
Quantum Machine Learning

using the ZXW-Calculus

Mark Koch

Lady Margaret Hall

University of Oxford

A thesis submitted for the degree of

Master of Science in Advanced Computer Science

Trinity 2022

Word count: 15, 793

Diagram count: 806

The word count was calculated using texcount via perl texcount.pl

-1 thesis.tex. Note that in diagram equations, each step is counted
as a separate diagram.

Abstract

The field of quantum machine learning (QML) explores how quantum computers can

be used to more efficiently solve machine learning problems. As an application of

hybrid quantum-classical algorithms, it promises a potential quantum advantages in

the near term. In this thesis, we use the ZXW-calculus to diagrammatically analyse

two key problems that QML applications face.

First, we discuss algorithms to compute gradients on quantum hardware that are

needed to perform gradient-based optimisation for QML. Concretely, we give new

diagrammatic proofs of the common 2- and 4-term parameter shift rules used in the

literature. Additionally, we derive a novel, generalised parameter shift rule with 2n

terms that is applicable to gates that can be represented with n parametrised spiders

in the ZXW-calculus. Furthermore, to the best of our knowledge, we give the first

proof of a conjecture by Anselmetti et al. by proving a no-go theorem ruling out

more efficient alternatives to the 4-term shift rule.

Secondly, we analyse the gradient landscape of quantum ansätze for barren plateaus

using both empirical and analytical techniques. Concretely, we develop a tool that

automatically calculates the variance of gradients and use it to detect likely barren

plateaus in commonly used quantum ansätze. Furthermore, we formally prove the

existence or absence of barren plateaus for a selection of ansätze using diagrammatic

techniques from the ZXW-calculus.

Acknowledgements

First and foremost, I would like to thank my advisors Quanlong Wang and Richie

Yeung for their invaluable support and guidance throughout the writing of this

thesis. I am very grateful for their advice and many helpful discussions and ideas.

I would also like to thank Aleks Kissinger, as well as John van de Wetering and

Stephano Gogioso for sparking my interest in quantum computing and the ZX-

calculus through their lectures. In particular, I am thankful for the opportunity to

write this thesis under Aleks’ supervision.

Furthermore, I am very grateful to my family and friends both in Germany and

Oxford, who supported me throughout my studies. Together with the academic

community at my wonderful college Lady Margaret Hall, they provided a great

intellectual atmosphere that made the past year a truly unique experience. In par-

ticular, I would like to thank Nikhil Khatri for many inspiring discussions and for

proofreading this thesis.

Finally, I would like to thank the German Academic Exchange Service (DAAD) for

financially supporting me during this year at Oxford.

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Main Contributions . 3

1.2 Structure of this Thesis . 4

2 Background 5

2.1 An Introduction to Quantum Theory 5

2.1.1 States . 5

2.1.2 Unitary Evolution . 7

2.1.3 Measurements . 8

2.1.4 The Quantum Circuit Model 10

2.2 Quantum Machine Learning . 11

2.2.1 Types of Ansätze . 12

2.2.2 Gradient-Based Optimisation 13

2.3 The ZXW-Calculus . 14

2.3.1 Generators and String Diagrams 15

2.3.2 Additional Notation . 16

2.3.3 Rules . 17

vi Contents

2.3.4 Quantum Gates and Computation in ZXW 18

2.3.5 Pauli Boxes . 20

2.3.6 Useful Lemmas . 22

3 Diagrammatic Differentiation 28

3.1 Background . 28

3.2 Differentiating Quantum Circuits . 32

3.3 Properties of the Differentiation Gadget 36

4 Gradient Recipes 43

4.1 Parametrised Unitaries as ZX Diagrams 44

4.1.1 Diagonalising Parametrised Unitaries 45

4.1.2 General Construction . 46

4.1.3 Special Case for Two Eigenvalues 49

4.2 Parameter-Shift Rules . 51

4.2.1 Two-Term Shift Rule . 51

4.2.2 Shift Rules Beyond Two Terms 53

4.2.3 Proof of Anselmetti’s No-Go Conjecture 59

4.3 Ancilla Recipes . 63

5 Barren Plateaus 66

5.1 Background . 67

5.2 Studied Ansätze . 70

5.3 Numerical Barren Plateau Detection 72

5.3.1 Method . 72

5.3.2 Note on Zero Variance . 73

5.3.3 Results . 74

5.4 Analytical Barren Plateau Detection 79

5.4.1 Introductory Example . 80

5.4.2 Sim 1 . 82

Contents vii

5.4.3 Sim 2 . 86

5.4.4 Sim 9 . 87

5.4.5 Single-Layer IQP Ansätze . 89

5.4.6 Dealing with multiple parameter occurrences 96

5.4.7 Commuting Multi-Layer IQP Ansätze 98

5.4.8 Non-Commuting Multi-Layer IQP Ansätze 100

5.5 Barren Plateau Mitigation Techniques 107

6 Discussion 108

6.1 Summary of Results . 108

6.2 Discussion and Future Work . 109

A Constructing the Ancilla State 113

B Details on Recursive Contraction 115

B.1 Deriving the Recurrence Relation . 115

B.2 Solving the Recurrence Relation . 119

C Additional Lemmas and Proofs 122

Bibliography 134

Chapter 1

Introduction

It is widely believed that quantum computers are capable of solving certain compu-

tational problems that are intractable for classical computers. While this potential

quantum advantage was already recognised in the 1980s, the quantum devices avail-

able today still lack the scale and reliability to tackle many practical problems, with

anticipated algorithms like Grover’s search [1] or Shor’s factorisation algorithm [2]

remaining out of reach. Because of those limitations, there is increasing interest

in hybrid quantum-classical algorithms. The rationale behind hybrid approaches is

that the required quantum resources can be significantly reduced by implementing

some subroutines on classical hardware. As a result, those algorithms are runnable

on the noisy intermediate-scale quantum (NISQ) devices available today.

One area where hybrid algorithms promise a quantum advantage is the field of

machine learning (ML). Roughly, ML is concerned with recognising and generalising

patterns in statistical data. It has been shown that even relatively small quantum

circuits can represent functions that are highly complex and difficult to express

via classical means [3]. Hence, the hope is that quantum computers can capture

certain data patterns more efficiently than classical computers, yielding a quantum

advantage in ML. This field of study is commonly referred to as quantum machine

learning (QML) [4].

2 Introduction

Typically, hybrid QML algorithms rely on parametrised quantum circuits, i.e. cir-

cuits that depend on some tunable parameters. An optimisation algorithm running

on a classical computer is used to find a parameter assignment such that the out-

put of the quantum circuit minimises some cost function. For example, circuits can

be trained to solve ML tasks like classification, regression, or generative modelling.

There are many classical optimisation techniques that can be used to train quantum

circuits. In the field of QML, one commonly uses gradient-based techniques like

gradient descent, which have already been very successfully used in classical ML,

especially for the training of neural networks. Notably, gradient-based methods have

also been proven to improve convergence in the quantum domain [5]. However, com-

pared to classical neural networks, training quantum circuits using gradient descent

comes with a set of unique challenges.

First, one has to determine the gradient of parametrised circuits, i.e. compute how

the output of a circuit changes when the parameters are altered. As it turns out,

it is not feasible to perform this computation classically. Instead, gradients need

to be evaluated on the quantum device itself. The quantum algorithms used for

those gradient computations are called gradient recipes and are subject to a lot of

research interest [6, 7, 8, 9]. Secondly, it has been shown that the gradient landscape

of many quantum circuits is not amenable to learning. Concretely, the landscape

is often exponentially flat [10], making gradient descent difficult or even impossible.

Naturally, there is a lot of interest in determining which circuits exhibit those so-

called barren plateaus [11, 12, 13].

This thesis is concerned with analysing both of these problems using diagrammatic

means. The ZX-calculus [14] is a graphical language for reasoning about quan-

tum computation that has been successfully applied to a wide range of tasks in the

quantum domain, including circuit optimisation [15], compilation [16], and simula-

tion [17]. The ZXW-calculus [18] is a variant of ZX that has recently been used

to diagrammatically represent gradients and integrals [19]. Thus, it is particularly

well-suited for our diagrammatic analysis of gradient based optimisation for QML.

1.1. Main Contributions 3

1.1 Main Contributions

Below are the main contributions of this thesis with regard to gradient recipes:

• We derive a simplified version of Wang and Yeung’s diagrammatic differenti-

ation [19] for the special case of parametrised circuits (Theorem 3.6).

• We give a diagrammatic proof of the most general version of Schuld et al.’s [7]

two-term parameter shift rule (Theorem 4.8) and Anselmetti et al.’s [8] four-

term shift rule (Theorem 4.11).

• We derive a novel generalised 2n-term shift rule for gates that can be repre-

sented with n parametrised spiders (Theorem 4.13)

• To the best of our knowledge, we give the first proof of a conjecture by Ansel-

metti et al. [8] showing that their shift rule is optimal. Concretely, we prove

a no-go theorem ruling out shift rules with less than four terms for all gates

whose Hermitian generators have eigenvalues of shape −λ, 0, λ (Theorem 4.16).

On the topic of barren plateaus we make the following contributions:

• We develop a tool that automatically computes Var
(
∂⟨H⟩
∂θi

)
and use it to em-

pirically show that barren plateaus likely appear in 7 ansätze studied by Sim

et al. [20] when measuring in the computational basis (Figures 5.3 and 5.4).

• We formally prove the existence of barren plateaus in three of the Sim ansätze

and give necessary conditions on the measurement Hamiltonian for when they

occur (Theorems 5.11, 5.12, and 5.14).

• We give a general framework for the barren plateau analysis of IQP circuits

(Theorem 5.16) and use it to prove that the main circuit used by the quan-

tum natural language processing library lambeq [21] has barren plateaus when

measuring in the computational basis (Theorem 5.19).

4 Introduction

1.2 Structure of this Thesis

We begin by discussing some of the background necessary to follow this thesis in

Chapter 2 and introduce diagrammatic differentiation in Chapter 3. Chapter 4 is

concerned with deriving gradient recipes using this diagrammatic technique. Sub-

sequently, we study the gradient landscape of parametrised circuit with regard to

barren plateaus in Chapter 5. Finally, we discuss our results and comment on future

work in Chapter 6.

For presentation purposes, we move some of the proofs throughout the thesis to the

appendix. This is remarked on underneath each such lemma. In the PDF version of

this thesis one can easily jump to the corresponding proof by clicking on the arrow

symbol (↓) on the right-hand side of the page.

The code to reproduce all numerical results and graphs in this thesis is available at

https://github.com/mark-koch/msc-code

https://github.com/mark-koch/msc-code

Chapter 2

Background

In this chapter we give the necessary background to follow the thesis. Concretely,

we give a brief introduction to quantum theory in Section 2.1 and discuss quan-

tum machine learning in Section 2.2. Finally, we introduce the ZXW-calculus in

Section 2.3.

2.1 An Introduction to Quantum Theory

2.1.1 States

The states of quantum systems are given by normalised vectors in a complex Hilbert

space H. We exclusively work within H = C2n for this thesis, where states are given

by column vectors of complex numbers. The adjoint ψ† of a state ψ in this case is

given by the conjugate-transpose of ψ. States and their adjoints are usually written

in the Dirac bra-ket notation:

ψ ⇝ |ψ⟩ ψ† ⇝ ⟨ψ|

The symbol |ψ⟩ is called ket and ⟨ψ| is called bra. Plugging a bra into a ket yields

the inner product of the two vectors which we denote by ⟨ψ|ϕ⟩ := ⟨ψ||ϕ⟩ and call

6 Background

z

β

α

y

x

|0⟩

|1⟩

|+⟩

|ψ⟩

Figure 2.1: Visualisation of a qubit state |ψ⟩ = x|0⟩+ y|1⟩ as a point on the Bloch
sphere. We have x = cos(α2) and y = eiβ sin(α2).

bra-ket. The most elementary state is given by a single quantum bit, or qubit, which

belongs to the two-dimensional Hilbert space C2 spanned by the standard basis

|0⟩ :=
(
1
0

)
|1⟩ :=

(
0
1

)
.

The states |0⟩ and |1⟩ are the quantum analogues of classical bits. Therefore, the

basis {|0⟩, |1⟩} is usually called computational basis. However, unlike classical bits,

qubits can represent any linear combination of |0⟩ and |1⟩:

|ψ⟩ = x|0⟩+ y|1⟩

for some x, y ∈ C with |x|2 + |y|2 = 1. We can picture the state |ψ⟩ as a point

on the so-called Bloch sphere as illustrated in Figure 2.1. We refer to those states

“in-between” 0 and 1 as superpositions.

In order to unleash the full power of quantum computation, we describe interactions

between multiple systems using the tensor product operation ⊗ corresponding to the

Kronecker product. For example, the two-qubit system C2⊗C2 = C4 is spanned by

the basis

|00⟩ := |0⟩ ⊗ |0⟩ = (1, 0, 0, 0)T |10⟩ := |0⟩ ⊗ |1⟩ = (0, 1, 0, 0)T

|01⟩ := |1⟩ ⊗ |0⟩ = (0, 0, 1, 0)T |11⟩ := |1⟩ ⊗ |1⟩ = (0, 0, 0, 1)T

2.1. An Introduction to Quantum Theory 7

where |ψ⟩ ⊗ |ϕ⟩ is the product state of |ψ⟩ and |ϕ⟩. We sometimes also write the

computational basis vectors for C2n as |j⟩ for j = 0, 1, ..., 2n − 1.

2.1.2 Unitary Evolution

Definition 2.1. A square matrix U is unitary if UU † = U †U = I.

Computation on a quantum state |ψ⟩ ∈ C2n is done using unitary evolutions, i.e.

acting on |ψ⟩ according to a unitary matrix U ∈ C2n×2n . The resulting state is given

by |ψ′⟩ = U |ψ⟩. An example of a single-qubit action is the Hadamard operation

H =
1√
2

(
1 1
1 −1

)
(2.1)

that maps the computational basis to the so-called X-basis {|+⟩, |−⟩}:

H|0⟩ = |+⟩ := |0⟩+ |1⟩√
2

H|1⟩ = |−⟩ := |0⟩ − |1⟩√
2

Another example is the single-qubit RZ(α) operation that corresponds to a Z-

rotation on the Bloch sphere by an angle of α:

RZ(α) :=

(
e−iα

2 0

0 ei
α
2

)
(2.2)

RZ(α) is an example of a parametrised unitary:

Definition 2.2. A (strongly continuous) one-parameter unitary group is a fam-

ily {U(α)}α∈R of single-parameter unitary matrices that are strongly continuous

(lim
α→α0

U(α) = U(α0) for all α0 ∈ R) and homomorphisms (U(α+ β) = U(α)U(β)).

When speaking of (single-)parametrised unitaries, we generally refer to one-parameter

unitary groups.

Definition 2.3. A matrix H is self-adjoint, or Hermitian, if H† = H.

Remarkably, there is a one-to-one correspondence between single-parameter uni-

taries and Hermitian operators:

8 Background

Theorem 2.4 (Stone [22]). Every strongly continuous one-parameter unitary

group {U(α)}α∈R is generated by a Hermitian operator H via U(α) = eiαH .

The matrix exponentials eA for square matrices A used in this theorem are defined

by eiA :=
∑∞

k=0
Ak

k! and satisfy

ediag(a1,...,an) = diag(ea1 , ..., ean) eU
†AU = U †eAU † (2.3)

for all unitaries U .

2.1.3 Measurements

In order to extract information from quantum systems, we need to perform mea-

surements. Importantly, measuring a system usually also alters its state, making

measurement a somewhat destructive process. Note that there are many different

kinds of measurements one can perform. Mathematically, a measurement is specified

by a set M = {P1, ..., Pk} of projectors that sum up to the identity
∑

i Pi = I.

Definition 2.5. A square matrix P is a projector if P = P † = P 2.

Each projector represents a measurement outcome. Since measurement is a non-

deterministic process, we get a probability distribution over the outcomes. When

measuring |ψ⟩, the probability of outcome Pi can be computed using the Born rule:

Prob(i|ψ) = ⟨ψ|Pi|ψ⟩ (2.4)

Example 2.6 (ONB Measurements). The orthonormal basis measurement cor-

responding to a basis B = {|ϕi⟩}i is given by MB = {|ϕi⟩⟨ϕi|}i. For example, the

two-dimensional computational basis yields M = {|0⟩⟨0|, |1⟩⟨1|}. In that case, we

have Prob(i|ψ) = ⟨ψ|i⟩⟨i|ψ⟩. We can think of this as a measure of how “close” |ψ⟩ is

to |0⟩ or |1⟩: If |ψ⟩ = x|0⟩+y|1⟩ then Prob(0|ψ) = (x⟨0|0⟩+y⟨1|0⟩)(x⟨0|0⟩+y⟨0|1⟩) =

xx = |x|2.

2.1. An Introduction to Quantum Theory 9

An important observation is that states that are equal up to a global phase of eiα

behave exactly the same with regard to measurement: Let |ϕ⟩ := eiα|ψ⟩, then

Prob(j|ϕ) = ⟨eiαψ|Pj |eiαψ⟩ = eiα⟨ψ|Pje
−iα|ψ⟩ = ⟨ψ|Pj |ψ⟩ = Prob(j|ψ).

Thus, there is no measurable difference between |ϕ⟩ and |ψ⟩. Hence, states are not

just vectors, but equivalence classes of vectors that are equal up to a global phase.

One way to remove this redundancy is the doubling construction where we represent

the states as |ϕ⟩⟨ϕ| and |ψ⟩⟨ψ| instead, which are actually equal. We will make

heavy use of this when describing gradients of parametrised quantum circuits later.

Performing a single measurement corresponds to sampling from the distribution

(2.4). However, often we are not necessarily interested in a single sample, but want

to understand the broader distribution of outcomes. A useful tool for this is the

expectation value. To motivate its definition, suppose we associate a real number xj

with each projector Pj . Then, we define random variable X that takes the value xj

whenever we get the measurement outcome j. The expectation value of our state

|ψ⟩ w.r.t. this operator then corresponds to the mean value of X:

E(X) =
k∑

j=1

xj · Prob(j|ψ)
(2.4)
=

k∑

j=1

xj · ⟨ψ|Pj |ψ⟩ = ⟨ψ|




k∑

j=1

xjPj


 |ψ⟩

In order to estimate the expectation value on a quantum computer, one can compute

the statistical mean ofX by preparing and measuring the state |ψ⟩ for a large number

of executions. One commonly refers to the different executions as shots.

Interestingly,
∑k

j=1 xjPj is self-adjoint. Conversely, every self-adjoint matrix H with

eigenvectors λ1, ..., λk gives rise to a unique set of projectorsMH =
{∑

ϕ∈Φi
|ϕ⟩⟨ϕ|

}k

i=1

where Φi is the set of eigenvectors of H corresponding to the eigenvalue λi. Because

of this duality, it is often more convenient to describe measurements via Hermitian

operators instead of projectors. In this context, H is commonly referred to as an

observable, or Hamiltonian and the expectation value is denoted by

10 Background

⟨H⟩ := ⟨ψ|H|ψ⟩.

Interestingly, every Hermitian matrix H ∈ C2n can be written as a real combination

of Pauli operators P ∈ {X,Y, Z, I}⊗n. We will use this in Chapter 5 to simplify our

barren plateau analysis.

2.1.4 The Quantum Circuit Model

The quantum circuit model is a model to describe quantum computation that is

inspired by classical circuits. After preparing n qubits in a fixed state (usually

|0⟩⊗n) we apply gates that correspond to unitary operations on the qubits. Finally,

we measure one or more qubits. Circuits are read from left to right and qubits are

drawn as wires with gates on them:

|0⟩

|0⟩

|0⟩

H

⊕ RZ(α)

Z

X

RX(β)

⊕

RY (γ)

Y

Figure 2.2: Example of a 3-qubit quantum circuit.

We have already seen the Hadamard gate H and the Z-rotation RZ in (2.1) and

(2.2), respectively. Similarly, the single-qubit gates RX and RY correspond to X-

and Y -rotations on the Bloch sphere:

RX(α) :=

(
cos(α2) −i sin(α2)

−i sin(α2) cos(α2)

)
RY (α) :=

(
cos(α2) − sin(α2)
sin(α2) cos(α2)

)

The special cases for α = 180◦ rotations around the Bloch sphere give rise to the

so-called Pauli matrices (up to a global phase):

X :=

(
0 1
1 0

)
Y :=

(
0 −i
i 0

)
Z :=

(
1 0
0 −1

)

2.2. Quantum Machine Learning 11

Finally, controlled gates are gates where the first qubit controls whether a unitary

U is applied to the remaining gates. They can be constructed via

CU =
U ..

.

..
. := (|0⟩⟨0| ⊗ I) + (|1⟩⟨1| ⊗ U) =

(
I 0
0 U

)
.

In Figure 2.2, we have controlled X and Z gates that are usually called CNOT 1 and

CZ , respectively. They have a special notation:

CNOT =
⊕

=
X

:=




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




CZ = =
Z

:=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




The CNOT gate is drawn with a ⊕ symbol since it acts like |x, y⟩ 7→ |x, x⊕y⟩ on the

computational basis where ⊕ denotes XOR. The CZ gate is drawn with two black

dots since it is symmetric in which qubit is the control. Both CNOT and CZ are

used to entangle the two qubits to which they are applied.

2.2 Quantum Machine Learning

The goal of quantum machine learning (QML) is to achieve a quantum advantage

using the current noisy intermediate-scale quantum (NISQ) hardware. Typically,

QML algorithms employ a hybrid approach where a quantum processor works in

tandem with a classical computer. In this thesis, we focus on variational algorithms

for QML. This approach relies on parametrised quantum circuits (PQCs), i.e. circuits

that depend on tunable parameters. For example, the circuit in Figure 2.2 is a

PQC if the parameters α, β, γ are not fixed. Given a PQC that depends on some

parameters θ⃗, machine learning techniques are used to find an optimal parameter

1This is because the Pauli X acts like negation on the computational basis.

12 Background

|0⟩ U(θ⃗) measure H postprocess optimizer

Quantum device

Loss

Classical Device

Parameter update

⟨H⟩
N shots

Figure 2.3: Pipeline for variational algorithms (adapted from Figure 1 in [13]).

assignment θ⃗⋆ for which the circuit exhibits some desired behaviour. This could for

example be fitting a dataset in a supervised classification or regression task [23, 6],

or modelling a probability distribution for a generative task [24, 25, 26]. Other

applications of variational algorithms include simulating quantum chemistry [27, 28],

solving combinatorial optimisation problems [29], and performing natural language

processing tasks [30, 21].

Figure 2.3 shows the schematic pipeline used by variational algorithms. Essentially,

the PQC is trained using a classical optimiser in order to minimise some loss calcu-

lated based on the expectation value ⟨H⟩ produced by the quantum device. Because

of the current NISQ hardware, this process is generally noisy. However, many op-

timisers developed for machine learning are resilient to a certain amount of noise

which makes variational algorithms applicable in the NISQ era.

2.2.1 Types of Ansätze

The PQCs used for variational algorithms are typically referred to as ansätze. The

term ansatz comes from mathematics and physics where it describes an initial strat-

egy or approach to express a solution. Broadly, one can distinguish two different

kinds of ansatz designs commonly used for QML which are depicted in Figure 2.4.

Tensor network ansätze arrange gates in a fixed layout inspired by tensor net-

works [31, 32]. For example, the blocks in Figure 2.4 are laid out in a tree ar-

chitecture. Layered ansätze on the other hand consist of layers that are repeated

one after the other for a fixed number of times. Commonly, each layer is made up of

2.2. Quantum Machine Learning 13

Tensor Network Ansatz:

U(θ⃗1)

U(θ⃗2)

U(θ⃗4)

U(θ⃗3)

U(θ⃗5)

U(θ⃗6)

Layered Ansatz:

U(θ⃗1) U(θ⃗2) U(θ⃗ℓ)...

Figure 2.4: Different ansatz layouts.

single qubit unitaries, preceded or followed by a block of entangling gates. Another

commonly used type of layered ansatz is the alternating operator ansatz used in

the quantum approximate optimization algorithm (QAOA) [29]. There, the layers

are defined in terms of two Hamiltonians that encode a combinatorial optimisation

problem which can be solved by training the circuit.

In this thesis, we focus on layered ansatz designs that have been shown to be more

expressive than tensor network ansätze [33]. In particular, see Figure 5.1 in Chap-

ter 5 for layered ansätze that are used in practice.

2.2.2 Gradient-Based Optimisation

There is a wide range of optimisation algorithms that can be used to train PQCs [34,

35, 36, 37, 38, 39]. In this thesis, we focus on gradient-based optimisation approaches

which are commonly used in QML and provably improve convergence in variational

algorithms [5].

Gradient-based optimisation techniques such as gradient descent have been proven to

be widely successful in the domain of classical machine learning, in particular neural

networks. Given the output y⃗ of a neural network, the gradient ∂L
∂wi

(y⃗) of some loss

function L with respect to the weight wi is computed via backpropagation and the

weight is updated in the opposite direction of this gradient. We can transfer this

approach to the quantum realm: Instead of the weights of a neural network, we train

the parameters of an ansatz. The “output” of the quantum circuit is an expectation

value ⟨H⟩. Hence, we want to compute ∂L
∂θi

(⟨H⟩) which by the chain rule depends on

14 Background

∂⟨H⟩
∂θi

. Unlike individual measurements, expectation values are continuous variables

such that this gradient is well-defined. Finally, we update the circuit parameters

according to the loss gradient.

However, gradient descent on quantum computers comes with a set of unique chal-

lenges. First, it is not feasible to compute ∂⟨H⟩
∂θi

classically. In particular, the back-

propagation algorithm is not available since quantum circuits have a fundamentally

different structure than neural networks. Instead, the gradient must be computed

on the quantum device itself. Quantum algorithms that solve this task are com-

monly referred to as gradient recipes and are subject of a lot research interest at

the moment [6, 7, 8, 9]. We contribute to this in Chapter 5 by giving diagram-

matic interpretations and proofs of existing recipes, and by proving a conjecture by

Anselmetti et al. [8] establishing the optimality of a certain recipe.

The second issue lies with the geometry of the gradient landscape. It is hypothesised

that gradient descent performs well on classical neural networks because their loss

surface has few bad local minima [40]. The same can unfortunately not be said for

PQCs [41]. Even worse, it has been shown that the gradient landscape of many

ansätze is exponentially flat with respect to circuit size, making gradient descent

difficult or even impossible [10]. Thus, there is a lot of interest in analysing which

ansätze exhibit those barren plateaus. In Chapter 5 we apply a diagrammatic method

to analyse ansätze for this problem.

2.3 The ZXW-Calculus

The ZX-calculus is graphical language for reasoning about quantum computation

originally developed by Coecke and Duncan [14]. It is universal and complete [42]

meaning that all quantum reasoning can be carried out in the realm of ZX diagrams.

The ZX-calculus has been applied in a variety of areas, including circuit optimisa-

tion [15, 43], compilation [16, 44], simulation [17], measurement-based quantum

computing [45, 46] and surface codes [47].

2.3. The ZXW-Calculus 15

The ZXW-calculus [18] is a variant of ZX that has its roots in the algebraic ZX-

calculus [48]. It has recently been used to express derivates and integrals [19] which

makes it well-suited for our diagrammatic treatment of gradient-based QML.

2.3.1 Generators and String Diagrams

ZXW diagrams consist of generators that are wired together and connected to inputs

and outputs. Following the circuit notation, we put the inputs on the left side and

the outputs on the right. While diagrams can be studied as mathematical objects

in their own right, for this thesis we are mainly interested in their interpretation

as linear maps. Concretely, a diagram with n inputs and m outputs represents a

2m × 2n complex matrix. There are also diagrams with zero inputs and outputs

which thus represent single complex numbers.

We now give the three main generators of the ZXW-calculus:

an ..
. m..
. := |0m⟩⟨0n|+a|1m⟩⟨1n| :=

1√
2

(
1 1
1 −1

)
:=




1 0
0 1
0 1
0 0




where a ∈ C. We call the generators the green box, Hadamard, and black triangle,

respectively. ZXW diagrams are formed by wiring these generators together. For

this, we also introduce generators that allow us to bend and cross wires:

:=

(
1 0
0 1

)
:=




1
0
0
1


 :=

(
1 0 0 1

)
:=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




We can wire the generators together using the sequential and parallel composition

operators ◦ and ⊗, corresponding to matrix multiplication and tensor product on

the underlying matrices. For example, we write
2

:= ◦ (2 ⊗).

Furthermore, the wires satisfy the yanking equations

= =

16 Background

This means we can arbitrarily deform diagrams by moving the generators around

the plane, bending and unbending wires as we go, without changing the underlying

matrix. We only have to make sure that the inputs and outputs stay in the same

order. This principle is summarised in the slogan only connectivity matters.

2.3.2 Additional Notation

Based on the generators, we define some additional notation. For example, the green

spider from the original ZX-calculus can be defined via the green box:

α..
.

..
. := eiα..
.

..
.

..
.

..
. := 0..
.

..
. (2.5)

The red spiders from the original ZX-calculus can be defined by Hadamard conju-

gation:

α..
.

..
. := α..
.

..
.

..
.

..
. := 0..
.

..
. (2.6)

If a diagram only contains spiders and no boxes or black triangles, we sometimes

drop the “W” and speak of traditional ZX-diagrams. Often we only have spiders

with phase α = 0 or α = π. For those cases, we define a special pink spider as a

rescaled version of the red spider that only has integer components in its matrix:

πn ..
. m..
. := 2

n+m−2
2 π..

.

..
. n ..
. m..
. := 2

n+m−2
2 ..

.

..
. (2.7)

We give the scalars that are represented by commonly occurring diagrams below:

= 2 = 1 π = π = 0 α = 1 απ = eiα

Finally, we define the triangle and inverse triangle as well as their transposes:

:= =

(
1 1
0 1

)
:= =

(
1 0
1 1

)

−1 := π =

(
1 −1
0 1

)
−1 :=

−1

=

(
1 0
−1 1

) (2.8)

2.3. The ZXW-Calculus 17

a..
.

..
.

b..
.

..
.

... = ab..
.

..
. = ab..
.

..
. (sf) = = (id)

= = (id ′) = (b1)

= (b2) π =
π

π
(b3)

a = 1 (ety) =
−1

(brk)

a = a + 1 (suc) 0 = (zero)

= (tri1) π = (tri2)

−1 = −1 = (inv)
√
2 = −2 (eu)

= (sym) = (aso)

a =
a

a
(pcy) = (wdc)

Figure 2.5: Rules of the ZXW-calculus for a, b ∈ C.

2.3.3 Rules

So far, we have only seen ZX(W) diagrams as graphical representations of matrices.

Their real power comes from the rewrite rules that allow us to do matrix calculations

diagrammatically. The rules of the ZXW-calculus are listed in Figure 2.5.

Note that the equality signs in the rules mean that both sides represent exactly the

same matrix. In the original ZX-calculus, many rules like (b1), (b2), or (b3) only

hold up to a (non-zero) scalar that is often ignored. However, for the purposes of

this thesis we need to be precise about scalars. The fact that we can give many rules

without them is thanks to the rescaled pink spider. As a trade-off, the colour-change

rule now introduces scalars for pink spiders2:

2We prove this rule as well as other rules of the original ZX-calculus in Section 2.3.6.

18 Background

τ..
.

..
.n m

(cc)
= 2−

n+m−2
2 τ..

.

..
. τ..
.

..
.n m

(cc)
= 2

n+m−2
2 τ..

.

..
.

Furthermore, fusing pink spiders that are connected by multiple wires also introduces

a scalar:

τ..
.

..
.

σ..
.

..
.

...n
(Lem. 2.13)

= 2n−1
τ + σ..

.

..
.

We define a multi-legged version of the black triangle, which we call W spider :

..
. :=

...

..
. := (2.9)

Because of the (aso) rule it actually does not matter in which order we plug the

triangles together and it is easy to see that W spiders satisfy the following fusion

rule:

..
.

..
.

..
. =

..
.

..
.

..
.

(wf)

On top of this, as we will prove in Lemma 2.23, they interact with pink spiders in

the following way:

..
. (w)

= ..
. π ..
. (w)

=

..
.

π

+

..
.π + ... +

..
.

π

This property will prove to be crucial when discussing diagrammatic differentiation

in Chapter 3.

2.3.4 Quantum Gates and Computation in ZXW

Next, we explain how quantum computation is expressed in ZX(W). First, note that

pink and green spiders can describe the computational and the X-basis:

2.3. The ZXW-Calculus 19

= |0⟩ π = |1⟩ =
√
2 |+⟩ π =

√
2 |−⟩ (2.10)

Many matrix operations commonly used in quantum computing have elegant rep-

resentations in ZXW. For example, transposing a matrix corresponds to mirroring

the diagram horizontally and the conjugate matrix is obtained by conjugating the

numbers in boxes and negating the phases in spiders. Thus the adjoint of a ZXW

diagram is constructed by combining those two operations.

The Hadamard gate is given as a generator. We introduce the following notation,

denoting edges with a Hadamard on them as dashed blue lines:

⇝

The Pauli matrices are represented by

X = π Y = i π π Z = π

the rotation gates can be written as

RZ(α) = e−iα
2 α RX(α) = e−iα

2 α

RY (α) = e−iα
2 α−π

2
π
2 = e−iα

2 α −π
2

π
2

and common two-qubit gates are given by

CNOT = ⊕ = CZ = =
√
2

CRZ(α) =
RZ(α)

=
α
2

−α
2 (2.11)

Using those building blocks, we can easily turn quantum circuits into ZXW diagrams.

However, recall from our discussion in Section 2.1.3 that the matrix representation of

20 Background

quantum states has a certain redundancy in that states that only differ by a global

phase behave exactly the same. To deal with this problem, we use the doubling

construction to represent quantum circuits in ZXW. Concretely, whenever we want

to express quantum circuits in ZXW, we first construct a diagram capturing the

circuit structure, and then we double it. Doubling means tensoring the diagram

with its complex conjugate, i.e.

doubled

(
D..

.

..
.

)
:=

D..
.

..
.

D..
.

..
.

This way, all global phases cancel out. See [49] for a more detailed description of

doubling.

2.3.5 Pauli Boxes

A useful ZX construction related to Paulis are so-called Pauli boxes [50, 51]:

Definition 2.7. [51] The Pauli boxes are defined as

I := X :=

Y := -π
2

π
2 Z :=

Note that we can treat the wire sticking out on top as either input or output.

Plugging in a green π yields the corresponding Pauli:

Lemma 2.8. [51] For all P ∈ {I,X, Y, Z} we have

P

π

= P

Pauli boxes can be used to define a type of gate we have not mentioned so far.

Given a Pauli string P⃗ ∈ {I,X, Y, Z}⊗n, i.e. a tensor product of Paulis, we define

the Pauli exponential gate P⃗ (α) by

2.3. The ZXW-Calculus 21

P⃗ (α) := e−iα
2
P⃗ = P1

Pn

α

..
.

In the special case where P⃗ ∈ {I, Z}⊗n, we call P⃗ (α) a phase gadget. Paul exponen-

tials based on the same Pauli string fuse together:

Lemma 2.9. [50] For all Pauli strings P⃗ we have

P1

Pn

..
.

P1

Pn

..
.

=
P1

Pn

..
.

(2.12)

In particular, this implies P⃗ (α)P⃗ (β) = P⃗ (α+ β).

Pauli gadgets also have interesting commutation properties:

Lemma 2.10. [50] Let P⃗ , Q⃗ be n-qubit Pauli strings. If the number of positions i

for which Pi ̸= Qi and Pi, Qi ̸= I is even, then

P1

Pn

..
.

Q1

Qn

..
.

= Q1

Qn

..
.

P1

Pn

..
.

Otherwise,

P1

Pn

..
.

Q1

Qn

..
.

=
1√
2

Q1

Qn

..
.

P1

Pn

..
.

22 Background

2.3.6 Useful Lemmas

We close the chapter by stating and proving some basic results that we will use

throughout the thesis.

Lemma 2.11. [48] Hadamard is involutive:

= (hh)

Lemma 2.12. Hadamards switch colours up to a scalar. For τ ∈ {0, π}:

τ..
.

..
.n m = 2−

n+m−2
2 τ..

.

..
. τ..
.

..
.n m = 2

n+m−2
2 τ..

.

..
. (cc)

The only scalar-free colour change happens for two legs:

τ = τ τ = τ

Proof.

τ..
.

..
.n m

(2.6)
= τ..

.

..
. (2.7)

= 2−
n+m−2

2 τ..
.

..
.

τ..
.

..
.n m

(2.7)
= 2

n+m−2
2 τ..

.

..
. (2.6)
= 2

n+m−2
2 τ..

.

..
.

(hh)
= 2

n+m−2
2 τ..

.

..
.

Lemma 2.13. Pink spiders fuse together. We also call this rule (sf).

τ..
.

..
.

σ..
.

..
.

...n = 2n−1
τ + σ..

.

..
. (sf)

2.3. The ZXW-Calculus 23

Proof.

τ..
.

..
.

σ..
.

..
.

...n

a b

c d

(2.7)
= 2

a+b+n−2
2 2

c+d+n−2
2

τ..
.

..
.

σ..
.

..
.

...
(2.6)
= 2

a+b+c+d+2n−4
2

τ..
.

..
.

σ..
.

..
.

...

(hh)
= 2

a+b+c+d+2n−4
2

τ..
.

..
.

σ..
.

..
.

...
(sf)
= 2

a+b+c+d+2n−4
2 τ + σ..

.

..
.

(2.6)
= 2

a+b+c+d+2n−4
2 τ + σ..

.

..
. (2.7)

= 2n−1
τ + σ..

.

..
.

Lemma 2.14. The zero box disconnects:

0..
.

..
. = ..
.

..
. (2.13)

Proof.

0..
.

..
. (sf)

=
0..

.

..
.

0

(zero)
= 0..

.

..
. (cp)

= ..
.

..
.

Lemma 2.15. Pink spiders can be decomposed as follows:

..
.

..
. =

1

2

(

..
.

..
. + ..
.

..
.π

π

π

π

)
π..

.

..
. =

1

2

(

..
.

..
. − ..
.

..
.π

π

π

π

)
(2.14)

Proof.

kπn ..
. m..
. (cc)

= 2
n+m−2

2 kπ..
.

..
. (2.5)

= 2
n+m−2

2

(

..
.

..
. + (−1)k ..
.

..
.π

π

π

π

)

(cc)
= 2

n+m−2
2

(
2−

n+m
2 ..

.

..
. + 2−

n+m
2 (−1)k ..

.

..
.π

π

π

π

)

=
1

2

(

..
.

..
. + (−1)k ..
.

..
.π

π

π

π

)

24 Background

Lemma 2.16. [48] Hopf rule:

= (ho)

Lemma 2.17. [48] Strong complementarity:

..
.

..
. = ..
.

..
. (sc)

Lemma 2.18. [48] Pink π copies through and negates phases:

απ ..
. = eiα −α

π

..
.

π

(π)

Lemma 2.19. [48] For x, y ∈ {0, 1} we have

axπ ..
. = ax

xπ

..
.

xπ
yπxπ ..

. = (−1)xy
xπ
..
.

xπ
(cp)

Lemma 2.20. [48] Pink π transposes the triangle:

π = π (2.15)

Lemma 2.21. The triangle acts as a change of bases:

= π =

= π = π
(tri)

Proof. The first two equations are just (tri1) and (tri2). The third equation has

been proven in [48]:

(zero)
= 0

(suc)
= 1 =

2.3. The ZXW-Calculus 25

Then, the second equations follow from

π
(sf)
= π

(2.15)
= π

(tri1)
= π

Lemma 2.22. The two-legged W spider satisfies

= π = π (2.16)

Proof.

(wdc)
=

(cp,sf)
=

(tri)
=

(cp,sf)
=

π
(wdc)
=

π

(cp,sf)
=

π

π (tri)
=

π (id)
= π

Lemma 2.23. In general, the W spider acts on the computational basis as follows:

..
. = ..
. π ..
. =

..
.

π

+

..
.π + ... +

..
.

π

(w)

Proof. We prove both equation simultaneously by induction on the number of out-

puts. If the W spider has a single output, the equations hold trivially:

(2.9)
= π

(2.9)
= π

For the inductive step, we have

..
.

(wf)
= ..

.

(2.16)
=

..
.

(IH)
= ..

.

π ..
.

(wf)
= π ..

.

(2.16)
=

..
.

π (∗)
=

..
.

π

+

..
.π

26 Background

(IH)
=

..
.

π

+

..
.π + ... +

..
.

π

where the step (∗) follows from

π = |+⟩⟨+| − |−⟩⟨−|

=
1

2
(|0⟩+ |1⟩)(⟨0|+ ⟨1|)− 1

2
(|0⟩ − |1⟩)(⟨0| − ⟨1|)

= |0⟩⟨1|+ |1⟩⟨0|
= π + π

Lemma 2.24. Plugging a pink dot into a two-legged spider produces identity:

= (2.17)

Proof.

(wdc)
=

(cp,sf)
=

(tri ,sf)
=

(id)
=

Lemma 2.25. Plugging a pink dot into a W spider makes the leg disappear:

..
.

..
. = ..
. (2.18)

Proof. By induction on the number of outputs. The base case holds by (2.17). For

the inductive step we have

..
.

..
.

(wf)
= ..
.

..
.

(IH)
= ..

.

(wf)
= ..

.

Lemma 2.26. The two-legged W spider adds boxes:

a

b
= a + b (2.19)

2.3. The ZXW-Calculus 27

Proof. If a = 0, we have

0

b

(zero)
=

b

(2.17)
= b

If a ̸= 0, we have

a

b

(sf ,pcy)
= b

a

a
(2.8)
= b

a
a

(suc)
= 1 + b

a
a

(sf)
= a + b

Corollary 2.27. The W spider adds boxes:

a1

an

..
. =

∑
ai (2.20)

Proof. Follows by induction on n using (2.19).

Chapter 3

Diagrammatic Differentiation

For our diagrammatic analysis of gradient-based QML, we crucially need a graphical

representation of derivatives. This so-called diagrammatic differentiation for ZX-

calculus was first discovered in [52] and [13] and subsequently generalised to tensor

calculi based on monoidal categories [53]. Recently, Wang and Yeung [19] developed

a more compact graphical representation of derivatives avoiding sums of diagrams

using the ZXW-calculus.

We give an overview on diagrammatic differentiation in Section 3.1, following the

treatment by Wang and Yeung [19]. In Section 3.2, we present a novel, simplified

gradient representation for the special case of parametrised quantum circuits (The-

orem 3.6) that we will use for the remainder of the thesis. Finally, we discuss some

properties of this representation in Section 3.3.

3.1 Background

Recall that we can interpret every ZX diagram D with n inputs and m outputs as

a matrix C2m×2n . The derivative of a parametrised diagram D(θ), written ∂
∂θD(θ),

is defined as the gradient of the matrix associated with D(θ). Consider for example

a single-legged green spider:

3.1. Background 29

θ =

(
1
eiθ

)
⇒ ∂

∂θ
[θ] =

(
0
ieiθ

)

The goal of diagrammatic differentiation is to represent those gradients as ZX(W)

diagrams. For example, by inspecting the gradient matrix of our single-legged spider,

we observe that

∂

∂θ
[θ] = ieiθ π

(cp)
= i θπ

In fact, this is one of the key equations of diagrammatic differentiation. However,

to cover the most general case, we should also to consider the possibility that the

phase of the spider is a different function in θ. The resulting equation is very similar

to the rule above:

Lemma 3.1. Let f be a differentiable real function. Then

∂

∂θ
[f(θ)] = if ′(θ) f(θ)π (3.1)

Proof. We have

∂

∂θ
[f(θ)]

(2.5)
=

∂

∂θ

(
|0⟩+ eif(θ)|1⟩

)
= if ′(θ) · eif(θ)|1⟩ (cp)

= if ′(θ) f(θ)π

Furthermore, we note that when differentiating a larger diagram, we can ignore the

parts that do not depend on θ. This property is called linearity [52]:

Lemma 3.2 (Linearity). Let D(θ) be a parametrised ZX diagram depending on θ

and let E be a ZX diagram in which θ does not occur. Then

∂

∂θ

[
D(θ)E ..

.

..
.

..
.

]
=

∂

∂θ

[
D(θ) ..

.

..
.

]
◦ E ..

.

..
.

30 Diagrammatic Differentiation

∂

∂θ




D(θ) ..
.

..
.

E ..
.

..
.


 =

∂
∂θ

[
D(θ) ..

.

..
.

]

E ..
.

..
.

The equations also hold when switching the order of D(θ) and E.

Proof. Directly follows from the linearity of matrix differentiation for multiplication

and tensor product, since for matrices D(θ), E we have ∂
∂θ [D(θ)E] =

(
∂
∂θ [D(θ)]

)
E

and ∂
∂θ [D(θ)⊗ E] =

(
∂
∂θ [D(θ)]

)
⊗ E.

In the following, we will use brackets to denote the parts of the diagram we are

differentiating. Using the previous two lemmas, we can give the derivative of any

green and red spider:

∂

∂θ

[
f(θ)..

.

..
.

]
(sf ,Lem 3.2)

=
∂

∂θ ..
.

..
.

f(θ) (3.1)
= if ′(θ)

..
.

..
.

f(θ)

π

(sf)
= if ′(θ)

f(θ)..
.

..
.

π

(3.2)

∂

∂θ

[
f(θ)..

.

..
.

]
(sf ,cc,Lem 3.2)

=
∂

∂θ

..
.

..
.

f(θ)
(3.1,cc,sf)

=
if ′(θ)√

2 f(θ)..
.

..
.

π

(3.3)

This allows us to differentiate all ZX diagrams with only a single parametrised spider.

In general, given some ZX diagram D(θ) in which n spiders depend on θ, we can

always fuse out the parametrised spiders similar to first step in equations (3.2) and

(3.3) and obtain a diagram of shape

D′

f1(θ) fn(θ)...

where θ does not occur in D′. However, if we want to differentiate such diagrams

using Lemma 3.1, we have to make use of the product rule:

Lemma 3.3 (Product Rule). Let D(θ) and E(θ) be parametrised ZX diagram

depending on θ. Then

3.1. Background 31

∂

∂θ

[
D(θ) E(θ)..

.

..
.

..
.

]
= E(θ) ..

.

..
. ◦ ∂

∂θ

[
D(θ) ..

.

..
.

]
+

∂

∂θ

[
E(θ) ..

.

..
.

]
◦ D(θ) ..

.

..
.

∂

∂θ




D(θ) ..
.

..
.

E(θ) ..
.

..
.


 =

∂
∂θ

[
D(θ) ..

.

..
.

]

E(θ) ..
.

..
.

+

D(θ) ..
.

..
.

∂
∂θ

[
E(θ) ..

.

..
.

]

Proof. Directly follows from the product rule for matrix differentiation.

This allows us to differentiate diagrams with multiple occurrences of θ, for example

∂

∂θ

[

D

f1(θ) f3(θ)f2(θ)
]

(Lem 3.3)
=

∂

∂θ D

f1(θ) f3(θ)f2(θ)

+
∂

∂θ D

f1(θ) f3(θ)f2(θ)

+
∂

∂θ D

f1(θ) f3(θ)f2(θ)

(3.1)
= if ′1(θ)

D

f1(θ) f3(θ)f2(θ)

π

+ if ′2(θ)

D

f1(θ) f3(θ)f2(θ)

π

+ if ′3(θ)

D

f1(θ) f3(θ)f2(θ)

π

Unfortunately, the ZX-calculus is not well-equipped to deal with such linear com-

binations of diagrams. In particular, there are no rewrite rules that involve sums,

which means that we would need to rewrite and simplify each term separately.

Clearly, it would be more convenient if we could express the derivative as a single

diagram. Luckily, Wang and Yeung [19] developed a technique to achieve this in

ZXW using the W spider:

Theorem 3.4 (Wang and Yeung [19]). Let f1, ..., fn be real differentiable func-

tions and D a ZX diagram. Then

32 Diagrammatic Differentiation

∂

∂θ

[

D

f1(θ) fn(θ)...f2(θ)
]

= i

D

f1(θ) fn(θ)...

f ′
1(θ) f ′

n(θ)

π

f2(θ)

f ′
2(θ) ...

Proof. Follows from (w) and Lemma 3.1. The detailed proof can be found as

Theorem 15 in [19].

3.2 Differentiating Quantum Circuits

While Theorem 3.4 can be used to obtain the derivative of any ZX diagram, for the

purposes of this thesis, we are only interested in the special case of ZX diagrams

representing parametrised quantum circuits. We prove a novel, simplified version of

Theorem 3.4 for this special case that we will use for the remainder of this thesis.

To motivate the idea, recall that a two-legged green spider corresponds to the RZ

gate up to a global phase:

RZ(θ) =

(
e−i θ

2 0

0 ei
θ
2

)
= e−i θ

2 θ

Using Stone’s theorem (see Theorem 2.4), we can see that the derivative of the RZ

gate is given by

∂

∂θ
RZ(θ) =

∂

∂θ
e−i θ

2
Z = − i

2
Ze−i θ

2
Z = − i

2
ZRZ(θ)

= − i

2
e−i θ

2 θ π = − i

2
e−i θ

2 θ + π

Compared to Lemma 3.1, we obtain the derivative by simply adding π to the phase.

Similarly, we obtain an alternative version of Lemma 3.1 by adding a global phase:

3.2. Differentiating Quantum Circuits 33

Lemma 3.5. Let f be a differentiable real function. Then

∂

∂θ

[
e−i

f(θ)
2 f(θ)

]
= − if

′(θ)

2
e−i

f(θ)
2 f(θ) + π (3.4)

Proof. We have

∂

∂θ

[
e−i

f(θ)
2 f(θ)

]
(2.5)
=

∂

∂θ

(
e−i

f(θ)
2 |0⟩+ ei

f(θ)
2 |1⟩

)

= − if
′(θ)

2
e−i

f(θ)
2 |0⟩+ if ′(θ)

2
ei

f(θ)
2 |1⟩

= − if
′(θ)

2
e−i

f(θ)
2 (|0⟩+ ei(f(θ)+π)|1⟩)

(2.5)
= − if

′(θ)

2
e−i

f(θ)
2 f(θ) + π

Since we work with quantum circuits, we can ignore global phases as they cancel

out because of the doubling construction (see Section 2.3.4). Therefore, we can use

Lemma 3.5 instead of Lemma 3.1 to differentiate all spiders in a circuit, yielding a

simplified version of Theorem 3.4:

Theorem 3.6. The derivative of a parametrised quantum circuit can be expressed

as the following diagram:

∂

∂θ


 C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.


 = −2n−1i

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

In other words, we can replace the triangles in Theorem 3.4 with Hadamards.

Proof.

∂

∂θ


 C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.


 =

∂

∂θ


 C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

e−i
f1(θ)

2

e−i
fn(θ)

2

ei
f1(θ)

2

ei
fn(θ)

2




34 Diagrammatic Differentiation

(Lem 3.3,3.4)
= − if ′1(θ)

2
C

f1(θ) + π

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

e−i
f1(θ)

2

e−i
fn(θ)

2

ei
f1(θ)

2

ei
fn(θ)

2

+
if ′1(θ)

2
C

f1(θ)

fn(θ)

−f1(θ) + π

−fn(θ)

..
.

..
.

e−i
f1(θ)

2

e−i
fn(θ)

2

ei
f1(θ)

2

ei
fn(θ)

2

− ...

+ ...

− if ′n(θ)

2
C

f1(θ)

fn(θ) + π

−f1(θ)

−fn(θ)

..
.

..
.

e−i
f1(θ)

2

e−i
fn(θ)

2

ei
f1(θ)

2

ei
fn(θ)

2

+
if ′n(θ)

2
C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ) + π

..
.

..
.

e−i
f1(θ)

2

e−i
fn(θ)

2

ei
f1(θ)

2

ei
fn(θ)

2

= − if ′1(θ)

2
C

f1(θ) + π

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
. +

if ′1(θ)

2
C

f1(θ)

fn(θ)

−f1(θ) + π

−fn(θ)

..
.

..
.

− ... + ...

− if ′n(θ)

2
C

f1(θ)

fn(θ) + π

−f1(θ)

−fn(θ)

..
.

..
. +

if ′n(θ)

2
C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ) + π

..
.

..
.

= − if ′1(θ)

2


 C

f1(θ) + π

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
. − C

f1(θ)

fn(θ)

−f1(θ) + π

−fn(θ)

..
.

..
.




− ...

− if ′n(θ)

2


 C

f1(θ)

fn(θ) + π

−f1(θ)

−fn(θ)

..
.

..
. − C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ) + π

..
.

..
.




(sf ,hh)
= − if ′1(θ)

2
2n


 C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

..
.

..
. − C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

..
.

..
.




− ...

− if ′n(θ)

2
2n


 C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

..
.

..
. − C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

..
.

..
.




3.2. Differentiating Quantum Circuits 35

(cp)
= −2n−1i ·


 C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π f ′
1(θ)

f ′
n(θ)

−f ′
1(θ)

−f ′
n(θ)

..
.

..
.

+ C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

f ′
1(θ)

f ′
n(θ)

π−f ′
1(θ)

−f ′
n(θ)

..
.

..
.

+ ...

+ C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

f ′
1(θ)

π f ′
n(θ)

−f ′
1(θ)

−f ′
n(θ)

..
.

..
.

+ C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

f ′
1(θ)

f ′
n(θ)

−f ′
1(θ)

π−f ′
n(θ)

..
.

..
.




(w)
= −2n−1i

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

Thus, in order to differentiate a circuit, we just have to connect the following dif-

ferentiation gadget to the parametrised spiders.

Definition 3.7. The differentiation gadget is given by the following diagram:

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

36 Diagrammatic Differentiation

3.3 Properties of the Differentiation Gadget

We close this chapter by deriving some interesting properties of our differentiation

gadget. First, we consider the case where all spider have the same phase f(θ):

Fact 3.8. Let f be a differentiable real function. Then

∂

∂θ


 C

f(θ)

f(θ)

−f(θ)

−f(θ)

..
.

..
.



 n


 = −f ′(θ) · 2n−1i

C

f(θ)

f(θ)

−f(θ)

−f(θ)

..
.

..
.

π

π

π

..
.

..
.

Proof. By Theorem 3.6, the derivative is given by

− 2n−1i

C

f(θ)

f(θ)

−f(θ)

−f(θ)

..
.

..
.

π

−f ′(θ)

−f ′(θ)

..
.

f ′(θ)

f ′(θ)

..
.

(pcy ,sf)
= −2n−1i

C

f(θ)

f(θ)

−f(θ)

−f(θ)

..
.

..
.

π

−1

−1

..
.

f ′(θ)

..
.

3.3. Properties of the Differentiation Gadget 37

(cp)
= −f ′(θ) · 2n−1i

C

f(θ)

f(θ)

−f(θ)

−f(θ)

..
.

..
.

π

π

π

..
.

..
.

In the last step we also used the fact that −1 = π .

Note that this fact is essentially a version of the chain rule since we have shown

∂

∂θ
C(f(θ)) = f ′(θ) · ∂C

∂θ
(f(θ)).

Another interesting question is how the derivative in Theorem 3.6 behaves if one

function fi is constant, i.e. one of the differentiated spiders does not actually de-

pend on θ. We can graphically show that such a spider does not contribute to the

derivative:

Fact 3.9. Let f1, ..., fn be differentiable real functions where fi is a constant func-

tion. Then

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

fi(θ) −fi(θ)

..
.

..
.

−f ′
i(θ)f ′

i(θ)

..
.

..
.

=
1

2

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

fi(θ) −fi(θ)

..
.

..
.

Proof. Note that f ′i(θ) = 0 since fi is constant. Thus

38 Diagrammatic Differentiation

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)
..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

fi(θ) −fi(θ)

..
.

..
.

−f ′
i(θ)f ′

i(θ)

..
.

..
.

(wf)
=

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

fi(θ) −fi(θ)

..
.

..
.

0 0

(pcy)
=

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

fi(θ) −fi(θ)

..
.

..
.

0

3.3. Properties of the Differentiation Gadget 39

(2.13)
=

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

fi(θ) −fi(θ)

..
.

..
.

(w ,cc,sf)
=

1

2

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

fi(θ) −fi(θ)

..
.

..
.

(2.18)
=

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

fi(θ) −fi(θ)

..
.

..
.

Finally, we emphasize that the ZX diagram representing a given linear map is not

unique. In particular, diagrams representing the same parametrised circuit can differ

in the number of parametrised spiders. A trivial example of this is evidenced by the

spider fusion rule:

f(θ) + g(θ)

−f(θ) − g(θ)

(sf)
=

f(θ) g(θ)

−f(θ) −g(θ)

40 Diagrammatic Differentiation

On the left-hand side we have 2 parametrised spiders, whereas we have 4 on the

right-hand side. This also means that the differentiation gadgets that we plug into

either side need to have a different number of legs. Of course, both representations

still represent the same linear map. We can verify this graphically by showing that

the differentiation gadget respects spider fusion. This requires the following auxiliary

lemma:

Lemma 3.10. For all a, b ∈ C we have

a

b
= a + b

Proof. If a = 0, then

0

b (2.13,sf)
=

b (2.18,id)
= b

If a ̸= 0, then

a

b (pcy)
= a

b
a

(wdc)
=

a b
a

(sf)
=

a b
a

(ho,id)
=

a b
a

(suc,sf)
= a 1 + b

a

(sf)
= a + b

Now, it easily follows that the differentiation gadget respects spider fusion:

Fact 3.11. Let f1, ..., fn, g, h be differentiable real functions. Then

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

g(θ) ..
.

..
.

−g′(θ)g′(θ)

..
.

..
.

h(θ)

−g(θ)

−h(θ)

−h′(θ)h′(θ)

=
1

2

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

g(θ) + h(θ) −g(θ) − h(θ)

..
.

..
.

−g′(θ) − h′(θ)g′(θ) + h′(θ)

..
.

..
.

3.3. Properties of the Differentiation Gadget 41

Proof.

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

g(θ) ..
.

..
.

−g′(θ)g′(θ)

..
.

..
.

h(θ)

−g(θ)

−h(θ)

−h′(θ)h′(θ)

(wf)
=

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

g(θ) ..
.

..
.

h′(θ)

..
.

..
.

h(θ)

−g(θ)

−h(θ)

g′(θ)

−h′(θ)

−g′(θ)

(sf ,cc)
=

1

2

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

..
.

..
.

h′(θ)

..
.

..
.

g(θ) + h(θ) −g(θ) − h(θ)
g′(θ)

−h′(θ)

−g′(θ)

42 Diagrammatic Differentiation

(Lem. 3.10,wf)
=

1

2

C

f1(θ)

fn(θ)

−f1(θ)

−fn(θ)

..
.

..
.

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

g(θ) + h(θ) −g(θ) − h(θ)

..
.

..
.

−g′(θ) − h′(θ)g′(θ) + h′(θ)

..
.

..
.

Chapter 4

Gradient Recipes

This chapter deals with the problem of computing gradients of parametrised quan-

tum circuits. Given a PQC C(θ⃗), we are usually interested in the gradient of the

expectation value w.r.t. a parameter θi, i.e.
∂
∂θi

⟨H⟩ for some Hamiltonian H. While

we can represent this gradient as a ZXW diagram (c.f. Theorem 3.6), computing it

classically is very hard, akin to simulating the quantum system. Therefore, the gra-

dient computation should be ideally performed on quantum hardware. We can use

linearity (and the product rule if multiple gates depend on θi) to break the gradient

of the expectation value down to gradients of a single gate U(θi) that depends on

θi: Suppose C(θi) = EU(θi)D, then

∂

∂θi
⟨H⟩ = ∂

∂θi
⟨0|D†U(θi)

†E†HEU(θi)D|0⟩

=
∂

∂θi

[
D..
. U(θi)..
. E..
. H..
.

D† ..
.U(θi)

† ..
.

E† ..
.

..
.

]

(Lem. 3.2)
=

∂

∂θi

D..
. U(θi)..
. E..
. H..
.

D..
. U(θi)..
.

E..
.

..
.

..
.

(4.1)

Ideally, we would like to replace this gate with a new sub-circuit that represents the

matrix ∂
∂θi
U(θi). Running this modified circuit would then yield the desired gradient

44 Gradient Recipes

∂
∂θi

⟨H⟩. Unfortunately, the derivate of a parametrised unitary U(θ) is usually no

longer unitary. For a trivial example of this, consider the RZ(θ) gates whose derivate

∂

∂θ
RZ(θ) =

∂

∂θ

(
e−i θ

2 0

0 ei
θ
2

)
=

(
−i θ2e−i θ

2 0

0 i θ2e
i θ
2

)

is clearly not unitary. One common approach to deal with this issue involves decom-

posing the gate into a linear combination of k unitaries that can be run on quantum

hardware. Thus, computing the gradient in such a way involves k circuit executions.

Such decompositions are called gradient recipes.

An important detail to note here is that the gate U(θi) occurs doubled in (4.1),

matching our previous discussion of quantum circuits in ZX. Thus, we actually

have to study decompositions of doubled(U(θi)) into a linear combination
∑k

i=1 xi ·

doubled(Vi) of doubled unitaries. Thus, we can use the circuit differentiation ma-

chinery from Section 3.2 to analyse this problem.

After discussing a custom ZX representation of parametrised unitaries in Section 4.1,

we focus on a popular class of gradient recipes in Section 4.2, the so-called parameter-

shift rules. We give new proofs of various shift rules based on our diagrammatic

gradient representation. Furthermore, we prove a conjecture by Anselmetti et al. [8]

establishing that their 4-term recipe is optimal. For this, we prove a no-go theorem

lower bounding the number of terms needed to compute gradients of a certain class

of circuits in Section 4.2.3. Finally, we remark on a gradient recipe using ancillae in

Section 4.3.

4.1 Parametrised Unitaries as ZX Diagrams

In the literature, gradient recipes are usually derived based on properties of the ma-

trices representing the gates. For example, the validity of different parameter-shift

rules for a unitary eiθH depends on the make-up of the eigenvalues of the Hermitian

generator H. The goal of this section is to bridge the gap between this eigenvalue-

4.1. Parametrised Unitaries as ZX Diagrams 45

description and the higher-level ZX representation of parametrised unitaries. This

is necessary for our derived rules to be comparable with the results in the literature.

In order to do this, we have to determine the number of parametrised spiders needed

to implement a parametrised unitary U(θ). Parametrised spiders in this context

refer to spiders whose phase is a (non-constant) function in θ. This number is

important, because the cost of our recipes will depend on the number of legs that

the differentiation gadget for the unitary has. We have already seen that this can

vary because of the spider-fusion rule (c.f. Fact 3.11). However, there are also less

trivial examples. For instance, consider the CU1 gate that has the following two

representations:

CU1(θ) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ


 =

θ
2

θ
2

−θ
2 =

∧

θ (4.2)

where
∧

is the and-gate acting like conjunction on the computational basis.

4.1.1 Diagonalising Parametrised Unitaries

First, we reduce the problem to constructing diagrams for diagonal matrices. For

this, let us consider an n-dimensional parametrised unitary U(θ). By Stone’s the-

orem (2.4), we know that U(θ) = eiθH for some self-adjoint n-dimensional matrix

H. By the spectral theorem for finite dimensional self-adjoint matrices, H is di-

agonalisable. This means, there is an orthonormal basis B = {|v1⟩, ..., |vn⟩} called

the eigenbasis, satisfying H|vj⟩ = λj |vj⟩ for all j. Here, λj are the eigenvalues of

H which must all be real since H is self-adjoint. We can now define a unitary

V :=
∑n

j=1 |vj⟩⟨j| mapping each computational basis element |j⟩ to the correspond-

ing eigenvector |vj⟩ in the eigenbasis. Furthermore, we define D := diag(λ1, ..., λn)

as the diagonal matrix consisting of the eigenvalues of H. Noting that we can also

write D =
∑n

j=1 λj |j⟩⟨j|, we have

46 Gradient Recipes

V DV † =

n∑

j1,j2,j3=1

λj2 |vj1⟩⟨j1|j2⟩⟨j2|j3⟩⟨vj3 | =
n∑

j=1

λj |vj⟩⟨vj | = H.

Therefore,

U(θ) = eiθV DV †
= V eiθDV † = V diag(eiθλ1 , ...,iθλn)V †.

Note that only the diagonal matrix in the middle depends on the parameter θ. Hence,

when trying to determine the number of parametrised spiders needed to implement

U(θ) in the ZX-calculus, it suffices to look at eiθD.

4.1.2 General Construction

Consider a 2n-dimensional parametrised unitary U(θ) = eiθH whose Hermitian gen-

erator H has m non-zero eigenvalues λ1, ..., λm ̸= 0 (it does not matter if H has 0 as

an additional eigenvalue). In this section, we describe a construction to realise U(θ)

in the ZX-calculus using m parametrised spiders. Following the previous section,

we perform a diagonalization U(θ) = V †eiθDV where D is a diagonal matrix with

non-zero entries λ1, ..., λm. We define Boolean functions fλ1 , ..., fλm that match on

the eigenvectors corresponding to λ1, ...λm:

fλj
(x⃗) =

{
1 if D|x⃗⟩ = λj |x⃗⟩
0 otherwise.

This allows us to characterise the action of eiθD on computational basis states as

follows:

Lemma 4.1. For all x ∈ {0, 1}n, we have

eiθD|x⃗⟩ =




m∏

j=1

e
iθλj ·fλj (x⃗)


 |x⃗⟩. (4.3)

4.1. Parametrised Unitaries as ZX Diagrams 47

Proof. D is a diagonal matrix whose entries are either zero or one of the non-zero

eigenvalues λj . Thus, we either have D|x⃗⟩ = 0⃗, or D|x⃗⟩ = λj |x⃗⟩ for some j.

• Suppose D|x⃗⟩ = 0⃗, then eiθD|x⃗⟩ = |x⃗⟩. Furthermore, by definition fλj
(x⃗) = 0

for all j. Thus,
(∏m

j=1 e
iθλj ·fλj (x⃗)

)
|x⃗⟩ =

(∏m
j=1 1

)
|x⃗⟩ = |x⃗⟩ = eiθD|x⃗⟩.

• Suppose D|x⃗⟩ = λj |x⃗⟩ for some j, then eiθD|x⃗⟩ = eiλjθ|x⃗⟩. Furthermore,

fλj
(x⃗) = 1 and fλk

(x⃗) = 0 for all k ̸= j. Therefore,
(∏m

j=1 e
iθλj ·fλj (x⃗)

)
|x⃗⟩ =

eiλjθ|x⃗⟩ = eiθD|x⃗⟩.

In order to realise this construction diagrammatically, we first need a result regarding

the representably of our Boolean functions fλ1 , ..., fλm in the ZX-calculus:

Lemma 4.2. For every Boolean function f : {0, 1}n → {0, 1} there is a ZX diagram

such that for all x⃗ ∈ {0, 1}n we have

f

x1π

xnπ

..
. = f(x⃗)π

Proof. We can express f as a propositional formula in variables x1, ..., xn using only

conjunction (∧) and negation (¬) connectives.1 We can implement this formula

as a diagram using gates that act like conjunction, negation, and copying on the

computational basis.2 In ZX calculus, those are given by

∧ :=
−1

¬ := π COPY ..
. := ..
.

By appropriately wiring those gate together, we get the desired ZX representation

of f .

This yields the following construction in the ZX-calculus:

1This follows from the fact that conjunction and negation form a functionally complete set and
can thus encode all possible truth tables [54].

2The copying is necessary since inputs might be used multiple times.

48 Gradient Recipes

Theorem 4.3. Let U(θ) = eiθH be a parametrised unitary whose Hermitian gener-

ator H has m non-zero eigenvalues λ1, ..., λm and admits the diagonalization H =

V †DV . Then

U(θ) =

fλ1

λ1θ

..
.

fλm

λmθ

..
.

...

V V †

Proof. It suffices to show that the middle part is equal to eiθD. We verify this by

plugging in a computational basis state |x⃗⟩:

fλ1

λ1θ

..
.

x1π

xnπ

fλm

λmθ

..
.

...
(cp)
= fλ1

λ1θ
x1π

xnπ

fλm

λmθ

...

x1π xnπ... x1π xnπ...

..
. =

fλ1(x⃗)π

λ1θ x1π

xnπ

λmθ

...
fλm(x⃗)π

..
.

(cp)
=




m∏

j=1

e
iθλj ·fλj (x⃗)




x1π

xnπ

..
. =




m∏

j=1

e
iθλj ·fλj (x⃗)


 |x⃗⟩ (4.3)

= eiθD|x⃗⟩.

As an example, consider the CRZ(θ) and CU1(θ) gate, whose Hermitian generators

HCRZ
=




0 0 0 0
0 0 0 0
0 0 −1

2 0
0 0 0 1

2


 HCU1 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




have non-zero eigenvalues −1
2 ,

1
2 , and 1, respectively. The functions matching on the

eigenvectors are given by f−1/2(x1, x2) = x1 ∧ ¬x2 and f1/2(x1, x2) = f1(x1, x2) =

x1 ∧ x2. Invoking Theorem 4.3, we get

CRZ(θ) =
f−1/2

−1
2
θ

f1/2

1
2
θ

=

−1
2
θ 1

2
θ

∧
π

∧
(cp)
=

∧ 1
2
θ

∧ −1
2
θ

π π

4.1. Parametrised Unitaries as ZX Diagrams 49

CU1(θ) =

θ

f1
=

∧

θ

To summarise, we constructed an alternate two-spider representation for CRZ(θ)

different from (2.11) and recovered the one-spider representation of CU1(θ) from

(4.2).

Note that phase gadgets are a special case of Theorem 4.3 where the function com-

putes the XOR of its inputs. Also note that in general, the construction from

Theorem 4.3 is not optimal, in the sense that there might be representations that

require less parametrised spiders. For example, consider the parametrised unitary

U(θ) =
2θ

θ
=




1 0 0 0
0 eiα 0 0
0 0 e2iα 0
0 0 0 e3iα




whose Hermitian generator has three non-zero eigenvalues. However, we can show

that the construction in Theorem 4.3 is in fact optimal if the eigenvectors are

−λ, 0, λ:

Proposition 4.4. It is not possible to represent a parametrised unitary eiθH whose

Hermitian generator has eigenvalue −λ, 0, λ with less than two parametrised spiders.

Proof. See Appendix C. ↓

Furthermore, we discuss an improved optimal construction for unitaries with only

two eigenvalues λ1, λ2 in the next section.

4.1.3 Special Case for Two Eigenvalues

In the special case where H has only two eigenvalues λ1, λ2, it is possible to imple-

ment eiθH using only a single parametrised spider. In particular, this is the case for

all single-qubit unitaries.

50 Gradient Recipes

Theorem 4.5. Let U(θ) = eiθH be a parametrised unitary whose Hermitian gen-

erator H has only eigenvalues λ1, λ2 and admits the diagonalization H = V †DV .

Then

U(θ) = eiλ2

fλ1

(λ1 − λ2)θ

..
.V V †

Proof. Follows from Theorem 4.3 and the observation that fλ2(x⃗) = ¬fλ1(x⃗) since

either D|x⃗⟩ = λ1|x⃗⟩ or D|x⃗⟩ = λ2|x⃗⟩:

U(θ) =

fλ1

λ1θ

..
.

fλ2

λ2θ

..
.V V †

=
fλ1

λ1θ

..
.

fλ1

λ2θ

..
.V V †

π

= eiλ2

fλ1

λ1θ

..
.

fλ1

−λ2θ

..
.V V †

(∗)
= eiλ2

fλ1

(λ1 − λ2)θ

..
.V V †

The step (∗) holds since function boxes acting on the computational basis form a

bialgebra with the green spider and thus

f

f
= f

This construction is optimal since it is clearly not possible to implement parametrised

unitaries using zero parametrised spiders.

4.2. Parameter-Shift Rules 51

4.2 Parameter-Shift Rules

The first parameter-shift rule was discovered by Mitarai et al. [6] and extended by

Schuld et al. [7]. It says that the derivate of a gate U(θ) = eiθH whose Hermitian

generator H has only two eigenvalues λ1, λ2 satisfies

∂

∂θ
U(θ) =

λ1 − λ2
2 sin((λ1 − λ2)α)

(U(θ + α)− U(θ − α)) (4.4)

for an arbitrary shift angle α with sin((λ1−λ2)α) ̸= 0. Thus, computing the gradient

requires two evaluations of the circuit on the quantum device with parameter values

shifted by ±α. Remarkably, equation (4.4) is an exact representation of the gradient

and should not be mistaken for a numerical gradient approximation, which might

look similar:

∂

∂θ
U(θ) ≈ 1

2h
(U(θ + h)− U(θ − h))

Unlike this noisy approximation, parameter-shift rules provide an unbiased estimator

for the gradient of the expectation value. Hence, they are widely used in practice.3

There has also been a focus in recent years on finding shift rules for a wider class

of gates going beyond two eigenvalues. For example, there is the four-term rule by

Anselmetti et al. [8] for Hermitians with eigenvalues −λ, 0, λ in addition to further

generalisations depending on the differences between eigenvalues by Wierichs et

al. [9].

In this section, we graphically derive the original rule by Schuld et al. and then

move on to gates with more than two eigenvalues.

4.2.1 Two-Term Shift Rule

A diagrammatic proof for a simplified version of Schuld. et al.’s [7] parameter

shift rule (4.4) has already been given in [53] and [19]. However, all previous ZX-

3For example by the QML library pennylane [55].

52 Gradient Recipes

based proofs only derived the special case α = π
2 . Furthermore, they only consider

simple rotation gates without generalising to arbitrary parametrised unitaries with

two eigenvalues. We extend the proof to derive the two-term shift rule in its most

general form:

Lemma 4.6. For all α ∈ R with α ̸= πn for all n ∈ Z, we have

π π =
1

2i sin(α)
(α −α − −α α) . (4.5)

Proof. See Appendix C. ↓

This allows us to decompose a version of the two-legged differentiation gadget:

Lemma 4.7. For all α ∈ R with α ̸= πn for all n ∈ Z, we have

−i
π

π

=
1

2 sin(α)
(α −α − α−α) . (4.6)

Proof. We have

−i
π

π

(2.16)
= −i π π

(cc,hh)
= −i ππ

(π)
= i π π

(4.5)
=

1

2 sin(α)
(α −α − α−α)

Combining this with the results from Section 4.1, we obtain the two-term shift rule:

Theorem 4.8 (Schuld et al. [7]). Every parametrised circuit C(θ) described by the

unitary eiθH whose Hermitian generator H has only two eigenvalues λ1, λ2 satisfies

∂

∂θ
C(θ) =

λ1 − λ2
2 sin((λ1 − λ2)α)

(C(θ + α)− C(θ − α))

for all α ∈ R with (λ1 − λ2)α ̸= πn for all n ∈ Z.

4.2. Parameter-Shift Rules 53

Proof. Using the construction from Theorem 4.5, we can write C(θ) as

C(λ1 − λ2)θ −(λ1 − λ2)θ

Thus, we have

∂

∂θ
C(θ) =

∂

∂θ

[
C(λ1 − λ2)θ −(λ1 − λ2)θ

]

(Fact 3.8)
= −i(λ1 − λ2)

C(λ1 − λ2)θ −(λ1 − λ2)θ

π

π

(4.6)
=

λ1 − λ2
2 sin((λ1 − λ2)α)

(

C(λ1 − λ2)θ −(λ1 − λ2)θ

−(λ1 − λ2)α(λ1 − λ2)α

−
C(λ1 − λ2)θ −(λ1 − λ2)θ

(λ1 − λ2)α−(λ1 − λ2)α
)

(sf)
=

λ1 − λ2
2 sin((λ1 − λ2)α)

(C(θ + α)− C(θ − α))

4.2.2 Shift Rules Beyond Two Terms

One way to extend the result from Theorem 4.8 to a wider class of circuits is to

invoke the product rule. For example, this gives us

∂

∂θ

[
C

θ −θ

θ −θ

]

(Lem. 3.3)
=

∂

∂θ
C

θ −θ

θ −θ
+

∂

∂θ
C

θ −θ

θ −θ

(Thm. 3.6,4.6)
=

1

2 sin(α)

(
C

θ + α −(θ + α)

θ −θ
− C

θ − α −(θ − α)

θ −θ

)

+
1

2 sin(β)

(
C

θ + β −(θ + β)

θ −θ − C
θ − β −(θ − β)

θ −θ

)
(4.7)

54 Gradient Recipes

The downside of this approach is that it requires the gate to be decomposed such that

individual rotation angles can be shifted [56]. This introduces additional overhead if

the considered gate is hardware-native. One example of this studied in the literature

is the fsim gate native to Google’s gmon architecture [57]. As argued in [58], it is more

efficient to use a rule that shifts all parameter occurrences simultaneously, avoiding

the depth increase invoked by decomposing fsim into elementary gates. Furthermore,

it was proven in [9] that rules shifting all gates simultaneously sometimes require

less shots to get accurate gradient estimates.

The natural way to extend our proof of Theorem 4.8 is to find decompositions of the

differentiation gadget for more than two legs. Unfortunately, the proof of Lemma 4.7

does not scale since the simple representation of the W -state as a red π-spider no

longer holds if we add more legs. Instead, we characterise the validity of all possible

m-term shift rules for n-legged differentiation gadgets via a system of (complex)

polynomial equations:

Lemma 4.9. For ξ⃗, α⃗ ∈ Rm, the diagram equation

−2n−1i

π

π

π
n ..

.

..
. n

=
m∑

i=1

ξi
αi −αi

αi

..
.

−αi

..
.

holds iff for all k ∈ {0, 1, ..., n} we have

m∑

j=1

ξj · eikαj = ki.

Proof. The diagram equation holds iff both sides are equal when plugging in com-

putational basis states. First, consider the left-hand side:

−2n−1i

π

y1πx1π π

xnπ ynππ

..
.

..
.

(cc,sf)
= −1

2
i

π

ynπ + πx1π xnπ... y1π + π ...

4.2. Parameter-Shift Rules 55

(2.20)
= −1

2
i

π

∑n
j=1(−1)xj − (−1)yj

= −1

2
i

n∑

j=1

(−1)xj − (−1)yj

For the right-hand side, we get

m∑

i=1

ξi
xnπ αi y1π−αi

x1π αi

..
.

ynπ−αi

..
. =

m∑

i=1

ξi · eiαi
∑n

j=1 xj−yj .

Equating both sides yields

−1

2
i

n∑

j=1

(−1)xj − (−1)yj =
m∑

i=1

ξi · eiαi
∑n

j=1 xj−yj

⇔ i

n∑

j=1

xj − yj =

m∑

i=1

ξi · eiαi
∑n

j=1 xj−yj

since (−1)xj − (−1)yj = −2(xj −yj) for all xj , yj ∈ {0, 1}. The equation above must

hold for all choices of x⃗, y⃗ ∈ {0, 1}n. Noting that
∑n

j=1 xj − yj ∈ {−n, ..., n}, we can

represent this more compactly as

m∑

j=1

ξj · e±ikαj = ±ki

for k ∈ {0, ..., n}. Finally, we can drop the ± sign since negating just corresponds

to taking the complex conjugate on both sides.

This general characterisation of shift rules will be useful for proving a no-go result

in Section 4.2.3. However, for the purposes of this section it suffices to look at the

special case of symmetric shifts as in Lemma 4.7. This simplifies the system of

equations:

Corollary 4.10. For ξ⃗, α⃗ ∈ Rm, the diagram equation

−2n−1i

π

π

π
n ..

.

..
. n

=

m∑

i=1

ξi

(

αi −αi

αi

..
.

−αi

..
. −

αi−αi

αi

..
.

−αi

..
.

)

56 Gradient Recipes

holds iff for all k ∈ {1, ..., n} we have

m∑

j=1

ξj · sin(kαj) =
1

2
k.

Proof. Invoking Lemma 4.9, we get the system

m∑

j=1

ξj

(
eikαj − e∓ikαj

)
= ki ⇔ 2i

m∑

j=1

ξj · sin(kαj) = ki

for k ∈ {0, 1, ..., n}. Notice that the case k = 0 is now trivially satisfied.

To make the notation more concise, we will write this system of equations in matrix

form as

Sα⃗ · ξ⃗ = 1

2
τ⃗ (4.8)

where

Sα⃗ =




sin(α1) ... sin(αm)
sin(2α1) ... sin(2αm)

...
...

sin(nα1) ... sin(nαm)


 τ⃗ =




1
2
...
n




If m = n, the system is square and solvable under some mild conditions on the αi.

For example, in the case n = m = 1, we get the single equation ξ sin(α) = 1
2 whose

solution ξ = 1
2 sin(α) is exactly the shift rule from Lemma 4.7. In the case n = m = 2,

we get the system

ξ1 sin(α1) + ξ2 sin(α2) =
1

2
ξ1 sin(2α1) + ξ2 sin(2α2) = 1

which for α1 ̸= α2 and sin(2α1), sin(2α2) ̸= 0 is solved by

ξ1 =
2 sin(α2)− sin(2α2)

2(sin(2α1) sin(α2)− sin(α1) sin(2α2))

4.2. Parameter-Shift Rules 57

ξ2 =
sin(2α1)− 2 sin(α1)

2(sin(α1) sin(2α2)− sin(2α1) sin(α2))
.

This allows us to immediately derive the four-term shift rule given by Anselmetti et

al. [8]:

Theorem 4.11 (Anselmetti et al. [8]). Every parametrised circuit C(θ) described

by the unitary eiθH whose Hermitian generator H has eigenvalues −λ, 0, λ satisfies

∂

∂θ
C(θ) = ξ1 (C(θ + α1)− C(θ − α1)) + ξ2 (C(θ + α2)− C(θ − α2))

for ξ1 =
2 sin(λα2)−sin(2λα2)

2(sin(2λα1) sin(λα2)−sin(λα1) sin(2λα2))
and ξ2 =

sin(2λα1)−2 sin(λα1)
2(sin(λα1) sin(2λα2)−sin(2λα1) sin(λα2))

.

Proof. Using the construction from Theorem 4.3, we can write C(θ) as

C
λθ −λθ

−λθ λθ

Thus, we have

∂

∂θ
C(θ) =

∂

∂θ

[
C

λθ −λθ

−λθ λθ

]

(sym ,Fact 3.8)
= −2λi

C
λθ −λθ

−λθ λθ

π

π
π

(sym ,Corr. 4.10)
= λ

2∑

i=1

ξi




C
λθ −λθ

−λθ λθ

λαi

−λαi λαi

−λαi

−
C

λθ −λθ

−λθ λθ

−λαi

λαi −λαi

λαi




(sf)
= λξ1 (C(θ + α1)− C(θ − α1)) + λξ2 (C(θ + α2)− C(θ − α2))

58 Gradient Recipes

Similarly, solving the system (4.8) for m = n = 3, 4, ... yields 2n-term shift rules for

circuits with more than 2 parametrised spiders. Unfortunately, we are not aware of

a closed-form solution for the coefficients ξ⃗ for arbitrary n and α⃗. However, if we fix

equidistant shift angles αj =
jπ
n+1 , we can in fact derive a closed-form solution for ξ⃗:

Lemma 4.12. If αj = jπ
n+1 , then Sα⃗ · ξ⃗ = 1

2 τ⃗ has the solution ξj = 1
n+1

∑n
k=1 k ·

sin
(

kjπ
n+1

)
.

Proof. For equidistant angles, the equations correspond to a type-I discrete sine

transform (DST-I) [59, 60]

xk =

n∑

j=1

ξj · sin
(
kjπ

n+ 1

)

where xk = 1
2k. Since the inverse of the DST-I is again given by the DST-I scaled

by 2
n+1 , we get

ξj =
2

n+ 1

n∑

k=1

xk · sin
(
kjπ

n+ 1

)
=

1

n+ 1

n∑

k=1

k · sin
(
kjπ

n+ 1

)
.

This corresponds to the following generalised parameter-shift rule:

Theorem 4.13. Let C(θ) be a parametrised circuit that is represented by

C
θ −θ

θ −θ

..
.

..
.

Then

∂

∂θ
C(θ) = λ

n∑

j=1

ξj (C(θ + αj)− C(θ − αj))

if α⃗ and ξ⃗ satisfy the equations Sα⃗ · ξ⃗ = 1
2 τ⃗ . One possible solution is given by

αj =
jπ
n+1 and ξj =

1
n+1

∑n
k=1 k · sin

(
kjπ
n+1

)
.

4.2. Parameter-Shift Rules 59

Proof. Similar to Theorem 4.11, this follows from Fact 3.8 and Corollary 4.10.

A similar generalised shift rule has been proven by Wierichs et al. [9]. Their rule re-

quires 2k terms where k is the number of unique eigenvalue differences of the Hermi-

tian generator, whereas the cost of our rule depends on the number of parametrised

spiders needed to implement the gate. We already established a connection between

eigenvalues and ZX diagrams by upper-bounding the number of parametrised spi-

ders by the number of non-zero eigenvalues (c.f. Theorem 4.3). Furthermore, we

lower-bounded the number of spiders for eigenvalues 0,±λ (c.f. Proposition 4.4). An

interesting future research direction would be to explore whether there are tighter

bounds for more general cases and any deeper relationships between eigenvalues and

parametrised spiders in diagrams. This could possibly lead to a diagrammatic proof

of Wierichs et al.’s version of the generalised shift rule. Note that this might also

require decompositions of the differentiation gadget where the spider-phases do not

all have the same absolute value as assumed in Theorem 4.13.

4.2.3 Proof of Anselmetti’s No-Go Conjecture

A general pattern in parameter shift rules seems to be that the number of terms

required is the same as when using the naive approach of the product rule combined

with two-term shifts (see equation (4.7)). This holds true for our generalised rule

(Theorem 4.13), as well as for Wierichs et al.’s general rule [9] and Anselmetti et

al.’s four-term rule [8] (Theorem 4.11). An obvious question at this point is whether

we can do any better than that.

As far as we are aware, no results regarding the optimality of shift rules in this sense

have been proven in the literature. In particular, Anselmetti et al. [8] conjecture

that their four-term rule is optimal, but do not give a proof. In this section, we

give the first proof (to our knowledge) of this conjecture. We show that it is indeed

impossible to compute gradients for gates whose generators have eigenvalue −λ, 0, λ

using less than four shifts.

60 Gradient Recipes

For this, we first look at an example. One common gate whose generator has

eigenvalues of this shape is CRZ(θ). Recall that when calculating derivatives, we

always have to work with the doubling construction. Thus, we define U(θ) :=

doubled(CRZ(2θ)) = CRZ(2θ) ⊗ CRZ(2θ). We multiply θ by 2 to avoid fractions

in the matrix:

U(θ) = diag(1, 1, eiθ, e−iθ, 1, 1, eiθ, e−iθ, e−iθ, e−iθ, 1, e−iθ, eiθ, eiθ, e2iθ, 1)

The corresponding derivative is thus given by

∂

∂θ
U(θ) = diag(0, 0, ieiθ,−ie−iθ, 0, 0, ieiθ,−ie−iθ,−ie−iθ,−ie−iθ, 0,−ie−iθ, ieiθ, ieiθ, 2ie2iθ, 0)

Suppose we had a three-term shift rule for U(θ), i.e. ξ1, ξ2, ξ3, α, β, γ ∈ R such that

∂
∂θU(θ) = ξ1U(θ+α)+ ξ2U(θ+β)+ ξ3U(θ+γ). By comparing the matrix elements,

this rule would need to satisfy the following equations:

ξ1 + ξ2 + ξ3 = 0 (4.9)

ξ1e
i(θ+α) + ξ2e

i(θ+β) + ξ3e
i(θ+γ) = ieiθ (4.10)

ξ1e
−i(θ+α) + ξ2e

−i(θ+β) + ξ3e
−i(θ+γ) = −ie−iθ (4.11)

ξ1e
2i(θ+α) + ξ2e

2i(θ+β) + ξ3e
2i(θ+γ) = 2ie2iθ (4.12)

Note that equation (4.10) is redundant since it is the complex conjugate of equation

(4.11). Furthermore, multiplying (4.11) with e−iθ and (4.12) with e−2iθ yields the

following simplified system:

ξ1 + ξ2 + ξ3 = 0

ξ1e
iα + ξ2e

iβ + ξ3e
iγ = i

ξ1e
2iα + ξ2e

2iβ + ξ3e
2iγ = 2i

Surprisingly, this is the exact same system we get in Lemma 4.9 for decomposing

the differentiation gadget. We can show that this system is in fact not solvable:

4.2. Parameter-Shift Rules 61

Lemma 4.14. This system of equations has no solution for ξ1, ξ2, ξ3, α, β, γ ∈ R:




1 1 1
eiα eiβ eiγ

e2iα e2iβ e2iγ





ξ1
ξ2
ξ3


 =




0
i
2i




Proof. First, note that the system is given by a Vandermonde matrix. Thus, it

has full rank if α, β, γ are pairwise distinct angles. In that case, the solution to the

system is unique. Using the shorthand a = eiα, b = eiβ, c = eiγ , Gaussian elimination

yields

ξ1 = −i b+ c− 2

(a− b)(a− c)
ξ2 = −i a+ c− 2

(b− a)(b− c)
ξ3 = −i a+ b− 2

(c− a)(c− b)
.

Suppose that ξ1, ξ2, ξ3 are real. This means that

ξ1 · ξ1 = ξ21

⇔ − b−1 + c−1 − 2

(a−1 − b−1)(a−1 − c−1)
· b+ c− 2

(a− b)(a− c)
=

(b+ c− 2)2

(a− b)2(a− c)2

⇔ a2(b+ c− 2)(2bc− b− c)

(a− b)2(a− c)2
=

(b+ c− 2)2

(a− b)2(a− c)2

⇔ a2 =
b+ c− 2

2bc− b− c

Note that we have 2bc − b − c ̸= 0 since the equation 2ei(β+γ) = eiβ + eiγ has the

only angle solution β = γ = 0 which is ruled out by the assumption that β and γ

are distinct angles.

Similarly, we get b2 = a+c−2
2ac−a−c and c2 = a+b−2

2ab−a−b . Thus, we have a system of

quadratic equations which we can solve using a computer algebra system. Using a

Mathematica program, we find that a = b = c = − 3
√
−1 and a = b = c = (−1)

2
3

are the only solutions. This violates the assumption that α, β, and γ are distinct

angles.

Next, we consider the case where the angles are not distinct. W.l.o.g. assume that

γ = α. This means that the last column of the matrix becomes redundant and we

can simplify the system to

62 Gradient Recipes

ξ1 + ξ2 = 0 ξ1e
iα + ξ2e

iβ = i ξ1e
2iα + ξ2e

2iβ = 2i

Since ξ1 and ξ2 are real, we know that the conjugate equations ξ1e
−iα+ ξ2e

−iβ = −i

and ξ1e
−2iα + ξ2e

−2iβ = −2i also hold. Adding those conjugate equations to the

original versions and using ξ2 = −ξ1 yields cos(α) − cos(β) = 0 and cos(2α) −

cos(2β) = 0. This is only satisfied for α = β = π. But then ξ1e
iα + ξ2e

iβ = 0 ̸= i,

which violates the second equation.

With this lemma we have shown two things at once: First, we cannot decompose

the four-legged differentiation gadget into less than four shifts. Secondly, CRZ(θ)

does not satisfy a shift rule with less than four terms.

Now the question is how to extend this result to arbitrary gates with generator

eigenvalues −λ, 0, λ? The answer is surprisingly simple: It relies on the fact that

each such gate can be used to “simulate” CRZ(θ):

Lemma 4.15. Let U(θ) = eiθH be an n-qubit unitary whose Hermitian generator H

has eigenvalue −λ, 0, λ with corresponding eigenvectors |x⃗−λ⟩, |x⃗0⟩, and |x⃗λ⟩. Define

a Boolean function f : {0, 1}2 → {0, 1}n by

f(0, 0) = x⃗0 f(0, 1) = x⃗0 f(1, 0) = x⃗−λ f(1, 1) = x⃗λ.

Then, we have

CRZ(θ) = f ..
. U

(
θ
2λ

)

..
.

..
.

Proof. We check how the diagram acts on computational basis states:

f
bπ

aπ

..
. U

(
θ
2λ

)

..
.

..
. (cp)

= f
bπ

aπ

..
. U

(
θ
2λ

)

..
.

..
.

bπ

aπ

4.3. Ancilla Recipes 63

=
f1(a, b)π

..
. U

(
θ
2λ

)

..
.

..
.

bπ

aπ

fn(a.b)π

(cp)
=

f1(a, b)π

U
(
θ
2λ

)

..
.

..
.

bπ

aπ

fn(a, b)π

f1(a, b)π

fn(a, b)π

• For |00⟩ we get ⟨x⃗0|U(θ)|x⃗0⟩|00⟩ = ei·0·
θ
2λ |00⟩ = |00⟩ = CRZ(θ)|00⟩.

• For |01⟩ we get ⟨x⃗0|U(θ)|x⃗0⟩|01⟩ = ei·0·
θ
2λ = |01⟩ = CRZ(θ)|01⟩.

• For |10⟩ we get ⟨x⃗−λ|U(θ)|x⃗−λ⟩|10⟩ = e−iλ θ
2λ |10⟩ = e−i θ

2 |10⟩ = CRZ(θ)|10⟩.

• For |11⟩ we get ⟨x⃗λ|U(θ)|x⃗λ⟩|11⟩ = eiλ
θ
2λ |11⟩ = ei

θ
2 |11⟩ = CRZ(θ)|11⟩.

This allows us to immediately conclude Anselmetti et al.’s conjecture:

Theorem 4.16 (Anselmetti’s No-Go Conjecture). The shift rule in Theo-

rem 4.11 is optimal, i.e. it is not possible to compute the gradient of gates with

generator eigenvalues −λ, 0, λ using less than four shifts.

Proof. Suppose there is such a gate U(θ) that admits a 3-term shift rule. But by

Lemma 4.15 this would also yield a 3-term rule for CRZ(θ) which we have shown is

not possible (Lemma 4.14).

Remark 4.17. This “proof by example” technique also generalises to the optimality

of other shift rules. As soon as we can prove that a shift rule is optimal for an

example gate, this immediately implies that the rule is optimal for all gates with the

same eigenvalues. This could be used to generalise this no-go theorem to capture the

cost of shift rules for all gates. The main difficulty lies in characterising for which

combinations of n and m the system in Lemma 4.9 is solvable.

4.3 Ancilla Recipes

One of the initial motivations for using the ZX calculus to study gradient recipes

was the hope that the graphical representation of derivatives might make it easier to

discover new recipes that possibly go beyond parameter shift rules. Generally, this

64 Gradient Recipes

requires decomposing the differentiation gadget into doubled maps. We have found

the following promising decomposition:

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

(wf)
=

π

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.

(2.16)
=

−f ′
n(θ)

−f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
. π

(sf ,pcy)
=

f ′
n(θ)

f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
. π π

(4.5)
=

1

2 sin(α)

(
f ′
n(θ)

f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
. α −α −

f ′
n(θ)

f ′
1(θ)

..
.

f ′
n(θ)

f ′
1(θ)

..
.α−α

)

=
1

2 sin(α)

(
doubled

(
f ′
n(θ)

f ′
1(θ)

..
. α

)
− doubled

(
f ′
n(θ)

f ′
1(θ)

..
. −α

))

(4.13)

Unfortunately, applying this decomposition to gates yields non-unitary terms in

general. The same holds true for other compositions of the gadget we investigated.

However, (4.13) suggests a general algorithm to compute gradients using ancillae.

We illustrate this on the example of two RZ gates. Note that

θ

θ

±α

(id ,sf)
=

θ

θ

±α

Thus, we can perform this computation on a quantum computer by preparing two

ancillae, i.e. extra qubits, in the state ±α ,4 connecting them to the original

qubits via CZs, and then performing post-selection. Post-selection means that we

measure and ignore all executions where the outcome is not the one specified in the

circuit. This allows us to perform non-unitary operations like the gradient above.

This yields a 2-term recipe for the gate above which would have required four terms

using the regular shit rules. Generally, any gate with n parametrised spider can be

4We discuss how to construct this state in Appendix A

4.3. Ancilla Recipes 65

differentiated this way using 2 terms and n ancilla qubits. However, note that each

term is more expensive to execute, requiring more shots to get accurate estimates

of the expectation value because of the post-selection. Furthermore, the linear re-

quirement of ancillae is a significant limitation of this rule since qubits are a very

scarce recourse on current quantum devices. Thus, while theoretically interesting,

the practical applicability of this rule is limited and shift rules should probably be

preferred.

Chapter 5

Barren Plateaus

After studying how gradients can be computed, we now turn to the question of how

the gradient landscape of quantum circuits looks like. A common challenge when

training PQCs using gradient-based methods is the so-called barren plateau phe-

nomenon. Roughly, it describes the problem that the gradient landscape of many

quantum circuits, unlike classical neural networks [40], flattens exponentially with

increasing circuit sizes. In other words, the probability that the gradient ∂⟨H⟩
∂θi

is non-

zero to some fixed precision is exponentially small with regards to the number of

qubits [10]. As a result of this, gradient-based optimisation becomes increasingly dif-

ficult or even numerically impossible. Thus, identifying and studying which circuits

exhibit this undesirable behaviour has been a major focus of QML research [10, 11].

Recently, Wang and Yeung proposed a new method to detect barren plateaus using

the ZXW-calculus [19]. However, they only demonstrate their method on a trivial

example circuit. In this chapter we apply their diagrammatic approach to ansätze

actually used in QML research (see Figure 5.1). After formally defining the barren

plateau phenomenon in Section 5.1 and the circuits we study in Section 5.2, we

introduce a technique to empirically detect barren plateaus in Section 5.3.

• We develop a tool using the QuiZX library [17] in Rust that automatically

5.1. Background 67

computes the variance of the expectation value gradients.

• We use the tool to numerically analyse 7 circuits used by Sim et al. [20] and

conclude that they likely all already have barren plateaus for a single layer

(Figures 5.3 and 5.4).

• We also study 3 IQP circuits, concluding that two of them likely have barren

plateaus while one does not (Figures 5.5, 5.6, and 5.7).

We verify our empirical hypotheses in Section 5.4 by diagrammatically proving the

existence of barren plateaus:

• We prove that the first Sim ansatz has barren plateaus even when only using

a single layer if we measure on Θ(n) qubits (Theorem 5.11) and derive similar

conditions for the second Sim ansatz (Theorem 5.12).

• We derive a general result that can be used to analyse any single-layer IQP

circuit for barren plateaus (Theorem 5.16) and apply it to prove the existence

of barren plateaus for 3 single-layer IQP ansätze (Theorem 5.18), including

the main ansatz used by the quantum natural language processing library

lambeq [21] (Theorem 5.19).

• We also prove that one of the IQP ansätze does not have barren plateaus for

any number of layers, with the variance converging to a constant in the limit

(Corollary 5.25).

Finally, we give a brief overview of barren plateau mitigation techniques presented

in the literature in Section 5.5.

5.1 Background

Consider a parametrised quantum circuit U(θ⃗) on n qubits and a Hamiltonian H.

We assume that the parameters of U are independently and uniformly distributed

over the interval [−π, π] since this is a common initialisation strategy. One can

68 Barren Plateaus

show that the mean gradient of U ’s expectation value with regards to H is zero

in that case, i.e. E
(
∂⟨H⟩
∂θi

)
= 0 [13]. Now, if furthermore Var

(
∂⟨H⟩
∂θi

)
≈ 0 then it

is likely that the training starts in a barren plateau where the gradient ∂⟨H⟩
∂θi

≈ 0.

Formally, we say that barren plateaus are present if Var
(
∂⟨H⟩
∂θi

)
∈ O

(
1

2poly(n)

)
, i.e.

the variance vanishes exponentially as a function of the number of qubits n. Then,

Chebyshev’s inequality implies that Pr
(∣∣∣∂⟨H⟩

∂θi

∣∣∣ ≥ ε
)

≤ Var
(
∂⟨H⟩
∂θi

)
/ε2. In other

words, the probability that the gradient ∂⟨H⟩
∂θi

is non-zero up to some precision ε is

exponentially small in n.

The barren plateau phenomenon was first studied by McLean et al. [10] who proved

that barren plateaus appear if an ansatz is sufficiently random such that its parametri-

sations match the uniform distribution of unitaries (the so-called Haar-measure) up

to the second moment, i.e. they form a unitary 2-design. The distance between the

distribution of unitaries generated by an ansatz and the Haar distribution can be

seen as a measure for ansatz expressivity since it captures how uniformly an ansatz

explores the unitary space [11, 20]. Sim et al. [20] studied the expressiveness of

several commonly used ansätze. We will analyse a selection of these in Section 5.3

and Section 5.4. Holmes et al. relate the existence of barren plateaus to the ex-

pressiveness of an ansatz [11], showing that more expressive ansätze have flatter

gradient landscapes. Concretely, they upper-bound the variance of the gradient in

terms of how far an ansatz is from a 2-design, implying a trade-off between ansatz

expressiveness and trainability. Interestingly, the existence of barren plateaus also

depends on the Hamiltonian H: If we only measure a subset of qubits (i.e. we use

a so-called local cost function), then some ansätze can avoid barren plateaus up to

logarithmic circuit depth in n [12].

Zhao and Gao [13] were the first to employ the ZX-calculus to analyse barren

plateaus. They express Var
(
∂⟨H⟩
∂θi

)
as a linear combination of diagrams with an

exponential number of terms, which they handle using tensor networks. Wang and

Yeung [19] improve on this by expressing the variance in a single diagram, allowing

5.1. Background 69

the analysis of barren plateaus to be carried out entirely within the framework of

ZX. They consider ansätze U(θ⃗) where each parameter only occurs a single time and

introduce the following notation for the expectation value:

⟨H⟩ = ⟨0|U †(θ⃗)HU(θ⃗)|0⟩ =
U

θ1 θm
...

..
. H..
.

U†

−θ1−θm
...

..
.

..
. =:

θ1

θm
⟨H⟩..

. −θ1

−θm

..
.

Since E
(
∂⟨H⟩
∂θi

)
= 0 (a diagrammatic proof of this is given as Lemma 25 in [19]), we

have

Var

(
∂⟨H⟩
∂θi

)
= E

((
∂⟨H⟩
∂θi

)2
)

=
1

(2π)m

∫ π

−π
...

∫ π

−π

(
∂⟨H⟩
∂θi

)2

dθ1...dθm.

Using their graphical integration approach, Wang and Yeung express those nested

integrals as the following diagram:

Theorem 5.1 (Wang and Yeung [19]).

Var

(
∂⟨H⟩
∂θi

)
=

⟨H⟩..
.

..
.

..
.

..
.

⟨H⟩..
.

..
.

..
.

..
.

π

π π

..
.

..
.

......

Parameter θi

Parameter θi

Proof. See Theorem 28 in [19].

However, Wang and Yeung only apply Theorem 5.1 to a small toy circuit with two

qubits and four parameters. In particular, they perform no actual barren plateau

analysis which would require computing the variance for an arbitrary number of

qubits n. The goal of this chapter is to apply Theorem 5.1 to ansätze that are used

in practice and characterise when barren plateaus show up.

70 Barren Plateaus

RX RY

RX RY

RX RY

RX RY

RX RY

RX RY

RX RY

RX RY

⊕
⊕

⊕ H RX

H RX

H RX

H RX

Sim1 Sim2 Sim9

RY

RY

RY

RY

RY

RY

RY

RY

RZ

RZ

RZ

RZ

⊕

⊕
⊕

RY

RY

RY

RY

RZ

RZ

RY

RY

Sim10 Sim11

RZ

RZ

RZ

RZ

RY

RY

RY

RY

RZ

RZ

RY

RY

RY

RY

RY

RY

⊕RY

RY

RY

RY ⊕
⊕

⊕
⊕

⊕

⊕
⊕

Sim12 Sim15

Figure 5.1: Circuits from Sim et al. [20] we study in this chapter. The numbering
follows Figure 2 in [20]. The dashed box indicates a single layer that can be repeated
multiple times where each layer has unique parameters. We omitted the parameters
in the RX , RY , and RZ gates for brevity.

5.2 Studied Ansätze

In this chapter, we perform barren plateau analyses for two different classes of

ansätze. First, we consider a selection of circuits studied by Sim et al. [20]. Con-

cretely, we analyse all ansätze for which Wang and Yeung’s [19] ZX-based variance

computation from Theorem 5.1 is applicable. They are depicted in Figure 5.1. The

remaining circuits in [20] use controlled rotation gates which (as we have proven in

Proposition 4.4) need at least two parametrised spiders to be implemented. Thus,

Theorem 5.1 does not apply there. Sim et al. [20] calculated the expressiveness of

their ansätze, which makes them interesting cases to study as they are good can-

didates to empirically test the expressiveness vs. trainability trade-off described by

Holmes et al [11].

5.2. Studied Ansätze 71

θ
..
.

θ1

..
.

θ2

θn/2

θ1

θ2

...

θn−1

IQP1 IQP2 IQP3

−θ1

θ1

θ2

...

−θn−1

θn−1

−θ2

IQP4

Figure 5.2: Various n-qubit IQP ansätze we study in this chapter given in ZX
notation. Similar to Figure 5.1, the dashed boxes can be repeated multiple times,
where each layer has unique parameters. Note that IQP2 is only defined for even n.

Secondly, we study instantaneous quantum polynomial (IQP) circuits. First intro-

duced in [61], IQPs consist of layers made up of diagonal gates, separated by columns

of Hadamards, i.e.

U(θ⃗1, ..., θ⃗ℓ) = D(θ⃗1) D(θ⃗2)..
.

H

H

..
.

H

H

D(θ⃗ℓ)..
.

H

H

... ..
.

H

H

where the blocks D(θ⃗i) only contain gates with diagonal matrices. Thus, all gates

that make up D(θ⃗i) commute with each other. Therefore, it does not matter in

which order they are executed which is the reason why this type of ansatz is called

instantaneous. Remarkably, classical weak simulation of IQP circuits has been shown

to be #P -hard [62, 63] and an efficient simulation algorithm would collapse the

polynomial hierarchy to the third level [64]. Thus, the simple structure of IQP

circuits already captures a quantum advantage, which makes them an interesting

class of circuits to study.

72 Barren Plateaus

For the purpose of this chapter, we use phase gadgets for the diagonal gates that

make up the blocks. This is motivated by the fact that they have an elegant rep-

resentation in ZX an can be nicely reasoned about. Concretely, Figure 5.2 shows

the IQP ansätze we study in this chapter. IQP1 and IQP2 are of more theoreti-

cal interest and will serve as demonstrations for our analytical techniques. On the

other hand, IQP3 has been suggested in [30] and IQP4 is the default ansatz for the

quantum natural language processing (QNLP) library lambeq [21]. Thus, the barren

plateau analysis for this ansatz is of great practical interest. Recalling (2.11), IQP4

can be seen as a ladder of CRZ gates. Also note that each parameter occurs twice

in IQP4 which means that Theorem 5.1 is not directly applicable. However, we can

still compute the variance in some special cases which we discuss in Section 5.4.6.

5.3 Numerical Barren Plateau Detection

In this section, we develop a method to empirically test ansätze for barren plateaus

by computing Var(∂⟨H⟩
∂θi

).

5.3.1 Method

Our numerical barren plateau detection method relies on the following representation

of the triangle in ZX calculus:

Lemma 5.2.

= 2

−π
4

−π
4

π
4

π
4

Proof. See Appendix C. ↓

This allows us to represent the variance from Theorem 5.1 as a Clifford+T diagram1

1A ZX diagram is Clifford+T if all spider phases are multiples of π
4
. The variance diagram is of

course only Clifford+T if the ansatz is (not considering parametrised spiders), but this is the case
for almost all ansätze used in practice.

5.3. Numerical Barren Plateau Detection 73

which in turn allows us to use the ZX contraction techniques from Kissinger et al. [65]

to compute the scalar represented by the diagram. Originally developed for classical

simulation of quantum circuits, they employ decompositions of so-calledmagic states

and cat states to successively simplify ZX diagrams leading to a runtime of O(2αt)

where α ≈ 0.396 and t is the number spiders with phase ±π
4 or ±3π

4 .

Thus, contracting the variance diagram from Theorem 5.1 using this method has

complexity O(24α(p−1)) where p is the number of parameters in the ansatz. While the

runtime scales exponentially, in practice the method is fast enough to handle a wide

range of ansätze. Concretely, all experiments in this section combined take roughly

two hours to run using a single core on a standard desktop computer equipped with

an Intel Core i7-8700k and 16Gb of RAM. Furthermore, the execution speeds up

linearly by utilising multiple CPU cores.

We implement the ansätze from Figure 5.1 and 5.2, and the variance diagram from

Theorem 5.1 in the Rust programming language using the QuiZX library [17]. Note

that QuiZX uses cyclotomic rational numbers [66] and has a special treatment for

powers of
√
2. Therefore, all scalars that occur during the ZX contraction can be

represented exactly, thus avoiding the imprecisions of floating point arithmetic.

Finally, we want to point out that one could also compute Var
(
∂⟨H⟩
∂θi

)
by computing

the gradient ∂⟨H⟩
∂θi

for many random parameter samples using the shift rules discussed

in Chapter 4 and then compute the numerical variance. However, this would require

actually running the circuit on a quantum device or simulator for a large number

of shots. Furthermore, this method only yields noisy estimates of the variance (in

particular when using a NISQ device) whereas our tool computes exact values for

Var
(
∂⟨H⟩
∂θi

)
.

5.3.2 Note on Zero Variance

Before discussing our numerical results, we remark that we sometimes observe

Var
(
∂⟨H⟩
∂θi

)
= 0, meaning that the gradient is constant. We show in Section 5.4.2

74 Barren Plateaus

2 4 6 8 10 12 14 16 18 20 22 24

Number of qubits n

2−23

2−19

2−15

2−11

2−7

2−3

V
a
r(∂
〈H
〉

∂
θ
1

)

Sim1

Sim2

Sim9

Sim10

Sim11

Sim12

Sim15

Figure 5.3: Gradient variance as function of qubits for a single layer of the different
Sim ansätze for the Hamiltonian H = Z⊗n. Concretely, the variance Var(∂⟨H⟩

∂θ1
) for

the first parameter θ1 (i.e. the top-left rotations in Figure 5.1) is plotted. Note that
the y-axis has a logarithmic scale.

that in those cases the gradient is actually zero, meaning that varying the parameter

θi does not change ⟨H⟩. A trivial example of this is using the Hamiltonian H = I⊗n,

i.e. performing no measurement. However, there are also non-trivial cases where

some parameters do not influence the expectation value. Training such parameters

is of course pointless. Therefore, we can exclude them from the barren plateau

analysis. See Remark 5.10 for more details on this.

5.3.3 Results

Sim Ansätze

We begin by analysing the Sim ansätze from Figure 5.1. Figure 5.3 shows the gradi-

ent variance for a single layer of the circuits when measuring with the Hamiltonian

H = Z⊗n. As we can see, the gradient variance of all ansätze seems to vanish expo-

nentially with increasing n. This suggests that the Sim ansätze have barren plateaus

for H = Z⊗n, even when using only a single layer.

However, note that Figure 5.3 only plots the gradient variance w.r.t. the first pa-

rameter θ1. It might be the case that other parameters do not vanish exponentially

5.3. Numerical Barren Plateau Detection 75

2 6 10 14 18 22

n

2−22

2−18

2−14

2−10

2−6

2−2

Variance for θ2

2 6 10 14 18 22

n

2−23

2−19

2−15

2−11

2−7

2−3

Variance for θ3

2 6 10 14 18 22

n

2−22

2−18

2−14

2−10

2−6

2−2

Variance for θ4

2 6 10 14 18 22

n

2−23

2−19

2−15

2−11

2−7

2−3

Variance for θ5

2 6 10 14 18 22

n

2−24

2−20

2−16

2−12

2−8

2−4

Variance for θ6

2 6 10 14 18 22

n

2−24

2−20

2−16

2−12

2−8

2−4

Variance for θ7

2 6 10 14 18 22

n

2−22

2−18

2−14

2−10

2−6

Variance for θ8

2 6 10 14 18 22

n

2−24

2−20

2−16

2−12

2−8

2−4

Variance for θ9

Sim1

Sim2

Sim9

Sim10

Sim11

Sim12

Sim15

Figure 5.4: Gradient variance for different parameters θi as a function of qubits for
a single layer of the different Sim ansätze for the Hamiltonian H = Z⊗n. We do not
plot points if the parameter does not exist or Var(∂⟨H⟩

∂θi
) = 0.

76 Barren Plateaus

which would make learning possible. To investigate this, we run the same experi-

ment for different parameters θi. The results are shown in Figure 5.4. As we can

see, as long as Var
(
∂⟨H⟩
∂θi

)
̸= 0 we get exponentially vanishing variances for all cases.

This leads us to stating the following hypothesis:

Hypothesis 5.3. For H = Z⊗n, all single-layer Sim ansätze from Figure 5.1 have

barren plateaus on all parameters.

This matches with the expressiveness results computed by Sim et al. [20]: All

ansätze in Figure 5.1 have a similar expressiveness for a single layer. Differences in

expressiveness only show up when additional layers are added, with some circuits

gaining more expressiveness by this than others. However, our experiments suggest

that even a single layer already suffices to generate barren plateaus.

We want to stress that just looking at graphs is of course not a proof for the existence

of a barren plateau. It could for example be the case that the curve in Figure 5.3

starts to flatten after some point n0 outside of the range we investigated. However,

the number of qubits used in QML experiments today is limited. Thus, in practical

terms, the variance behaviour for small n is most relevant to make statements about

the trainability of ansätze. Here, our experiments suggest that the Sim ansätze

scale badly and might benefit from using barren plateau mitigation techniques (see

Section 5.5).

While our empirical results are of practical use, there is also significant value in for-

mal statements regarding the existence of barren plateaus. We turn to this question

in Section 5.4 where we formally analyse Sim1, Sim2, and Sim9 and prove Hypothe-

sis 5.3 for those three ansätze. Furthermore, we generalise to arbitrary Hamiltonians,

moving beyond the case H = Z⊗n considered here.

5.3. Numerical Barren Plateau Detection 77

2 4 6 8 10 12 14 16 18 20 22 24

Number of qubits n

2−20

2−15

2−10

2−5

20

V
a
r(∂
〈H
〉

∂
θ
1

)

IQP1

IQP2

IQP3

Figure 5.5: Gradient variance as a function of qubits for a single layer of the different
IQP ansätze. We do not plot points if Var(∂⟨H⟩

∂θi
) = 0.

IQP Ansätze

We run similar experiments for a single layer of IQP1, IQP2, and IQP3.
2 How-

ever, while we still use the Hamiltonian H = Z⊗n for IQP1, we use an alternating

Hamiltonian H = Y ⊗ X ⊗ Y ⊗ X... for IQP2 and IQP3. This is because we get

Var(∂⟨H⟩
∂θi

) = 0 otherwise.3 The results are shown in Figure 5.5. Similar to the Sim

ansätze, IQP2 and IQP3 appear to have exponentially vanishing gradient variances.

Surprisingly, rerunning the experiment for different parameters θi yields the exact

same numerical variance values.4 Thus, we make the following hypothesis:

Hypothesis 5.4. A single layer of IQP2 and IQP3 has barren plateaus on all pa-

rameter for H = Y ⊗X ⊗ Y ⊗X....

However, the more interesting observation from Figure 5.5 is that the gradient vari-

ance of IQP1 does not vanish. To investigate whether using more than one layer

makes a barren plateau appear, we rerun the IQP1 experiment for increasing num-

bers of layers. But the results in Figure 5.6 show that this is not the case. While

adding more layers changes the variance, it stays constant with increasing n. Fi-

nally, we plot the variance for n = 3 as a function of ℓ in Figure 5.7. As we can see,

2We cannot apply our method to IQP4 since multiple spiders share the same parameter, however
we will derive some theoretical results in Section 5.4.6.

3For a theoretical explanation of this see the proof of Theorem 5.18.
4We will prove later that this is in fact true for all single layer IQP ansätze (see Theorem 5.16

and Remark 5.17).

78 Barren Plateaus

2 6 10 14 18 22

n

0.24

0.25

0.26

V
a
r(∂
〈H
〉

∂
θ
1

)

` = 2

IQP1

2 6 10 14 18 22

n

0.36

0.38

` = 3

IQP1

2 6 10 14 18 22

n

0.30

0.32

` = 4

IQP1

Figure 5.6: Gradient variance of IQP1 as a function of qubits for different number

of layers ℓ. We do not plot points if Var(∂⟨H⟩
∂θi

) = 0.

1 3 5 7 9 11 13 15 17 19

Number of layers `

0.3

0.4

0.5

V
a
r(∂
〈H
〉

∂
θ
1

)

n = 3

IQP1

Figure 5.7: Gradient variance of IQP1 as a function of layers for n = 3.

the variance seems to converge with increasing ℓ. To summarise, we can make the

following hypothesis:

Hypothesis 5.5. IQP1 does not have barren plateaus for H = Z⊗n. More specifi-

cally, the variance for θ1 is constant in n and converges for ℓ→ ∞.

Again following the trade-off described by Holmes et al. [11], this observation might

be explained by the fact that IQP1 is a very simple ansatz with limited expressive-

ness.

We will prove both Hypothesis 5.4 and Hypothesis 5.5 in in the next section (see

Theorem 5.18 and Corollary 5.25).

5.4. Analytical Barren Plateau Detection 79

5.4 Analytical Barren Plateau Detection

After investigating the gradient landscape of ansätze numerically, we now turn to the

formal analysis of barren plateaus using Theorem 5.1. For this, we introduce a bit

of terminology to refer to the structure of the variance diagram from Theorem 5.1:

Note that it is made up of two main building blocks which we call cycles:

π

π π

The left cycle is plugged into the positions corresponding to the variance parameter

θi. The right cycle with the triangle is plugged into every other position, corre-

sponding to parameters θj with j ̸= i. The remainder of this section will largely

be concerned with simplifying those kinds of cycles for different expectation value

diagrams plugged in the middle. This will allow us to contract the diagram and

obtain a numerical value for the variance as a function of n or ℓ.

We make use of the following two lemmas throughout this section:

Lemma 5.6. For all x, y ∈ {0, 1} we have

xπ yπ

π

α
...

..
.

..
.

= xπ yπ

α + π
...

π

..
.

..
. α β

π

xπ
...

..
.

..
.

= α β

π

xπ + π
...

..
.

..
.

(5.1)

Proof. See Appendix C. ↓

Lemma 5.7.

α β

π

π

..
.

..
.

..
. = eiα β − α

π

π

..
.

..
.

π

π

..
.

..
.

..
. n = 2n−1

π

π

..
.

..
. (5.2)

Proof. See Appendix C. ↓

80 Barren Plateaus

5.4.1 Introductory Example

Before discussing the Sim and IQP ansätze, we first show how to diagrammatically

compute the variance of a smaller example ansatz:

U(θ1, θ2) = ... n

θ1 θ2

For the Hamiltonian H = X⊗n, we get the following expectation value:

⟨H⟩ = ...
π

π

π

...

θ1 θ2 −θ2 −θ1

=

...
π

π

π

θ1

θ2

...

−θ1

−θ2

(cc,sf ,id)
=

1

2n

...

π

π

π

θ2 −θ2

θ1 −θ1

(cc)
=

1

4n

...

π

π

π
θ2 −θ2

θ1 −θ1

(cc)
=

2n−1

4n

...

π

π

π
θ2 −θ2

θ1 −θ1

(sf)
=

1

2n+1

...

π

π

πθ2 −θ2

θ1 −θ1

... ...

(5.1)
=

1

4
nπθ2 −θ2

θ1 −θ1

... ...

π

(ho)
=





1
4

θ2 −θ2

θ1 −θ1π

if n is even

1
4

πθ2 −θ2

θ1 −θ1π

if n is odd

5.4. Analytical Barren Plateau Detection 81

(sf)
=





0 if n is even

1
4

πθ2 −θ2

θ1 −θ1π

if n is odd

If n is even, we have ⟨H⟩ = 0 and thus ∂⟨H⟩
∂θ1

= ∂⟨H⟩
∂θ2

= 0 such that Var
(
∂⟨H⟩
∂θ1

)
=

Var
(
∂⟨H⟩
∂θ2

)
= 0. If n is odd, we can calculate the variance of ∂⟨H⟩

∂θi
diagrammatically

using Theorem 5.1:

Var

(
∂⟨H⟩
∂θ1

)
=

1

16

π

π π

π

π

π

π

(sf ,5.1)
=

1

16

π

π

π

π

π

π

π

π

(id ,π,sf)
= − 1

16

π

π

π

π
(sf ,id)
= −1

8 π

π

π

π

(cc)
= −1

8 π

π

π

π (π,sf)
= −1

8
π

π

(sf ,ho)
= −1

8
π

π

(tri)
= −1

8 π

π

= −1

8
· (−1) · 2 =

1

4

Similarly, for ∂⟨H⟩
∂θ2

we get

Var

(
∂⟨H⟩
∂θ2

)
=

1

16

π

π π

π

π

π

π

(id ,cc)
=

1

32

π

π π

π

π

π

π

82 Barren Plateaus

(cc)
=

1

32

π

π π

π

π

π

π

(sf)
=

1

32

π

π

π

π

π

(5.2)
=

1

16
π π

π

π
(5.2)
=

1

8

π

π

(sf ,ho)
=

1

8

π

π

(5.1,cp,sf)
=

1

8

π

π

π

π

=
1

4

π

π

=
1

4
· 1 · 1 =

1

4

In both cases, the variance of the gradient does not vanishes exponentially. Thus,

we can conclude that the barren plateau phenomenon does not appear in this ansatz

when measuring using the Hamiltonian H = X⊗n. The diagrammatic calculation

in this example was relatively straightforward since the ansatz U(θ1, θ2) has a fixed

number of parameters, independent of the number of qubits n. Next, we will consider

ansätze where the number of parameters increases when increasing n.

5.4.2 Sim 1

A single layer of Sim1 can be represented in the ZX-calculus as

Sim1(θ⃗) =
θ1
1 θ2

1

θ1
n θ2

n

..
.

Given some Hamiltonian H, the corresponding expectation value is given by

⟨H⟩ =
θ1
1 θ2

1

θ1
n θ2

n

..
. H

−θ1
1−θ2

1

−θ1
n−θ2

n

..
. (sf ,cc)

=
1

2n

θ1
1

θ2
1

θ1
n

θ2
n

..
.

θ1
1

θ2
1

θ1
n

θ2
n

..
.H

5.4. Analytical Barren Plateau Detection 83

(sf ,id)
=

1

2n

θ1
1

θ2
1

θ1
n

θ2
n

..
.

θ1
1

θ2
1

θ1
n

θ2
n

..
.H

Recall that each Hamiltonian can be written as a sum of Pauli strings {X,Y, Z, I}⊗n.

Thus, it suffices to compute Var
(
∂⟨H⟩
∂θi

)
forH = P1⊗...⊗Pn where Pj ∈ {X,Y, Z, I}.

To make the following derivations more concise, we represent all three cases in a

single diagram

Pj = iajbj ajπ bjπ

where

aj =

{
1 if Hj = Y, Z

0 if Hj = X, I
bj =

{
1 if Hj = X,Y

0 if Hj = Z, I.

Thus, we can write the expectation value as

⟨H⟩ =
i
∑

ajbj

2n

θ1
1

θ2
1

θ1
n

θ2
n

..
.

θ1
1

θ2
1

θ1
n

θ2
n

a1π b1π

anπ bnπ

Next, we consider the different types of cycles that show up in the variance diagram:

Lemma 5.8. We have

(−1)aibi
aiπ biπ

aiπ biπ

π π

π

=





0 if Hi = I

1 if Hi = Y,X

2 if Hi = Z

(−1)aibi
aiπ biπ

aiπ biπ
π π

π

=

{
0 if Hi = Z, I

1 if Hi = X,Y

84 Barren Plateaus

(−1)aibi
aiπ biπ

aiπ biπ

=





1 if Hi = X

2 if Hi = Z, Y

4 if Hi = I

Proof. See Appendix C. ↓

This leads to the following result regarding the variance of the gradients:

Fact 5.9. Let hP = |{Hj | Hj = P, j ∈ {1, ..., n} \ {i}}| be the number of times the

Pauli P ∈ {X,Y, Z, I} occurs in H, excluding the position Hi. Then

Var

(
∂⟨H⟩
∂θ1i

)
=





0 if Hi = I
1
4n · 2hZ+hY · 4hI if Hi = X,Y
2
4n · 2hZ+hY · 4hI if Hi = Z

Var

(
∂⟨H⟩
∂θ2i

)
=

{
0 if Hi = Z, I
1
4n · 2hZ+hY · 4hI if Hi = X,Y

Proof. We start with the first equation where the gradient is w.r.t. θ1i . By Theo-

rem 5.1, Var
(
∂⟨H⟩
∂θ1i

)
is given by

(−1)
∑

ajbj

aiπ biπ

aiπ biπ

π π

π

a1π b1π

a1π b1π

..
.

..
.

anπ bnπ

anπ bnπ

..
.

..
.

... ...

..
.

..
.

5.4. Analytical Barren Plateau Detection 85

Note that the different cycles are not connected with each other, which means we

can arrange them as follows:

(−1)
∑

ajbj

aiπ biπ

aiπ biπ

π π

π

a1π b1π

a1π b1π

anπ bnπ

anπ bnπ

...

BA

By Lemma 5.8, we have

A =





0 if Hi = I

1 if Hi = Y,X

2 if Hi = Z

B =

n∏

j=1
j ̸=i





1 if Hj = X

2 if Hj = Z, Y

4 if Hj = I

= 1hX · 2hZ+hX · 4hI

such that A · B corresponds to desired equation. The proof for Var
(
∂⟨H⟩
∂θ2i

)
is anal-

ogous.

Remark 5.10. One might wonder why the variance is zero in some of the cases. If

Hi = I, this corresponds to performing no measurement on qubit i. In this case, the

value ⟨H⟩ actually does not depend on θ1i and θ2i since

θ1
i θ2

i −θ1
i−θ2

iI = θ1
i θ2

i −θ1
i−θ2

i

(sf)
= .

Therefore, we have ∂⟨H⟩
∂θ1i

= ∂⟨H⟩
∂θ2i

= 0 and thus Var
(
∂⟨H⟩
∂θ1i

)
= Var

(
∂⟨H⟩
∂θ2i

)
= 0.

Similarly, if Hi = Z we have

θ1
i θ2

i −θ1
i−θ2

iZ = θ1
i θ2

i −θ1
i−θ2

iπ
(sf)
= θ1

i −θ1
iπ

such that θ2i does not contribute to the expectation value and thus Var
(
∂⟨H⟩
∂θ2i

)
= 0.

86 Barren Plateaus

Finally, Fact 5.9 immediately yields the condition for Sim1 to have a barren plateau:

Theorem 5.11. The barren plateau phenomenon appears in Sim1 if we measure on

Θ(n) qubits. In particular, this implies Hypothesis 5.3 for Sim1.

Proof. By Fact 5.9, the variance for all parameters (ignoring the scalar 2 in the

case θ1i) is either 0 or

2hZ+hY · 4hI

4n
=

1

22n−hZ−hY −2hI
=

1

22hX+hY +hZ

Since we measure on Θ(n) qubits, we must have 2hX + hY + hZ = Θ(n) such that

the variance vanishes exponentially.

5.4.3 Sim 2

A single layer of Sim2 can be represented in the ZX-calculus as

Sim2(θ⃗) =

θ1
1 θ2

1

θ1
3 θ2

3

..
.

θ1
n θ2

n

...

θ1
1 θ2

1

Using the same representation for a Hamiltonian H as in Section 5.4.2, we can write

the expectation value as

⟨H⟩ = i
∑

ajbj

b1πa1π

b2πa2π

bnπanπ

..
.

θ1
1 θ2

1

θ1
3 θ2

3

..
.

θ1
n θ2

n

...

θ1
1 θ2

1

−θ1
1−θ2

1

−θ1
3−θ2

3

..
.

−θ1
n−θ2

n

...

−θ1
1−θ2

1

b3πa3π

(π,sf)
= i

∑
ajbj

(
∑1

j=1 aj)π

(
∑2

j=1 aj)π

(
∑n

j=1 aj)π

..
.

θ1
1 θ2

1

θ1
3 θ2

3

..
.

θ1
n θ2

n

...

θ1
1 θ2

1

−θ1
1−θ2

1

−θ1
3−θ2

3

..
.

−θ1
n−θ2

n

...

−θ1
1−θ2

1

(
∑3

j=1 aj)π

(
∑n

j=1 bj)π

(
∑n

j=2 bj)π

(
∑n

j=n bj)π

(
∑n−2

j=3 bj)π

5.4. Analytical Barren Plateau Detection 87

(sf ,ho,id)
= i

∑
ajbj

(
∑n

j=1 bj)π(
∑1

j=1 aj)π

(
∑n

j=2 bj)π(
∑2

j=1 aj)π

(
∑n

j=n bj)π(
∑n

j=1 aj)π

..
.

θ1
1 θ2

1

θ1
3 θ2

3

..
.

θ1
n θ2

n

θ1
1 θ2

1

−θ1
1−θ2

1

−θ1
3−θ2

3

..
.

−θ1
n−θ2

n

−θ1
1−θ2

1

(
∑n−2

j=3 bj)π(
∑3

j=1 aj)π

Notice that this diagram has the same shape as the expectation value for Sim1. In

fact, the only difference is the Hamiltonian in the middle, which in this case is given

by

H ′
i =




n∑

j=i

bj


X ·




i∑

j=1

aj


Z.

In other words, ⟨H⟩Sim2 = ⟨H ′⟩Sim1 . Thus, we can use Theorem 5.11 to characterise

the barren plateaus in Sim2:

Theorem 5.12. The barren plateau phenomenon appears in Sim2 if H ′
i ̸= I at Θ(n)

positions. In particular, this implies Hypothesis 5.3 for Sim2.

Proof. Follows from Theorem 5.11. Note that for H = Z⊗n we have H ′ = Z ⊗ I ⊗

Z ⊗ I... such that the theorem applies and Hypothesis 5.3 is true.

5.4.4 Sim 9

Sim9 can be represented in the ZX-calculus as

Sim9(θ⃗) =
√
2
n−1

..
.

θ1

θ2

θ3

θn

..
.

yielding the expectation value

⟨H⟩ = 2n−1i
∑

ajbj

..
.

θ1

θ2

θ3

θn

..
.

−θ1

−θ2

−θ3

−θn

b1πa1π

b2πa2π

bnπanπ

..
.

b3πa3π

88 Barren Plateaus

(cc,sf)
=

i
∑

ajbj

2

θ1

θ2

θ3

θn

−θ1

−θ2

−θ3

−θn

b1πa1π

b2πa2π

bnπanπ

..
.

b3πa3π

(sf ,cc)
=

i
∑

ajbj

2n+1

θ1

θ2

θ3

θn

−θ1

−θ2

−θ3

−θn

b1πa1π

b2πa2π

bnπanπ

..
.

b3πa3π

..
.

..
.

As before, we consider how the cycles simplify:

Lemma 5.13. We have

(−1)aibi
biπaiπ

......

biπaiπ

π

ππ

=





0 if Hi = I,X

...
π π

...

...
ππ

...

if Hi = Y,Z

(−1)aibi
biπaiπ

......

biπaiπ
=





4
biπ

......

biπ

......

if Hi = I,X

2
ππ

...
ππ

...

......

if Hi = Y, Z

Proof. See Appendix C. ↓

Unfortunately, this makes it difficult to give a closed-form expression of the gradient

variance in terms of a general Hamiltonian H as we have done in Fact 5.9. However,

we can easily investigate concrete instances. For example we can verify Hypothesis

Hypothesis 5.4 for Sim9:

Theorem 5.14. Hypothesis 5.3 holds for Sim9, i.e. Sim9 has barren plateaus for

H = Z⊗n.

Proof. By Theorem 5.1, we have

5.4. Analytical Barren Plateau Detection 89

Var

(
∂⟨H⟩
∂θi

)
=

1

22n+2

π

π

π

..
...
.

..
.

..
.

..
.

..
.

π

π

π

..
.

..
.

..
.

..
.

..
...
.

π π

π

......

..
.

..
.

Using Lemma 5.13, we can simplify this to

2n−1

22n+2

π π

π π

..
.

..
.

..
.

..
.

π π

..
.

..
.

..
.

..
.

π π

π π

Position i

(2.14)
=

2n−1

23n+2

∑

x⃗∈{0,1}n

x1πx1π x1π + π x1π + π

x2πx2π x2π + π x2π + π

..
.

..
.

..
.

..
.

xiπxiπ + π xiπ + π xiπ

..
.

..
.

..
.

..
.

xnπxnπ xnππ xnπ + π

Each of those “lines” can only represent the scalars 0, ±1, and ±2. Thus

Var

(
∂⟨H⟩
∂θi

)
≤ 2n−1

23n+2

∑

x⃗∈{0,1}n
16 =

2n−1

23n+2
· 2n · 16 =

1

2n−1

such that we have a barren plateau.

5.4.5 Single-Layer IQP Ansätze

After discussing some of the Sim ansätze, we now move to IQPs. In this section, we

prove a general result that allows us to compute the gradient variance of any single-

90 Barren Plateaus

layer IQP circuit with single parameter occurrences. To motivate our approach, we

first look at an example IQP circuit:

U(θ⃗) =

θ1 θ2 θ3

(5.3)

The corresponding diagram for the expectation value is given by

⟨H⟩ = i
∑

ajbj

θ1 θ2 θ3 −θ1−θ2−θ3

b1πa1π

b2πa2π

b3πa3π

b4πa4π

(cc,hh)
=

i
∑

ajbj

24

θ1 θ2 θ3 −θ1−θ2−θ3

b1πa1π

b2πa2π

b3πa3π

b4πa4π

(π,sf)
=

i
∑

ajbj

24

θ1 θ2 θ3

(a2 + a3 + a4)π(a1 + a3 + a4)π(a2 + a3)π

−θ1−θ2−θ3

b1π

b2π

b3π

b4π

(sf)
=

i
∑

ajbj

24

θ1

θ2

θ3

(a2 + a3 + a4)π

(a1 + a3 + a4)π

(a2 + a3)π

−θ1

−θ2

−θ3

b1π

b2π

b3π

b4π

The main insight is that the cycles for diagrams of this shape simplify nicely:

Lemma 5.15. The cycles from single-layer IQP circuits simplify as follows:

5.4. Analytical Barren Plateau Detection 91

bi1π

bimπ

...

...

bi1π

bim

...

...

π

ππ

..
.

..
.

= 0

bi1π

bimπ

...

...

π

bi1π

bim

...

...

π

π

ππ

..
.

..
.

=

bi1π

bimπ

...

...

bi1π

bimπ

...

...

π

..
.

..
.

bi1π

bimπ

...

...

bi1π

bim

...

...

..
.

..
.

=

bi1π

bimπ

...

...

..
.

bi1π

bimπ

...

...

..
.

bi1π

bimπ

...

...

π

bi1π

bim

...

...

π
..
.

..
.

=

bi1π

bimπ

...

...

bi1π

bimπ

...

...

π

..
.

..
.

Proof. See Appendix C. ↓

To illustrate the application of Lemma 5.15, we show how to compute Var
(
∂⟨H⟩
∂θ2

)
for

the example circuit (5.3) for the Hamiltonian H = X⊗Z⊗X⊗Y which corresponds

to a1 = b2 = a3 = 0 and b1 = a2 = b3 = b4 = a4 = 1 yielding the expectation value

⟨H⟩ =
i

24

θ1

θ2

θ3

π

π

−θ1

−θ2

−θ3

π

π

π

(5.4)

Invoking Theorem 5.1 we get the following diagram for Var
(
∂⟨H⟩
∂θ2

)
:

92 Barren Plateaus

− 1

28

π

π

π

π

π

π

π

π

π

π

π

π π

(Lem. 5.15)
= − 1

28

π

π

π

π

π

π

π

π

π

(Lem. 5.15)
= − 1

28

π

π

π

π

π

π

π

π

π
(Lem. 5.15)

= − 1

28

π

π

π

π

π

π

π

π

(cp,sf)
= − 1

28

π

π

π

π

π

π

π

(cp,sf)
=

1

28
=

1

4

Generalising to arbitrary IQPs

Following the technique from the example circuit, we can compute the variance for

arbitrary single-layer IQP circuits. In the general case, our ansatz U(θ⃗) consists of

m phase gadgets, given by exponentials of Pauli strings P1, ..., Pm ∈ {I, Z}⊗n:

U(θ⃗) = P 1
1

Pn
1

..
.

P 1
m

Pn
m

..
....

θ1 θm

5.4. Analytical Barren Plateau Detection 93

Furthermore fix a Hamiltonian H and define

ki =
∑

1≤j≤n

P j
i =Z

aj

such that

⟨H⟩ = i
∑

ajbj P 1
1

Pn
1

..
.

P 1
m

Pn
m

..
....

θ1 θm

P 1
1

Pn
1

..
.

P 1
m

Pn
m

..
. ...

−θ1−θm

a1π a1π

a1π a1π

(cc,hh)
=

i
∑

ajbj

2n
P 1
1

Pn
1

..
.

P 1
m

Pn
m

..
....

θ1 θm

P 1
1

Pn
1

..
.

P 1
m

Pn
m

..
. ...

−θ1−θm

a1π b1π

a1π b1π

(π,sf)
=

i
∑

ajbj

2n
P 1
1

Pn
1

..
.

P 1
m

Pn
m

..
....

θ1 θm

P 1
1

b1π

k1π

Pn
1

bnπ

..
.

P 1
m

kmπ

Pn
m

..
. ...

−θ1−θm

(sf)
=

i
∑

ajbj

2n

b1π

..
.

biπ

..
.

kjπθj −θj

Qubit where Pj has a leg

Connect all ±θj
spiders as follows:

..
.

..
.

b1π ..
.

..
.

Compare this with (5.4): The green spiders in the middle represent one qubit each.

Furthermore, we get pink spiders on the left and right side for each parameter θj .

Those pink spiders are connected to all the qubits where the gadget associated with

θj has legs.

This leads to the following characterisation of the variance:

94 Barren Plateaus

Theorem 5.16. If ki = 0, then Var
(
∂⟨H⟩
∂θi

)
= 0. If ki = 1, then

Var

(
∂⟨H⟩
∂θi

)
=

(−1)
∑n

j=1 ajbj

4n

b1π

bnπ

..
.

..
.

Qubit where Pj has a leg

b1π

bnπ

..
.

blπblπ

..
.

π

For all j with kj = 1:

..
.

..
.

..
.

..
.

...

...

blπblπ

...

...

...

...

Proof. Follows by simplifying the cycles in the variance diagram according to

Lemma 5.15.

Remark 5.17. A remarkable consequence of Theorem 5.16 is that the variance for

every parameter is either zero, or the same as all other parameters with non-zero

variance. Thus, when determining whether an ansatz exhibits the barren plateau

phenomenon, it suffices to look at a single parameter whose gradient has non-zero

variance.

Using Theorem 5.16, we can analyse the IQP ansätze for barren plateaus:

Theorem 5.18. Hypothesis 5.4 is true, i.e. we get the following results for single-

layer IQPs:

• IQP1 does not have barren plateaus.

• IQP2 has barren plateaus for H = (Y ⊗X)⊗n/2.

• IQP3 has barren plateaus for H = (Y ⊗X)⊗n/2.

Proof.

• IQP1: If k =
∑
aj = 0, we get Var

(
∂⟨H⟩
∂θ

)
= 0. If k = 1, Theorem 5.16 gives

us

5.4. Analytical Barren Plateau Detection 95

Var

(
∂⟨H⟩
∂θ

)
=

(−1)
∑

ajbj

4n

b1π

b2π

bnπ

..
.

π

b1π

b2π

bnπ

..
.

(cp,sf)
=

(−1)
∑

ajbj

4n
(−1)b1

(b1 + b2)π

(b1 + bn)π

..
.

(b1 + b2)π

(b1 + bn)π

..
.

This is either 0, or 1
2 . Thus, the variance does not vanish exponentially.

• IQP2: For IQP2, we have k1 = a1 + a2, k2 = a3 + a4, ..., kn/2 = an−1 + an. By

Theorem 5.16 we get Var
(
∂⟨H⟩
∂θi

)
= 0 if ki is even. Otherwise

Var

(
∂⟨H⟩
∂θi

)
=

(−1)
∑

ajbj

4n

..
.

b3π

b4π

..
.

b3π

b4π
π

bn−1π

bnπ

bn−1π

bnπ
π

b1π

b2π

b1π

b2π
π

exists if k1 is odd, i.e. a1 ̸= a2

exists if k2 is odd, i.e. a3 ̸= a4

exists if kn/2 is odd, i.e. an−1 ̸= an

where the pink spiders only exist if the annotated condition is met. Concretely,

forH = (Y ⊗X)⊗n/2 we have a1 = a3 = ... = an−1 = 1, a2 = a4 = ... = an = 0,

bj = 1 for all j and hence

Var

(
∂⟨H⟩
∂θi

)
=

(−1)n/2

4n

(
π

π

π

π
π

)n/2
(cp)
=

(−1)n/2

4n

(
−

)n/2

=
8n/2

4n
=

1

2n/2
.

Note that this exactly matches with the numerical data from Figure 5.5. We

conclude that we have a barren plateau.

• IQP3: Again, Theorem 5.16 yields

96 Barren Plateaus

Var

(
∂⟨H⟩
∂θi

)
=

(−1)⌊n/2⌋

4n

π

π

π

π

π

π

π

π

π

π

π

π

π

..
.

..
.

(cp,sf)
= −(−1)⌊n/2⌋

4n

π

π

π

π

π

π

π

π

..
.

..
.

(cp,sf)
= −(−1)⌊n/2⌋

4n

π

π

π
π

π

π

π

..
.

..
. = ... =

1

4n

..
.

π only if n is odd

Thus, if n is odd we get variance 0. If n is even we get variance 2n

4n = 1
2n . This

exactly matches with the numerical data from Figure 5.5. Thus, we have a

barren plateau.

5.4.6 Dealing with multiple parameter occurrences

The biggest limitation to the current ZX based analysis of barren plateaus is the

fact that Theorem 5.1 only applies if each parameter occurs once in the diagram.

However, many circuits of interest (for example IQP4) require multiple spiders with

the same parameter. Ideally, one would want alternate versions of Theorem 5.1

that support all possible combinations of parameter occurences. This would require

extending and generalising the integration results by Wang an Yeung [19]. While this

is principally possible using the summing technique from [18], the main challenge is

finding a representation that is amenable to rewriting and offering a way to break

up cycles.

In this section, we describe a trick that can sometimes be used instead to compute

variances using Theorem 5.1, even if parameters occur multiple times. The idea

is that in some special cases, one can choose a Hamiltonian for which the extra

parameter occurrences cancel out. We demonstrate this using the IQP4 ansatz with

the Hamiltonian H = Z⊗n. In this case, we can rewrite the expectation value as

follows:

5.4. Analytical Barren Plateau Detection 97

⟨H⟩ =

θ1

θ2

..
.

−θn−1

θn−1

−θ1

−θ2

−θn−2

π

π

π

π

π

−θ1

−θ2

..
.

θn−1

−θn−1

θ1

θ2

θn−2

(cc)
=

θ1

θ2

...

−θn−1

θn−1

−θ1

−θ2

−θn−2

π

π

π

π

π

−θ1

−θ2

..
.

θn−1

−θn−1

θ1

θ2

θn−2

(sf ,π)
=

θ1

θ2

..
.

−θn−1

θn−1

−θ1

−θ2

−θn−2

π

π

π

π

π

−θ1

−θ2

..
.

−θn−1

..
.

θn−1

θ1

θ2

θn−2

(Lem. 2.12)
=

..
.

−θn−1

−θ1

−θ2

−θn−2

π

π

π

π

π

..
.

θn−1

θ1

θ2

θn−2

(cp,sf)
=

..
.

−θn−1

−θ1

−θ2

−θn−2

π

π

π

π

π

..
.

θn−1

θ1

θ2

θn−2

= ..
.

−θn−1

−θ1

−θ2

−θn−2

π

π

π

π

..
.

θn−1

θ1

θ2

θn−2

Thus, we got rid of all two-legged phase gadgets. This is now amenable for barren

plateau analysis using Theorem 5.1 and Lemma 5.15:

Theorem 5.19. The barren plateau phenomenon appears in IQP4 for H = Z⊗n.

Proof. By Theorem 5.1 and Lemma 5.15, we have

Var

(
∂⟨H⟩
∂θi

)
=

1

4n−1 ..
.

..
.

π

π

n− 1
(cp,sf)
=

1

4n−1 ..
. n− 1 =

2n−1

4n−1
=

1

2n−1
.

98 Barren Plateaus

5.4.7 Commuting Multi-Layer IQP Ansätze

So far, we only studied single-layered circuits. In this section we analyse a special

case where the multi-layers analysis of IQPs is straightforward. Note that since the

layers are separated by Hadamards, we can view multi-layer IQPs as alternating

layers of Z- and X-Pauli exponentials. For example, consider IQP2 for an even

number of layers:

IQP2(θ⃗) =

θ1
1

..
.

θ1
n/2

θ2
1

..
.

θ2
n/2

θℓ
1

..
.

θℓ
n/2

...

...

=

X

X

θ1
1

Z

Z

θ2
1

Z

Z

θℓ
1

...

X

X

θ1
n−1

Z

Z

θ2
n−1

Z

Z

θℓ
n−1

...

..
.

..
.

..
.

X

X

θ3
1

X

X

θ3
n−1

..
.

Recalling the commutation properties of Pauli boxes (see Lemma 2.10), we see that

X- and Z-layers commute with each other for this ansatz. In this special case,

computing the variance is actually not difficult since we can fuse all odd and even

layers together via Lemma 2.9:

IQP2(θ⃗) =

X

X

θ1
1 + θ3

1 + ...

Z

Z

X

X

θ1
n−1 + θ3

n−1 + ...

Z

Z

..
.

..
.

θ2
1 + θ4

1 + ...

θ2
n−1 + θ4

n−1 + ...

As a result, an ℓ-layer IQP2 circuit with even ℓ5 is equivalent to a 2-layer IQP2

circuit. The barren plateau analysis in this case is straightforward:

5We focus on the case where ℓ is even. For odd ℓ, the derivations are orthogonal, noting that
the fused second layer will not have Hadamards at the end.

5.4. Analytical Barren Plateau Detection 99

Theorem 5.20. The barren plateau phenomenon appears in IQP2 for H = (Z ⊗

Y)⊗n/2 for any number of layers.

Proof. As discussed before, it suffices to consider the case ℓ = 2. The expectation

value is given by

⟨H⟩ =

θ1
1

..
.

θ1
n/2

θ2
1

..
.

θ2
n/2

−θ1
1

..
.

−θ1
n/2

−θ2
1

..
.

−θ2
n/2

π

π

π

π

π

π

(cc,π,sf)
=

1

4n

θ1
1

..
.

θ1
n/2

θ2
1

..
.

θ2
n/2

π

π

π−θ1
1

..
.

π

π

π−θ1
n/2

−θ2
1

..
.

−θ2
n/2

(2.12)
=

1

4n

θ1
1

..
.

θ1
n/2

..
.

π

π

π−θ1
1

..
.

π

π

π−θ1
n/2

(cp,sf ,id ,hh)
=

1

4n

θ1
1

..
.

θ1
n/2

π

π

π −θ1
1

π

π

π −θ1
n/2

This allows us to use Lemma 5.15 to remove the cycles showing up during the

variance calculation via Theorem 5.16. Concretely, we get

Var

(
∂⟨H⟩
∂θ1i

)
=

(−1)n/2

4n

..
.

π

π

..
.

π

π
π

π

π

π

π
π

n/2
(cp,sf)
=

1

4n

..
. n/2 =

8n/2

4n
=

1

2n/2
.

Thus, we have a barren plateau.

This result is not surprising since we showed that the single-layer version of IQP3

already has barren plateaus (see Theorem 5.18). The more interesting question is

how IQP1 behaves for multiple layers since it does not have barren plateaus for a

single layer. Unfortunately, the layers of IQP1 only commute for an even number of

qubits. Hence, the technique discussed in this section is not applicable if n is odd.

100 Barren Plateaus

In that case, the necessary calculations become significantly more involved, which

we explore in the next section.

5.4.8 Non-Commuting Multi-Layer IQP Ansätze

Apart from specifically designed examples like IQP2, it is uncommon that IQP

layers fully commute. For example, the QNLP ansätze IQP3 and IQP4 do not

form commuting layers in a multi-layer configuration. In that case, the variance

computation becomes significantly more difficult. Since we have already shown

that the QNLP ansätze have barren plateaus even for a single layer, we will not

consider them in this section. Instead, we focus on IQP1 to demonstrate our variance

computation technique for non-commuting layers. IQP1’s layers do not commute for

odd n and its single-layer version does not have barren plateaus which makes it an

interesting case to study.

To make the diagrams more concise, we introduce the following notation to denote

layers of IQP1:

θi

Li =

..
.

..
.

..
.

The diagram for the expectation value is then given by

⟨H⟩ = i
∑

ajbj
b1πa1π

bnπanπ

...L1 Lℓ
... L2

... L†
1L†

ℓ

...L†
2

...Lℓ−1 L†
ℓ−1

(cp,sf ,cc)
= i

∑
ajbj · (−1)d L1 Lℓ

... L2
... L′

1L′
ℓ

c1π

cnπ

...L′
2

...Lℓ−1 L′
ℓ−1

where

5.4. Analytical Barren Plateau Detection 101

kiπ

−θi

L′
i =

..
.

..
.

..
.

ki =

{
a1 + ...+ an if i has same parity as ℓ

b1 + ...+ bn otherwise

ci =

{
ai if ℓ is even

bi if ℓ is odd
d =

{
0 if ℓ is even∑n

i=1 aibi if ℓ is odd

Similar to the calculations we did before, we have pushed the Hamiltonian through

the layers on the right-hand side, occasionally adding a phase of π to the phase

gadgets. The factor (−1)d is introduced because if ℓ is odd, we get the following

situation after pushing the Hamiltonian through:

L′
1

b1π

bnπ

...

...

...

a1π

anπ

(cp)
= (−1)

∑
ajbj L′

1

a1π

anπ

...

...

...
= (−1)d L′

1

c1π

cnπ

...

...

...

However, the factor (−1)d does not really matter since it cancels out when computing

the variance. In order to draw the variance diagram, we add a wire coming out of

each layer that replaces the parametrised spider:

Li =..
.

..
.

..
.

kiπ

L′
i =..

.

..
.

..
.

Note that in the following variance diagram, we only explicitly draw the cycle con-

necting Lℓ and L
′
ℓ. We only hint at remaining cycles using dots:

Var

(
∂⟨H⟩
∂θi

)
= (−1)

∑
ajbj

L1
... L2

... L′
1

c1π

cnπ

...L′
2

...Lℓ−1 L′
ℓ−1

L1
... L2

... L′
1

cnπ

c1π...L′
2

...Lℓ−1 L′
ℓ−1

Lℓ

Lℓ

L′
ℓ

L′
ℓ

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

102 Barren Plateaus

(sf)
= (−1)

∑
ajbj

L1
... L2

... L′
1

c1π

cnπ

...L′
2

...Lℓ−1 L′
ℓ−1

L1
... L2

... L′
1

cnπ

c1π...L′
2

...Lℓ−1 L′
ℓ−1

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

kℓπ
...

... kℓπ

We can cut this cycle using our existing simplification strategy from Lemma 5.15.

Concretely, if kℓ = 0, we get

(−1)
∑

ajbj

L1
... L2

... L′
1

c1π

cnπ

...L′
2

...Lℓ−1 L′
ℓ−1

L1
... L2

... L′
1

cnπ

c1π...L′
2

...Lℓ−1 L′
ℓ−1

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

In this case, Lℓ−1 and L′
ℓ−1 are now directly next to each other and we can continue

the same argument recursively.

However, if kℓ = 1 is odd, we get a red π-spider:

(−1)
∑

ajbj

L1
... L2

... L′
1

c1π

cnπ

...L′
2

...Lℓ−1 L′
ℓ−1

L1
... L2

... L′
1

cnπ

c1π...L′
2

...Lℓ−1 L′
ℓ−1

π

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Assuming that n is odd, commuting Lℓ−1 past this will add some extra Hadamard

wires according to Lemma 2.10:

5.4. Analytical Barren Plateau Detection 103

(−1)
∑

ajbj

2

L1
... L2

... L′
1

c1π

cnπ

...L′
2

...Lℓ−1 L
′
ℓ−1

L1
... L2

... L′
1

cnπ

c1π...L′
2

...Lℓ−1 L
′
ℓ−1

π

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

(sf)
=

(−1)
∑

ajbj

2

L1
... L2

... L′
1

c1π

cnπ

...L′
2

...

L1
... L2

... L′
1

cnπ

c1π...L′
2

...

π

kℓ−1π
...

... kℓ−1π

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Note that the two new Hadamard wires connected to the red spiders in L′
ℓ−1 come

with a scalar of 1√
2
each. In order to proceed from here, we need a new cycle cutting

lemma that applies when the right side is connected to shared pink spider(s):

Lemma 5.21. We have

... kiπ

... kiπ

α1
...

αm
...

... =
√
2
m

...
α1

...

αm
...

...kiπ

...

... kiπ

... kiπ

π

α1
...

αm
...

...
π

π
=

√
2
m

α1
...

αm
...

...kiπ + ππ

...

...

Proof. See Appendix C. ↓

104 Barren Plateaus

Note that in the special casem = 0, Lemma 5.21 exactly corresponds to Lemma 5.15.

We can now use Lemma 5.21 to simplify the cycle in the variance computation

above, also replacing the previous application of Lemma 5.15 with the more general

Lemma 5.21:

(−1)
∑

ajbj
√
2

L1
... L2

... L′
1

c1π

cnπ

...L′
2

...Lℓ−2

L1
... L2

... L′
1

cnπ

c1π...L′
2

...Lℓ−2

Lℓ−2

Lℓ−2

kℓ−1π kℓπ

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

=
(−1)

∑
ajbj

√
2
2

L1
... L2

... L′
1

c1π

cnπ

...L′
2

...Lℓ−3

L1
... L2

... L′
1

cnπ

c1π...L′
2

...Lℓ−3

Lℓ−3

Lℓ−3

kℓ−1π kℓπkℓ−2π

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

=
(−1)

∑
ajbj

√
2
4

L1
... L2

... L′
1

c1π

cnπ

...L′
2

...Lℓ−4

L1
... L2

... L′
1

cnπ

c1π...L′
2

...Lℓ−4

Lℓ−4

Lℓ−4

kℓ−1π kℓπkℓ−2πkℓ−3π

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Iterating this process for all layers yields the diagram shown in Figure 5.8 which we

evaluate using a recursive strategy. However, we only sketch the proof here, fixing

i = 1 and skipping over some details. We refer to Appendix B for the full derivation.

One can show that Var
(
∂⟨H⟩
∂θ1

)
is only non-zero if c1 = c2 = ... = cn. Furthermore,

it turns out that the value of the c’s only effects the sign of the scalar represented

by the diagram. Therefore we will ignore them here. Also note that by definition

5.4. Analytical Barren Plateau Detection 105

(−1)
∑

ajbj

√
2
h

...
cnπ

c1π

k1π

...

Connected to
L2, L4, L6, ...

L1

...

kjπ

...

Connected to
Lj+1, Lj+3, ...

Lj

...

...

Lℓ

...

...

kℓππ kiπ + π

...

Connected to
Li+1, Li+3, ...

Li

...

Arbitrary parameter Variance parameter

...

...
cnπ

c1π

...

Hadamards only
if ℓ is odd

Figure 5.8: Diagram for Var
(
∂⟨H⟩
∂θi

)
where h is the number of Hadamard wires

connecting the red spiders.

we have ki = kj if i and j have the same parity. Thus, we define the following

shorthands:

ko := k1 = k3 = k5 = ... ke := k2 = k4 = k6 = ...

This means that the diagram in Figure 5.8 only depends on the numbers ke, ko, and

ℓ. We can show that it satisfies the following recurrence relation.

Lemma 5.22. Let Vℓ(ke, ko, c) denote the diagram in Figure 5.8 and let ℓ > 1 be

odd. Then

V1(ke, 0) = 0 V1(ke, 1) =
1

2

Vℓ(0, 0) = 0 Vℓ(0, 1) =
1

4
(3Vℓ−2(0, 1)− Vℓ−2(1, 0))

Vℓ(1, 1) = Vℓ(0, 1) Vℓ(1, 0) =
1

2
(Vℓ−2(1, 0)− Vℓ−2(0, 1))

Proof. See equations (B.7), (B.14), (B.15), and (B.16) in Appendix B.

Similarly, we can obtain recursive equations for even ℓ. This yields a recursive

algorithm for computing Var
(
∂⟨H⟩
∂θ1

)
. However, it is also possible to derive a closed-

form solution:

106 Barren Plateaus

Lemma 5.23. For odd ℓ we have

Vℓ(1, 1) = Vℓ(0, 1) =
2 · 4⌊ℓ/2⌋ + 1

6 · 4⌊ℓ/2⌋ Vℓ(1, 0) =
4⌊ℓ/2⌋ − 1

3 · 4⌊ℓ/2⌋ .

For even ℓ we have

Vℓ(1, 1) = Vℓ(1, 0) =
2ℓ − 1

3 · 2ℓ Vℓ(0, 1) =
2 · 4ℓ/2−1 + 1

6 · 4ℓ/2−1

Proof. See Lemma B.1 and Corollary B.2 in Appendix B.

As a result, we get the following formula for the variance:

Theorem 5.24.

Var

(
∂⟨H⟩
∂θ1

)
=





Vℓ(
∑
aj ,
∑
bj) if ℓ is even and a1 = ... = an

Vℓ(
∑
bj ,
∑
aj) if ℓ is odd and b1 = ... = bn

0 otherwise.

Proof. See Theorem B.3 in Appendix B.

Corollary 5.25. Either Var
(
∂⟨H⟩
∂θ1

)
= 0 or Var

(
∂⟨H⟩
∂θ1

)
→ 1

3 for ℓ→ ∞. In partic-

ular, this proves Hypothesis 5.5.

Proof. This follows from the fact that all terms in Lemma 5.23 converge to 1
3 for

ℓ→ ∞. See Corollary B.4 in Appendix B for the full details.

Corollary 5.26. For example, in the case H = Z⊗n we have aj = 1 and bj = 0 for

all j such that

Var

(
∂⟨H⟩
∂θ1

)
=





2ℓ−1
3·2ℓ if ℓ is even.

2·4⌊ℓ/2⌋+1
6·4⌊ℓ/2⌋ if ℓ is odd

Note that this exactly matches the numerical values from Figure 5.7.

5.5. Barren Plateau Mitigation Techniques 107

5.5 Barren Plateau Mitigation Techniques

After identifying barren plateaus in a variety of ansätze, we want to close this chapter

with a brief discussion of how to avoid them. Crucially, the barren plateau analysis

in this chapter relied on the assumption made in Section 5.1 that the parameters

θi are uniformly and independently sampled from [−π, π]. This means that our

results, as well the ones in the literature like McLean et al. [10], no longer apply if

one chooses a different parameter initialisation.

To this end, different initialisation strategies have been proposed with the goal of

avoiding barren plateaus: For example, Grant et al. [67] choose parameters such that

the circuit turns into a sequence of shallow blocks that each evaluate to the identity,

thus reducing the effective circuit depth. Kulshrestha and Safro [68] experimentally

show that initialisation with the Beta distribution reduces the prevalence of barren

plateaus.

Apart from initialisation strategies, various other techniques have been proposed:

Rad et al. [69] use Bayesian learning to find a promising regions in the parameter

space which are then explored using local optimisers. Sack et al. [70] introduce a new

learning scheme that adapts the learning rate when a barren plateau is detected.

Liu et al. [71] propose a novel ansatz family where barren plateaus can be mitigated

and Skolik et al. [72] use quantum circuit learning to find ansätze that avoid barren

plateaus. Patti et al. [73] discuss a variety of techniques including the addition of

noise, reducing entanglement and partitioning the qubit registers depending on the

cost function.

Chapter 6

Discussion

6.1 Summary of Results

Gradient Recipes

We have refined the diagrammatic differentiation technique by Wang and Yeung [19]

for the special case of parametrised quantum circuits and used it to give diagram-

matic proofs of parameter shift rules given by Schuld et al. [7] and Anselmetti et

al. [8]. Furthermore, we derived a novel 2n-term shift rule for gates that can be

represented with n parametrised spiders. We also discussed the optimality of shift

rules, proving an open conjecture by Anselmetti et al. [8] by deriving a no-go the-

orem ruling out shift rules with less than four terms for all gates whose Hermitian

generators have eigenvalues of shape −λ, 0, λ.

Barren Plateaus

We investigated both empirical and formal methods to detect barren plateaus in

ansätze using the variance computation framework laid out by Wang and Yeung [19].

For the empirical analysis, we developed a tool that automatically computes Var
(
∂⟨H⟩
∂θi

)

which can be used to diagnose barren plateaus without the user having to perform

any calculations or mathematical reasoning. Using this tool, we investigate several

6.2. Discussion and Future Work 109

ansätze studied by Sim et al. [20] and empirically concluded that even at a single

layer they likely all have barren plateaus.

To showcase the analytical barren plateau analysis powered by ZX, we formally

proved this claim for three of the Sim ansätze. Furthermore, we analysed a range

of IQP ansätze, in particular showing that a single layer of the ansatz used by the

quantum natural language processing library lambeq [21] has barren plateaus when

measuring in the computational basis. Additionally, we proved that one of the IQP

ansätze does not have barren plateaus, with Var
(
∂⟨H⟩
∂θi

)
converging to a constant

independent of the number of qubits n when the number of layers ℓ goes to infinity.

6.2 Discussion and Future Work

Gradient Recipes

One of the initial motivations for using the ZX calculus to study gradient recipes

was the hope that the graphical representation of derivatives might make it easier

to discover new recipes that go beyond parameter shift rules. However, as we have

mentioned in Section 4.3, it proved to be harder than expected to find decompositions

of the differentiation gadget that actually yield unitaries when applied to gates.

However, the diagrammatic approach proved to be very fruitful for the analysis of

parameter shift rules. Originally, Schuld et al. [7] and Anselmetti et al. [8] arrived

at their shift rules by observing that the Hermitian generators for the gates they

consider satisfy H2 = I and H3 = H, respectively. From this, they derived systems

of equations that yielded the shift rules. While our approach also involved systems of

equations, we arrived at and solved them in a completely different way. Concretely,

we used a diagrammatic approach to find systems of equations that characterise valid

shift rules which turned out to be easily solvable using a discrete sine transform. The

benefit of this hybrid approach involving both graphical and algebraic techniques is

that it applies to a wider range of gates. This allowed us to generalise to the 2n-term

110 Discussion

shift rule, whereas Schuld et al.’s and Anselmetti et al.’s approach only works for

gates that satisfy specific eigenvalue constraints. Wierichs et al. [9] obtained their

generalised shift rule by expressing the expectation value ⟨H⟩ in terms of a discrete

Fourier transform (DFT) which is closely related to the discrete sine transform. This

might suggest a possible connection between our diagrammatically obtained system

of equations and Wierichs et al.’s DFT reconstruction of the expectation value which

would be interesting to investigate in the future.

Another interesting question that showed up at multiples points in our work is the

relationship between eigenvalues of a parametrised unitary and the minimum num-

ber of parametrised spiders required to implement the unitary in ZX. To the best

of our knowledge, this question has not been investigated before. We have given

a general upper bound, and a lower bound for the special case of eigenvalues −λ,

0, λ. Those bounds were close enough to derive existing parameter shift rules and

prove Anselmetti et al.’s conjecture [8]. However, it would be interesting to investi-

gate whether there are tighter bounds and if there is a deeper relationship between

parametrised spiders and eigenvalues. Besides being interesting in its own right,

this could potentially unify our generalised shift rule with the one given Wierichs et

al. [9]. Orthogonally, proving lower bounds could lead to general optimality results

for shift rules, generalising our no-go theorem to arbitrary parametrised unitaries.

Barren Plateaus

We have presented both empirical and analytical methods to detect barren plateaus

in ansätze. Our numerical tool can be used to quickly check a specific combination of

ansatz and Hamiltonian for barren plateaus. While the tool cannot formally prove or

disprove the existence of barren plateaus, it gives a good indication of the behaviour

of an ansatz for practically used circuit dimensions. The potential future use case

we envision for software like this is as a part of the QML practitioners’ toolbox

for evaluating the suitability of ansätze for QML tasks. For example, exponentially

6.2. Discussion and Future Work 111

vanishing variance curves like in Figure 5.3 could indicate that experimentation with

different initialisation strategies might be warranted. Additionally, the numerical

data is very useful for gaining confidence in theoretical results. In particular, it gave

us confidence that the intricate formula we derived for the variance of the multi-layer

IQP1 ansatz is correct.

While all the experiments in this thesis run relatively quickly, we have some ideas how

to further improve the performance of our tool. For example, we could experiment

with decomposing the triangle directly instead of using the representation with four

π
4 spiders. In that case, we would no longer benefit from the efficient magic state

and cat decompositions used in [65]. However, we could search for alternative,

more efficient decompositions of groups of triangles. Here, it might also help that

the triangles in Theorem 5.1 are embedded in a regular, known structure that is

possibly easier to decompose.

Moving beyond the methods and looking at the concrete data we obtained, it is

surprising that all Sim ansätze we considered seem to already have barren plateaus

for a single layer. The results by McClean et al. [10] for example only apply if the

ansatz has enough layers to approximate a 2-design. Sim et al. showed that most

of their ansätze only gain their expressive power when adding more layers. But our

results indicate that the low expressivity of a single layer already suffices to produce

barren plateaus. The same seems to be true for the IQP circuit used in lambeq [21].

In fact, the only ansatz we considered that does not have barren plateaus is the very

simple IQP1. This might suggest that the expressiveness vs. trainability trade-off

described by Holmes et al. [11] is already significant at fairly low expressive powers

with mildly expressible circuits already having poor trainability. Analysing more

circuits in this way is needed to gain a better understanding of this relationship in

the future.

The fact that barren plateaus already appear in a single layer actually simplified

our analysis. First, running the numerical experiments for multi-layer circuits is

112 Discussion

more expensive.1 Secondly, we have already seen for the example of IQP1 that the

formal analysis of multi-layer ansätze requires significantly more work. Nonetheless,

it would be very interesting to expand on this work and analyse ansätze where the

barren plateau phenomenon only appears after adding enough layers. One example

of this would be non-local cost functions as discussed in [12].

Finally, the biggest limitation of the current ZXW-based barren plateau analysis

is the fact that Theorem 5.1 only applies if each parameter occurs exactly once in

the ZX representation of the ansatz. In particular, this excludes all anätze that

use controlled rotations. We have discussed a small caveat to this in Section 5.4.6

where the analysis is possible in certain special cases where the Hamiltonian cancels

out additional parameter occurrences. However, in the general case, such ansätze

cannot be handled by our method. The difficulty of adding support for this differs

between our numerical and our analytical approach. Both would require extending or

generalising the integration results by Wang and Yeung [19]. But while the numerical

tool could, in principle (barring performance concerns), work with any diagram that

represents the variance, in order to prove results by hand we need a diagram that is

amenable to manual rewriting and reasoning. Thus, finding such representations for

the gradient variance of circuits with multiple parameter occurrences would serve to

significantly generalise the results presented in this work.

1Note that for the ansätze we considered, adding a qubit adds O(1) parametrised spiders while
a new layers adds O(n) new parametrised spiders.

Appendix A

Constructing the Ancilla State

In Section 4.3, we discussed a gradient recipe that prepares ancillae in the state

±α . In this appendix, we explain how to prepare this state on a quantum

device. First, not that because of the (pcy) rule, it actually suffices to prepare the

state . As it turns out, this state is an equal superposition of basis states:

(2.5)
= + π

(2.16)
= +

π
+ π

To construct this, we define the following gate:

Definition A.1. Let D(p) := RY (2 arccos(
√
p)) for 0 ≤ p ≤ 1.

Lemma A.2. This gate satisfies D(p)|0⟩ = √
p|0⟩+√

1− p|1⟩.

Proof. In general, we have

RY (α)|0⟩ =
(
cos(α2) − sin(α2)
sin(α2) cos(α2)

)(
1
0

)
=

(
cos(α2)
sin(α2)

)

Setting α = 2arccos(
√
p), we get

D(p)|0⟩ =
(√

p√
1− p

)
=

√
p|0⟩+

√
1− p|1⟩.

114 Constructing the Ancilla State

Using D(p), we can construct the state as follows:

D(2
3
)

D(1
2
)

X X (Lem. A.2)
=

√
2

3 D(1
2
)

X X
+

√
1

3

π

D(1
2
)

X X

=

√
2

3 D(1
2
)

+

√
1

3

π (Lem. A.2)
=

√
2

3

√
1

2
+

√
2

3

√
1

2 π

+

√
1

3

π

=

√
1

3
|00⟩+

√
1

3
|01⟩+

√
1

3
|10⟩ =

√
1

3

Appendix B

Details on Recursive

Contraction

Here, we give the full details for the recursive contraction of Figure 5.8. For the

reader’s convenience, we restate the diagram:

(−1)
∑

ajbj

√
2
h

...
cnπ

c1π

k1π

...

Connected to
L2, L4, L6, ...

L1

...

kjπ

...

Connected to
Lj+1, Lj+3, ...

Lj

...

...

Lℓ

...

...

kℓππ kiπ + π

...

Connected to
Li+1, Li+3, ...

Li

...

Arbitrary parameter Variance parameter

...

...
cnπ

c1π

...

Hadamards only
if ℓ is odd

B.1 Deriving the Recurrence Relation

To contract Figure 5.8, we introduce the notation

ke := k2 = k4 = ... = kℓ = b1 + ...+ bn

ko := k1 = k3 = ... = kℓ−1 = a1 + ...+ an

116 Details on Recursive Contraction

and writeVE ℓ(ke, ko, c1, ..., cn) andVOℓ(ke, ko, c1, ..., cn) for the diagram for Var
(
∂⟨H⟩
∂θi

)

for even and odd ℓ respectively, excluding the factor (−1)
∑

ajbj . Furthermore, we

write x for the negation of a Boolean variable, i.e. 0 = 1 and 1 = 0.

Out goal is to find recursive formulas to compute VE ℓ and VOℓ. For the base case,

consider VE 0:

VE 0(ke, ko, c1, ..., cn) =
cnπ

c1π

cnπ

c1π
..
.

..
.

=

{
1 if c1 = ... = cn = 0

0 otherwise.
(B.1)

Note that the term becomes zero if the cj are not all the same. Hence, from now

on we can ignore all terms where this is the case and simplify the notation to

VOℓ(ke, ko, c) and VE ℓ(ke, ko, c). Now, we proceed recursively:

• If i = ℓ and ℓ is odd then

VOℓ(ke, ko, c) =
1

√
2
h

︸︷︷︸
Scalar for

part up to ℓ

· 1
√
2
⌊ℓ/2⌋

︸ ︷︷ ︸
Scalar for Had.

wires to L2, L4, ...
cπ

cπ

π koπ + π

...

...

Lℓ

...

Connected to
L2, L4, ...Lℓ−1

2n..
.

(2.14)
=

∑

x∈{0,1}

1
√
2
h
· 1
√
2
⌊ℓ/2⌋ · 1

2
· (−1)x

cπ

cπ

xπ

xπ

koπ + π

...

...

...
xπ xπ

..
.

(cc)
=

∑

x∈{0,1}

1
√
2
h
· 1
2
· (−1)x

cπ

cπ

xπ

xπ

koπ + π

...

...

...
xπ xπ

..
.

(sf)
=

∑

x∈{0,1}

1
√
2
h
· 1
2
· (−1)x

(c + x)π

(c + x)π koπ + π...

...

...
xπ xπ

= VEℓ−1(ke + x, ko, c+ x)

..
.

=

{
0 if ko = 0
1
2(VE ℓ−1(ke, 1, c)−VE ℓ−1(ke, 1, c)) if ko = 1

(B.2)

B.1. Deriving the Recurrence Relation 117

• If i = ℓ and ℓ is even then

VE ℓ(ke, ko, c) =
1

√
2
h
· 1
√
2
ℓ/2

cπ

cπ

π keπ + π

...

...

Lℓ

...

Connected to
L1, L3, ...Lℓ−1

2n..
.

(2.14)
=

∑

x∈{0,1}

1
√
2
h
· 1
√
2
ℓ/2

· 1
2
· (−1)x

cπ

cπ

xπ

xπ

keπ + π

...

...

...
xπ xπ

..
.

(cc,cp)
=

∑

x∈{0,1}

1
√
2
h
· 1
2
· (−1)x

cπ

cπ
keπ + π

...

...

...
xπ xπ

..
.

=

{
0 if ke = 0
1
2(VOℓ−1(1, ko, c)−VOℓ−1(1, ko, c)) if ke = 1

(B.3)

• If i ̸= ℓ and ℓ is odd then

VOℓ(ke, ko, c) =
1

√
2
h
· 1
√
2
⌊ℓ/2⌋

cπ

cπ

koπ

...

...

Lℓ

...

Connected to
L2, L4, ...Lℓ−1

2n..
.

(2.14)
=

∑

x∈{0,1}

1
√
2
h
· 1
√
2
⌊ℓ/2⌋ · 1

2
cπ

cπ

xπ

xπ...

...

...
xπ xπ xπ koπ

..
.

(cc,sf)
=

∑

x∈{0,1}

1
√
2
h
· 1
2

(c + x)π

(c + x)π...

...

...
xπ xπ

xπ koπ..
.

=

{
VE ℓ−1(ke, 0, c) if ko = 0
1
2(VE ℓ−1(ke, 1, c)−VE ℓ−1(ke, 1, c)) if ko = 1

(B.4)

• If i ̸= ℓ and ℓ is even then

118 Details on Recursive Contraction

VE ℓ(ke, ko, c) =
1

√
2
h
· 1
√
2
ℓ/2

cπ

cπ

keπ

...

...

Lℓ

...

Connected to
L1, L3, ...Lℓ−1

2n..
.

(2.14)
=

∑

x∈{0,1}

1
√
2
h
· 1
√
2
ℓ/2

· 1
2

cπ

cπ

xπ

xπ...

...

...
xπ xπ xπ keπ

..
.

(cc,cp)
=

∑

x∈{0,1}

1
√
2
h
· 1
2

cπ

cπ...

...

...
xπ xπ

xπ keπ..
.

=

{
VOℓ−1(0, ko, c) if ke = 0
1
2(VOℓ−1(1, ko, c)−VOℓ−1(1, ko, c)) if ke = 1

(B.5)

This yields an recursive algorithm for computing Var
(
∂⟨H⟩
∂θi

)
. One interesting thing

to note is that

VOℓ(0, 0, c)
(B.4)
= VE ℓ−1(0, 0, c)

(B.5)
= VOℓ−2(0, 0, c) = ...

=

{
VO i(0, 0, c) if i is odd

VE i(0, 0, c) if i is even

(B.2,B.3)
= 0. (B.6)

Furthermore, for i ̸= ℓ, ℓ− 1 we can derive

VOℓ(0, 0, c)
(B.6)
= VOℓ−2(0, 0, c) (B.7)

VOℓ(0, 1, c)
(B.4,B.5)

=
1

4
(2VOℓ−2(0, 1, c) +VOℓ−2(1, 0, c)−VOℓ−2(1, 1, c)) (B.8)

VOℓ(1, 0, c)
(B.4,B.5)

=
1

2
(VOℓ−2(1, 0, c)−VOℓ−2(1, 1, c)) (B.9)

VOℓ(1, 1, c)
(B.4,B.5)

=
1

4
(−2VOℓ−2(0, 1, c)−VOℓ−2(1, 0, c) +VOℓ−2(1, 1, c))

(B.10)

B.2. Solving the Recurrence Relation 119

B.2 Solving the Recurrence Relation

When considering concrete values of i, we can derive closed-form solutions for

Var
(
∂⟨H⟩
∂θi

)
. We discuss the case i = 1. First, note that

VO1(ke, ko, c)
(B.3)
=

{
0 if ko = 0
1
2(VE 0(ke, 0, c)−VE 0(ke, 0, c)) if ko = 1

(B.1)
=

{
0 if ko = 0
1
2 · (−1)c if ko = 1

(B.11)

As a consequence, we have

VE ℓ(ke, ko, c) = −VE ℓ(ke, ko, c) (B.12)

VOℓ(ke, ko, c) = −VOℓ(ke, ko, c). (B.13)

Therefore,

VOℓ(1, 1, c)
(B.10)
=

1

4
(−2VOℓ−2(0, 1, c)−VOℓ−2(1, 0, c) +VOℓ−2(1, 1, c))

(B.13)
=

1

4
(2VOℓ−2(0, 1, c) +VOℓ−2(1, 0, c)−VOℓ−2(1, 1, c))

(B.8)
= VOℓ(0, 1) (B.14)

VOℓ(0, 1, c)
(B.8,B.14)

=
1

4
(3VOℓ−2(0, 1, c)−VOℓ−2(1, 0, c)) (B.15)

VOℓ(1, 0, c)
(B.8,B.14)

=
1

2
(VOℓ−2(1, 0, c)−VOℓ−2(0, 1, c)). (B.16)

Now, we just need to derive a closed form for this recurrence relation:

Lemma B.1. VO has the following closed-form representation:

VO2l+1(0, 1, c) = (−1)c · 2 · 4
l + 1

6 · 4l VO2l+1(1, 0, c) = (−1)1−c · 4
l − 1

3 · 4l

Proof. By induction on l:

120 Details on Recursive Contraction

• We haveVO1(0, 1, c)
(B.11)
= (−1)c·12 = (−1)c·2·40+1

6·40 andVO1(1, 0, c)
(B.11)
= 0 =

(−1)1−c · 40−1
3·40 .

• We have

VO2l+3(0, 1, c)
(B.15)
=

1

4
(3VO2l+1(0, 1, c)−VO2l+1(1, 0, c))

(IH)
=

1

4

(
3 · (−1)c · 2 · 4

l + 1

6 · 4l − (−1)1−c · 4
l − 1

3 · 4l
)

= (−1)c · 1
4

(
2 · 4l + 1

6 · 4l +
4l − 1

3 · 4l
)

= (−1)c · 1
4
· 8 · 4

l − 1

64̇l

= (−1)c · 2 · 4
l+1 + 1

6 · 4l+1

VO2l+3(1, 0, c)
(B.9)
=

1

2
(VO2l+1(1, 0, c)−VO2l+1(0, 1, c))

(IH)
=

1

2

(
(−1)1−c · 4

l − 1

3 · 4l − (−1)c · 2 · 4
l + 1

6 · 4l
)

= (−1)1−c · 1
2

(
4l − 1

3 · 4l +
2 · 4l + 1

6 · 4l
)

= (−1)1−c · 1
2
· 4 · 4

l − 1

6 · 4l

= (−1)1−c · 4
l+1 − 1

3 · 4l+1

Corollary B.2. VE has the following closed-form representation:

VE 2l(0, 1, c)
(B.5)
= VO2l−1(0, 1, c)

(Lem. B.1)
= (−1)c · 2 · 4

l−1 + 1

6 · 4l−1

VE 2l(1, 0, c)
(B.4)
= VO2l+1(1, 0, c)

(Lem. B.1)
= (−1)1−c · 4

l − 1

3 · 4l

VE 2l(1, 1, c)
(B.5)
=

1

2
(VO2l−1(0, 1, c)−VO2l−1(1, 0, c))

(Lem.B.1)
=

1

2
(−1)c

(
2 · 4l−1 + 1

6 · 4l−1
+

4l−1 − 1

3 · 4l−1

)

= (−1)c
4l − 1

3 · 4l

B.2. Solving the Recurrence Relation 121

Now, recalling the definition of ke, ko, and c, we finally have

Theorem B.3. We have

Var

(
∂⟨H⟩
∂θ1

)
=





(−1)
∑

ajbj ·VE ℓ(
∑
aj ,
∑
bj , a1) if ℓ is even and a1 = ... = an

(−1)
∑

ajbj ·VOℓ(
∑
bj ,
∑
aj , b1) if ℓ is odd and b1 = ... = bn

0 otherwise.

Corollary B.4. Either Var
(
∂⟨H⟩
∂θ1

)
= 0 or Var

(
∂⟨H⟩
∂θ1

)
→ 1

3 for ℓ→ ∞.

Proof. This essentially follows from the fact that all terms in Lemma B.1 and

Corollary B.2 converge to ±1
3 . To be precise, we can show that the negation always

cancels out by considering the different cases: Suppose ℓ is odd and b1 = ... = bn = 0.

Then

Var

(
∂⟨H⟩
∂θ1

)
= VOℓ(0,

∑
aj , 0)

(B.7,Lem. B.1)
=

{
0 if

∑
aj = 0

2·4⌊ℓ/2⌋+1
6·4⌊ℓ/2⌋ → 1

3 if
∑
aj = 1

If b1 = ... = bn = 1, then we have
∑
bj = 1 since we assume that n is odd. Thus,

Var

(
∂⟨H⟩
∂θ1

)
= VOℓ(1,

∑
aj , 1)

(B.13,Lem. B.1)
=

{
4⌊ℓ/2⌋−1
3·4⌊ℓ/2⌋ → 1

3 if
∑
aj = 0

2·4⌊ℓ/2⌋+1
6·4⌊ℓ/2⌋ → 1

3 if
∑
aj = 1

We do not get a negation in the second case since
∑
aj = 1 implies that (−1)

∑
ajbj =

1. The case for even ℓ and a1 = ... = an is symmetric. Otherwise, Var
(
∂⟨H⟩
∂θ1

)
=

0.

Appendix C

Additional Lemmas and Proofs

Lemma C.1. For all x ∈ {0, 1}, we have

xπ =
1√
2

xπ

xπ

(C.1)

Proof.

xπ
(sf ,π)
=

xπ

xπ

(sc)
=

xπ

xπ

(cc)
=

1√
2

xπ

xπ

Lemma C.2.

= 2 (C.2)

Proof.

(sf)
=

(cc)
=

√
2

(ho)
=

√
2

(cc,sf)
= 2

123

Proof of Proposition 4.4. We first prove than we cannot represent the CRZ(θ)

gate using less than two parametrised spiders. Suppose we had

CRZ(θ) = eig(θ)
D

f(θ)

But then

∂

∂θ
CRZ(θ)

(3.1)
= ig′(θ)eig(θ)

D

f(θ)

+ eig(θ)if ′(θ)

D

f(θ)

π

(cp)
= ig′(θ)CRZ(θ) + eig(θ)if ′(θ)eif(θ)

D

π

(C.3)

Note that the diagram on the right-hand side no longer depends on θ. Since

∂
∂θCRZ(θ) = diag(0, 0,− iθ

2 e
−i θ

2 , iθ2 e
i θ
2) is diagonal, we must also have

D

π

= diag(a, b, c, d)

for some constants a, b, c, d ∈ C. By comparing the diagonal entries to (C.3), we get

the equations

g′(θ) + aei(f(θ)+g(θ))f ′(θ) = 0 (C.4)

g′(θ) + bei(f(θ)+g(θ))f ′(θ) = 0 (C.5)

g′(θ)e−i θ
2 + cei(f(θ)+g(θ))f ′(θ) = −θ

2
e−i θ

2 (C.6)

g′(θ)ei
θ
2 + dei(f(θ)+g(θ))f ′(θ) =

θ

2
ei

θ
2 (C.7)

Since (C.4) implies g′(θ) = −aei(f(θ)+g(θ))f ′(θ), we can rewrite (C.6) and (C.7) to

ei(f(θ)+g(θ))f ′(θ) · (c− ae−i θ
2) = −θ

2
e−i θ

2

ei(f(θ)+g(θ))f ′(θ) · (d− aei
θ
2) =

θ

2
ei

θ
2

124 Additional Lemmas and Proofs

In particular, this implies that

c− ae−i θ
2 = −d+ aei

θ
2

for all θ, which is clearly not possible for constant a, b, c.

Thus, we can conclude that we cannot represent CRZ(θ) with less than two parametrised

spiders. Now, suppose there were some other unitary U(θ) = eiθH whose Her-

mitian generator has eigenvalues −λ, 0, λ that can be implemented with a single

parametrised spider:

U(θ) =
U

f(θ)

..
.

..
.

However, by Lemma 4.15 this would immediately yield a one-spider representation

on CRZ(θ) via

CRZ(θ) =
f ..

. U

f(θ)
2λ

..
.

..
.

which is not possible.

Proof of Lemma 4.6. First, note that

π π
(2.5)
= π − π π π

(sf)
= π − π

(2.10)
= |1⟩⟨0| − |0⟩⟨1| (C.8)

On the other hand, we have

α −α
(2.5)
= (|0⟩+ e−iα|1⟩)(⟨0|+ eiα⟨1|) = |0⟩⟨0|+ eiα|0⟩⟨1|+ e−iα|1⟩⟨0|+ |1⟩⟨1|

−α α
(2.5)
= (|0⟩+ eiα|1⟩)(⟨0|+ e−iα⟨1|) = |0⟩⟨0|+ e−iα|0⟩⟨1|+ eiα|1⟩⟨0|+ |1⟩⟨1|

125

such that

α −α − −α α = (eiα − e−iα)|0⟩⟨1|+ (e−iα − eiα)|1⟩⟨0|
= (eiα − e−iα)(|0⟩⟨1| − |1⟩⟨0|)

(C.8)
= 2i sin(α) π π .

Proof of Lemma 5.2. By comparing the action on the computational basis:

−π
4

−π
4

π
4

π
4

(cp)
=

−π
4

−π
4

π
4

π
4

(id ,sf)
=

−π
2

π
2

(∗)
= 2

(tri)
= 2

π

−π
4

−π
4

π
4

π
4

(cp)
=

π

π

−π
4

−π
4

π
4

π
4

(π,sf)
=

(cp,sf)
=

(tri)
= 2 π

where the step (∗) follows again from plugging in the computational basis:

−π
2

π
2

(sf ,id)
=

(sf)
= 2

−π
2

π
2

π
(sf ,π)
= π = 0

(sf)
= 2 π

Proof of Lemma 5.6.

xπ yπ

π

α
...

..
.

..
. (sf)

= xπ yπ

π

α
...

..
.

..
. (π,sf)

=
xπ yππ

α + π
...

..
.

..
.

(sf)
= xπ yπ

π

α + π
...

..
.

..
. (ho)

= xπ yπ

α + π
...

π

..
.

..
.

α β

π

xπ
...

..
.

..
. (sf)

= α β

π

xπ
...

..
.

..
. (π,sf)

=
α βπ

xπ + π
...

..
.

..
.

126 Additional Lemmas and Proofs

(sf)
= α β

π

xπ + π
...

..
.

..
. (ho)

= α β

π

xπ + π
...

..
.

..
.

Proof of Lemma 5.7.

α β

π

π

..
.

..
.

..
. (π,sf ,id)

= eiα −α

π

π

..
. β ..
.

..
. (sf)

= eiα β − α

π

π

..
.

..
.

π

π

..
.

..
.

..
. n

(π,sf ,id)
=

π

π

..
.

..
.

..
. n

(sf)
= 2n−1

π

π

..
.

..
.

Note that the scalar 2n−1 appears in the last step according to Lemma 2.13.

Proof of Lemma 5.8. We prove the three equations separately:

• We have

(−1)aibi
aiπ biπ

aiπ biπ

π π

π

(π,cc,sf)
= (−1)aibi(−1)bi aiπ

aiπ

π π

π

biπ

(sf)
= (−1)aibi+bi aiπ

aiππ π

π

biπ

(ho,cc)
=

1

2
(−1)aibi+bi

aiπ

aiππ π

πbiπ

(5.1)
=

1

2
(−1)aibi+bi

aiπ + π

aiππ π

πbiπ

(id ,sf)
=

1

2
(−1)aibi+bi

aiπ + π

aiπ π

biπ

(cc,sf)
=

1

2
(−1)aibi+bi

aiπ + π

aiπ + π

biπ

If bi = 0, we get

127

1

2

aiπ + π

aiπ + π

(tri ,sf)
=

1

2

aiπ + π

aiπ + π

(id ,sf ,ho)
=

1

2

aiπ + π

aiπ + π
= 2ai.

If bi = 1, we get

1

2
(−1)ai+1

aiπ + π

aiπ + π

π

(tri ,cp,sf)
=

1

2
(−1)ai+1

aiπ + π

aiπ + π

ππ

(π,sf ,id)
=

1

2
(−1)ai+1(−1)ai+1 = 1.

• We have

(−1)aibi
aiπ biπ

aiπ biπ
π π

π

(π,cc,sf)
= (−1)aibi

aiπ

aiπ
π π

biπ + π

biπ

(sf)
= (−1)aibi

aiπ

aiπ

π π

biπ + π

biπ

(ho,cp,cc,sf)
= (−1)aibi(−1)ai

π

biπ + π

π

biπ

(cc)
=

1

2
(−1)aibi+ai

π

biπ + π

π

biπ

(sf ,ho)
=

1

2
(−1)aibi+ai π

biπ + π

π

biπ

(π,sf)
=

1

2
(−1)aibi+ai

π biπ + π

biπ

=

{
0 if bi = 0

1 if bi = 1

128 Additional Lemmas and Proofs

• We have

(−1)aibi
aiπ biπ

aiπ biπ

(π,cc,sf)
= (−1)aibi

aiπ

aiπ

biπ

biπ

(sf ,ho)
= (−1)aibi

aiπ

aiπ

biπ

biπ

If bi = 0, we get

aiπ

aiπ

(tri ,sf)
=

aiπ

aiπ

(id ,sf ,ho)
=

aiπ

aiπ

(cc)
=

aiπ

aiπ

(sf ,ho)
=

aiπ

aiπ

(cp,tri ,sf)
=

aiπ

=

{
4 if ai = 0

2 if ai = 1

If bi = 1, we get

(−1)ai

aiπ

aiπ

π

π

(tri ,cp,sf)
=

aiπ

aiπ

π π

π

(cp,cc,sf)
= (−1)ai(−1)ai

π π

π

(cc)
=

1

2

π π

π

129

(sf ,ho)
=

1

2

π π

π

(cp,sf)
=

1

2

π

π

= 1.

Proof of Lemma 5.13. We prove both cases separately:

• We have

(−1)aibi
biπaiπ

......

biπaiπ

π

ππ

(cc)
=

1

2
(−1)aibi

biπaiπ
......

biπaiπ

π

ππ

(cc)
=

1

2
(−1)aibi biπaiπ

......

biπaiπ

π

ππ

(sf ,cp)
=

1

2
(−1)aibi(−1)bi aiπ

......

aiπ

π

ππ

(5.1)
=

1

2
(−1)aibi+bi aiπ + π

......

aiπ

π

ππ

If ai = 0, the diagram becomes 0. If ai = 1, we get

......

π

π

ππ
(π,sf)
=

...
π π

...

...
ππ

...

• We have

(−1)aibi
biπaiπ

......

biπaiπ

(cc,hh)
= (−1)aibi

biπaiπ
......

biπaiπ

(sf ,cc,5.1)
=

√
2(−1)aibi

aiπ biπ

......

aiπ biπ
......

aiπ

130 Additional Lemmas and Proofs

(cp,cc,sf)
= 2(−1)aibi

aiπ
......

aiπ
aiπ

biπ

If ai = 0, we get

2

......

......
biπ

(tri ,sf ,cc)
= 2

......

......
biπ

(cp,sf)
= 2

biπ

......

biπ
......

(sf ,ho)
= 4

biπ

......

biπ

......

If ai = 1, we get

2(−1)bi

......

......
π

biπ

(tri ,cp)
= 2

......

......
π π

(cc,sf)
=

......

......

π π
(5.2)
= 2

ππ

...
ππ

...

......

Proof of Lemma 5.15.

bi1π

bimπ

...

...

kπ

bi1π

bim

...

...

kπ

π

ππ

..
.

..
.

(sf)
=

bi1π

bimπ

...

...

kπ

bi1π

bim

...

...

kπ

π

ππ

..
.

..
.

...

...

(sc)
=

bi1π

bimπ

...

...

kπ

bi1π

bim

...

...

kπ

π

ππ

..
.

..
.

(cp,sf)
=

bi1π

bimπ

...

...

bi1π

bim

...

...

π + kπ

ππ

..
.

..
.

131

(sf ,ho)
=

bi1π

bimπ

...

...

bi1π

bim

...

...

π + kπ

ππ
..
.

..
.

(cp,sf)
=

bi1π

bimπ

...

...

bi1π

bim

...

...

π + kπ

..
.

..
.

π

(sf ,id)
=

bi1π

bimπ

...

...
π + kπ

bi1π

bimπ

...

...

π

..
.

..
.

bi1π

bimπ

...

...

kπ

bi1π

bim

...

...

kπ

..
.

..
.

(sc)
=

kπ

kπ

bi1π

bimπ

...

...

..
.

bi2π

bi1π

...

...

..
.

(cp,sf)
=

kπ

bi1π

bimπ

...

...
..
.

bimπ

bi1π

...

...

..
.

(sf ho)
=

kπ

bi1π

bimπ

...

...

..
.

bimπ

bi1π

...

...

..
.

If k = 0, we get

bi1π

bimπ

...

...

..
.

bimπ

bi1π

...

...

..
.

(tri ,sf)
=

bi1π

bimπ

...

...

..
.

bimπ

bi1π

...

...

..
.

(sf ,ho)
=

bi1π

bimπ

...

...

..
.

bimπ

bi1π

...

...

..
.

(cp,sf)
=

bi1π

bimπ

...

...

..
.

bi1π

bimπ

...

...

..
.

If k = 1, we get

132 Additional Lemmas and Proofs

π

bi1π

bimπ

...

...
..
.

bimπ

bi1π

...

...

..
.

(tri ,cp,sf)
=

π π

bi1π

bimπ

...

...

..
.

bimπ

bi1π

...

...

..
.

(cp,sf)
=

bi1π

bimπ

...

...

..
.

π

bimπ

bi1π

...

...

..
.

(sf ,id)
=

bi1π

bimπ

...

...

bi1π

bimπ

...

...

π

..
.

..
.

Proof of Lemma 5.21. We have

... kiπ

... kiπ

α1
...

αm
...

...
(C.1)
=

1√
2
m

...

...

α1
...

αm
...

...

kiπ

(C.2)
=

√
2
m

...

...

α1
...

αm
...

...kiπ

(sc)
=

√
2
m

...
α1

...

αm
...

...kiπ

...

133

(sc)
=

√
2
m

...
α1

...

αm
...

...kiπ

...

(sf ,ho,id)
=

√
2
m

...
α1

...

αm
...

...kiπ

...

For the second cycle, we have

... kiπ

... kiπ

π

α1
...

αm
...

...
π

π

(C.1)
=

1√
2
m

...

...

π

α1
...

αm
...

...π π

kiπ

(C.2)
=

√
2
m

...

...

π α1
...

αm
...

...

π π

kiπ

(sc)
=

√
2
m

...

...

π

α1
...

αm
...

...

π π

kiπ

(sf ,ho)
=

√
2
m

...

...

α1
...

αm
...

...

π π

kiπ + π

(π,sf)
=

√
2
m

α1
...

αm
...

...kiπ + ππ

...

...

Bibliography

[1] Lov K Grover. A fast quantum mechanical algorithm for database search. In

Proceedings of the twenty-eighth annual ACM symposium on Theory of com-

puting, pages 212–219, 1996.

[2] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[3] Michael J Bremner, Ashley Montanaro, and Dan J Shepherd. Achieving quan-

tum supremacy with sparse and noisy commuting quantum computations.

Quantum, 1:8, 2017.

[4] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan

Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195–

202, 2017.

[5] Aram W Harrow and John C Napp. Low-depth gradient measurements can im-

prove convergence in variational hybrid quantum-classical algorithms. Physical

Review Letters, 126(14):140502, 2021.

[6] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. Quan-

tum circuit learning. Physical Review A, 98(3):032309, 2018.

[7] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Kil-

loran. Evaluating analytic gradients on quantum hardware. Physical Review A,

99(3):032331, 2019.

Bibliography 135

[8] Gian-Luca R Anselmetti, David Wierichs, Christian Gogolin, and Robert M

Parrish. Local, expressive, quantum-number-preserving VQE ansätze for

fermionic systems. New Journal of Physics, 23(11):113010, 2021.

[9] David Wierichs, Josh Izaac, Cody Wang, and Cedric Yen-Yu Lin. General

parameter-shift rules for quantum gradients. Quantum, 6:677, 2022.

[10] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and

Hartmut Neven. Barren plateaus in quantum neural network training land-

scapes. Nature communications, 9(1):1–6, 2018.

[11] Zoë Holmes, Kunal Sharma, Marco Cerezo, and Patrick J Coles. Connecting

ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quan-

tum, 3(1):010313, 2022.

[12] Marco Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J Coles.

Cost function dependent barren plateaus in shallow parametrized quantum cir-

cuits. Nature communications, 12(1):1–12, 2021.

[13] Chen Zhao and Xiao-Shan Gao. Analyzing the barren plateau phenomenon in

training quantum neural networks with the ZX-calculus. Quantum, 5:466, 2021.

[14] Bob Coecke and Ross Duncan. Interacting quantum observables. In Interna-

tional Colloquium on Automata, Languages, and Programming, pages 298–310.

Springer, 2008.

[15] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John Van De Wetering.

Graph-theoretic simplification of quantum circuits with the ZX-calculus. Quan-

tum, 4:279, 2020.

[16] Arianne Meijer-van de Griend and Ross Duncan. Architecture-aware synthesis

of phase polynomials for NISQ devices. arXiv preprint arXiv:2004.06052, 2020.

[17] Aleks Kissinger and John van de Wetering. Simulating quantum circuits with

136 Bibliography

ZX-calculus reduced stabiliser decompositions. Quantum Science and Technol-

ogy, 2022.

[18] Razin Shaikh, Quanlong Wang, and Richie Yeung. How to sum and exponen-

tiate hamiltonians in ZXW calculus. Quantum Physics and Logic, 2022.

[19] Quanlong Wang and Richie Yeung. Differentiating and integrating ZX dia-

grams. arXiv preprint arXiv:2201.13250, 2022.

[20] Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik. Expressibility and entan-

gling capability of parameterized quantum circuits for hybrid quantum-classical

algorithms. Advanced Quantum Technologies, 2(12):1900070, 2019.

[21] Dimitri Kartsaklis, Ian Fan, Richie Yeung, Anna Pearson, Robin Lorenz, Alexis

Toumi, Giovanni de Felice, Konstantinos Meichanetzidis, Stephen Clark, and

Bob Coecke. lambeq: An efficient high-level python library for quantum NLP.

arXiv preprint arXiv:2110.04236, 2021.

[22] Marshall H Stone. On one-parameter unitary groups in Hilbert space. Annals

of Mathematics, pages 643–648, 1932.

[23] Maria Schuld and Nathan Killoran. Quantum machine learning in feature

hilbert spaces. Physical review letters, 122(4):040504, 2019.

[24] Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente Leyton-

Ortega, Yunseong Nam, and Alejandro Perdomo-Ortiz. A generative modeling

approach for benchmarking and training shallow quantum circuits. npj Quan-

tum Information, 5(1):1–9, 2019.

[25] Jin-Guo Liu and Lei Wang. Differentiable learning of quantum circuit born

machines. Physical Review A, 98(6):062324, 2018.

[26] Seth Lloyd and Christian Weedbrook. Quantum generative adversarial learning.

Physical review letters, 121(4):040502, 2018.

[27] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus

Bibliography 137

Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient variational

quantum eigensolver for small molecules and quantum magnets. Nature,

549(7671):242–246, 2017.

[28] Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D

Johnson, Mária Kieferová, Ian D Kivlichan, Tim Menke, Borja Peropadre, Nico-

las PD Sawaya, et al. Quantum chemistry in the age of quantum computing.

Chemical reviews, 119(19):10856–10915, 2019.

[29] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate

optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.

[30] Konstantinos Meichanetzidis, Stefano Gogioso, Giovanni De Felice, Nicolò Chi-

appori, Alexis Toumi, and Bob Coecke. Quantum natural language processing

on near-term quantum computers. arXiv preprint arXiv:2005.04147, 2020.

[31] William Huggins, Piyush Patil, Bradley Mitchell, K Birgitta Whaley, and

E Miles Stoudenmire. Towards quantum machine learning with tensor net-

works. Quantum Science and technology, 4(2):024001, 2019.

[32] Xiangjian Qian and Mingpu Qin. From tree tensor network to multiscale en-

tanglement renormalization ansatz. Physical Review B, 105(20):205102, 2022.

[33] Y Du, MH Hsieh, T Liu, and D Tao. The expressive power of parameterized

quantum circuits. arXiv preprint arXiv:1810.11922, 2018.

[34] Xavier Bonet-Monroig, Hao Wang, Diederick Vermetten, Bruno Senjean,

Charles Moussa, Thomas Bäck, Vedran Dunjko, and Thomas E O’Brien. Perfor-

mance comparison of optimization methods on variational quantum algorithms.

arXiv preprint arXiv:2111.13454, 2021.

[35] James C Spall et al. Multivariate stochastic approximation using a simultaneous

perturbation gradient approximation. IEEE transactions on automatic control,

37(3):332–341, 1992.

138 Bibliography

[36] Michael JD Powell. A direct search optimization method that models the objec-

tive and constraint functions by linear interpolation. Advances in optimization

and numerical analysis, pages 51–67, 1994.

[37] Jonas M Kübler, Andrew Arrasmith, Lukasz Cincio, and Patrick J Coles. An

adaptive optimizer for measurement-frugal variational algorithms. Quantum,

4:263, 2020.

[38] Ken M Nakanishi, Keisuke Fujii, and Synge Todo. Sequential minimal opti-

mization for quantum-classical hybrid algorithms. Physical Review Research,

2(4):043158, 2020.

[39] Max Wilson, Rachel Stromswold, Filip Wudarski, Stuart Hadfield, Norm M

Tubman, and Eleanor G Rieffel. Optimizing quantum heuristics with meta-

learning. Quantum Machine Intelligence, 3(1):1–14, 2021.

[40] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and

Yann LeCun. The loss surfaces of multilayer networks. In Artificial intelligence

and statistics, pages 192–204. PMLR, 2015.

[41] Xuchen You and Xiaodi Wu. Exponentially many local minima in quantum neu-

ral networks. In International Conference on Machine Learning, pages 12144–

12155. PMLR, 2021.

[42] Kang Feng Ng and Quanlong Wang. A universal completion of the ZX-calculus.

arXiv preprint arXiv:1706.09877, 2017.

[43] Aleks Kissinger and John van de Wetering. Reducing T-count with the ZX-

calculus. arXiv preprint arXiv:1903.10477, 2019.

[44] Alexander Cowtan, Will Simmons, and Ross Duncan. A generic com-

pilation strategy for the unitary coupled cluster ansatz. arXiv preprint

arXiv:2007.10515, 2020.

Bibliography 139

[45] Ross Duncan. A graphical approach to measurement-based quantum comput-

ing. arXiv preprint arXiv:1203.6242, 2012.

[46] Aleks Kissinger and John van de Wetering. Universal MBQC with generalised

parity-phase interactions and Pauli measurements. Quantum, 3:134, 2019.

[47] Niel de Beaudrap and Dominic Horsman. The ZX calculus is a language for

surface code lattice surgery. Quantum, 4:218, 2020.

[48] Quanlong Wang. Algebraic complete axiomatisation of ZX-calculus with a nor-

mal form via elementary matrix operations. arXiv preprint arXiv:2007.13739,

2020.

[49] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course

in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press,

2017.

[50] Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and Seyon

Sivarajah. Phase gadget synthesis for shallow circuits. arXiv preprint

arXiv:1906.01734, 2019.

[51] Aleks Kissinger and John van de Wetering. Picturing Quantum Software. 2022.

[52] Richie Yeung. Diagrammatic design and study of ansätze for quantum machine

learning. arXiv preprint arXiv:2011.11073, 2020.

[53] Alexis Toumi, Richie Yeung, and Giovanni de Felice. Diagrammatic differenti-

ation for quantum machine learning. arXiv preprint arXiv:2103.07960, 2021.

[54] William Wernick. Complete sets of logical functions. Transactions of the Amer-

ican Mathematical Society, 51:117–132, 1942.

[55] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, M Sohaib Alam,

Shahnawaz Ahmed, Juan Miguel Arrazola, Carsten Blank, Alain Delgado, So-

ran Jahangiri, et al. Pennylane: Automatic differentiation of hybrid quantum-

classical computations. arXiv preprint arXiv:1811.04968, 2018.

140 Bibliography

[56] Gavin E Crooks. Gradients of parameterized quantum gates using the

parameter-shift rule and gate decomposition. arXiv preprint arXiv:1905.13311,

2019.

[57] Brooks Foxen, Charles Neill, Andrew Dunsworth, Pedram Roushan, Ben

Chiaro, Anthony Megrant, Julian Kelly, Zijun Chen, Kevin Satzinger, Rami

Barends, et al. Demonstrating a continuous set of two-qubit gates for near-

term quantum algorithms. Physical Review Letters, 125(12):120504, 2020.

[58] Oleksandr Kyriienko and Vincent E Elfving. Generalized quantum circuit dif-

ferentiation rules. Physical Review A, 104(5):052417, 2021.

[59] Vladimir Britanak, Patrick C Yip, and Kamisetty Ramamohan Rao. Discrete

cosine and sine transforms: general properties, fast algorithms and integer ap-

proximations. Elsevier, 2010.

[60] Anil K Jain. A sinusoidal family of unitary transforms. IEEE Transactions on

Pattern Analysis and Machine Intelligence, (4):356–365, 1979.

[61] Dan Shepherd and Michael J Bremner. Temporally unstructured quantum

computation. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 465(2105):1413–1439, 2009.

[62] Michael J Bremner, Ashley Montanaro, and Dan J Shepherd. Average-case

complexity versus approximate simulation of commuting quantum computa-

tions. Physical review letters, 117(8):080501, 2016.

[63] Austin P Lund, Michael J Bremner, and Timothy C Ralph. Quantum sampling

problems, boson sampling and quantum supremacy. npj Quantum Information,

3(1):1–8, 2017.

[64] Michael J Bremner, Richard Jozsa, and Dan J Shepherd. Classical simulation of

commuting quantum computations implies collapse of the polynomial hierarchy.

Bibliography 141

Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 467(2126):459–472, 2011.

[65] Aleks Kissinger, John van de Wetering, and Renaud Vilmart. Classical simula-

tion of quantum circuits with partial and graphical stabiliser decompositions.

arXiv preprint arXiv:2202.09202, 2022.

[66] John Coates and Ramdorai Sujatha. Cyclotomic fields and zeta values. Springer

Science & Business Media, 2006.

[67] Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and Marcello

Benedetti. An initialization strategy for addressing barren plateaus in

parametrized quantum circuits. Quantum, 3:214, 2019.

[68] Ankit Kulshrestha and Ilya Safro. BEINIT: Avoiding barren plateaus in varia-

tional quantum algorithms. arXiv preprint arXiv:2204.13751, 2022.

[69] Ali Rad, Alireza Seif, and Norbert M Linke. Surviving the barren plateau

in variational quantum circuits with bayesian learning initialization. arXiv

preprint arXiv:2203.02464, 2022.

[70] Stefan H Sack, Raimel A Medina, Alexios A Michailidis, Richard Kueng, and

Maksym Serbyn. Avoiding barren plateaus using classical shadows. PRX Quan-

tum, 3(2):020365, 2022.

[71] Xia Liu, Geng Liu, Jiaxin Huang, and Xin Wang. Mitigating barren plateaus

of variational quantum eigensolvers. arXiv preprint arXiv:2205.13539, 2022.

[72] Andrea Skolik, Jarrod R McClean, Masoud Mohseni, Patrick van der Smagt,

and Martin Leib. Layerwise learning for quantum neural networks. Quantum

Machine Intelligence, 3(1):1–11, 2021.

[73] Taylor L Patti, Khadijeh Najafi, Xun Gao, and Susanne F Yelin. Entanglement

devised barren plateau mitigation. Physical Review Research, 3(3):033090, 2021.

	Abstract
	Acknowledgements
	Introduction
	Main Contributions
	Structure of this Thesis

	Background
	An Introduction to Quantum Theory
	States
	Unitary Evolution
	Measurements
	The Quantum Circuit Model

	Quantum Machine Learning
	Types of Ansätze
	Gradient-Based Optimisation

	The ZXW-Calculus
	Generators and String Diagrams
	Additional Notation
	Rules
	Quantum Gates and Computation in ZXW
	Pauli Boxes
	Useful Lemmas

	Diagrammatic Differentiation
	Background
	Differentiating Quantum Circuits
	Properties of the Differentiation Gadget

	Gradient Recipes
	Parametrised Unitaries as ZX Diagrams
	Diagonalising Parametrised Unitaries
	General Construction
	Special Case for Two Eigenvalues

	Parameter-Shift Rules
	Two-Term Shift Rule
	Shift Rules Beyond Two Terms
	Proof of Anselmetti's No-Go Conjecture

	Ancilla Recipes

	Barren Plateaus
	Background
	Studied Ansätze
	Numerical Barren Plateau Detection
	Method
	Note on Zero Variance
	Results

	Analytical Barren Plateau Detection
	Introductory Example
	Sim 1
	Sim 2
	Sim 9
	Single-Layer IQP Ansätze
	Dealing with multiple parameter occurrences
	Commuting Multi-Layer IQP Ansätze
	Non-Commuting Multi-Layer IQP Ansätze

	Barren Plateau Mitigation Techniques

	Discussion
	Summary of Results
	Discussion and Future Work

	Constructing the Ancilla State
	Details on Recursive Contraction
	Deriving the Recurrence Relation
	Solving the Recurrence Relation

	Additional Lemmas and Proofs
	Bibliography

