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Abstract

Quantum computing promises to transform the landscape of computa-

tion, yet the limitations of current hardware make classical simulation

indispensable for the design, optimisation, and verification of quantum

algorithms. This dissertation develops a new simulation strategy based

on the ZX-calculus, a graphical formalism for reasoning about quantum

circuits. We exploit the ZX diagram’s rank-width to perform tensor con-

tractions more efficiently. In particular, we introduce a simulation pipeline

that reduces a Clifford+T circuit to a graph-like ZX diagram, extracts a

linear rank-decomposition via extended gflow, refines it through simulated

annealing, and performs a recursive contraction algorithm along the re-

sulting decomposition tree. The computational complexity of our method

depends primarily on the cut-rank structure of the decomposition.

Our benchmarks demonstrate that our method outperforms other state-

of-the-art tensor contraction routines by a factor of 10 on random circuits

of different sizes.
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Chapter 1

Introduction

Quantum computing leverages principles of quantum mechanics – such as super-

position, interference, and entanglement – to perform computations. This rapidly

evolving field enables us to solve complex problems significantly faster than on classi-

cal computers. These problems arise in various fields such as cryptography, artificial

intelligence, healthcare, and chemistry. Yet, at present, reliable large-scale quantum

hardware remains a major challenge to build. In the meantime, simulating quantum

circuits on classical computers is crucial for testing and optimising the algorithms

before deploying them on actual quantum hardware. Moreover, the techniques used

for simulation can provide a deeper understanding of the problem and potentially

shed light on how to approach it from a classical perspective.

Graphical languages like ZX/ZH-calculus [6, 12] serve as a helpful framework

for reasoning about complex quantum circuits. In addition to being a convenient

formalism, they form a basis for various simulation strategies. Quantum circuits can

be transformed into a ZX/ZH diagram and optimised using a set of local rules. The

sequence of transformations results in a more compact version of the diagram, which

may not be directly decomposable into quantum gates. The outcome of the original

circuit is then computed classically by evaluating the final diagram using various

advanced strategies based on T-count reduction, graph partitioning techniques, etc.

This thesis introduces a new simulation algorithm that takes advantage of the ZX

diagram’s rank-width to perform tensor contractions more efficiently. As computing

rank-width exactly is known to be NP-hard [9], many practical approaches exist

for finding rank-decompositions of sufficiently good quality. We start with the rank-

decomposition obtained from the extended gflow [1, 19] and apply simulated annealing

as in [16]. This enables us to optimise the complexity of our main contraction routine.

Finally, we compare the performance of our algorithm with existing strategies on

various quantum circuits.
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This dissertation is organised as follows.

In Chapter 2, we give a background on quantum computation, tensor networks,

and the ZX-calculus. We discuss the rules for converting a quantum circuit into a

ZX diagram and provide a complete set of local transformations. We also discuss

CNOT-only circuits, where the corresponding unitary is determined by a parity map.

In Chapter 3, we explain some of the known approaches for quantum simulation

using ZX-calculus. First, we discuss Clifford circuits, which can be simulated in

polynomial time. Then we turn to the general case by considering Clifford+T circuits,

as they are computationally universal. We discuss the stabiliser decompositions – an

essential tool for reducing T-count at the cost of branching into several instances. We

also discuss simulation techniques relying on the connectivity of the diagram. Finally,

we discuss other approaches such as greedy strategies and those based on simulated

annealing and reinforcement learning.

In Chapter 4, we give all the necessary mathematical background for a clear

presentation of our strategy. First, we recall some linear algebra over GF(2) and

discuss the notions of rank factorisation and generalised inverse. Then, we define the

rank-width and rank-decomposition of a graph, and briefly discuss their applications

in classical simulation. We proceed by defining gflow and extended gflow on graphs,

which are helpful for obtaining a good starting point for rank minimisation.

In Chapter 5, we illustrate our new method for quantum circuit evaluation using

rank-width. First, we give the general pipeline of the strategy. Then, we rigorously

prove that extended gflow provides an efficient rank-decomposition. We also discuss

the method for further rank optimisation using simulated annealing. Finally, we ex-

plain the main tensor contraction routine and discuss its implementation bottlenecks.

Finally, the benchmarks of our strategy are presented in Chapter 6. First, we eval-

uate the quality of the rank-decompositions found by the annealer. Then, we compare

our whole simulation strategy against Quimb and see that on random circuits, our

method performs 10 times faster than the baseline.
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Chapter 2

Quantum Computing and
ZX-Calculus

2.1 Quantum circuits

In this section, we explain the basics of quantum computation. In particular, we

discuss qubits, quantum gates, and measurements, which are the building blocks of

quantum circuits.

2.1.1 Qubits

A qubit is a quantum analogue of a classical bit: its value varies over all normalised

complex linear combinations of 0 and 1, being the element of the two-dimensional

complex Hilbert space C2 with the standard inner product. Formally,

Definition 2.1.1. A qubit is a vector |ψ〉 = a |0〉 + b |1〉 =

󰀕
a
b

󰀖
∈ C2 satisfying

󰀂ψ󰀂2 = |a|2 + |b|2 = 1.

Here we used the Dirac notation, also called the bra–ket notation. Generally,

there are two ways to represent a vector ψ ∈ C2: either as a column-vector (‘ket’)

|ψ〉 =

󰀕
a
b

󰀖
, or as a row-vector (‘bra’) 〈ψ| =

󰀃
a b

󰀄
, where x denotes the complex

conjugate of x. The inner product 〈ψ,φ〉 is then written concisely as 〈ψ|φ〉.
There are several orthonormal bases widely used in quantum computing:

1. The standard computational basis (Z-basis), given by |0〉 :=
󰀕
1
0

󰀖
, |1〉 :=

󰀕
0
1

󰀖
,

2. The X-basis, given by |+〉 := 1√
2

󰀕
1
1

󰀖
, |−〉 := 1√

2

󰀕
1
−1

󰀖
,
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3. The Y-basis, given by |+i〉 := 1√
2

󰀕
1
i

󰀖
, |−i〉 := 1√

2

󰀕
1
−i

󰀖
.

These vectors are the eigenstates of the respective Pauli matrices

Z = σz :=

󰀕
1 0
0 −1

󰀖
, X = σx :=

󰀕
0 1
1 0

󰀖
, Y := σy :=

󰀕
0 −i
i 0

󰀖
.

Unlike the classical case, the collection of qubits cannot generally be represented

as a collection of C2-vectors. Indeed, such states allow no entanglement and are called

product states, which form a small subset of all possible states. Instead, the n-qubit

state is defined as a normalised vector of (C2)⊗n, a tensor product of n copies of C2.

Formally,

Definition 2.1.2. The tensor product U ⊗ V , where U, V are Hilbert spaces with

orthonormal bases |u1〉 , . . . , |un〉 and |v1〉 , . . . , |vm〉, is defined as the set of linear

combinations of all possible pairs (ui, vj), i.e.
󰁱󰁓

i,j cij |ui〉 ⊗ |vj〉 : ci,j ∈ C
󰁲
. The

inner product 〈c, d〉 is denoted by
󰁓

i,j cijdij.

The n-qubit state can then be defined as the 2n-term sum
󰁓

i∈{0,1}n ai |i1 . . . in〉
with

󰁓
i |ai|2 = 1, where |i1 . . . in〉 is a shorthand notation for |i1〉 ⊗ · · · ⊗ |in〉. Note

that since (C2)⊗n is isomorphic to C2n , we can assume the state is a ket vector of size

2n.

2.1.2 Quantum gates

In a quantum computation, the states are transformed into one another using quan-

tum gates.

Definition 2.1.3. The n-qubit quantum gate is a unitary linear map U : C2n 󰀁→ C2n,

i.e., a linear map preserving the inner product.

In the standard computational basis, this map is expressed by a unitary 2n × 2n

matrix U , i.e., satisfying U∗U = I2n , where U∗ denotes the conjugate transpose.

Below are the standard examples of quantum gates.

1. The X-, Y-, and Z-gates
󰀓

X , Y , Z
󰀔
denoted by σx, σy, σz.

2. The Hadamard gate H denoted by 1√
2

󰀕
1 1
1 −1

󰀖
.

3. The S, T gates
󰀓

S , T
󰀔
denoted by

󰀕
1 0
0 i

󰀖
and

󰀕
1 0
0 eπi/4

󰀖
, respectively.

4. The CNOT gate ⊕ , |a〉 ⊗ |b〉 → |a〉 ⊗ |a⊕ b〉 and extended by the linearity.
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2.1.3 Quantum measurements

The last ingredient of quantum circuits is measurements, which allow us to extract

classical information from the qubits.

Definition 2.1.4. A measurement is a set of projectors M = {M0, . . . ,Mk−1} such

that
󰁓

i Mi = I. The probability of the i-th outcome when we measure the state |ψ〉
is given by the Born rule: Prob(i | ψ) = 〈ψ|Mi |ψ〉.

In particular, when measuring a single-qubit system in the state a |0〉+b |1〉, we can
take M0 = |0〉 〈0|, M1 = |1〉 〈1| so that the probabilities of getting 0, 1 are p0 = |a|2,
p1 = |b|2. This is called measurement in the standard basis. When measuring n qubits

in the state
󰁓

i ai |i1 . . . in〉 one by one in the standard basis, the probability of getting

a bit string k equals |ak|2. Note that as our state is normalised, all probabilities sum

up to 1.

Quantum circuits consist of three parts, from left to right:

1. an input state, usually |0 . . . 0〉 by default,

2. a sequence of quantum gates applied to different qubits,

3. single-qubit measurements, typically in the standard basis.

The output of the quantum circuit is the bit string obtained from the measurements.

Hence, a quantum algorithm constitutes a nondeterministic process. A circuit exam-

ple is given below:

⊕ ⊕ X

X T

0

0

0

Z ⊕

⊕Z

H

(2.1)

2.2 Tensor networks

Another way to view quantum circuits is through the tensor network formalism. Let

us briefly introduce all the necessary notions; see [6] and [12] for a complete guide to

calculations with tensors and string diagrams.

There are several ways to define tensors in mathematics, such as multilinear maps

or using tensor products. In computer science, it is more natural to consider tensors as

multidimensional arrays. We will assume there are two kinds of dimensions – inputs

and outputs – and write the corresponding indices as subscripts and superscripts,

respectively.
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Definition 2.2.1. An (n,m)-tensor T , i.e., having n inputs and m outputs, is a

multidimensional array of size d1 × · · · × dn × d1 × · · · × dm such that T i1...im

i1...in
∈ C

for each ik ∈ [0; dk) and il ∈ [0; dl), where dk, d
l ∈ N are called input and output

dimensions.

In particular, a tensor having

• 0 inputs and 0 outputs is a scalar,

• 0 inputs and 1 output is a column vector,

• 1 input and 0 outputs is a row vector,

• 1 input and 1 output is a matrix.

The addition of two tensors is defined as the element-wise sum of the arrays. The

tensor product and composition turn out to be the special case of tensor contraction,

which is defined as follows.

Definition 2.2.2. Given two tensors A,B of input and output dimensions n̂i, ň
i, m̂i, m̌

i

and two sets of indices O ⊂ [1; |ň|], I ⊂ [1; |m̂|], where |O| = |I| = k and ňOi = m̂Ii

for every i ∈ [1; k], the contraction of A,B along O, I is a new tensor AOBI such

that

󰀃
AOBI

󰀄ǎŌ b̌

âb̂Ī
=

m̂I1
−1󰁛

ǎO1=b̂I1=0

· · ·
m̂Ik

−1󰁛

ǎOk=b̂Ik=0

Aǎ
âB

b̌
b̂
,

where â, ǎ, b̂, b̌ denote the input and output indices of A and B respectively, and Ō, Ī

denote the complements of O and I.

In other words, the contraction is the sum of products of the corresponding val-

ues of the initial tensors, where the summation is taken over indices not present in

the resulting tensor. For instance, given two matrices A,B, their contraction A1B1

corresponds to the matrix product BA (the order is flipped because matrices act

on a vector on their right). Another example is the inner product 〈ψ|φ〉 being the

contraction of 〈ψ| and |φ〉.
Graphically, tensors are represented as boxes with loose wires. Each wire has a

dimension assigned to it (2 by default), and the inputs are located on the left while

the outputs are on the right, so that the diagram is read from left to right. In some
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literature, diagrams are read from top to bottom or from bottom to top as well. Here

is an example of a tensor with input dimensions 1, 2, and output dimensions 3, 4, 5:

A

3

4

5

1

2

Tensor contraction is represented by joining the corresponding inputs and outputs

together:

A2,3B1,2 =
A

B

Another special case of tensor contraction is tensor product :

A⊗ B = A∅B∅ =

A

B

...

...

...

...

In general, a tensor diagram is an undirected graph with possibly loose edges,

where each vertex represents a tensor and each non-loose edge represents a contrac-

tion. The value of a tensor diagram can be computed by performing contractions

until only one vertex remains. By convention, an empty tensor diagram represents

scalar 1.

Tensor diagrams enable us to prove various algebraic identities without worrying

about indices. For example, the famous interchange law follows directly from the

following diagrammatic reasoning:

(A⊗ C)(B ⊗D) =
B

D
◦

A

C
=

B A

D C
=

AB

CD
= AB ⊗ CD.

Another example is the cyclic property of trace, as tr(A) corresponds to the self-

contraction:

tr(ABC) = BC A = B

CT

A = AB C = tr(CAB).

Quantum circuits can be interpreted as tensor diagrams. Indeed, we can transform

each element of a quantum circuit into a tensor with each dimension equal to 2: every

single-qubit state is a tensor with a single output, and the gates are either (1, 1)-

or (2, 2)-tensors. To determine the probability of a particular measurement outcome

i1, . . . , in, by the Born rule, we need to contract (postselect) each qubit k with 〈ik|
and square the norm. This corresponds to taking the modulus squared of the value

of the tensor diagram. For example, Prob
󰀓
1
󰀏󰀏 0 H

󰀔
=

󰀏󰀏󰀏 0 1H

󰀏󰀏󰀏
2

= 1/2.
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2.3 The ZX-calculus

Quantum circuits and tensor diagrams are powerful models for quantum computation.

Yet, to say something meaningful about a particular circuit, one needs to evaluate the

whole tensor diagram and work with large sums. Due to the rich zoo of quantum gates,

it gets especially non-trivial to determine whether two quantum circuits represent the

same computation. The ZX-calculus [6, 12] offers an alternative way of reasoning

about quantum circuits by decomposing the gates into smaller building blocks called

spiders. As there are only two types of spiders (green and red), it is not as difficult to

find a complete set of local transformations leaving the underlying tensor unchanged.

Definition 2.3.1 (Green and Red Spiders).

n

󰀝
α...
...

󰀞
m := |0 . . . 0〉󰁿 󰁾󰁽 󰂀

m

〈0 . . . 0|󰁿 󰁾󰁽 󰂀
n

+eiα |1 . . . 1〉󰁿 󰁾󰁽 󰂀
m

〈1 . . . 1|󰁿 󰁾󰁽 󰂀
n

,

n

󰀝
α ...

...

󰀞
m := |+ · · ·+〉󰁿 󰁾󰁽 󰂀

m

〈+ · · ·+|󰁿 󰁾󰁽 󰂀
n

+eiα |− · · ·−〉󰁿 󰁾󰁽 󰂀
m

〈− · · ·−|󰁿 󰁾󰁽 󰂀
n

.

Green and red spiders are also called Z- and X-spiders, as they represent the same

tensor in the Z- and X-basis. The phase α is omitted when α = 0.

Let us consider a few small examples of spiders:

α = 1 + eiα, α = 1 + eiα,

= |0〉+ |1〉 =
√
2 |+〉 , = |+〉+ |−〉 =

√
2 |0〉 ,

π = |0〉 − |1〉 =
√
2 |−〉 , π = |+〉 − |−〉 =

√
2 |1〉 ,

= |0〉 〈0|+ |1〉 〈1| = I, = |+〉 〈+|+ |−〉 〈−| = I,

π = |0〉 〈0|− |1〉 〈1| = Z, π = |+〉 〈+|− |−〉 〈−| = X.

Hereafter we use the symbol ∝ to represent equality up to a multiplicative constant.

We then have kπ ∝ |k〉 for k = 0, 1.

In addition to spiders, although redundant, the Hadamard box has acquired a sep-

arate representation. This is because Hadamard gates are so common that expressing

them through spiders would be cumbersome.

Definition 2.3.2 (Hadamard box or H-box).

:= H = e−πi/4 π
2

π
2

π
2

The Z-, X-spiders, and H-boxes can be joined together to form a ZX diagram. It

turns out that it is possible to represent every quantum circuit in this way. Indeed,

8



• the input state is replaced by one-legged spiders, with |0〉 , |1〉 corresponding to

the red ones and |+〉 , |−〉 corresponding to the green ones,

• the X, Z, and H gates are replaced by the two-legged π-phase spiders and H-

boxes,

• the Y gate equals the composition of X and Z gates (up to a constant factor),

• the S and T gates are given by π
2 and π

4 , respectively,

• the CNOT gate is equivalent to ,

• the measurements in the Z or X basis are replaced by the single-legged red or

green spiders, respectively, with phases ikπ representing the outcome ik.

For example, the circuit (2.1) gets transformed into the following ZX diagram:

⊕ ⊕ X

X T

0

0

0

Z ⊕

⊕Z

H

∝
π

π

π
4 π

π aπ

bπ

cπ

Now that we have defined all the necessary components, we need to figure out

how to manipulate them. Our goal is to do proofs using the ZX-calculus, such as

establishing the equivalence of quantum circuits. The main recipe is to perform local

transformations that leave the ZX diagram equivalent up to a constant factor, which

can be computed separately. The complete set of rules is given below.

α

β

...

...

...

...

...

(sf)

∝ α + β
...

... α
...

...

(cc)

∝ α
...

...

aπ bπ
...

...

(sc)

∝
bπ

bπ

aπ

aπ

...
... α

π

π

π

π

...
...

(π)

∝ −α
...

...

(id)

=
(hh)

=

(sf)− spider fusion (cc)− color change

(sc)− strong complementarity (π)− π-rule

(id)− identity removal (hh)− Hadamard cancel

9



These rules, together with their colour-symmetric versions, form the ZX-calculus. Let

us illustrate the application of these rules by proving the following lemma.

Lemma 2.3.1 (Hopf rule).

∝

Proof.

=
(id)

=
(sf)

∝
(sc)

∝

(sc)

∝
(sc)

∝ ∝

Note that we have used the special case of strong complementarity with zero wires

on the left: ∝ . This rule is known as just complementarity (c).

After a quantum circuit is turned into a ZX diagram, simplification is possible

through the rules of the ZX-calculus. Let us turn to our example (2.1) and see what

we can accomplish with these rules.

⊕ ⊕ X

X T

0

0

0

Z ⊕

⊕Z

H

∝
π

π

π
4 π

π
(sf)

∝
π

π

5π
4

π
(c)

∝

(c)

∝
π 5π

4

π

π (cc)

∝
π 5π

4

π

π (c)

∝
π 5π

4

π

π

π

(π)

∝
3π
4

π

π

π (sf)

∝

(sf)

∝ 7π
4

π

π (Hopf)

∝ 7π
4

π

π (sf)

∝
π

7π
4

π

To transform the ZX diagram back to the circuit form, we decompose the 7π/4 phase

into π, π/2, π/4, and apply (sf) and (cc) to unfuse the all-zero input state:

π

7π
4

π

∝
π

π
2

π
4π

π

∝

0

0

0

H

S T

X

Z

X

The resulting circuit is much simpler than the original one.
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2.4 Parity maps

Quantum simulation of general circuits is known to be PromiseBQP-complete, mean-

ing that if someone manages to simulate arbitrary quantum circuits efficiently, then

building quantum computers would be a waste of time. Yet, some quantum circuits

are easy to simulate – for instance, the Clifford ones, which we discuss in the next

chapter. In the ZX-calculus, the classes of diagrams that are in some sense easier

than general ones are called fragments. Let us look at the phase-free fragment of ZX-

calculus, i.e., at the ZX diagrams whose spiders are all phase-free. These diagrams

correspond to the CNOT circuits and are characterised by parity maps.

Hereafter, we assume F2 is the field of two elements with addition and multipli-

cation defined as XOR and AND, respectively. A parity map is a linear operator

Fn
2 → Fm

2 characterised by a parity matrix of size m×n. Let us show that the CNOT

circuits (quantum circuits consisting only of CNOTs) are described by parity maps.

Indeed, each CNOT gate acts as a parity map on the basis states of its qubits with

the parity matrix

󰀕
1 0
1 1

󰀖
, since |x〉⊗ |y〉 󰀁→ |x〉⊗ |x+ y〉. Hence it represents a parity

map Fn
2 → Fn

2 . When we compose different CNOTs consecutively, the parity matrices

get multiplied, resulting in a parity matrix of the composition. Thus, the action of

the whole circuit on the basis states is described by a parity matrix. The action on

all the remaining states is uniquely determined by the linearity.

Suppose we are given a parity matrix A of size n× n. Does there exist a CNOT

circuit equivalent to it? It turns out it exists if and only if A is invertible. Indeed,

if A is not invertible, then the map between the basis states is not injective and

thus cannot be unitary. If A is invertible, then we can reduce A to the identity by

performing elementary row operations:

Eikjk . . . Ei1j1A = I,

where Eij corresponds to the addition of the j-th row to the i-th row. As Eitjt are

self-inverse, multiplying both sides by Ei1j1 . . . Eikjk we get

A = Ei1j1 . . . Eikjk .

Since Ei,j is the parity matrix of the CNOT gate applied to the qubits i, j, it follows

that A can be constructed as the composition of CNOTs over (i1, j1), . . . , (ik, jk).

To sum up, each CNOT circuit is represented by an invertible parity map, and

each invertible parity map corresponds to at least one CNOT circuit. But what is

the simplest form to which we can reduce its ZX diagram?

11



Clearly, the initial ZX diagram of a CNOT-only circuit (without the input state)

is phase-free. Let us fuse all the same-colored spiders so that each edge joins different

colors. We can assume each input is adjacent to a green spider by adding them using

the (id) rule, if necessary. Similarly, each output is adjacent to a red spider. Now

take a pair of connected internal spiders (not adjacent to inputs and outputs) and

apply strong complementarity to them:

...
...

(sc)

∝ ...
...

...
...

(sf)

∝ ...
...

Note that the overall number of spiders is reduced by 2. Keep doing this procedure

until every internal spider is connected to boundary (non-internal) spiders only. Since

the boundary spiders on the left are green, and the ones on the right are red, our ZX

diagram has the form

...
...

...
...

∝ ...
...

... . . . . . ....

We claim that, in fact, there are no internal red spiders on the left. Assuming the

contrary, let x be the first such spider and consider the set of qubits S to which x is

connected. Pick j ∈ S and act with our circuit on the input state ai = [i = j]:

...

π

. . .

j

x
(c)

∝

π π

... . . .

(sf)

∝

π

. . .π
= 0,

contradicting the unitarity of our circuit. Analogously, by considering the transpose

of our map, we argue that there are no internal green spiders on the right. Hence the

ZX diagram takes a much simpler form:

...
...

12



Let us interpret this diagram as a parity map. Plugging in the basis state |a1 . . . an〉
we have

...
...

a1π

a2π

anπ

(c)

∝ ...

a1π

a2π

a2π

anπ

a1π

(sf)

∝

(a1 ⊕ . . . )π

(a1 ⊕ . . . )π

(a2 ⊕ . . . )π

...
.

Thus, we can interpret each green spider as COPY and each red spider as XOR. The

parity matrix A then corresponds to the biadjecency matrix: Aij = 1 iff there is an

edge between the i-th output and the j-th input.

Let us now consider arbitrary parity maps from Fn
2 to Fm

2 . Suppose we are given

a parity matrix A of size m × n and want to build the corresponding ZX diagram

with n inputs and m outputs. Using the interpretation above, for each Aij = 1, we

join the i-th red spider on the right and the j-th green spider on the left. We know

that this diagram is equivalent to the parity map up to a multiplicative scalar. But

can we compute this factor exactly?

We can do this by first computing the scalar in the complementarity rule. Direct

calculation yields

aπ ...

󰀼
󰁁󰁀

󰁁󰀾
n

(c)

=

󰀕
1√
2

󰀖n−1
aπ

aπ

aπ

...

󰀼
󰁁󰁀

󰁁󰀾
n

It is also easy to check that spider fusion has scalar 1:

α

β

...

...

...

...

...

(sf)

= α + β
...

...

Hence we have

...
...

a1π

a2π

anπ

=

󰀕
1√
2

󰀖|A|−n

b1π

b2π

bmπ

...

where b := Aa and |A| denotes the number of ones in A. Recall that the red spiders

are basis states times
√
2, thus the resulting scalar is (1/

√
2)|A|−m:

...
...

|a1〉
|a2〉

|an〉

=

󰀕
1√
2

󰀖|A|−m

...

|b1〉
|b2〉

|bm〉

13



Chapter 3

Current Simulation Methods

3.1 Clifford circuits

Clifford circuits form a very important subclass of quantum circuits. These circuits are

composed entirely of Clifford gates – namely the Hadamard (H), S, and CNOT gates.

Despite their limited computational power compared to universal quantum circuits,

Clifford circuits are widely used in quantum error correction, stabiliser codes, and

classical simulation. In this section, we use ZX-calculus to prove the Gottesman-Knill

theorem, which states that Clifford circuits can be classically simulated in polynomial

time. By reducing a Clifford ZX diagram to the GSLC normal form, we establish a

normal form for Clifford circuits and estimate the computational complexity of their

classical simulation.

When viewed through the lens of ZX-calculus, Clifford circuits correspond to

the Clifford fragment, where all phases are integer multiples of π/2. Indeed, the S

gate creates a π/2-phase green spider, and all other gates are phase-free. Note that

the Clifford fragment is the generalisation of the phase-free fragment discussed in

Chapter 2.

Let us introduce a few necessary notions and present some basic properties.

Definition 3.1.1. When two spiders in the ZX diagram are connected via a Hadamard,

we illustrate this as a blue dotted line:

...
... :=

...
...

We call such a connection a Hadamard edge.

Lemma 3.1.1. A pair of parallel Hadamard edges cancels:

...
...α β ∝ ...

...α β

14



Proof. First, apply the (cc) rule to change the color of the left spider. Then unfuse the

green and red spiders, apply the Hopf rule in the middle, and finally fuse these spiders

back and apply the (cc) rule again. For more details, see [12, Lemma 5.1.5].

Lemma 3.1.2. Hadamard self-loops are equivalent to adding the π phase:

α

. . .
∝ α + π

. . .

Proof. See [12, Lemma 5.1.6].

Definition 3.1.2. A ZX-diagram is graph-like when

• Every spider is a Z-spider.

• Spiders are only connected via Hadamard edges.

• There are no self-loops or parallel edges.

• Every Z-spider is connected to at most one input and at most one output.

• Every input and output wire is connected to a Z-spider.

Proposition 3.1.1. An arbitrary ZX diagram can be reduced efficiently to a graph-

like diagram.

Proof. We outline the main steps of the algorithm; see [12, Proposition 5.1.8] for a

detailed explanation.

1. Convert all X-spiders to Z-spiders using the (cc) rule.

2. Cancel all pairs of adjacent Hadamards using the (hh) rule.

3. Fuse all spiders using (sf) until there are no neighbouring same-colored spiders

left.

4. Remove parallel Hadamard edges using Lemma 3.1.1.

5. Remove self-loops and Hadamard self-loops using Lemma 3.1.2.

6. Add Z-spiders and Hadamards using (id) and (hh) in reverse, so that every input

and output is directly connected to a Z-spider and no Z-spiders are connected

to multiple inputs/outputs.
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Definition 3.1.3. A graph-like diagram is a graph state when

• it has no inputs,

• every spider is connected to an output,

• and all phases are zero.

We present an example of a graph state and show how to decompose it into a

CZ-only circuit, where vertical Hadamard edges represent the CZ gates:

(sf)

=

Many quantum states are not exactly graph states, but are very close to them. For

instance, the GHZ state is given by

(hh)

=
(id)

= =

This motivates the following definition.

Definition 3.1.4. A graph state with local Cliffords (GSLC) is a graph state to which

some single-qubit unitaries have been applied on its outputs.

At first glance, GSLC is insufficient to capture the variety of Clifford circuits, since

GSLC does not have any inputs. It turns out one can easily reduce Clifford circuits to

states by bending the input wires so that the resulting 2n-qubit state is still Clifford.

Hence, we can work with states instead of unitaries without loss of generality.

Ideally, we would like to transform a Clifford state in the graph-like form (due to

Proposition 3.1.1) to a graph state. However, graph-like diagrams have some internal

spiders that we need to eliminate. A natural way to accomplish this is by applying

some local transformations to the graph that follow from the ZX-calculus. Let us now

briefly state these transformations, which are proven in [12, Section 5.2]. We begin

by studying the operations on graph states.

Definition 3.1.5. Let G be a graph, and u be a vertex in G. The local comple-

mentation about u, written as G 󰂏 u, is the graph with the same vertices and edges

as G, except that the neighbourhood of u is complemented: two neighbours v, w are

connected in G 󰂏 u if and only if they are not connected in G.

16



Proposition 3.1.2. Graph states G and G 󰂏 u are equivalent up to single-qubit uni-

taries applied on u and its neighbours.

More precisely, we need to apply the red −π/2-spider to u and green π/2-spiders

to the neighbourhood N(u) so that the diagrams become equivalent. For example,

π
2

π
2

π
2

−π
2

...N(u)

󰀫
u

∝
...

It turns out local complementation is especially useful when acting on a pair of

connected vertices.

Definition 3.1.6. Let G be a graph and let u, v be a pair of connected vertices. We

define pivot of G along uv, written as G ∧ uv, as the graph G 󰂏 u 󰂏 v 󰂏 u.

It is quite easy to check that the ordering of u and v does not matter, meaning

that G 󰂏 u 󰂏 v 󰂏 u = G 󰂏 v 󰂏 u 󰂏 v. Schematically, pivot swaps u, v and complements

the edges between the neighbourhoods A := N(u)∩N(v), B := N(u) \ (N(v)∪ {v}),
and C := N(v) \ (N(u) ∪ {u}):

G A

B C

u v
G ∧ uv A

B C

v u

Let us now state the rules for removing internal spiders in a graph-like diagram.

We present two types of transformations that allow us to remove an internal π/2-phase

spider or delete a pair of connected 0/π-phase spiders.

Proposition 3.1.3. The following local complementation simplification holds:

±π
2α1

α2 αn−1

αn......

... ...

... ∝
α1 ∓ π

2

α2 ∓ π
2

αn−1 ∓ π
2

αn ∓ π
2......

... ...

...

Proposition 3.1.4. The following pivot simplification holds:

jπ kπα1

αn

γ1

γn

βn

β1

... ...

......

...

... ...
...

...

∝

α1 + kπ

αn + kπ

γ1 + jπ

γn + jπ

βn + (j + k + 1)π

β1 + (j + k + 1)π

... ...

......

...

...

...
...

...
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Let us explore what we can achieve by these two simplifications. First of all, if

a ZX diagram has an internal ±π/2-phase spider, we can delete it by applying local

complementation. We keep doing this until there are no internal ±π/2-phase spiders

left. Afterwards, if there exists a pair of connected 0/π-phase spiders, we remove

them using pivot simplification. We end up with only internal kπ-spiders that are

not connected to each other. We can get rid of them as well by making an additional

boundary spider internal:

jπ

γ

α1

αn

...

(hh,id)

∝ jπ

γ

α1

αn

...

If γ = kπ, then we can remove both internal spiders with the pivot simplification. If

γ = ±π/2, then first apply local complementation on γ, after which jπ will acquire a

±π/2 phase so that it can also be eliminated by local complementation. Finally, the

phases of the boundary spiders can be pushed to the outputs using spider unfusion.

As a result, a Clifford state is turned into GSLC. Equivalently, the original Clifford

circuit is transformed to the GSLC normal form, defined as follows:

LC

LC

LC

LC

LC

LC

...
...

Let us decompose this form even further. We can unfuse the connections between

spiders in the same layer so that they become the CZ gates, and change the colors of

the spiders on the right side in the middle part of the diagram:

...
...

LC

LC

LC

LC

LC

LC

. . . . . . ...
...

∝ ...
...

LC

LC

LC

LC

LC

LC

. . . . . . ...
...

Observe that the middle part becomes a parity map, which we already considered

in Chapter 2 and know it corresponds to a CNOT-only circuit. Since single-qubit

Cliffords are generated by Hadamards and S gates, we obtain the following normal

form for Clifford circuits:

Had, S− CZ− CNOT− Had− CZ− Had, S.
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Let us finally discuss the strong simulation of Clifford circuits: given an n-qubit

input, a circuit consisting of m gates, and an n-qubit output, compute the probability

of measuring this output. By the Born rule, this reduces to computing the value of the

underlying Clifford ZX diagram with no inputs and outputs. The algorithm follows

completely from our reasoning above:

1. Convert the ZX diagram to a graph-like diagram.

2. Apply local complementation and pivot simplifications to reduce the graph-like

diagram to the GSLC normal form, keeping track of the scalar C. Since there

are no inputs and outputs, the GSLC form we obtained is empty, so return C.

We finally estimate the computational complexity of Clifford circuit simulation.

Let N := n + m be the size of the Clifford circuit. Note that its ZX diagram has

O(N) spiders. The first step takes O(N2) time, see the proof of Proposition 3.1.1. The

most expensive part is step 2, when we apply the local transformations. Since each

application of local complementation and pivoting decreases the number of spiders

by at least 1, we perform O(N) such operations. Each operation modifies the edges

in the neighbourhood, taking O(N2) graph operations. Hence, the total complexity

is O(N3). It is possible to reduce the complexity to O(mn2) – see [12, Section 5.4.1].

3.2 Stabiliser decompositions

Throughout our thesis, we will focus on the strong simulation of quantum circuits,

which involves computing the probability of a particular outcome. This task is harder

than the weak simulation, where the goal is to sample efficiently from the distribution

of outcomes. Nevertheless, strong simulation is a much more natural problem within

the framework of ZX-calculus.

An efficient simulation algorithm of general quantum circuits would immediately

imply the absence of quantum supremacy. It is widely believed that quantum com-

puters have more computational power than classical ones, so it is likely impossible

to simulate an arbitrary quantum circuit in polynomial time. Much effort has al-

ready been spent on trying to understand where the quantum advantage comes from.

One might argue it comes from entanglement, but the Gottesman-Knill theorem con-

tradicts this intuition: Clifford states can be highly entangled but are classically

simulable in polynomial time.

To better understand quantum advantage, let us ask ourselves a question: is it

possible to express an arbitrary unitary map C2n → C2n using only finitely many

19



primitive operations (gates)? Of course, if we are interested in implementing this

map exactly, then by the counting argument, we would require a continuous family

of gates, as there are only countably many different quantum circuits when the gate

set is finite. Yet, in practice, we are typically interested in approximations to the

unitary map up to some additive error ε. The gate set allowing such approximation

for any unitary map and any ε > 0 is called universal. One example of the universal

gate set is {CNOT, H, T}, which we will use throughout our dissertation. Note that

in addition to Clifford gates, it introduces the T gate: T =
√
S. In ZX-calculus, the

T gate is given by the π/4-phase spider. Hence, it suffices to consider the Clifford +

T fragment of the ZX-calculus, where all phases are integer multiples of π/4.

The main idea behind the stabiliser decomposition approach is to represent the

output state as a linear combination of Clifford states:

|ψ〉 =
k󰁛

i=1

ai |φi〉 .

The minimal value of k is called the stabiliser rank of |ψ〉. We can then evaluate the

probability of an outcome x by

〈x|ψ〉 =
k󰁛

i=1

ai 〈x|φi〉 ,

which costs Õ(k) operations. Therefore, it is important to find such decompositions

with the lowest possible k. Although it is widely believed that the stabiliser rank

is exponential for general circuits, in numerous practical cases it yields an efficient

simulation algorithm.

There is an elegant way to represent this method in the ZX formalism. Ideally, if all

phases were Clifford, we would run the simulation algorithm discussed in Section 3.1.

The only obstacles are the T-phase spiders, i.e., the nodes whose phases are odd

multiples of π/4. We can get rid of a single T-phase spider by unfusing a T-state and

decomposing it into two terms:

(2k + 1)π
4

...
(sf)

= kπ
2

...π
4 ∝ kπ

2

... + eπi/4 kπ
2

...π

Denote the total number of T-phase spiders by t. With this strategy, the simulation

complexity is Õ(2t), because we split into two branches having one T-phase spider

less – in the end, we obtain a decomposition with k = 2t terms. This is more efficient
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compared to the naive approach, which has complexity Õ(2n), only if t is relatively

small. Can we do better than this?

For example, we can delete two T-states at once:

π
4

π
4

∝ π
2 + eπi/4 π

This gives a decomposition into 2αt terms where α = 0.5. In [4, Eq. 11], Bravyi,

Smith, and Smolin gave a decomposition of six T-states into seven stabiliser terms,

resulting in α = log2(7)/6 ≈ 0.468:

eπi/4

π
4

π
4

π
4

π
4

π
4

π
4

= 2eπi/4 −π
2 − 1 +

√
2

4
+

1−
√
2

4

π

π

π

π

π

π

− 2
√
2i

π
2

π
2

π
2

π
2

π
2

π
2

− 2i

π
2

π
2

π
2

π
2

π
2

π
2

π + 8
√
2i

π

+ 8
√
2i

π

We are not limited to decomposing a collection of T-states. For instance, it is much

more efficient to decompose the cat states :

|cat4〉 :=
π
4

π
4

π
4

π
4

=
e−πi/4

√
2

−π
2 + i

|cat6〉 :=
π
4

π
4

π
4

π
4

π
4

π
4

=
1

2
−π

2 +
ieπi/4√

2
− eπi/4√

2

π
2

π
2

π
2

π
2

π
2

π
2

,

giving α = 0.25 and α ≈ 0.264, respectively. Hence, if we have an internal Clifford

spider with degree 4 or 6 (whose neighbours are then non-Clifford), we can efficiently

eliminate them all. Still, we cannot use these decompositions to expand other |catn〉.
Finally, allowing the terms to be not entirely Clifford, we can decompose five
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T-states into three terms, each having one T-state, resulting in α ≈ 0.396:

π
4

π
4

π
4

π
4

π
4

= 2 −π
2

−π
4 + 2

√
2ieπi/4 −π

4 − 2
√
2eπi/4 π

4
π
2

π
2

π
2

π
2

π
2

This decomposition is known asMagic-5. For a more detailed review of this approach,

see [3, 5, 11, 13, 14].

3.3 Graph-based techniques

After turning a ZX diagram into a graph-like diagram, we have three types of spiders:

with phase kπ (aka Pauli spider), with phase (k + 1/2)π, and the T-phase spiders.

As discussed in Section 3.1, we have two kinds of simplifications at our disposal:

local complementation and pivoting. The former allows us to get rid of an internal

(k+1/2)π-spider, and the latter enables us to remove two adjacent internal kπ-phase

spiders. By applying these rules, we can obtain a smaller graph-like diagram such

that

1. each internal spider is either Pauli or T-phase, and

2. there are no adjacent internal Pauli spiders.

It turns out we can delete an internal kπ-spider which is connected to a boundary

spider with an arbitrary phase. The key idea is to use the identity rule and spider

unfusion to transform the boundary spider into an internal one:

kπ α
... ...

∝ kπ
... ...

α

Now, the pivot simplification is possible on the emerged pair of internal Pauli spiders.

Note that we will get a kπ-spider connected to the same neighbourhood as the original

Pauli spider. However, the α-phase spider is now directly connected to an output and

can therefore be discarded for the purposes of diagram simplification.

Suppose we have an internal Pauli node connected to a T-phase node. If the latter

is internal, then applying spider unfusion, the identity rule, and pivoting, we get the
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following rule:

jπ αα1

αn

γ1

γn

βn

β1

... ...

......

...

... ...
...

...

∝

α1

αn

γ1 + jπ

γn + jπ

βn + (j + 1)π

β1 + (j + 1)π

... ...

......

...

...

...
...

...

(−1)jα

If the non-Clifford spider is boundary, then the rule is

jπ αα1

αn

γ1

γn

βn

β1

... ...

......

...

... ...
...

...

∝

α1

αn

γ1 + jπ

γn + jπ

βn + (j + 1)π

β1 + (j + 1)π

... ...

......

...

...

...
...

...

(−1)jα

jπ

The structure on the top-right – a single-legged spider connected to a phaseless node

by a Hadamard edge – is called a phase gadget. Phase gadgets have a nice merging

property, called gadget-fusion:

α

β

α1

αn

...

...

...

∝

α1

αn

...

...

...

α + β

Let us turn to another approach called graph cuts decompositions. Suppose we are

fortunate enough, and our ZX diagram splits into two disconnected components, S

and S̄. In this case, we can independently simulate S and S̄ and then multiply their

amplitudes. Assuming the simulation over n vertices costs Õ(2αn) for some α > 0,

the complexity of our computation is then Õ
󰀃
2α|S| + 2α(n−|S|)󰀄, which is much better

than Õ
󰀃
2α|S| · 2α(n−|S|)󰀄 if |S|, |S̄| are sufficiently large. Yet, we are typically not that

lucky and can only hope for a cut (S, S̄) which separates E edges for small enough

E. Then, we can use the following decomposition to bring the simulation cost down
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to Õ
󰀃
2E · (2α|S| + 2α|S̄|)

󰀄
:

S S̄...
∝

󰁛

x∈FE
2

S S̄...

x1π x1π

x2π x2π

xEπ xEπ

The combination of this strategy with stabiliser decompositions is a powerful method

for quantum circuit evaluation, though it introduces a few challenges. First, how to

find a good cut (S, S̄) and what measure can be used to assess its quality? One way to

do this is by considering the T-count of S and S̄. Improving this strategy in various

practical cases is an active topic of research, see [17, 20, 21, 22].

3.4 Advanced approaches

The graph transformations discussed in the previous section may yield different graph-

like diagrams depending on the order in which the rules are applied. As a result, the

cost of the calculations depends heavily on the choice of the rule at each step. Several

strategies exist that guide optimal rule selection, as described in [17]. The majority of

these strategies aim to minimize the cost function of the ZX diagram, which estimates

roughly the number of operations required to compute the underlying tensor diagram.

For example, we can set it to f(g) := 2|E(g)|, as this corresponds to the number of

terms in the sum.

The idea behind the greedy approach is to choose the rule that minimises the

cost function right after its application. We store the best ZX diagram according to

f(g) and update it after exploring each possible local transformation. We finish when

every rule increases the cost function.

A better approach is based on simulated annealing. This heuristic is inspired by

the physical process of cooling a material down to its minimal energy. At each step,

we apply a random rule to the current diagram g, obtaining a new diagram g′. If

f(g′) < f(g), then g′ is chosen as the new candidate. Otherwise, it is selected with

probability exp (−{f(g′)− f(g)}/T ), where T denotes the temperature that decreases

during our process according to the cooling schedule. This approach is superior to

the greedy strategy because it is not restricted to the best options after each step and

better minimises the cost in the long term.

Another strategy utilises genetic algorithms, which simulate natural selection in

biology. We store the population of the diagrams (aka organisms) and model the
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birth of the new generation with the crossover operation. This operation takes a

single ZX diagram as input and produces a new ZX diagram by applying a random

rule. Then, we discard the worst diagrams according to the cost function, so that the

population size remains constant. We iterate these steps until the desired optimal

solution is achieved.

Finally, let us briefly discuss the approach to T-count minimisation used by Google

[18]. First, they isolate the non-Clifford part within a CNOT+T circuit defined on a

larger qubit register [7]. Then, they compute its signature tensor, which reflects the

information about the phase polynomial of the CNOT+T circuit. They proceed by

computing the Waring decomposition of the signature tensor, i.e., the decomposition

into the sum of rank-1 tensors with the fewest possible terms. They use reinforce-

ment learning to minimise the rank by introducing the TensorGame, where moves

correspond to subtracting rank-1 terms, and the goal is to achieve zero as quickly as

possible. The rank found by this method directly corresponds to the T-count of the

new circuit synthesised from the decomposition.
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Chapter 4

Mathematical Background

4.1 Linear algebra over F2

In this section, we outline the main notions and methods from linear algebra over F2

that are essential for presenting our strategy clearly and concisely. We will discuss

Gaussian elimination, the row echelon form of a matrix, and the notion of generalised

inverse, which is the analogue of a pseudoinverse matrix over finite fields.

4.1.1 Gaussian elimination

Let A ∈ Fn×m
2 . We are interested in the simplest form to which we can transform A

using primitive row operations. These operations include:

• Add the j-th row to the i-th row, and

• Swap rows i, j.

Note that the application of each operation corresponds to the multiplication of

the matrix A on the left. In the case of row additions, we multiply A by the matrix

Ei,j with 1-s on the diagonal and at (i, j), and for the swap we multiply by the

permutation matrix Pi,j. Hence, we are decomposing A = R(k) . . . R(1)A′, where R(i)

is one of the options above, and aim to make A′ as simple as possible. The best form

for A′ turns out to be the reduced row echelon form, as defined below. Let us define

the row echelon form first.
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Definition 4.1.1. A matrix is said to be in the row echelon form if it has the form

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 1 ∗ ∗ ∗ . . . ∗ ∗
0 0 0 1 ∗ . . . ∗ ∗
...

...
...

...
...

...
...

0 0 0 0 0 . . . 1 ∗
0 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 0 . . . 0 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

The highlighted columns, having the leading 1-s, are called pivot columns.

Definition 4.1.2. A matrix is said to be in the reduced row echelon form if it has

the form

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 1 ∗ 0 ∗ . . . 0 ∗
0 0 0 1 ∗ . . . 0 ∗
...

...
...

...
...

...
...

0 0 0 0 0 . . . 1 ∗
0 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 0 . . . 0 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

Proposition 4.1.1. Every matrix A ∈ Fn×m
2 can be transformed to the reduced row

echelon form by primitive row operations.

Proof. Let us transform A to the row echelon form first. If A is zero, then all is done.

Let j0 be the first nonzero column of A, and let i0 be such that Ai0,j0 = 1. If i0 ∕= 1,

then swap the first row and the i0-th row so that A1,j0 = 1. For each i such that

Ai,j0 = 1, add row 1 to row i. Note that we have Ai,j0 = 0 for each i ≥ 2 and Ai,j = 0

for each j < j0. Apply the same procedure to the submatrix Ai0+1:,j0+1:.

To transform A to the reduced echelon form, iterate over the pivot columns of A

from right to left and set everything above the leading 1 to zero by performing row

additions from bottom to top.

The process described above is known as Gaussian elimination. If we also allow

primitive column operations, then we can reduce A even further to the following form:

ΣA =

󰀕
Ir 0
0 0

󰀖
,

where r is the rank of A, and Ir denotes an identity r × r matrix. Indeed, first move

the pivot columns to the front using swaps, and then zero out everything else on the
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right with column additions. As column operations correspond to multiplying A on

the right, we can express A in the following way:

A = R(k) . . . R(1) · ΣA · C(1) . . . C(l) = RAΣACA,

where RA and CA are invertible n × n and m ×m matrices. Note that the compu-

tational complexity of Gaussian elimination is O(nm · min(n,m)), and the cost of

computing the decomposition above is O((n+m)2 ·min(n,m)).

4.1.2 Rank factorisation and generalised inverse

Definition 4.1.3. Let A ∈ Fn×m
2 . Rank of A is defined as the minimal r such that

there exist B ∈ Fn×r
2 , C ∈ Fr×m

2 with A = BC.

Let us see how to obtain this decomposition algorithmically, given A ∈ Fn×m
2 .

First, compute the decomposition A = RAΣACA from above. Let r be the number of

1-s in ΣA. Set B to the first r columns of RA and C to the first r rows of CA. Since

ΣA has Ir in its top left corner and is zero everywhere else, we have

A =
󰀃
B ∗

󰀄󰀕 Ir 0
0 0

󰀖󰀕
C
∗

󰀖
= BC.

The complexity of this routine is O((n+m)2r).

In the general case, an n × m matrix A may not be invertible; nevertheless, we

would like to have some analogue of the inverse matrix with the same properties that

A−1 has when it exists. If A ∈ Cn×m, then the pseudoinverse (aka Moore-Penrose

inverse) does the job. However, we are working over F2 and the pseudoinverse matrix

might not exist. It turns out the solution is the generalised inverse, defined as follows.

Definition 4.1.4 (generalised inverse). Given A ∈ Fn×m
2 , Ag ∈ Fm×n

2 is called the

generalised inverse of A if it satisfies the following condition:

AAgA = A.

Note that the generalised inverse is not necessarily unique. To compute a valid

Ag from A efficiently, we utilise the decomposition A = RAΣACA once again and take

Ag = C−1
A ΣT

AR
−1
A (recall that RA, CA are invertible). Then we have

AAgA = RAΣACAC
−1
A ΣT

AR
−1
A RAΣACA = RAΣAΣ

T
AΣACA = RAΣACA = A.
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4.2 Rank-width

Rank-width was introduced by Oum and Seymour [8] as the replacement for clique-

width. Similarly to clique-width, rank-width measures the difficulty of decomposing

a graph into a tree-like structure. It uses the notions of branch-decomposition and

cut-rank, defined as follows.

Definition 4.2.1. Let M be a finite set, called the ground set of the decomposition.

A branch-decomposition is a pair (T, L), where T is a tree with each non-leaf node

having degree 3, and L is the bijection from M to the leaves of T .

Branch-decompositions are usually applied to graphs, so the ground set is often

the vertex set of a graph. An example of a graph and a branch-decomposition is given

below.

Figure 4.1: [16, Figure 2.1] A graph and a possible branch-decomposition with the
vertices of the graph as the ground set.

Definition 4.2.2. Given an undirected graph G = (V,E) and a subset X ⊂ V , the

cut-rank ρG(X) is the rank of the adjacency matrix between X and V \X, viewed as

a matrix over F2.

For example, if G = K4 and X = {1, 2}, then the adjacency matrix between X

and V \X is

󰀕
1 1
1 1

󰀖
, hence ρG(X) = 1. If X = ∅ or X = V (G), then ρG(X) is zero,

since the adjacency matrix is empty.

If we combine the two notions above, we get the definition of the rank-decomposition

and rank-width.

Definition 4.2.3. Let G = (V,E) be an undirected graph. A rank-decomposition is

a branch-decomposition with the ground set V , where each edge of the tree is assigned

the cut-rank ρG(X) for (X, V \ X) being the partition of the leaves induced by the

removal of this edge. The width of the rank-decomposition is the maximum cut-rank

over all edges of the tree.
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Definition 4.2.4. The rank-width of an undirected graph G, written as rw(G), is

the minimum width of its rank-decomposition.

Here is an example of a graph and its optimal rank-decomposition, showing the

graph has rank-width 2:

Figure 4.2: [16, Figure 3.2] A graph and an optimal rank-decomposition of width 2.

In fact, the rank-decomposition above is linear, because the cuts induced by the

internal edges have a linear structure. Formally,

Definition 4.2.5. A rank-decomposition is called linear if its non-leaf nodes form

a bamboo. Consequently, a linear rank-decomposition is given by the ordering of the

vertices of the graph, with the cut-ranks taken between a prefix and a suffix of the

ordering.

Let us discuss the motivation for applying rank-decompositions to ZX diagram

evaluation within our approach. Since each edge of the tree introduces a vertex cut

of the diagram, we can use the graph-cuts decomposition technique from Section 3.3

for simulation. The key feature of our approach is that we are utilising the cut-rank

of the partition rather than the number of edges between the parts. Indeed, we can

factorise the parity map between the parts into two factors, with the intermediate

dimension r equal to the cut-rank. Graphically, we have two parity maps joined by r

parallel wires, so in principle, the simulation cost can be reduced to 2r.

Can we compute the rank-width efficiently? In [9], Oum shows that computing

rank-width exactly is NP-hard, and the decision problem of determining whether the

rank-width is at most k, is NP-complete. So, we can only hope to compute the rank-

width approximately. In [2], there is an attempt to calculate an upper and a lower

bound for the rank-width of a given graph. The upper bound algorithm iteratively

improves the decomposition using “a mix of greedy and random decisions”. A better

approach is described in [16], which is based on simulated annealing. As part of our

work, we integrated it into QuiZX, a Rust library for quantum circuit optimisation.
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4.3 GFlow

In this section, we introduce the notions of gflow and extended gflow that came

from measurement-based quantum computing (MBQC). They provide conditions un-

der which a measurement pattern on a graph state can be executed deterministically.

This is especially useful for designing fault-tolerant protocols and compiling MBQC

algorithms from abstract circuits. Extended gflow, a refinement of gflow, applies to

cases when measurements are restricted to Pauli planes (XY, YZ, or XZ). Also, ex-

tended gflow is particularly useful for extracting circuits back from a ZX diagram

[1, 19]. Indeed, the existence of extended gflow, unlike gflow, is preserved during the

rewrite rules of the ZX-calculus.

Both these flows operate on a graph with inputs and outputs, which is called an

open graph.

Definition 4.3.1. An open graph is a triplet (G, I,O), where G = (V,E) is an

undirected graph, and I, O ⊂ V are respectively called input and output vertices.

Typically, a flow consists of a strict partial order ≺ over the vertices, corresponding

to the measurement order (i ≺ j if i is measured before j), and a function g : V (G) \
O → {0, 1}V (G)\I \ {∅} that associates each non-output vertex v with its correction

set, to handle the outcomes after measuring v. For S ⊂ V (G), denote the odd

neighbourhood of S by

Odd(S) := {u ∈ V (G) : |N(u) ∩ S| ≡ 1 (mod 2)}.

Definition 4.3.2 (gflow). (g,≺) is a gflow of an open graph (G, I,O), if and only if

1. if j ∈ g(i) then i ≺ j,

2. if j ∈ Odd(g(i)) then j = i or i ≺ j,

3. i ∈ Odd(g(i)).

Informally, g(u) contains the vertices after u such that there is an odd number of

edges between g(u) and u, and there is an even number of edges between g(u) and

any vertex before u. The visualisation of this property is given in Figure 4.3.

Let us give the formal definition of the extended gflow, which operates on a labelled

open graph: a tuple (G, I,O,λ), where λ : V (G) \ O → {XY,XZ,YZ,X,Y,Z} is the

labelling function assigning a measurement plane or Pauli to each non-output vertex.
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Figure 4.3: [15, Figure 2] A graphical interpretation of gflow (g,≺).

Definition 4.3.3 (Extended gflow). Given a labelled open graph (G, I,O,λ) such

that λ(u) ∈ {XY,XZ,YZ} for each u ∈ V (G)\O, an extended gflow is a tuple (g,≺)

satisfying

1. if j ∈ g(i) then j = i or i ≺ j,

2. if j ∈ Odd(g(i)) then j = i or i ≺ j,

3. if λ(i) = XY then i ∕∈ g(i) and i ∈ Odd(g(i)),

4. if λ(i) = XZ then i ∈ g(i) and i ∈ Odd(g(i)),

5. if λ(i) = YZ then i ∈ g(i) and i ∕∈ Odd(g(i)).

Note that the gflow is the special case of the extended gflow where each vertex has

the measurement plane XY. Unfortunately, gflow does not always exist in the case

of ZX diagrams obtained with the entire ruleset of the ZX-calculus [1]. For example,

the rules that create the phase gadgets break the gflow. However, the existence of

the extended gflow is preserved, and there exists a polynomial-time algorithm for

finding it [1, 15]. This algorithm is already implemented in PyZX [10], a Python

library for circuit optimisation using the ZX-calculus. We utilise this routine in

our dissertation to obtain a good initial rank-decomposition of the ZX diagram, as

explained in Chapter 5.
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Chapter 5

New simulation strategy

In this chapter, we present our new simulation strategy, which is based on the rank-

width of the diagram. First, we outline the main steps of our algorithm and then

examine each of them more closely. We also discuss the implementation details of the

main routine, including its computational complexity.

5.1 Pipeline

Suppose we are given a quantum circuit, and our task is to strongly simulate it. That

is, given an input state and an effect, we need to compute the value of the underlying

tensor diagram. Our approach consists of the following steps:

1. Convert the quantum circuit into a Clifford+T ZX diagram.

2. Reduce the ZX diagram to a graph-like form and optimise it using the rules of

the ZX-calculus.

3. Compute the initial rank-decomposition of the graph-like diagram using ex-

tended gflow.

4. Improve the rank-decomposition using simulated annealing.

5. Run the main simulation routine on the resulting decomposition.

In step 1, we use the conventions from Chapter 2. As discussed in Section 3.2,

Clifford+T fragment of the ZX-calculus is computationally universal, meaning that

an equivalent (up to an additive error ε) ZX diagram always exists for arbitrarily

small ε > 0. Moreover, the size of the ZX diagram is polynomial in the circuit size

and log(1/ε) by the Solovay-Kitaev theorem.
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In step 2, we employ the techniques from Sections 3.1 and 3.3 to obtain a compact

graph-like diagram. In particular, we first convert the ZX diagram to a graph-like

form, then apply local complementation and pivoting to eliminate the majority of the

Clifford spiders, and finally isolate the phase gadgets and fuse the same-legged ones,

if any. If the fusion took place, then the emerged Clifford spider can be further elimi-

nated via local complementation or pivoting. Steps 1 and 2 have already been imple-

mented in PyZX as functions pyzx.Circuit .to graph() and pyzx. full reduce (Graph).

In step 3, we compute a rank-decomposition of the graph-like diagram via the

function pyzx.gflow.gflow(Pauli=True), which returns an even more general order

than the extended gflow, called Pauli flow [19]. We use this partial ordering of

vertices to construct a linear rank-decomposition, whose width is bounded by the

number of qubits in the original circuit. A detailed explanation of this step is given

in Section 5.2.

Step 4 focuses on improving the rank-decomposition after step 3. We accomplish

this by employing the techniques from [16]. Although it is unclear how to provide a

formal guarantee for the outcome of this step, in some practical cases, the improve-

ment is quite significant – see Section 6.1 for benchmarks. A detailed description of

this step is given in Section 5.3.

Step 5 is the key part of our strategy. Once we have obtained a good rank-

decomposition of the diagram, we do the simulation by recursively traversing the

decomposition tree. See Section 5.4 for a detailed review of our algorithm.

5.2 Initial rank-decomposition

In this section, we use the notation from Section 4.3. By q we denote the number

of qubits in the original circuit, that is, the number of inputs and outputs in the

graph-like diagram. We now prove the following claim.

Proposition 5.2.1. If an open graph (G, I,O) with |I| = |O| = q admits an extended

gflow (g,≺) with labels λ, then it admits a linear rank-decomposition with width at

most q, computable in polynomial time.

Proof. First, we consider the linear extension of the partial order ≺, i.e., a sequence

of vertices vi such that for each i < j we have vi ∕≻ vj. This order can be computed

by arranging the layers of ≺ one after another.

We prove that vi constitutes a linear rank-decomposition with width ≤ q by

induction from right to left. ByM (i) we denote the adjacency matrix of size (|V |−i)×i
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between {vi+1, . . . , v|V |} and {v1, . . . , vi}, respectively, and set ri := rk(M (i)). Let us

show that for each i ∈ [2; |V |], we have ri−1 ≤ ri for vi ∕∈ O and ri−1 ≤ ri + 1 for

vi ∈ O.

Note that M (i−1) can be obtained from M (i) by deleting its last column and

appending a row, which represents the edges between vi and v1, . . . , vi−1. Both M (i−1)

and M (i) are depicted as follows:

Figure 5.1: Consecutive adjacency matrices from a linear rank-decomposition.

It follows that ri−1 ≤ ri + 1. We now assume vi ∕∈ O and show that ri−1 ≤ ri by

considering two cases:

1. λ(vi) = XY. By Definition 4.3.3, we have vi ∕∈ g(vi), vi ∈ Odd(g(vi)), and for

each j < i we have vj ∕∈ Odd(g(vi)). Take some u ∈ g(vi) and add all the rows

from g(vi) \ {u} to the row u, so that it has a single one at the i-th column.

Then, zero out the entire i-th column so that M (i) becomes block-diagonal.

See Figure 5.2 for the illustration. Now consider the submatrix 󰁩M between

vi+1 . . . v|V | and v1 . . . vi−1, which corresponds to the ‘after–before’ section in

the first diagram of Figure 5.2. Note that the row operations preserve the ranks

of 󰁩M , M (i), and M (i−1). Due to the diagonalisation of M (i) as shown in the last

diagram of Figure 5.2, we have rk(󰁩M) = rk(M (i)) − 1. As M (i−1) differs from
󰁩M by one extra row, we have rk(M (i−1)) ≤ rk(󰁩M) + 1 = rk(M (i)).

2. λ(vi) ∈ {XZ,YZ}. By Definition 4.3.3, we have vi ∈ g(vi), and for each j < i

we have vj ∕∈ Odd(g(vi)). Hence, by adding the rows from g(vi) \ {vi} to the

row vi, we can zero out its ‘before’ part – see Figure 5.3. Define 󰁩M as in the

previous case. Clearly, rk(M (i−1)) = rk(󰁩M) ≤ rk(M (i)).

It follows that max(ri) ≤ |O| = q, as desired. As explained in [1], extended gflow

can be computed in polynomial time. Hence, our linear rank-decomposition is also

computable in polynomial time.
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Figure 5.2: Block diagonalisation of the adjacency matrix in the XY case.

Figure 5.3: Matrix row reduction in the XZ and YZ cases.

5.3 Improving rank-decomposition

In this section, we present our method for improving rank-decomposition as in [16].

We outline the simulated annealing approach in general, as well as discuss its problem-

specific features, such as the score function, operator selection, and cooling schedule.

We also discuss efficient algorithm implementation, in particular, cut-rank caching

and update techniques.

5.3.1 Overview of simulated annealing

Simulated annealing is a type of local search algorithm inspired by the physical pro-

cess of cooling materials, particularly the annealing technique used in metallurgy.

The method relies on a temperature (or energy) parameter that gradually decreases

over time and determines the likelihood of accepting solutions that are worse than
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the current one. Allowing such temporary degradations enables the algorithm to es-

cape local minima. At higher temperatures, the algorithm explores more randomly,

while a gradual reduction in temperature steers the search toward a stable solution.

The schedule by which the temperature is lowered is known as the cooling schedule.

Algorithm 5.1 illustrates a simplified outline of simulated annealing, where a fixed

number of iterations is performed and a single score function is used for optimisation.

Algorithm 5.1 Simulated annealing general routine

Require: T0 > 0, Q > 0, S0 ⊲ initial temperature, iteration count, initial solution
curSol ← S0

bestSol ← curSol ⊲ initialise current and best solutions
curScore ← score(S0)
bestScore ← curScore ⊲ initialise curScore and bestScore
T ← T0 ⊲ initialise temperature
for i = 0 . . . Q− 1 do

op ← random operator() ⊲ randomly select operation
newSol ← op(curSol)
newScore ← score(newSol) ⊲ perform operation and calculate score
if newScore ≤ curScore ∨ random() < e(curScore−newScore)/T then

curSol ← newSol
curScore ← newScore ⊲ update current solution and score
if curScore < bestScore then

bestScore ← curScore
bestSol ← curSol ⊲ update best solution and score

end if
end if
T ← next(T ) ⊲ compute new temperature based on cooling schedule

end for

Our search starts from the linear rank-decomposition constructed in Section 5.2

and gradually improves it throughout the search. Instead of the fixed iteration loop,

the stopping condition could be that the temperature is lower than a certain threshold

or that the score is sufficiently low. It is also possible to stop the search after reaching

a certain time limit.

Additionally, we can explore multiple operations in a single iteration and select

the best candidate with respect to the score function. This potentially increases the

quality of the solution found by our algorithm, but increases the overall complexity

of the search.
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5.3.2 Score function

Let T = (VT , ET ) be the rank-decomposition tree, and denote by re the cut-rank of

an edge e ∈ ET . Furthermore, for a non-leaf vertex v ∈ VT set wv := re1 + re2 + re3 −
max(re1 , re2 , re3), where e1, e2, e3 are the incident edges to v. We have considered the

following score functions:

• score square(T ) :=
󰁓

e∈ET
r2e ,

• score flops(T ) := log2
󰀃󰁓

v∈VT
2wv

󰀄
.

The latter score function is motivated by the complexity of our main simulation

routine: its exponent denotes the computational cost of the next step, and this is the

target function we wish to minimise. However, minimising it directly leads to poorer

results rather than minimising score square and maintaining the best candidate with

respect to score flops. For experiments with the score functions, see Chapter 6.

5.3.3 Operator selection

We stick to [16] and implement three types of operators acting on the rank-decomposition:

1. Leaf swap. It takes two different random leaves v1, v2 of the decomposition and

swaps them – see Figure 5.4.

Figure 5.4: [16, Figure 6.2] Example of the leaf swap operator swapping v1 and v2.

2. Local swap. It starts by taking a random internal node c of the decomposition.

Then, two neighbours of c are randomly selected, such that at least one of them

is internal. Let b be the internal node and a be the other node. We choose

another neighbour of b, call it d, and swap the nodes a and d, so that a becomes

a neighbour of b and d becomes a neighbour of c. See Figure 5.5 for illustration.
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Figure 5.5: [16, Figure 6.3] Example of the local swap operator.

3. Move subtree. Two random nodes a and b are chosen such that they are not

adjacent and have no common neighbour. The path P between a and b is then

computed to find a′ and b′, which are the neighbours of respectively a and b

on P . Finally, the two neighbors of a′ other than a are joined together, and

the edge between b and b′ is split into two parts that get connected to a′. An

example of the move subtree operator is given in Figure 5.6.

Figure 5.6: [16, Figure 6.1] Example of the move subtree operator.

The probabilities with which the operations are chosen are set to 0.1 for the leaf swap,

0.4 for the local swap, and 0.5 for the move subtree operator.
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5.3.4 Cooling schedule

Various cooling schedules are used for simulated annealing, such as:

• Linear Ti = Ti−1 − β for constant β,

• Exponential Ti = α · Ti−1, with constant α ∈ [0; 1], and

• Logarithmic Ti = T0/ log(i+ 10),

where Ti denotes the temperature on the i-th iteration. In practice, the exponential

schedule is the most widely used. In Chapter 6, we fine-tune the parameters of the

cooling schedule, such as the initial temperature and the cooling rate.

Additionally, we employ the strategy called adaptive cooling. This technique ad-

justs the cooling rate based on the success of the search process. The idea behind this

is to allow the algorithm to make bigger changes to the solution when it has diverged

significantly from the best found so far. The modified temperature T ′
i is computed

as follows:

T ′
i = Ti ·

󰀕
1 +

curScore− bestScore

curScore

󰀖
.

5.3.5 Efficient cut-rank calculation

After changing the decomposition tree structure, the cut-ranks of the edges need to be

recalculated. Recall that the cut-rank is defined as the rank over F2 of the adjacency

matrix of the partition corresponding to that edge. Thus, naively, each update of the

tree can be handled in O(N4) operations (for the tree size N) by recomputing all the

cut-ranks using Gaussian elimination.

Let us discuss a few optimisations. First, note that not all cut-ranks need to be

recomputed. For the leaf swap, only the edges on the path between v1 and v2 need to

be considered; for all other edges, the partitions are unchanged. For the local swap,

only one edge (bc) requires update – see Figure 5.5. For the move subtree operator,

O(|P |) new ranks need to be computed.

Another observation is that the rows of the adjacency matrix can be stored as a bit

vector, that is, a vector of unsigned 64-bit integers. Thus, each primitive row opera-

tion throughout Gaussian elimination costs N/64 instead of N processor instructions,

resulting in the ×64 speedup for the algorithm.

Let us introduce another optimisation (which is not yet implemented) that brings

the cut-rank calculation cost down to O(N3 logN) per iteration. The idea is that
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while recursively traversing the decomposition tree, we can reuse the cut-ranks of the

children to calculate the cut-rank of the parent. For each edge, we store the row-

echelon form of the adjacency matrix, whose rows correspond to the leaves belonging

to the subtree and whose columns correspond to the remaining leaves. After com-

puting the cut-ranks of the children, we first take the child with the largest subtree

size and copy its row-echelon form to the parent. Then, we account for the leaves

in the smaller subtree by iteratively deleting columns and appending rows to the

row-echelon form. Note that deleting a single column, as well as appending a single

row, might break the row-echelon form. However, it is possible to recompute it in

O(N2) time, which we leave as an exercise to the reader. It can be shown that, due

to ‘merging’ the smallest subtree to the largest, we perform O(N logN) such updates

in total. Hence, the overall complexity is O(N3 logN). Note that in the case of the

linear rank-decomposition, the complexity is actually O(N3).

5.4 Main routine

In this section, we describe our approach to simulating graph-like diagrams using the

rank-decomposition obtained from the previous step. We assume that the ZX diagram

is given as a simple undirected graph G = (V,E) along with the phases αv ∈ [0; 2π)

for each v ∈ V . We also assume that the decomposition tree T = (VT , ET ) is rooted

by choosing an arbitrary edge (v, w) ∈ ET , orienting the edges from the subtrees

towards v and w, and adding a dummy vertex 0 as a parent of v and w. Each vertex

u in the rooted decomposition tree corresponds to a set of leaves from its subtree,

that is, a subset of the vertices of the ZX diagram: Su ⊂ V . The rank ru of a vertex

u is defined as the cut-rank of (u, p) for the parent p of u if u ∕= 0, and 0 otherwise.

Note that ru equals the cut-rank of the partition (Su, V \ Su).

5.4.1 Recursive subroutine

Our main simulation routine is based on the depth-first search over the rooted rank-

decomposition tree. The primary recursive subroutine simulate recursive (u) returns

a simulated version of the subdiagram induced by Su:

Su ...

αv1

αv2

αvk

= Ψu ...

...

αv1

αv2

αvk

Mu

ru

󰀫
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In other words, it returns an ru-dimensional tensor Ψu and a parity matrix Mu of size

ru × |V | to satisfy the equivalence above. Hereafter, we assume that a parity map

Fn
2 → Fm

2 is given by a parity matrix of size n×m, acting on a row-vector of length

n – see Section 2.4 for the background regarding parity maps.

The function simulate recursive (u) works as follows. For a leaf u, it returns

Ψu = |0〉+ eiαu |1〉 and Mu being the neighbourhood of u:

...

αv1

αv2

αvk

αu = ...

αv1

αv2

αvk

αu

Mu

Ψu

For a non-leaf vertex u, we follow the course of reasoning given by Eq. (5.1).

First, we evaluate (Ψv,Mv), (Ψw,Mw) for the children v, w of u. Next, we take the

biadjacency matrix B between Sv and Sw and compute its generalised inverse Bg,

that is, a binary matrix Bg satisfying BBgB = B. Let Cout be the submatrix of

Mv ⊔Mw representing the outgoing edges from Ψv,Ψw to V \ (Sv ∪ Sw), and let C in
v ,

C in
w represent the remaining edges, going from Ψv, Ψw to Bg. We compute the matrix

Evw := C in
v B

g(C in
w )

T , which represents the parity map between Ψv and Ψw. Also, we

compute the rank-factorisation Cout = UV for U , V being the binary matrices of size

(rv + rw)× ru and ru × |V |, respectively. Denote U =

󰀕
Evu

Ewu

󰀖
, and set Mu := V . We

now perform the convolution conv(Ψv,Ψw, Evu, Ewu, Evw) to obtain 󰁥Ψu as explained

in the next subsection. Finally, we apply the Fourier transform to 󰁥Ψu to compute Ψu.

This approach allows us to calculate the correct Ψu up to a multiplicative scalar.

We keep track of the scalar as in Section 2.4.

When the call of simulate recursive (0) terminates, it returns (Ψ0,M0) correspond-

ing to the root of the decomposition tree. Note that Ψ0 is a scalar, and we return Ψ0

as the result of the simulation.

Let us discuss the complexity of our routine. By wu we denote the convolution

complexity logarithm for the vertex u, which we establish in the next subsection. The

second most expensive part is the rank factorisation, which takes roughly O(|V |3)
operations per vertex – see Section 4.1. Hence, the complexity of the last step of our

simulation strategy is O(|V |4) + Õ(
󰁓

u 2
wu).
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Sv

Sw

αv1

αv2

αvk

...
B ∝

Sv

Sw

αv1

αv2

αvk

...

B

B

Bg

...

...

(sim)

=

Ψv

Ψw

αv1

αv2

αvk

...
Bg

...

...

Cout

C in
v

C in
w

...

...
∝

∝

Ψv

Ψw

αv1

αv2

αvk

...
Evw

...

...

Cout

(rk fac)

∝

Ψv

Ψw

αv1

αv2

αvk

...
Evw

...

...

...

Evu V

󰀬
ru

Ewu

(conv)

=

(conv)

= 󰁥Ψu ...

...

αv1

αv2

αvk

Mu

(FT)

= Ψu ...

...

αv1

αv2

αvk

Mu

(5.1)

5.4.2 Convolution

The most expensive part of simulate recursive (u) is the convolution, which involves

evaluating 󰁥Ψu for the given Ψv, Ψw such that

Ψv

Ψw

...

...

...

Evu

Ewu

Evw = 󰁥Ψu

... (5.2)

The methods we employ may turn out to be asymptotically suboptimal, yet we have

been unable to improve their efficiency for now. This could be a good direction for

future work.
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Recall that the tensors 󰁥Ψu, Ψv, and Ψw have ru, rv, and rw legs, respectively.

According to [9, Eq. 2], these cut-ranks satisfy the submodular inequalities :

ru ≤ rv + rw, rv ≤ ru + rw, rw ≤ ru + rv.

We will assume these inequalities for the purposes of our complexity analysis. Let us

present three approaches with complexities Õ(2rv+rw), Õ(2ru+rv), and Õ(2ru+rw).

In the first approach, we unfuse the left part of the diagram and compute the

entangled state separately:

Ψv

Ψw

...

...

...

Evu

Ewu

Evw =

Ψv

Ψw

...

...

...

...

...
Evu

Ewu

Evw =
...

...

...

Ψvw

Evu

Ewu

where (Ψvw)ab =
󰀓

1√
2

󰀔|Evw|
(Ψv)a(Ψw)b(−1)〈a,Evwb〉. We see that the remaining part is

a parity map, thus, expanding Ψvw into the basis states gives

Ψu ∝
󰁛

a,b

(Ψvw)ab
󰀏󰀏ET

vua+ ET
wub

󰀎
.

The complexity of this method is Õ(2rv+rw), which is the cost of computing Ψvw.

In the second approach, we first rotate the state Ψv so that it becomes a post-

selection, and then unfuse the rightmost part:

Ψv

Ψw

...

...

...

Evu

Ewu

Evw = Ψw

...

...

...

Evu

Ewu

ET
vw

Ψv

= Ψw

...

...

...

Evu

Ewu

ET
vw

Ψv

...

...

Again, we see that the left part is a parity map applied to Ψw, whose output dimension

is ru + rv; thus, we can apply this map in Õ(2ru+rv) time. The vertical Hadamard

edges on the right introduce a phase (−1)〈a,Evub〉. Finally, the post-selection with Ψv

is a tensor contraction, which costs Õ(2ru+rv) as well.

The third approach with complexity Õ(2ru+rw) is the symmetric version of the

second one, where we rotate the state Ψw instead of Ψv.

The three methods described above result in the convolution complexity loga-

rithm wu = min(ru + rv, ru + rw, rv + rw) = ru + rv + rw − max(ru, rv, rw). Hence,

the total simulation complexity of the main routine is indeed Õ
󰀃
2score flops(T )

󰀄
, with

score flops(T ) defined as in Section 5.3.
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Chapter 6

Benchmarks

We evaluate our methods on various quantum circuits, including a few small ones

from the PyZX repository and random CNOT + Hadamard + T circuits of different

sizes. We begin by measuring the quality of the rank-decomposition obtained after

steps 3 and 4 of our strategy, including fine-tuning the parameters of the simulated

annealer. Then, we compare our main routine to other simulation strategies, such

as the ones in Quimb. We use the number of scalar operations (flops) to assess the

complexity of the methods, without actually performing the contractions.

6.1 Circuit rank-width

In this section, we run the first four steps of our simulation pipeline. We record

the rank-width of the decomposition obtained after steps 3 and 4, as well as the

score flops function, defined in Section 5.3, which serves as an approximation to the

total number of scalar operations throughout the main routine. For the simulated

annealer, we consider the score functions discussed in Section 5.3 and compare the

performance on several special circuits. We use exponential scheduling and adjust

the annealer’s cooling rate α, as well as its initial and stopping temperatures T0, Tend.

6.1.1 Special circuits

In the case of special circuits, the optimal parameter configuration for the annealer

turns out to be α = 0.99, T0 = 10, and Tend = 0.001; see Appendix A for comparison.

Tables 6.1, 6.2 illustrate the performace of the annealer with respect to the

score flops function, using either score flops(T ) or score square(T ) as the score

function. Although the score function may differ from the one we wish to minimise,

we always maintain the best decomposition in terms of score flops throughout the
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optimisation. Hereafter Q, G are the qubit and gate counts of the circuit, Rinit,

Rann are the widths of the initial and improved rank-decompositions, and ScFlinit,

ScFlann are the values of score flops before and after simulated annealing. We set

∆ScFl := ScFlinit − ScFlann, measuring the score improvement achieved by the an-

nealer.

As seen from the Tables 6.1, 6.2 below, the score square function leads to better

improvements of score flops, rather than optimising score flops directly. This is

probably due to score square having a smoother landscape and fewer local minima.

Indeed, score flops is very sensitive to larger cut-ranks (aka hills), which need to be

traversed before falling into a deeper valley. Overall, the annealer with the square

score function performs quite modestly, typically resulting in ≈ ×2 speed-up to the

main routine, but in the luckiest case, it can give up to ×30 speed-up.

Note that in rare cases, the rank-width of the resulting decomposition is larger

than the initial one. This inconsistency showcases the gap between the rank-width

and the complexity of our method, which can potentially be reduced in future work.

Circuit Q G Rinit Rann ScFlinit ScFlann ∆ScFl
Adder8 23 105 22 22 27.432 27.432 0.000
QFT8 8 148 8 8 13.738 13.738 0.000
barenco tof 3.qasm 5 20 5 5 9.077 7.833 1.244
barenco tof 4.qasm 7 34 7 7 11.355 11.285 0.070
barenco tof 5.qasm 9 50 9 9 13.752 13.000 0.752
csla mux 3 original 15 50 12 12 17.698 17.698 0.000
csum mux 9 corrected 30 56 29 29 33.250 33.250 0.000
gf2ˆ4 mult 12 51 12 12 18.342 18.342 0.000
ham15-low.qc 17 167 17 17 24.358 24.358 0.000
hwb6.qc 7 79 7 7 14.176 14.176 0.000
mod mult 55 9 35 9 9 15.203 15.203 0.000
mod red 21 11 74 11 11 17.722 17.722 0.000
qcla com 7 24 95 24 24 30.174 30.169 0.005
qft 4.qasm 5 159 5 5 11.811 11.811 0.000
rc adder 6 14 68 14 14 19.871 19.871 0.000
tof 10 19 51 19 19 24.778 24.774 0.004
tof 3 5 9 5 4 9.209 7.755 1.454
tof 4 7 15 7 6 11.980 10.488 1.492
tof 5 9 21 9 8 14.076 12.181 1.895
vbe adder 3 10 30 10 8 14.015 12.224 1.791

Table 6.1: Annealer benchmark on special circuits with the score flops function.
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Circuit Q G Rinit Rann ScFlinit ScFlann ∆ScFl
Adder8 23 105 22 22 27.432 27.432 0.000
QFT8 8 148 8 8 13.738 13.711 0.027
barenco tof 3.qasm 5 20 5 3 9.077 7.358 1.719
barenco tof 4.qasm 7 34 7 6 11.355 9.577 1.778
barenco tof 5.qasm 9 50 9 6 13.752 11.649 2.103
csla mux 3 original 15 50 12 12 17.698 17.698 0.000
csum mux 9 corrected 30 56 29 29 33.250 33.250 0.000
gf2ˆ4 mult 12 51 12 12 18.342 18.342 0.000
ham15-low.qc 17 167 17 17 24.358 24.358 0.000
hwb6.qc 7 79 7 7 14.176 14.176 0.000
mod mult 55 9 35 9 8 15.203 14.466 0.737
mod red 21 11 74 11 11 17.722 17.721 0.001
qcla com 7 24 95 24 24 30.174 30.174 0.000
qft 4.qasm 5 159 5 6 11.811 11.547 0.264
rc adder 6 14 68 14 14 19.871 19.858 0.012
tof 10 19 51 19 19 24.778 24.761 0.017
tof 3 5 9 5 3 9.209 7.129 2.080
tof 4 7 15 7 5 11.980 8.755 3.225
tof 5 9 21 9 6 14.076 11.177 2.899
vbe adder 3 10 30 10 3 14.015 8.768 5.247

Table 6.2: Annealer benchmark on special circuits with the score square function.

6.1.2 Random circuits

Table 6.3 shows the annealer performance on a series of random CNOT + Hadamard

+ T circuits of various sizes. Namely, we vary the number of qubits and the gate count

of the circuit, with the gate type probabilities set to 0.6 for CNOT, 0.2 for Hadamard,

and 0.2 for the T gate. After sampling the gate type, we randomly choose its input

qubits and append the gate to the diagram. This circuit sampling is implemented in

PyZX as pyzx.generate.CNOT HAD PHASE circuit(Q, G).

For a fixed qubit count, as the number of gates increases, the structure of the

corresponding ZX diagram becomes more random. It is no surprise that the annealer

fails to find much improvement for the larger gate counts: we conjecture that the rank-

width of a dense random circuit is close to the number of qubits. For the smaller gate

counts, as the circuit gets sparser, it finds ≈ ×5 improvement on average, better than

what we have seen for the special circuits. To achieve even better results, we plan to

increase the number of iterations for the annealer by implementing efficient cut-rank

updates as described in Section 5.3.
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Q G Rinit Rann ScFlinit ScFlann ∆ScFl
10 50 10 5 14.521 9.257 5.264
10 100 9 7 12.808 12.280 0.529
10 200 10 10 14.601 14.525 0.076
10 300 10 10 15.525 15.425 0.099
15 75 15 8 18.248 15.122 3.126
15 150 15 14 18.460 17.757 0.703
15 250 15 15 20.295 20.295 0.000
15 350 15 15 21.248 21.228 0.020
20 100 17 12 20.087 16.620 3.468
20 200 19 19 22.954 22.954 0.000
20 300 20 20 24.775 24.775 0.000
20 400 20 20 26.338 26.338 0.000
25 125 22 12 25.558 21.079 4.480
25 250 25 25 29.276 29.276 0.000
25 350 25 25 30.738 30.737 0.001
25 450 25 25 31.273 31.273 0.000

Table 6.3: Annealer benchmark on random CNOT + H + T circuits.

6.2 Circuit simulation

In this section, we estimate the cost of tensor contractions performed by the main

routine after steps 3 and 4 have taken place. As a baseline, we use the library Quimb,

which contains several advanced strategies for tensor network contraction. Similar

to the ZX-based approaches, Quimb first transforms the given quantum circuit to

a simplified tensor network. Then, it finds an efficient contraction tree, that is, a

sequence of tensor contractions required for diagram evaluation.

We compare our strategy against three Quimb optimisers: ‘auto’, ‘auto-hq’, and

‘greedy’ – these configurations work efficiently on our examples, as opposed to more

expensive optimisers such as ‘optimal’. For each optimiser, we take the produced

contraction tree and evaluate the flops by calling its contraction cost () method.

The Quimb optimisers are called in two different scenarios. In the first scenario,

we feed the reduced ZX diagram into the optimiser, which is the exact input to

our main contraction routine. In the second scenario, we run Quimb on the initial

quantum circuit and let Quimb do the simplifications. Generally, we observe that

the second scenario results in a better simulation cost. The reason might be that

the ZX simplifications provide denser diagrams and are less suited for the Quimb’s

contraction routines.
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6.2.1 Special circuits

Tables 6.4, 6.5 compare our simulation cost on special circuits against Quimb in

the two scenarios specified above. To produce meaningful outcomes, the inputs and

outputs for our simulation are set to the T-states.

When we run the Quimb optimisers on the reduced ZX diagram, in the majority

of the examples, we see that our contraction cost is similar to the baseline. Note

that on the ‘vbe adder 3’ circuit, although the annealer gave the ×32 speed-up, the

performance is still close to the baseline. Also, the best result is achieved on the

‘ham15-low’ circuit, where the annealer hasn’t improved at all. Hence, the greatest

contribution to the supremacy of our strategy comes primarily from the initial rank-

decomposition.

When running Quimb optimisers on the original circuit, our strategy is totally

outperformed by Quimb. In many cases, we see that the Quimb optimisers reduce

the input circuit to an empty tensor diagram. This outcome suggests that some

future work is necessary to enhance the efficiency of ZX-based simplifications on

special circuits.

Circuit Q G Flauto Flhq Flgreedy Flrw
Adder8 23 105 9.32 · 103 3.35 · 103 8.80 · 103 5.60 · 108

QFT8 8 148 2.45 · 103 1.98 · 103 1.46 · 104 4.18 · 104
barenco tof 3.qasm 5 20 2.14 · 103 6.38 · 102 9.68 · 102 5.58 · 102
barenco tof 4.qasm 7 34 1.56 · 103 3.11 · 103 4.75 · 103 3.59 · 103
barenco tof 5.qasm 9 50 5.76 · 103 2.51 · 103 7.72 · 103 1.53 · 104
csla mux 3 original 15 50 1.46 · 106 1.29 · 104 9.86 · 105 6.73 · 105
csum mux 9 corrected 30 56 5.67 · 106 6.75 · 103 3.24 · 104 3.33 · 1010

gf2ˆ4 mult 12 51 2.98 · 108 3.74 · 106 4.06 · 1016 1.01 · 106

ham15-low.qc 17 167 8.99 · 1014 2.13 · 1010 6.43 · 1023 6.50 · 107

hwb6.qc 7 79 1.20 · 107 2.97 · 106 2.27 · 109 5.60 · 104

mod mult 55 9 35 1.53 · 106 3.75 · 104 4.61 · 106 2.15 · 105
mod red 21 11 74 3.17 · 108 1.44 · 107 5.45 · 107 6.57 · 105

qcla com 7 24 95 8.07 · 104 7.31 · 103 1.02 · 105 3.70 · 109

qft 4.qasm 5 159 1.93 · 105 1.17 · 104 1.46 · 105 1.57 · 104
rc adder 6 14 68 1.15 · 107 4.98 · 103 2.14 · 104 2.92 · 106
tof 10 19 51 8.61 · 104 4.51 · 103 6.80 · 103 8.85 · 107

tof 3 5 9 6.82 · 102 4.50 · 102 6.64 · 102 4.78 · 102
tof 4 7 15 1.01 · 103 9.42 · 102 1.49 · 103 1.67 · 103
tof 5 9 21 2.65 · 103 1.08 · 103 1.72 · 103 1.33 · 104

vbe adder 3 10 30 1.38 · 104 1.92 · 103 3.16 · 103 1.43 · 103

Table 6.4: Circuit simulation benchmark on special circuits against Quimb.
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Circuit Q G Flauto Flhq Flgreedy Flrw
Adder8 23 105 0 0 0 5.60 · 108
QFT8 8 148 8.36 · 102 7.00 · 102 7.68 · 102 4.18 · 104
barenco tof 3.qasm 5 20 0 0 0 5.58 · 102
barenco tof 4.qasm 7 34 2.04 · 102 2.40 · 102 2.40 · 102 3.59 · 103
barenco tof 5.qasm 9 50 6.16 · 102 6.64 · 102 7.44 · 102 1.53 · 104
csla mux 3 original 15 50 0 0 0 6.73 · 105
csum mux 9 corrected 30 56 0 0 0 3.33 · 1010
gf2ˆ4 mult 12 51 6.48 · 103 3.28 · 103 8.05 · 103 1.01 · 106
ham15-low.qc 17 167 3.03 · 108 2.19 · 107 3.57 · 108 6.50 · 107
hwb6.qc 7 79 3.19 · 103 3.08 · 103 4.62 · 103 5.60 · 104
mod mult 55 9 35 3.32 · 102 3.32 · 102 3.60 · 102 2.15 · 105
mod red 21 11 74 1.46 · 103 1.42 · 103 1.50 · 103 6.57 · 105
qcla com 7 24 95 0 0 0 3.70 · 109
qft 4.qasm 5 159 9.84 · 102 9.80 · 102 9.80 · 102 1.57 · 104
rc adder 6 14 68 1.40 · 103 1.08 · 103 1.08 · 103 2.92 · 106
tof 10 19 51 0 0 0 8.85 · 107
tof 3 5 9 0 0 0 4.78 · 102
tof 4 7 15 0 0 0 1.67 · 103
tof 5 9 21 0 0 0 1.33 · 104
vbe adder 3 10 30 2.48 · 102 2.46 · 102 2.52 · 102 1.43 · 103

Table 6.5: Circuit simulation benchmark on special circuits against Quimb without
ZX simplifications.

6.2.2 Random circuits

We have also run the experiments on the random CNOT + Hadamard + T circuits,

where our strategy demonstrates a lot better performance – see Tables 6.6, 6.7.

For the sparser circuits, we do not observe a considerable difference: our perfor-

mance is similar or slightly better than Quimb in both scenarios. However, in the

dense case, our strategy performs a lot better than Quimb in both scenarios. Again,

referring to Table 6.3, we see that the major contribution comes from the initial

decomposition obtained from the extended gflow.

Finally, we have measured the running time of our entire simulation routine on

random CNOT + H + T circuits. Figures 6.1, 6.2 illustrate the performance of our

approach without the annealer against the default ‘auto-hq’ Quimb simulator, run on

our MacBook Air M1 laptop. Each experiment was repeated 5 times. We observe a

consistent 10x speedup compared to Quimb on all instances. Such success may be

attributed to the power of ZX simplifications in the case of random circuits and the

gflow technique, which works well in combination with the ZX-based transformations.
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Q G Flauto Flhq Flgreedy Flrw
10 50 6.80 · 101 6.60 · 101 7.00 · 101 7.80 · 101
10 100 7.60 · 101 7.60 · 101 8.00 · 101 7.20 · 101
10 200 2.63 · 103 1.54 · 103 6.42 · 103 9.38 · 102
10 300 3.92 · 107 3.12 · 105 3.41 · 108 3.91 · 104

15 75 6.40 · 101 6.40 · 101 6.80 · 101 5.40 · 101
15 150 1.31 · 103 9.04 · 102 1.51 · 103 7.26 · 102
15 250 5.91 · 105 3.82 · 105 7.69 · 105 4.59 · 104

15 350 2.90 · 107 2.25 · 106 5.82 · 108 8.24 · 105

20 100 5.00 · 101 5.00 · 101 5.20 · 101 9.00 · 101
20 200 3.01 · 103 1.53 · 103 2.74 · 103 1.10 · 103
20 300 3.21 · 109 6.48 · 108 1.59 · 1011 2.44 · 106

20 400 4.36 · 1012 3.81 · 1011 8.06 · 1013 4.75 · 107

25 125 1.20 · 101 1.20 · 101 1.20 · 101 2.20 · 101
25 250 2.08 · 104 6.34 · 103 1.14 · 104 3.35 · 103
25 350 3.68 · 108 6.10 · 108 5.25 · 1010 3.92 · 106

25 450 1.81 · 1014 8.97 · 1012 3.23 · 1014 1.58 · 108

Table 6.6: Circuit simulation benchmark on random CNOT + H + T circuits against
Quimb.

Q G Flauto Flhq Flgreedy Flrw
10 50 0 0 0 0
10 100 2.44 · 102 2.44 · 102 2.44 · 102 7.80 · 101
10 200 1.32 · 105 1.02 · 105 2.29 · 105 5.55 · 103

10 300 5.92 · 105 5.40 · 105 1.13 · 106 1.91 · 105

15 75 0 0 0 5.80 · 101
15 150 6.86 · 104 7.17 · 104 5.23 · 104 2.47 · 103

15 250 6.64 · 106 4.95 · 106 1.30 · 1010 2.07 · 105

15 350 1.04 · 107 6.74 · 106 1.29 · 109 1.88 · 106

20 100 0 0 0 9.00 · 101
20 200 1.58 · 105 6.78 · 104 3.78 · 105 6.84 · 103

20 300 4.12 · 107 6.09 · 106 6.14 · 108 8.99 · 104

20 400 6.68 · 108 1.09 · 108 1.03 · 1011 2.34 · 106

25 125 0 0 0 1.04 · 102
25 250 4.30 · 105 1.64 · 105 4.92 · 105 3.69 · 103

25 350 1.58 · 109 2.89 · 108 1.75 · 1011 1.51 · 105

25 450 4.19 · 1010 5.55 · 109 7.59 · 1011 2.38 · 108

Table 6.7: Circuit simulation benchmark on random CNOT + H + T circuits against
Quimb without ZX simplifications.
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Figure 6.1: Running time (s) of our routine vs Quimb on random CNOT + H + T
circuits on 10 qubits.

Figure 6.2: Running time (s) of our routine vs Quimb on random CNOT + H + T
circuits on 20 qubits.
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Chapter 7

Conclusions and future work

The results presented in this dissertation demonstrate that rank-width offers a pow-

erful tool for guiding classical simulation of quantum circuits within the ZX-calculus

framework. By combining extended gflow, simulated annealing, and a recursive con-

traction strategy, we established a new simulation pipeline that competes with exist-

ing approaches in both conceptual clarity and computational efficiency. Nevertheless,

several directions remain open for extending and refining our method.

A natural first avenue for future work concerns the optimisation of the convolu-

tion subroutine in the main simulation routine. Currently, the computational cost is

governed by the quantity wu = min(ru + rv, ru + rw, rv + rw) at each decomposition

node, with asymptotic complexity Õ(2wu). While this already provides a non-trivial

improvement over naive contraction, the routine is still the computational bottleneck

of our method. Investigating algebraic shortcuts for parity maps or exploiting ad-

ditional structure of the ZX diagram (such as repeated subpatterns or phase gadget

symmetries) could reduce this cost. Techniques from fast matrix multiplication over

F2, or alternative tensor convolution algorithms, may yield further asymptotic gains.

A second direction involves the improvement of rank-decomposition heuristics.

Our approach currently depends on extended gflow to generate an initial decompo-

sition, which is then optimised using simulated annealing. Our benchmarks show that

while the annealer typically yields modest improvements, the initial rank-decomposition

already provides competitive simulation costs compared to existing strategies. Alter-

native heuristics such as those based on reinforcement learning or hybrid combina-

tions of graph partitioning with flow-based orderings may generate more balanced

decompositions and avoid the limitations of purely annealing-based refinements. In

addition, developing efficient update techniques for cut-rank calculations would al-

low significantly longer annealing runs and deeper exploration of the search space,

potentially unlocking decompositions of substantially lower width.

53



Another promising line of investigation is the integration of our method with

stabiliser decompositions. While our current strategy treats Clifford+T circuits uni-

formly, there are many instances where decomposing collections of T gates into Clif-

ford components offers exponential savings. A hybrid method could apply our rank-

width guided contraction on parts of the diagram with favourable structure, while si-

multaneously employing stabiliser decompositions on subdiagrams rich in non-Clifford

spiders. Such an approach would combine the strengths of graph-theoretic and alge-

braic methods, and could bridge the gap between theoretical efficiency and practical

runtime.

Finally, our work leaves open the question of whether rank-width can be linked

directly to classical hardness results in quantum simulation. While it is known that

computing rank-width exactly is NP-hard, its precise relationship with measures such

as treewidth, entanglement entropy, or stabiliser rank remains underexplored in the

context of ZX diagrams. Establishing such connections would not only clarify the the-

oretical limits of our method but could also identify precise thresholds where classical

simulation is expected to fail. This line of inquiry lies at the interface of graph theory,

complexity theory, and quantum information, and may shed light on the fundamental

boundary between classical and quantum computation.

In conclusion, we have presented a simulation algorithm for Clifford+T quantum

circuits based on rank-width. The method proceeds by reducing the input circuit to a

graph-like ZX diagram, computing a rank-decomposition using extended gflow, opti-

mising this decomposition with simulated annealing, and finally performing recursive

contractions guided by the decomposition. Our benchmarks demonstrate that this

strategy produces non-trivial improvements in contraction cost and achieves com-

petitive performance with existing tensor network simulators. The central technical

contribution lies in showing that extended gflow yields a linear rank-decomposition

of bounded width, and in designing an efficient simulation routine that leverages the

resulting structure.

Beyond the immediate algorithmic contributions, the broader significance of this

work lies in establishing rank-width as a meaningful complexity parameter for quan-

tum circuit simulation. Just as treewidth has become a cornerstone in both theoret-

ical computer science and practical algorithms, rank-width may play a similar role

in quantum information, offering a principled way to interpolate between efficiently

simulable instances and classically intractable ones.
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Appendix A

Annealer parameter fine-tuning

Below are the benchmarks of the simulated annealer corresponding to the following

suboptimal parameter configurations:

1. α = 0.95, T0 = 10, and Tend = 0.001 (Table A.1),

2. α = 0.99, T0 = 1, and Tend = 0.001 (Table A.2),

3. α = 0.99, T0 = 2, and Tend = 0.001 (Table A.3),

4. α = 0.99, T0 = 5, and Tend = 0.001 (Table A.4),

5. α = 0.99, T0 = 20, and Tend = 0.001 (Table A.5).

The score function is set to score square(T ) everywhere. For the optimal configura-

tion α = 0.99, T0 = 10, and Tend = 0.001, refer to Table 6.2.
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Circuit Q G Rinit Rann ScFlinit ScFlann ∆ScFl
Adder8 23 105 22 22 27.432 27.432 0.000
QFT8 8 148 8 8 13.738 13.711 0.027
barenco tof 3.qasm 5 20 5 6 9.077 8.966 0.111
barenco tof 4.qasm 7 34 7 8 11.355 11.219 0.136
barenco tof 5.qasm 9 50 9 9 13.752 13.752 0.000
csla mux 3 original 15 50 12 12 17.698 17.698 0.000
csum mux 9 corrected 30 56 29 29 33.250 33.250 0.000
gf2ˆ4 mult 12 51 12 12 18.342 18.342 0.000
ham15-low.qc 17 167 17 17 24.358 24.358 0.000
hwb6.qc 7 79 7 7 14.176 14.176 0.000
mod mult 55 9 35 9 9 15.203 14.809 0.394
mod red 21 11 74 11 11 17.722 17.721 0.001
qcla com 7 24 95 24 24 30.174 30.174 0.000
qft 4.qasm 5 159 5 6 11.811 11.587 0.224
rc adder 6 14 68 14 14 19.871 19.858 0.012
tof 10 19 51 19 19 24.778 24.761 0.017
tof 3 5 9 5 4 9.209 8.087 1.122
tof 4 7 15 7 7 11.980 11.980 0.000
tof 5 9 21 9 9 14.076 13.575 0.502
vbe adder 3 10 30 10 8 14.015 12.109 1.906

Table A.1: Annealer benchmark for α = 0.95, T0 = 10, and Tend = 0.001.
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Circuit Q G Rinit Rann ScFlinit ScFlann ∆ScFl
Adder8 23 105 22 22 27.432 27.432 0.000
QFT8 8 148 8 8 13.738 13.711 0.027
barenco tof 3.qasm 5 20 5 3 9.077 7.492 1.585
barenco tof 4.qasm 7 34 7 6 11.355 10.600 0.755
barenco tof 5.qasm 9 50 9 7 13.752 12.747 1.005
csla mux 3 original 15 50 12 12 17.698 17.698 0.000
csum mux 9 corrected 30 56 29 29 33.250 33.250 0.000
gf2ˆ4 mult 12 51 12 12 18.342 18.342 0.000
ham15-low.qc 17 167 17 17 24.358 24.358 0.000
hwb6.qc 7 79 7 7 14.176 14.176 0.000
mod mult 55 9 35 9 9 15.203 14.807 0.396
mod red 21 11 74 11 11 17.722 17.721 0.001
qcla com 7 24 95 24 24 30.174 30.174 0.000
qft 4.qasm 5 159 5 6 11.811 11.591 0.220
rc adder 6 14 68 14 14 19.871 19.858 0.013
tof 10 19 51 19 19 24.778 24.761 0.017
tof 3 5 9 5 3 9.209 7.322 1.887
tof 4 7 15 7 6 11.980 9.401 2.579
tof 5 9 21 9 6 14.076 11.236 2.840
vbe adder 3 10 30 10 5 14.015 9.401 4.614

Table A.2: Annealer benchmark for α = 0.99, T0 = 1, and Tend = 0.001.
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Circuit Q G Rinit Rann ScFlinit ScFlann ∆ScFl
Adder8 23 105 22 16 27.432 27.105 0.327
QFT8 8 148 8 8 13.738 13.711 0.027
barenco tof 3.qasm 5 20 5 3 9.077 7.392 1.684
barenco tof 4.qasm 7 34 7 4 11.355 8.907 2.448
barenco tof 5.qasm 9 50 9 7 13.752 12.747 1.005
csla mux 3 original 15 50 12 12 17.698 17.698 0.000
csum mux 9 corrected 30 56 29 29 33.250 33.250 0.000
gf2ˆ4 mult 12 51 12 12 18.342 18.342 0.000
ham15-low.qc 17 167 17 17 24.358 24.358 0.000
hwb6.qc 7 79 7 7 14.176 14.176 0.000
mod mult 55 9 35 9 8 15.203 14.577 0.626
mod red 21 11 74 11 11 17.722 17.721 0.001
qcla com 7 24 95 24 24 30.174 30.174 0.000
qft 4.qasm 5 159 5 6 11.811 11.591 0.220
rc adder 6 14 68 14 14 19.871 19.858 0.012
tof 10 19 51 19 19 24.778 24.761 0.017
tof 3 5 9 5 3 9.209 7.322 1.888
tof 4 7 15 7 5 11.980 9.925 2.055
tof 5 9 21 9 6 14.076 10.512 3.564
vbe adder 3 10 30 10 5 14.015 9.989 4.026

Table A.3: Annealer benchmark for α = 0.99, T0 = 2, and Tend = 0.001.
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Circuit Q G Rinit Rann ScFlinit ScFlann ∆ScFl
Adder8 23 105 22 22 27.432 27.432 0.000
QFT8 8 148 8 8 13.738 13.711 0.027
barenco tof 3.qasm 5 20 5 3 9.077 7.392 1.684
barenco tof 4.qasm 7 34 7 8 11.355 11.219 0.136
barenco tof 5.qasm 9 50 9 7 13.752 11.750 2.002
csla mux 3 original 15 50 12 12 17.698 17.698 0.000
csum mux 9 corrected 30 56 29 29 33.250 33.250 0.000
gf2ˆ4 mult 12 51 12 12 18.342 18.342 0.000
ham15-low.qc 17 167 17 17 24.358 24.358 0.000
hwb6.qc 7 79 7 7 14.176 14.176 0.000
mod mult 55 9 35 9 9 15.203 14.809 0.395
mod red 21 11 74 11 11 17.722 17.721 0.001
qcla com 7 24 95 24 24 30.174 30.174 0.000
qft 4.qasm 5 159 5 6 11.811 10.989 0.822
rc adder 6 14 68 14 14 19.871 19.858 0.013
tof 10 19 51 19 12 24.778 20.468 4.310
tof 3 5 9 5 3 9.209 7.170 2.039
tof 4 7 15 7 4 11.980 8.714 3.266
tof 5 9 21 9 4 14.076 10.028 4.048
vbe adder 3 10 30 10 5 14.015 9.721 4.294

Table A.4: Annealer benchmark for α = 0.99, T0 = 5, and Tend = 0.001.
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Circuit Q G Rinit Rann ScFlinit ScFlann ∆ScFl
Adder8 23 105 22 15 27.432 27.051 0.381
QFT8 8 148 8 8 13.738 13.711 0.027
barenco tof 3.qasm 5 20 5 3 9.077 7.585 1.492
barenco tof 4.qasm 7 34 7 5 11.355 9.435 1.921
barenco tof 5.qasm 9 50 9 8 13.752 12.137 1.615
csla mux 3 original 15 50 12 12 17.698 17.698 0.000
csum mux 9 corrected 30 56 29 29 33.250 33.250 0.000

gf24̂ mult 12 51 12 12 18.342 18.342 0.000
ham15-low.qc 17 167 17 17 24.358 24.358 0.000
hwb6.qc 7 79 7 7 14.176 14.176 0.000
mod mult 55 9 35 9 8 15.203 14.114 1.089
mod red 21 11 74 11 11 17.722 17.721 0.001
qcla com 7 24 95 24 24 30.174 30.174 0.000
qft 4.qasm 5 159 5 6 11.811 11.605 0.205
rc adder 6 14 68 14 14 19.871 19.858 0.012
tof 10 19 51 19 19 24.778 24.761 0.017
tof 3 5 9 5 3 9.209 7.129 2.080
tof 4 7 15 7 5 11.980 9.531 2.449
tof 5 9 21 9 6 14.076 12.420 1.656
vbe adder 3 10 30 10 4 14.015 8.954 5.061

Table A.5: Annealer benchmark for α = 0.99, T0 = 20, and Tend = 0.001.
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