

GNNs for Fast Classical Simulation
of Quantum Circuits through

Optimizing ZX-Graph
Decompositions

�
David Philipps

Keble College
University of Oxford

A thesis submitted for the degree of
MSc in Mathematics and Foundations of Computer Science

Trinity 2025

2

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Richie
Yeung and Matthew Sutcliffe, for their invaluable guidance and support
throughout this project, and for proofreading this thesis.

I also wish to thank my pomodoro partner, Pedro B. R. de Costa, for
helping to maintain a productive writing process during the final weeks.

Lastly, I wish to extend my deepest gratitude to my family and the Ger-
man Academic Scholarship Foundation for making this year at Oxford
possible for me. My heartfelt thanks also go to my friends at Keble Col-
lege for making it such a wonderful time.

Abstract

Quantum circuits can be simulated on classical hardware using an algo-
rithm known as stabiliser decomposition. This procedure is based on two
principles: first, any quantum circuit can be constructed out of the uni-
versal Clifford+T gate set; second, circuits made only of Clifford gates
can be simulated efficiently on classical computers. The core idea is to
recursively decompose a Clifford+T circuit into a linear combination of
circuits with a lower T -gate count (T -count) than the original, ultimately
producing an exponential number of Clifford circuits. Each circuit can
then be simulated individually, and the results are aggregated to obtain
the final output. This thesis examines the application of machine learning
models to inform the selection of intermediate decompositions, with the
goal of minimising the number of T -gates in the resulting circuits. Even
minor improvements in this recursive step can combine to yield significant
enhancements in the overall simulation.

Specifically, we work in the framework of Kissinger and van de Wetering
[16]. They combined known gadget decompositions with circuit optimi-
sation routines to reduce the T -count. We also draw on the work of
Ahmad et al. [4], who developed heuristics that apply these decomposi-
tions strategically to maximise simplification. Building on prior research
by Koziell-Pipe, Sutcliffe, and Yeung [22], we trained a machine learning
model that outperformed even the greedy brute-force baseline for apply-
ing the Vertex-Cut decomposition on exponentiated Pauli circuits. This
demonstrates its ability to learn efficient, non-local simplification strate-
gies. In addition, we document several machine learning techniques that
did not yield promising results. We analyse their shortcomings and discuss
potential avenues for future improvement.

Contents

1 Introduction 1
1.1 Outline . 2

2 Background 3
2.1 The SCUM view on Quantum Theory 3

2.1.1 States . 3
2.1.2 Compound Systems . 4
2.1.3 Unitary Evolution . 4
2.1.4 Measurement . 4

2.2 Quantum Circuits . 5
2.3 Classical Simulation . 7

2.3.1 Statevector Simulation . 9
2.3.2 Tensor Networks . 9
2.3.3 ZX-Calculus . 12
2.3.4 Stabiliser Decomposition . 14
2.3.5 Graph Cuts . 18
2.3.6 Circuit Classes . 19

2.4 Machine Learning . 21
2.4.1 Supervised Learning . 22
2.4.2 Reinforcement Learning . 23
2.4.3 Neural Networks . 24
2.4.4 Graph Neural Networks . 24
2.4.5 GNNs on ZX diagrams . 25

3 Problem Definition 27
3.1 Local α . 28
3.2 Structure of a Selection Driver . 30

i

4 Supervised Selection Learning 32
4.1 Setup for Vertex-Cut Selection . 32
4.2 Setup for Magic5 Selection . 34
4.3 Iterated Training . 35
4.4 Results . 35

5 Reinforcement Learning 41
5.1 Reinforcement Learning Environment 41
5.2 Proximal Policy Optimisation . 42
5.3 Adaptations . 44

6 Efficiency Estimation through Regression 47
6.1 Setup of the Regression Model . 47
6.2 Evaluation of the Regression Model 48
6.3 Combining Vertex-Cut and Magic5 50

7 Conclusion and Future Work 53

Bibliography 55

A Appendix 61
A.1 Implementation Details . 61
A.2 Study on the Expressiveness of Graph Neural Networks 63

A.2.1 Abstract . 63
A.2.2 Introduction . 63
A.2.3 Method . 64

A.2.3.1 Background on Quantum Circuit Simulation 64
A.2.3.2 Example . 64
A.2.3.3 Data Generation: . 65
A.2.3.4 Models . 65
A.2.3.5 Hyperparameters . 66

A.2.4 Empirical Results . 67
A.2.5 Conclusions . 68

ii

List of Figures

2.1 Visualisation of statevector simulation 9
2.2 The standard rules of the ZX-calculus as presented in [5]. 14

3.1 Depiction of a selection driver . 31

4.1 Illustration of the Vertex-Cut selection model architecture. The input
diagram is encoded as described in Section 2.4.5 and then fed through
multiple layers with learnable parameters. 33

4.2 Comparison of the trained Vertex-Cut models with KL- or EGA-based
loss. 36

4.3 Comparison of the trained Vertex-Cut models and the baselines Sherlock-
VC (greedy brute force), DynamicT-VC-only [4], and a random selector. 37

4.4 Comparison of the trained Vertex-Cut models across circuit classes . 38
4.5 Comparison of the performance of iterations of the Vertex-Cut model

trained on EP circuits with KL loss. 39
4.6 Comparison of the trained M5 models with Sherlock and a Random

driver using only M5 on exponentiated Pauli circuits. The models were
trained on this class of circuits. 40

6.1 Scatter plot of the global α, the estimate αloc and the estimate of the
Vertex-Cut estimator model on unseen exponentiated Pauli circuits
with Vertex-Cut. 49

6.2 Scatter plot of the global α, the estimate αloc and the estimate of the
Vertex-Cut estimator model on unseen Clifford+T+CCZ circuits with
Vertex-Cut. 49

6.3 Scatter plot of the global α, the estimate αloc and the estimate of the
Magic5 estimator model on unseen exponentiated Pauli circuits with
Magic5. 49

iii

6.4 Scatter plot of the global α, the estimate αloc and the estimate of
the Magic5 estimator model on unseen Clifford+T+CCZ circuits with
Magic5. 50

6.5 Comparison of the combined model and its constituent parts. 51
6.6 Comparison of the combined model and the full Sherlock and Dynam-

icT heuristics. 52

A.1 Comparison of Model Performance over 10 Runs 67
A.2 Representative training runs . 67

iv

List of Tables

4.1 Settings used for generating the test sets of the different circuit classes,
if applicable. 35

6.1 Pearson correlation coefficients of the global α and different estimators
for Vertex-Cut. 48

6.2 Pearson correlation coefficients of the global α and different estimators
for Magic5. 48

A.1 Hyperparameter ranges used to train the supervised learning models. 62
A.2 Hyperparameter ranges used to train the reinforcement learning models. 62

v

Chapter 1

Introduction

Many modern digital industries rely on vast amounts of computational power. In
the past, we have seen this power grow exponentially from year to year. However,
this trend, known as Moore’s law, which is a driving factor of our modern world, is
predicted to slow down over the next decades as classical hardware reaches physical
limitations [11]. Quantum computing is a new model of computation that harnesses
the counter-intuitive quantum behaviour of physical systems at the atomic level to
speed up computations in a way that is not possible using classical hardware. In the
current era of this emerging quantum advantage, the classical simulation of quantum
circuits is a difficult yet fruitful endeavour. On the practical side, we want to under-
stand the behaviour of quantum circuits in the absence of an actual implementation,
since in most cases the latter is either expensive or not yet possible. Conversely, we
also need to verify the correctness of implemented quantum circuits by comparing
their output distribution to our simulation. On the theoretical side, however, our
hopes for a universally efficient simulator are tempered by the #P -hardness result
[27] for the simulation of random quantum circuits.

Consequently, a toolkit of different approaches has emerged, each with its own
domain of applicability. Statevector simulations are well-known and used in cases
where only a few qubits are involved, and tensor-contraction-based techniques excel
even in setups with many qubits, as long as the circuit is not too dense [44]. The
third, lesser-known family of techniques, based on stabiliser decompositions, offers
good results for circuits that contain only a small number of non-Clifford gates. The
basic idea is to decompose the circuit into a sum of Clifford circuits, which can be
simulated in polynomial time due to the Gottesmann-Knill theorem [1], and then
aggregate the results. As this technique matures, efforts are being made to speed up
this aggregation [40] and reduce the size of the generated decomposition [5, 38, 9].

1

Consistent with previous developments in this area, we will work in the graphical
language of ZX-calculus to represent quantum circuits as diagrams. These diagrams
have a versatile structure and a rich set of rewrite rules that make them an appeal-
ing use case for graph-based machine learning. Related work, such as [25, 30, 34],
has successfully employed a combination of GNNs and state-of-the-art reinforcement
learning techniques to perform local rewrites to optimise ZX diagrams, for example,
by reducing the 2-qubit gate count.

In [22], the authors already employed a similar setup to optimise the decision-
making process of iterated decomposition. This thesis builds on their work, expanding
the toolkit of machine learning approaches and the theoretical understanding, while
also employing findings from new research on stabiliser decompositions.

1.1 Outline

This dissertation is organised as follows. Chapter 3 begins by detailing the specific
problem addressed with machine learning and defining the baseline models against
which our results are compared. Following this, Chapter 4 describes the supervised
learning setups developed for decomposition application selection and provides an
analysis of their performance. Chapter 5 then reformulates this task as a reinforce-
ment learning problem, discussing several adaptations to the original framework pro-
posed in [22]. In Chapter 6, we introduce a regression-based technique to train the
α-estimation component of the selection drivers. We conclude by combining our
best-performing models into a single, unified driver capable of leveraging multiple
base decompositions.

2

Chapter 2

Background

This chapter introduces the necessary background on quantum circuits as a model for
quantum computation and the methods by which they can be simulated. Further-
more, we will cover the machine learning techniques employed to build our models.
For a thorough introduction to the ZX-Calculus, the reader is referred to the book
Picturing Quantum Software by Kissinger and van de Wetering [17].

2.1 The SCUM view on Quantum Theory

Describing a computational process involves defining the possible states of a system,
the actions that can be performed on those states, and the method for reading out
the result. In a classical computer, the state space is Bn, which is the set of bitstrings
(vectors where each element is either 0 or 1) of size n. These evolve through the
application of logic gates such as AND or OR. After the algorithm completes, the
result can be read directly from the bits. These concepts are formalised in models of
computation such as circuits or Turing machines. Quantum computers, in contrast,
adhere to the arguably more complex framework of quantum theory. We introduce
the formulation of quantum computation as presented in [17]:

2.1.1 States

The state space of a quantum system is the normalised subspace of a complex Hilbert
space,H. For a qubit, the simplest unit of quantum information, this space isH = C2.
To describe states within this space, we fix a basis that typically corresponds to a
physically meaningful property, such as the spin of a neutron. This is called the
computational basis, denoted by {|0⟩ , |1⟩}, where:

3

|0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
.

Any other qubit state |ψ⟩ ∈ C2 can be expressed as a linear combination |ψ⟩ =
α |0⟩+β |1⟩, where α, β ∈ C are called amplitudes and satisfy |α|2 + |β|2 = 1. A state
such as |+⟩ = 1√

2(|0⟩+ |1⟩) is said to be in a superposition of the |0⟩ and |1⟩ states.

2.1.2 Compound Systems

When combining two quantum systems with state spaces H1 and H2, the state space
of the combined system is described by their tensor product, H1 ⊗ H2. For two
qubits, this results in C2⊗C2 = C2·2, and for n qubits, it is C2n . The computational
basis for this space is composed of bitstrings |⃗b⟩ = |b1⟩ ⊗ · · · ⊗ |bn⟩ for b⃗ ∈ Bn. If a
quantum computer were always in a computational basis state, it could be described
just like a classical computer. The power of quantum computing, however, stems
from the fact that qubits can exist in any superposition of these basis states. Such
a superposition can be described by Σc⃗∈Bnac⃗ |⃗c⟩, where the ac⃗ ∈ C are amplitudes.
The vector containing all amplitudes, known as the statevector, is normalised in the
2-norm and uniquely describes the quantum state.

2.1.3 Unitary Evolution

A quantum computer evolves from one quantum state to another via unitary linear
maps, which are usually represented by matrices in C2n×2n . For example, starting
with a qubit in the state |0⟩, the state |+⟩ can be obtained using the unitary map:

1√
2

(
1 1
1 −1

)
.

If we have a composite system such as C2 ⊗ C2 and apply a unitary U1 to the
first qubit and U2 to the second, this corresponds to applying the Kronecker product
U1 ⊗ U2 to the whole system.

2.1.4 Measurement

The formalism above describes the internal workings of a quantum computer. How-
ever, in stark contrast to a classical machine, we cannot directly access the final
quantum state. Measuring the qubits after a computation is a complex process; here,
we will only describe a simplified version. To measure a qubit, one must specify a ba-
sis, and for simplicity, we assume all qubits are measured in the computational basis.

4

The Born rule dictates that for a quantum state ψ = ∑
c⃗∈Bn ac⃗ |⃗c⟩, a measurement of

all qubits will yield the outcome c⃗ with probability |ac⃗|2.
Simulating a quantum computer can now be understood as classically computing

these probabilities, given the initial state and the unitary evolution of the computer.
First, however, we will introduce a model for describing this evolution.

2.2 Quantum Circuits

Quantum circuits are the most popular model for quantum computation. They rep-
resent unitary operations on qubits as

U
n


where U is a unitary linear operator on the Hilbert space of n qubits, usually

represented by a matrix in C2n×2n . In this formalism, a wire represents a qubit that
is acted upon. Some examples of small quantum circuits, which we also call gates,
are:

Hadamard Gate

H

with the unitary operator

H = 1√
2

(
1 1
1 −1

)
.

This gate maps the computational basis states to superpositions. We have

H |0⟩ = 1√
2

(|0⟩+ |1⟩) = |+⟩ and H |1⟩ = 1√
2

(|0⟩ − |1⟩) = |−⟩

for single qubits and
(H |0⟩)⊗n = 1√

2n
∑
b⃗∈Bn

|⃗b⟩

for n qubits. The set {|+⟩ , |−⟩} is called the Hadamard basis. We want to mention
the importance of the duality between the computational basis and the Hadamard
basis and refer the reader to [17] for a thorough treatment of the matter.

5

Phase Gate

S

with the unitary operator

S =
(

1 0
0 i

)
.

Since this gate is diagonal in the computational basis, it has no physically meaningful
effect on these basis states. On superpositions, though, it introduces a phase shift,
for example,

S2 |+⟩ = S2 1√
2

(|0⟩+ |1⟩) = 1√
2

(|0⟩ − |1⟩) = |−⟩ .

Controlled-Not Gate

CNOT

with the unitary operator

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

This two-qubit gate acts as a bitflip on the second qubit if the first qubit is in the
|1⟩ state and as the identity otherwise if it is in the |0⟩ state. It therefore plays an
important role in emulating classical computation steps on a quantum computer.

T Gate

T

with the unitary operator

T =
(

1 0
0 ei

π
4

)
.

This gate has an interesting role in the simulation of quantum circuits, which we
explain in the next section.

Circuits can be composed either in parallel,

6

A... ...

B... ...

n



m


= B ⊗A... ...n+m



where B⊗A denotes the Kronecker product, or, if the number of qubits matches,
in sequence,

A B... = BA... ...

where BA denotes the standard matrix product. Thus, the actions of the gates
are read from left to right.

The first three gates (Controlled-Not, Hadamard, Phase) are so-called Clifford
gates. It is worth mentioning that they are computationally cheap to implement
on physical hardware and in certain error correction codes, as well as classically
simulatable. See [29] and [17] for more information on Clifford gates. Together with
the T gate, they form the Clifford+T gate set that is known to be approximately
universal, meaning that by composing them in parallel and in sequence, any unitary
operator can be constructed up to a given precision ε [29]. Therefore, when working
with quantum circuits, it usually suffices to consider only those built from these
generators.

2.3 Classical Simulation

Given a circuit representation of a unitary operator U on n qubits and an n-qubit
classical state |⃗b⟩ (where b⃗ ∈ Bn), the application of U to |⃗b⟩, denoted as

Ub⃗
... ...

results in the state U |b⟩ ∈ C2n . We can write this state in the computational
basis as ∑c⃗∈Bn ac⃗ |⃗c⟩, with amplitudes ac⃗ ∈ C. If this circuit were implemented on

7

real hardware and all qubits were measured in the computational basis, the Born rule
states that the outcome would be c⃗ with probability |ac⃗|2 [29]. This is called the output
distribution of the computation and we let O be the corresponding random variable.
In practical use cases, this distribution is sampled multiple times by repeating the
computation, and the outcomes are fed to a post-processing step. With access only
to classical hardware and the descriptions of the input state |⃗b⟩ and circuit C, one
might want to perform one of two tasks:

Weak Simulation

A weak simulation (or emulation) of a quantum computation is a probabilistic algo-
rithm A that outputs bitstrings and satisfies

P(A(⃗b, C) = c⃗) ε≈ P(O = c⃗) = |ac⃗|2.1

This task is believed to be hard, as its efficient solution would negate the computa-
tional advantage of quantum computers over classical machines. This computational
advantage is captured in the complexity class BQP of problems that can be solved
by weakly simulating a quantum circuit. See [29] for details on this class.

Strong Simulation

Strongly simulating a quantum computation means calculating marginal probabilities
over the output distribution. Marginals are probabilities of the form

P(OI = b⃗I)

where I is some set of indices. This is even harder than weak simulation for
two reasons. First, a strong simulator can be used to build a weak simulator, by
repeatedly calculating marginals and classically sampling from them (cf. [17] p. 202).
Second, this task would not be feasible even with a quantum device, as such a device
can only be used to create samples, not to access the underlying amplitudes that give
rise to the distribution. Strong simulation is also a #P-hard problem [27].

However, when verifying or analysing quantum circuits, it is usually strong sim-
ulation that is needed. Therefore, this is the focus of this thesis, and we will use
simulation synonymously with strong simulation. We will now introduce the most
popular techniques for this task.

1The relation ε
≈ denotes that the equality holds up to some error margin ε.

8

C

D

E

A

B

|⃗b⟩

b⃗

Σa(1)
c⃗ |⃗c⟩ Σa(2)

c⃗ |⃗c⟩ Σa(3)
c⃗ |⃗c⟩

Figure 2.1: In this visualisation of statevector simulation, it is shown how the state of
a quantum computer can be described by the corresponding statevectors after each
application of a gate.

2.3.1 Statevector Simulation

The most straightforward approach to simulating a quantum circuit is to compute
the sequence of states the system passes through, following the arrow of time implied
by the circuit description. This algorithm, called statevector simulation, works by
subdividing the circuit into its sequential layers and applying each, one by one, to the
output of the preceding layer, starting with the input state. All intermediate states
are represented by their statevector. See Figure 2.1 for a visualisation of the process.
The problem with this approach is that the size of the statevector grows exponentially
with the number of qubits, making it infeasible to implement this algorithm on even
a supercomputer for moderate qubit counts due to memory limitations.

2.3.2 Tensor Networks

The concept of using tensor networks for the efficient simulation of quantum compu-
tation was introduced in [24]. However, their applications extend to simulating more
complex physical quantum systems (see [31] for a survey) and to the emerging field of
quantum machine learning [12]. Tensor networks offer a flexible framework to model
various systems while also allowing for efficient2 simulation, facilitated by libraries
such as quimb [10].

Tensors are a generalisation of scalars, vectors, and matrices to multidimensional
arrays of numbers. Each complex number in the array is addressed via r indices. We
call r the rank of the tensor. A tensor can be seen as a relationship between r ordered
sets, since the r indices for any entry can be seen as a selection of r elements from these

2In this context, “efficient” does not imply polynomial time complexity, but rather optimised and
parallelised computation, for instance on GPUs.

9

sets. If the sets are the bases of r vector spaces, this extends to a multilinear relation
between the systems. This generalises how matrices describe a linear function between
two vector spaces in relation to some bases. In the context of quantum computing,
the vector spaces are usually the two-dimensional Hilbert spaces that describe the
state space of a qubit and we operate in the computational basis.

Vectors are rank-1 tensors and describe a single system, such as the current state
of a qubit. Matrices are rank-2 tensors and describe the relation between two systems,
such as between the qubit state before and after some evolution. In the circuit model,
we described the application of a two-qubit gate, such as CNOT, with a unitary
evolution matrix on the composite system. Using higher-rank tensors, we can also
describe it as a relation between the two single-qubit states before the application
and the two single-qubit states after. Since this relation is linear in every qubit state,
we can use a rank-4 tensor to describe it. This formulation offers multiple advantages
for simulation.

In the following, rank-n tensors are visually depicted as nodes with n open edges,
each of which represents a system. In our presentation, we use the lowercase letters
on the edges as indices for these systems. Here j, k, l,m ∈ B, where a 0 corresponds
to the basis state |0⟩ and 1 to |1⟩. We describe the Clifford+T gate set as tensors, by
giving their entries:

Hadamard Gate

H

kj

= (−1)j·k

Phase Gate

j k
S =


i, if j = k = 1
1, if j = k = 0
0, else

Controlled-Not Gate

j k

CNOTl m =
{ 1, if j = k and l = m⊕ j

0, else

10

T Gate

j k
T =


ei

π
4 , if j = k = 1

1, if j = k = 0
0, else

An input bitstring also has a tensor description as:

b⃗
... ⇝

b1

bn

... , where bi

j
=

{ 1, if j = bi
0, else

Visually, having tensors Ai1,...,in and Bj1,...,jm next to each other corresponds to
the tensor product. This is defined as the rank-(n+m) tensor

Ci1,...,in,j1,...,jm = Ai1,...,in ·Bj1,...,jm .

Tensors can also be combined by connecting them via an edge:

A Bi j j k

This is called tensor contraction and corresponds to the tensor that results from
summing over the shared system: Ci,k = ∑

j∈[n] Ai,jBj,k. As this example shows,
tensor contraction is a generalisation of the matrix product. It also holds that the
result of contracting the vector of a pre-application state with the matrix of the
applied gate is the vector of the post-application state, since it is just the vector-
matrix product. An n-qubit quantum circuit can therefore be viewed as a collection
of tensors, with the wires being contraction edges. This is then a tensor network,
and the resulting rank-n tensor describes the final qubit states. The amplitude of a
specific computational basis state |⃗c⟩ then has the representation

b1

bn

...

c1

cn

...U

since rank-0 tensors are just complex scalars. To compute the value of this scalar,
one needs to compute the intermediate tensors obtained from summing two adjacent
tensors over their shared index. This step is called edge contraction, and when done
in a sophisticated order, large intermediate tensors and therefore high memory usage

11

can be avoided. The minimal rank of the largest intermediate tensor over all orderings
is determined by the treewidth of the network [24], while storing it takes exponen-
tial space. Therefore, the runtime and memory consumption of this technique scale
exponentially in this parameter.

To get a marginal probability such as

P(o1 = c1, . . . , ok = ck)

via the Born rule, one would formulate a tensor network as:

b1

bn

...

c1

ck

...
U

c1

ck

...
U †

b1

bn

...
...

For simplicity, we will only consider the computation of amplitudes.

2.3.3 ZX-Calculus

ZX diagrams are a specific type of tensor network that are generated by two families
of tensors, the Z-spiders

α

i1 o1

omin

... ... =

eiα, if i1 = · · · = in = o1 = · · · = om = 1
1, if i1 = · · · = in = o1 = · · · = om = 0
0, else

and X-spiders

α

i1 o1

omin

=
 2− n+m

2 (1 + eiα), if i1 ⊕ · · · ⊕ in ⊕ o1 ⊕ · · · ⊕ om = 0
2− n+m

2 (1− eiα), else

The α ∈ [0, 2π) on a spider is called its phase. Phases that are a multiple of π
2 are

called Clifford, and multiples of π are called Pauli. We also call the corresponding

12

spider Clifford or Pauli, respectively. Furthermore, spiders with a phase of π
4 are

called T -spiders, and those that have a phase that is an odd multiple of π
4 are T -like.

The Z- and X-spiders satisfy a useful property called only-connectivity-matters
(OCM), meaning that there is no distinction between the different legs of a spider.
This makes the diagrams very flexible:

= =

All our basic gates can be written in terms of these spiders

Hadamard Gate

H = π
2

π
2

π
2

Phase Gate

S = π
2

Controlled-Not Gate

CNOT =

T Gate

T = π
4

We will use the syntactic sugar

π
2

π
2

π
2 = =

called a Hadamard edge.
It follows that a ZX diagram that comes from translating a Clifford+T circuit has

only T -like and Clifford spiders. Each diagram also carries a complex scalar that is
interpreted as a multiplicative coefficient of the tensor corresponding to the diagram.
This way we can also represent the basis states in a simple way:

13

β... ...

α =...α+β

(f)

(-1)aα=
aπ

aπ

aπ α

aπ

(π)

aπ

...

aπ
α =...

aπ

(c)
aπ

α ...= α...

(cc)

(i)
=

=
(hh)

(b)
=

eiaα

√
2

eiaα
√

2n−1

x1

x2

xn

α aπ = √
2eiaαα = 1 + eiα

(s1) (s2)

Figure 2.2: The standard rules of the ZX-calculus as presented in [5].

0 = 1√
2

1 = π1√
2

The advantage of ZX diagrams is that they allow for a versatile set of rewrite rules,
presented in Figure 2.2. These can be combined into powerful optimisation routines
and bring ZX diagrams into normal forms [17]. An example of the latter is the
graph-like form, where the diagram only consists of Z-spiders and all edges are simple
Hadamard edges. A popular optimisation routine is the full-reduce algorithm [15],
which rewrites graph-like diagrams to reduce the number of non-Clifford spiders and
runs in polynomial time. This algorithm also simplifies the Clifford parts of a diagram,
so that all-Clifford diagrams without open edges are reduced to scalars.

2.3.4 Stabiliser Decomposition

Quantum circuits consisting of only H, S, and CNOT gates are called stabiliser or
Clifford circuits. The ZX diagram corresponding to such a circuit has only Clifford
phases and is therefore also called a Clifford diagram. This class of circuits is special

14

because it allows for polynomial-time simulation, for example, via the aforementioned
full-reduce algorithm [15]. Recall that the full Clifford+T gate set is universal;
therefore, the T -gate is the source of quantum computational advantage and, for
simulation, the source of complexity. For general Clifford+T diagrams, the T -count
is defined as the number of non-Clifford phases, which corresponds to the number of
T -like spiders. When naively translating a Clifford+T circuit into a ZX diagram, the
T -count of the diagram is exactly the number of T -gates in the original circuit.

We can leverage the efficient simulation of Clifford diagrams to simulate arbitrary
Clifford+T circuits by using the concept of a stabiliser decomposition.

Definition 1. A decomposition of a ZX diagram D is a set S of ZX diagrams that
satisfy ∑s∈S s = D. If all elements of S are Clifford diagrams, we call it a stabiliser
decomposition. We then also refer to the tuple (D,S) as a stabiliser decomposition.

The simplest stabiliser decomposition is the so-called Vertex-Cut (VC):

α = π+ eiα
1√
2

1√
2

This decomposition can be generalised to

α1

αn

... =
b1π

bnπ

...
1√
2n

∑
b⃗∈Bn

∏n
j=1 e

iπbjαj

We also have the following notion

Definition 2. An application of a decomposition (D,S) to a ZX diagram E is a vertex
mapping ψ : D → E such that the subgraph E ′ of E induced by ψ(D) is isomorphic
to D. This gives a decomposition Eψ, by substituting E ′ with the decomposition of
D:

Eψ = {E[E ′/s]|s ∈ S}.

If all non-Clifford spiders of E are contained in ψ(D) and (D,S) is a stabiliser de-
composition then this is also a stabiliser decomposition.

Using this, we can compute a stabiliser decomposition of any ZX diagram by
unfusing3 all the non-Clifford phases and applying the generalised Vertex-Cut to
these. This can be formulated as Algorithm 1.

3Unfusing a spider involves applying the (f) rule from Figure 2.2 in reverse to create a new
single-legged spider with a specific phase. This phase is subtracted from the original spider’s phase.

15

Algorithm 1 Basic Stabiliser Decomposition
Input: ZX diagram D
Output: The complex scalar c corresponding to D

1: Tnew ← ∅
2: for T-like spider s in D do ▷ Step 1: Unfuse T -spiders
3: Unfuse a T -spider snew from s.
4: Add snew to Tnew.
5: end for
6: Pdecomp ← GeneralisedVertexCut(D,Tnew) ▷ Step 2: Apply decomposition
7: ctotal ← 0
8: for Clifford diagram di in Pdecomp do ▷ Step 3: Reduce and compute scalars
9: ci ← full_reduce(di)

10: ctotal ← ctotal + ci ▷ Step 4: Sum scalars
11: end for
12: return ctotal

If the input diagram has a T -count of t, this algorithm must evaluate 2t Clifford
diagrams. This performance can be improved by using more sophisticated stabiliser
decompositions for the collection of T -spiders created in the first step. For instance,
Bravyi, Smith, and Smolin discovered a stabiliser decomposition of size 7 for 6 T -
spiders [8], and Qassim et al. proposed a family of decompositions with a size of
O(20.3963n) [33], where n is the number of T -gates, leading to a significant improve-
ment in the algorithm’s runtime. This motivates the introduction of the efficiency
parameter, α.

Definition 3. For a stabiliser decomposition (D,S) the efficiency is defined as

α = log2(|S|)
t

,

where t is the T -count of D.

The naive and generalised Vertex-Cut has an efficiency of α = 1, while the BSS
decomposition has α ≈ 0.468, and the decompositions by Qassim et al. approach
α ≈ 0.3963 as n → ∞. In general, recursively applying a stabiliser decomposition
with efficiency α to a diagram with T -count t is theoretically guaranteed to yield a
final stabiliser decomposition with approximately 2αt terms.

Kissinger and van de Wetering further enhanced the algorithm by introducing
intermediate simplification steps [16], see Algorithm 2. This significantly reduces
the size of the resulting stabiliser decomposition and therefore the algorithm’s run-
time. Moreover, the early application of full-reduce ensures the resulting Clifford
diagrams are already simplified, which avoids redundant work.

16

Algorithm 2 Recursive BSS Decomposition with Intermediate Optimisation
Input: ZX diagram D
Output: The complex scalar c corresponding to D

1: D′ ← full_reduce(D) ▷ Step 1: Simplify the diagram
2: if T -count(D′) < 6 then ▷ Step 2: Base case for low T -count
3: return BruteForceScalar(D′)
4: end if
5: TBSS ← ∅
6: for six random T -like spiders s in D′ do ▷ Step 3: Unfuse T -spiders
7: Unfuse a T -spider snew from s.
8: Add snew to TBSS.
9: end for

10: Pdecomp ← BSSDecomposition(D′, TBSS) ▷ Step 4: Apply BSS
11: ctotal ← 0
12: for diagram di in Pdecomp do ▷ Step 5: Recurse and sum results
13: ci ← recurse(di)
14: ctotal ← ctotal + ci
15: end for
16: return ctotal

In [19], Kissinger et al. proposed using decompositions that do not immediately
result in Clifford diagrams but significantly reduce the T -count. Examples include
the Magic5 (M5) decomposition:

π
4 − π

4
π
4
π
4
π
4
π
4
π
4

=

π
4

π
4

π
4

π
4

π
4

4 − π
2

− π
4

+ 2
√

2ieiπ/4

− π
4

− 2
√

2eiπ/42

π
2

π
2

π
2

π
2

π
2

π
4

=

and the Cat decompositions, such as Cat4 (with similar versions for Cat3, Cat5, and
Cat6 [19]):

π
4

π
4

π
4

π
4

= − π
2 + ie−iπ/4

√
2

For decompositions where all resulting diagrams have the same T -count t′, the
definition of efficiency can be generalised to:

α = log2(|S|)
t− t′

,

17

where t is the original T -count. The Magic5 decomposition has α ≈ 0.396, which
matches the asymptotic efficiency of the decompositions from [7]. Although the Cat4
decomposition has a lower efficiency of α = 0.25, its applicability depends on the
diagram’s structure. This leads to the updated Algorithm 34.

Algorithm 3 Recursive Decomposition with Partial Base Decompositions
Input: ZX diagram D
Output: The complex scalar c corresponding to D

1: D′ ← full_reduce(D) ▷ Step 1: Simplify the diagram
2: if T -count(D′) < 5 then ▷ Step 2: Base case for low T -count
3: return BruteForceScalar(D′)
4: end if
5: A← Find all applications of {Magic5, Cat3, Cat4, Cat5, Cat6}.
6: ψbest ← Select application from A with the best guaranteed α. ▷ Step 3: Select

best application
7: Cset ← ApplyDecomposition(D′, ψbest)
8: ctotal ← 0
9: for diagram di in Cset do ▷ Step 4: Recurse and sum results

10: ci ← recurse(di)
11: ctotal ← ctotal + ci
12: end for
13: return ctotal

Recent work has focused on finding smaller decompositions by considering larger
gadgets [9], treating disconnected components independently [9, 38], and developing
heuristics for simple gadget decompositions that yield greater simplifications after the
T -count reduction step [39, 4]. The latter approach is based on the observation that
applying the same decomposition to different parts of a diagram can lead to varying
degrees of simplification by the subsequent full-reduce step.

2.3.5 Graph Cuts

As mentioned before, the work of [9] and [38] improved the stabiliser decomposition
algorithm by leveraging the behaviour of disconnected components in diagrams. They
noticed that if a scalar ZX diagram D can be partitioned into two disconnected
components D1 and D2, the corresponding scalar of c ∈ C of D can be computed as

c = c1 · c2,

4We omit the explicit unfusion of spiders from now on.

18

where c1 (resp. c2) is the scalar of D1 (resp. D2). The set {D1, D2} can be seen
as a generalised decomposition of D where the scalars of the parts are aggregated
via multiplication rather than addition. This decomposition is generally very efficient
and therefore always preferred if applicable.

2.3.6 Circuit Classes

While the Clifford+T gate set is universal, the study of quantum computing often
focuses on specific classes of circuits that possess particular structures. We train and
evaluate our models on different circuit classes to assess how well they capture the
structure of a given class or generalise to an unseen one. This thesis considers several
such classes, chosen for their relevance to practical implementation on quantum de-
vices and, consequently, their importance for quantum simulation. Moreover, these
classes have been used as benchmarks in previous comparisons of stabiliser decompo-
sition techniques [5, 9, 19].

Exponentiated Pauli Circuits

The three Pauli matrices are

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
.

A tensor product of Pauli matrices, P⃗ = P1⊗ · · · ⊗ Pn where Pi ∈ {I,X, Y, Z}, is
called a Pauli string. For any angle θ, the operator eiθP⃗ is a Pauli exponential. If a
Pauli string does not contain the identity matrix, its corresponding Pauli exponential
can be realised by the circuit:

U †
1

U †
2

U †
n θ

U1

U2

Un

... ...

where Ui = I if Pi = X, Ui = H if Pi = Z, and Ui = HSH if Pi = Y . For general
Pauli strings, the circuit is applied only to the subset of qubits where Pi is not the
identity; the size of this subset is the weight of the Pauli string. Pauli exponentials
form a universal gate set and arise naturally in the simulation of certain quantum

19

systems and Hamiltonians, as well as in some error correction codes, making them
an important target for classical simulation [17]. We generate random exponentiated
Pauli circuits by sampling a Pauli string of weight two to four and an angle θ that is
an odd multiple of π

4 .

Instantaneous Quantum Polynomial Circuits (IQP)

IQP circuits are a restricted class of circuits believed to be hard to simulate classically,
yet feasible to implement on near-term quantum devices [27]. They are defined by
the form:

H

H

H

H

H

H

D

... ...

where D is a diagonal operator in the computational basis. We can generate IQP
circuits using only Clifford+T gates by constructing D in two layers. The first layer
consists of zero to seven T -gates applied randomly to each qubit. The second layer
contains zero to three Controlled-Phase (CS) gates between each pair of qubits. A
CS gate can be constructed from CNOT and Hadamard gates as follows:

CS = CNOT CNOT

T

T T 7

and corresponds to the unitary operator


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 .

Clifford+T+CCZ

Finally, we consider Clifford+T+CCZ circuits, which are composed of random appli-
cations of gates from the Clifford+T set and the CCZ gate. The CCZ gate corresponds
to the unitary operator:

20



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1


.

and is built in the ZX-calculus as:

π
4

- π
4

- π
4

π
4

π
4

π
4

- π
4

We generate these circuits by randomly sampling and applying gates to random
qubits according to the following distribution:

• T: 5%

• CCZ: 5%

• H: 22.5%

• Phase: 22.5%

• Controlled-Not: 22.5%

• Controlled-Z (CS2): 22.5%

This set is considered because it was used in [21], and the heuristics from [4]
demonstrated good performance on this class of circuits.

2.4 Machine Learning

Having defined the problem of finding efficient applications of decompositions, we now
turn to the machine learning tools used to solve it. As opposed to a purely analytical
approach, machine learning employs statistical algorithms that learn from data to

21

find solutions. This section introduces the relevant machine learning domains for this
thesis, such as supervised and reinforcement learning, and covers the fundamentals
of working with graph-structured data. For a thorough introduction, the reader is
referred to [26].

2.4.1 Supervised Learning

Supervised learning is a machine learning paradigm where an algorithm is trained to
map inputs to outputs using a dataset of input-output pairs, also known as labelled
data. While this is, in principle, the most straightforward approach used in this work,
its primary difficulty often lies in generating a high-quality training dataset. Formally:
the learning problem is to approximate an unknown target function f : X → Y , given
a training dataset D = {(x1, y1), . . . , (xN , yN)}, which consists of N example pairs
where each xi ∈ X is an input object and yi ∈ Y is its corresponding label. The
labels satisfy yi = f(xi) + εi, where the εi describe the inherent noise of the training
data. When this noise is large in comparison to the training signal f(xi) then even
the best training methods cannot learn a good approximation for f .

The process begins by defining a hypothesis space H, which is the set of all can-
didate functions h : X → Y . The objective is to select a hypothesis h ∈ H that
best approximates the true function f . A canonical example is the classification of
handwritten digits, where the training set contains pairs of images and their human-
assigned numerical labels, and the goal is to select a function that correctly labels
unseen images.

To evaluate a given hypothesis, a loss function l : Y × Y → R is defined, which
quantifies the error between a predicted output h(xi) and the true output yi for a
single example. The overall performance of a hypothesis h on the training dataset is
typically measured by the sum or mean of the individual losses:

L(h) =
N∑
i=1

l(h(xi), yi) (2.1)

Since the hypothesis spaceH is typically vast and continuous, exhaustively search-
ing for the optimal candidate is computationally intractable. Furthermore, finding a
perfect global minimum on the training data is not always desirable, as it can lead to
overfitting. Instead, optimisation is performed using iterative, gradient-based meth-
ods.
The hypothesis space is parameterised as a set of functions {hω | ω ∈ Ω}, where each
hypothesis is uniquely determined by a vector of parameters ω. If the loss function is

22

differentiable with respect to its first argument and the function hω(x) is differentiable
with respect to the parameters ω, then the total cost L(hω) is also differentiable with
respect to ω. The basic gradient descent algorithm starts with an initial parameter
guess ω0 and iteratively updates the parameters by moving in the direction opposite
to the gradient of the loss function:

ωt+1 = ωt − η∇ωL(hωt) (2.2)

Here, η is the learning rate, a hyperparameter controlling the update step size. In
this thesis, we utilise the PyTorch implementation of the Adam optimiser, a sophis-
ticated variant of this method [13]. We also use stochastic gradient descent, where
the gradient is computed on small subsets of the training set in each round.

2.4.2 Reinforcement Learning

In reinforcement learning, data is not sourced from a predefined training set but
is generated through iterative interaction with an environment. An agent receives
states and responds with actions, which in turn alter the environment’s state and
yield a reward or punishment. This reinforcement signal is then used to update the
agent’s policy. This framework has been successfully applied to various scientific
fields, such as robotics [20], chemistry [37] and also to problems related to stabiliser
decompositions, such as circuit optimisation [25, 30, 34].

Formally: the problem has to be structured as a (deterministic) Markov Decision
Process (MDP), which is a tuple (S,A, T, R, p0, γ) [32]. We have a set of states S, and
for each state s ∈ S an action space A(s), a transition function T : S×A(s)→ S and
an immediate reward R : S×A(s)→ R. Furthermore, p0 is an initial distribution over
the states and γ is a discount factor that weighs future reward against the immediate
reward. The agent’s policy is described by a probability distribution πω(a, s).

To optimise the policy, many episodes are rolled out. During an episode, the initial
state distribution and the policy are sampled to generate a sequence of states and
actions, which is terminated either by the environment or after a fixed length. After
many such episodes, an optimisation routine such as Proximal Policy Optimisation
[36] or Q-learning is used to adjust the model’s parameters ω to maximise the expected
rewards. We will further explain Proximal Policy Optimisation in Chapter 5 and refer
to [41] for a full introduction to reinforcement learning.

23

2.4.3 Neural Networks

In both supervised and reinforcement learning, the core task is to optimise a pa-
rameterised function, such as a hypothesis hω or a policy πω. Neural networks of-
fer a powerful framework for representing these functions, capable of approximating
highly complex, non-linear relationships. A common type is the multi-layer percep-
tron (MLP), organised in layers of neurons. The input is a real-valued vector repre-
senting the activation of the first layer. Subsequent neurons compute their activation
by taking a weighted sum of the activations from the preceding layer, adding a bias,
and applying a non-linear activation function. After this feed-forward process, the
activation of the last layer is taken as the output of the network. The learnable pa-
rameters are the weights and biases, and their gradients can be calculated efficiently
using the backpropagation algorithm. Networks with many layers form the basis of
Deep Learning [23].

2.4.4 Graph Neural Networks

Graph neural networks (GNNs) are the core of the models developed in this work.
They are machine learning models designed for graphs and are inherently invariant to
node permutations, which promotes good generalisation. Given a set of input node
features, they compute output features via a process called message-passing. In this
process, intermediate features are computed over multiple layers according to the
formula:

ht+1
u = update

htu, ⊕
v∈Nu

message(htu, htv)


where htu is the feature of node u at layer t, Nu is the neighbourhood of u, message
and update are differentiable functions, and⊕ is a permutation-invariant aggregation
operator such as sum, mean, max or an attention mechanism.

In this work, we use the following well-established GNN architectures:

Graph Convolutional Network [14]

GCNs update the node representations by aggregating their neighboring node fea-
tures, normalising them, applying a linear transformation, and finally applying some
non-linear activation function. Formally

• message(htu, htv) = 1√
deg(u)·deg(v)

W t · htv, where W is a matrix with learnable
entries

24

• ⊕ is a simple sum

• update treats the current feature as a neighbor and applies some activation
function σ such as ReLU to the aggregated node features

Combined:

ht+1
u = σ

W t ·
∑

v∈Nu∪{u}

1√
deg(u) · deg(v)

htv

 .
Graph Attention Network (GAT) [42]

GATs are very similar to GCNs, with the distinction that the neighboring node fea-
tures are not normalised, but weighted via an attention mechanism:

ht+1
u = σ

 ∑
v∈Nu∪{u}

αtuvW
t · htv

 ,
where

αuv = exp(LeakyReLU(aT [W thtu||W thtv]))∑
k∈Nu∪{u} exp(LeakyReLU(aT [W thtu||W thtk]))

.

Usually, one uses multiple attention heads a and concatenates the results.

Graph Isomorphism Network (GIN) [43]

GINs are designed to be very expressive in terms of structural information. They
aggregate information by summing its own feature with those of its neighbours while
applying a learnable bias to its own feature. They then update by feeding the aggre-
gated information into a multi-layer perceptron. Formally

ht+1
u = MLP

(1 + εt) · htu +
∑
v∈Nu

htv

 .
2.4.5 GNNs on ZX diagrams

We apply GNNs to graph-like ZX diagrams to learn efficient choices for partial sta-
biliser decompositions. The task is simplified because we only need to consider graph-
like diagrams where phases are multiples of π

4 . We treat spiders as nodes and encode
their phases as an 8-dimensional one-hot vector for the input features. Information
about spider type (all are Z-spiders) and edge type (all are Hadamard edges) is omit-
ted as it is uniform. This encoding is consistent with the work of [22].

25

For this work, we further enrich the input feature vector by adding random features
[2], features of biconnected components [46], and subgraph homomorphism counts of
rings [6]. Depending on the approach, the GNN then generates node embeddings or
graph-level features used to rank nodes or make other decisions.

26

Chapter 3

Problem Definition

To understand where machine learning can be applied, we recall the general recursive
Algorithm 4 for obtaining a stabiliser decomposition of a given ZX diagram using
known base decompositions and graph cuts. Step four, which we term the selection

Algorithm 4 General Recursive Stabiliser Decomposition
Input: ZX diagram D
Output: The complex scalar c corresponding to D

1: D′ ← full_reduce(D) ▷ Step 1: Simplify the diagram
2: if D′ is empty then ▷ Step 2: Base Case for empty diagrams
3: return Scalar(D′)
4: end if
5: Dcomponents ← ConnectedComponents(D′)
6: if |Dcomponents| > 1 then ▷ Step 3: Handle disconnected components
7: ctotal ← 1
8: for component di in Dcomponents do
9: ci ← recurse(di)

10: ctotal ← ctotal × (ci)
11: end for
12: return ctotal
13: end if
14: ψ ← SelectDecompositionApplication(D′) ▷ Step 4: Selection driver
15: Pdecomp ← ApplyDecomposition(D′, ψ)
16: ctotal ← 0
17: for diagram di in Pdecomp do ▷ Step 5: Recurse and sum results
18: ci ← recurse(di)
19: ctotal ← ctotal + ci
20: end for
21: return ctotal

driver, is the focus of our improvement efforts. Given a starting diagram D, the
applications that the driver chooses lead to a decomposition tree, where each node

27

represents an intermediate diagram and the corresponding application. The number
of leaves in that tree corresponds to the size of the computed stabiliser decomposition,
which has some efficiency α. We call this the global α that the driver achieved. We
can measure the general performance of a selection driver by the expectation value
of this global α over some dataset.

3.1 Local α

A greedy way to achieve a good (low) global α is by selecting applications that have
a high reduction in T -count and a low number of parts. This can be measured by
the local α of this application. Let D be a diagram with a given T -count t∗. After
applying a decomposition and running full-reduce, the resulting set of diagrams, say
Si, may contain diagrams with varying T -counts. This makes the standard definition
of α inapplicable. To address this, we introduce a general measure of local efficiency,
αloc, for a given decomposition within a larger recursive procedure. Let t1, . . . , tk
be the T -counts of the diagrams in a decomposition of D. Assuming the overall
procedure is expected to yield a stabiliser decomposition of size 2αt∗ for some α, we
use the approximation:

2αt∗ =
k∑
i=1

2αti . (3.1)

We then define αloc as the unique positive solution α to this equation.

Lemma 4. For any t∗ ∈ N and t1, . . . , tk < t∗ with k > 1, Equation (3.1) has a
unique positive solution.

Proof. Dividing both sides by 2αt∗ , we see that the solutions of Equation (3.1) coincide
with the roots of the function:

f(α) = 1−
k∑
i=1

2α(ti−t∗).

We observe that f(0) = 1− k < 0, since k > 1. Also, because ti − t∗ < 0, we have:

lim
α→∞

f(α) = 1−
k∑
i=1

lim
α→∞

2α
<0︷ ︸︸ ︷

(ti − t∗)

= 1− 0 = 1.

By the Intermediate Value Theorem, a root must exist. Furthermore, the derivative
is:

f ′(α) = −
k∑
i=1

ln(2)(ti − t∗)2α(ti−t∗) > 0 ∀α ∈ R,

28

since each term (ti − t∗) is negative. Thus, f is strictly increasing, and the root is
unique.

For instances where all diagrams in the decomposition have the same T -count t′,
our αloc matches the standard efficiency definition, α = log2(k)

t∗−t′ . This is because:
k∑
i=1

2αti = k · 2αt′

= 2log2(k) · 2
log2(k)t′

t∗−t′

= 2
log2(k)t′

t∗−t′ +log2(k)

= 2
log2(k)(t′+t∗−t′)

t∗−t′

= 2
log2(k)t∗

t∗−t′

= 2αt∗ .

To recap, we can measure three kinds of efficiency for a selection driver: firstly,
the theoretically guaranteed α of the used base decompositions. Secondly, the local
α of the individual decomposition applications. Lastly, the global α of the overall
decomposition.

While the drivers in [5, 39] search for structures that guarantee simplification
and therefore offer a bound for the local α, the process can also be brute-forced by
computing the local α for all possible applications. We call this greedy brute-force
algorithm Sherlock:

Given a base set B of efficient decompositions (e.g., Vertex-Cut, Magic5, BSS,
Cat decompositions), Sherlock selects the best application as follows:

1. Identify all possible applications, ψi, of decompositions from B to the current
diagram D.

2. For each application ψi, use full-reduce to simplify the resulting diagrams in
Dψi

.

3. For each resulting set of diagrams Dψi
, compute its αloc and select the applica-

tion that minimises this value.

Note that for an application of Magic5, the resulting αloc is guaranteed to be less
than or equal to the theoretical efficiency of Magic5, which is approximately 0.396.
We use the name Sherlock-VC for a Sherlock variant that only uses Vertex-Cut and
Sherlock-M5 for one that only uses Magic5 decompositions.

29

3.2 Structure of a Selection Driver

Given a set of base decompositions (e.g., Vertex-Cut, Magic5, and the Cat family), we
subdivide the overall driver into multiple parts so that we can train machine learning
models for these parts. We have two layers: first, individual selectors for each type
of decomposition, and then estimators that evaluate the proposed selections. Figure
3.1 illustrates this process. The baseline methods used for comparison can also be
understood within this framework:

1. The method of Kissinger et al. [19] selects a random T -like vertex for a Vertex-
Cut, five T -like spiders for a Magic5 if possible, and a random Cat-n decom-
position with priorities for n in the decreasing order of 4, 6, 5, and 3. The α’s
of these options are then estimated by the base decomposition’s theoretical α,
regardless of the specific structure of the diagram D. We refer to this selection
driver as Kissinger et al..

2. The final algorithm of Ahmad and Sutcliffe in [5], which we call DynamicT,
has the same selectors and estimators for Magic5 and Cat decompositions but
enhances the Vertex-Cut process. This is crucial, as the Kissinger method only
applies Vertex-Cut when the T -count is below 5. DynamicT computes different
heuristics for possible Vertex-Cuts1. These heuristics form a lower bound on the
simplification achievable with full-reduce, which in turn provides an upper
bound on the global α. The vertex with the best guarantees is then selected,
and the guarantee used as the estimator. The restriction of this driver to only
Vertex-Cuts is called DynamicT-VC-only.

3. The Sherlock driver estimates the performance of all possible applications by
computing the local efficiency, αloc, and selecting the application with the best
value. In practice, we limit consideration to 100 possible Magic5 applications, as
the action space grows too fast (O(n5), where n is the T -count of the diagram).

In the following sections, we present machine learning techniques to build mod-
els for each of the selection and estimation processes and discuss their potential as
well as current shortcomings. GNN-based models promise strong pattern recognition
capabilities on graph-structured data. If trained successfully, they may learn to ap-
proximate the heuristics from [5], discover novel multi-step strategies, and potentially

1Some of these are technically an application of the reversed strong complementarity rule followed
by a Vertex-Cut, but for simplicity, we treat them as Vertex-Cuts.

30

VC Selector

M5 Selector

Cat Selector

VC Estimator

M5 Estimator

Cat Estimator

argmin

D

D

D

ψV C , D

ψM5, D

ψCat, D

ψV C , rV C

ψM5, rM5

ψCat, rCat

ψbest

Figure 3.1: Depiction of a selection driver using the Vertex-Cut, Magic5 and Cat
decompositions. The diagram D is fed into individual selectors for each decomposi-
tion. The selected application, ψ..., and the original diagram are then evaluated by
the corresponding estimators. The application with the lowest estimate is chosen as
the overall output.

even outperform Sherlock. While Sherlock’s brute-force approach should theoretically
outperform methods such as DynamicT and Kissinger due to its use of richer infor-
mation, it has significant shortcomings. Firstly, its time complexity is prohibitive, as
it requires running the full-reduce algorithm for every possible application (e.g.,
O(n5) Magic5 applications), making it computationally infeasible for large diagrams.
Secondly, Sherlock is a greedy algorithm, optimising for the maximum simplification
in a single step. This may not always be optimal, as a decomposition yielding dia-
grams with higher T -counts could be more beneficial if those diagrams permit superior
follow-up decompositions. An additional advantage of trained models is their ability
to run on GPUs, which allows for native parallelisation.

31

Chapter 4

Supervised Selection Learning

This section presents our work on using supervised learning to train models for the
selection driver. We construct the training data by generating random circuits from
the previously discussed classes: exponentiated Pauli circuits, IQP circuits, and Clif-
ford+T+CCZ circuits. For each diagram, we consider every possible application of
our base decompositions (or a sufficiently large sample in the case of Magic5). For
each application, we compute the global α that would be achieved by applying it and
subsequently decomposing the results using Sherlock with the same base decompo-
sition. This data is then used to train our models, each with a setup specific to the
decomposition it handles, on the different circuit classes.

4.1 Setup for Vertex-Cut Selection

For the VC-model, we designed a GNN-based architecture that computes a relative
rank for each non-Clifford spider. In practice, the spider with the highest rank is
selected for the Vertex-Cut; therefore, the model is trained to produce ranks that
correlate with the quality of the corresponding Vertex-Cut. The architecture consists
of three stages. First, a multi-layer perceptron (MLP) encodes the input features into
initial vertex embeddings. Second, a GNN processes these embeddings, aggregating
structural information from the graph to produce final vertex embeddings. Third, an
MLP converts these final embeddings into scalar ranks. The ranks of Clifford vertices
are masked to a large negative value to prevent their selection. Figure 4.1 provides a
sketch of this architecture.

To complete the setup, we define a loss function for training. For a given graph,
the loss function takes the model’s output ranks and the global α’s for every Vertex-
Cut application as input. We present the two candidates that produced the best-
performing models:

32

Figure 4.1: Illustration of the Vertex-Cut selection model architecture. The input
diagram is encoded as described in Section 2.4.5 and then fed through multiple layers
with learnable parameters.

Kullback-Leibler (KL) divergence

The KL divergence is a measure of the difference between two probability distributions
and is widely used as a loss function for machine learning [28]. It is defined as

DKL(p||q) =
∑
y

p(y) log p(y)
q(y) ,

where p is a target distribution and q is the model distribution. To use it in our
setup, we convert both the model’s output and the target values from the training data
into probability distributions. The model’s training objective is to minimise the KL
divergence between these two distributions. The model’s output ranks r⃗ = (r1, . . . , rn)
are transformed into a probability distribution over the non-Clifford spiders using the
softmax function

softmax(r⃗)i = eri∑n
j=1 e

rj
.

This distribution represents the model’s confidence in each spider being the op-
timal choice. To create the target distribution, we use the negative of the global α
for each possible Vertex-Cut as a score, and similarly apply the softmax function to
these scores.

Expected global α (EGA)

For this loss function, we again convert the model’s output ranks r⃗ into a probability
distribution p⃗ using the softmax function. The loss is then calculated as the expected
value of the global α, which is the sum of the global α values from the training data,
each weighted by its corresponding probability from the model’s output distribution:

l(r⃗, α⃗) =
n∑
i=1

αipi

This loss directly represents the expected global α one would achieve by sampling
a Vertex-Cut from the model’s predicted distribution.

33

4.2 Setup for Magic5 Selection

Selecting a good Magic5 application involves choosing five distinct non-Clifford spi-
ders, making the model architecture and training procedure more complex than for
Vertex-Cutting. We propose two models: a simple and an advanced version.

The simple model uses the same GNN architecture as the VC-model to assign a
rank to each spider. In practice, the five spiders with the highest ranks are selected for
the Magic5 application. During training, a target score is calculated for each spider
by taking the negative of the average global α’s over all sampled Magic5 applications
in which that spider participated. If a spider was not part of any sampled application,
its target score is set to −0.396 (the theoretical efficiency of Magic5), while Clifford
spiders are assigned a large negative value. The loss function is the KL divergence
between the softmax distributions of the model’s predicted ranks and the target
scores.

The advanced model employs a sequential selection process, selecting the five
spiders one by one. It is composed of five copies of the simple model’s architecture,
which operate sequentially. During inference, the first copy computes ranks for all
spiders, and the one with the highest rank is selected. This choice is encoded as a
one-hot vector and added as a new node feature to the graph. The second copy then
takes this augmented graph as input and selects the next spider. This process is
repeated three more times, with the ranks of already-selected spiders being masked
out in subsequent steps, until five spiders are chosen for the Magic5 application. Using
this architecture the model can learn to base the selection of a spider on the previous
selections.

Each of the five model components is trained with an adapted version of the simple
model’s procedure. To compute the loss for the i-th component, we first randomly
sample a valid partial selection S of i − 1 spiders. This selection is added to the
graph as a one-hot encoded feature. The target score for any remaining spider is then
calculated by averaging the true global α values only over those Magic5 applications
that contain both the spider in question and all spiders in S. As before, if no such
applications exist in the data, the target score is set to −0.396.

Details on the implementation, the training process, and hyperparameters for all
setups can be found in the appendix.

34

Exponentiated Pauli Clifford+T+CCZ
#Qubits 15 15
Depth 6-50 10-200
Weight 2-4 -

Table 4.1: Settings used for generating the test sets of the different circuit classes, if
applicable.

4.3 Iterated Training

The training procedure described above teaches the models to select decompositions
that perform well under the assumption that subsequent steps will be guided by Sher-
lock’s decision mechanism. To mitigate this inherent bias, we introduce an iterated
training scheme. After an initial training phase, we generate a new training dataset.
In this new dataset, the follow-up decomposition choices are made by the trained
models themselves, rather than by Sherlock. The models are then further trained on
this new data, and this entire process can be repeated multiple times.

4.4 Results

We evaluate our models’ performance using the benchmarking capabilities of QuiZX.
The test set is constructed by generating random circuits from the specified circuit
classes, using the parameters detailed in Table 4.1. These circuits are simplified using
full-reduce until we obtain 10 samples for each T -count ranging from 6 to 30.
We then run the stabiliser decomposer on each graph once for each of the selection
drivers. Any decomposition that takes longer than 120 seconds is terminated. The
performances are presented as box plots, with the T -count on the x-axis and the
base-2 logarithm of the resulting stabiliser decomposition size on the y-axis. A linear
fit is also added to the data points of a given driver to indicate the trend and the
slope m of this fit corresponds to the expected global α of the driver on this dataset.

Experiment 1: Loss Function Comparison

First, we want to compare the two loss functions used for training the Vertex-Cut
selection models. In Figure 4.2, the performance of the corresponding models on
unseen graphs of the same circuit class is shown. We see that while the difference
on exponentiated Pauli circuits is not significant, on Clifford+T+CCZ circuits the
KL-based model performs better than the EGA-based one. Therefore, we continue
only with the KL-based models.

35

(a) On Exponentiated Pauli Circuits (b) On Clifford+T+CCZ Circuits

Figure 4.2: Comparison of the trained Vertex-Cut models with KL- or EGA-based
loss.

Experiment 2: Vertex-Cut Performance

Next, we want to compare the Vertex-Cut selection models to the other heuristics
for Vertex-Cut selection. Figure 4.3 presents the results of this comparison. The
results show that the Vertex-Cut model trained on exponentiated Pauli circuits with
KL-divergence loss outperforms both the DynamicT heuristic from [5] and the Sher-
lock driver. This outcome is particularly promising, as it indicates the model learnt
not only patterns for immediate simplification but also more complex strategies that
provide advantages in subsequent decomposition steps. This result exceeds our ex-
pectations for this simple training setup.

In contrast, the results also show that the model trained on Clifford+T+CCZ
circuits only barely outperformed random selection on that circuit class.

Experiment 3: Vertex-Cut Generalisation

Following up on the promising performance of the model trained on exponentiated
Pauli circuits, we investigate whether the patterns that this model learnt can also be
applied on Clifford+T+CCZ circuits. We therefore took the best-performing Vertex-
Cut models from EP and Clifford+T+CCZ circuits and compared them on those
classes, as well as IQP circuits. The results in Figure 4.4 show that the models only
barely outperform random selection on unseen circuit classes and always underper-
form the model trained on this class. Furthermore, both underperform the DynamicT
heuristic on IQP circuits.

36

(a) On Exponentiated Pauli Circuits (b) On Clifford+T+CCZ Circuits

Figure 4.3: Comparison of the trained Vertex-Cut models and the baselines Sherlock-
VC (greedy brute force), DynamicT-VC-only [4], and a random selector.

This highlights an expected challenge in generalising to unseen circuit types. Fur-
thermore, a model trained on a joint dataset of all classes performed worse on the
individual test sets than the specialised models, suggesting that the training signals
from different circuit classes may be conflicting.

Experiment 4: Vertex-Cut Iteration

As described in Section 4.3, we tried to improve the models via an iterated data
generation process to reduce the bias in the training data. However, as shown in
Figure 4.5, the model’s performance did not significantly change in this process.

Experiment 5: Magic5

For the Magic5 decomposition, the presented supervised learning techniques did not
produce effective models, as can be seen in Figure 4.6. We trained the models on
exponentiated Pauli circuits and evaluated on unseen circuits of the same class. When
restricting the training data to only a few diagrams and evaluating the model on those
graphs, the advanced model showed the capability to memorise the best applications.
However, this knowledge did not generalise to the whole circuit class. This indicates
a weak, or even conflicting, training signal that is largely indistinguishable from the
inherent noise in the data.

This poor performance is likely attributable to the highly complex nature of the
Magic5 action space. This conclusion is supported by the observation that similar

37

(a) On Exponentiated Pauli Circuits (b) On Clifford+T+CCZ Circuits

(c) On IQP Circuits

Figure 4.4: Comparison of the trained Vertex-Cut models across circuit classes

38

Figure 4.5: Comparison of the performance of iterations of the Vertex-Cut model
trained on EP circuits with KL loss.

39

Figure 4.6: Comparison of the trained M5 models with Sherlock and a Random driver
using only M5 on exponentiated Pauli circuits. The models were trained on this class
of circuits.

negative results were obtained across a range of model architectures, loss functions,
and circuit classes.

40

Chapter 5

Reinforcement Learning

This section presents work on using reinforcement learning (RL) to train models for
the selection driver. In the RL paradigm, models learn by interacting with an environ-
ment and receiving feedback via a reward system. This approach has the advantage
of not requiring a pre-generated dataset of approximately optimal selections, thereby
avoiding the biases introduced by the data generation process, which we considered
in Section 4.3.

In the following, we give a formal definition of the training environment used in
[22] to train a Magic5 selection model and discuss adaptations intended to improve
performance.

5.1 Reinforcement Learning Environment

As mentioned in Section 2.4.2, the problem must be formulated as a Markov Decision
Process (MDP), defined by the tuple (S,A, T, R, p0, γ). We formalise the ideas from
[22]: The state space S consists of graph-like ZX diagrams. For a given state (dia-
gram) D ∈ S, the action space A(D) comprises all possible applications φ of Magic5.
The transition function T : S × A(s) → P(S) is defined by applying the chosen
decomposition and then simplifying the resulting subdiagrams using full-reduce:

T (D,φ) = {full-reduce(d) | d ∈ Eφ}.

This formulation deviates from a standard MDP, as a single action leads to a set
of new states rather than a single one. However, the training procedures for MDPs
can be generalised to work with this environment. The reward R for an application
φ is defined as the negative of the local efficiency, −αloc, of the corresponding decom-
position. The initial distribution p0 corresponds to the process of sampling diagrams

41

from a given class; in [22], the authors sampled from random Clifford+T circuits,
grid-like ZX diagrams and random graphs. The reward discount factor γ is treated
as a hyperparameter.

To compute the agent’s policy distribution π(s, a), the authors of [22] employ a
two-stage process involving a feature extractor and a policy network. First, the ZX
diagram is converted into a graph with node features, as described in Section 2.4.5.
The feature extractor, a Graph Attention Network (GAT), processes these features to
compute vertex embeddings. These embeddings are then fed into the policy network,
which iterates through GAT and MLP layers to compute scalar output features for
each node. These scalars are converted into a probability distribution using a softmax
function, which can then be sampled (e.g., five times for a Magic5 application).

Additionally, the vertex embeddings are passed to a value network (the critic),
which shares the same structure as the policy network but includes an extra pooling
layer at the end to compute a single scalar value for the given graph state.

5.2 Proximal Policy Optimisation

To train this selection model, the authors of [22] employ Proximal Policy Optimisation
(PPO) [36] with an adapted version of Generalised Advantage Estimation (GAE) [35].
Following the Actor-Critic architecture, PPO trains the policy network and the value
network in parallel: The value network is trained to estimate the expected cumulative
reward (the value) from a given state. The policy network is then updated based on
the advantage, which measures whether the actual reward received after an action was
better or worse than the estimated value. The policy network is trained to increase the
probability of actions that led to a positive advantage and decrease the probability for
those with a negative advantage. This use of a relative advantage signal, rather than
the absolute reward, reduces the variance of the updates and leads to significantly
more stable training. We give a rough sketch of the computation steps; more details
can be found in [36].

An episode begins by having the selection driver model interact with the envi-
ronment, starting from a randomly sampled Clifford+T diagram D. This interaction
generates a decomposition tree where the root is D, the internal nodes are interme-
diate diagrams together with the applied decomposition, and the leaves are the final
computed scalars, which will be ignored during training.

For each non-leaf node v in this tree, let C(v) be the non-leaf children of v in the
decomposition tree, sv the state corresponding to v, and av the action corresponding

42

to v. The generalised advantage estimate Âv is calculated based on the temporal
difference (TD) error δv, which measures the difference between the estimated value
of a state and the target value:

δv = R(v)− V (sv) + γ

|C(v)|
∑

w∈C(v)
V (sw),

where V (sv) is the value network’s estimate for state v. The advantage of v is then
recursively computed as a discounted sum of these errors:

Âv = δv + γλ

|C(v)|
∑

w∈C(v)
δw,

where λ ∈ [0, 1] is the GAE hyperparameter.
The overall PPO loss function combines three components: a policy loss, a value

loss, and an entropy loss. The loss is repeatedly computed and the weights ω updated
accordingly. For a decomposition tree T , it is computed as:

LPPO(ω) = 1
|T |

∑
v∈T

[
LPolicy
v (ω)− c1L

Value
v (ω) + c2L

Entropy
v (ω)

]
,

where c1 and c2 are weighting coefficients. Each component is defined as follows:

Policy Loss

The policy loss uses a clipped surrogate objective to prevent excessively large policy
updates. It is defined using the probability ratio rv(ω) = πω(av ,sv)

πωold (av ,sv) , where ωold are
the pre-update model weights during the episode. The loss is:

LPolicy
v (ω) = min

(
rv(ω)Âv, clip(rv(ω), 1− ε, 1 + ε)Âv

)
,

where ε is a hyperparameter that defines the clipping range.

Value Loss

The value loss, or value function loss, is a mean-squared error that encourages the
value network to accurately predict the expected future rewards:

LValue
v (ω) =

(
Vω(sv)− (Âv + V (sv))

)2
.

Entropy Loss

The entropy loss encourages exploration by penalising overly confident policies. It is
the negative of the entropy of the policy distribution:

LEntropy
v (ω) =

∑
a∈A(sv)

πω(a, sv) log πω(a, sv).

43

5.3 Adaptations

The authors of [22] successfully trained a Magic5 selection model that outperformed
random selection on random Clifford+T circuits. However, they observed no signifi-
cant improvement when comparing their model to the full heuristic from [19], which
includes Cat decompositions. To address this, we explored a range of adaptations to
the reinforcement learning setup with the goal of training models that yield better
performance.

Experiment 6: Multiple Base Decompositions

The work of [4] demonstrated that prioritising a Vertex-Cut over a Magic5 applica-
tion, when the former is guaranteed to yield simplifications, significantly enhances
the performance of the stabiliser decomposition algorithm. This finding motivated
an expansion of the environment’s action space to include Vertex-Cut and Cat ap-
plications. Consequently, the agent’s architecture was adapted to follow the struc-
ture depicted in Figure 3.1; that is, it first selects potential applications, then ranks
them, and finally executes the best one. However, a preliminary experiment limited
to Vertex-Cut and Magic5 revealed that the model first learnt to exclusively select
Magic5 and subsequently optimised its policy only within that portion of the action
space. This obstacle might be overcome by pre-training the different components of
the model separately or by incentivising the agent to explore different base decom-
positions. We therefore decided to first focus on training the Magic5 and Vertex-Cut
selectors independently.

Experiment 7: Advanced Magic5 Selection

Initial efforts to improve the setup focused on designing a more expressive model
capable of learning complex selection strategies. As detailed in Section 2.4.5, we en-
hanced the node features to include structural information, drawing on research from
[2], [46], and [6]. We also experimented with Shortest Path Networks [3], motivated
by a study suggesting that SPNs could more reliably distinguish between efficient
and inefficient Magic5 applications than other GNN architectures. The correspond-
ing study, which was conducted in the context of a mini-project, can be found in
Section A.2.

When these enhancements did not lead to significant performance gains, we shifted
our focus to the agent’s architecture. Instead of computing a single probability dis-
tribution over all spiders and sampling it five times, as in the original work, we im-

44

plemented a sequential selection process analogous to the advanced model described
in Section 4.2. That is, we have for a Magic5 selection [v1, v2, v3, v4, v5] on a diagram
d

πω([v1, v2, v3, v4, v5], d) =π(5)
ω ([v5], d | [v1, v2, v3, v4])
·π(4)
ω ([v4], d | [v1, v2, v3])
·π(3)
ω ([v3], d | [v1, v2])
·π(2)
ω ([v2], d | [v1])
·π(1)
ω ([v1], d | []),

where each factor in this product is computed with a separate model. This change
complicated the calculation of the entropy loss for PPO, as it is computationally un-
feasible to compute all conditional selection probabilities. We therefore approximated
the entropy by calculating it for each selection step individually rather than over the
entire joint action space. This advanced agent, faced with a much larger action space,
was unable to extract a clear learning signal and failed to learn a good policy. Its per-
formance on a validation set did not significantly improve with training. This mirrors
the results of its supervised learning counterpart and may be due to the fact that the
learning algorithm does not attribute the rewards to the individual selections.

Experiment 8: Replacing Generalised Advantage Estimation

Our next attempt to improve the learning process involved modifying the loss function
to generate a more effective learning signal. The first approach was to alter the
advantage estimation by disregarding future rewards. Since the ultimate goal is a low
overall α for the entire decomposition rather than a series of locally optimal steps,
we adapted the algorithm to define the reward R for an intermediate action av as
the negative of the global α of the stabiliser decomposition of sv after the rollout
concludes. This simplifies the formula for the advantage estimate Âv to:

Âv = R(v)− V (sv).

Secondly, we attempted to compute the advantages by comparing the model’s rewards
not against the value network’s estimate, but against the α value that the Sherlock
algorithm would achieve. Under this scheme, a positive advantage would indicate
that the model outperformed Sherlock on a given diagram, theoretically providing a
more informative training signal. However, both of these approaches destabilised the
training process and failed to produce models that outperformed previous iterations.

45

Experiment 9: Graph Cuts

Finally, we adapted the environment to include the Graph Cut decomposition by
Codsi [9] as discussed in Section 2.3.5. This changes the transition function T to

T (D,φ) =
⋃
d∈Eφ

components(full-reduce(d))

where the components function maps a diagram to the set of its connected compo-
nents. As expected, due to the effectiveness of the graph cuts, the Vertex-Cut models
trained in this augmented reinforcement learning environment performed better on
a validation set. However, they did not significantly outperform the models trained
using supervised learning as described in the previous section.

46

Chapter 6

Efficiency Estimation through
Regression

In the previous section, we demonstrated that graph neural networks can be trained
to select efficient applications of Vertex-Cuts and discussed avenues to achieve the
same for Magic5 decompositions. To bring those two models together as depicted
in Figure 3.1, a way is needed to compare these proposed applications. Calculating
the local alpha (αloc) is one option, but it has two significant drawbacks. Firstly,
computing this value requires performing the actual decomposition, a CPU-bound
process that negates the parallelisation advantages offered by GPU-based GNN selec-
tion. Secondly, the observation that our Vertex-Cut model outperforms the Sherlock
selection procedure on exponentiated Pauli circuits suggests that there are impor-
tant patterns that extend beyond local simplifications and that these are learnable
by GNNs.

Accordingly, this section focuses on training a model to estimate the global effi-
ciency achieved by our decomposition models, given an initial diagram and a specific
decomposition application. This task is framed as a regression problem, as the tar-
get feature (global efficiency) is a continuous scalar value. We train two separate
models, one for Vertex-Cuts and one for Magic5, using the respective training sets of
exponentiated Pauli circuits from Chapter 4.

6.1 Setup of the Regression Model

The regression models take a ZX diagram as input, augmented with an additional
node feature that identifies the proposed decomposition application in a one-hot en-
coding. The architecture consists of a feature-encoding MLP, followed by several
GNN layers. A graph-level embedding is then produced by taking the mean of the

47

Estimator Exponentiated Pauli Clifford+T+CCZ
αloc 0.296 0.275

VC-Model-Exp-Pauli 0.935 —
VC-Model-Clifford+T+CCZ — 0.6658

Table 6.1: Pearson correlation coefficients of the global α and different estimators for
Vertex-Cut.

Estimator Exponentiated Pauli Circuits
αloc 0.352

M5-Model-Exp-Pauli 0.539

Table 6.2: Pearson correlation coefficients of the global α and different estimators for
Magic5.

intermediate node features. Finally, this embedding is passed through an MLP that
outputs the scalar estimate.

We use the mean squared error (MSE) between the model’s estimates, fω(di), and
the labelled global efficiencies, αi, from the training data as the loss function:

L(fω) = 1
N

N∑
i=1

(fω(di)− αi)2,

where N is the size of the training set. The model weights are adjusted to minimise
this error using the Adam optimisation routine.

6.2 Evaluation of the Regression Model

We evaluate the utility of the model’s outputs for estimating the global α on unseen1

diagrams and compare it to the predictive power of the local efficiency, αloc. Figure 6.1
through Figure 6.4 display scatter plots of these relationships, while Table 6.1 and
Table 6.2 present the corresponding Pearson correlation coefficients

corrX,Y =
∑n
i=1(Xi −X)(Yi − Y)√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y)2
.

In both cases, the model’s estimate has a higher correlation with the global α than
the local estimate αloc. The difference is greater for Vertex-Cut than for Magic5, which
may be due to the more complex action space.

1Our train and test sets contain 1000 diagrams each.

48

(a) αloc estimate (b) Model estimate

Figure 6.1: Scatter plot of the global α, the estimate αloc and the estimate of the
Vertex-Cut estimator model on unseen exponentiated Pauli circuits with Vertex-Cut.

(a) αloc estimate (b) Model estimate

Figure 6.2: Scatter plot of the global α, the estimate αloc and the estimate of the
Vertex-Cut estimator model on unseen Clifford+T+CCZ circuits with Vertex-Cut.

(a) αloc estimate (b) Model estimate

Figure 6.3: Scatter plot of the global α, the estimate αloc and the estimate of the
Magic5 estimator model on unseen exponentiated Pauli circuits with Magic5.

49

(a) αloc estimate (b) Model estimate

Figure 6.4: Scatter plot of the global α, the estimate αloc and the estimate of the
Magic5 estimator model on unseen Clifford+T+CCZ circuits with Magic5.

6.3 Combining Vertex-Cut and Magic5

Given the performance of the abovementioned estimators, we can now build a final
driver that uses all the trained models following the architecture of Figure 3.1. We
combine our best-performing models on exponentiated Pauli circuits, by feeding the
candidates of the selection models into the corresponding estimation models and
selecting the candidate with the smallest estimate. Since we do not have a trained
Cat selection model, we ignore this base decomposition for now.

The hypothesis is that this model, while primarily relying on Magic5 applica-
tions, can make use of good Vertex-Cut selections and estimate when they are worth
selecting over a Magic5.

Experiment 10: Combined Models

First, we compare our model to the constituent selection models. The results of this
experiment can be seen in Figure 6.5, which show that the combined model does not
significantly outperform the simple Magic5 selection model. However, this was to be
expected, since the Vertex-Cut models drastically underperform Magic5 models on
exponentiated Pauli circuits.

Second, we compare it to other drivers that combine Magic5 and Vertex-Cut de-
compositions. Figure 6.6 shows that our combined model has a similar performance
to the full DynamicT heuristic, but is significantly outperformed by Sherlock. This
shows that there is room for improvement when selecting the Magic5 and when com-
paring among different base decompositions.

50

Figure 6.5: Comparison of the combined model and its constituent parts.

51

Figure 6.6: Comparison of the combined model and the full Sherlock and DynamicT
heuristics.

52

Chapter 7

Conclusion and Future Work

This work explored a wide range of machine learning applications for the problem of
computing stabiliser decompositions of ZX diagrams. Building on the insight from [4]
that different applications of the Vertex-Cut decomposition can yield vastly different
performance, we successfully trained models that surpassed existing methods. Specif-
ically, our supervised learning model for Vertex-Cut selection on exponentiated Pauli
circuits outperformed not only the advanced heuristics from [5] but also the locally
optimal Sherlock driver. However, this success proved difficult to translate to other
circuit classes or to more complex base decompositions such as Magic5, for which our
models did not achieve competitive performance.

The significant performance gap observed between random selection and the Sher-
lock driver across all tested circuit classes and base decompositions underscores the
substantial potential for optimisation in this area, making it a promising avenue for
future research. Our positive results with Vertex-Cut and the α-estimation of Chap-
ter 6 demonstrate that graph neural networks are indeed capable of recognising the
complex, non-local patterns that lead to good decompositions. This suggests that
with greater computational resources and further refinements to the training process,
more general and powerful models can be developed. Future work should particularly
address the challenge of representing the vast action space of Magic5 applications
more effectively, as our sequential selection architecture proved ineffective. Since Cat
decompositions have the best guaranteed α of the known simple base decompositions,
future models should also make use of these as base decompositions.

It is important to note that while our models demonstrate superior scaling in terms
of decomposition size, they were not yet faster than existing drivers in practice. This is
because the current QuiZX benchmark implementation does not leverage the inherent
parallelisation capabilities of GNNs on GPUs. Integrating these capabilities to fully

53

utilise the GPU would be a crucial step toward achieving a practical acceleration of
the simulation process.

Furthermore, applying techniques from explainable AI for GNNs, as discussed in
[45], could offer valuable insights into the concrete patterns learnt by our successful
models. These insights could then be used to improve future training procedures or
even be distilled into new, robust classical heuristic algorithms.

54

Bibliography

[1] Scott Aaronson and Daniel Gottesman. Improved Simulation of Stabilizer
Circuits. Physical Review A, 70(5):052328, November 2004. arXiv:quant-
ph/0406196. URL: http://arxiv.org/abs/quant-ph/0406196, doi:10.1103/
PhysRevA.70.052328.

[2] Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz.
The Surprising Power of Graph Neural Networks with Random Node Initializa-
tion, June 2021. arXiv:2010.01179 [cs]. URL: http://arxiv.org/abs/2010.
01179, doi:10.48550/arXiv.2010.01179.

[3] Ralph Abboud, Radoslav Dimitrov, and Ismail Ilkan Ceylan. Shortest Path
Networks for Graph Property Prediction. In Proceedings of the First Learning
on Graphs Conference, pages 5:1–5:25. PMLR, December 2022. ISSN: 2640-3498.
URL: https://proceedings.mlr.press/v198/abboud22a.html.

[4] Wira Azmoon Ahmad. Efficient Heuristics for Classical Simulation of Quantum
Circuits Using ZX-Calculus, 2024.

[5] Wira Azmoon Ahmad and Matthew Sutcliffe. Dynamic T-decomposition for clas-
sical simulation of quantum circuits, December 2024. arXiv:2412.17182 [quant-
ph]. URL: http://arxiv.org/abs/2412.17182, doi:10.48550/arXiv.2412.
17182.

[6] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bron-
stein. Improving Graph Neural Network Expressivity via Subgraph Isomor-
phism Counting. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 45(1):657–668, January 2023. URL: https://ieeexplore.ieee.org/
abstract/document/9721082, doi:10.1109/TPAMI.2022.3154319.

[7] Sergey Bravyi and David Gosset. Improved Classical Simulation of
Quantum Circuits Dominated by Clifford Gates. Physical Review Let-
ters, 116(25):250501, June 2016. Publisher: American Physical Society.

55

http://arxiv.org/abs/quant-ph/0406196
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.70.052328
http://arxiv.org/abs/2010.01179
http://arxiv.org/abs/2010.01179
https://doi.org/10.48550/arXiv.2010.01179
https://proceedings.mlr.press/v198/abboud22a.html
http://arxiv.org/abs/2412.17182
https://doi.org/10.48550/arXiv.2412.17182
https://doi.org/10.48550/arXiv.2412.17182
https://ieeexplore.ieee.org/abstract/document/9721082
https://ieeexplore.ieee.org/abstract/document/9721082
https://doi.org/10.1109/TPAMI.2022.3154319

URL: https://link.aps.org/doi/10.1103/PhysRevLett.116.250501, doi:
10.1103/PhysRevLett.116.250501.

[8] Sergey Bravyi, Graeme Smith, and John A. Smolin. Trading Classical and Quan-
tum Computational Resources. Physical Review X, 6(2):021043, June 2016. Pub-
lisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/
PhysRevX.6.021043, doi:10.1103/PhysRevX.6.021043.

[9] Julien Codsi. Cutting-Edge Graphical Stabiliser Decompositions for Classical
Simulation of Quantum Circuits, 2022. URL: https://www.maths.ox.ac.uk/
system/files/inline-files/J%20Codsi%2021-22.pdf.

[10] gray. quimb: A python package for quantum information and many-body
calculations. ResearchGate, 2018. URL: https://www.researchgate.
net/publication/327432424_quimb_A_python_package_for_quantum_
information_and_many-body_calculations, doi:10.21105/joss.00819.

[11] Aimee R. Hatfield and Abdel-Hameed A. Badawy. Moore’s Law: What Comes
Next? In Hamid R. Arabnia and Leonidas Deligiannidis, editors, Software Engi-
neering Research and Practice and e-Learning, e-Business, Enterprise Informa-
tion Systems, and e-Government, pages 195–206, Cham, 2025. Springer Nature
Switzerland. doi:10.1007/978-3-031-86644-9_15.

[12] William Huggins, Piyush Patil, Bradley Mitchell, K Birgitta Whaley, and E Miles
Stoudenmire. Towards quantum machine learning with tensor networks. Quan-
tum Science and Technology, 4(2):024001, January 2019. Publisher: IOP Publish-
ing. URL: https://dx.doi.org/10.1088/2058-9565/aaea94, doi:10.1088/
2058-9565/aaea94.

[13] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion, January 2017. arXiv:1412.6980 [cs]. URL: http://arxiv.org/abs/1412.
6980, doi:10.48550/arXiv.1412.6980.

[14] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph
Convolutional Networks, February 2017. arXiv:1609.02907 [cs]. URL: http:
//arxiv.org/abs/1609.02907, doi:10.48550/arXiv.1609.02907.

56

https://link.aps.org/doi/10.1103/PhysRevLett.116.250501
https://doi.org/10.1103/PhysRevLett.116.250501
https://doi.org/10.1103/PhysRevLett.116.250501
https://link.aps.org/doi/10.1103/PhysRevX.6.021043
https://link.aps.org/doi/10.1103/PhysRevX.6.021043
https://doi.org/10.1103/PhysRevX.6.021043
https://www.maths.ox.ac.uk/system/files/inline-files/J%20Codsi%2021-22.pdf
https://www.maths.ox.ac.uk/system/files/inline-files/J%20Codsi%2021-22.pdf
https://www.researchgate.net/publication/327432424_quimb_A_python_package_for_quantum_information_and_many-body_calculations
https://www.researchgate.net/publication/327432424_quimb_A_python_package_for_quantum_information_and_many-body_calculations
https://www.researchgate.net/publication/327432424_quimb_A_python_package_for_quantum_information_and_many-body_calculations
https://doi.org/10.21105/joss.00819
https://doi.org/10.1007/978-3-031-86644-9_15
https://dx.doi.org/10.1088/2058-9565/aaea94
https://doi.org/10.1088/2058-9565/aaea94
https://doi.org/10.1088/2058-9565/aaea94
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.1412.6980
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.48550/arXiv.1609.02907

[15] Aleks Kissinger and John van de Wetering. Reducing the number of non-Clifford
gates in quantum circuits. Physical Review A, 102(2):022406, August 2020. Pub-
lisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/
PhysRevA.102.022406, doi:10.1103/PhysRevA.102.022406.

[16] Aleks Kissinger and John van de Wetering. Simulating quantum circuits with ZX-
calculus reduced stabiliser decompositions. Quantum Science and Technology,
7(4):044001, July 2022. Publisher: IOP Publishing. URL: https://dx.doi.
org/10.1088/2058-9565/ac5d20, doi:10.1088/2058-9565/ac5d20.

[17] Aleks Kissinger and John van de Wetering. Picturing Quantum Software: An
Introduction to the ZX-Calculus and Quantum Compilation. Preprint, 2024.

[18] Aleks Kissinger and John van de Wetering. PyZX: Large Scale Automated Di-
agrammatic Reasoning. Electronic Proceedings in Theoretical Computer Sci-
ence, 318:229–241, May 2020. arXiv:1904.04735 [quant-ph]. URL: http:
//arxiv.org/abs/1904.04735, doi:10.4204/EPTCS.318.14.

[19] Aleks Kissinger, John van de Wetering, and Renaud Vilmart. Classical simulation
of quantum circuits with partial and graphical stabiliser decompositions. LIPIcs,
Volume 232, TQC 2022, 232:5:1–5:13, 2022. arXiv:2202.09202 [quant-ph]. URL:
http://arxiv.org/abs/2202.09202, doi:10.4230/LIPIcs.TQC.2022.5.

[20] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research, 32(11):1238–
1274, September 2013. Publisher: SAGE Publications Ltd STM. doi:10.1177/
0278364913495721.

[21] Mark Koch, Richie Yeung, and Quanlong Wang. Speedy Contraction of ZX Dia-
grams with Triangles via Stabiliser Decompositions, July 2023. arXiv:2307.01803
[quant-ph]. URL: http://arxiv.org/abs/2307.01803, doi:10.48550/arXiv.
2307.01803.

[22] Alexander Koziell-Pipe, Richie Yeung, and Matthew Sutcliffe. Towards Faster
Quantum Circuit Simulation Using Graph Decompositions, GNNs and Rein-
forcement Learning. In The 4th Workshop on Mathematical Reasoning and
AI at NeurIPS’24, October 2024. URL: https://openreview.net/forum?id=
54060pbCKY.

57

https://link.aps.org/doi/10.1103/PhysRevA.102.022406
https://link.aps.org/doi/10.1103/PhysRevA.102.022406
https://doi.org/10.1103/PhysRevA.102.022406
https://dx.doi.org/10.1088/2058-9565/ac5d20
https://dx.doi.org/10.1088/2058-9565/ac5d20
https://doi.org/10.1088/2058-9565/ac5d20
http://arxiv.org/abs/1904.04735
http://arxiv.org/abs/1904.04735
https://doi.org/10.4204/EPTCS.318.14
http://arxiv.org/abs/2202.09202
https://doi.org/10.4230/LIPIcs.TQC.2022.5
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
http://arxiv.org/abs/2307.01803
https://doi.org/10.48550/arXiv.2307.01803
https://doi.org/10.48550/arXiv.2307.01803
https://openreview.net/forum?id=54060pbCKY
https://openreview.net/forum?id=54060pbCKY

[23] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, May 2015. Publisher: Nature Publishing
Group. URL: https://www.nature.com/articles/nature14539, doi:10.
1038/nature14539.

[24] Igor L. Markov and Yaoyun Shi. Simulating Quantum Computation by Con-
tracting Tensor Networks. SIAM Journal on Computing, 38(3):963–981, January
2008. Publisher: Society for Industrial and Applied Mathematics. URL: https:
//epubs.siam.org/doi/abs/10.1137/050644756, doi:10.1137/050644756.

[25] Alexander Mattick, Maniraman Periyasamy, Christian Ufrecht, Abhishek Y.
Dubey, Christopher Mutschler, Axel Plinge, and Daniel D. Scherer. Optimiz-
ing Quantum Circuits via ZX Diagrams using Reinforcement Learning and
Graph Neural Networks, April 2025. arXiv:2504.03429 [cs]. URL: http:
//arxiv.org/abs/2504.03429, doi:10.48550/arXiv.2504.03429.

[26] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
machine learning. Adaptive computation and machine learning. The MIT Press,
Cambridge, Mass. London, 2012.

[27] Ramis Movassagh. The hardness of random quantum circuits. Nature
Physics, 19(11):1719–1724, November 2023. Publisher: Nature Publish-
ing Group. URL: https://www.nature.com/articles/s41567-023-02131-2,
doi:10.1038/s41567-023-02131-2.

[28] Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press,
2022. URL: http://probml.github.io/book1.

[29] Michael A. Nielsen and Isaac L. Chuang. Quantum Computa-
tion and Quantum Information: 10th Anniversary Edition, Decem-
ber 2010. ISBN: 9780511976667 Publisher: Cambridge Univer-
sity Press. URL: https://www.cambridge.org/highereducation/
books/quantum-computation-and-quantum-information/
01E10196D0A682A6AEFFEA52D53BE9AE, doi:10.1017/CBO9780511976667.

[30] Maximilian Nägele and Florian Marquardt. Optimizing ZX-Diagrams with
Deep Reinforcement Learning. Machine Learning: Science and Technology,
5(3):035077, September 2024. arXiv:2311.18588 [quant-ph]. URL: http://
arxiv.org/abs/2311.18588, doi:10.1088/2632-2153/ad76f7.

58

https://www.nature.com/articles/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://epubs.siam.org/doi/abs/10.1137/050644756
https://epubs.siam.org/doi/abs/10.1137/050644756
https://doi.org/10.1137/050644756
http://arxiv.org/abs/2504.03429
http://arxiv.org/abs/2504.03429
https://doi.org/10.48550/arXiv.2504.03429
https://www.nature.com/articles/s41567-023-02131-2
https://doi.org/10.1038/s41567-023-02131-2
http://probml.github.io/book1
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE
https://doi.org/10.1017/CBO9780511976667
http://arxiv.org/abs/2311.18588
http://arxiv.org/abs/2311.18588
https://doi.org/10.1088/2632-2153/ad76f7

[31] Román Orús. Tensor networks for complex quantum systems. Nature Re-
views Physics, 1(9):538–550, September 2019. Publisher: Nature Publish-
ing Group. URL: https://www.nature.com/articles/s42254-019-0086-7,
doi:10.1038/s42254-019-0086-7.

[32] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, August 2014. Google-Books-ID: VvB-
jBAAAQBAJ.

[33] Hammam Qassim, Hakop Pashayan, and David Gosset. Improved upper bounds
on the stabilizer rank of magic states – Quantum, 2021. URL: https://
quantum-journal.org/papers/q-2021-12-20-606/.

[34] Jordi Riu, Jan Nogué, Gerard Vilaplana, Artur Garcia-Saez, and Marta P.
Estarellas. Reinforcement Learning Based Quantum Circuit Optimization via
ZX-Calculus, May 2025. arXiv:2312.11597 [quant-ph]. URL: http://arxiv.
org/abs/2312.11597, doi:10.48550/arXiv.2312.11597.

[35] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. High-Dimensional Continuous Control Using Generalized Advantage
Estimation, October 2018. arXiv:1506.02438 [cs]. URL: http://arxiv.org/
abs/1506.02438, doi:10.48550/arXiv.1506.02438.

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal Policy Optimization Algorithms, August 2017. arXiv:1707.06347
[cs]. URL: http://arxiv.org/abs/1707.06347, doi:10.48550/arXiv.1707.
06347.

[37] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian
Tang. GraphAF: a Flow-based Autoregressive Model for Molecular Graph Gen-
eration, February 2020. arXiv:2001.09382 [cs]. URL: http://arxiv.org/abs/
2001.09382, doi:10.48550/arXiv.2001.09382.

[38] Matthew Sutcliffe. Smarter k-Partitioning of ZX-Diagrams for Improved Quan-
tum Circuit Simulation, September 2024. arXiv:2409.00828 [quant-ph]. URL:
http://arxiv.org/abs/2409.00828, doi:10.48550/arXiv.2409.00828.

59

https://www.nature.com/articles/s42254-019-0086-7
https://doi.org/10.1038/s42254-019-0086-7
https://quantum-journal.org/papers/q-2021-12-20-606/
https://quantum-journal.org/papers/q-2021-12-20-606/
http://arxiv.org/abs/2312.11597
http://arxiv.org/abs/2312.11597
https://doi.org/10.48550/arXiv.2312.11597
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
https://doi.org/10.48550/arXiv.1506.02438
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
http://arxiv.org/abs/2001.09382
http://arxiv.org/abs/2001.09382
https://doi.org/10.48550/arXiv.2001.09382
http://arxiv.org/abs/2409.00828
https://doi.org/10.48550/arXiv.2409.00828

[39] Matthew Sutcliffe and Aleks Kissinger. Procedurally Optimised ZX-Diagram
Cutting for Efficient T-Decomposition in Classical Simulation. Electronic Pro-
ceedings in Theoretical Computer Science, 406:63–78, August 2024. URL:
http://arxiv.org/abs/2403.10964v2, doi:10.4204/EPTCS.406.3.

[40] Matthew Sutcliffe and Aleks Kissinger. Fast classical simulation of quan-
tum circuits via parametric rewriting in the ZX-calculus, February 2025.
arXiv:2403.06777 [quant-ph]. URL: http://arxiv.org/abs/2403.06777, doi:
10.48550/arXiv.2403.06777.

[41] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduc-
tion. 1992, 1992.

[42] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph Attention Networks, February 2018.
arXiv:1710.10903 [stat]. URL: http://arxiv.org/abs/1710.10903, doi:10.
48550/arXiv.1710.10903.

[43] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are
Graph Neural Networks?, February 2019. arXiv:1810.00826 [cs]. URL: http:
//arxiv.org/abs/1810.00826, doi:10.48550/arXiv.1810.00826.

[44] Kieran Young, Marcus Scese, and Ali Ebnenasir. Simulating Quantum Com-
putations on Classical Machines: A Survey, November 2023. arXiv:2311.16505
[quant-ph]. URL: http://arxiv.org/abs/2311.16505, doi:10.48550/arXiv.
2311.16505.

[45] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in
Graph Neural Networks: A Taxonomic Survey. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 45(5):5782–5799, May 2023. URL:
https://ieeexplore.ieee.org/abstract/document/9875989, doi:10.1109/
TPAMI.2022.3204236.

[46] Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the Expressive
Power of GNNs via Graph Biconnectivity, February 2024. arXiv:2301.09505
[cs]. URL: http://arxiv.org/abs/2301.09505, doi:10.48550/arXiv.2301.
09505.

60

http://arxiv.org/abs/2403.10964v2
https://doi.org/10.4204/EPTCS.406.3
http://arxiv.org/abs/2403.06777
https://doi.org/10.48550/arXiv.2403.06777
https://doi.org/10.48550/arXiv.2403.06777
http://arxiv.org/abs/1710.10903
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1710.10903
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
https://doi.org/10.48550/arXiv.1810.00826
http://arxiv.org/abs/2311.16505
https://doi.org/10.48550/arXiv.2311.16505
https://doi.org/10.48550/arXiv.2311.16505
https://ieeexplore.ieee.org/abstract/document/9875989
https://doi.org/10.1109/TPAMI.2022.3204236
https://doi.org/10.1109/TPAMI.2022.3204236
http://arxiv.org/abs/2301.09505
https://doi.org/10.48550/arXiv.2301.09505
https://doi.org/10.48550/arXiv.2301.09505

Appendix A

Appendix

A.1 Implementation Details

The code for this thesis can be found on GitHub under
https://github.com/Derbeldumm/GNNs-For-StabiliserDecomps.
To a large extent, it builds on the codebase that Koziell-Pipe, Yeung and Sutcliffe

used in [22]. The quizx fork used for benchmarking is available under https://
github.com/Derbeldumm/quizx.

Model Architecture

In each model, the input encoder is an MLP with 2 hidden layers. The ranking heads
have 3 hidden layers of size D, D

4 and D
16 , where D is the embedding dimension. All

activation functions are ReLU.

Hyperparameters

When training the models with supervised learning, we used the capabilities of
Weights and Biases to perform a Bayesian hyperparameter optimisation in the ranges
presented in Table A.1. The additional PPO-specific hyperparameters for the rein-
forcement learning part are presented in Table A.2.

For supervised and reinforcement learning, we generated a validation set of 100
circuits and after training 100 models, we selected one that had a low loss value and
a good performance on the validation set. For the efficiency estimation models, we
had a validation set of 100 circuits and implemented early stopping when the loss on
the validation set started to increase for 5 consecutive epochs.

61

https://github.com/Derbeldumm/GNNs-For-StabiliserDecomps
https://github.com/Derbeldumm/quizx
https://github.com/Derbeldumm/quizx

Hyperparameter Values
GNN model [GIN, GAT, GCN]
GNN Layers 4 - 10

Embedding Dimension [128, 256, 512, 1024]
Learning Rate 1e-4 - 1e-2
Weight Decay 1e-8 - 1e-3

Dropout 1e-2 - 0.5
Gradient Norm Clipping 0.5

Batch Size 128
Epochs 30
Runs 100

Training Dataset Size 10,000

Table A.1: Hyperparameter ranges used to train the supervised learning models.

Hyperparameter Values
PPO Clip Range 0.1 - 0.3

GAE gamma 0.9 - 0.99
GAE lambda 0.9 - 0.99

Entropy Loss coefficient 1e-3 - 3e-2
Value Loss coefficient 0.5 - 0.8

PPO Updates per Rollout 1 - 20
Steps per Rollout 512 - 4048

GAE Normalisation [False, True]
Gradient Norm Clipping 0.5 - 2

Table A.2: Hyperparameter ranges used to train the reinforcement learning models.

62

A.2 Study on the Expressiveness of Graph Neural
Networks

This appendix includes a previous study on the expressiveness of graph neural net-
works for stabiliser decompositions that was conducted in the context of a Mini-
Project for the course “Graph Representation Learning” at the University of Oxford
in Michaelmas Term 2024. This study is included because it has not been published
elsewhere. It is not part of the primary work for this thesis and should be considered
separate.

A.2.1 Abstract

This mini-project explores how well different Graph Neural Network (GNN) archi-
tectures can express the algebraic structures underpinning quantum circuit decom-
positions. By studying a simple classification task—determining whether a proposed
decomposition is efficient—we benchmark several GNN models (Graph Convolutional
Networks, variants with self-weights and random node initialisation, Shortest Path
Networks, and Graph Attention Networks). Among the tested models, Shortest Path
Networks demonstrate the highest average accuracy (0.8), indicating strong repre-
sentational capabilities, even greater than those of GATs, which already have been
employed in a more complicated variant of this task.

A.2.2 Introduction

We aim to investigate the ability of different Graph Neural Network (GNN) archi-
tectures to express specific algebraic structures. More specifically, we focus on the
algebraic structures present in the classical simulation of quantum circuits. One way
to perform this classical simulation is by applying a series of decompositions and
rewriting rules [19] on the circuit. The main challenge is to choose the most efficient
place in the circuit to decompose at each step — a process we call Decomposition
Proposal. Because of the nature of quantum circuits, Decomposition Proposal em-
ploys complex algebraic structures and currently lacks a known efficient algorithm.
However, recent work has explored leveraging the power of GNNs and Proximal Pol-
icy Optimisation (PPO) to propose circuit decompositions that are more efficient
than basic heuristics [22]. In this mini-project, we study how much of these algebraic
structures different GNN architectures are able to express. To this end, we study

63

their performance on a simplified classification problem: given a circuit and a decom-
position, predict whether the decomposition is efficient. Those that do well in this
setup are expected to also work well for Decomposition Proposal.

A.2.3 Method
A.2.3.1 Background on Quantum Circuit Simulation

The overall goal is to calculate the amplitude of a specific output vector for a given
circuit. Such a calculation is efficiently solvable for quantum circuits containing only
the Clifford gate set. Adding another gate called the T -gate yields two major effects:
(1) The gate set becomes approximately universal, meaning one can approximate any
other quantum circuit using only Clifford+T gates; (2) no efficient classical simulation
technique is known for circuits with T -gates.

While it is generally expected that simulating arbitrary quantum computations
classically is difficult, it remains interesting — particularly in algorithm development
— to study the behaviour of small instances without running them on a (still largely
unavailable) quantum device. One classical approach converts the circuit into a ZX-
diagram and then performs a series of simplification steps, reducing the diagram to a
single scalar that yields the desired amplitude [19]. This approach succeeds for Clif-
ford circuits, but T -gates cannot be simplified in the same way. To handle T -gates,
one can decompose the diagram into smaller subdiagrams, each containing fewer T -
gates than the original diagram. In the worst case, this has to be repeated O(n) times,
so the technique yields an exponential number of classically simulatable subdiagrams,
each contributing to the amplitude. One such decomposition is the magic-5 decom-
position. Applying a decomposition removes a fixed number of T -gates but may also
make further diagrammatic simplifications possible, removing additional gates. The
ratio between the number of subdiagrams and the number of removed T -gates defines
the efficiency of the decomposition. Depending heavily on the underlying algebraic
structure of the diagram, different decomposition choices can vary significantly in ef-
ficiency. Choosing an optimal decomposition yields exponentially fewer subdiagrams,
enabling the classical simulation of larger circuits.

A.2.3.2 Example

The following example shows a ZX diagram containing eight T -gates (nodes with
phases not multiples of 0.5π). The magic-5 decomposition creates three subdiagrams
with four T -gates each. When further simplifying two of them end up with only

64

three T -gates. Choosing another way to decompose may have led to all three sub-
diagrams containing four T -gates (meaning a less efficient decomposition). For more
background on these decompositions refer to [19].

7π
4

3π
4

5π
4
π
4

π
4

π
4

5π
4

π
4

3π
2

3π
4

π
π
4

π
π
4

5π
4

3π
4

3π
4

π
4

3π
2

3π
4

π
π
4

π
π
4

7π
4

π
4

3π
4

5π
4

3π
4

3π
4

3π
2
π
4

π
2

π
2

3π
2

π
4

π
4

7π
4

π
4

5π
4

A.2.3.3 Data Generation:

We use the pyzx library [18] to generate all circuits and to calculate the efficiency of
decompositions. Specifically, we generate Clifford+T circuits with 15 to 25 qubits,
sampled from a normal distribution N(20,5) for the number of qubits, and a depth
sampled from U(10,30) and scaled by the number of qubits. Those circuits are then
fully reduced and brought into graph form (refer to the example). The dataset is
filtered so that half the instances have the baseline efficiency of 0.396 (this happens
when after the initial decomposition no further T -gates get removed by simplifica-
tions), and the other half have a lower (better) efficiency. In the node features we
encode the phases and whether a node is marked for the magic-5 decomposition.

A.2.3.4 Models

We implemented a range of models that all consist of some message passing part and
a succinct global classification head. The pooling is done via global mean pooling.
Between all layers, we apply an activation function. The following models were chosen
as according to the lecture they differ in their theoretical expressive power.

Graph Convolutional Network (GCN):

As a baseline model, we implemented a standard MPNN with Convolutional Layers
from [14].

65

GCN + Self-Weights:

On top of each Convolutional Layer, we add the current node features with trainable
linear weights.

GCN + Self-Weights + Random Node Initialisation:

This model extends the GCN with self-weights by randomly initializing eight addi-
tional node features sampled from U(0, 1) [2].

Shortest Path Network:

We apply a shortest-path-based network approach [3] that assigns weights to each
ring (up to k=3), followed by an MLP. This yields the message passing node update:

h(t+1)
u = MLP

W0h(t)
u +

3∑
i=1

Wi
1

|Ni(u)|
∑

v∈Ni(u)
h(t)
v


Graph Attention Networks:

At last, we tested a Graph Attention Network consisting of four attention heads and
added self-loops. Between layers, we also insert normalisation layers to mirror the
structure of the feature extractor used in [22] more closely.

A.2.3.5 Hyperparameters

We use 1,000 circuits as the training set. Training is performed using Adam with the
following hyperparameters:

• Hidden dimensions: 32

• 5 message-passing layers

• 3-layer global classification head

• ReLU activation

• Learning rate: 0.0005

• Batch size: 32

• Early stopping with patience 15 on a validation set of 100

• Maximum of 100 epochs

Final accuracy is measured on a test set of 1,000 circuits.

66

Figure A.1: Comparison of Model Performance over 10 Runs

(a) Shortest Path Network (b) Graph Attention Network

Figure A.2: Representative training runs

A.2.4 Empirical Results

All models successfully learnt from the data. The baseline Graph Convolutional Net-
work (GCN) achieved a mean test accuracy of 0.65. Adding self-weights improved
performance to 0.7, while random node initialisation did not yield further gains but
rather hindered learning. Graph Attention Networks (GATs) showed promising per-
formance on the training set but exhibited overfitting tendencies, so the test scores
were worse. Shortest Path Networks (SPNs) achieved the best performance with a
mean test accuracy of 0.8. Figure A.2 shows representative training runs for SPN and
GAT, while Figure A.1 should present the performance of all models with standard
deviations over 10 runs for a comprehensive comparison. Note that a GAT based ap-
proach was used in [22] for Decomposition Proposal but our results imply that SPNs
may be the better choice to work on quantum circuits.

67

A.2.5 Conclusions

This study provides preliminary insights into the expressive power of various GNN
architectures for analyzing quantum circuits. Our results suggest that SPNs are
particularly well-suited for this task, so they should be considered for further studies.

It is important to acknowledge the limitations of this study as a mini-project.
Hyperparameter tuning was only done manually and without proper methodology.
The computational resources restricted the number of layers and experimental runs.
Therefore, the observed performance limitations of some models may be attributable
to these constraints rather than inherent limitations in their expressive power. Fur-
thermore, the training procedure would benefit from the use of regularisation tech-
niques. Future work could address these issues to build more confidence in our find-
ings. One could also investigate which value of k for the SPN gives the best results
while being computationally feasible. Additionally, evaluating the models’ ability to
predict the actual efficiency of decompositions, rather than just a binary classification,
would provide a more nuanced understanding of their capabilities. This could then
be integrated with the framework presented in [22] to do Decomposition Proposal.

Furthermore, this study focused solely on magic-5 decompositions. Exploring
other decomposition strategies, such as cat-decompositions, could be beneficial for
theoretical understanding as well as practical performance. Progress in this area
would greatly increase the feasibility of simulating quantum circuits on classical hard-
ware.

68

	Introduction
	Outline

	Background
	The SCUM view on Quantum Theory
	States
	Compound Systems
	Unitary Evolution
	Measurement

	Quantum Circuits
	Classical Simulation
	Statevector Simulation
	Tensor Networks
	ZX-Calculus
	Stabiliser Decomposition
	Graph Cuts
	Circuit Classes

	Machine Learning
	Supervised Learning
	Reinforcement Learning
	Neural Networks
	Graph Neural Networks
	GNNs on ZX diagrams

	Problem Definition
	Local alpha
	Structure of a Selection Driver

	Supervised Selection Learning
	Setup for Vertex-Cut Selection
	Setup for Magic5 Selection
	Iterated Training
	Results

	Reinforcement Learning
	Reinforcement Learning Environment
	Proximal Policy Optimisation
	Adaptations

	Efficiency Estimation through Regression
	Setup of the Regression Model
	Evaluation of the Regression Model
	Combining Vertex-Cut and Magic5

	Conclusion and Future Work
	Bibliography
	Appendix
	Implementation Details
	Study on the Expressiveness of Graph Neural Networks
	Abstract
	Introduction
	Method
	Background on Quantum Circuit Simulation
	Example
	Data Generation:
	Models
	Hyperparameters

	Empirical Results
	Conclusions

