codes instead of
LCS codes. The codes reach high dimensions, with up to 28 logical qubits, so we only
perform merges using the first 7 logical qubits to prevent exorbitant compute time. As
we are only using QDistRnd to estimate the merged code distances we cannot prove that
at the merge depths given the distance does not decrease, but this is somewhat justified
as the distance is not even known for some of the initial codes.

Results are shown in Figure 1 for individual X and Z merges respectively. We also
show a comparison with surface codes and [CKBB22] in Figure 2.

GB codes appear to be highly amenable to surgery, with extremely efficient individual
merges compared to surface codes and [CKBB22]. We cannot discount the possibility that
QDistRnd fails to find low weight logicals in the merged codes, however.

10.2 Parallel merges
We redo the benchmarking in Section 3.3.2 but with GB codes instead. We again restrict
the benchmark to only parallelise up to 7 merges for efficiency of computation.

We see that even when parallelised, the merges are still quite cheap; in particular the
total number of qubits required increases much slower than for surface codes or [CKBB22].
We do not have a good understanding of what about GB codes allows for this efficiency,



10. Generalised bicycle codes 247

` 〈r〉 〈nancilla/ninitial〉 〈ω〉
23 1 0.23 9
24 1 0.19 9
63 1.29 0.35 11
90 1.14 0.24 9
127 1 0.24 11

` 〈r〉 〈nancilla/ninitial〉 〈ω〉
23 1 0.22 9
24 1.17 0.3 9
63 1 0.25 11
90 1 0.18 9
127 1 0.23 11

Figure 1: Figures of merit for individual X and Z merges between GB codes.

` ninitial 〈nancilla〉 〈ntotal〉
23 92 20.24 112.24

580 8 588
92 560 652

24 96 28.8 124.8
1356 7 1363
96 541.33 637.33

63 252 63 315
6328 7 6335
252 1526.86 1778.86

90 360 64.8 424.8
12260 17 12277
360 3857.71 4217.71

127 508 116.84 624.84
42616 19 42635
508 7493.71 8001.71

Figure 2: Comparison of GB code individual Z-merges to surface codes and [CKBB22].
The first row in each box is our homological approach using Algorithm 1. The sec-
ond is lattice surgery with surface code patches. The third is a naive application
of [CKBB22] to GB codes.



248 Appendix

` r nancilla/ninitial ω

23 1 0.46 10
24 1 1.125 14
63 2 4.34 17
90 1 1.34 15
127 1 1.66 17

` r nancilla/ninitial ω

23 1 0.42 10
24 1 1.35 14
63 1 1.71 17
90 1 1.3 15
127 1 1.64 17

Figure 3: Figures of merit for parallel X and Z merges between GB codes.

` ninitial nancilla ntotal

23 92 39 131
580 16 596
92 1120 1212

24 96 130 226
1356 42 1398
96 3248 3344

63 252 430 682
6328 49 6377
252 10688 10940

90 360 468 828
12260 119 12379
360 27004 27364

127 508 831 1339
42616 133 42749
508 52456 52964

Figure 4: Comparison of GB code parallel Z-merges to surface codes and [CKBB22]. The
first row in each box is our homological approach using Algorithm 1. The second
is lattice surgery with surface code patches. The third is a naive application of
[CKBB22] to GB codes.



11. Detailed SSIP results 249

` 〈r〉 〈nancilla/ninitial〉 〈ω〉
23 1.5 0.85 9
24 1.7 0.77 9
63 1.29 0.7 11
90 1.57 0.74 9
127 1 0.47 11

` 〈r〉 〈nancilla/ninitial〉 〈ω〉
23 2 1.12 9
24 1.5 0.86 9
63 1 0.49 11
90 1.71 0.8 9
127 1 0.47 11

Figure 5: Figures of merit for individual single-qubit logical X and Z measurements with
GB codes.

and it is possible that QDistRnd is giving an upper bound on distance which isn’t tight,
which would lead to merges which appear more efficient than they are. Lastly, the stabiliser
weights increase substantially, up to a maximum of 17, to the point that fault-tolerance
may be impossible with such merged codes.

10.3 Individual single-qubit measurements
This section is a re-run of Section 3.3.2 but for GB codes, and once again using only the
first 7 logical qubits. See Figure 5 and Figure 6 for the results.

10.4 Parallel single-qubit measurements
This time we re-run Section 3.3.2, but with the same modifications for GB codes: we use
QDistRnd to estimate code distances, and measure at most the first 7 logical qubits in
parallel. See Figure 7 and Figure 8 for results. Unfortunately, the compute time of parallel
single-qubit measurements for ` = 127 became too high, so we omit this data.

11 Detailed SSIP results
In this appendix we present more fine-grained versions of the tables presented in Section 3.3.
Throughout, i refers to the logical qubit used in the merge/measurement.

12 The vacuum space of D(G) models
This appendix finds expressions for an orthogonal basis of Hvac in the D(G) models,
following [CDH20]. This is included for completeness in order to have a self-contained
account of the theory. Let g :=

⊗
l∈E g

l be the state in H with a group element gl viewed



250 Appendix

` ninitial 〈nancilla〉 〈ntotal〉
23 46 51.52 97.52

290 0 290
46 275.5 321.5

24 48 41.28 89.28
678 0 678
48 266.67 314.67

63 126 61.74 187.74
3164 0 3164
126 759.43 885.42

90 180 144 324
6130 0 6130
180 1919.86 2099.86

127 254 119.38 373.38
21308 0 21308
254 3736.86 3990.86

Figure 6: Comparison of GB code individual single-qubit logical Z-measurements to sur-
face codes and a naive application of [CKBB22]. The first row uses the method
described in Section 3.2.3. The second is lattice surgery with surface code patches.
The third is a naive application of [CKBB22] to GB codes.

` r nancilla/ninitial ω

23 2 1.26 9
24 2 3 11
63 2 8.68 17
90 2 5.46 13

` r nancilla/ninitial ω

23 2 1.15 9
24 3 6.15 11
63 1 3.41 17
90 2 4.87 13

Figure 7: Figures of merit for parallel single-qubit logical X and Z measurements with
GB codes.



12. The vacuum space of D(G) models 251

` ninitial nancilla ntotal

23 46 53 99
290 0 290
46 551 597

24 48 295 343
678 0 678
48 1600 1648

63 126 430 556
3164 0 3164
126 5316 5442

90 180 877 1057
6130 0 6130
180 13439 13619

Figure 8: Comparison of GB code parallel single-qubit logical Z-measurements to surface
codes and a naive application of [CKBB22]. The first row uses the method
described in Section 3.2.3. The second is lattice surgery with surface code
patches. The third is a naive application of [CKBB22] to GB codes.

in CG at each edge. Let γ be an oriented path in the lattice. Now, define

γ(g) :=
∏
l∈γ

(gl)ε

where ε = 1 if the path orientation agrees with the lattice orientation, and −1 otherwise.
For example, given a segment of the lattice segment with an oriented path γ,

g3
g1 g2

g4 g5

g11 g12

g6 g7

g8 g9 g10

we would have γ(g) := (g12)−1g9(g6)−1g3g1. (We choose arrow composition to be this
way round, rather than γ(g) := g1g3(g6)−1g9(g12)−1, as it is convenient for the proof of
Theorem 12.2 below.)

Observe that for B(p) at a given face p, the condition B(p)g = g is equivalent to
∂p(g) = e, where ∂p is the boundary of p interpreted as a clockwise-oriented path, and e
is the identity element of G. Note that the choice of basepoint of this path is immaterial,
as the product is still e under cyclic rotations. Now, consider two adjacent boundaries ∂p1
(red) and ∂p2 (cyan) such that ∂p1(g) = ∂p2(g) = e. Then ∂p1,2(g) = ∂p1(g)∂p2(g) = e
for the boundary of the combined face,

=p1 p2 p1 p2

It follows that the subspace {ψ | B(p)ψ = ψ for all p} is spanned by the following set:

S = {g | ∂p(g) = e for all p} = {g | γ(g) = e for all contractible closed γ}.



252 Appendix

L ` i r nancilla/ninitial ω

1 3 0 1 0.17 6
1 3 1 1 0.17 6
1 3 2 1 0.1 6
1 4 0 1 0.125 6
1 4 1 1 0.175 6
1 4 2 1 0.125 6
1 4 3 1 0.075 6
1 5 0 1 0.1 6
1 5 1 1 0.16 6
1 5 2 1 0.14 6
1 5 3 1 0.1 6
1 5 4 1 0.06 6
2 4 0 2 0.25 7
2 4 1 2 0.36 7
2 4 2 2 0.25 7
2 4 3 1 0.11 7
2 5 0 3 0.33 7
2 5 1 1 0.1 7
2 5 2 3 0.45 7
2 5 3 3 0.33 7
2 5 4 3 0.49 7
2 6 0 3 0.28 7
2 6 1 3 0.44 7
2 6 2 3 0.34 7
2 6 3 3 0.37 7
2 6 4 3 0.28 7
2 6 5 3 0.49 7
3 5 0 2 0.15 7
3 5 1 3 0.23 7
3 5 2 1 0.072 7
3 5 3 3 0.45 7
3 5 4 3 0.456 7
3 6 0 4 0.25 7
3 6 1 1 0.06 7
3 6 2 1 0.057 7
3 6 3 4 0.27 7
3 6 4 4 0.53 7
3 6 5 4 0.7 7

Figure 9: Expanded figures of merit for individual Z-merges between LCS codes.



12. The vacuum space of D(G) models 253

L ` i r nancilla/ninitial ω

1 3 0 1 0.17 6
1 3 1 1 0.2 6
1 3 2 1 0.1 6
1 4 0 1 0.15 6
1 4 1 1 0.125 6
1 4 2 1 0.2 6
1 4 3 1 0.075 6
1 5 0 1 0.14 6
1 5 1 1 0.12 6
1 5 2 1 0.1 6
1 5 3 1 0.2 6
1 5 4 1 0.06 6
2 4 0 1 0.096 7
2 4 1 1 0.14 7
2 4 2 1 0.15 7
2 4 3 1 0.048 7
2 5 0 2 0.28 7
2 5 1 2 0.2 7
2 5 2 2 0.37 7
2 5 3 3 0.91 7
2 5 4 1 0.038 7
2 6 0 2 0.26 7
2 6 1 2 0.24 7
2 6 2 2 0.19 7
2 6 3 2 0.35 7
2 6 4 3 0.74 7
2 6 5 1 0.032 7
3 5 0 2 0.21 7
3 5 1 2 0.3 7
3 5 2 3 0.5 7
3 5 3 3 0.71 7
3 5 4 3 0.15 7
3 6 0 2 0.19 7
3 6 1 4 0.40 7
3 6 2 2 0.30 7
3 6 3 3 0.46 7
3 6 4 2 0.35 7
3 6 5 4 0.18 7

Figure 10: Expanded figures of merit for individual X-merges between LCS codes.



254 Appendix

L ` i r nancilla/ninitial ω

1 3 0 2 1.1 6
1 3 1 2 1.1 6
1 3 2 1 0.2 6
1 4 0 2 0.8 6
1 4 1 2 1.05 6
1 4 2 2 0.8 6
1 4 3 1 0.15 6
1 5 0 2 0.64 6
1 5 1 2 0.96 6
1 5 2 2 0.84 6
1 5 3 2 0.64 6
1 5 4 1 0.12 6
2 4 0 1 0.17 7
2 4 1 1 0.25 7
2 4 2 1 0.17 7
2 4 3 3 0.98 7
2 5 0 3 0.66 7
2 5 1 2 0.58 7
2 5 2 4 1.25 7
2 5 3 4 0.92 7
2 5 4 4 1.37 7
2 6 0 4 0.77 7
2 6 1 4 1.22 7
2 6 2 4 0.95 7
2 6 3 4 1.04 7
2 6 4 4 0.77 7
2 6 5 4 1.37 7
3 5 0 1 0.11 7
3 5 1 3 0.46 7
3 5 2 2 0.42 7
3 5 3 4 1.25 7
3 5 4 4 1.28 7
3 6 0 3 0.35 7
3 6 1 2 0.35 7
3 6 2 3 0.55 7
3 6 3 2 0.23 7
3 6 4 2 0.46 7
3 6 5 5 1.8 7

Figure 11: Expanded figures of merit for individual single qubit logical Z-measurements
with LCS codes.



12. The vacuum space of D(G) models 255

L ` i r nancilla/ninitial ω

1 3 0 2 1.0 6
1 3 1 2 1.2 6
1 3 2 1 0.2 6
1 4 0 2 0.9 6
1 4 1 2 0.75 6
1 4 2 2 1.2 6
1 4 3 1 0.15 6
1 5 0 2 0.84 6
1 5 1 2 0.72 6
1 5 2 2 0.6 6
1 5 3 2 1.2 6
1 5 4 1 0.12 6
2 4 0 1 0.19 7
2 4 1 2 0.81 7
2 4 2 3 1.46 7
2 4 3 1 0.1 7
2 5 0 3 0.94 7
2 5 1 2 0.4 7
2 5 2 3 1.21 7
2 5 3 4 2.54 7
2 5 4 1 0.08 7
2 6 0 2 0.85 7
2 6 1 3 0.78 7
2 6 2 3 0.62 7
2 6 3 3 1.14 7
2 6 4 3 1.49 7
2 6 5 1 0.06 7
3 5 0 4 0.97 7
3 5 1 4 1.39 7
3 5 2 4 1.4 7
3 5 3 3 1.42 7
3 5 4 4 0.42 7
3 6 0 2 0.37 7
3 6 1 5 1.03 7
3 6 2 1 0.21 7
3 6 3 4 1.29 7
3 6 4 4 1.6 7
3 6 5 4 0.35 7

Figure 12: Expanded figures of merit for individual single qubit logical X-measurements
with LCS codes.



256 Appendix

` i r nancilla/ninitial ω

23 0 1 0.22 9
23 1 1 0.21 9
24 0 2 0.69 9
24 1 1 0.22 9
24 2 1 0.25 9
24 3 1 0.23 9
24 4 1 0.21 9
24 5 1 0.2 9
63 0 1 0.25 11
63 1 1 0.24 11
63 2 1 0.25 11
63 3 1 0.24 11
63 4 1 0.25 11
63 5 1 0.25 11
63 6 1 0.24 11
90 0 1 0.18 9
90 1 1 0.19 9
90 2 1 0.17 9
90 3 1 0.21 9
90 4 1 0.18 9
90 5 1 0.19 9
90 6 1 0.18 9
127 0 1 0.22 11
127 1 1 0.25 11
127 2 1 0.23 11
127 3 1 0.23 11
127 4 1 0.23 11
127 5 1 0.23 11
127 6 1 0.24 11

Figure 13: Expanded figures of merit for individual Z-merges between GB codes.



12. The vacuum space of D(G) models 257

` i r nancilla/ninitial ω

23 0 1 0.24 9
23 1 1 0.22 9
24 0 1 0.2 9
24 1 1 0.2 9
24 2 1 0.2 9
24 3 1 0.2 9
24 4 1 0.17 9
24 5 1 0.17 9
63 0 1 0.23 11
63 1 1 0.23 11
63 2 1 0.25 11
63 3 1 0.25 11
63 4 2 0.63 11
63 5 1 0.23 11
63 6 2 0.63 11
90 0 1 0.22 9
90 1 2 0.56 9
90 2 1 0.21 9
90 3 1 0.18 9
90 4 1 0.22 9
90 5 1 0.16 9
90 6 1 0.16 9
127 0 1 0.23 11
127 1 1 0.24 11
127 2 1 0.24 11
127 3 1 0.24 11
127 4 1 0.22 11
127 5 1 0.24 11
127 6 1 0.24 11

Figure 14: Expanded figures of merit for individual X-merges between GB codes.



258 Appendix

` i r nancilla/ninitial ω

23 0 2 1.15 9
23 1 2 1.09 9
24 0 3 2.25 9
24 1 1 0.44 9
24 2 1 0.5 9
24 3 1 0.46 9
24 4 2 1.08 9
24 5 1 0.4 9
63 0 1 0.5 11
63 1 1 0.48 11
63 2 1 0.5 11
63 3 1 0.49 11
63 4 1 0.49 11
63 5 1 0.49 11
63 6 1 0.48 11
90 0 2 0.94 9
90 1 1 0.38 9
90 2 2 0.89 9
90 3 2 1.08 9
90 4 2 0.97 9
90 5 2 1.0 9
90 6 1 0.37 9
127 0 1 0.43 11
127 1 1 0.49 11
127 2 1 0.46 11
127 3 1 0.47 11
127 4 1 0.46 11
127 5 1 0.47 11
127 6 1 0.48 11

Figure 15: Expanded figures of merit for individual single qubit logical Z-measurements
with GB codes.



12. The vacuum space of D(G) models 259

` i r nancilla/ninitial ω

23 0 2 1.26 9
23 1 1 0.43 9
24 0 2 1.0 9
24 1 2 1.0 9
24 2 2 1.0 9
24 3 1 0.4 9
24 4 1 0.33 9
24 5 2 0.88 9
63 0 1 0.47 11
63 1 1 0.47 11
63 2 1 0.5 11
63 3 1 0.49 11
63 4 2 1.25 11
63 5 1 0.47 11
63 6 2 1.25 11
90 0 1 0.43 9
90 1 2 1.12 9
90 2 1 0.42 9
90 3 2 0.94 9
90 4 2 1.17 9
90 5 2 0.82 9
90 6 1 0.31 9
127 0 1 0.46 11
127 1 1 0.48 11
127 2 1 0.49 11
127 3 1 0.48 11
127 4 1 0.45 11
127 5 1 0.48 11
127 6 1 0.47 11

Figure 16: Expanded figures of merit for individual single qubit logical X-measurements
with GB codes.



260 Appendix

Clearly, S is invariant under change of orientation of γ. Next, we define an equivalence
relation on S. We say that g ∼ g′ if g′ =

⊗
v∈V hv.vg for some collecton {hv ∈ G}. In

other words, there is some sequence of vertex operators that takes g to g′. The set of
equivalence classes is [S], and a given class is called [g]. Define

κ[g] :=
∑
g′∈[g]

g′ ∈ H

For any two tensor products states g =
⊗

l∈E g
l and g′ =

⊗
l∈E g

′l in H, define the inner
product (g, g′) =

∏
l∈E δgl,g′l .

Lemma 12.1. {κ[g] | [g] ∈ [S]} forms an orthogonal basis of Hvac.

Proof. Clearly, h.κ[g] = κ[g]. Therefore, κ[g] = A(v)κ[g],∀v ∈ V and we also know that
κ[g] = B(p)κ[g],∀p ∈ P , so κ[g] ∈ Hvac. In addition, for any two κ[g] and κ[g′], either
κ[g] = κ[g′] or they have no overlapping terms, by definition of the equivalence relation.
Therefore, (κ[g], κ[g′]) = |[g]|δ[g],[g′], where |[g]| is the cardinality of [g]. Thus all κ[g] are
orthogonal.

Next we prove that κ[g] span Hvac. For any state ψ ∈ Hvac, write ψ =
∑

g∈S αgg, where
g =

⊗
l∈E g

l. Now, choose a vertex v. We know that h.vψ = ψ, ∀h ∈ G. Given some g,
consider the set of states {g′} such that g′ agrees with g everywhere except at v, where
g′ = h

′
.vg for some h′ ∈ G. For any such g′, h.vg′ ∈ {g′}, so by definition h.v permutes

through the set. Therefore, as all g are orthogonal and h.v
∑

g∈S αgg =
∑

g∈S αgg, each
element in {g′} must appear with the same weight. Repeating for all vertices, it is clear
that ψ =

∑
[g]∈[S] β[g]κ[g], for some coefficients {β[g]}, and hence that {κ[g] | [g] ∈ [S]}

spans Hvac. �

Theorem 12.2. [CDH20] Let Σ be a closed, orientable surface. Then

dim(Hvac) = |Hom(π1(Σ), G)/G|.

where the G-action on any φ ∈ Hom(π1(Σ), G) is φ 7→ {hφh−1 | h ∈ G}.

Proof. We define an equivalence relation between closed, but not necessarily contractible,
paths acting on the ground state, by γ ∼ γ

′ if γ = γ
′∏

p∈I ∂p, for some set of faces I ⊆ P .
Denoting the set of all closed paths K, the equivalence relation defines a homotopy class
of Σ. By taking the obvious group composition we identify [K], the set of equivalence
classes, with π1(Σ). We now define a map

Θ : S → Hom(π1(Σ), G), Θ(g)([γ]) := γ(g),

where γ is any closed path in [γ]. The choice of γ is immaterial, as ∂p(g) = e, ∀p ∈ P . For
any g ∈ S, let [γ]0 be the class of contractible, closed paths, i.e. the identity of π1(Σ). By
definition, γ0(g) = e ∈ G, for any γ0 ∈ [γ]0. Now, again for any g ∈ S, let [γ]a and [γ]b be
two classes of closed paths. Let γa(g) = ga and γb(g) = gb. Observe that (γa ◦γb)(g) = gagb.
Therefore the image of Θ is indeed in the set Hom(π1(Σ), G) of group homomorphisms.

Next, we show that Θ is surjective. For any group homomorphism φ : π1(Σ) → G,
consider a maximum spanning tree T on Σ, with root r. By definition, T has m := |V |− 1
edges. For any edge ε outwith the tree, let uε and vε be the end vertices of ε. uε and vε
are in T . There is now a unique path γu through T from r to uε and γv from r to vε.
Therefore, we may define a closed path:

γε = γu ◦ ε ◦ γ−1
v



13. Proof of part (2) of Proposition 4.2.10 261

where γ−1
v is the reverse path of γv. By construction of T , the group element ε(g) associated

to ε is uniquely fixed by the group elements γu(g) and γv(g). Conversely, given edge ε
each group element ε(g) may be acquired by |G|m choices of group elements for edges in
T . Applying the same logic for any edge outwith T , Θ is therefore a |G|m-to-1 map. This
is invariant under choice of root r and maximum spanning tree T .

The proof is now completed by setting up a bijection between [S] and orbits of
Hom(π1(Σ), G) under the G-action. By definition, any closed path through a given vertex
v 6= r will have exactly one incoming arrow and one outgoing arrow. The product along
this path is invariant under h.v, so Θ(g) = Θ(h.vg). However, Θ(h.rg) = hΘ(g)h−1, as r is
the endpoint of the path. Therefore, the preimage of any φ ∈ Hom(π1(Σ), G) is exactly the
set of elements of S which agree on edges adjacent to r, but are just related by some family
hv.v at other vertices. Additionally, if Θ(g) = φ, then Θ([g]) = G.φ = {hφh−1 | h ∈ G}.
Therefore, [S] ∼= Hom(π1(Σ), G)/G, where the G-action is conjugacy as above. Using
Lemma 12.1, dim(Hvac) = |Hom(π1(Σ), G)/G|. �

13 Proof of part (2) of Proposition 4.2.10
That |ψh,g〉 ∈ L(s0, s1) follows from the commutation relations with operators at sites
t 6= s0, s1 in Lemma 4.2.8. In this Appendix, we show these states span L(s0, s1). Note
that there is a stronger claim in [BM-D08, Prop 7] for their ‘ribbon algebra’ Fρ but we
have not been able to reproduce the proof there at a number of points, specifically (B58),
(B59), (B62) and (B63) appear to assume that certain projectors are right-cancellable,
which in general is not possible.

Our proof by induction will involve 3 series of cases: (i) the base cases, when s0 and s1
are separated only be a single edge (direct or dual); (ii) the case when s0, s1 are distance
2 away, i.e. the smallest ribbon connecting them has exactly 2 triangle operatorions; (iii)
distance 3 or greater.

(i) The two base cases occur when s0 and s1 are adjacent, so the minimal ribbon ξ
required is of length 1, either a direct or dual triangle. We start with a direct triangle, for
example

s0 s1

g1
p2

where s0 = (v0, p0) and s1 = (v1, p0). Consider a state |Ψ〉 ∈ L(s0, s1) and all operators O
on L(s0, s1) such that O|vac〉 = |Ψ〉. Since the conditions on |Ψ〉 away from the end sites
are the same as for a vacuum, we can assume that O acts trivially on |vac〉 around all
vertices v /∈ {v0, v1} and p 6= p0 and hence that O can be chosen to act only on the edge
shared by (v0, p0) and (v1, p0), which has state g1 as in the diagram. A fuller explanation
requires arguments similar to those for the vacuum in Appendix 12.

Note next that End(CG)∼=C(G)>/CG∼=CG.<C(G), which is to say any operator acting
on g1 ∈ CG is a sum of terms factorising as CG acting by multiplication (one can fix
the side to be from the left or the right) and C(G) acting by evaluation against the
coproduct, the second of these being the action of a direct triangle operator. But any
contributions from a nontrivial part of CG in O will cease to satisfy B(p2)O|vac〉 = O|vac〉
from the conditions for L(s0, s1), so O ∈ C(G) acts like a direct triangle operator. Hence



262 Appendix

{T gξ |vac〉 | g ∈ G} span L(s0, s1), and T gξ = F e,g
ξ , (or any h in place of e) so L(s0, s1) is

spanned by {ψe,g |g ∈ G}, and therefore also by {ψh,g |h, g ∈ G}.
For the dual-triangle, we similarly consider

s0 s1
g2

v2

Now, |Ψ〉 can be characterised by an operator O which acts only on g2 and similarly
factorises as CG and C(G) acting as before, where the first is the action of a dual
triangle operator. But any contributions from a nontrivial part of C(G) in O will cease
to satisfy A(v2)O|vac〉 = O|vac〉, so O ∈ CG acts like a dual triangle operator. Hence
{Lghξ|vac〉 | h ∈ G} span L(s0, s1), and Lhξ = F h,e

ξ , so L(s0, s1) is spanned by {ψh,e |h ∈ G},
and therefore also by {ψh,g |h, g ∈ G}. This concludes the base cases.

(ii) There are four distance 2 cases, which can all be calculated. If s0, s1 occupy positions
as in

s0 s1
g1

g2

where the smallest ribbon has 1 direct and 1 dual triangle such that ξ = τ ◦ τ ∗, then by
the same arguments as above |Ψ〉 ∈ L(s0, s1) can be characterised by an operator O such
that |Ψ〉 = O|vac〉, where O acts only on the edges g1, g2, and we can see by considering
A(v) and B(p) acting at v and p adjacent to g1, g2 that O must be a sum of terms T gτ ◦Lhτ∗ .
We can then set F h,g

τ2◦τ1 = T gτ2 ◦ L
h
τ1 . That {F h,g

τ◦τ∗|vac〉 | h, g ∈ G} spans L(s0, s1) is then
immediate. The same argument applies if ξ = τ ∗ ◦ τ instead, but the other way round.

If the smallest ribbon is instead 2 direct triangles, for example

s0
s1

v3

then consider T g2
τ2 ◦ T

g1
τ1 |vac〉, for any g1, g2 ∈ G, T g2

τ2 ◦ T
g1
τ1 |vac〉 ∈ L(s0, s1) iff g1 = g2, by

considering commutation with A(v3). The same applies for different orientations, and the
same argument for dual triangles. For example

s0
p3

s1

with h1 = h2 by considering B(p3). That {F h,g
τ2◦τ1 | h, g ∈ G} spans L(s0, s1) is then

immediate, where either the first or second variable is surplus respectively.
(iii) For any s0, s1 which are distance 3 or further, we follow similar arguments but with

an extended set of chosen edges which characterise the state |Ψ〉 along a chosen ribbon ξ
between s0 and s1. Outside of this ribbon, the operator O used to characterise |Ψ〉 must
act trivially. Unlike the previous cases, it must also act trivially at at least one site inside
the ribbon too, and we use this to calculate the states.



13. Proof of part (2) of Proposition 4.2.10 263

The last triangle in the ribbon ξ must be either direct or dual, so we cover a similar
splitting of cases into direct and dual as in (i). First we consider the direct non-adjacent
case, ξ = τ ◦ ξ′, for example

s0

s2 s1

v
τ

ξ′

Assume that L(s0, s2) is spanned by {F h,g
ξ′ |vac〉} and observe that L(s0, s1) is a subspace

of the space spanned by {T g′τ ◦F
h,g
ξ′ |vac〉 | g′, g, h ∈ G} or {F e,g′

τ ◦F h,g
ξ′ |vac〉 | g′, g, h ∈ G}.

Specifically, L(s0, s1) is the subspace where A(v) acts as the identity for v at the site
connecting ξ′ and τ . Hence, for any O|vac〉 ∈ L(s0, s1),

O|vac〉 = 1
|G|

∑
h′∈G

h′.vO|vac〉

which we apply to O = F e,g′
τ ◦ F h,g

ξ′ ,

F e,g′

τ ◦F
h,g
ξ′ |vac〉 = 1

|G|
∑
h′∈G

h′.vF
e,g′

τ ◦ F h,g
ξ′ |vac〉 = 1

|G|
∑
h′∈G

F e,h′g′

τ ◦ F h,gh′−1

ξ′ |vac〉

= 1
|G|

∑
f∈G

F e,f−1gg′

τ ◦ F h,f
ξ′ |vac〉 =

∑
f∈G

F f−1hf,f−1gg′

τ ◦ F h,f
ξ′ |vac〉 = F h,gg′

ξ |vac〉

after a change of variables to f = gh′−1 and then using that F a,b
τ is independent of a for

a direct triangle operator. This allows us to recognise Fξ using (4.15). Denoting gg′ as g,
it follows that L(s0, s1) is spanned by {F h,g

ξ |vac〉 | h, g ∈ G} as required.
A similar argument applies for the dual distance 3 case, ξ = τ ∗ ◦ ξ′. Given for example

s0

s1

s2p

ξ′

τ ∗

we have this time L(s0, s1) is a subspace of the space spanned by {Lh′τ∗◦F
h,g
ξ′ |vac〉 | g, h′, h ∈

G} and such that B(p) = δe.s2 acts as the identity, where p is the face connecting ξ′ and
τ ∗ so that p ∈ s2. Then

Lh
′

τ∗ ◦ F
h,g
ξ′ |vac〉 = δe.s2L

h′

τ∗ ◦ F
h,g
ξ′ |vac〉 = Lh

′

τ∗δh′−1. ◦ F h,g
ξ′ |vac〉

= Lh
′

τ∗ ◦ F
h,g
ξ′ δh′−1g−1hg.s2|vac〉

which only holds if h′ = g−1hg, so for elements of L(s0, s1) we need only consider

Lg
−1hg
τ∗ ◦ F h,g

ξ′ |vac〉 = F g−1hg,e
τ∗ ◦ F h,g

ξ′ |vac〉 =
∑
f

δf,gF
f−1hf,e
τ∗ ◦ F h,g

ξ′ |vac〉

=
∑
f

F f−1hf,f−1g
τ∗ ◦ F h,g

ξ′ |vac〉 = F h,g
ξ |vac〉

on noting that F f−1hf,f−1g
τ∗ = δe,f−1gF

f−1hf,e
τ∗ and using (4.15). Thus, L(s0, s1) is spanned

by {F h,g
ξ |vac〉 | h, g ∈ G} as required.



264 Appendix

14 Universal Quantum Computation with D(S3)
Here, we outline and comment on further aspects of the logical qubit within D(S3) in
[WLP09]. First, we describe a Z-basis measurement on the logical qubit. It is claimed in
[BAC09, LHG11] that there exist ‘transport’ operations M τ

ξ which move τ quasiparticles
along the lattice deterministically. In particular, these should exist such that

M τ
−ξ′W

τ
ξ |vac〉 = W τ

ξ′◦ξ|vac〉

for all composeable open ribbons ξ, ξ′. It is beyond our scope to construct M τ
−ξ′ here, but

assuming it exists, it is a linear combination of chargeon ribbons, and therefore satisfies
(4.17). Taking −ξ to be a ribbon that completes ξ to a closed contractible ribbon, we have

M τ
−ξW

τ
ξ |vac〉 = W τ

(−ξ)◦ξ|vac〉 = |vac〉

Hence, referring to ξ, ξ′, ξ′′ in Section 4.2.5, we have that applying M τ
−ξM

τ
−ξ′ to |0L〉

and measuring the projector Pe,1 at any si will always yield |vac〉. On the other hand, if
we begin with |1L〉, we have

M τ
−ξM

τ
−ξ′|1L〉 = M τ

−ξM
τ
−ξ′W

σ
ξ′′W

τ
ξ′W

τ
ξ |vac〉

= W σ
ξ′′M

τ
−ξM

τ
−ξ′W

τ
ξ′W

τ
ξ |vac〉

= W σ
ξ′′ |vac〉

by (4.17), and so applying Pe,1 at s0, s1 will return 0. The operation M τ
−ξM

τ
−ξ′ followed

by measuring Pe,1.s0 , say, therefore constitutes a destructive Z-basis measurement on the
logical qubit: it tells us whether the qubit was in state |0L〉 or |1L〉, but at the cost of
taking us out of the degenerate subspace.

Now consider two distant groups of 4 τ quasiparticles labelled a, b:

s2 s3 s6 s7

s0 s1 s4 s5

· · ·

a b

where group a is as before and group b is a parallel copy with parallel notation. Entangle-
ment between a, b is achieved with the gate

Ka,b := 1
2(ida ⊗ idb +Xa ⊗ idb + ida ⊗Xb −Xa ⊗Xb)

where Xa, Xb are the logical operators on the respective qubits. Ka,b has the following
representations as a quantum circuit and a ZX-diagram respectively:

H

H H

H

b

a

b

a



15. Fourier basis for patches 265

In terms of ribbon operators, this is:

Ka,b = 1
2(ida ⊗ idb +W σ

ξ′′a
⊗ idb + ida ⊗W σ

ξ′′b
−W σ

ξ′′a
⊗W σ

ξ′′b
)

by straighforward substitution. Note that, while Ka,b is an entangling operation between
the two logical qubits, it only acts along ribbons ξ′′a , ξ

′′
b , and doesn’t require ribbons

between the two qubits, and must rely on the large entangled state on the lattice to
transmit information. As Ka,b requires only the ribbons ξ′′a , ξ′′b , it keeps the state within the
combined degenerate subspace where there are τ quasiparticles at all sites s0, s1, · · · , s7.

A logical Hadamard can be performed non-deterministically on qubit a using an an-
cillary qubit. We initialise the ancilla with |0b〉, apply Ka,b and then perform a Z-basis
measurement on qubit a. This teleports the state |ψ〉 on qubit a to Hb|ψ〉 on qubit b,
with a possible additional Zb factor depending on the measurement outcome. This is
obvious from a short calculation with the ZX-calculus [CD11]. Consider branch 1, where
the measurement results in 〈0a|:

b

a

=

a

b

and branch 2, where the measurement gives 〈1a|:

b

a

=

a

b

π

π

If we reach branch 2, the process is repeated until the Hadamard alone is implemented
(this is quite inefficient).

Equipped with the logical Hadamard and X rotations, we can reach anywhere on the
Bloch sphere, and the addition of the entangling gate Ka,b allows the implementation of any
unitary [NC10, Sec 4.5.2]. We note that several other schemes for universal computation
using representations of D(S3) have been described in [CHW15], although the formulation
is categorical rather than in terms of the quantum double on a lattice. We do not know
whether these categorical schemes can be implemented on the lattice.

15 Fourier basis for patches
Consider the small patch



266 Appendix

Now, |i〉L is the following state:

∏
v A(v)

|0〉 |0〉 |0〉

|i〉 |0〉 |i〉

|0〉 |0〉

=
∑

a,b,c,d

|a〉 |c〉|a− c〉

|i+ b− a〉|b− d〉|i+ d− c〉

| − b〉 | − d〉

where we have taken |0〉L and applied an X-type string from left to right. Now, consider
|δ0〉L:

∏
pB(p)

∑
a,b,c,d,e,f,g,h

|a〉 |c〉|b〉

|d〉 |e〉 |f〉

|g〉 |h〉

|a〉 |c〉|b〉

|d〉 |e〉 |f〉

|g〉 |h〉

δ0(a− c− b)
=
∑

a,b,c,d,e,f,g,h δ0(d+ b− f − e)

δ0(g + e− h)

|a〉 |c〉|a− c〉

|d〉|g − h〉 |f〉

| − g〉 | − h〉

=
∑

a,c,d,f,g,h δ0(d+ a− c− f − g + h)

where we performed a change of variables g 7→ −g, h 7→ −h. Now, δ0(d+a− c−f −g+h)
holds iff d+a− g = i and −f − c+h = −i for some i ∈ Zd. Thus we have |δ0〉L =

∑
i |i〉L.

If we then apply a Z-type string operator from top to bottom in the quasiparticle basis
we see that |δj〉L =

∑
i q
−ij|i〉L.

One could then show that the bases are consistent under Fourier transform for all sizes
of patch by induction, using the above as the base case.

16 Proof of lattice merges

We demonstrate the smooth merge on a small patch but it is easy to see that the same
method applies for arbitrary large patches. We begin with two patches, in the |δg〉L and
|δh〉L states respectively.

∑
a,b,c,d,i q

ig

|a〉 |c〉|a− c〉

|i+ b− a〉|b− d〉|i+ d− c〉

| − b〉 | − d〉

∑
w,x,y,z,j q

jh

|w〉 |y〉|w − y〉

|j + x− w〉|x− z〉 |j + z − y〉

| − x〉 | − z〉



17. Proof of lattice counits 267

Then initialise two new edges between, each in the |δ0〉 state.

∑
a,b,c,d,i,j,k,l,w,x,y,z q

ig+jh

|a〉 |c〉|a− c〉

|i+ b− a〉 |b− d〉 |i+ d− c〉

| − b〉 | − d〉

|w〉 |y〉|w − y〉

|j + x− w〉|x− z〉|j + z − y〉

| − x〉 | − z〉

|k〉

|l〉

where we have exaggerated the length of the new edges for emphasis. Now if we apply
stabiliser measurements at all points we see that the only relevant ones are the face
measurements including the new edges (the vertex measurements will still yield A(v)
unless a physical error has appeared there). The relevant measurements give us

δs(c− w − k); δr(k + i+ d− c− j − x+ w − l); δt(−d+ l + x)

for each new face, where r, s, t ∈ Zd. By substitution this gives

δr(k+ i+ d− c− j−x+w− l) = δr(−t− s+ i− j) = δr+t+s(i− j) = δn(i− j) = δi(n+ j)

where n is the group product of r, t, s in Zd. Computationally, n is the important mea-
surement outcome of the merge. Plugging back in to the patches we have

∑
a,b,c,d,j,w,x,y,z q

ng+j(g+h)

|a〉 |c〉|a− c〉

|n+ j + b− a〉|b− d〉 |n+ j + d− c〉

| − b〉 | − d〉

|w〉 |y〉|w − y〉

|j + x− w〉 |x− z〉|j + z − y〉

| − x〉 | − z〉

|c− w − s〉

|t+ d− x〉

In the positive outcome case, i.e. when s = r = t = 0, it is immediate that we have
|δg+h〉L on the combined patch. Otherwise, we can ‘fix’ the internal additions of s, t, n to
the edges with string operators or alternatively accommodate them into the Pauli frame
in the same manner as described in e.g. [dBH20]. Then we are left with qng|δg+h〉L, as
stated.

The Fourier transformed version of the above explains the rough merges as well, so we
do not describe it explicitly.

17 Proof of lattice counits
We now show a ‘smooth counit’ on a patch with state |δj〉L:

∑
a,b,c,d,i q

ig

|a〉 |c〉|a− c〉

|i+ b− a〉|b− d〉|i+ d− c〉

| − b〉 | − d〉

Measure out all edges in the Z basis, giving∑
a,b,c,d,i

qijδr(a)δs(a− c)δt(c)δu(i+ b− a)δv(b− d)δw(i+ d− c)δx(−b)δy(−d)



268 Appendix

for some r, · · · , y ∈ Zd. Then we observe that δu(i + b − a) = δi(a − b − u) = δi(n) for
n = a− b− u, and by performing some other substitutions we arrive at

qnjδv(y − x)δw(n− y − t)δs(n− u− x− t)

Importantly, the only factor here which depends on the input state is qnj. All the δ-
functions are merely conditions regarding which measurement outcomes are possible due
to the lattice geometry. These will always be satisfied by our measurements, thus we have
just

|δj〉L 7→ qnj

for n ∈ Zd, which in the other basis is |i〉L 7→ δn,i as stated. The rough counit follows
similarly.

18 Qudit ZX-calculus axioms
We show some relevant axioms for the fragment of qudit ZX-calculus which interests us.
These simply coincide with the rules from Hopf and Frobenius structures, along with the
Fourier transform. We ignore the more general phase group [Wan21], and also leave out
non-zero scalars. First, we define a spider

n

· · ·

· · ·

n :=

· · ·

· · ·

which is well-defined due to associativity and specialty of the underlying Frobenius struc-
ture. The spider is also invariant under exchange of input wires with each other and the
same for outputs, as the Frobenius algebra is (co)-commutative. A phaseless spider with
1 input and 1 output is identity:

=

Now, we can define duality morphisms on the object CZd, which we call a ‘cup’ and
similarly a ‘cap’:

 
∑

i∈Zd |i〉 ⊗ |i〉

 |i〉 ⊗ |j〉 7→ δi,j

which correspond to:

= = S = S



19. The logical block depiction 269

for the cup, and the vertically flipped version for the cap. The antipodes included here are
responsible for the antipodes in the CX gate in Section 5.2.1. Then we have the Fourier
exchange rule:

n

† †

=

· · ·

· · ·

n

· · ·

· · ·

n

which encodes Lemma 5.0.3 graphically.
Then we have the bialgebra rules

= = =

and rules pertaining to the antipode:

= = S S S= =
†
†=

†
† =

This is far from an exhaustive set of rules.

19 The logical block depiction
The lattice at a given time is drawn with a red line for a smooth boundary and green for
a rough boundary:

where the surface is shaded blue for clarity. A block extending upwards represents the
transformation over time. For example:

We call this the ‘logical block’ depiction, following similar work in [BDMNPR21].
Table 1 is an explicit dictionary between lattice surgery operations, qudit ZX-calculus

and linear maps in the multiplicative fragment, i.e. the n = 0 measurement outcomes. We



270 Appendix

Lattice opera-
tion Logical block ZX-

diagram Linear map

smooth unit
∑
i

|i〉

smooth split |i〉 7→ |i〉⊗ |i〉

smooth merge |i〉⊗ |j〉 7→ δi,j|i〉

smooth counit |i〉 7→ 1

rough unit |0〉

rough split |i〉 7→
∑
h

|h〉⊗|i−h〉

rough merge |i〉⊗ |j〉 7→ |i+j〉

rough counit |i〉 7→ δi,0

rotation |i〉 7→
∑
j

q−ij|j〉

Table 1: Dictionary of lattice surgery operations in the multiplicative fragment.



19. The logical block depiction 271

choose to use the multiplicative fragment to highlight the visual connection between the
columns. We see that red and green spiders correspond to rough and smooth operations
respectively.

We have no new results or proofs in this section, but we would like to discuss the
diagrams of logical blocks. These sorts of diagrams for lattice surgery have been used in
an engineering setting to compile quantum circuits to lattice surgery [GF09, BDMNPR21].
To go from the cubes shown there to the tubes which we show here we merely relax the
discretisation of space and time somewhat to expose the relationship with algebra. This
relationship with algebra is relevant because such diagrams have appeared in a seemingly
quite different context.

It is well known that the category of ‘2-dimensional thick tangles’, 2Thick, is monoidally
equivalent to the category Frob freely generated by a noncommutative Frobenius algebra
[Lau05]. This should be unsurprising to those familiar with the notion of a ‘pair of pants’
algebra. We say that 2Thick is a presentation of Frob. Similarly, the symmetric monoidal
category 2Cob of (diffeomorphism classes of) 2-dimensional cobordisms between (disjoint
unions of) circles is a presentation of ComFrob, the category freely generated by a
commutative Frobenius algebra [Koc03].

This fact is important for topological quantum field theories (TQFTs). One can define
an n-dimensional TQFT as a symmetric monoidal functor from nCob → Vect, the
category of finite-dimensional vector spaces. The key point is that the functor takes
(diffeomorphism classes of) manifolds as inputs and outputs linear maps between vector
spaces, which are by definition manifold invariants. One can see that 2D TQFTs are in
bijection with commutative Frobenius algebras in Vect.

In [Reu19], Reutter gives a slightly different monoidal category, which we will call
2Block. It has as objects disjoint unions of squares, with the same shading of sides as
those in the logical block diagrams above. Then morphisms are classes of surfaces between
the squares, such that the borders between the surfaces match up with the edges of the
squares at the source and target objects and the surface colours are consistent with those
of the squares’ sides. While the morphisms are obviously quotiented by equivalence of
surfaces up to border-preserving diffeomorphism, Reutter quotients by ‘saddle-invertibility’
as well, which is not a rule one can acquire through topological moves alone, as it involves
the closing and opening of holes.

Reutter conjectures that 2Block ' uHopf, where uHopf is the category freely gener-
ated by a unimodular Hopf algebra.2 While we do not know enough about topology or
geometry to prove (or disprove) this conjecture, we suspect one route is to consider Morse
functions and classify the diffeomorphism classes near critical points. This is similar to one
proof of 2Cob ' ComFrob [Koc03]. For the reader’s convenience, we now reproduce a
handful of the equivalences under topological deformation which motivate this conjecture.
We have the axioms of a Frobenius algebra,

2In Vect, unimodularity is typically defined using integrals [Maj95]. In this more abstract setting it is
defined by some axioms on dualities.



272 Appendix

and the same for red faces. These are just widened versions of the diagrams in 2Thick.
Then one can see the interpretation of a unimodular Hopf algebra as two interacting
Frobenius algebras. We start with two Frobenius algebras and glue them together in such
a way that they give the bialgebra and antipode axioms. The main bialgebra rule is

where we require saddle invertibility to close up a hole in the middle. This is also required
for showing that comultiplication is a unit map and so on. Given all of these deformations
and those involving the antipode, which is a twist by π, one can see that they define a
functor uHopf→ 2Block; the hard part is proving that this is an equivalence.

Now, Reutter also draws a comparison with representation theory and tensor category
theory. It is striking that, given the unimodular Hopf algebra CZd, we can create a logical
space on a patch isomorphic to the vector space of CZd itself, and the logical operations
precisely coincide with the linear maps defined by the algebra. We conjecture that lattice
surgery is the ‘computational implementation’ of this presentation of unimodular Hopf
algebras, in the same way that the logical space of the Kitaev model on a closed orientable
manifold M is isomorphic to the vector space F (M) in the image of a Dijkgraaf-Witten
theory F : 2Cob→ Vect when given the same manifold M [CM22, Thm 3.2].

20 Logical CX gate
Here we check the correctness of the CX gate implementations from Section 5.2.1.

First, observe that the diagram:

yields the linear map:

|i〉 ⊗ |j〉 7→ |i〉 ⊗ |i〉 ⊗ |j〉 7→ |i〉 ⊗ |i+ j〉

where we have considered the diagram piecemeal from bottom to top, indicated by the
dashed lines.



21. Generalisations and Hopf algebras 273

Then we can perform a sequence of rewrites between all four diagrams, labelled below:

=

S= = SSS =

=

where at each stage we have either used the spider rule, inserted duals, or swapped between
duals and spiders; see Appendix 18.

21 Generalisations and Hopf algebras
While we have shown that lattice surgery works for arbitrary dimensional qudits, we
emphasise that the algebraic structures involved are very simple so far. The lattice model
in the bulk can be generalised significantly: first, one can replace CZd with another finite
abelian group algebra. As all finite abelian groups decompose into direct sums of cyclic
groups this case follows immediately from the work herein and is uninteresting.

At the second level up, we can replace it with an arbitrary finite group algebra CG. At
this level several assumptions break down:

• CG still has a dual function algebra C(G), but the Fourier transform no longer
coincides with Pontryagin duality, and the two algebras will no longer be isomorphic
in general. One can still define a Fourier transform in the sense that it translates
between convolution and multiplication, but in this case the Fourier transform is
the Peter-Weyl isomorphism, i.e. a bimodule isomorphism between CG and a direct
sum of matrix algebras labelled by the irreps of G.

• The CG lattice model can no longer be described using string operators, and these
must be promoted to ribbon operators [Kit03]. This is because the lattice model is
based on the Drinfeld double D(G) = C(G)>/CG, where the associated action is
conjugation. In the abelian case conjugation acts trivially and so we have D(Zd) =
C(Zd) ⊗ CZd: the double splits into independent algebras, which give the X-type
and Z-type string operators respectively.

• There are still canonical choices of rough and smooth boundary, labelled by subgroups
K = {e} and K = G for rough and smooth boundaries respectively. Similarly, we
still have well-defined measurements, using representations of CG and C(G) for
vertices and faces. However, the algebra of ribbon operators which are undetectable
at the boundary, and hence the logical operations on a patch, becomes significantly
more complicated, see [Sch16] for the underlying module theory.

Of course, the Kitaev model can be generalised much further still. The third level would
be arbitrary finite-dimensional Hopf C∗-algebras. At this level even the calculations in the
bulk are tricky, and many features were only recently resolved [CM22, Meu17, YCC22].



274 Appendix

The fourth (and highest) level is the maximal generality, which are weak Hopf C∗-
algebras, in bijection (up to an equivalence) with so-called unitary fusion categories
[EGNO10]. Even at this extreme generality, there are glimpses of hope. There are two
canonical choices of boundaries given by the trivial (rough) and regular (smooth) module
categories [Ost03B], and we speculate that calculating some basic features like dim(Hvac)
of a patch could be done using techniques from topological quantum field theory (TQFT).
At this level of generality, the connections with TQFT become more tantalising. The
parallels between topological quantum computing in the bulk and TQFTs are well-known,
see e.g. [BK12], but lattice surgery introduces discontinuous deformations in the manner
of geometric surgery. While boundaries of TQFTs are well-studied [KS11, FS03], we do not
know whether TQFT theorists study the relation between geometric surgery on manifolds
and linear algebra in the same manner as they do for, say, diffeomorphism classes of
cobordisms.

22 Boundary ribbon operators with Ξ(R,K)?

In [CCW16, Sec 2.3.3] it is claimed that one can use boundary ribbon operators built
from Ξ to create quasiparticles on the boundary, in a similar manner to the bulk ribbon
operators, and that it commutes with their AK(v) and BK(p) terms at intermediate sites.
In this appendix, we show that this does not work due to issues with equivariance, at
least when the boundary ribbon operators act in the same way as bulk ribbon operators.

Definition 22.1. Let ξ be a ribbon, r ∈ R and k ∈ K. Then Y r⊗δk
ξ acts on a direct

triangle τ as

,

and on a dual triangle τ ∗ as

.

Concatenation of ribbons is given by

Y r⊗δk
ξ′◦ξ = Y

(r⊗δk)2
ξ′ ◦ Y (r⊗δk)1

ξ =
∑
x∈K

Y
(x−1.r)⊗δx−1k
ξ′ ◦ Y r⊗δx

ξ ,

where we see the comultiplication ∆(r⊗δk) of Ξ(R,K)∗. Here, Ξ(R,K)∗ is a coquasi-Hopf
algebra, and so has coassociative comultiplication (it is the multiplication which is only
quasi-associative). Therefore, we can concatenate the triangles making up the ribbon in
any order, and the concatenation above uniquely defines Y r⊗δk

ξ for any ribbon ξ.

Let s0 = (v0, p0) and s1 = (v1, p1) be the sites at the start and end of a triangle. The
direct triangle operators satisfy

k′.v0 ◦ Y r⊗δk
τ = Y r⊗δk′k

τ ◦ k′.v0 , k′.v1 ◦ Y r⊗δk
τ = Y

r⊗δ
kk′−1

τ ◦ k′.v1



22. Boundary ribbon operators with Ξ(R,K)? 275

and
[δr′.si , Y r⊗δk

τ ] = 0
for i ∈ {1, 2}. For the dual triangle operators, we have

k′.vi ◦
∑
k

Y r⊗δk
τ∗ = Y

(k′.r)⊗δk
τ∗ ◦ k′.vi

again for i ∈ {1, 2} and k ∈ CK. However, there are not similar commutation relations for
the actions of C(R) on faces of dual triangle operators. In addition, in the bulk, one can
reconstruct the vertex and face actions using suitable ribbons [BM-D08, CM22] because
of the duality between C(G) and CG; this is not true in general for C(R) and CK.
Example 22.2. Given the ribbon ξ on the lattice below, we see that Y r⊗δk

ξ acts only
along the ribbon and trivially elsewhere. We have

if g2, g4, g6(g7)−1, g10 ∈ K, and 0 otherwise, and

y1 = (rx1)−1

y2 = ((g2)−1rx2)−1

y3 = ((g2g4)−1rx3)−1

y4 = ((g2g4g6(g7)−1)−1rx4)−1

One can check this using Definition 22.1.
It is claimed in [CCW16, Sec 2.3.3] that these ribbon operators obey similar equivari-

ance properties with the site actions of Ξ(R,K) as the bulk ribbon operators, but such
equivariance properties do not generally hold. Precisely, we find that when such ribbons
are ‘open’ in the sense of [Kit03, BM-D08, CM22] then an intermediate site s2 on a ribbon
ξ between either endpoints s0, s1 does not satisfy

ΛCK.s2 ◦ Y
r⊗δk
ξ = Y r⊗δk

ξ ◦ ΛCK.s2 .

in general, nor the corresponding relation for ΛC(R).s2 . For example, consider the vertex
between edges labelled g2 and g4 in Example 22.2 above - the equivariance property is
not satisfied.



276 Appendix

23 Measurements and nonabelian lattice surgery

In Section 6.3.1, we described nonabelian lattice surgery for a general underlying group
algebra CG, but for simplicity of exposition we assumed that the projectors A(v) and
B(p) could be applied deterministically. In practice, we can only make a measurement,
which will only sometimes yield the desired projectors. As the splits are easier, we discuss
how to handle these first, beginning with the rough split. We demonstrate on the same
example as previously:



23. Measurements and nonabelian lattice surgery 277

where we have measured the edge to be deleted in the CG basis. The measurement outcome
n informs which corrections to make. The last arrow implies corrections made using ribbon
operators. These corrections are all unitary, and if the measurement outcome is e then
no corrections are required at all. The generalisation to larger patches is straightforward,
but requires keeping track of multiple different outcomes.

Next, we discuss how to handle the smooth split. In this case, we measure the edges to
be deleted in the Fourier basis, that is we measure the self-adjoint operator

∑
π pπPπ. at

a particular edge, where

Pπ := Pe,π = dim(Wπ)
|G|

∑
g∈G

Trπ(g−1)g

from Section 6.1.2 acts by the left regular representation. Thus, for a smooth split, we
have the initial state |e〉L:



278 Appendix

and afterwards we still have coefficients from the irreps of CG. In the case when π = 1,
we are done. Otherwise, we have detected quasiparticles of type (e, π) and (e, π′) at
two vertices. In this case, we appeal to e.g. [BKKK22, BAC09], which claim that one
can modify these quasiparticles deterministically using ribbon operators and quantum
circuitry. The procedure should be similar to initialising a fresh patch in the zero logical
state, but we do not give any details ourselves. Then we have the desired result.

For merges, we start with a smooth merge, as again all outcomes are in the group basis.
Recall that after generating fresh copies of CG in the states

∑
m∈Gm, we have



23. Measurements and nonabelian lattice surgery 279

we then measure at sites which include the top and bottom faces, giving:

for some conjugacy classes C, C ′. There are no factors of π as the edges around each vertex
already satisfy A(v)|ψ〉 = |ψ〉. When C = C ′ = {e}, we may proceed, but otherwise we
require a way of deterministically eliminating the quasiparticles detected at the top and
bottom faces. Appealing to e.g. [BKKK22, BAC09] as earlier, we assume that this may
be done, but do not give details. Alternatively one could try to ‘switch reference frames’
in the manner of Pauli frames with qubit codes [HFDM12], and redefine the Hamiltonian.
The former method gives



280 Appendix

Lastly, we measure the inner face, yielding

so |j〉L ⊗ |k〉L 7→
∑

s∈C ′′ δjs,k|js〉L, which is a direct generalisation of the result for when
G = Zn in [Cow22], where now we sum over the conjugacy class C ′′ which in the Zn case
are all singletons.

The rough merge works similarly, where instead of having quasiparticles of type (C, 1)
appearing at faces, we have quasiparticles of type (e, π) at vertices.

24 Ξ(R,K) as a ∗-quasi-Hopf algebra
Although we have seen in Lemma 6.4.7 that Ξ(R,K) has a ∗-algebra that commutes with
the coalgebra, this is a very special feature and not something one can impose as a general
axiom for a ∗-quasi-Hopf algebra. This is because when there is a nontrivial associator
φ then coassociativity holds only up to conjugation and hence the properties of ∗ will
normally also need to be modified up to a conjugation, i.e. hold in a weak sense. The
correct notion of a ∗-quasi-Hopf algebra H, like the quasi-coassociativity axiom comes
from the monoidal category structure, now equipped with a functorial complex conjugation
as a bar category [BM09, Def. 3.16]. Note that the usual notion of a † or C∗-category in
computer science captures the notion of adjoints, rather than conjugation, and does not
describe the behaviour under tensor products well in our case, as the tensor product of
representations is only associative up to a non-trivial isomorphism. This is quite a subtle
point - on the other hand, a practical consequence is Proposition 6.4.9, for which this
appendix therefore provides a proof.

The natural axioms here at least for a ∗-quasi-bialgebra, fixing a typo in [BM09,
Def. 3.16], involve an additional map θ obeying the first three of:

1. an antilinear algebra map θ : H → H;

2. an invertible element γ ∈ H such that θ(γ) = γ and θ2 = γ( )γ−1;



24. Ξ(R,K) as a ∗-quasi-Hopf algebra 281

3. an invertible element G ∈ H ⊗H such that

∆θ = G−1(θ⊗ θ)(∆op( ))G, (ε⊗ id)(G) = (id⊗ ε)(G) = 1, (1)

(θ⊗ θ⊗ θ)(φ321)(1⊗G)((id⊗∆)G)φ = (G ⊗ 1)((∆⊗ id)G). (2)

4. We say the ∗-quasi bialgebra is strong if

(γ⊗ γ)∆γ−1 = ((θ⊗ θ)(G21))G. (3)

Next, if we have a quasi-Hopf algebra then S is antimultiplicative and hence θ = ∗S
defines an antimultiplicative antilinear map ∗. However, S is not unique for a quasi-Hopf
algebra and specifying θ directly is more canonical.

Lemma 24.1. Let ( )R be bijective. Then Ξ has an antilinear algebra automorphism θ
such that

θ(x) =
∑
s

x/s δsR , θ(δs) = δsR ,

θ2 = γ( )γ−1; γ =
∑
s

τ(s, sR)−1δs, θ(γ) = γ.

Proof. We compute,

θ(δsδt) = δs,tδsR = δsR,tRδsR = θ(δs)θ(δt)

θ(x)θ(y) =
∑
s,t

x/sδsRy/tδtR =
∑
t

(x/(y.t))(y/t)δtR =
∑
t

(xy)/tδtR = θ(xy),

where imagining commuting δtR to the left fixes sR = (y/t).tR = (y.t)R to obtain the
2nd equation. We also have

θ(xδs) =
∑
t

x/tδtRδsR = x/sδsR = δ(x/s).sRx/s = δ(x.s)Rx/s

θ(δx.sx) =
∑
t

δ(x.s)Rx/tδtR =
∑
t

δ(x.s)Rδ(x/t).tR =
∑
t

δ(x.s)Rδ(x.t)Rx/t,

which is the same as it needs t = s. Next

γ−1 =
∑
s

τ(s, sR)δsRR =
∑
s

δsτ(s, sR),

where we recall from previous calculations that τ(s, sR).sRR = s. Then

θ2(x) =
∑
s

θ(x/sδsR) =
∑
s,t

(x/s)/tδtRδsR =
∑
s

(x/s)/sδsR =
∑
s

(x/s)/xRδsRR

=
∑
s

τ(x.s, (x.s)R)−1xτ(s, sR)δsRR =
∑
s,t

τ(t, tR)−1δtxτ(s, sR)δsRR

=
∑
s,t

δtRRτ(t, tR)−1xτ(s, sR)δsRR = γxγ−1



282 Appendix

where for the 6th equality if we were to commute δsRR to the left, this would fix t =
xτ(s, sR).sRR = x.s. We then use τ(t, tR)−1.t = tRR and recognise the answer. We also
check that

γδsγ
−1 = τ(s, sR)−1δsτ(s, sR) = δsRR = θ2(δs),

θ(γ) =
∑
s,t

τ(s, sR)−1/tδtRδsR =
∑
s

τ(s, sR)−1/sδsR =
∑
s

τ(sR, sRR)−1δsR = γ

using Lemma 6.4.4. �

Next, we find G obeying the conditions above.
Lemma 24.2. If ( )R is bijective then equations (1)-(3) hold for Ξ(R,K) with

G =
∑
s,t

δtRτ(s, t)−1⊗ δsRτ(t, tR)(τ(s, t)/tR)−1,

G−1 =
∑
s,t

τ(s, t)δtR ⊗(τ(s, t)/tR)τ(t, tR)−1δsR .

Proof. The proof that G,G−1 are indeed inverse is straightforward on matching the δ-
functions to fix the summation variables in G−1 in terms of G. This then comes down
to proving that the map (s, t)→ (p, q) := (τ(s, t).tR, τ ′(s, t).sR) is injective. Indeed, the
map (p, q) 7→ (p, p · q) is injective by left division, so it’s enough to prove that

(s, t) 7→ (p, p · q) = (τ(s, t).tR, τ(s, t).(tR · τ(t, tR)−1.sR)) = ((s · t)\s, (s · t)R)

is injective. We used (s · t) · τ(s, t).tR = s · (t · tR) = s by quasi-associativity to recognise
p, recognised tR · τ(t, tR)−1.sR = t\sR from (6.15) and then

(s · t) · τ(s, t).(t\sR) = s · (t · (t\sR)) = s · sR = e

to recognise p · q. That the desired map is injective is then immediate by ( )R injective
and elementary properties of division.

We use similar methods in the other proofs. Thus, writing

τ ′(s, t) := (τ(s, t)/tR)τ(t, tR)−1 = τ(s · t, τ(s, t).tR)−1

for brevity, we have

G−1(θ⊗ θ)(∆opδr) = G−1
∑
p·q=r

(δqR ⊗ δpR) =
∑
s·t=r

τ(s, t)δtR ⊗ τ ′(s, t)δsR ,

(∆θ(δr))G−1 =
∑
p·q=rR

(δp⊗ δq)G−1 =
∑
p·q=rR

τ(s, t)δtR ⊗ τ ′(s, t)δsR ,

where in the second line, commuting the δtR and δsR to the left sets p = τ(s, t).tR,
q = τ ′(s, t).sR as studied above. Hence p · q = rR in the sum is the same as s · t = r, so
the two sides are equal and we have proven (1) on δr. Similarly,

G−1(θ⊗ θ)(∆opx)
=
∑
p,q,s,t

(
τ(p, q)δqR ⊗(τ(p, q)/qR)τ(q, qR)−1δpR

) (
(x/s)/t δtR ⊗ δ(x.s)Rx/s

)
=
∑
s,t

(x/s · t)τ(s, t)δtR ⊗ τ(x.(s · t), (x/s · t)τ(s, t).tR)−1(x/s)δsR



24. Ξ(R,K) as a ∗-quasi-Hopf algebra 283

where we first note that for the δ-functions to connect, we need

p = x.s, ((x/s)/t).tR = qR,

which is equivalent to q = (x/s).t since e = (x/s).(t · tR) = ((x/s).t) · (((x/s)/t).tR). In
this case

τ(p, q)((x/s)/t) = τ(x.s, (x/s).t)((x/s)/t) = (x/s · t)τ(s, t)

by the cocycle axiom. Similarly, (x/s)−1.(x.s)R = sR by Lemma 6.4.4 gives us δsR . For
its coefficient, note that p · q = (x.s) · ((x/s).t) = x.(s · t) so that, using the other form
of τ ′(p.q), we obtain

τ(p · q, τ(p, q).qR)−1(x/s) = τ(x.(s · t), τ(p, q)((x/s)/t).tR)−1(x/s)

and we use our previous calculation to put this in terms of s, t. On the other side, we have

(∆θ(x))G−1 =
∑
t

∆(x/t δtR)G−1

=
∑

p,q,s·r=tR
x/t δsτ(p, q)δqR ⊗(x/t)/r δrτ(p · q, τ(p, q).qR)−1δpR

=
∑
p,q

x/(p · q) τ(p, q)δqR ⊗(x/p · q)/s τ(p · q, s)−1δpR ,

where, for the δ-functions to connect, we need

s = τ(p, q).qR, r = τ ′(p, q).pR.

The map (p, q) 7→ (s, r) has the same structure as the one we studied above but applied
now to p, q in place of s, t. It follows that s · r = (p · q)R and hence this being equal tR is
equivalent to p · q = t. Taking this for the value of t, we obtain the second expression for
(∆θ(x))G−1.

We now use the identity for (x/p · q)/s and (p · q) · τ(p, q).qR = p · (q · qR) = p to obtain
the same as we obtained for G−1(θ⊗ θ)(∆opx) on x, upon renaming s, t there to p, q. The
proofs of (2), (3) are similarly quite involved, but omitted given that it is known that the
category of modules is a strong bar category. �

The key property of any quasi-bialgebra is that its category of modules is monoidal
with associator φV,W,U : (V ⊗W )⊗U → V ⊗(W ⊗U) given by the action of φ. In the
∗-quasi case, this becomes a bar category as follows[BM09]. First, there is a functor bar
from the category to itself which sends a module V to a ‘conjugate’, V̄ . In our case, this
has the same set and abelian group structure as V but λ.v̄ = λ̄v for all λ ∈ C, i.e. a
conjugate action of the field, where we write v ∈ V as v̄ when viewed in V̄ . Similarly,

ξ.v̄ = θ(ξ).v

for all ξ ∈ Ξ(R,K). On morphisms ψ : V → W , we define ψ̄ : V̄ → W̄ by ψ̄(v̄) = ψ(v).
Next, there is a natural isomorphism Υ : bar ◦ ⊗ ⇒ ⊗op ◦(bar × bar), given in our case
for all modules V,W by

ΥV,W : V ⊗W∼=W̄ ⊗ V̄ , ΥV,W (v⊗w) = G2.w⊗G1.v



284 Appendix

and making a hexagon identity with the associator, namely

(id⊗ΥV,W ) ◦ΥV ⊗W,U = φŪ ,W̄ ,V̄ ◦ (ΥW,U ⊗ id) ◦ΥV,W ⊗U ◦ φV,W,U .

We also have a natural isomorphism bb : id⇒ bar ◦ bar, given in our case for all modules
V by

bbV : V → V , bbV (v) = γ.v

and obeying bbV = bbV̄ . In our case, we have a strong bar category, which means also

ΥW̄ ,V̄ ◦ΥV,W ◦ bbV ⊗W = bbV ⊗ bbW .

Finally, a bar category has some conditions on the unit object 1, which in our case is the
trivial representation with these automatic. That G = RK leads to a strong bar category
is in [BM09, Prop. 3.21] but without the underlying ∗-quasi-Hopf algebra structure as
found above.

Now take the standard antipode S in Theorem 6.4.8 and θ constructed above. It is easy
to check that

∗Sx = ∗(
∑
s

δ(x−1.s)Rx
−1/s) =

∑
s

(x−1/s)−1δ(x−1.s)R =
∑
s′

x/s′δs′R = θ(x),

where s′ = x−1.s and we used Lemma 6.4.4. We also have ∗Sδs = δsR = θ(δs), so the
implicit the standard S recovers the standard ∗-structure used in the main body of the
paper from θ. It is also immediate from the above formula for γ,G that γ∗ = γ−1 and
G∗⊗∗ = G−1 as claimed in Proposition 6.4.9. Using these facts and Lemma 6.4.7, on
applying ∗ to both sides, the properties of the ∗-quasi bialgebra proven above immediately
become the remaining antipode stated in Proposition 6.4.9, completing its proof.


	Abstract
	Acknowledgements
	Contents
	Introduction
	Part A: Homological codes
	Part B: Hopf algebraic codes
	Attribution
	Quantum error correction
	Category theory
	Universal properties
	Monoidal categories
	String diagrams

	Homological algebra
	Hopf algebras
	Lattice surgery


	Homological codes
	CSS code surgery as a universal construction
	Introduction
	Quantum codes
	Codes as chain complexes
	Basic quantum codes
	Code maps

	CSS code surgery
	Tensor products of classical codes
	Colimits in Ch(MatF2)
	Generic code surgery
	Surgery along a logical operator
	Examples of surgery

	Error-corrected logical operations
	Procedure summary
	Full description of procedure

	Conclusions and further work

	SSIP: automated surgery with quantum LDPC codes
	Introduction
	Related work
	General software description

	The CSS code-homology correspondence
	Code distance
	Lifted products
	CSS code surgery

	Automated external surgery
	Small examples
	Lift-connected surface codes
	The gross code

	Automated internal surgery
	The gross code

	Future directions
	Basis-changing ancillae



	Hopf algebraic codes
	Quantum double aspects of Kitaev models
	Preliminaries: D(Zn) model
	Quasiparticle creation and transportation

	D(G) models and example of D(S3)
	Vacuum space
	Quasiparticles and projection operators to detect them
	D(G) ribbon operators
	Reduction to Abelian model for G=Zn
	Details for D(S3) and applications

	Aspects of general D(H) models
	D(H) site operators.
	D(H) triangle and ribbon operators
	Quasiparticle spaces for D(H) ribbons

	Concluding remarks

	Qudit lattice surgery
	Lattice surgery
	Splits
	Merges
	Units and deletion
	Antipode

	The ZX-calculus
	Gate synthesis

	Conclusion

	Algebraic aspects of boundaries in quantum double models
	Preliminaries: recap of the Kitaev model in the bulk
	Quantum double
	Bulk lattice model

	Gapped boundaries
	The boundary subalgebra (R,K)
	Boundary lattice model
	Quasiparticle condensation

	Lattice surgery with patches
	Nonabelian lattice surgery

	Quasi-Hopf algebra structure of (R,K)
	(R,K) as a quasi-bialgebra
	(R,K) as a quasi-Hopf algebra

	Categorical justification and twisting theorem
	G-graded K-bimodules.
	Drinfeld twists induced by change of transversal
	Module categories context

	Concluding remarks


	Appendix
	Graphs and cell complexes
	Pushouts and properties of codes
	Octagonal surface code patch
	A Z-merge map which is not distance preserving
	A merged code with larger logical space
	Irreducibility is gauge-fixability
	Error-corrected Z-merge with the Shor code
	Subsystem code distance calculation
	Computing colimits
	Generalised bicycle codes
	Individual merges
	Parallel merges
	Individual single-qubit measurements
	Parallel single-qubit measurements

	Detailed SSIP results
	The vacuum space of D(G) models
	Proof of part (2) of Proposition 4.2.10
	Universal Quantum Computation with D(S3)
	Fourier basis for patches
	Proof of lattice merges
	Proof of lattice counits
	Qudit ZX-calculus axioms
	The logical block depiction
	Logical CX gate
	Generalisations and Hopf algebras
	Boundary ribbon operators with (R,K)
	Measurements and nonabelian lattice surgery
	(R,K) as a *-quasi-Hopf algebra


