
Quantum circuit extraction
Resource efficient translation of deterministic measurement patterns

to quantum circuits

Marek Grzesiuk

St Edmund Hall

A thesis submitted for the degree of

Master of Science in Advanced Computer Science

Trinity 2023

Abstract

Quantum computing is a new and exciting revolution in the way humans perform compu-

tation. It has many possible applications; however, as physical quantum computers have

started to appear relatively recently, there are currently many different ways to build a

quantum computer and some of them use different computational models. Furthermore

due to engineering challenges, currently accessible devices are limited in number and

quality of qubits, which are the main computational resource of a quantum computer.

As such, only limited-size programs can be executed on currently available machines,

which stresses the need for better optimisation methods. Some of the methods cur-

rently use a graphical language called ZX calculus to apply rewrite rules and optimise

circuits that way; however, those rewrite rules are restricted, as extracting a quantum

circuit out of an arbitrary ZX diagram is computationally hard, and efficient methods

are known only for specific families of diagrams.

In this work, we provide a method for extracting quantum circuits out of a family

of ZX diagrams, which is significantly larger than the families of diagrams for which

efficient extraction methods are known. We do so by providing a new translation method

between two computational models called the quantum circuit model and measurement-

based quantum computing which is closely related to ZX diagrams. Furthermore, we

provide further insight into resource trade-off in this translation by giving theoretical

guarantees on performance of this algorithm for the number of qubits and the number

of two-qubit gates in the extracted circuit, as well as evaluate our method empirically.

Contents

1 Introduction 1

1.1 Contributions . 2

1.2 Outline . 3

2 Background 4

2.1 Graph theory . 4

2.1.1 Independent sets . 5

2.1.2 Cutwidth . 5

2.2 Quantum computing . 6

2.2.1 Qubits . 6

2.2.2 Evolution of quantum systems 8

2.2.3 Composite states and entanglement 10

2.2.4 Measurements . 11

2.2.5 Quantum circuits . 12

2.2.6 Measurement-based quantum computation 14

2.2.7 Determinism in measurement-based quantum computing 18

2.2.8 Flow conditions . 20

2.3 ZX calculus . 21

2.3.1 ZX diagrams . 22

2.3.2 Identities . 24

2.3.3 Quantum circuits in ZX calculus 26

2.3.4 Measurement-based quantum computing in ZX calculus 28

2.4 Related Work . 30

iii

Contents

3 Circuit extraction 33

3.1 Partial causal flow . 34

3.2 Extraction algorithm . 43

3.2.1 Correctness . 47

3.2.2 Computational complexity . 51

3.2.3 Number of twoqubit gates . 52

3.2.4 Number of ancillary qubits . 53

3.3 Evaluation . 58

4 Experiments 60

4.1 Experimental setup . 60

4.2 Empirical results . 61

4.2.1 Comparison of partial flow finding algorithms 61

4.2.2 Number of qubits in the circuit 61

4.2.3 Tightness of the bound . 65

4.2.4 Number of two-qubit gates in the circuit 68

4.2.5 Trade-off between number of qubits and number of two-qubit gates 68

4.2.6 Conclusion . 71

4.3 Pattern without generalized flow . 71

5 Discussion 76

5.1 Applications . 76

5.2 Future work . 77

5.3 Conclusion . 78

Bibliography 80

iv

1 Introduction

Quantum computing refers to performing computation by transforming quantum sys-

tems using rules of quantum mechanics. Its use has been suggested in late 20th century

by Feynman as a means to perform physical simulations that would be intractable on

classical computers [15]. Further research into quantum computing resulted in famous

procedures like Shor’s prime factorization algorithm [38] that provides an exponential

speed up over currently known classical methods and will revolutionise modern cryp-

tography once sufficiently large quantum computers have been built, or Grover’s search

[17] which remarkably allows for searching through unstructured list in O(
√
n). The

potential of quantum computers has also been noticed by large industrial entities like

McKinsey & Company that expect significant added value due to a quantum revolution

by as early as mid 2030s [19].

That being said, currently available quantum computers, called noisy intermediate-

scale quantum (NISQ) era devices are far from reaching those expectations. Some of

their main issues are short life span of qubits, the main resources of quantum computa-

tion that are analogous to the role of bits in classical computing, relatively high error

rates on various operations, specifically, multi-qubit ones, and small number of qubits

available in quantum computers.

There are two primary ways to alleviate those issues that are being investigated in

parallel, one being, developing better hardware devices. A possible approach of doing

so, is investigating different models of computation, for example measurement-based

quantum computers are theorized to possibly be easier to physically implement [32, 42]

than the currently dominant quantum circuit model. Another approach is to further

improve methods of optimising quantum circuits so that a larger family of them can

1

1 Introduction

be executed on currently available devices. One prominent approach of doing that is

using ZX calculus, a powerful graph language that allows us to reason about quantum

computation in a much simpler way than the “standard” matrix calculus. The primary

issue with methods that use ZX calculus for optimization, like that of Duncan et al. [13]

is that only very specific rewrite rules, that preserve certain properties of the graph, may

be applied. This is because extracting a quantum circuit out of a ZX diagram, which

are the diagrams on which ZX calculus computations are performed, is computationally

hard in general [4]. As such, current rewrite rules have to preserve various, so called,

flows, whose existence in graphs allows efficient extraction.

In this work we study translation between a large family of measurement patterns

(programs in measurement-based quantum computing) and quantum circuits, and due

to significant closeness of measurement patterns and ZX diagrams, also extraction meth-

ods for a much larger family of ZX diagrams than contemporary flow-based methods

allow for. This novel approach also significantly reduces, in some cases by over than

75%, the number of qubits in the extracted circuit as compared to other approaches

that do not rely on existence of any type of flow. Moreover, a version of our algorithm

that outputs circuits with classically controlled gates significantly reduces the number

of two-qubit gates in some cases even outperforming more specialised algorithms that

require existence of generalized flow. Finally, our work also furthers our understand-

ing of resource trade-off in the measurement-based quantum computing model and the

quantum circuit model by analysing theoretical properties of our algorithm and deriving

various bounds on the properties of the extracted circuits.

1.1 Contributions

In this work we introduce partial causal flow, which extends the concept of causal flow

and using that extension we provide a novel, more resource efficient extraction method

for any pattern that is strongly deterministic, significantly extending the family of

patterns for which extraction methods, that do not require using as many qubits as

there are in the measurement pattern, are known. Furthermore, we provide theoretical

2

1 Introduction

guarantees on both the number of qubits produced by our method and the number of

two-qubit gates in multiple different settings. Finally, we evaluate our method empiri-

cally against other algorithms and investigate the quality of the derived bounds, as well

as conjecturing further ways of improving methods presented here and of applying them

to the problem of quantum circuit optimization.

1.2 Outline

We first provide necessary background to follow this thesis in chapter 2, then we present

the bulk of theoretical results in chapter 3. There we discuss our approach and pro-

vide theoretical guarantees on the performance of our methods. Later, in chapter 4

we benchmark our approach against another methods and evaluate the quality of the

bounds shown in this work. Finally, in chapter 5 we discuss applications of the methods

presented here, possible future approaches of extending and improving those methods

and reflect on the project as a whole.

3

2 Background

In this chapter we provide background necessary to follow this thesis and understand its

wider context. Firstly, in Section 2.1, we establish some notation which is later used in

this thesis to reason about graphs and mention two specific notions from graph theory

which play a significant role in deriving some of this thesis’ theoretical results. Then

in Section 2.2, we give an introduction to quantum computing and present two main

models of quantum computation: quantum circuit model and measurement-based quan-

tum computation. Following that, in Section 2.3, we give an overview of ZX calculus,

a powerful graphical language used to reason about quantum computation. Finally, in

Section 2.4, we contextualise this thesis by reviewing the related literature.

2.1 Graph theory

Suppose that G is a graph, we denote by V (G) the set of all vertices of G and by

E(G) the set of all edges of G. Let NG(u) (or if G is obvious from the context N(u))

be the neighbourhood of vertex u ∈ V (G). For directed graphs we will denote by

NG,in(u) and by NG,out(u) (Nin(u), Nout(u)) the set of nodes from which there is an

edge to and from u respectively. We will also denote by 2NG(u) = {v | dist(u, v) ≤ 2}

the two-hop neighbourhood of node u (with all the additional notation analogous to

neighbourhood), where dist(u, v) is the distance between nodes u and v in G. We denote

the odd neighbourhood of graph G as Odd(A) = {u | |N(u) ∩ A| ≡ 1 mod 2}, that is,

all nodes that have an odd number of edges connected to set A ⊂ V (G). Finally,

let deg(u) = |N(u)| be the degree of node u, and in-deg(u) = |Nin(u)|, out-deg(u)

= |Nout(u)| be the in and out degree of node u respectively.

4

2 Background

Figure 2.1: On the left: example of a maximum independent set (white nodes are part of the
set) and on the right: example of a maximum distance-3 independent set (white
notes are part of the set)

2.1.1 Independent sets

We start with defining independent set and maximum independent set problem, which

is a strongly NP-hard problem and it’s corresponding decision problem is NP-complete,

as defined by Pemmaraju et al. [33].

Definition 2.1.1. An Independent set of a graph G is a subset S of V(G) such that

no two nodes in S are neighbours

Definition 2.1.2. A maximum independent set is the independent set S such that

|S| is the largest

In this work, we will make use of a related concept called distance-3 independent set,

which is an independent set but rather than nodes not being allowed to be neighbours,

they are not allowed to be within distance of two from each other.

Definition 2.1.3. An distance-3 independent set is a independent set S such that

∀u, v ∈ S, u = v ∨ dist(u, v) > 2

Unsurprisingly, computing maximum distance-3 independent set is hard and the re-

lated decision problem has also been shown to be NP-complete [20].

2.1.2 Cutwidth

Another NP-complete problem that will appear in this work is the problem of finding

the cutwidth of a graph. We define a cut of size k is a arrangement of nodes in a line,

such that a vertical line moved from left to right crosses at most k edges. Then the

cutwidth is the minimal size of a cut, or more formally, as stated by Chung [8]:

5

2 Background

Figure 2.2: Example of minimal cutwidth partition of a star graph G, of order 5, with
cutwidth(G)=2

Definition 2.1.4. Let π : V (G)→ Z be an one-to-one mapping defining some ordering

of edges in G, then:

fπ(G) = max
i

(|{(u, v) ∈ E(G) | π(u) ≤ i < π(v)}|)

Then cutwidth is cutwidth(G) = minπ(fπ(G))

2.2 Quantum computing

The term quantum computing refers to performing computation via evolving quantum

systems according to the rules of quantum mechanics. While there are many possible

ways of implementing quantum systems (and subsequently evolving them) like, for ex-

ample, using superconductors [43], photons [1] or ion traps [18], one can encapsulate

their behaviour into a single mathematical framework called quantum information.

2.2.1 Qubits

In general, quantum systems are described as complex Hilbert spaces H, and states

of those quantum systems are represented by normalised vectors in H. Specifically,

two dimensional quantum system are called qubits and their states are described by

|ψ⟩ ∈ C2, where the symbol |ψ⟩ is called ket, and refers to the vector ψ. This symbol is

a part of notation that is commonly used in quantum computing called bra-ket or Dirac

notation. The other part of the name of the notation, bra refers to a symbol ⟨ψ| which

is another way of writing ψ† (an adjoint of ψ, also called conjugate transpose of ψ) and,

when combining the two together (to obtain inner product between two vectors), we

use the following notation ⟨ψ| |ϕ⟩ = ⟨ψ|ϕ⟩.

6

2 Background

Figure 2.3: Bloch sphere with an arbitrary state |ψ⟩ = cos(θ2) |0⟩+ e
iϕ sin(θ2) |1⟩ (each state can

be written in this form, up to some global phase) plotted. Source: Qiskit textbook
[34]

As already mentioned, the states of quantum systems are represented by normalised

vectors in some Hilbert space H. While any quantum state can be written in such a

way, there is no one-to-one relationship between quantum states and vectors. This is

because for any two quantum states |ψ⟩ and |ψ′⟩ for which there exist an α such that

|ψ⟩ = eiα |ψ′⟩, we say that |ψ⟩ and |ψ′⟩ are equal up to a global phase and we are unable

to distinguish those two states.

In this thesis, we will focus specifically on systems that can be built from qubits,

which are the most popular building blocks of quantum computing. States of a qubit

have a neat representation as points lying on the Bloch sphere which can be seen in

figure 2.3. Since states of qubits are represented by normalised vectors in the complex

vector space C2, one can write any state |ϕ⟩ as a combination of bases of C2, for example,

using the Z basis (also called the computational basis)

|ϕ⟩ = α |0⟩+ β |1⟩

for some α, β ∈ C where ∥α∥2 + ∥β∥2 = 1 and basis states defined as:

|0⟩ :=

1

0

 |1⟩ :=

0

1



7

2 Background

In the Bloch sphere representation, any two states forming an orthonormal basis set

(ONBs) are represented as antipodal points on the sphere. When it comes to the Z

basis specifically, |0⟩ and |1⟩ also lie on the Z axis. The two other ONBs that lie on the

X and Y axis are called the X basis defined as {|+⟩ , |−⟩} and the Y basis defined as

{|i⟩ , |−i⟩} where:

|+⟩ := 1√
2
(|0⟩+ |1⟩) |−⟩ := 1√

2
(|0⟩ − |1⟩)

|i⟩ := 1√
2
(|0⟩+ i |1⟩) |−i⟩ := 1√

2
(|0⟩ − i |1⟩)

2.2.2 Evolution of quantum systems

Computation in quantum information is done via evolving quantum systems according

to rules of quantum mechanics, specifically, according to one of the most influential

equations of 20th century, the Schrödinger equation [37].

ih̄
d

dt
|ψ(t)⟩ = Ĥ |ψ(t)⟩

In the case of quantum information we can assume that the Hamiltonian Ĥ is constant.

This allows to simplify that equation into the following rule: "The evolution of a closed

quantum system is described by a unitary transformation" [31]. That is,

|ψ(t)⟩ = U |ψ(0)⟩

for some unitary U ∈ Cd×d where d is the dimension of the quantum system and

UU † = U †U = I. Furthermore, there is an one-to-one correspondence between the

descriptions using Hamlitonians and unitaries which means that any unitary can be

used to evolve a quantum system. Moreover, since unitaries represent rotations, evolving

quantum states is equivalent to rotating their state in the Hilbert space. In the case of

qubits specifically, they relate to rotations around Bloch sphere. For example rotations

8

2 Background

by an arbitrary angle α around the X, Y and Z axis, respectively are given by the

following transformations:

Rx(α) :=

 cos(α2) −i sin(α2)

−i sin(α2) cos(α2)



Ry(α) :=

cos(α2) − sin(α2)

sin(α2) cos(α2)



Rz(α) :=

e−iα
2 0

0 ei
α
2


Setting α = π gives us three matrices called Pauli matrices (whose eigenvectors form

the X, Y and Z basis) which up to a global phase are equal to:

X = Rx(π) =

0 1

1 0



Y = Ry(π) =

0 −i

i 0



Z = Rz(α) =

1 0

0 −1


One additional famous gate that is going to be referenced throughout this thesis is

called the Hadamard gate H and can be used to swap between X and Z axis - that is,

Rz(α) = HRx(α)H. It is a rotation by π around the axis defined by ẑ+x̂√
2

[31], that is

the vector
ẑ + x̂√

2
=

(
1√
2

0 1√
2

)
on the Bloch sphere and is given by the following matrix:

H =
1√
2

1 1

1 −1



9

2 Background

We finish this overview of single qubit gates by stating a convenient fact which is

that, it can be shown that for any unitary and two non parallel axis n̂, m̂ there exist

real numbers α, β, γ, δ such that U = eiαRn̂(β)Rm̂(γ)Rn̂(δ) [31]. Hence, any single

qubit transformations can be expressed, up to some global phase, as a composition of

rotations around, for example, the Z and X axis. As the name may suggest it, this

specific fact plays a significant role in the ZX calculus.

2.2.3 Composite states and entanglement

A qubit, which is also called quantum bit, is the quantum counterpart of a bit in classical

computing and much like a bit it is the basic resource of a quantum computer. As such,

usually multiple qubits are required to perform interesting computations. A quantum

system that is composed of multiple smaller subsystems is called a composite system

and is mathematically described as a Kronecker product (also called tensor product) of

the subsystems.

Mathematically, the tensor product of two vectors u ∈ Cdu , v ∈ Cdv is computed as

follows:

u⊗ v =



u1v

u2v
...

uduv


=



u1v1
...

u1vdv
...

uduv1
...

uduvdv


A composite system of two states, represented by the Hilbert spaces Ha and Hb, is

represented by a Hilbert space Ha ⊗ Hb, which contains all vectors u ⊗ v such that

u ∈ Ha,v ∈ Hb. Furthermore, given two ONB bases {ui}, {vj} of Ha,Hb respectively,

then the set {ui⊗vj} forms an ONB for Ha⊗Hb. Hence, for example the computational

basis for a quantum system consisting of two qubits is given by the set {|0⟩ ⊗ |0⟩ , |1⟩ ⊗

|0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |1⟩}.

10

2 Background

A natural question to ask is if every vector u ∈ C2n can be decomposed into a tensor

product of n other vectors ui ∈ C2. This is not the case and it is easy to check that

for example |ψ⟩ = |0⟩⊗|0⟩+|1⟩⊗|1⟩√
2

cannot be decomposed into any two vectors |ψa⟩ , |ψb⟩

such that |ψ⟩ = |ψa⟩⊗ |ψb⟩. States like this, which cannot be decomposed into a tensor

product of other states, are called entangled and states that can be decomposed are

called product states.

Entangling gates are unitaries U such that there exist a product state |ψ⟩⊗ |ϕ⟩ which

after being transformed by U is entangled. Examples of such gates are controlled-NOT

(or CNOT) and controlled-Z (or CZ) which are defined as:

CNOT = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



CZ = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ Z =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


These two gates are also examples of controlled gates, that is gates that act on more

than one qubit and apply a certain transformation when control qubit is in the state |1⟩,

for example CNOT |11⟩ = |10⟩ or CZ |1⟩ ⊗ |+⟩ = CZ |10⟩+|11⟩√
2

= |10⟩−|11⟩√
2

= |1⟩ ⊗ |−⟩.

2.2.4 Measurements

Initially, one can think that since qubits can be in any state, as long as it is normalized,

then it is possible to store an infinite amount of information in one qubit. This is not

exactly the case: while qubit can be in any normalized state, accessing information about

that state is not straightforward. In order to retrieve information about a qubit, one

has to measure it. A basic measurement in quantum computing is defined by an ONB

11

2 Background

{|m⟩}, where m is the result of the measurement. Specifically, Z basis measurement of

a qubit can result in either 0 or 1 (|0⟩ or |1⟩).

Since qubits can be in the superposition of |0⟩ and |1⟩, quantum computing is inher-

ently non deterministic and the probability of obtaining outcome m when measuring a

state |ψ⟩ = α |0⟩+ β |1⟩ using ONB {ψm} is given by the Born rule and is equal to

P (m| |ψ⟩) = ∥⟨ψm|ψ⟩∥2 = ⟨ψm|ψ⟩ ⟨ψ|ψm⟩

For example, measuring state |ψ⟩ in the Z basis would give outcome 0 with probability:

Prob(0| |ψ⟩) = ∥⟨0|ψ⟩∥2 = ∥α∥2

Furthermore, when a qubit is measured and the outcome is m, no matter what the

state of that qubit was before the measurement, the qubit after the measurement is in

the state |ψm⟩. Born rule also provides an explanation for previously stated conditions

such as requiring the state vectors to be normalised (so that the probability of each of

the outcomes would add up to 1) or vectors being equal up to phase. Indeed, given

the vector |ψ′⟩ = eiθ |ψ⟩, if we measure |ψ′⟩ in an ONB with |ψ⟩ (which always exists

thanks to the Gram–Schmidt process) then the probability of obtaining measuring |ψ⟩

would be Prob(|ψ⟩ | |ψ′⟩) = ∥⟨ψ|ψ′⟩∥2 = ∥eiθ∥2 = 1 = Prob(|ψ⟩ | |ψ⟩).

2.2.5 Quantum circuits

Similarly to classical computing, there are multiple ways of modeling quantum compu-

tation, such as the quantum circuit model which is the most popular one and on which

most literature in the field focuses. Furthermore, one of the most prominent approaches

in developing quantum computing hardware, superconducting quantum computers use

this model, which made quantum circuits even more popular language to represent

quantum computations.

Quantum circuits, similarly to classical logic circuits, are read from left to right.

They consist of two building blocks: wires, which represent qubits in the circuit and

gates, which represent operations on the wires (qubits). Gates are defined by the unitary

12

2 Background

q0 : •

q1 :

q0 : •

q1 : •

q :

c :
0

��

q0 : U

c : •
c0=0x1

Figure 2.4: Top-left: graphical representation of CNOT (or CX) gate with q0 being a control
qubit and q1 the target qubit, top-right: CZ gate (this gate is symmetric so either
qubit can be considered a control or target), bottom-left: measurement in z basis
and bottom-right: a single qubit gate U controlled classically by bit c

q0 : • H

q1 : H •

q2 : Z X

c : /2
1

��
0

�� •
c0=0x1

•
c1=0x1

Figure 2.5: Circuit performing quantum teleportation, that is if state of qubit q0 is |ψ⟩ then
after execution of the circuit q2 is in the state |ψ⟩. This is called teleportation,
as the entangling of qubits q1 and q2 can be done before the circuit execution and
therefore q0 and q2 can be arbitrary far apart when the “teleportation” occurs

13

2 Background

transformations they represent. Figure 2.4 shows a graphical representation of the most

commonly used gates in this thesis, and figure 2.5 shows an example of a circuit used for

quantum teleportation. By convention, if the initial state of the qubit is not specified,

it is assumed that the qubit is initialised in the state |0⟩.

“Fully quantum” gates, like CZ or CX (where control is a qubit not a bit) are typi-

cally faster than classically controlled gates and for some hardware implementations of

quantum computers, it may be more desirable to have as little classical control as possi-

ble. Luckily, classically controlled gates can be turned into quantum controlled gates by

the use of deferred measurement principle which states that any measurement can be

moved to the very end of the circuit without an effect on the result of the computation.

When the measurements are moved, any classically controlled gates are simply changed

to quantum controlled gates.

This method however requires slight caution in cases where the measurement is per-

formed using a different basis to the computational basis. Firstly, it is worth noting

that the measurement operation does so in the Z basis, as such any measurement in a

different basis requires first applying gates that change the targeted basis to the Z basis.

For example if one wants to measure in the X basis, one has to first apply a Hadamard

gate and only then measure. When one wants to apply the measurement principle in

this case, one must first apply change-of-basis, then controlled unitaries, and finally

the measurement can be made. Examples of applications of the deferred measurement

principle for measurements in the Z basis and the basis X can be seen in figure 2.6 and

figure 2.7 respectively.

2.2.6 Measurement-based quantum computation

A vastly different approach to modeling quantum computation than quantum circuits is

taken by measurement-based quantum computation (MBQC) models, which are driven

by measuring qubits in a highly entangled resource state (multiple qubits entangled

together in some specific way). Some examples of concrete measurement-based quantum

computing models are teleportation based approaches first introduced by Gottesman et

14

2 Background

X

/1
0

�� •
c0=0x1

= •

/1
0

��

Figure 2.6: Example of deferred measurement principle with z basis measurement

H X

/1
0

�� •
c0=0x1

=

H

•

/1
0

��

Figure 2.7: example of deferred measurement principle with x basis measurement

15

2 Background

al [16] and the one-way model introduced by Raussendorf et al [35]. In this work we will

focus on the latter and whenever we mention MBQC we will refer to one-way model.

Computation in the one-way model can be described by measurement calculus [12],

in which there are 5 commands:

• Ni - prepare qubit i in the state |+⟩

• Eij - apply CZ gate between qubits i and j, this is the entanglement operation

• Mα
i - measure qubit i in the basis {|+α⟩ = |0⟩+eiα|1⟩√

2
, |−α⟩ = |0⟩−eiα|1⟩√

2
}

• Xs
i apply Pauli X correction to qubit i if the measurement result of qubit s is 1

• Zs
i apply Pauli Z correction to qubit i if the measurement result of qubit s is 1

These commands are later used to create measurement patterns which describe the

instructions that are to be executed on the quantum computer. The general idea is that

commands Ni and Eij prepare a cluster state which is later measured in some order by

Mαi
i and based on the result of those measurements some corrections (either X or Z)

are applied. We provide formal descriptions of measurement pattern and some related

concepts as defined by Danos et al. [10]

Definition 2.2.1. A measurement pattern P is defined by a finite set of qubits V,

set of input qubits I ⊂ V , set of output qubits O ⊂ V (possibly overlapping) and a finite

sequence of commands S acting on qubits in V.

Remark 2.2.1.1. We will use slight abuse of notation and say that a command C is

in the measurement pattern P, or C ∈ P when referring to command C being part of

the sequence of commands S that is part of the measurement pattern P

Definition 2.2.2. A measurement pattern is said to be runnable if the following holds:

• no command depends on the outcome of measurement that has not yet happened

• no command acts on a measured qubit

• no command, except of preparation command, acts on non prepared qubits from

the set V \ I

16

2 Background

• a qubit i is measured if and only if it is not an output (i ̸∈ O)

Remark 2.2.2.1. In this work we will assume that all patterns are runnable.

We make this assumption as any pattern that is not runnable has no physical meaning

and by definition it is impossible to implement.

Definition 2.2.3. An open graph state (or open graph) of a measurement pattern P

is a tuple (G, I, O) where I and O are input and output sets of the measurement pattern

and G is an undirected graph such that V (G) = V and (u, v) ∈ E(G) ⇐⇒ Eu,v ∈ P .

That is each vertex of the graph relates to a qubit in the pattern and each edge in the

graph relates to an entangle operation in the measurement pattern.

In some work measurement patterns are also extended to include measurement planes,

that is they include a function λ : Oc → {(X,Y), (X,Z), (Y,Z)}. Then a qubit i is

measured in λ(i) plane - that is, it uses the following basis [6]:

• if λ(i) = (X,Y), measure using { |0⟩+eiα|1⟩√
2

, |0⟩−eiα|1⟩√
2
}

• if λ(i) = (X,Z), measure using {cos(α2) |0⟩+ sin(α2) |1⟩ , sin(
α
2) |0⟩ − cos(α2) |1⟩}

• if λ(i) = (Y,Z), measure using {cos(α2) |0⟩+ i sin(α2) |1⟩ , sin(
α
2) |0⟩ − i cos(

α
2) |1⟩}

In this work we will focus only on the original formulation of the measurement pattern

in which all measurements are done in (X,Y) basis.

Even though quantum circuit model is quite different from the one-way model, it can

be shown that they are equivalent. Raussendorf et al [35] give a method of translating

quantum circuits to measurement patterns in which arbitrary single qubit rotations can

be implemented with a measurement pattern consisting of five qubits, and CNOT gate

can be implemented with four-qubits-large measurement pattern. Since arbitrary single

qubit rotations and CNOT gates are sufficient to implement any unitary exactly, one

can use this method and compose resulting patterns to produce a measurement pattern

that performs desired transformation. An arbitrary measurement pattern can also be

implemented by a quantum circuit as shown by Broadbent et al [5]. This is rather

unsurprising as any command in the measurement pattern can be implemented in s

17

2 Background

quantum circuit, hence given a circuit with number of wires equal to the number of

qubits in the pattern one can execute each of the commands on the quantum circuit

producing the desired transformation.

While it is possible to transition back and forth between a quantum circuit model and

measurement patterns doing so is quite expensive. It can be seen that each gate in the

quantum circuit introduces multiple new qubits in the measurement pattern and since

translating back to quantum circuit requires using as many qubits as the measurement

pattern, one introduces large overhead in the number of qubits. That being said, some

optimization methods, like that of Broadbent et al [5] use similar translation methods

to reduce the depth of the circuit (which directly correlates with the time required for

execution of the computation) in exchange for larger number of qubits needed to execute

a circuit.

We end our introduction of MBQC by providing an example of a measurement pat-

tern, let V = {1, 2, 3, 4}, I = {1, 2} and O = {1, 4}, then the sequence of commands

that implements a CNOT is:

P = X3
4Z

2
4Z

2
1M

0
3M

0
2E13E23E34N3N4

Patterns are read from right to left, and in this case, firstly, qubits 4 and 3 are prepared

(note that qubits 1 and 2 are provided as inputs and as such they do not require

initialisation, they are expected to be provided in some state), then pairs of qubits (1,

3), (2, 3) and (3, 4) are entangled together. After that qubits 2 and 3 are measured and

then if measurement of qubit 1 resulted in the outcome 1 (|−⟩), the Z gate is applied

to qubit 1 and the Z gate is applied to qubit 4, and similarly if measurement of qubit 3

is 1 then the X gate is applied to qubit 4. The open graph of measurement pattern P

can be seen on Figure 2.8.

2.2.7 Determinism in measurement-based quantum computing

As computation in MBQC is driven by measurements, it is inherently non deterministic,

that is why,w when discussing measurement patterns one sometimes refers to branches

18

2 Background

1

2 4
3

Figure 2.8: Open graph of a measurement pattern implementing a CNOT gate. Nodes represent
qubits and edges between nodes represent entangle operations between respective
qubits

of computation (each branch relates to a different bit string representing measurement

results) and maps that are implemented by those branches which are called branch

maps. One uses corrections to account for the possible measurement errors (obtaining

1 rather than 0 when measuring a qubit) to obtain a desired transformation.

In the literature, multiple types of determinism are usually distinguished, we give

their definitions as stated by Danos et al. [10]:

Definition 2.2.4. A measurement pattern P is deterministic if it implements a com-

pletely positive and trace preserving map that sends pure states to pure states. Or in

other words, if maps implemented by different branches of computation are proportional

up to a scalar.

Definition 2.2.5. A measurement pattern P is strongly deterministic when all

branch maps are equal.

Remark 2.2.5.1. Strongly deterministic patterns realise unitary transformations.

Definition 2.2.6. A measurement pattern P is uniformly deterministic if for all

choices of measurement angles for any qubit it is still deterministic.

Definition 2.2.7. A measurement pattern P is stepwise deterministic if after per-

forming each measurement and the corrections depending on that measurement the pat-

tern is still deterministic (no matter if measurement results in 0 or 1 the same map is

implemented).

In most of literature, all of this conditions are desired or assumed and as such, they

are usually combined into the notion of robust determinism, defined as:

19

2 Background

Definition 2.2.8. We say that a measurement pattern P is robustly deterministic

if it is uniformly, stepwise, strongly deterministic.

2.2.8 Flow conditions

Determining if a measurement pattern is deterministic and computing which corrections

need to be applied for a pattern to be deterministic are two important tasks that could

significantly reduce the difficulty of using MBQC and increase its popularity. While

those questions have not been studied very well for general patterns, it has been shown

that there exist certain conditions on the open graph of a pattern that guarantee that

the pattern is robustly deterministic.

First such condition is existence of causal flow introduced by Danos et al [10], which

is sufficient for the measurement pattern to be robustly deterministic. We define causal

flow in the following way:

Definition 2.2.9. An open graph (G, I, O) has causal flow if there exist a map

f : V \O → V \ I and partial order ≺ (also referred to as the time order) such that for

all vertices i ∈ V \O:

• i ≺ f(i)

• f(i) ∈ N(i)

• ∀j ∈ N(f(i)), i ≺ j ∨ i = j

It is however known that existence of causal flow is not a necessary condition for

robust determinism. A generalization of causal flow has been introduced by Browne

et al [6] which is sufficient and necessary for the measurement pattern to be robustly

deterministic. We define generalized flow for measurement pattern with only (X, Y)

measurements as follow:

Definition 2.2.10. An open graph (G, I, O) has generalized flow (or gflow) if there

exist a map g : V \ O → PV \I and partial order ≺ (also referred to as the time order)

such that for all vertices i ∈ V \O:

• ∀j ∈ g(i), i ≺ j

20

2 Background

a

b

c

d

e

f

Figure 2.9: Open graph with casual flow f(a) = d, f(b) = e, f(c) = f and gflow g(a) = {d, e, f},
g(b) = {e, f}, g(c) = {f}

a

b

c

d

e

f

Figure 2.10: Open graph with only gflow: g(a) = {d, f}, g(b) = {d, e, f}, g(c) = {d, e}

• ∀j ∈ Odd(g(i)), i ≺ j ∨ i = j

• i ∈ Odd(g(i))

In general gflow is not unique, however there always exists maximally delayed gflow

(which is a gflow with minimal depth) which can be used to determine correction sets.

Furthermore, similarly to causal flow, it can be computed in polynomial time by an

algorithm presented by Mhalla et al [27]. An example of graph with causal flow (and

generalized flow as causal flow gives a valid generalized flow) can be seen in figure 2.9,

and an example of graph with only gflow can be seen in figure 2.10.

2.3 ZX calculus

ZX calculus is a rigorous graphical language used to reason about quantum computation,

introduced by Coeck et al [9]. It is very well suited to reasoning about MBQC and has

been applied in many areas like optimization of quantum circuits [13, 22], simulation

of quantum circuits [7, 26] and compilation to circuits abiding by hardware constraints

[24]. It can be shown that any equality in quantum information can be derived by a

sequence of rewrite rules in ZX calculus, that is, ZX calculus is complete [29, 30]. This

fact makes it a powerful and convenient tool to reason about quantum computing and

MBQC in particular.

21

2 Background

2.3.1 ZX diagrams

At the heart of ZX calculus lie diagrams on which the graphical rewrites are performed.

Remarkably, given all of its power, ZX diagrams are built from few very simple building

blocks, namely Z and X spiders, Hadamard gates and wires which are used to connect

spiders and Hadamard gates together.

Z spider with n inputs and m outputs is a family of linear maps that takes in C2m×2n

and are defined as:

n

{
α··· ···

}
m := ⊗m

i=1 |0⟩ ⊗n
i=1 ⟨0|+ eiα ⊗m

i=1 |1⟩ ⊗n
i=1 ⟨1|

Where ⊗m
i=0 |ψi⟩ = |ψ0⟩ ⊗ · · · ⊗ |ψm⟩ (so, for example ⊗3

i=3 |0⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩) and

analogously for ⊗m
i=0 ⟨ψi|. Similarly, X spider is defined in the similar manner, but for

the X basis:

n

{
··· ···α

}
m := ⊗m

i=1 |+⟩ ⊗n
i=1 ⟨+|+ eiα ⊗m

i=1 |−⟩ ⊗n
i=1 ⟨−|

Finally, the Hadamard gate and wire are defined as the Hadamard unitary and the

identity (since the wire’s purpose is to "pass information") respectively. We sometimes

refer to wires with Hadamard gates on them as Hadamard edges.

:= 1√
2

1 1

1 −1

 :=

1 0

0 1


These building blocks can be composed together by sequential and parallel composi-

tion to build larger ZX diagrams which relate to multiplication and tensor product

respectively. Examples of both types of composition can be seen below:

Sequential composition:

α β = (|+⟩ ⟨+|+ eiα |−⟩)H(|0⟩ ⟨0|+ eiβ |1⟩ ⟨1|)

Parallel composition:

β

α

= (|+⟩ ⟨+|+ eiα |−⟩ ⟨−|)⊗ (|0⟩ ⟨0|+ eiβ |1⟩ ⟨1|)

22

2 Background

All the examples provided so far represented Z and X spiders as maps, however they

can also represent states and scalars. For example:

α = 1 + eiα = α

Z and X spiders can also represent, up to a non-zero scalar, |+⟩ , |−⟩ and |0⟩ , |1⟩ states:

0

π

0

π =

=

=

= |0⟩

|1⟩

|+⟩

|−⟩

It is noted that the equal signs above is equal up to a non-zero scalar, in fact there is

a
√
2 factor missing however since in this thesis only equality up to a non-zero scalar

is relevant; we will use standard equal sign to denote it. Furthermore, as a convenience

we omit the phase when it is equal to 0, that is:

0··· ··· ··· ···=

··· ···0 = ··· ···

We have defined spiders in terms of inputs and outputs, however, it turns out that

such distinction is not needed. Spiders are invariant under swapping some of the wires,

even when swapping inputs with outputs etc. [44].

23

2 Background

α··· ··· ··· ···=

··· ···α = ··· ···

α··· ··· ··· ···=

··· ···α = ··· ···

α

α

α

α

2.3.2 Identities

ZX diagrams provide us with the ability to represent different stages of quantum compu-

tation, however its the rewrite rules that allow us to reason about quantum computation

and show various equities.

A particularly useful rule is only connectivity matters (ocm), which states that any

two diagrams that have the same spiders with the same phases on them, connected by

the same edges (with Hadamard gates on the same wires) with the same order of inputs

and outputs are equal. In other words, ZX diagrams can be deformed by bending wires,

moving spiders and Hadamard gates around without change to the underlying map, if

the order of inputs and outputs is preserved. For example:

=
β

α

α

β

24

2 Background

Deriving most of ZX calculus rules can be done with the following four base rules [23].

Completeness results mentioned before require some additional rules however as they

are not relevant to the work done in this thesis we will omit them.

β

· · ·

α

······

······

= α + β ······ (2.1)

· · ·

······

······

= ······ α + β

α

β

(2.2)

= (2.3)

= π
2

−π
2

−π
2

−π
2

π
2

π
2

−π
2 (2.4)

The rule represented by equations 2.1 and 2.2 is called spider fusion, the rule in

equation 2.3 is called strong complementarity and the rule in equation 2.4 is called the

Y-rule, which can also be replaced by the much more popular color change rule [23]

shown in equation 2.5:

=α β ············ (2.5)

25

2 Background

From those rules one can derive some useful identities like the copy laws shown in

equation 2.6, the π-commute law shown in equation 2.7, the identity laws shown in

equation 2.8 and the hh law shown in equation 2.9 [23].

jπ =
jπ

jπ

=jπ

jπ

jπ

for j ∈ {0, 1} (2.6)

π α =

=απ

−α

−α

π

π

π

π

(2.7)

=

=
(2.8)

= (2.9)

2.3.3 Quantum circuits in ZX calculus

One can represent quantum circuits as ZX diagrams in a straight forward manner.

Firstly, one can implement CNOT gate as follows:

•
=

26

2 Background

Furthermore, it is easy to see that one can implement Rz as a Z-spider with one input

and one output:

RZ (α) = α

Similarly, one can implement Rx gate as an X-spider:

RX (α) = α

Since, as already stated, any single qubit unitary can be implemented by composition

of rotations around two different axis by some angle, we can implement any single qubit

unitary with the mentioned Rz and Rx gates. Moreover, since as already seen, we can

represent a CNOT gate in a ZX diagram, hence we can represent arbitrary unitaries and

therefore arbitrary quantum circuits [13]. As such, to represent any quantum circuit as

a ZX diagram, it suffices to decompose it into CNOT gates, Rz and Rx gates and then

change those gates into their equivalent ZX diagrams.

We mention some additional gates implemented in ZX diagram that will be useful

throughout this work, firstly, Controlled-Z gate:

•

•
= =

27

2 Background

H •

• X

• Z

= π

π

Figure 2.11: Example of quantum circuit and related ZX diagram

And the already mentioned Hadamard gate:

H =

As it can be seen in figure 2.11, translating quantum circuits to ZX diagrams is

incredibly simple, the converse however is not true as shown by de Beaudrap et al [4].

They prove that extracting a quantum circuit that is equivalent to an arbitrary ZX

diagram can be #P-hard, additionally, they provide hardness results for approximate

extraction. That being said, there exist families of ZX-diagrams, like those that admit

generalized flow, from which a quantum circuit can be extracted in a resource efficient

way [2].

2.3.4 Measurement-based quantum computing in ZX calculus

ZX diagrams can also encode measurement patterns as first shown by Duncan et al

[14]. In that representation each qubit in the pattern P is a Z-spider, each entangle

operation is an wire with a Hadamard gate on it connecting two Z-spiders (CZ gate

between those two qubits), input qubits have incoming wires not connected to anything

and, analogously, output qubits have outgoing wires. Finally, measurements are encoded

as shown in figure 2.12.

28

2 Background

·

∑
i∈X1

kiπ

∑
i∈Z1

kiπ

α1 + k1π

··

Figure 2.12: Encoding measurement in ZX-calculus, k1 is the result of the measurement of qubit
1, Z1 is a set of measurement results of qubits that qubit 1 Z corrections depend
on, analogously X1 for x corrections. It is noted that order of Z and X corrections
is arbitrary as Z-spiders and X-spiders with π phase commute past each other
(technically there is a minus added onto the phase but all phases are angles so −π
mod 2π ≡ π mod 2π)

k1π − π
2 (k1 + k2)π

k1π

k2π

Figure 2.13: Example of encoding measurement pattern P = X1
3X

2
3Z

1
3M

0
2M

−π
2

1 E23E12N2 with
V = {1, 2, 3}, I = {1} and O = {3}

k2π

k3πk2π k2π

k3π

1

2 3 4

Figure 2.14: Example of encoding measurement pattern implementing CNOT,
P = X3

4Z
2
4Z

2
1M

0
3M

0
2E13E23E34N3N4 with V = {1, 2, 3, 4}, I = {1, 2} and O =

{1, 4}. We represent edges with an Hadamard gate on them (Hadamard edges) by
dashed blue edges

29

2 Background

Interestingly, any ZX-diagram can be represented as a measurement pattern without

corrections - that is, it represents the branch map where all measurements are 0 and no

corrections are necessary. This is because any ZX-diagram can be put into a graph-like

form as shown and defined by Duncan et al [13]:

Definition 2.3.1. A ZX-diagram is graph-like if:

• All spiders are Z-spiders.

• Z-spiders are connected by Hadamard edges (edges with a Hadamard wire on it).

• There are no parallel Hadamard edges or self loops.

• Every input or output is connected to a Z-spider and every Z-spider is connected

to at most one input or output.

It can be seen that if we use spider fusion to “unfuse” Z spiders with non zero phase,

the resulting diagram will look like a diagram resulting from the previously mentioned

protocol to encode measurement patters, as such one can read out a pattern from it

and hence every ZX-diagram corresponds to a measurement pattern.

2.4 Related Work

Work in translation of one-way computations to quantum circuits has mostly focused

on measurement patterns whose open graphs have some specific properties. That being

said, a general purpose method for translation of arbitrary measurement patterns has

been developed Broadbent et al [5]. In that work an additional method has been shows

that reduces the depth of computation of the circuit (length of the critical path) to

O(d log(|V \O|)), however it requires O(I + |V \O|3) qubits, where V is the set of the

corresponding pattern, I and O are sets of inputs and outputs and d is depth of the

pattern (which is defined as longest sequence of commands in the pattern such that

each command depends on the previous one).

Most of work in the field focused on extraction techniques that produce circuits with-

out ancillary qubits, which can be done for some specific families of patterns. Besides

30

2 Background

the main two conditions, that is existence of flow and gflow, other flow conditions have

also been investigated in the literature, for example Simmons provides a method of

extracting circuits from measurement patterns with Pauli flow [41] and de Beaudrap

with modified flow [3].

The main method, that this work has been inspired by and improves on, has been

introduced by Danos et al [10] and is called star pattern translation. It can be used to

translate measurement patterns, which underlying open graph admits causal flow, to

circuits consisting of controlled-Z gates and family of parameterized gates introduced by

Danos et al [11]. Straightforward application of this method to measurement patterns

with generalized flow results in acausal gates (multiqubit gates that act on different

qubits at different time steps) which can be studied in the context of closed timelike

curves [39]. Multiple methods of alleviating this issue have been proposed. Duncan et

al [14] proposed use of ZX calculus to rewrite graphs with gflow to graphs with flow.

Miyazaki et al [28] provide a direct extension of the original star pattern translation by

finding a specific path cover and eliminating acausal CZ gates by inserting additional

two-qubit gates. Dias da Silva et al [39] take a different approach and provide a proce-

dure that first applies the general purpose method producing a circuit with |V | qubits

and later simplifies the circuit using certain rewrite rules that remove ancillary qubits,

however they leave certain aspects of the algorithm as open problems and do not prove

that this approach works for an arbitrary pattern with gflow. These problems are later

fixed in their future work where they provide an algorithm that rewrites the extended

circuit, which is the result of general purpose algorithm, and produces a circuit with all

ancillary qubits removed [40].

Other translation methods that require existence of gflow focus on extraction of quan-

tum circuits out of ZX diagrams, which, due to close connections between ZX diagrams

and measurement patterns, is closely connected to the problem of extracting quantum

circuits out of measurement patterns. Duncan et al [13] provide a method of extraction

for ZX diagrams with gflow and Backens et al [2] extend that method to diagrams that

admit gflow with three measurement planes.

31

2 Background

Our method, as opposed to, various “flow requiring” methods (like star pattern trans-

lation, Dias da Silva et al method etc), does not aim to produce a full time ordering

of qubits. We introduce a notion of partial causal flow, which is an extension of causal

flow that always exists in any “sensible” measurement pattern. The main idea is that

we add qubits to the partial causal flow only if they are compatible with current time

ordering and the time ordering imposed by corrections in the pattern. We then use that

partial flow to put some of the qubits in the measurement pattern on the same wire

of the quantum circuit in a similar way to star pattern translation and all the qubits

outside of the time ordering are then implemented in a similar manner to the general

purpose method proposed by Broadbent et al [5]. This approach, as it will later become

apparent, allows to reduce number of qubits and two-qubit gates while also not being

restricted by existence of any flow.

Finally, this work also further advances our understanding of spatial resources re-

quired for implementing arbitrary measurement patterns. Such questions have been

previously studied, for example Houshmand et al. [21] investigate the minimal number

of qubits required for implementing patterns with flow and gflow.

32

3 Circuit extraction

Current methods of translating measurement patterns to quantum circuits without an-

cillary qubits restrict themselves to only patterns, whose open graphs satisfy some spe-

cific conditions such as the existence of causal flow or generalized flow. Such conditions

are quite restrictive and do not use additional information provided in the pattern, like

corrections.

On the other hand, general purpose methods that translate arbitrary measurement

patterns to quantum circuits are inefficient in terms of spacial resources and hence they

are often infeasible when considering current state of physical quantum computers.

This project aimed to use additional information in the measurement pattern, beyond

just the open graph, to relax some of the conditions required for extraction of quantum

circuits without introducing a significantly number of ancillary qubits. Originally, the

idea was to remove the uniform determinism requirement on patterns, which was present

in most extraction methods due to requirements such as existence of causal flow or

generalized flow or only slightly relaxed in case of extractions using Pauli flow. However,

throughout this project, this approach has been shifted into finding path covers on the

open graph, that would abide by the time ordering imposed by the measurement pattern

and its corrections, inspired by how Miyazaki et al [28] extended star pattern translation

to patterns with gflow. Later we apply “star pattern translation like” method to build

a circuit that implements the measurement pattern, based on the path cover, with each

path becoming a wire in a circuit.

Results presented in this Chapter are results of those considerations. Firstly, in

section 3.1 we introduce the concept of partial causal flow which allows us to find a

partial path cover and is the foundation for “star pattern like” part of the extraction

33

3 Circuit extraction

a

b

c

d

e

f

Figure 3.1: Open graph with casual flow f(a) = d, f(b) = e, f(c) = f

algorithm. In that section we also discuss some possible algorithms of finding said partial

causal flow and their advantages and drawbacks. Then in section 3.2 we present the

algorithm that, given partial causal flow on a measurement pattern and the pattern,

extracts a quantum circuit out of that pattern. Furthermore, we provide theoretical

guarantees on the performance of that algorithm. Finally, in section 3.3 we compare

the algorithm introduced in this work with other methods of extracting quantum circuits

out of measurement patterns.

3.1 Partial causal flow

We first present the concept of partial causal flow which is an extension of causal

flow, that allows for some of the qubits to not be the part of the flow. Later, in the

extraction algorithm those “outside” qubits will be turned into ancillary qubits in the

resulting circuit. We define partial causal flow as follows:

Definition 3.1.1. An open graph (G, I, O) has partial causal flow if there exist a

partial function fpar : V \O → V \ I and partial order ≺ such that for all vertices i in

the domain of fpar we have:

• i ≺ fpar(i)

• fpar(i) ∈ N(i)

• ∀j ∈ N(fpar(i)), i ≺ j ∨ i = j

The first thing to note is that partial causal flow is not unique and its quality may

differ drastically. For example, the causal flow of the graph presented in figure 3.1 is

also a valid partial causal flow, however, so is, a partial function fpar(a) = d (with only

34

3 Circuit extraction

a

b

c

d

e

f

a

b

c

d

e

f

Figure 3.2: Example of two different largest partial causal flows in the same graph (with I =
{a, b, c}, O = {d, e, f}), cyan lines indicate flow, that is on the left we have fpar(a) =
d, fpar(b) = f and on the left fpar(b) = e, fpar(c) = f

a in domain). Naturally, we would prefer the “full” causal flow function rather than just

a subset of it, and in the case of graphs where there is no causal flow, we would prefer

the largest possible causal flow. This is because when using the extraction method

proposed in this work, the larger the partial causal flow, the smaller the amount of

qubits and two-qubit gates in the extracted circuit (as it is stated in lemma 3.2.1 and

remark 3.2.1). We can define the largest partial causal flow formally as:

Definition 3.1.2. We call a partial causal flow fpar the largest partial causal flow

if domain of fpar is the largest, that is, if there is no partial causal flow f ′par such that

|domain(f ′par)| > |domain(fpar)|. We say |domain(fpar)| is the size of the partial

causal flow

Concept of largest partial causal flow does not result in uniqueness, as can be seen in

figure 3.2, however it ensures that if the graph has flow then largest partial causal flow

is also the causal flow (there cannot be larger partial causal flow since if the graph has

flow then all possible nodes are part of the domain of that flow function, hence causal

flow is the largest partial causal flow).

Before turning to the question of computing partial causal flow, we must first ensure

that the computed partial causal flow is consistent with corrections that are in the

pattern (which impose some conditions on the time ordering ≺). As such, we will

extend the definition of partial causal flow to measurement patterns rather than just

open graphs. We do so by adding conditions imposed by corrections from the pattern

to the partial order and result in the following final version of the definition.

35

3 Circuit extraction

Definition 3.1.3. A measurement pattern P has partial causal flow if there exist a

partial function fpar : V \O → V \ I and partial order ≺ such that for all vertices i in

the domain of fpar we have:

• i ≺ fpar(i)

• fpar(i) ∈ N(i)

• ∀j ∈ N(fpar(i)), i ≺ j ∨ i = j

and for all corrections Cs
t ∈ P (where C = {X,Z}) we have s ≺ t.

Theorem 3.1.1. Any runnable pattern P with at least two connected qubits, and at

least one of them is not an output, then there exist a partial causal flow of size at least

1.

Proof. Take nodes o, u ∈ V such that u ̸∈ O, u is minimal element of N(o) with respect

to order ≺ imposed by corrections of P and there is no correction Co
u (if o is an output

then this cannot be the case, if it is not, then both u and o are not an output and hence

we simply find a minimal element of N(u) that is not an output and take it instead

of o) where ≺ is the order imposed by corrections in P. There has to be an minimal

element, since ≺ contains only conditions from corrections, if there were not one then

there would be chain of corrections that create a loop requiring for some correction Ct
s

to have s ≺ t and t ≺ s but then t would have to be measured before and after s, making

the pattern not runnable. Setting f(u) = o gives conditions u ≺ o and u ≺ t,∀t ∈ N(o)

(with the exception of t = u). The first condition is true since by construction there is

no Co
u, so ¬(o ≺ u) when considering only conditions imposed by corrections, the second

condition is true because u is minimal. As such, we can always find partial causal flow

(f,≺) which has size of at least 1

The most straightforward approach that one can take to compute partial causal flow

for a given pattern is a greedy approach presented in algorithm 1. Although, if one

selects which edges (i, f(i)) are added to the flow in the correct order, this approach

does find the largest partial causal flow; however, in practice it is not obvious how

to find that correct order. As such, we take a different approach to computing partial

36

3 Circuit extraction

Figure 3.3: Example of adding a point u (marked green) to the flow (setting f(u)=v, where v is
the indicated neighbour of u)

Figure 3.4: Example of the "ancillary" step where nodes (marked orange) are added to the
future and used as ancillary qubits in the extraction, allowing for the node (marked
green) to be added to the flow at the next iteration, we assume that both orange
points are later in the time order imposed by corrections than the green node

causal flow and extend a causal flow finding algorithm provided by Mhalla et al. [27]. In

that algorithm, flow is computed from the “back”, that is we start with set of potential

successors equal to set of outputs minus set of inputs O\I and set of nodes in the future

equal to the set of outputs O. Then the algorithm, checks if any nodes v in the potential

successor set have only one neighbour u not in the future, and if so, set f(u) = v and

updates the set of potential successors and the “future” set. The algorithm continues

to do these operations until no new nodes are added, example of one such iteration

can be seen in figure 3.3. We extend this algorithm by introducing an additional step,

if no nodes with only one neighbour in the past are found, we select the node which

neighbourhood, that is not in the future, is the smallest and add all but one of nodes

in that neighbourhood to the future and potential successors set making the originally

selected node suitable to be added to the flow. Example of this can be seen in figure

3.4. This added nodes will turn into ancillary qubits that are “outside” of the time

ordering. This procedure continues until no further changes are done and each node is

37

3 Circuit extraction

either part of the partial flow or moved to the future as an ancillary qubit. An extra

attention needs to be paid to make sure the time ordering obeys conditions specified by

the corrections in the pattern, as such pair (u, v) is only added to the partial flow if the

current ordering does not imply v ≺ u and only nodes that are maximal with respect to

nodes that are not in the future in the ordering (node s is maximal with respect to set

A if there is no node t ∈ A such that s ≺ t) are added as ancillary qubits. Algorithm 2

provides a pseudo code for this procedure.

Algorithm 1 Greedy algorithm for finding partial causal flow
Input: measurement pattern P
Output: partial causal flow and the imposed ordering (fpar,≺)
1: G← open graph of P
2: partial function fparf , with no argument-value pairs added
3: empty partial order ≺
4: for correction Cs

t ∈ P do
5: add s ≺ t to ≺
6: end for
7: for (u, v) ∈ E(G) do
8: if adding u ≺ v and ∀t ∈ N(v), u ≺ t to ≺ does not break transitivity of ≺ then
9: fpar(u) = v

10: add u ≺ v to ≺
11: for t ∈ N(v) \ {u} do
12: add u ≺ t to ≺
13: end for
14: end if
15: end for
16: return fpar,≺

While, sadly, algorithm 2 does not always find largest partial causal flow (as it can

be seen in figure 3.5), we guarantee another desirable property that is, if the flow

exists, the partial causal flow returned by algorithm 2 is that flow (under some technical

assumptions).

Remark 4.1. If the open graph of a measurement pattern P admits causal flow (f,≺)

found by the algorithm by Mhalla et al [27] and for all corrections Cs
t ∈ P we have s ≺ t,

then algorithm 2 finds (f,≺)

Proof. If the open graph G of the measurement pattern P admits causal flow, by the

proof of the original algorithm by Mhalla et al [27], at each iteration until termination

there is v ∈ potential_successors that satisfies the condition on line 2 of subroutine 3

38

3 Circuit extraction

Algorithm 2 Partial causal flow finding algorithm
Input: measurement pattern P with G being open graph, I set of inputs and O set of

outputs
Output: partial causal flow and the imposed ordering (fpar,≺)
1: partial function fpar, with no argument-value pairs added
2: empty partial order ≺
3: for correction Cs

t ∈ P do
4: add s ≺ t to ≺
5: end for
6: potential_successors← O \ I
7: future← O
8: while future is changed do
9: successor_removals← ∅

10: future_additions← ∅
11: past← V (G) \ future

▷ part of the original algorithm - "flow finding" step
12: flow-step() ▷ defined in algorithm 3
13: potential_successors← (potential_successors \ successor_removals)
14: potential_successors← potential_successors ∪ (future_additions ∩ V) \ I
15: future← future ∪ future_additions

▷ "ancillary qubits" step
16: ancillary-step() ▷ defined in algorithm 4
17: end while
18: return fpar,≺

Algorithm 3 flow-step
1: for v ∈ potential_successors do
2: if N(v) ∩ past = {u} then
3: if conditions u ≺ v and u ≺ t, t ∈ N(v) \ {u} are consistent with ≺ then
4: fpar(u)← v
5: future_additions← future_additions ∪ {u}
6: successor_removals← successor_removals ∪ {v}
7: add u ≺ v to ≺
8: for t ∈ N(v) \ {u} do
9: add u ≺ t to ≺

10: end for
11: end if
12: end if
13: end for

39

3 Circuit extraction

Algorithm 4 ancillary-step
1: if successor_removals is empty then
2: min_v ← None
3: min_num_past_neigh←∞
4: for v ∈ potential_successors do
5: if v is maximal with respect to V (G) \ future then
6: if |N(v) ∩ past| < min_num_past_neigh then
7: min_v ← v
8: min_num_past_neigh← |N(v) ∩ past|
9: end if

10: end if
11: end for
12: if min_v ̸= None then
13: added← 0 ▷ Sorting with respect to ≺, starting from the largest node
14: for n ∈ sorted(N(min_v) ∩ past,≺) do
15: if added < |N(min_v ∩ past)| − 1 then
16: future← future ∪ {n}
17: if n ̸∈ I then
18: potential_successors← potential_successors ∪ {n}
19: end if
20: added← added+ 1
21: end if
22: end for
23: end if
24: end if

40

3 Circuit extraction

1

4

2

3

8

10

14

11

12

13
15

9

7
6

5

X2
12X

2
11X

4
12X

4
11X

5
12X

5
9X

5
11X

6
9X

6
11X

12
7 X

11
7 X

15
12X

15
11

X8
12X

8
10X

8
11X

8
14X

9
12X

9
13X

1
12X

1
11X

1
14X

3
12X

3
13X

3
14

Figure 3.5: Example of a graph and corrections with inputs I = {1, 2, 3, 4, 8} and outputs
O = {10, 11, 13, 12, 14}, for it for which algorithm 2 finds the partial causal flow
fpar(3) = 11, fpar(5) = 13, fpar(8) = 10. Another,larger partial causal flow can be
defined as gpar(2) = 6, gpar(4) = 5, gpar(8) = 10, gpar(15) = 7

and it is the same v that would be found by the original algorithm. Furthermore, since

order generated by the flow agrees with order generated by the corrections, condition

on the line 3 of subroutine 3 is also satisfied. As such the algorithm performs exactly

the same operation as the original flow finding algorithm, and since as long as there are

nodes left in the graph that were not added, flow-step will add some node to the flow,

causing the ancillary-step to not execute. The ancillary-step is only executed when

all nodes are added to the flow, but then it performs no operation since there is no

min_v. this means that our algorithm perfectly recovers the original algorithm and

returns (f,≺)

Finally, we show that the ordering corresponding to the partial causal flow that is

the result of algorithm 2 is valid and does not conflict with the ordering imposed by the

corrections of the pattern.

Theorem 3.1.2. Algorithm 2 returns a valid partial causal flow on the measurement

pattern P given as input.

41

3 Circuit extraction

Proof. First we show that the algorithm terminates, indeed since the stopping condition

for the loop is the fact that future set is not updated. Since we only add nodes to future

and there is finite amount of nodes n ∈ V (G) then the stopping condition will be

reached.

Now, it is sufficient to show that the resulting partial order ≺ is valid, that is, there

is no u, v ∈ V (G) such that u ≺ v and v ≺ u. However, clearly by condition on the line

3 of subroutine 3, only nodes that do not break ≺ are added to the flow, as such the

resulting flow is valid.

We conclude our discussions of computing partial causal flow by providing complexity

of algorithm 2.

Theorem 3.1.3. Algorithm 2 has the time complexity of O(|V |4)

Proof. Since the main loop (line 8 of algorithm 2) runs as long as at least one node is

added to the future set, then it can run for at most |V | steps.

flow-step iterates through set of potential_successors which is of size at most |V |,

getting an intersection of neighbourhood and past set can be done in at mostO(|V |) with

appropriate data structures used. Then creating set of conditions takes at most O(|V |2)

and detection of cycles in ≺ can take O(|V |+ |V |2) (cycle detection in a graph with |V |2

edges, which is an upper bound on number of edges in a directed graph representing

≺), finally adding node to flow will take another |V |2 because of conditions needing to

be added to ≺. Summarizing flow-step takes O(|V |(|V |+ |V |2 + |V |+ |V |2 + |V |2)) =

O(|V |3).

If the ancillary-step is executed then the for loop at line 4 of algorithm 4 does at

most |V | iterations, checking if v is maximal can be done in O(|V |) and size of the

intersection of neighbourhood and past can be also computed in O(|V |). Sorting the

list of the neighbours (line 14) is done in O(|V | log |V |) and iterating through that list

takes at most |V | iterations. Putting this all together gives the time complexity of

ancillary-step equal to O(|V |(|V |+ |V |+ |V | log |V |+ |V |)) = O(|V |2 log |V |)

As such, the complexity of the entire algorithm is O(|V |(|V |3 + |V |2 log |V |)) =

O(|V |4).

42

3 Circuit extraction

Figure 3.6: Result of algorithm 5 when applied to measurement pattern
P = Xa

dX
a
fX

b
dX

b
eX

b
fX

c
dX

c
eM

1
2
a M

1
3

b M
1
4
c EadEaeEbdEbeEbfEcdEcfNfNeNd,

with V = {a, b, c, d, e, f}, I = {a, b, c}, O = {d, e, f} (note lack of flow in the
underlying open graph)

3.2 Extraction algorithm

Algorithm 5
Input: measurement pattern P
Output: quantum circuit implementing P
1: edge-graph ← empty graph
2: (f,≺)← partial causal flow on P
3: qubits-wire-mapping ← qubit-wire-mapping() ▷ subroutine defined in algorithm 6
4: ordered-gates ← order-gates() ▷ subroutine defined in algorithm 7
5: qc← empty circuit
6: for wire in qc do
7: if first qubit in ≺ that wire is mapped to is not an input then
8: add a Hadamard gate to that wire (wire assumed to be initialized in |0⟩)
9: end if

10: end for
11: for gate in ordered-gates do
12: add gate to qc using qubit-wire-mapping to determine which wires gate acts on
13: end for
14: return qc

We now turn to the question of extracting a quantum circuit given the partial causal

flow. Our method connects the star pattern translation introduced by Danos et al [10]

and the general purpose method show by Broadbent et al [5]. The method presented

here applies those two methods to different types of nodes, the nodes that are part

of the partial causal flow (are either in domain or image of f) and the nodes that are

not part of the flow. For the nodes that are part of the flow, “star pattern translation

like” method is applied and the remaining nodes, that were not part of the flow, are

43

3 Circuit extraction

Algorithm 6 qubit-wire-mapping()

Input: measurement pattern P, partial causal flow (f,≺)
Output: mapping between V (G) (qubits in the pattern P) and non negative integers

indicating wire indices
1: qubit-wire-mapping ← empty mapping
2: wire-idx ← 0
3: for v ∈ ordered(V (G),≺) do ▷ order nodes in accordance to ≺ so that maximal

elements are at the end
4: if v ∈ image(f) then
5: u← f−1(v) ▷ f(u) = v
6: qubit-wire-mapping[v] ← qubit-wire-mapping[u]
7: else
8: qubit-wire-mapping[v] ← wire-idx
9: wire-idx ← wire-idx+1

10: end if
11: end for
12: for u ∈ V (G) do
13: if u ̸∈ qubit-wire-mapping then
14: qubit-wire-mapping[u] ← wire-idx
15: wire-idx ← wire-idx+1
16: end if
17: end for
18: return qubit-wire-mapping

added as ancillary qubits, that is similarly to the general purpose method, they are

mapped to a separate wires and commands from the pattern are executed on those

wires. The example of applying this procedure can be seen in figure 3.6 and pseudo

code is presented in algorithm 5.

This long and rather monotone pseudo code performs the following operations. First

it computes the partial causal flow, then it creates a mapping of qubits onto wires

ensuring that any pair of qubits (u, f(u)) is mapped to the same wire and qubits u, t

are mapped to the same wire if and only if there exist n such that u = f (n)(t) or

t = f (n)(u) where f (n) is f applied n times (for example f (2)(x) = f(f(x))). After that,

a directed graph of operations is created that ensures that operations are performed in

the right order, figure 3.7 gives the overview of the order. Finally, the gates are added

to the circuit according to their position in the topological ordering of the operations

graph and according to the qubit-wire mapping.

Algorithm 5 in its current form applies the principle of deferred measurement to

change all of the corrections into two-qubit gates, however, one can also implement the

44

3 Circuit extraction

Algorithm 7 order-gates()

Input: measurement pattern P, partial causal flow (f,≺)
Output: ordered list of operations to execute
1: operations-graph ← Empty directed graph
2: for u ∈ V (G) do
3: operations ← empty list
4: if u ∈ image(f) then
5: start-operation ← Hadamard gate on u with id 0
6: else
7: start-operation ← Identity on u with id 0
8: end if
9: entangle-corrections-separator ← Identity on u with id 1

10: for Eui ∈ P do
11: if i ̸= f(u) ∨ i ̸= f−1(u) then
12: operation-graph.add-edge(start-operation, Eui)
13: operation-graph.add-edge(Eui, entangle-corrections-separator)
14: end if
15: end for
16: if u is measured and u ̸∈ domain(f) then
17: qubit-end-operation ← Hadamard on u with id 1
18: measurement ← Measurement operation on u with appropriate angle
19: operation-graph.add-edge(qubit-end-operation, measurement)
20: for corrections Cu

t ∈ P do
21: operation-graph.add-edge(qubit-end-operation, Cu

t)
22: operation-graph.add-edge(Cu

t , measurement)
23: end for
24: else if u ∈ domain(f) then
25: qubit-end-operation ← Hadamard on f(u) with id 0
26: else
27: qubit-end-operation ← Identity on u with id 2
28: end if
29: if u ̸∈ O then
30: z-phase ← Z rotation gate on u with measurement angle on u
31: else
32: z-phase ← Identity on u with id 3
33: end if
34: operation-graph.add-edge(entangle-corrections-separator, qubit-end-operation)
35: operation-graph.add-edge(entangle-corrections-separator, z-phase)
36: order-corrections() ▷ subroutine defined in algorithm 8
37: end for
38: return topological-sort(operations-graph)

45

3 Circuit extraction

Algorithm 8 order-corrections()

Input: measurement pattern P, partial causal flow (f,≺)
1: x-corrections ← empty list
2: for correction Cs

u ∈ P do
3: if s ̸∈ domain(f) then
4: if C = X then
5: x-corrections.append(Cs

u)
6: end if
7: operation-graph.add-edge(entangle-corrections-separator, Cu

t id 0)
8: operation-graph.add-edge(Cu

t id 0, z-phase)
9: end if

10: end for
11: operation-graph.add-edge(z-phase, qubit-end-operation)
12: if u ̸∈ O then
13: for Xs

u ∈ x-corrections do
14: operation-graph.add-edge(z-phase, Xu

t id 1)
15: operation-graph.add-edge(Xu

t id 1, qubit-end-operation)
16: end for
17: end if

Figure 3.7: Edges in the operations graph added for node u. If one of the operations does
not exist, add edge to the next one in the order. Large arrows symbolise possible
options, if a qubit is measured or not and if there is a successor of the qubit in
f. Note that by adding edges for other nodes u some additional edges may appear
between these nodes and others, that were not specified in this graph.

46

3 Circuit extraction

c & f : • RZ (0.25) H • X

b & e : • RZ (0.3333) • H •

a : • RZ (0.5) • H

d : H • • • X

c : /1
0

�� •
c0=0x1

•
c0=0x1

Figure 3.8: Result of our algorithm applied to the same case as in the figure 3.6 when classical
control is allowed

same circuits using classically controlled gates. In that case, each of the controlled-

Z or controlled-X gates used to implement corrections from the inputted measurement

pattern is replaced with a classically controlled Z gates or classically controlled X gates

respectively, and the measurement is moved before any of the classically controlled

gates. This approach may be interesting as using classically controlled gates instead

of the quantum ones results in better theoretical bounds, as can be seen in the next

sections of this work. Furthermore, using classically controlled gates may alleviate the

issue of short qubit life span as some qubits will be measured earlier than in the quantum

control version of the algorithm. An example of a extracted circuit with classical control

can be seen in figure 3.8 and the modification necessary to our order-gates subroutine

can be seen in algorithm 9, with the change bolded.

3.2.1 Correctness

We now prove that algorithm 5 behaves in the expected manner. Firstly, we prove that

it terminates:

Theorem 3.2.1. Algorithm 5 successfully terminates and returns an output.

Proof. In this case, it is sufficient to show that the operation graph created in subrou-

tine 7 has no cycles, so that one can perform topological sort on it. Lets assume, by

contradiction, that there is a cycle in the operations graph.

47

3 Circuit extraction

Algorithm 9 order-gates-cc()

Input: measurement pattern P, partial causal flow (f,≺)
Output: ordered list of operations to execute
1: operations-graph ← Empty directed graph
2: for u ∈ V (G) do
3: operations ← empty list
4: if u ∈ image(f) then
5: start-operation ← Hadamard gate on u with id 0
6: else
7: start-operation ← Identity on u with id 0
8: end if
9: entangle-corrections-separator ← Identity on u with id 1

10: for Eui ∈ P do
11: if i ̸= f(u) ∨ i ̸= f−1(u) then
12: operation-graph.add-edge(start-operation, Eui)
13: operation-graph.add-edge(Eui, entangle-corrections-separator)
14: end if
15: end for
16: if u is measured and u ̸∈ domain(f) then
17: qubit-end-operation ← Hadamard on u with id 1
18: measurement ← Measurement operation on u with appropriate angle
19: operation-graph.add-edge(qubit-end-operation, measurement)
20: for corrections Cu

t ∈ P do
21: operation-graph.add-edge(measurement, Cu

t)
22: end for
23: else if u ∈ domain(f) then
24: qubit-end-operation ← Hadamard on f(u) with id 0
25: else
26: qubit-end-operation ← Identity on u with id 2
27: end if
28: if u ̸∈ O then
29: z-phase ← Z rotation gate on u with measurement angle on u
30: else
31: z-phase ← Identity on u with id 3
32: end if
33: operation-graph.add-edge(entangle-corrections-separator, qubit-end-operation)
34: operation-graph.add-edge(entangle-corrections-separator, z-phase)
35: order-corrections() ▷ subroutine defined in algorithm 8
36: end for
37: return topological-sort(operations-graph)

48

3 Circuit extraction

Figure 3.9: Enumeration of all possible paths to reach an entangle operation node from an
entangle operation node in the operation graph, paths from Eu,v to operations with
qubit v not listed since they are analogous by symmetry. If some of the operation
do not exist (no corrections etc) then there are edges introduced for operations on
the same qubit and if the operations are on different qubit the path does not exist

First we note that this cycle has to have an Eu,v for some qubits u, v in it (in this case

we will also call the Hadamard gate implementing Eu,g(u) as Eu,g(u)). This is because,

any edges outgoing from a correction Zv
u, for u ∈ domian(f) (as can be seen in figure

3.7) has an edge to Xv
u which has an edge to Rz(α) which has an edge to a new Xv

u

(different operation from the original Xv
u) which has an edge either to measurement or

an entangle operation node. Since measurement has no outgoing edges, only possible

cycle requires going through an Eu,f(u). For u ̸∈ domain(f) edges from corrections Cv
u

have edge to a Hadamard operation gate from which there are only edges to corrections

of form Cu
s , note that v ≺ u ≺ s, so taking this path will result in being in a correction

with both control and target larger in ≺, as such path, without entangle operations on

it, will reach only other corrections which control and target qubits are either equal or

larger in ≺, making it impossible to form a cycle of non entangled edges. Similar thing

can be show for one qubit operation that do not replace Eu,f(u) for some u, (as only

corrections are reachable from them).

Now that we established that any potential cycle needs to have an node representing

entangle operation on it, let it be node corresponding to Eu,v. Note that for an edge

Eu,v, if u ̸= f(v) and v ̸= f(u), that is Eu,v does not represent a Hadamard operation,

the only incoming edges to Eu,v are from Ef−1(u),u and Ef−1(v),v, so either of those has

to be in the cycle. As such, we know that there has to be a node corresponding to

an operation Ef−1(u),u, for some u, in any possible cycle (either Eu,v is already in that

form, or we take it predecessor). We show by enumeration that any reachable operation

of form Et,f(t) from Ef−1(u),u satisfies f−1(u) ≺ t, this is done by enumeration as shown

49

3 Circuit extraction

in figure 3.9. As such it is impossible to reach Ef−1(u),u by any path from Ef−1(u),u,

hence no cycle is possible and the algorithm terminates.

And now we prove that the result of the algorithm implements a deterministic mea-

surement pattern.

Theorem 3.2.2. Given a strongly deterministic measurement pattern P, algorithm 5

returns a circuit which implements P

Proof. In order to prove the equality we will use ZX representation of P. Firstly, since

P is strongly deterministic, then we can propagate all measurements kuπ from qubits

u ∈ domain(f) where f is the partial causal flow to its corresponding corrections kuπ

and cancel them out.

Then it can be easily seen that a sequence of applications of spider fusion, π copy

and only connectivity matters rules allows us to create wires with appropriate qubits

on them, as can be seen below:

·

∑
i∈Xu

kiπ

∑
i∈Zu

kiπ

αu + kuπ

·· ·

∑
i∈Xf(u)

kiπ

∑
i∈Zf(u)

kiπ

αf(u) + kf(u)π

··

spider fusion
=

·

∑
i∈Xu

kiπ

∑
i∈Zu

kiπ

αu + kuπ

·· ·

∑
i∈Xf(u)

kiπ

∑
i∈Zf(u)

kiπ

αf(u) + kf(u)π

··

π commute
=

··· ···

∑
i∈Xu

kiπ
∑

i∈Zu
kiπ

αu + kuπ

∑
i∈Xu

kiπ
∑

i∈Xf(u)
kiπ

αf(u) + kf(u)π

∑
i∈Xf(u)

kiπ
∑

i∈Zf(u)
kiπ

spider fusion
=

··· ···

∑
i∈Xu

kiπ
∑

i∈Zu
kiπ αu + kuπ

∑
i∈Xu

kiπ
∑

i∈Xf(u)
kiπαf(u) + kf(u)π

∑
i∈Xf(u)

kiπ
∑

i∈Zf(u)
kiπ

Eu,v operations and potential input wire Ef(u),v operations output wire or wire to the next qubit

Thanks to the spider fusion rule, we can apply Eu,v operations in any order, and specif-

ically in the order implied by the topological sort of the operation graph (note that

edges in the operation graph force corrections to be after entangle operations for both

qubits and the result of applying topological sort on that operation graph gives exact

time to execute each of the operations, so there is no acausal gates).

50

3 Circuit extraction

In case of qubits that are measured and have no successor in f, they can be transformed

in the following way to “look” like the circuit:

·

∑
i∈Xu

kiπ

∑
i∈Zu

kiπ

αu + kuπ

·· ·

∑
i∈Xu

kiπ
∑

i∈Zu
kiπ αu + kuπ

··

ocm
=

Finally, any non input qubit that is first on the wire can be represented as a wire

initialized to 0 with a Hadamard gate applied to it and then standard transformation,

mentioned earlier, can be applied.

·

∑
i∈Xu

kiπ

∑
i∈Zu

kiπ

αu + kuπ

··

spider fusion
=

·

∑
i∈Xu

kiπ

∑
i∈Zu

kiπ

αu + kuπ

··

color change
=

·

∑
i∈Xu

kiπ

∑
i∈Zu

kiπ

αu + kuπ

··

As such, any measurement pattern represented as ZX-diagram can be transformed into

the circuit returned by algorithm 5 according to ZX-calculus rules. Given correctness

of ZX-calculus, this implies that the circuit returned by algorithm 5 implements the

inputted, deterministic, measurement pattern P

3.2.2 Computational complexity

We now show that algorithm 5 can be executed in polynomial time.

Theorem 3.2.3. Time complexity of the algorithm 5 is O(P + |V |2) where P is the

time complexity of finding partial causal flow (which in the case of algorithm presented

before, p = O(|V |4))

Proof. It can be seen that creating a qubit-wire mapping takes O(|V |2) time, that is

topological sort to get ordering according to ≺ takes O(|V |+ |V |2) (since |V |2 bounds

number of edges in the graph) and then we iterate twice through list of vertices which

takes O(|V |).

51

3 Circuit extraction

Procedure order-gates() also takes O(|V |2) amount of time as we first iterate V (G) at

line 2 of subroutine 7, and then in that loop iterate over entanglements for that qubit

and corrections at lines 10 and 20 respectively, both can have at most O(|V |) elements

as each node can correct at most all other nodes but cannot correct the same node twice

(or entangle with the same node twice), order-corrections() also takes O(|V |).

Finally topological sort on the operation graph takes O(|V |2 + |V |2) as there is at

most O(|V |2) operations and in subroutine 7 we add at most O(|V |) edges per node,

giving us O(|V |2) edges in the graph.

Finally, adding Hadamard gates to start of the wire can be done in O(|V |) and

creating all the gates can be done in O(|V |2). All of which together takes O(P + |V |2)

time (since we also find partial causal flow in time O(P)).

3.2.3 Number of twoqubit gates

An important property of the algorithm 5 is that it provides a straightforward way

of bounding number of two-qubit gates in the resulting circuit. In general, circuits

with lower number of two-qubit gates are more desirable as their execution time on

real quantum computers is much longer than single-qubit gates and it is not possible

to apply two-qubit gates between any arbitrary two-qubits in a physical device which

requires using SWAP operations (which are implemented by 3 controlled-NOT gates)

to make circuits executable on real hardware. As such lower number of two-qubit gates

directly correlates with circuits taking less time to execute and less overhead resulting

from mapping quantum circuits onto architecture of real quantum device.

Our bound exploits the fact that throughout the execution of the algorithm two-qubit

gates are only added if there is a correction or if there is an entanglement operation.

This fact gives rise to the following remarks:

Remark 3.2.1. Let a circuit C with classical control be an output of algorithm 5 given

a measurement pattern P with open graph G, then C has at most |E(G)| two-qubit

gates, and if the algorithm is executed with partial causal flow f, then C has exactly

|E(G)| − |image(f)| two qubit gates.

52

3 Circuit extraction

Proof. In the case of classical control we assume that all corrections are implemented

classically, as such the only two-qubit gates that are added, are the ones corresponding

to an Eu,v operation in P, which corresponds directly to the number of edges of G. As

such the number of two-qubit gates is at most |E(G)|.

Furthermore, any qubit v ∈ image(f), has an u for which edge Eu,v is implemented

as a Hadamard gate, and that is the only case in which an edge in G is not mapped to

a controlled-Z gate so C has exactly |E(G)| − |image(f)| two qubit gates.

Remark 3.2.2. Let a circuit C, without classical control allowed, be an output of the

algorithm 5 given a measurement pattern P with open graph G, then C has at most

|E(G)|+ Z + 2X two qubit gates, where Z is the number of Z corrections and X is the

number of X corrections in P

Proof. Firstly, we clearly add as many gates as in the case with classical control to

implement all the entanglements, by algorithm 5, we also add one controlled-Z gate for

some Z correction and two controlled-X gate for some X correction (we add those gates

only for qubits that are ancillary, since for any qubits with a successor in the flow, we

don’t implement any corrections controlled by them) as such there is at most |E(G)|+Z

controlled-Z gates and 2X controlled-X gates in C, and no other two-qubit gates.

3.2.4 Number of ancillary qubits

Given that an aim of this algorithm is to provide a more resource efficient way of imple-

menting deterministic measurement patterns, it is natural to ask if one can provide a

theoretical guarantee as to the number of qubits required for implementing the resulting

circuit outputted by the algorithm 5 We show that this indeed is possible by providing

a lower bound for the size of the largest partial flow on any given pattern. This is done

by creating a specific directed graph that encodes information about the pattern and

finding distance-3 independent set as defined in the definition 2.1.3 on that pattern,

which, as we show encodes a partial causal flow.

53

3 Circuit extraction

We first show that given the size of a partial causal flow on a pattern, one can say

exactly how many qubits will be required to implement the circuit which results from

our translation method, using that partial causal flow.

Lemma 3.2.1. Given a partial causal flow of size k and a strongly deterministic mea-

surement pattern with n qubits, then the circuit outputted by algorithm 5 has n-k wires.

Proof. First we note that by the subroutine 6, for any u ∈ domian(f) and v = f(u),

both u and v will be put on the same wire, as we create a wire for all qubits in the

pattern but each element of image of f (since they will be put on already existing wires,

which is mapped to its predecessor), which creates n − |image(f)| wires overall. As

such, it is sufficient to show that f is injective, so size of the image is equal to size of

the domain and equal to k.

By contradiction, let there be u1, u2 ∈ domain(f) such that f(u1) = f(u2), but

then since u1 and f(u1) need to be neighbours and similarly u2 and f(u2), by the

definition of partial causal flow we have u1 ≺ u2 (since we have u1 smaller than any

neighbour of f(u1)) and similarly u2 ≺ u1 so f is not a valid partial causal flow and

hence contradiction.

We now define the directed graph G′ later used for lower bounding the size of partial

causal flow.

Definition 3.2.1. A directed graph G′ of a measurement pattern P with qubit set V

and set of inputs and outputs, I and O respectively, is a graph created in the following

way.

1. create a node for each qubit in the pattern, V (G′) = V

2. initially add two edges (one per direction) for each of the entangle operation, that

is, ∀Eij ∈ P, (i, j), (j, i) ∈ E(G′)

3. for all corrections Cs
t (C = {X,Z}) if distG(t, s) < 3 add a new node at,s and

edge (t, at,s), furthermore ∀n ∈ V add edge (at,s, n)

54

3 Circuit extraction

Theorem 3.2.4. Let S be an distance 3 independent set such that |S| > 1, then there

exist a partial causal flow function f on the original graph G (open graph of P) such

that domain(f) = S \ (O ∪ ON), where O is set of outputs for pattern P and ON =

{u | ∀v ∈ NG(u), v ∈ I} is the set of nodes that neighbour only with inputs (note that

this also includes all isolated vertices if they exist).

Proof. The partial causal flow function f can be created by taking for each node of

S \ (O ∪ ON) any neighbour of that node, that is ∀u ∈ S \ (O ∪ ON), f(u) = v where

v ∈ NG′,out(v) \ I.

Note that ∀u ∈ S \ (O ∪ ON), NG(u) ⊂ NG′,out(u), furthermore the only nodes

u ̸∈ NG(u) and u ∈ NG′,out(u) are the ancillary nodes created in step 3 of definition

3.2.1, and it is impossible for NG′,out(u) to contain only such nodes (node cannot have

only edge to at,s as that would imply no other outgoing edge and distG(t, s) =∞ hence

at,s would not exist). Since we also subtract from S all nodes that do not have other

neighbours than inputs, there is always a node f(v) ∈ NG(u) \ I that can be picked.

This construction results in f : V \O → V \ I being a valid partial function.

It is now sufficient to show that this construction of f produces a valid partial causal

flow. Lets assume by contradiction that the resulting ordering ≺ is not valid, that is

there are qubits u, v such that u ≺ v and v ≺ u. This can happen in one of the following

cases:

1. v = f(u) and u = f(v)

2. v = f(u) and u ∈ NG(f(v)) (or symmetric condition, but without loss of generality

we will only consider this case)

3. v = f(u) and Cv
u ∈ P

4. v ∈ NG(f(u)) and Cv
u ∈ P

In the case 1, since both u, v ∈ S\(O∪ON) then as already statedNG(u) ⊂ NG′,out(u)

and since u = f(v) then u ̸∈ I, so u ∈ NG′,out(v) hence distG′(v, u) = 1 so both u and

v cannot be in distance 3 independent set S, contradiction.

55

3 Circuit extraction

In the case 2, we analogously have v ∈ NG′,out(f(u)), and f(u) ∈ NG′,out(u) so

dist(u, v) = 2 and hence both u and v cannot be in distance 3 independent set S,

contradiction.

In the case 3, it can be clearly seen that distG(u, v) = 1 < 3 so au,v ∈ V (G′), as such,

∀t ∈ V (G′), distG′(u, t) < 3 hence if u ∈ S then |S| = 1 and hence by condition |S| > 1

we arrive at a contradiction.

In the case 4, analogously to the case 3, it can be seen that distG(u, v) < 3 (since

v ∈ NG(f(u)) and f(u) ∈ NG(u)) so au,v ∈ V (G′), as such, ∀t ∈ V (G′), distG′(u, t) < 3

hence if u ∈ S then |S| = 1 and hence by condition |S| > 1 we arrive at a contradiction.

As all cases lead to contradiction, there is no such u, v for which we have both u ≺ v

and v ≺ u so f is a valid partial causal flow on G.

Combining lemma 3.2.1 and theorem 3.2.4 can give us a desired bound on number

of wires of the resulting circuit. Indeed, if there is a distance 3 independent set S

satisfying conditions of theorem 3.2.4, then we know that there exist flow of at least the

size of |S|, that is we know that the k in lemma 3.2.1 satisfies the condition k > |S|,

so n − k < n − |S| as such we arrive at an upper bound of the number of wires in the

resulting quantum circuit. If there is no set S that satisfies the conditions of theorem

3.2.4, then we can still bound the size of partial cause using theorem 3.1.1 (which

requirements are reasonable assumptions to be made about a pattern in which there is

any information flow) and get k ≥ 1 which provides the bound of n− 1. It is important

to mention however, that the bound derived here, specifically the upper bound n− |S|

is a guarantee for our extraction method when largest partial causal flow is found, and

as already stated, our method of computing partial causal flow does not always returns

the largest partial causal flow. It is unknown how to efficiently compute largest partial

causal flow.

Furthermore, given the fact that the ancillary qubits in the circuit outputted by

algorithm 5 are all measured at some point in time and then no further operations

are performed on them, one could ask how many qubits are required to implement a

circuit if one can reuse qubits. That is, rather than creating a new wire for another

ancillary qubit, reuse a wire that has already been measured, by resetting it (which can

56

3 Circuit extraction

be accomplished on a quantum computer, although it is a relatively time consuming

process) back to the state |+⟩ and treating it as a new wire.

In that case, given a partial causal flow (f,≺) one can bound number of qubits with

the help of the parameter called cutwidth mentioned in section 2.1.2. We present two

versions of the bound for the circuit with classical control and for the circuit where all

corrections are implemented by quantum controlled gates.

Theorem 3.2.5. Given a measurement pattern P with partial causal flow (f,≺) and

open graph G, if one allows for reusing qubits, the circuit outputted by algorithm 5, with

classical control allowed, can be implemented using 2cutwidth≺(G), where cutwidth≺(G)

is cutwidth of the graph G as defined in section 2.1.2, however with the ordering of edges

π constrained to the partial order ≺, that is, for any u ≺ v we have π(u) < π(v).

Proof. The ordering π corresponds to an linear arrangement of qubits in the measure-

ment pattern, these can be transformed according to the method shown in the proof of

theorem 3.2.2. Note that cutwidth for that ordering (without changing the ordering of

nodes), that is cutwidth≺(G) corresponds to number of edges going from wires in the

past to wires in the future, as such if the gates are made causal (by extending the wires

and using only connectivity matters to make controlled-Z gates execute at the same

time) it corresponds to half of number of wires needed at any point (this is an upper

bound as some of the entangle operations represented by edges may be implemented

as Hadamard operations, hence not requiring two wires to be implemented). Once all

multi-qubit operations are implemented on wires, only single qubit operations are left,

which can be implemented “in a single time frame” (since all other wires can just be

made to “wait” for the single-qubit operations to end) and the wire is free to be reused

by another qubit.

Furthermore, since π produced ordering that abides by ≺, then f(u) is after u, and

so are all of its neighbours, allowing to put u and f(u) on the same wire.

As such 2cutwith≺(G) is an upper bound on how many wires are necessary at any

given time, and any qubits that do not need to be “present” in that time are either

already measured or do not need to be initialized yet so their wires either do not yet

exist or can be reused.

57

3 Circuit extraction

An example of this transformation, for reusing wires based on linear arrangement,

can be seen below:

spider fusion and ocm
=

q1 q2
q3 q4 q5 q6

q3

q1 and q2

q5 and q6

q4

Theorem 3.2.6. Given a measurement pattern P with partial causal flow (f,≺) and

open graph G, if one allows for reusing qubits, the circuit outputted by algorithm 5 can

be implemented using 2cutwidth≺(Gc), where cutwidth≺(Gc) is cutwidth of the graph

Gc as defined in section 2.1.2, however with the ordering of edges π constrained to the

partial order ≺, that is, for any u ≺ v we have π(u) < π(v) and Gc is a graph with

V (Gc) = V (G), E(Gc) = E(G)∪ {(u, v) | Cv
u ∈ P, C = X ∨C = Z}, that is graph with

additional edges added for each correction (if the edge is not already there).

Proof. The proof in this case is the same as of the bound in theorem 3.2.5, with the

additional note that since we are implementing control using quantum gates, both qubits

have to also exist during correction. As such we amend the open graph by adding edges

(s, t) for any correction Cs
t (if the edge does not already exist), in that case we ensure

that cutwidth finds the point in which the most qubits are needed at the same time and

then the argument from the theorem 3.2.5 applies.

3.3 Evaluation

We conclude by giving some general remarks about the algorithm and its theoretical

properties presented in this chapter.

Firstly, it is worth mentioning that this algorithm combines the original star pattern

translation method presented by Danos et al [10] and the general purpose method pre-

sented by Broadbent et al [5]. Moreover, based on the size of the partial causal flow, our

58

3 Circuit extraction

method resembles either of these methods. That is, if there is flow in the open graph

of input measurement pattern and partial flow finding algorithm finds that flow (which

is always the case using algorithm 2) then the resulting circuit outputted by algorithm

5 results in the same circuit as star pattern translation would (and in a sense performs

the same operations). And, if the partial causal flow that was found is relatively small,

the outputted circuit will resemble more the output of the general purpose method.

The method presented here has two important advantages over methods like star

pattern translation [10], star pattern translation for graphs with gflow [28], circuit ex-

traction from ZX diagrams [2] etc. Firstly, this method works for a much broader class

of patterns, correctness proof works for all strongly deterministic patterns, not just

robust deterministic patterns as is the case other mentioned methods. Furthermore,

while there is no proof as to behaviour of this algorithm for non strongly deterministic

patterns, we know that it terminates and outputs a circuit and there are some hopes

that for a “sensible” non deterministic patterns the circuits may be correct. Sadly, due

to lack of time and proper definition of “sensible” this topic is not further examined in

this work. Secondly, our method provides a theoretical bound on number of two qubit

gates, something that most methods for extracting circuits for patterns with gflow, like

the ones by Miyazaki et al and Backens et al do not provide [2, 28].

59

4 Experiments

4.1 Experimental setup

In order to evaluate our methods, we compare their performance to other algorithms

presented in the literature by evaluating number of qubits and two-qubit gates in cir-

cuits extracted from randomly generated measurement patterns. However, computing

corrections for an arbitrary measurement pattern, to our knowledge, is not a solved

problem and most likely is computationally hard. As such, we generate our test dataset

by generating a random quantum circuit consisting of Clifford and T gates (which form

an universal gateset) using a method provided by python library PyZX [25]. We then

apply optimization method introduced by Duncan et al [13], which modifies the circuit

into a ZX diagram that possibly does not have causal flow, but guarantees existence

of generalized flow. We then compute delayed gflow on the resulting ZX diagram to

determine corrections for the measurement pattern represented by the resulting ZX

diagram.

Thanks to this approach we can generate random measurement patterns with known

corrections and evaluate our methods on it. Furthermore, since the open graphs of

measurement patterns have generalized flow, we can compare our method not only

against general purpose methods but also against extraction methods that work only

on patterns with gflow.

The downside of this approach is that we do not have direct control over the size

of the pattern which will depend on the random circuit generated by PyZX. We do

however have control of number of qubits in the random circuit and its depth, as such,

we vary those parameters in the experiments presented here to present a more holistic

picture. As it will be later seen, we make the depth of the circuit dependent on number

60

4 Experiments

of qubits, this makes it more likely that an “interesting” circuit (with two-qubit gates)

is generated.

4.2 Empirical results

4.2.1 Comparison of partial flow finding algorithms

Firstly, we compare the performance of algorithms 1 (with an arbitrary edge ordering)

and 2 by comparing the size of the resulting partial causal flow. We generate our test

dataset for circuits with 5, 10, 20, 30, 40 and 50 qubits and their depth ranging from

10 + n, where n is the number of qubits in the circuit, to 300 + n, and for each size

generating 10 circuits. The results can be seen in figure 4.1 As it can be seen, there

does not seem to be a significant difference between the two algorithms. However, it

does seem like there is slightly more variance in size of partial causal flow returned

algorithm 2 then the size of partial causal flows returned by greedy approach. Due

to this, for the following experiments we will present results for both approaches of

computing partial causal flow, referring to the algorithm 1 as greedy and to algorithm

3 as delayed (referring to the fact that it has been inspired by algorithm that finds

maximally delayed causal flow).

4.2.2 Number of qubits in the circuit

We now evaluate number of qubits in the extracted circuit. We compare our approach

against a general purpose method introduced by Broadbent et al [5] that can be applied

to any pattern, without any restrictions. Using the fact that our dataset has gflow, we

also compare our method to domain specific approach, in this case we use PyZX extract

circuit method, which is a more optimized version of an ZX circuit extraction approach

presented by Backens et al [2].

We present our results for dataset generated out of circuits with 5, 10, 20, 30, 40 and

50 qubits and depth ranging from 10 + n to 300 + n where n is the number of qubits,

and for each size of the circuit we generate 5 circuits.

61

4 Experiments

Figure 4.1: Comparison of sizes of partial causal flows (number of qubits in domain) produced
by algorithms 1 (referred to as greedy) and 2 (referred to as delayed)

62

4 Experiments

Figure 4.2: Number of qubits in the translated circuit for general purpose method [5], pyzx
extract circuit method [25] and our method, using greedy flow finding

63

4 Experiments

Figure 4.3: Analogous experiment to the one in figure 4.2 but with partial causal flow computed
by delayed flow finding method

64

4 Experiments

Results of our experiments can be seen in figure 4.2 for the greedy approach of finding

partial causal flow and in figure 4.3 for the delayed approach of finding partial causal

flow. Unsurprisingly, our method results in circuits larger than the domain specific

efficient extraction methods for patterns with generalized flow. However, it reduces the

number of qubits in the circuit compared to the general purpose method in some cases

by over 50%.

An interesting fact is that our method can find circuits that are slightly smaller than

pyzx extraction method. This can be a result of our implementation, pyzx keeps bound-

ary nodes that serve as output nodes while in our method we remap those boundary

points onto their Z spider neighbours, this sometimes (given that an optimization rou-

tine is run to remove flow from the graph) may decrease the number of inputs and hence

make it possible for our method to find circuit with less wires.

4.2.3 Tightness of the bound

We now turn to the evaluation of the estimation method presented in section 3.2.4.

Due to computational expensiveness of that method, we reduce the depth of the circuit

to ranging from n + 10 to n + 150, where n is the number of qubits which is either 5,

10, 15 or 20 and for each size of the circuit we generate 10 circuits. Here we present

the results as proportional overhead over our extraction method, that is, for estimation

(and general purpose method provided as reference) we take the result of estimation,

subtract the result produced by our approach and then divide that result by result

produced by our approach.

Our results can be seen in figure 4.4 for the greedy flow finding approach and in figure

4.5 for the delayed flow finding approach (which is used to compute the baseline circuit,

that is our method).

These experiments further confirm that our method of finding partial causal flow

does not find the largest partial causal flow as can be seen from some of the negative

values in the plots. It has been verified that the independent sets returned in that case

produce valid partial causal flow. As such, the bound provided shows that there exist

an algorithm which can accomplish these results, but it is not the partial flow finding

65

4 Experiments

Figure 4.4: Relative number of qubits estimated and in the general pattern to
the number of qubits of the circuit returned by our method, cal-
culated as number of qubits estimated−number of qubits returned by our method

number of qubits returned by our method
and analogously for general purpose method
number of qubits returned by general purpose method−number of qubits returned by our method

number of qubits returned by our method ,
calculated using greedy flow finding approach

66

4 Experiments

Figure 4.5: Analogous experiment to the one in figure 4.4 but with partial causal flow computed
by delayed flow finding method

67

4 Experiments

algorithm provided in this project. Furthermore, it is unknown if a polynomial method

to compute largest partial causal flow exists.

4.2.4 Number of two-qubit gates in the circuit

Another important aspect of circuit extraction is the number of two-qubit gates in the

translated circuit. Figures 4.6 and 4.7 display the relative proportional amount of two-

qubit gates as compared to the baseline approach, that is the general purpose method

presented by Broadbent et al [5]. Our experimental setup in this case is analogous to

the experimental setup for examining number of qubits in the translated circuit with

the exception that we present number of two-qubit gates in circuits extracted by our

method with and without classical control, by PyZX extract circuit method and by

extension of the general purpose approach to allow for classical control. We include

classical control only in experiments that examine number of two-qubit gates as that is

the only parameter that changes in that approach (since classical control allows us to

implement some of two-qubit gates as classically controlled gates).

Firstly, it can be seen that our approach based on partial causal flow in most cases

out performs the baseline approach while also generating circuits with less qubits. That

being said, classical control approaches seem to perform incredibly well by reducing

the number of two-qubit gates by over 40% with our partial flow method with classical

control outperforming general purpose method with classical control and even in some

cases the domain specific PyZX circuit extraction method (when using delayed flow

finding method), by quite a significant margin.

4.2.5 Trade-off between number of qubits and number of

two-qubit gates

In this work the main two qualities of the translated circuits that are compared are

number of two-qubit gates and number of qubits in the circuit. In order to provide the

full picture of how the two interact with each other, we present experiment that for

each extracted circuit plots relative proportion of two-qubits gates against proportion

of qubits, in both cases compared to the circuit extracted by general purpose method.

68

4 Experiments

Figure 4.6: Relative number of two qubit gates in circuits outputted by PyZX
extraction method, our method, classical control extension of it
and classical control extension of general purpose method (both
classical control extensions denoted as "with cc"), calculated as
num two qubit gates returned by algorithm−num two qubit gates returned by general purpose method

number of two qubit gates returned by general purpose method .
Calculated using greedy flow finding approach

69

4 Experiments

Figure 4.7: Analogous experiment to the one in figure 4.6 but with partial causal flow computed
by delayed flow finding method

70

4 Experiments

We use the same experimental setup as in the case of number of qubits and number of

two-qubit gates experiments.

The results of our experiment can be seen in figures 4.8 and 4.9. This data further

confirms that our method with classical control significantly outperforms the baseline

and when delayed flow finding approach is used, can even, at times, perform better or

on par with domain specific approaches.

4.2.6 Conclusion

To summarize, empirical evaluation of our method shows that it provides improvement

over the general purpose method when it comes to number of qubits and in most cases

also number of two-qubit gates. When allowing for classical control, our method signifi-

cantly improves number of two qubit gates over the baseline and in some cases performs

on par or even outperforms method designed specifically with graphs that admit gflow

in mind. This is highly encouraging as our method works on much larger family of

measurement patterns than the ones with underlying gflow.

Sadly, it can be seen that our approach to computing partial casual flow does not

significantly outperform greedy approach and in some cases is unable to find flows larger

than our estimation method, which should not, in theory give a very tight bound.

Overall, our method performs really well, especially given the generality of it and gives

high hopes for future applications of this method with better flow finding approaches

(as size of the domain of the partial flow has inverse correlation with number of qubits

and number of two-qubit gates).

4.3 Pattern without generalized flow

We conclude the evaluation of our algorithm by providing an example of a measure-

ment pattern that does not admit generalized flow (or even Pauli flow) yet is strongly

deterministic and implements a SWAP operation. This pattern has been shown by

Raussendorf et al [36] and then later mentioned by Browne et al [6]. Sadly, neither of

them have provided corrections that need to be applied, as such we derived them by

71

4 Experiments

Figure 4.8: Proportional increase in number of two-qubit gates (calculated similarly as in the
case of figure 4.6) plotted against proportion of number of qubits in the extracted
circuit by given method to number of qubits in the extracted circuit by general
purpose method (which is equal to the size of the pattern). Calculated using greedy
flow finding method

72

4 Experiments

Figure 4.9: Analogous experiment to the one represented by figure 4.8 but using delayed flow
finding

73

4 Experiments

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 4.10: Open graph of the measurement pattern implementing SWAP operation that has
no generalized flow (or Pauli flow)

qubits 1, 3, 6 : RZ (0) H • RZ (0) H • • RZ (0) H •

qubits 2, 5, 8, 11, 13 : RZ (0) H • RZ (0) H • RZ (0) H • RZ (0) H

qubits 4, 7, 10, 9, 12 : H • • RZ (0) H • • RZ (0) H • RZ (0) H • RZ (0) H •

c : /1
0

��

Figure 4.11: circuit without classical control extracted out of the SWAP measurement pattern

hand. The pattern consists of 13 qubits with inputs I = {1, 2} and outputs O = {12, 13}

and is defined as follows:

P = X9
12X

11
13Z

6
12X

7
12X

7
13Z

8
13X

3
13Z

4
13Z

4
12X

5
12Z

1
13Z

2
12M

0
11 . . .M

0
1E11,13 . . . E1,3N13 . . . N3

The open graph of the pattern, that fills in the missing edge definition from the

pattern, can be seen in figure 4.10 (all nodes are measured at a 0 angle) and the

extracted circuit can be seen in figure 4.11, and the version with classical control can

be seen in figure 4.12.

qubits 1, 3, 6 : RZ (0) H • RZ (0) H • • RZ (0) H

qubits 2, 5, 8, 11, 13 : RZ (0) H • RZ (0) H • RZ (0) H • RZ (0) H

qubits 4, 7, 10, 9, 12 : H • • RZ (0) H • • RZ (0) H • RZ (0) H • RZ (0) H Z

c : /1
0

�� •
c0=0x1

Figure 4.12: circuit with classical control extracted out of the SWAP measurement pattern

74

4 Experiments

We note that, to our knowledge, the only other methods that are capable of extracting

circuits out of this measurement pattern are the ones introduced by Broadbent et al

[5] and they would require using at least (depending on the specific method) 13 qubits,

while our approach finds a circuit with 3 qubits.

75

5 Discussion

We conclude this thesis by discussing some possible applications of the work done here

and by providing some directions on how this work can be extended. Furthermore, we

reflect on the results achieved throughout this project and their usefulness.

5.1 Applications

Beyond the obvious application of translating measurement patterns so that they can

be executed as quantum circuits, and as such, on hardware which uses quantum circuit

model of computation, work done in this thesis can also be applied in other ways.

The main application that this project was done with mind in, is quantum circuit

optimization. In particular, current methods of circuit rewrites with ZX calculus are

constrained to the ones that preserve existence of generalized flow [13] so that one can

extract the circuit out of the resulting ZX diagram. Our method allows for any rewrite

rules to be used, if one starts with a quantum circuit, the underlying pattern is strongly

deterministic and any rewrite rule will maintain that property (since it will rewrite the

pattern to an equivalent one). As such, if one is able to keep track how correction

change (computing corrections for the pattern created from a circuit is not hard as,

before any rewrite rules are applied, it will have generalized flow) with each application

of a rewrite rule, one can then extract the resulting circuit even if the resulting ZX

diagram has no generalized flow. This unlocks a wide range of rewrite rules and most

likely, it is possible to keep track of how the corrections change for all of the 4 basic

rules of ZX-calculus, which implies that then any rewrite rule would be applicable.

76

5 Discussion

5.2 Future work

The first area that would be interesting to explore and would have potentially large

impact on the performance of extraction method shown in this work is further under-

standing partial causal flow and how to compute it. Clearly, finding an algorithm that

would be guaranteed to compute largest partial causal flow would be ideal, that being

said even algorithm which always finds causal flow larger than the bound proposed here

would already be a significant improvement as the larger the partial causal flow the less

ancillary qubits (and less two-qubit gates) are in the resulting circuit.

Another approach to improve the performance of this algorithm is to investigate

rewrite rules that are used to make reduce number of ancillary qubits from the general

purpose method, such approaches have been used to provide quantum circuits without

ancillary qubits for patterns with generalized flow by Dias da Silva et al. [39] and the

methods there could potentially be used in our setting (as J gates are essentially Z

rotation gates with a Hadamard gate applied after, that is exactly what appears in this

work).

Furthermore, in this work we study partial causal flow, but in principle one could

study partial generalized flow and apply similar method of extraction. In general a

method of finding partial generalized flow is an easy extension of the algorithm shown

here and the gflow finding algorithm by Mhalla et al. [27]. The extraction method is

also a relatively simple extension of work done by Miyazaki et al. [28] and it seems

that the primary challenge in this extension is scheduling two-qubit gates appropriately

and showing that the resulting circuit is correct (the original method has a significant

amount of graph rewiring which makes this less clear than in the case of partial causal

flow).

Additionally, throughout this work a question was posed about hardness of comput-

ing corrections for an arbitrary measurement pattern (which does not have corrections

provided) to make the pattern deterministic. It is conjectured that this is computa-

tionally hard, however should that not be the case, ability of computing corrections for

an arbitrary pattern could prove incredibly useful as such making this an important

question.

77

5 Discussion

Finally, the possibly most important extension of this work is to develop optimization

routines, as described in section 5.1 that apply the work done in this thesis and examine

their performance.

5.3 Conclusion

In this work we provided a novel approach to extracting quantum circuits out of strongly

deterministic measurement patterns. Our method works on all strongly deterministic

measurement patterns which is a much larger family of patterns than what other similar

work in the field focuses on. At the same time our method is more resource efficient and

produces smaller number of two-qubit gates on average than the general purpose meth-

ods for translating measurement patterns to quantum circuits. Furthermore, we provide

detailed theoretical analysis of our algorithm and the general approach introduced in

this upper bounding important properties of the algorithm like number of qubits in the

outputted circuit and number of two-qubit gates.

That being said, while our bound on number of qubits works for the case in which

largest partial causal flow is used for extraction, partial flow finding algorithm shown in

this work does not find largest partial causal flow. Furthermore, as it has been seen in the

experiments provided in this work, in some cases our estimation method estimates larger

partial causal flows than our flow finding method. As such, the bound does not work

for the exact method provided in this work but only the general approach. Moreover,

computing that bound is computationally hard, while our method of computing partial

causal flow takes polynomial amount of time, hence the use cases of that theoretical

result are limited.

On the other hand, as it can also be seen from empirical results our method performs

significantly better than the general purpose method and in some cases even outper-

forms more specialised algorithms. As such work done in this thesis provides meaningful

contribution to the field of circuit extraction filling a void in extraction algorithms that

would work on a broader class of patterns than just robustly deterministic patterns

without being extremely resource inefficient. Furthermore, we provide additional un-

78

5 Discussion

derstanding to the resource trade-off in translating measurement patterns to quantum

circuits and many future directions that can be explored to improve the performance

of this method and apply it to various tasks like optimization of quantum circuits.

79

Bibliography

1. C. Adami and N. J. Cerf. Quantum computation with linear optics. 1998. arXiv:

quant-ph/9806048 [quant-ph].

2. M. Backens, H. Miller-Bakewell, G. de Felice, L. Lobski, and J. van de Weter-

ing. “There and back again: A circuit extraction tale”. Quantum 5, 2021, p. 421.

doi: 10.22331/q-2021-03-25-421. url: https://doi.org/10.22331%2Fq-

2021-03-25-421.

3. N. de Beaudrap. Unitary-circuit semantics for measurement-based computations.

2009. arXiv: 0906.4261 [quant-ph].

4. N. de Beaudrap, A. Kissinger, and J. van de Wetering. “Circuit Extraction for

ZX-Diagrams Can Be #P-Hard”. en. In: Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2022. doi: 10.4230/LIPICS.ICALP.2022.119. url: https://drops.

dagstuhl.de/opus/volltexte/2022/16460/.

5. A. Broadbent and E. Kashefi. “Parallelizing quantum circuits”. Theoretical Com-

puter Science 410:26, 2009, pp. 2489–2510. doi: 10.1016/j.tcs.2008.12.046.

url: https://doi.org/10.1016%2Fj.tcs.2008.12.046.

6. D. E. Browne, E. Kashefi, M. Mhalla, and S. Perdrix. “Generalized flow and de-

terminism in measurement-based quantum computation”. New Journal of Physics

9:8, 2007, pp. 250–250. doi: 10.1088/1367-2630/9/8/250. url: https://doi.

org/10.1088%2F1367-2630%2F9%2F8%2F250.

7. T. Cam and S. Martiel. Speeding up quantum circuits simulation using ZX-Calculus.

2023. arXiv: 2305.02669 [quant-ph].

80

https://arxiv.org/abs/quant-ph/9806048
http://dx.doi.org/10.22331/q-2021-03-25-421
https://doi.org/10.22331%2Fq-2021-03-25-421
https://doi.org/10.22331%2Fq-2021-03-25-421
https://arxiv.org/abs/0906.4261
http://dx.doi.org/10.4230/LIPICS.ICALP.2022.119
https://drops.dagstuhl.de/opus/volltexte/2022/16460/
https://drops.dagstuhl.de/opus/volltexte/2022/16460/
http://dx.doi.org/10.1016/j.tcs.2008.12.046
https://doi.org/10.1016%2Fj.tcs.2008.12.046
http://dx.doi.org/10.1088/1367-2630/9/8/250
https://doi.org/10.1088%2F1367-2630%2F9%2F8%2F250
https://doi.org/10.1088%2F1367-2630%2F9%2F8%2F250
https://arxiv.org/abs/2305.02669

Bibliography

8. F. R.K. Chung. “On the Cutwidth and the Topological Bandwidth of a Tree”.

SIAM Journal on Algebraic Discrete Methods 6:2, 1985, pp. 268–277. doi: 10.

1137/0606026. eprint: https://doi.org/10.1137/0606026. url: https://doi.

org/10.1137/0606026.

9. B. Coecke and R. Duncan. “Interacting quantum observables: categorical algebra

and diagrammatics”. New Journal of Physics 13:4, 2011, p. 043016. doi: 10.1088/

1367-2630/13/4/043016. url: https://doi.org/10.1088%2F1367-2630%2F13%

2F4%2F043016.

10. V. Danos and E. Kashefi. “Determinism in the one-way model”. Physical Review

A 74:5, 2006. doi: 10.1103/physreva.74.052310. url: https://doi.org/10.

1103%2Fphysreva.74.052310.

11. V. Danos, E. Kashefi, and P. Panangaden. “Parsimonious and robust realizations of

unitary maps in the one-way model”. Physical Review A 72:6, 2005. doi: 10.1103/

physreva.72.064301. url: https://doi.org/10.1103%2Fphysreva.72.064301.

12. V. Danos, E. Kashefi, and P. Panangaden. The Measurement Calculus. 2007. arXiv:

0704.1263 [quant-ph].

13. R. Duncan, A. Kissinger, S. Perdrix, and J. van de Wetering. “Graph-theoretic Sim-

plification of Quantum Circuits with the ZX-calculus”. Quantum 4, 2020, p. 279.

doi: 10.22331/q-2020-06-04-279. url: https://doi.org/10.22331%2Fq-

2020-06-04-279.

14. R. Duncan and S. Perdrix. “Rewriting measurement-based quantum computations

with generalised flow”. In: International Colloquium on Automata, Languages, and

Programming. Springer. 2010, pp. 285–296.

15. R. P. Feynman. “Simulating physics with computers”. International Journal of

Theoretical Physics 21:6, 1982, pp. 467–488. issn: 1572-9575. doi: 10 . 1007 /

BF02650179. url: https://doi.org/10.1007/BF02650179.

16. D. Gottesman and I. L. Chuang. “Demonstrating the viability of universal quantum

computation using teleportation and single-qubit operations”. Nature 402:6760,

81

http://dx.doi.org/10.1137/0606026
http://dx.doi.org/10.1137/0606026
https://doi.org/10.1137/0606026
https://doi.org/10.1137/0606026
https://doi.org/10.1137/0606026
http://dx.doi.org/10.1088/1367-2630/13/4/043016
http://dx.doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088%2F1367-2630%2F13%2F4%2F043016
https://doi.org/10.1088%2F1367-2630%2F13%2F4%2F043016
http://dx.doi.org/10.1103/physreva.74.052310
https://doi.org/10.1103%2Fphysreva.74.052310
https://doi.org/10.1103%2Fphysreva.74.052310
http://dx.doi.org/10.1103/physreva.72.064301
http://dx.doi.org/10.1103/physreva.72.064301
https://doi.org/10.1103%2Fphysreva.72.064301
https://arxiv.org/abs/0704.1263
http://dx.doi.org/10.22331/q-2020-06-04-279
https://doi.org/10.22331%2Fq-2020-06-04-279
https://doi.org/10.22331%2Fq-2020-06-04-279
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179

Bibliography

1999, pp. 390–393. doi: 10.1038/46503. url: https://doi.org/10.1038%

2F46503.

17. L. K. Grover. A fast quantum mechanical algorithm for database search. 1996.

arXiv: quant-ph/9605043 [quant-ph].

18. H. Haffner, C. Roos, and R. Blatt. “Quantum computing with trapped ions”.

Physics Reports 469:4, 2008, pp. 155–203. doi: 10.1016/j.physrep.2008.09.003.

url: https://doi.org/10.1016%2Fj.physrep.2008.09.003.

19. E. Hazan, A. Ménard, I. Ostojic, and M. Patel. The next tech revolution: Quantum

Computing. 2020. url: https://www.mckinsey.com/fr/our-insights/the-

next-tech-revolution-quantum-computing.

20. D. A. Hoang. “On the Complexity of Distance-d Independent Set Reconfiguration”.

In: WALCOM: Algorithms and Computation. Springer Nature Switzerland, 2023,

pp. 254–266. doi: 10.1007/978-3-031-27051-2_22. url: https://doi.org/10.

1007%2F978-3-031-27051-2_22.

21. M. Houshmand, M. Houshmand, and J. F. Fitzsimons. “Minimal qubit resources

for the realization of measurement-based quantum computation”. Physical Review

A 98:1, 2018. doi: 10.1103/physreva.98.012318. url: https://doi.org/10.

1103%2Fphysreva.98.012318.

22. A. Joshi, A. Kairali, R. Raju, A. Athreya, R. M. P, S. Vishwakarma, and S. Gan-

guly. Quantum Circuit Optimization of Arithmetic circuits using ZX Calculus.

2023. arXiv: 2306.02264 [cs.ET].

23. A. Kissinger and B. Coecke. “Picturing Quantum Processes”, 2015.

24. A. Kissinger and A. M.-v. de Griend. CNOT circuit extraction for topologically-

constrained quantum memories. 2019. arXiv: 1904.00633 [quant-ph].

25. A. Kissinger and J. van de Wetering. “PyZX: Large Scale Automated Diagram-

matic Reasoning”. Electronic Proceedings in Theoretical Computer Science 318,

2020, pp. 229–241. doi: 10.4204/eptcs.318.14. url: https://doi.org/10.

4204%2Feptcs.318.14.

82

http://dx.doi.org/10.1038/46503
https://doi.org/10.1038%2F46503
https://doi.org/10.1038%2F46503
https://arxiv.org/abs/quant-ph/9605043
http://dx.doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016%2Fj.physrep.2008.09.003
https://www.mckinsey.com/fr/our-insights/the-next-tech-revolution-quantum-computing
https://www.mckinsey.com/fr/our-insights/the-next-tech-revolution-quantum-computing
http://dx.doi.org/10.1007/978-3-031-27051-2_22
https://doi.org/10.1007%2F978-3-031-27051-2_22
https://doi.org/10.1007%2F978-3-031-27051-2_22
http://dx.doi.org/10.1103/physreva.98.012318
https://doi.org/10.1103%2Fphysreva.98.012318
https://doi.org/10.1103%2Fphysreva.98.012318
https://arxiv.org/abs/2306.02264
https://arxiv.org/abs/1904.00633
http://dx.doi.org/10.4204/eptcs.318.14
https://doi.org/10.4204%2Feptcs.318.14
https://doi.org/10.4204%2Feptcs.318.14

Bibliography

26. A. Kissinger and J. van de Wetering. “Simulating quantum circuits with ZX-

calculus reduced stabiliser decompositions”. Quantum Science and Technology 7:4,

2022, p. 044001. doi: 10.1088/2058-9565/ac5d20. url: https://doi.org/10.

1088%2F2058-9565%2Fac5d20.

27. M. Mhalla and S. Perdrix. “Finding Optimal Flows Efficiently”. In: Automata, Lan-

guages and Programming. Springer Berlin Heidelberg, 2008, pp. 857–868. doi: 10.

1007/978-3-540-70575-8_70. url: https://doi.org/10.1007%2F978-3-540-

70575-8_70.

28. J. Miyazaki, M. Hajdušek, and M. Murao. “Analysis of the trade-off between spatial

and temporal resources for measurement-based quantum computation”. Physical

Review A 91:5, 2015. doi: 10.1103/physreva.91.052302. url: https://doi.

org/10.1103%2Fphysreva.91.052302.

29. K. F. Ng and Q. Wang. A universal completion of the ZX-calculus. 2017. arXiv:

1706.09877 [quant-ph].

30. K. F. Ng and Q. Wang. Completeness of the ZX-calculus for Pure Qubit Clifford+T

Quantum Mechanics. 2018. arXiv: 1801.07993 [quant-ph].

31. M. A. Nielsen and I. L. Chuang. Quantum computation and quantum information.

Cambridge university press, 2010.

32. M. A. Nielsen. “Optical Quantum Computation Using Cluster States”. Physical

Review Letters 93:4, 2004. doi: 10.1103/physrevlett.93.040503. url: https:

//doi.org/10.1103%2Fphysrevlett.93.040503.

33. S. Pemmaraju and S. Skiena. Computational Discrete Mathematics: Combinatorics

and Graph Theory with Mathematica. Cambridge University Press, 2003. doi: 10.

1017/CBO9781139164849.

34. Qiskit contributors. Qiskit: An Open-source Framework for Quantum Computing.

2023. doi: 10.5281/zenodo.2573505.

35. R. Raussendorf and H. J. Briegel. “A One-Way Quantum Computer”. Phys. Rev.

Lett. 86, 22 2001, pp. 5188–5191. doi: 10.1103/PhysRevLett.86.5188. url:

https://link.aps.org/doi/10.1103/PhysRevLett.86.5188.

83

http://dx.doi.org/10.1088/2058-9565/ac5d20
https://doi.org/10.1088%2F2058-9565%2Fac5d20
https://doi.org/10.1088%2F2058-9565%2Fac5d20
http://dx.doi.org/10.1007/978-3-540-70575-8_70
http://dx.doi.org/10.1007/978-3-540-70575-8_70
https://doi.org/10.1007%2F978-3-540-70575-8_70
https://doi.org/10.1007%2F978-3-540-70575-8_70
http://dx.doi.org/10.1103/physreva.91.052302
https://doi.org/10.1103%2Fphysreva.91.052302
https://doi.org/10.1103%2Fphysreva.91.052302
https://arxiv.org/abs/1706.09877
https://arxiv.org/abs/1801.07993
http://dx.doi.org/10.1103/physrevlett.93.040503
https://doi.org/10.1103%2Fphysrevlett.93.040503
https://doi.org/10.1103%2Fphysrevlett.93.040503
http://dx.doi.org/10.1017/CBO9781139164849
http://dx.doi.org/10.1017/CBO9781139164849
http://dx.doi.org/10.5281/zenodo.2573505
http://dx.doi.org/10.1103/PhysRevLett.86.5188
https://link.aps.org/doi/10.1103/PhysRevLett.86.5188

Bibliography

36. R. Raussendorf, D. Browne, and H. Briegel. “The one-way quantum computer–

a non-network model of quantum computation”. Journal of Modern Optics 49:8,

2002, pp. 1299–1306. doi: 10.1080/09500340110107487. url: https://doi.org/

10.1080%2F09500340110107487.

37. E. Schrödinger. “An undulatory theory of the mechanics of atoms and molecules”.

Physical review 28:6, 1926, p. 1049.

38. P. W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum Computer”. SIAM Journal on Computing 26:5, 1997,

pp. 1484–1509. doi: 10.1137/s0097539795293172. url: https://doi.org/10.

1137%2Fs0097539795293172.

39. R. D. da Silva and E. F. Galvão. “Compact quantum circuits from one-way quan-

tum computation”. Physical Review A 88:1, 2013. doi: 10.1103/physreva.88.

012319. url: https://doi.org/10.1103%2Fphysreva.88.012319.

40. R. D. da Silva, E. Pius, and E. Kashefi. Global Quantum Circuit Optimization.

2013. arXiv: 1301.0351 [quant-ph].

41. W. Simmons. “Relating Measurement Patterns to Circuits via Pauli Flow”. Elec-

tronic Proceedings in Theoretical Computer Science 343, 2021, pp. 50–101. doi: 10.

4204/eptcs.343.4. url: https://doi.org/10.4204%2Feptcs.343.4.

42. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. As-

pelmeyer, and A. Zeilinger. “Experimental one-way quantum computing”. Nature

434:7030, 2005, pp. 169–176. doi: 10.1038/nature03347. url: https://doi.

org/10.1038%2Fnature03347.

43. G. Wendin. “Quantum information processing with superconducting circuits: a

review”. Reports on Progress in Physics 80:10, 2017, p. 106001. doi: 10.1088/

1361-6633/aa7e1a. url: https://doi.org/10.1088%2F1361-6633%2Faa7e1a.

44. J. van de Wetering. ZX-calculus for the working quantum computer scientist. 2020.

arXiv: 2012.13966 [quant-ph].

84

http://dx.doi.org/10.1080/09500340110107487
https://doi.org/10.1080%2F09500340110107487
https://doi.org/10.1080%2F09500340110107487
http://dx.doi.org/10.1137/s0097539795293172
https://doi.org/10.1137%2Fs0097539795293172
https://doi.org/10.1137%2Fs0097539795293172
http://dx.doi.org/10.1103/physreva.88.012319
http://dx.doi.org/10.1103/physreva.88.012319
https://doi.org/10.1103%2Fphysreva.88.012319
https://arxiv.org/abs/1301.0351
http://dx.doi.org/10.4204/eptcs.343.4
http://dx.doi.org/10.4204/eptcs.343.4
https://doi.org/10.4204%2Feptcs.343.4
http://dx.doi.org/10.1038/nature03347
https://doi.org/10.1038%2Fnature03347
https://doi.org/10.1038%2Fnature03347
http://dx.doi.org/10.1088/1361-6633/aa7e1a
http://dx.doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1088%2F1361-6633%2Faa7e1a
https://arxiv.org/abs/2012.13966

	Introduction
	Contributions
	Outline

	Background
	Graph theory
	Independent sets
	Cutwidth

	Quantum computing
	Qubits
	Evolution of quantum systems
	Composite states and entanglement
	Measurements
	Quantum circuits
	Measurement-based quantum computation
	Determinism in measurement-based quantum computing
	Flow conditions

	ZX calculus
	ZX diagrams
	Identities
	Quantum circuits in ZX calculus
	Measurement-based quantum computing in ZX calculus

	Related Work

	Circuit extraction
	Partial causal flow
	Extraction algorithm
	Correctness
	Computational complexity
	Number of twoqubit gates
	Number of ancillary qubits

	Evaluation

	Experiments
	Experimental setup
	Empirical results
	Comparison of partial flow finding algorithms
	Number of qubits in the circuit
	Tightness of the bound
	Number of two-qubit gates in the circuit
	Trade-off between number of qubits and number of two-qubit gates
	Conclusion

	Pattern without generalized flow

	Discussion
	Applications
	Future work
	Conclusion

	Bibliography

