
Causal Types for Higher-Order
Quantum Theory

Will Simmons
Worcester College

University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Michaelmas 2024

To people who invite me to events in person. How dare you. You know I
dislike the outside world, and yet I am helpless to the call of free

food. How dare you.

Acknowledgements

Starting with the academic side, none deserve more thanks than Aleks
Kissinger, whose work with his previous student, Sander Uijlen, inspired
much of this thesis and laid the foundations so that I could place a few
more bricks. On top of that, being a supervisor, teaching advisor, co-
author, and last minute volunteer whenever I couldn’t find a speaker for
Quantum Lunch seminars, I am incredibly grateful for his support and
guidance.

As every idea is influenced by the environment which births it, so too
was my work shaped by the fascinating conversations, seminars, and op-
portunities with the academic community both in and outside of Oxford.
Thanks to Nobuko Yoshida and Lutz Straßburger for examining this thesis
and for the helpful discussions and feedback, and likewise to Jon Barrett,
Stefano Gogioso during my transfer and confirmation of status assess-
ments. For both past and present members of the Quantum group (James,
Matt, Cole, John, Chris, Tein, Alex, Lia, Amin, Razin, and many more),
I will always be grateful for the variety of talks and topics, insightful
whiteboard sessions, and welcoming vibes. Beyond the dreaming spires,
I would like to give particular thanks to Alessio Guglielmi, Ross Horne,
Tito Nguyễn, and Timothée Hoffreumon for some inspiring conversations
that were critical to shaping some of the ideas here, and to the Bath
Mathematical Foundations and CHoCoLa seminars for the opportunities
to present my work and the great follow-on discussions.

Alongside this PhD I have held a position at Quantinuum, and I would like
to express my thanks for their generosity and support in funding this work.
Thanks in particular to Ross Duncan for his advice, encouragement, and
paper reviews alongside Sean Tull and Robin Lorenz. I am additionally
grateful to my team there, from the OG boostboiz to newer colleagues
and friends, for providing a working environment which helps developers
and researchers to thrive.

For the personal acknowledgements, I am most grateful for my fellow
Lamarshians, Julia, Joel, Max, Paddy, Arnold (the neighbour’s cat, whose
name most definitely is not “Arnold”), and associates, for the daily com-
pany, respite, and jests that got me through. Additional thanks to the
support from my family, Folkestone and Cambridge friends, my counsel-
lor, Oxford Juggling Club, and the many others who would fall under the
catch-all of “drinking buddies”.

If I am permitted just one more paragraph of silliness before the serious
matter, it will be thanking the little things. To the many milkshakes and
spicy potato wraps available across Oxford, thanks for the pick-me-ups.
To The Toxhards, thanks for blessing us with “Angus, The Prize-Winning
Hog”, the soundtrack to my paper-writing delirium. And thanks to the
clothing store Aloha from Deer, for enabling the bizarre experience of
being approached more at conferences to talk about fashion than my
research. Finally, to Diplomat Immune Tea from Aldi, never change1.

1A mere handful of days after submitting this thesis, I found that Aldi replaced this product with
one of the same name but changed from orange and peach flavour to the vastly inferior blackberry,
elderberries, and echinacea. I give them praise and they twist my words to a cruel fate. This betrayal
cuts deep and leaves a taste... well... not of orange and peach.

iv

Abstract

The emerging study of higher-order causal structures in the setting of
quantum theory has made crucial developments in our understanding of
potential impacts of quantum gravity on how processes can compose, but
has historically been treated in a somewhat ad-hoc way that is specific to
quantum theory. This thesis is part of an ongoing movement to put the
composition of higher-order causal structures front and centre via cate-
gorical frameworks, which helps in the generation of theory-independent
definitions for causal structures. This thesis builds on Kissinger and Ui-
jlen’s Caus [−] construction to add more expressive causal structures and
obtain a tight correspondence with a formal logic precisely describing
consistency of composite causal structures via proof-nets.

More specifically, the resulting theory features a number of monoidal
structures to describe different causal relations between local systems
(which may have some internal causal structure themselves), including
non-signalling, one-way signalling, bidirectional signalling, compatibility
with a directed graph, classical (probabilistic) choice, and combinations
of these. We define causal consistency of a closed system of black boxes
with fixed connections to mean that the composite can be realised with
unit probability regardless of the implementations within the boxes, and
we investigate a number of logics whose proofs can be translated into
causally consistent setups. Completeness is given by proof-nets of causal
logic, a new logic extending pomset with directed axiom links to describe
first-order systems (the degenerate systems which can only transmit in-
formation in one direction) in which the proof-net criterion guarantees
causal consistency via the absence of any cycle of information flow into
which a paradox could be encoded.

After a detour into Measurement-Based Quantum Computing to present
a new algorithm for extraction of an ancilla-free circuit from a Pauli Flow,
the thesis ends by showing how measurement patterns and parameterised
quantum circuits can be formally attributed with causal structures in the
Caus [−] framework.

Contents

1 Introduction 1
1.1 Content of the Thesis . 9
1.2 Prerequisites . 10

2 Causal Structures in Caus [C] 12
2.1 Background: Quantum Causal Structures 14
2.2 Related Work: Categories for Causality 25
2.3 Background: the Caus [−] Construction 30

2.3.1 Deriving the Construction . 30
2.3.2 Monoidal Unit . 37
2.3.3 Dual Objects . 37
2.3.4 First-order Objects . 38
2.3.5 Tensor and Par . 39
2.3.6 Intersections . 43

2.4 Assumptions on the Underlying Theory 45
2.4.1 Additive Precausal Categories 45
2.4.2 Subtractive Closure . 47
2.4.3 Impacts on Caus [C] . 56

2.5 Additive Operators . 64
2.5.1 Products and Coproducts . 64
2.5.2 Probabilistic Choice . 66

2.6 The Seq Operator . 69
2.6.1 One-Way Signalling . 69
2.6.2 Semi-Localisability . 71
2.6.3 Asymmetric Sum of Products . 72
2.6.4 Equivalence of Definitions . 74
2.6.5 Seq is a Monoidal Structure . 79
2.6.6 Causality as a Type Equality . 82

vi

2.6.7 General Signalling Constraints 86
2.7 Unions and Intersections . 87

2.7.1 Tensor is the Non-Signalling Space 94
2.7.2 Affine Combinations of Linear Orderings are Universal 97

2.8 Graph Types . 99
2.8.1 Local Graph Types . 100
2.8.2 Signalling Graph Types . 105
2.8.3 Ordered Graph Types . 107
2.8.4 Equivalence of Definitions . 108
2.8.5 Standard Forms . 114
2.8.6 Preservation of Local Structure 120
2.8.7 Causal Relations Beyond Graph Types 123

2.9 Partiality in Higher-Order Theories . 124
2.9.1 Initial and Terminal Objects in Caus [C] 127
2.9.2 Descriptive Partiality . 128
2.9.3 Testable Partiality . 130
2.9.4 The Probabilistic Orthogonality 135

3 Logical Characterisation of Caus [C] 138
3.1 Background: MLL, BV, and pomset . 139

3.1.1 Sequent Calculus for MLL . 140
3.1.2 Proof-Nets for MLL . 141
3.1.3 BV, MAV, and pomset Logic . 143
3.1.4 Categorical Semantics . 147

3.2 Causal Consistency . 148
3.2.1 Causal String Diagrams for Black Boxes 148
3.2.2 Extranatural Transformations 152
3.2.3 Modelling Logics . 154

3.3 Causal Logic . 157
3.3.1 Causal Proof-Nets . 158
3.3.2 The Characterisation Theorem 164
3.3.3 Standardised Interpretations . 172

3.4 Sufficient Fragments . 173
3.4.1 The pomset Fragment . 173
3.4.2 Separating BV and pomset with Process Matrices 176
3.4.3 The First-Order Inductive Fragment 177

vii

3.5 Extensions . 179

4 Causal Structures in Quantum Computing 184
4.1 Background: MBQC . 186

4.1.1 Measurement Patterns . 187
4.1.2 Stabilizers and Corrections . 190
4.1.3 Flow . 192

4.2 Identifying Pauli Flow . 196
4.2.1 An Algorithm for Pauli Flow . 196
4.2.2 Focussed Sets . 202

4.3 Circuit Extraction . 210
4.3.1 Circuits as Products of Pauli Rotations 210
4.3.2 Extracting Measurement Rotations 217
4.3.3 Characterising Clifford Patterns 223
4.3.4 A Complete Algorithm . 226
4.3.5 Interpretation in ZX-Calculus . 232

4.4 Causal Structure via Parameterisation 237
4.4.1 Signalling Orders in Flow . 237
4.4.2 Causal Structure in Parameterised Quantum Circuits 242

5 Outlook 245

A Notational Conventions 262

B Exploring Caus [Mat[R]] in Python 266

viii

Chapter 1

Introduction

A first-order process theory [31] describes a collection of systems (equivalently, the
space of possible states a physical system can take), and processes with designated
inputs and outputs which can be combined in sequence or in parallel. Modelling
them as (strict) symmetric monoidal categories allows us to picture the processes as
boxes (morphisms) connected in a string diagram with a consistent arrow of time
(in the case of the diagrams below, we read from bottom to top). We interpret each
elementary process as atomic - they wait until they receive all of their inputs, perform
their action, and produce all of their outputs simultaneously.

There are many applications where we may, instead, wish to consider processes
that alternate multiple rounds of inputs and outputs. For example, in a multi-party
communication protocol we may wish to group all actions of a chosen agent into a
single process. This idea of capturing locality can carry over into theories of physi-
cal processes to describe operations that could be performed within some region of
spacetime - if the systems enter and exit the region at different points in time, we
can similarly build sets of regions that pass systems back and forth between them. In
both examples, we benefit from using a single black box per agent/region since, from
the perspective of another agent, both the elementary processes used and the way in
which they are composed might be unknown.

= (1.1)

1

These new, irregularly-shaped boxes can be formalised as kinds of higher-order
maps [22, 119], transforming input processes to output processes in the sense of higher-
order programming: by inserting a regular box into the hole between each output
and the next input, we obtain a new process. These higher-order processes are closed
under series, parallel, and functional/nested applications, in addition to some more
elaborate compositions that cannot be generated by these simple cases.

(1.2)

The problem of capturing these compositions mathematically is trivialised when
we move to compact closed categories, where the wires in our diagrams may be “bent
around” through the visual language of string diagrams. Then all possible shapes of
black boxes can be encoded into simple states, and any composition can be described
by some pattern of connecting the output wires.

= (1.3)

However, if we were to allow all compositions in this way, we may introduce time
loops and logical paradoxes, as witnessed e.g. by probabilistic processes that are no
longer normalised. Examples include connecting together the input and output of a
NOT gate, describing a simple instance of the Grandfather Paradox [11] that “occurs”
with probability 0, or doing the same for an identity for the Bootstrap Paradox with
probability generally exceeding 1.

2

2
NOT = 0 ≠ idI ≠ idI + idI =

2

2

(1.4)

This immediately raises the question: “which string diagrams always preserve
normalisation?” This thesis coins the term causal consistency to refer to this property
of string diagrams.

2

Definition 1.0.1: Causal consistency (informal)

A string diagram consisting of black boxes is causally consistent if, whenever
the implementation of each black box respects its normalisation conditions, the
overall process is normalised.

If we interpret scalars - processes with no inputs or outputs - as (abstract) prob-
abilities, causal consistency of a closed diagram states that it evaluates to the unit
scalar, i.e. the combination of processes can be successfully performed in a laboratory
with probability 1.

We can find some motivating examples of causally (in)consistent compositions
from the study of process matrices [96] in quantum foundations. These second-order
processes are depicted as boxes with two holes representing locations where local
agents, Alice and Bob, can receive an input and perform some process to generate an
output.

Alice Bob (1.5)

Such a black box abstracts away the order in which Alice and Bob’s processes are com-
posed, permitting Alice before Bob, Bob before Alice, probabilistic mixtures/quantum
superpositions of the two orders, or even processes with indefinite causal structure [96]
which locally agree with quantum theory but are incompatible with any of the above.

Given a pair of process matrices, it is straightforward to prove that applying them
locally on either side of a single bipartite process is causally consistent:

(1.6)

But when we consider composing them with two bipartite processes in parallel, we
can break causal consistency by the possible introduction of paradoxical scenarios [75],
such as the cycle induced by the red paths below.

(1.7)

3

This thesis studies how causal consistency can be pieced together from the causal
structure of the components (the temporal relations between the different sets of
inputs and outputs). The shapes of these boxes are informal descriptions of causal
structure which are formalised a number of ways in the literature. Taking the example
of a bipartite process with one side acting before the other, one can formulate the fam-
ily of one-way signalling (a.k.a. semi-causal) processes [12] by positing the existence
of a preferred discarding map and requiring that the first output is independent of
the second input:

f

Aout

Ain Bin

= fA

Aout

Ain Bin

(1.8)

for some reduced process fA. Intuitively, this captures the notion that an agent who
only has access to the right input/output pair of f cannot use the process f to send
a message to another agent that only has access to the left input/output pair.

A related concept to one-way signalling is semi-localisability [12]. A process is
semi-localisable if it can factorise as:

f

Aout Bout

Ain Bin

=
fA

Aout Bout

Ain Bin

fB
M (1.9)

where each process satisfies the causality equation:

fX

⋯

⋯
=

⋯
(1.10)

Using the equations above, it is straightforward to show that any semi-localisable
process is one-way signalling. More generally, one can enumerate the non-signalling-
type equations for a black-box process with many input/output pairs that factorises
according to a generic directed acyclic graph [77]. We can express such results in a
theory-independent manner by treating them as equations between morphisms in a
symmetric monoidal category C equipped with a family of discarding maps A ∶ A→ I

from any object into the monoidal unit. Notable examples are the symmetric monoidal
categories of stochastic matrices, where discarding corresponds to marginalisation,
and categories of quantum channels, where discarding is given by the trace functional
(the quantum analogue to marginalisation).

The first step this thesis takes towards characterising causal consistency is to build
a categorical model of causally consistent processes, aiming for the following three
goals:

4

• Theory-independence/abstraction to distinguish facts of causal consistency from
the phenomena of a given physical theory;

• The morphisms describe causally consistent processes of a particular kind and
include every such process;

• It is as freely compositional as possible, supporting any string diagram that
satisfies causal consistency.

These are met by the Caus [−] construction of Kissinger and Uijlen [78], which takes
a category of “unnormalised” processes and restricts morphisms to those that pre-
serve a normalisation condition, guaranteeing that every closed diagram evaluates to
probability 1 and that composition exactly captures causal consistency. It can be ap-
plied abstractly to suitable base theories like Mat[R+] (the category of finite matrices
of positive reals) or CP∗ (the category of finite-dimensional C*-algebras and com-
pletely positive maps) to give us deterministic theories of higher-order probabilistic
or mixed quantum processes respectively. One can construct objects in the category
that encode causal structures between a collection of local systems, such as bipartite
first-order causal processes with no signalling in either direction between the parties,
one-way signalling, or with no signalling constraints (see Theorem 2.3.23).

The first novel results in this thesis focus on expanding upon the Caus [−] con-
struction with new monoidal products and new ways to interpret existing monoidal
products in terms of causal structures. These new notions of causal structure gener-
alise existing definitions from first-order processes to higher-order - for example, the
seq product A < B describes states compatible with “A before B”, generalising both
one-way signalling and semi-localisability. Other new operators include the additives
×,⊕ capturing probabilistic choice, a closed union ∪ capturing union of sets, and
graph types GrΓG to directly encode any fixed causal structure. The highlight results
from this exploration are:

Theorem 1.0.2: Seq Equivalence Theorem (informal)

For any choice of local systems A and B (which need not resemble first-order
processes), a process is one-way signalling from A to B iff it can be written as
a quasi-probabilistic mixture of semi-localisable processes.

Theorem 1.0.3: First-Order Theorem (informal)

First-order systems are characterised by a collapse of the hierarchy of signalling
types.

5

Theorem 1.0.4: Sum of Orders Theorem (informal)

Bipartite processes that can signal information in both directions (including
those with indefinite causal structure) can be expressed as a quasi-probabilistic
mixture of processes which each signal information in one direction or the other.

Theorem 1.0.5: Graph Equivalence Theorem (informal)

The Seq Equivalence Theorem generalises to any causal structure: a process
satisfies all signalling constraints of a graph iff it can be written as a quasi-
probabilistic mixture of processes which each factorise in the shape of the graph.

Theorem 1.0.6: Affine-Bit Sufficiency Theorem (informal)

Channels with arbitrary (quantum or classical) information capacity can be
reconstructed as quasi-probabilistic mixtures of a single classical bit.

Theorem 1.0.7: Graph Compatibility Theorem (informal)

A pair of definite causal structures specified by graphs are causally consistent
with one another iff the union of the edges gives an acyclic graph.

Kissinger and Uijlen [78] also showed that any Caus [C] is a model of MLL+Mix [2,
51] with isomorphic units (a.k.a. an ISOMIX category [28]), meaning proofs in
MLL+Mix can be used to verify causal consistency of corresponding diagrams. How-
ever, MLL+Mix is not sufficient to describe all causally consistent string diagrams.
Perhaps most notably, there is no special status given to first-order systems, despite
the First-Order Theorem generating string diagrams which are only causally consis-
tent when the wires are interpreted as first-order systems.

The most significant contribution made in this thesis takes this result to the
extreme and provides a new logic, called causal logic, whose proofs are “witnessed”
by a family of (causally consistent) string diagrams in Caus [C] for any base theory
C and, conversely, each string diagram in Caus [C] has a corresponding proof in the
logic. The logic is based on a proof-net criterion that we build synthetically to match
the semantics, which identifies that causal inconsistency can always be shown by
witnessing a cycle of information flow into which we can encode a paradoxical process,
such as in our process matrix example (Equation 1.7).

The study into causal logic gives rise to some more important results:

6

Lemma 1.0.8: Switching Lemma (informal)

Given a formula F , the processes of type F ∗ can be generated from processes
with definite causal structures. In particular, the switching graphs of a causal
proof-net for F gives a generating set of such causal structures.

Theorem 1.0.9: Causal Characterisation Theorem (informal)

The string diagram corresponding to a formula F is causally consistent in
Caus [C] with some interpretation Φ iff there exists a proof-net for F in causal
logic. Therefore, causal consistency is independent of the base theory C and
the specific interpretation Φ (up to the identification of degenerate systems).

Proposition 1.0.10: Propositions 3.3.5, 3.4.4, & 3.4.7 (informal)

Causal logic is a conservative extension of pomset [100, 102], and can be faith-
fully encoded into pomset or a variant of MLL+Mix with polarised atoms.

The final work in this thesis grounds this study of causal structures in a practical
context, looking at two paradigms of programmable quantum processes: measurement
patterns [99] and parameterised quantum circuits. A measurement pattern performs
computation by initialising a quantum system in a fixed resource state, then carefully
choosing measurements to apply on each qubit to influence the state of the remaining
qubits. On the other hand, the more conventional quantum circuits apply operations
directly onto the input qubits to modify their state in-place.

Partial orders play a part in both of these by describing limitations on how some
operations can be reordered. A flow [38, 19] for a measurement pattern contains
a partial order over the measurements indicating whether the measurements must
occur in a given order or if they can be performed simultaneously. Similarly, gates in
quantum circuits may sometimes commute with each other (applying them in either
order gives the same effect), and otherwise are forced to appear in a given order to
preserve the overall effect. Both of these intuitively feel related to causal structure,
specifying temporal constraints on the order in which some things occur, but do not
clearly fit the formal definitions based on signalling conditions or factorisations.

To compare these partial orders with genuine causal structures, we can describe
parameterised quantum circuits as multi-party open systems with one party per pa-
rameter and the actions available to that party correspond to choosing a value for
the parameter (shown below through the language of the ZX-calculus [30, 114]).

7

↦

α β γ

= α
γ

β

(1.11)

The same can be done for measurement patterns, where the parties decide the angles
of measurements. Using these open systems, we can phrase signalling conditions as
whether one party’s choice of parameter can influence the marginal state available to
another party.

The final major novel result in this thesis is an extraction algorithm for measure-
ment patterns which finds a parameterised (pure) quantum circuit implementing the
same linear map. The specifics of this algorithm have interesting impacts on how we
view the flow and commutation partial orders as causal structure.

Theorem 1.0.11: Circuit Extraction Theorem (informal)

There exists an efficient algorithm that finds an equivalent parameterised quan-
tum circuit for any measurement pattern. Comparing to the main alternative
extraction algorithm in the literature [7]:

• It can be applied to a larger class of measurement patterns, including
those with different numbers of input and output qubits, and where some
measurements may be restricted to a particular basis.

• It is far easier to see how the structure of the measurement pattern (in
particular, the corrections related to each measurement) impact the final
circuit. In particular, two measurements can be performed simultane-
ously iff the corresponding rotations in the circuit can commute past
each other, so the notions of partial orders for measurement patterns and
parameterised circuits coincide.

Theorem 1.0.12: Flow Causality Theorem (informal)

When viewing the resource state of a measurement pattern as an open system,
it satisfies all the non-signalling conditions associated with the partial order of
its flow.

8

1.1 Content of the Thesis
This thesis combines and elaborates on the content of the following publications:

• W Simmons: Relating Measurement Patterns to Circuits via Pauli Flow. In
18th International Conference on Quantum Physics and Logic (QPL 2021), Elec-
tronic Proceedings in Theoretical Computer Science, EPTCS, 343:50-101 [105]

• W Simmons, A Kissinger: Higher-Order Causal Theories are Models of BV-
Logic. In 47th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2022), Leibniz International Proceedings in Informat- ics
(LIPIcs), 241:80:1–80:14 [106]

• W Simmons, A Kissinger: A complete logic for causal consistency (preprint)[107]

In both [106] and [107], my supervisor and co-author, Aleks Kissinger, proposed
some initial questions to me based on feedback he had received on his previous
work [78]. He proposed some early candidate definitions for < and otherwise assisted
in providing feedback and further direction for work during discussions and presen-
tational improvements to the papers. All proofs in the papers (and all presented in
this thesis), including the constructions for causal logic, are my own work.

The thesis is arranged into sections that distinguish novel results from existing
work, with the latter marked as “Background” or “Related Work” sections and every
borrowed definition or result cites the original text.

Chapter 2 begins with an overview of concepts in quantum causality, how these
have previously been modelled in category theory, and a justification of the Caus [−]
construction as originally presented by Kissinger and Uijlen [78]. The rest of the
chapter takes a tour of the new operators added to the Caus [−] framework in the
papers [106, 107] and how to relate them to causal structures, including classical (prob-
abilistic) choice, one-way signalling and individual non-signalling conditions, combi-
nations of conditions and compatibilities with graph causal structures, and notions
of partial maps.

With the content of Caus [C] introduced, we move on to characterising the com-
positional structure that exists between the operators in the form of a Curry-Howard-
Lambek-style correspondence with a logic in Chapter 3. A primer is provided to
introduce the relevant logics. We formally introduce causal consistency as a property
of string diagrams in Caus [C] and show how this entails all inclusions and equalities
between operators in Caus [C]. We give the definitions for causal logic, and prove

9

that it precisely characterises causal consistency (over a limited fragment of opera-
tors). Studying the proof-nets of causal logic, we show that it is both a conservative
extension of and completely determined by pomset. The chapter ends with a discus-
sion of how to extend this logic to account for (almost) all operators introduced in
Chapter 2.

The majority of Chapter 4 takes a detour away from categorical interpretations
of causal structures into Measurement-Based Quantum Computing for the contents
of the paper [105]. We provide some background on measurement patterns and how
correcting measurement errors can implement a pure channel when the pattern has a
property called flow. We give an algorithm for identifying whether a pattern admits
a Pauli flow (a very general version of flow which allows qubits to be measured in
either a given plane of the Bloch sphere or in a particular Pauli basis). Then, we
build up the extraction algorithm implementing the linear map of a given pattern
as a product of parameterised rotations determined completely by a focussed Pauli
flow. Finally, the chapter concludes by considering measurement patterns within the
framework of Caus [CP∗] to see how we can infer compatibility of a pattern with a
particular causal structure, using extraction of measurements to witness the required
non-signalling conditions, and formalising the view of flow as a causal structure.

1.2 Prerequisites
The work in this thesis treats a number of topics across computer science, mathemat-
ics, and physics, making use of a range of mathematical formalisms and concepts. To
keep things concise, we will assume some level of familiarity with the common tools
and provide background sections to introduce more advanced topics. The list below
details the assumed knowledge and some recommended texts for full introductions or
reference.

• Finite-dimensional quantum theory and quantum computing [95, 31]: linear
algebra, Hilbert spaces, Pauli matrices, density operators, quantum circuits,
the stabilizer formalism.

• Category theory and diagrammatic calculi [52, 31, 63, 114]: monoidal categories,
enrichment, compact closed categories, string diagrams, limits, colimits, ZX-
calculus.

• Logic and proof theory [71]: propositional logic, natural deduction, semantic
interpretations, structural induction.

10

Several of the fields on which this thesis builds are known for having a large
amount of conflict in notation and nomenclature. For example, it is common to use
one-way non-signalling to refer to either Definition 2.1.2 (no information can pass
from Bob to Alice) or Definition 2.1.3 (factorising into local processes with Alice
before Bob) since they are equivalent in quantum theory, though it is important
in this work to disambiguate between definitions using distinct names in order to
study them in a broader context. In addition to introducing the essential content
for the unfamiliar, the provided background section will also clarify the terminology
to be used throughout this thesis. As always, I appreciate the patience of readers
in adapting to the notation and names used in this thesis where it differs from their
preferences.

11

Chapter 2

Causal Structures in Caus [C]

The informal definition of causal consistency so far is just the requirement that compo-
sition preserves meaningful notions of normalisation, so it will very obviously depend
on a number of factors of the specific model we look at:

• What exactly are the processes of the model? E.g. functions, relations, linear
maps, etc.

• What kinds of normalisation conditions should we consider?

• How do we encode processes of different shapes?

• How do we calculate the outcome of a composition?

This chapter is focussed on giving a detailed presentation of the models I chose to
look at in this thesis.

We find the language of category theory very useful when answering these questions
about these models, since specifying a category immediately tells us the kinds of
processes we have and how to compose them. With our main motivating examples
coming from probability theory and quantum theory, we will mostly be working with
categories where the morphisms are linear maps between (finite) vector spaces with
the usual notions of sequential and parallel composition. Each setting may place some
restrictions on which linear maps are valid, such as a requirement on the scalar field
or positivity conditions - we will largely be abstracting away such details, making a
few practical assumptions (see Definitions 2.3.1 and 2.4.1).

Taking a category of “unnormalised” processes, we can then define our normali-
sation conditions. Borrowing nomenclature from programming languages, each nor-
malisation condition defines a type, characterised by the states/programs of that type.
Types are not considered unique, so each morphism in the unnormalised category may

12

admit multiple types, telling us that it satisfies multiple normalisation conditions si-
multaneously. The Caus [−] construction [78] is one way to take such a category
of unnormalised processes C and build a category Caus [C] of normalised/typed pro-
cesses.

When we draw a shape for a process as in Equation 1.1, we are using the shape
as a shorthand for the set of assumptions on relative positions of the interfaces in
space and time, a.k.a. their causal structure. The quantum foundations literature has
many well-established results characterising the processes consistent with a particular
causal structure. We can adopt these characterising properties as our normalisation
conditions in Caus [C] to give types for different causal structures. For example, the
types below capture processes of the corresponding shapes in a first-order picture
with time flowing upwards in the diagrams.

A1 ∶ A1
B1

A1

∶ A1⊸B1 (2.1)

B1

A1 C1

D1

∶ (A1⊸B1)⊗ (C1⊸D1)
B1

A1 C1

D1

∶ (A1⊸B1)` (C1⊸D1) (2.2)

B1

A1

C1

D1

∶ (A1⊸B1) < (C1⊸D1) B1

A1

C1

D1

∶ (A1⊸B1)⊸ (C1⊸D1) (2.3)

Throughout this chapter, it is assumed that the reader is familiar with category
theory and linear algebra, and we begin with an overview of some key concepts of
quantum causal structures to give a reference point for the constructions we use for
them in Caus [C]. Similarly, Section 2.2 provides context with a brief review of the
literature of alternative categories for studying causal structures. As we are building
directly on top of the work of Kissinger and Uijlen, 2.3 gives a brief summary of
the definitions and highlight results from their paper [78] introducing the Caus [−]
construction.

The novel results begin in Section 2.4 which introduces some alternative assump-
tions on the base category that enable us to use more tools from linear algebra within
the category theoretic framework. Each of 2.5-2.8 introduces new type constructors
to Caus [C], increasing the variety of causal structures we can consider until we reach
their direct embedding via graph types.

13

The chapter ends with a discussion section where we compare the Caus [−] con-
struction to effectus theory [73, 25] - another set of categorical constructions which
relate between unnormalised (a.k.a. partial) morphisms and normalised (total) mor-
phisms - to look at ways to reintroduce unnormalised processes back into Caus [C].

2.1 Background: Quantum Causal Structures
As per the Introduction, we will begin with the framework of process theories [31]:
collections of processes with designated input and output system types and a means
of composing processes in sequence and parallel. This is formalised in the definition
of a (strict) symmetric monoidal category (C,⊗, I).

We will interpret the processes as physical operations that transform the input
system into the output system, with sequential composition implying that one oper-
ation happens after the other in time. In the equational theory, we unify processes
when their physical operations are interchangeable without any observable difference
in the way they relate the input and output system, i.e. we will ignore details on how
the operations are done (the exact activities that occur in enacting the operation) to
focus on the effect they have on the states they interact with.

Relativity constrains the transmission of information by the speed of light and,
in particular, this means no information can flow into the past. Suppose we take
a process f ∶ A → B ⊗ C with two outputs, and to B we choose to apply another
physical process that runs to completion and leaves nothing left - that is, we compose
with some g ∶ B → I. Since g happens after f , the state we observe at C immediately
following f must be independent of the choice of morphism chosen for g. This gives
the idea that there must be a unique marginal process fC ∶ A→ C induced by f .

∀f ∶ A→ B ⊗C. ∃fC ∶ A→ C. ∀g ∶ B → I. B

C

A

f

g

=
C

A

fC (2.4)

In the special case where C = I is trivial, A = B, and f ∶ A→ A⊗ I ≅ A is just the
identity idA, we have fC = f # g = g. This simplistic consequence of relativity implies
that each object A in our process theory must have a unique effect, which we will
denote as A ∶ A → I and refer to as the discarding process. For example, this would
take the form of the summation operator in probability theory or the trace operator
in quantum theory.

14

The uniqueness property fixes how discarding interacts with the monoidal struc-
ture.

A⊗B = A ⊗ B (2.5)

I = idI (2.6)

It also constrains the kinds of other processes that can exist in the theory. For
any f ∶ A → B, we can always consider discarding the output B. This composite
f # B ∶ A → I is an effect of A, so by uniqueness it must be A. This shows that
every process must be discard-preserving: if you discard all outputs of a process f ,
the result is indistinguishable from discarding the inputs without applying f at all.
We will also refer to such processes as (first-order) causal2.

Definition 2.1.1: (First-order) causal [23, Definition 27, Lemma 5]

A (first-order) causal morphism f ∈ C(A→ B) is one that satisfies:

B

A

f =
A

(2.7)

It is important to note that these constraints only apply when the process theory
is describing operations that can be performed reliably, excluding operations that can
only be performed with some probability of success. We may still have a rich meta-
theory for analysis in which the things we describe are not physical operations. For
example, conditional probabilities and postselection work by fixing some output to
a particular value; they are interesting precisely because they can sometimes cause
changes to other outputs when they are correlated, which would violate the relativistic
information bounds if they could be performed reliably.

X

Y

P (X,Y)

X = x
= s

Y

P (Y ∣X = x) ≠
Y

P (Y) = X

Y

P (X,Y)
(2.8)

The causality principle refers to the result originally from Chiribella, D’Ariano, &
Perinotti [23] stating that the uniqueness of effects is necessary and sufficient for a
theory to satisfy “no-signalling from the future”. The uniqueness of effects may also
be referred to as terminality, since it makes the unit object I a terminal object in the
category C.

2The term “first-order” here comes from the usage in programming terms referring to elementary
data, distinguishing it from higher-order content which acts on functions, and has no intended
connection to first-order logics.

15

Returning to relativity, let us now consider a setup with two parties, Alice and
Bob, who each have access to one side of a shared process.

f

Aout Bout

Ain Bin

Alice Bob
(2.9)

Depending on the space-time relationship between Alice and Bob, compatibility
with relativity will mean that not every process of type Ain ⊗Bin → Aout ⊗Bout will
be realisable. Suppose first that Alice and Bob are time-like separated with Alice
before Bob. Excluding the possibility of closed time-like curves, this means there is
no path that light could possibly take from Bob to Alice and hence no information
can be sent in this direction - when we marginalise out Bob’s output, the marginal
process at Alice must be independent of Bob’s input, i.e. equivalent to discarding
Bob’s input and applying some local process at Alice.

Definition 2.1.2: One-way (non-)signalling [12]3

A bipartite process f ∶ Ain⊗Bin → Aout⊗Bout is non-signalling from (Bin,Bout)
to (Ain,Aout) if there exists some fA ∶ Ain → Aout such that:

f

Aout

Ain Bin

= fA

Aout

Ain Bin

(2.10)

Alternatively, we could imagine the background space-time as divided into small
regions, each with a local process and wiring up two processes corresponds to a
physical system leaving one region and entering the next. Relativity then constrains
these physical systems to only move along time-like curves. f must now factorise into
a local process occurring with Alice, which may pass some intermediate system to a
local process occurring with Bob.

Definition 2.1.3: Semi-localisability [12]

A bipartite process f ∶ Ain ⊗Bin → Aout ⊗Bout is semi-localisable if there exist
some system M and processes fA ∶ Ain → Aout ⊗M , fB ∶ M ⊗Bin → Bout such
that:

3These have historically also been called semi-causal processes [12, 49].

16

f

Aout Bout

Ain Bin

=
fA

Aout Bout

Ain Bin

fB
M (2.11)

If we change the relationship so that Alice and Bob are now space-like separated,
there is no time-like path between them in either direction. Definition 2.1.2 generalises
by symmetrising the non-signalling condition.

Definition 2.1.4: Non-signalling [12]4

A bipartite process f ∶ Ain ⊗ Bin → Aout ⊗ Bout is non-signalling if it is both
(one-way) non-signalling from (Ain,Aout) to (Bin,Bout) and vice versa.

Generalising Definition 2.1.3, the lack of time-like path between Alice and Bob
would mean that there is no physical system passing from one of their local processes
to the other. However, it is possible that their past light-cones will intersect each
other, so we must consider an additional process to describe any shared history that
might set up correlations between Alice and Bob, as well as a shared future when
their future light cones intersect.

Definition 2.1.5: Localisability [12]

A bipartite process f ∶ Ain ⊗Bin → Aout ⊗Bout is localisable if there exist some
systems A�,A⊺,B�,B⊺ and processes f�, fA, fB, f⊺ such that:

f

Aout Bout

Ain Bin

= fA

Aout Bout

Ain Bin

fB

A⊺ B⊺

A� B�
f�

f⊺

(2.12)

For a bipartite scenario, the only configurations we need to consider are time-like
separation (in either direction) and space-like separation, but this number increases
greatly as we consider scenarios with more parties. A causal structure abstractly

4Non-signalling processes were also historically referred to simply as causal [12], though this
conflicts with Definition 2.1.1.

17

describes the configuration of parties by the existence of time-like paths between
each pair.

Definition 2.1.6: (Definite) Causal Structure [80]

A causal structure over a set V of points is a partial order ≤ ⊆ V × V .

The use of a partial order here assumes that the background spacetime does not
admit any closed timelike curves which are beyond the scope of this thesis, though
one could just as easily consider preorders instead.

Our previous notions of non-signalling and localisability conditions generalise
straightforwardly to arbitrary causal structures.

Definition 2.1.7: Signal-consistency [22]

Given a causal structure ≤ ⊆ V × V , a set U ⊆ V is down-closed if ∀u, v ∈ V.v ∈
U ∧ u ≤ v⇒ u ∈ U .

A multi-partite process f ∶ ⊗v∈V Av → ⊗v∈V A′v is signal-consistent5 with
respect to a causal structure ≤ ⊆ V ×V if, for every down-closed set U ⊆ V there
exists some fU ∶⊗v∈U Av →⊗v∈U A′v such that:

f

⋯

⋯ ⋯

⋯
U V ∖U

= fU

⋯

⋯ ⋯
⋯

U V ∖U

(2.13)

Definition 2.1.8: Causal Realisability [22]

A multi-partite process f ∶ ⊗v∈V Av → ⊗v∈V A′v is causally realisable5 with re-
spect to a causal structure ≤ ⊆ V × V if there exists a set {Mu,v}(u,v)∈≤ of
intermediate systems and a set {fv ∶ Av ⊗⊗u≤vMu,v → A′v ⊗⊗w≥vMv,w}v∈V of
processes such that composing along the intermediate systems recovers f .

It is common to add dummy points to a causal structure to give a unique global
minimum � and maximum ⊺ when we wish to account for actions in a shared past
or future. This distinguishes Definition 2.1.5 for localisability from separability of a
bipartite channel (i.e. when it factorises as a tensor product of local channels without
any connections) as causal realisability for the different causal structures shown below.

5The names for these two concepts are not standardised across the literature at the moment,
both often being used interchangeably as definitions of compatibility with causal structure. In the
cited example [22], these properties are referred to as causally ordered channels versus channels with
memory. The particular names in the definitions here are owed to Tein van der Lugt from discussions
on his research where it is also important to distinguish between the definitions.

18

A

⊺

�

B ↦ fA

Aout Bout

Ain Bin

fB

A⊺ B⊺

A� B�
f�

f⊺

(2.14)

A B ↦ fA

Aout Bout

Ain Bin

fB (2.15)

When uniqueness of effects is assumed, the dummy maximum ⊺ can be omitted,
since the process there must be discarding which factorises (Equation 2.5) and can
be incorporated into the predecessor processes.

A more general form of the causality principle states that the uniqueness of
effects is necessary and sufficient for all causally realisable processes to be signal-
consistent [77, 29]. Even in theories with unique effects, there may exist processes
that are signal-consistent but lack any realisable decomposition, such as the PR-box
which is non-signalling but not localisable [98]. In this case, the following alterna-
tive characterisation of non-signalling processes holds in finite-dimensional quantum
theory [60, 24], or indeed in any Generalised Probabilistic Theory (GPT) with local
tomography [21].

Theorem 2.1.9: [21, Theorem 5.1]

In any GPT with local tomography, any non-signalling first-order causal process
can be written as an affine combination of separable first-order causal processes.

This theorem is of particular importance here since we will directly be generalising
it later in the thesis to drop the assumption of first-order processes (the Non-signalling
Theorem), as well as generalising it to arbitrary causal structures (the Graph Equiv-
alence Theorem).

It is an open problem in the field to give a full characterisation of those causal
structures in which signal-consistency and causal realisability coincide exactly. For
example, in both classical and quantum theory it is known that the two conditions are
equivalent for linear causal structures (those where the points are totally ordered) [22],
in particular one-way non-signalling is equivalent to semi-localisability in the bipartite
case [23].

19

Processes compatible with linear causal structures admit an equivalent characteri-
sation as a certain class of higher-order processes called combs, though their definition
requires us to introduce some tools for representing higher-order processes.

Suppose Alice and Bob share a semi-localisable process, i.e. a pair of local pro-
cesses fA and fB connected by some memory channel M , and suppose that Charlie
lies on some time-like path between Alice and Bob. Since fA must be completed
before fB begins, we could imagine a situation in which Alice’s output is passed to
Charlie who uses it to prepare Bob’s input.

fA

Aout

Bout

Ain

Bin

fB

M fC (2.16)

In this way, we can view the combination of fA and fB as a higher-order transfor-
mation, mapping any first-order process fC ∶ Aout → Bin to a new first-order process
of type Ain → Bout. However, we cannot always internalise such higher-order trans-
formations as morphisms of the symmetric monoidal category. The closest we can
achieve is the form in Equation 2.11 using a morphism Ain ⊗Bin → Aout ⊗Bout, but
then the limitation to sequential and parallel composition means we cannot compose
this with fC to obtain a morphism of type Ain → Bout. We would need some means
of connecting an output back round to an input in order to make this composition
representable.

Suppose, then, that our category of processes is compact closed: each object A
has a dual A∗, and “cup” and “cap” morphisms

ηA ∶=
A∗ A

ϵA ∶=
A A∗

(2.17)

that satisfy the following “yanking” equations:

A

A

=

A

A

A∗

A∗

=

A∗

A∗

(2.18)

Drawing these morphisms as curved identity wires is convenient for demonstrating
how they permit any morphism f on one side to slide over to the other much like
naturality of an identity, up to the transposition into f∗. This specialises to mapping
between states and effects, such as transposing the discard map to give a uniform
state for any object.

20

f∗

A∗

B∗

∶= f

A∗

B∗

f

A∗ B

= f∗

A∗ B
A ∶= A

A∗
(2.19)

When sliding multiple morphisms in this way, their order reverses (i.e. transposi-
tion is a contravariant functor (−)∗ ∶ Cop → C). This allows us to dissociate from the
idea of a canonical direction of time in our diagrams, or the distinction of input and
output roles. One can formalise this time-reversing sliding behaviour in the form of
extranatural transformations, generalising the time-directed sense of naturality.

Definition 2.1.10: Extranatural Transformation [50]

Given functors F ∶ A × B × Bop → D and G ∶ A × C × Cop → D, a family of
morphisms

{αA,B,C ∶ F (A,B,B)→ G(A,C,C)}A∈Ob(A),B∈Ob(B),C∈Ob(C) (2.20)

is natural in A and extranatural6 in B and C, if for all f ∈ A(A,A′), g ∶ B(B,B′),
h ∶ C(C,C ′):

F (f, id, id) # αA′,B,C = αA,B,C #G(f, id, id) (2.21)
F (id, g, id) # αA,B′,C = F (id, id, g) # αA,B,C (2.22)
αA,B,C #G(id, h, id) = αA,B,C′ #G(id, id, h) (2.23)

When useful, we may draw directional arrow markings on the wires to reinforce an
intuitive temporal reading of the diagram that reflects the reordering under duality -
i.e. arrows pointing up for wires of A and down for wires of A∗.

For finite-dimensional Hilbert spaces, the cup morphisms are a choice of maximally
entangled states (e.g. Bell states) and the caps are corresponding Bell effects, giving
rise to the Choi-Jamiołkowski isomorphism [26, 74] between maps A → B and states
I → A∗ ⊗ B - it is common to refer to such a state as the Choi operator of the
corresponding process.

ρ f (2.24)

6These are a special case of dinatural transformations [43] where F and G can both co- and
contravariantly depend on the same category F,G ∶ C × Cop → D. Dinaturality is important in
logic [16], but there is no general way to compose them.

21

Definition 2.1.11: Choi operator [26]

The Choi operator of a linear map f ∶ A→ B is the state

f ∶ I → A∗ ⊗B (2.25)

Returning to our example from Equation 2.16, if we encode fC as a state of
A∗out ⊗ Bin in this way, we can then represent the higher-order transformation as a
morphism of type A∗out ⊗Bin → A∗in ⊗Bout.

f∗A

Aout

Bout

A∗out Bin

fB
M

fC

A∗in

M∗

=

fA

Aout

Bout

Ain

Bin

fB

M fC

A∗in

(2.26)

We could similarly encode this transformation as a state of type A∗in⊗Aout⊗B∗in⊗
Bout and iterate to obtain representations of an infinite hierarchy of higher-order
transformations. As mentioned in the Introduction, the flexibility of compact closure
permits many more ways to compose these process encodings than via just sequential,
parallel, and higher-order composition, such as the example in Equation 1.3.

Starting with the first-order causal processes, the hierarchy of combs defines a
class of higher-order processes that preserve this property inductively.

Definition 2.1.12: Comb [22, Definition 4]

A 1-comb on (A0,A1) is the Choi operator I → A∗0 ⊗A1 of a first-order causal
morphism. For N ≥ 2, an N-comb on (A0, . . . ,A2N−1) is the Choi operator I →
⊗i<N A

∗
2i⊗A2i+1 of a morphism transforming (N −1)-combs on (A1, . . . ,A2N−2)

into 1-combs on (A0,A2N−1).

Returning to causal structures, N -combs on (A0,A′0, . . . ,AN−1,A′N−1) are precisely
characterised as the Choi operators of processes ⊗i<N Ai →⊗i<N A

′
i which are signal-

consistent (equiv. causally realisable) with respect to the linear causal structure
0 ≤ ⋯ ≤ N −1 [22]. This result gives rise to the diagrammatic notation used for combs
as an ordered sequence of connected blocks (resembling the teeth of a hair comb), or
equivalently a box with a sequence of holes in it into which we can place other combs.

22

(2.27)

Looking back at the kind of diagrams from Equation 1.1 in the Introduction, we
now have the tools to be able to combine a collection of first-order processes and
wirings between them into an abstract shape describing the overall process with some
internal causal structure between its interfaces. A key interest in quantum causality
is to question what is permissible when we similarly abstract away the connections
between our processes, i.e. the causal ordering of the elementary processes is not fixed
but may itself exhibit quantum effects.

The standard example of this is to exploit quantum gravity to make light travel in
a superposition of paths which pass through some points in different orders. Suppose
a large mass can be placed into a superposition of distinct positions in space, then the
induced gravitational field and subsequent space-time geometry around it will also
be in a superposition of configurations. The path between two points of interest may
be time-like in one configuration and space-like or time-like in the reverse order in
another configuration. This is summarised by the quantum switch [24].

Definition 2.1.13: Quantum Switch [24, Equation 6]

The quantum switch is the higher-order process QSw transforming two first-order
causal processes f, g ∶ A → A into QSw (f, g) ∶ C2 ⊗A → C2 ⊗A, defined by its
action on unitaries as:

f g

QSw

∶=

⟨0∣

∣0⟩

f g +

⟨1∣

∣1⟩

f g (2.28)

One can imagine alternative versions of this where the control system is classical
or a fixed probabilistic mixture of the orderings, or where we are switching over the
orderings of more than two processes. The switch is incompatible with any definite
causal structure in the sense that there is no process with definite causal structure
into which a single instance of f and g can be inserted to produce QSw (f, g) [24]. This

23

incompatibility can be stratified further to talk about processes with random causal
structure (they can be expressed as a convex mixture of processes with different def-
inite causal structures), dynamic causal structure (the causal ordering is determined
by the value of some input state), or indefinite causal structure (incompatible with ei-
ther of the previous classes, shown by violating an inequality satisfied by all processes
with definite causal structure [96]).

Removing the assumption of definite causal structure, we instead represent the
manner in which all processes are composed in a given scenario by a process matrix [96].
This is a higher-order process acting on the collection of process instances to be
placed in our scenario and were constructed specifically to study causal structures in
quantum foundations. Wlog, we assume that the overall scenario is closed (there are
no remaining inputs or output), so the resulting morphism is a scalar. In line with
the Born rule of quantum mechanics, the scalar gives the probability with which the
closed scenario could be successfully performed. With our interest in operations that
can be performed reliably, the process matrix must specifically send all inputs to the
scalar 1 (represented by the empty diagram).

∶= idI (2.29)

Definition 2.1.14: Process Matrix [96]

A (bipartite) process matrix is a state W ∶ I → A0⊗A′∗0 ⊗A1⊗A′∗1 such that for
all first-order causal f ∶ A0 → A′0, g ∶ A1 → A′1 it satisfies:

f g

W
= (2.30)

From their usage, we also get the typical diagrammatic presentation for process
matrices as:

(2.31)

The separation of the two holes reinforces that it cannot be applied to any bipartite
process - it is only required to guarantee normalisation on separable processes, though
by linearity this also holds for any affine combination of them (i.e. non-signalling
processes). The same applies to the quantum switch. For example, consider the
simple process matrix that applies the inputs in a fixed order to some initial state and

24

discards the result. If we then apply this to a swap, the resulting scalar corresponds
to the dimension of the system.

ρ

= ρ = ≠ (2.32)

2.2 Related Work: Categories for Causality
This section will present a brief literature review of frameworks for studying quantum
causality within the language of category theory, with a critical focus to motivate the
solution of the Caus [−] construction in Section 2.3.

In the causal categories of Coecke and Lal [32], objects are treated as space-like
slices of a scenario within a first-order picture of causality - that is, in diagrams
with a canonical direction of time, a cut through the wires of the diagram such that
none of the cut wires have a time-directed path between them; this cut could feasibly
represent a view of the system at some fixed point in time. Since the systems are
all simultaneously available, morphisms out of a given object can describe generic
circuits where all systems can interact with one another. Given two space-like curves,
there is no guarantee that they combine to give something space-like, so they consider
categories with partial monoidal structures. Causality itself is imposed by terminality
of the tensor unit.

Morphisms of A → B don’t necessarily imply a time-like dependence of A before
B, instead they merely describe a functional relation between their states - when
there is no time-like path from A to B, there still exist morphisms A → B but they
will be constant, i.e. factorise via the unit. This induces a causal structure over the
objects, where A has no causal influence on B if every morphism A→ B disconnects
in this way. To make sure monoidal products of objects act like space-like slices, we
require that A⊗B exists iff A and B are causally independent.

Within such causal categories, there may exist objects that are causally inter-
twined in the sense that there exist non-separating morphisms in both directions.
The authors gave a helpful intuition for such objects as crossed spatial slices: suppose
A causally precedes C and D precedes B, then A⊗B and C ⊗D can both be space-
like curves but neither causally precedes the other since we have morphisms of the
following forms:

25

A B

DC

∶ A⊗B → C ⊗D

DC

A B

∶ C ⊗D → A⊗B (2.33)

Using this definition of a causal category works great when considering a scenario
with a fixed background space-time that is known in advance, but we find this too
heavy of an assumption for exploring quantum causality in settings that permit indef-
inite causal structure. The restriction to considering morphisms between space-like
slices greatly restricts us to first-order processes; for example, the four interfaces to a
2-comb necessarily carry a linear causal structure, meaning it is impossible to express
a comb as a morphism between two sets of causally independent systems. The same
criticism here can be applied to other frameworks with terminality as a key feature
including the following:

• Markov categories [53] abstract notions of probability theory in a way that
permits convenient and intuitive diagrammatic presentations. Each object is
equipped with a commutative comonoid for copying/broadcasting and deleting.

• Quantum/involutive Markov categories [97, 54] generalise this for quantum in-
formation, taking features of C∗-algebras to describe copying and deleting with
respect to a basis. However, these copy and delete morphisms in general will fail
to be causal processes, so whilst it gives a convenient notational framework in
which we can study quantum information, one has to manually assert causality
of morphisms under consideration.

• Effectus theory [25] describes categories with coproducts + and a terminal object
1 where the morphisms represent “total” morphisms (i.e. those that can be
performed without failure) from which the Kleisli category of the Maybe monad
((−) + 1) contains “partial” morphisms (i.e. those that can be performed with
some chance of error). Monoidal effectuses require the monoidal unit to be
terminal, making the total morphisms correspond to first-order causal processes.
We will address effectuses in more detail in Section 2.9 where we discuss a few
different ways to apply the same principles to higher-order processes.

Whilst not expressed in the language of category theory, Bisio and Perinotti’s
higher-order operational theory for quantum processes [15] was devised independently
of Caus [−] construction but amounts to a particular subcategory of Caus [CP∗]

26

(where CP∗ is the category of finite-dimensional C∗ algebras and completely-positive
maps) relevant for describing physical scenarios. The types of the theory are induc-
tively defined from finite-dimensional Hilbert spaces, populated by density matrices,
and higher-order transformation types for Choi operators of channels that map ele-
ments of the input type to those of the output type. Dual types and two monoidal
structures exist on top of this as derived structures.

Each space is characterised as the direct sum of a fixed scalar of the identity
matrix (i.e. the uniform state) and a subspace of traceless operators. They show
that, for each type constructor T [A,B, . . .] in the theory, the traceless subspace
of T [A,B, . . .] always decomposes by direct sum into products of the identity and
traceless subspaces of A,B, . . ., with the particular set of product combinations used
giving a unique characterisation of the type.

This framework was extended by Hoffreumon and Oreshkov [64], adding new op-
erators for a one-way signalling product, union, and intersection of types, each match-
ing the corresponding operator in Caus [CP∗] but similarly developed independently.
They also reformulated the framework to characterise each space by a projection and
a fixed trace. Every type in their framework can be expressed canonically as a union
of intersections of linear causal structures over the elementary types, following from
distributivity laws between union, intersection, and the one-way product (though
such distributivity between union and intersection does not hold in general in the full
category Caus [CP∗], see 2.7.8).

Whilst expressed in terms of quantum theory in their papers, one could very eas-
ily generalise it to other base physical theories to match the Caus [−] construction
more broadly. It also achieves many of the goals we want, presenting a unified the-
ory of higher-order processes including those with indefinite causal structure. The
types built inductively by combining first-order spaces are relevant from the perspec-
tive of studying physical scenarios, though restricting to this can omit non-physical
systems that may still be useful to study from a computational perspective (see Def-
inition 4.4.1).

The Caus [−] construction itself is by no means a perfect framework for studying
causal structures and higher-order processes, mostly limited by the heavy assumptions
made on the base category meaning we exclude a number of interesting theories we
would like to be able to study (discussed in Section 2.4.1). We will finish this section by
reviewing some recent work that has aimed to recreate a similar categorical framework
for higher-order physical processes that work with an arbitrary symmetric monoidal
category.

27

The most significant assumption to overcome is the need for the base category to
be compact closed to represent higher-order processes with Choi operators. Looking
for a generic alternative to represent, for instance, a 2-comb on (B,A,A′,B′), we
could start with functions between the homsets C (A,A′)→ C (B,B′). It may be the
case that the process A → A′ actually has some additional inputs and outputs that
it exchanges with the environment on which the 2-comb should have no effect, so we
instead need families of functions {C (A⊗X,A′ ⊗X ′)→ C (B ⊗X,B′ ⊗X ′)}X,X′∈Ob(C)

related by commutation with actions on the extension systems. Wilson, Chiribella,
and Kissinger call such families of functions locally-applicable transformations [119],
showing that they are equivalent to 2-combs for finite-dimensional quantum theory.
A strongly locally-applicable transformation is additionally required to commute with
any other locally-applicable transformation applied on the extension system, which
is then enough to recover 2-combs for the category of unitary maps [118]. These now
form a symmetric monoidal category and their multi-partite generalisation (acting
on separable inputs, as seen with process matrices or the quantum switch) form a
polycategory.

Starting with arbitrary functions can lead to (strongly) locally-applicable trans-
formations which aren’t representable as pre- and post-composition with a pair of
processes as in Equation 2.16. The alternative is to build a category of 2-combs
out of such pairs to guarantee, by construction, that everything we handle is rep-
resentable. Hefford and Comfort [61] consider quotienting these by the equivalence
relations below.

(f, g) ∼σ (f ′, g′)⇐⇒
f

B′

B

g

M

A′

A

=
f ′

B′

B

g′

M ′

A′

A

(2.34)

(f, g) ∼comb (f ′, g′)⇐⇒
∀X,X ′.

∀h ∶ A⊗X → A′ ⊗X ′.
f

A

B′

B

A′
g

M h

X

X ′

=

f ′
A

B′

B

A′
g′

M ′ h

X

X ′

(2.35)

28

f

B′

B

g

M

A′

A

v

M ′ ∼opt

f

B′

B

g

M
A′

A

v
M ′

(2.36)

These need not coincide in general, though we always have ∼opt ⊆ ∼comb ⊆ ∼σ and
they are guaranteed to coincide for compact closed categories. Equivalence of Choi
operators is akin to ∼σ, though this need not be a congruence with respect to nesting
of combs which makes it unsuitable for building a category of combs. The others
give rise to categories Optic (C) (the category of coend optics) and Comb (C) which
similarly generalise to polycategories for multi-partite variants.

An ultimate meta-theory for higher-order causal structure would allow us to mix
and match definitions of structures based on externally observable properties like
signal-consistency or locally-applicable transformations, and definitions based on de-
compositions like causal realisability or optics, thus allowing us to study both what
happens in settings when they are equivalent and when distinct. The recent work
of Hefford and Wilson [62] achieves this in the category StProf (C) of strong endo-
profunctors on a monoidal category C and strong natural transformations between
them. For example, locally-applicable transformations are strong natural transfor-
mations C (A⊗ −,A′⊗ =) ⇒ C (B ⊗ −,B′⊗ =), and optics are C (B,−) × C (B′,=) ⇒
C (A,−) × C (A′,=) following the Yoneda embedding.

StProf (C) admits two monoidal structures resembling semi-localisability and sep-
arability, with the appropriate interchange law to make it a closed normal duoidal
category (matching the same for Caus [C], see Proposition 2.6.21). These being closed
monoidal induces a weak duality on objects. A highlight result from their work shows
that locally-applicable transformations and optics are equivalent iff the weak duality
is involutive on profunctors of the form C (A,−) × C (A′,=), drawing a striking rela-
tion between the logical content of a theory and its physical properties in terms of
decomposition theorems. Comparing this logic to that of Caus [C], it is possible to
define an analogue of `, but it is no longer guaranteed to be associative or unital (and
hence not a functor). Under the conjecture that this correspondence between logi-
cal and decompositional structure extends, we can view Caus [C] as an extreme case

29

with very strong and general decomposition theorems (such as the Graph Equivalence
Theorem) which grants it such a rich logic.

Where the Caus [−] construction conjures an inextricable link between the origin
of causal structures and preservation of normalisation conditions, StProf (−) provides
causal structures without links to normalisation, though it may only be truly mean-
ingful when the base category is interpreted as precisely the first-order processes.
Promising future directions to investigate the overlap involve applying the profunctor
constructions to suitably enriched base categories to express non-signalling conditions
and compare them to the existing causal structures on optics.

2.3 Background: the Caus [−] Construction
Given a category C describing an underlying physical theory, one can summarise the
causal category Caus [C] as a process theory of higher-order causal processes through
which interpretations of causal structures emerge. After motivating the goals of the
construction, this section will give a brief summary of the essential material from the
original paper by Kissinger and Uijlen [78], presenting the construction itself, some
basic structural operators, and results relating them to causal structures.

2.3.1 Deriving the Construction

The identity of the Caus [−] construction within the landscape of higher-order process
theories can be characterised by the following three goals:

1. Theory-independence/abstraction - being able to reuse as much as possible be-
tween the study of different theories really helps to understand what properties
are truly fundamental versus determined by the specifics of a given theory. Phys-
ical motivations drive us to at least want versions for both classical probability
theory and (finite-dimensional) quantum theory.

2. Causally consistent processes - each morphism should describe some process
that could be performed in a lab with probability 1, i.e. we guarantee that
every closed diagram evaluates to the unit scalar. Each process may be subject
to different normalisation conditions dependent on how we are interpreting it,
which we will describe as the process being causal for a given type. Moreover,
we should consider maximal sets of causal processes; that is, if we wish to know
whether a state ρ matches a type A, we can enumerate all causally consistent

30

closed diagrams featuring a black box of type A and check that plugging ρ in
gives 1 in every case.

3. Freely compositional - we wish to impose minimal a priori constraints on how
processes may be composed. In particular, this means we should support as
many string diagrams as possible without causal consistency. Having open
diagrams with composition only limited by the matching of interfaces means
we can make reasonable abstractions such as grouping the operations within
a protocol into a single process for each participant, or combining complex,
interleaved interactions between physical processes occurring over non-convex
regions of spacetime into a single interaction.

For Goal 1, we start with a base category C of unnormalised processes within
which we will work (expecting a forgetful functor Caus [C] → C). We require C to
be compact-closed to support the string diagrams imposed by Goal 3. Setting the
standard examples of Mat[R+] to investigate finite-dimensional classical probability
theory and CP∗ for quantum theory, Definition 2.3.1 abstractly presents the properties
of these categories assumed in [78] 7.

Definition 2.3.1: Precausal category [78, Definition 3.1]

A compact closed category C is a precausal category if:

PC1. C has a discarding process A ∈ C(A, I) for every object A, compatible
with the monoidal structure as below;

A⊗B = A ⊗ B (2.37)

I = idI (2.38)

PC2. The scalar8 dA is invertible for all non-zero A;

dA ∶= A
A

(2.39)

PC3. C has enough causal states,

∀f, g ∶ A→ B.
⎛
⎝
∀ρ ∶ I → A. ρ = idI Ô⇒

ρ

f =
ρ

g ⎞
⎠
Ô⇒ f = g

(2.40)

7Note that in [78], PC4 and PC5 are rolled into a single axiom, which is then proven equivalent
to PC4 and PC5.

8This scalar is often called the “dimension”, though even when the scalar dA can be interpreted
as an integer it may not match the cardinality of a basis for A. For example, dim (L (Cn)) = d2L(Cn)
in CP, but dim (N) = dN in Mat[R+].

31

PC4. First-order causal one-way signalling processes are semi-localisable: for
any causal f ∶ A⊗B → C ⊗D,

⎛
⎜
⎝

∃f ′ ∶ A→ C causal.
f = f ′

⎞
⎟
⎠
Ô⇒

⎛
⎜⎜⎜⎜⎜⎜
⎝

∃Z, fA ∶ A→ C ⊗Z causal,
fB ∶ Z ⊗B →D causal.

f =
fA

fB

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.41)

PC5. For all w ∶ I → A⊗B∗:

⎛
⎜⎜⎜
⎝

∀f ∶ A→ B causal.

w

f = idI

⎞
⎟⎟⎟
⎠
Ô⇒ (

∃ρ ∶ I → A causal.
w = ρ

) (2.42)

Example 2.3.2: Classical probability theory

Mat[R+] is a precausal category, whose objects are natural numbers and whose
morphisms M ∶m → n are n ×m matrices. Then, ⊗ is given by tensor product
(a.k.a. Kronecker product) of matrices and consequently the tensor unit is the
natural number 1. Hence, states are column vectors, discarding maps m ∶
m → 1 are given by row vectors of all 1’s, and the causality condition for
states ρ # = id1 imposes the condition that the entries of ρ sum to 1. The
conditions PC1, PC2, and PC3 are easily checked, whereas PC4 and PC5 follow
from the product rule for conditional probability distributions (see [78]).

Example 2.3.3: Finite-dimensional quantum theory

CP is a precausal category, whose objects are algebras L (H) of linear operators
from a finite-dimensional Hilbert space to itself, and whose morphisms are com-
pletely positive maps (CP-maps). ⊗ is given by tensor product and consequently
the tensor unit is the 1D algebra L (C) ≅ C. States are CP-maps C → L (H),
which correspond to positive semidefinite operators ρ ∈ L (H). Discarding is
given by the trace, hence causal states are the trace-1 positive semidefinite
operators, a.k.a. quantum (mixed) states. Again the conditions PC1, PC2,
and PC3 are easily checked, whereas PC4 and PC5 follow from the essential
uniqueness of purification for CP-maps (see [78]).

32

Let’s return to the remaining goal (2) which requires us to limit closed diagrams
to the causally consistent ones. Given a closed string diagram featuring a single black
box, we can always deform the wires to split the diagram into the black box and the
context; for example, if the black box is a state I → A, then we can always frame the
rest of the closed diagram as an effect A→ I.

Definition 2.3.4: Causal scenarios

A closed scenario is a process description with no open systems (i.e. a scalar),
and a context for a morphism f describes a diagram into which f can be placed
to form a closed scenario.

For any state ρ ∈ C(I,A) and effect π ∈ C(A, I), we can interpret the scalar
ρ # π ∈ C(I, I) as the (abstract) probability with which the closed scenario
represented by this diagram can be realised, in the vain of the Born rule for
quantum theory. When the scalar is idI , we say that the scenario described by
the composite diagram is causally consistent, or that ρ is causal in the context
of π (and vice versa).

Double-glueing along a homfunctor [72] provides an all-purpose construction for
enforcing generic normalisation conditions such as causal consistency.

Definition 2.3.5: Double-glueing along a homfunctor (simplified) [72]

Given a symmetric monoidal closed C, the glued category GI(C) has objects of
the form A = (A ∈ Ob (C) , cA ⊆ C(I,A), dA ⊆ C(A, I)) and morphisms f ∶ A →
B are some f ∈ C(A,B) which preserve both the chosen states and effects:

∀ρ ∈ cA .
ρ

f ∈ cB (2.43)

∀π ∈ dB .
f

π

∈ dA (2.44)

The compositional features of GI(C) will often resemble those of C - for each of
symmetric monoidal closed structures, ∗-autonomy, finite products, and finite coprod-
ucts, if they exist in C, then they exist in GI(C) and are preserved by the forgetful
functor GI(C) → C [72]. We will encounter this in more detail across Sections 2.3.2-
2.3.6 and 2.5.1 when reviewing how these structures lift for the Caus [−] construction.

33

There are multiple intuitions one can use to view the objects of GI(C) which we
will freely appeal to throughout when explaining concepts:

• The direct mathematical interpretation views objects A as the pair of a set
of states cA and effects dA which we deem normalised against some criterion
associated with A.

• Taking an operational perspective, an object describes a black-box system which
an external agent may interact with. The black-box has an internal state taken
from cA which the agent can update by appending morphisms. Monoidal prod-
ucts like A⊗B represent composite or multi-partite systems. An agent who
only has access to A can now only apply morphisms of the form f ⊗ idB as they
must commute with every action another agent could take on B. The effects
dA describe the possible complete sequences of actions the agent can take which
yield a closed scenario. In general there may be multiple distinct marginal states
at B induced by the different effects, from which we can define non-signalling
conditions and new objects whose states are admissible with respect to some
causal structure. The freedom of picking any state space cA and effect space
dB allows us to offer agents an artificially restricted set of actions as needed -
for example, in GI(CP) we will not only have a qubit object that supports all
(mixed) states, but also an object that restricts states to specific planes or axes
of the Bloch sphere or, dually, allows an agent to postselect within a given plane.
In Section 2.5.2 we will introduce a way to encode observations via binary tests,
representing the agent’s knowledge as an auxiliary object they also have access
to on which we can condition future actions (e.g. to internalise the agent’s
decision-making). With this in mind, the effects dA involve marginalising away
any such knowledge as the other agent on B would not have access to it.

• We may view an object as a choice of protocol or interface. We can view a state
and effect pair as implementations of two parties participating in the protocol
to completion, one as the party in focus and the other as the environment or
external party. The analogue of causal structure here is the format and ordering
requirements of the messages that are sent between the parties as part of the
protocol.

Applying double-glueing to a precausal category is close to fulfilling our goals, but
we need to restrict the objects such that the conditions of Equations 2.43-2.44 enforce

34

causality. If we consider fixing some set c ⊆ C(I,A), we can construct the maximal
set of effects that are causal in the context of every state in c.

Definition 2.3.6: Dual sets [78, Definition 4.1]

Given c ⊆ C(I,A), the dual set is

c∗ ∶= {π ∈ C(A, I) ∣ ∀ρ ∈ c.
ρ

π
= idI} (2.45)

By compact closure and transposing elements, we may choose to equivalently
interpret c/c∗ as either a set of states in C(I,A)/C(I,A∗) or a set of effects
C(A∗, I)/C(A, I). A set c ⊆ C(I,A) is closed if c = c∗∗.

(−)∗ is an instance of a focussed orthogonality [72] which immediately gives the
following, implying that (−)∗∗ is idempotent and acts as a kind of closure operation:

(−)∗∗∗ = (−)∗ (2.46)
∀c. c ⊆ c∗∗ (2.47)

Additionally, duality reverses the ordering of inclusion between any two sets:

c ⊆ c′Ô⇒ c′∗ ⊆ c∗ (2.48)

Example 2.3.7

We can easily see that closure (−)∗∗ forms the smallest closed set containing
the input. That is, whenever c is a subset of some closed set c′∗∗, we have:

c ⊆ c′∗∗Ô⇒ c′∗∗∗ ⊆ c∗

Ô⇒ c∗∗ ⊆ c′∗∗∗∗ = c′∗∗
(2.49)

For an object (A, cA, dA) ∈ GI(C) to represent a causal system, we need each
combination of a state ρ ∈ cA and an effect π ∈ dA to give ρ # π = idI , i.e. cA ⊆ d∗A and
dA ⊆ c∗A. If we ask that such sets are maximal (i.e. the only restriction we make on
morphisms is causality), we have cA = d∗A = c∗∗A (the tight orthogonality subcategory).
In this case, it is sufficient to just provide one of the sets cA or dA to identify an
object.

The additional symmetry here also makes Equations 2.43, 2.44, and 2.50 equiv-
alent, further driving the idea that causal morphisms are those that can be applied
with probability 1 in any context.

35

∀ρ ∈ cA, π ∈ dB (= c∗B) .
ρ

f

π

= idI (2.50)

The only remaining edge case that does not necessarily lead to causality is when
either cA or c∗A is empty (the other will be the full homset C(I,A) or C(A, I) by
duality, notably including the zero morphism which is not causal in any context).
The final step to get to the Caus [−] construction is to ask that the states are at least
causal against some uniform effect (and, dually, ask for the existence of a uniform
state).

Definition 2.3.8: Flat sets [78, Definition 4.2]

A set c ⊆ C(I,A) is flat if there exist invertible scalars µ, θ ∈ C(I, I) such that
µ ⋅ A ∈ c and θ ⋅ A ∈ c∗. When these scalars exist, they are necessarily unique.

Combining the steps so far, we can define Caus [C] as the full subcategory of
GI(C) on objects (A, cA, dA) with cA = d∗A = c∗∗A flat. For simplicity, we will use the
following explicit definition:

Definition 2.3.9: The Caus [−] Construction [78, Definition 4.3]

Given a precausal category C, the causal category Caus [C] has as objects pairs
A ∶= (A ∈ Ob (C) , cA ⊆ C(I,A)) where cA is closed and flat. A morphism f ∶
A→B is a morphism f ∶ A→ B in C such that ∀ρ ∈ cA. ρ # f ∈ cB.

This has an obvious forgetful functor U ∶ Caus [C] → C which drops the
sets from the objects and is identity on morphisms. We may refer to objects
of Caus [C] as causal types, where the judgement ρ ∶ A means the state ρ is
causal for A (ρ ∈ cA), resembling typing for a program. We introduce notation
µA, θA ∈ C(I, I), A ∶= µA ⋅ A ∈ cA, A ∶= θA ⋅ A ∈ c∗A for the normalisation
constants and normalised uniform state and effect required by flatness.

Remark 2.3.10

For any object A ∈ Ob (Caus [C]) and non-zero scalar λ ∈ C(I, I), we also
have the isomorphic object λA (≅A) ∈ Ob (Caus [C]) where we scale the states
cλA ∶= {λ ⋅ ρ ∣ ρ ∈ cA} (and inversely scale effects c∗λA). The scalar is meaningless
for physical interpretations as it will commute with all actions or observations
made by an agent, and will always meet its inverse in a closed scenario.

36

Remark 2.3.11

Throughout this thesis, whenever we present isomorphisms of objects A ≅ B

without explicitly providing the isomorphism, the underlying isomorphism in C
is the unique coherent morphism f ∶ A→ B between the two carrier objects (i.e.
the identity up to permutations, associators and unitors). From the definition
of Caus [C], this isomorphism must preserve causal states in both directions,
i.e. ∀ρA ∈ cA.ρA # f ∈ cB and ∀ρB ∈ cB.ρB # f−1 ∈ cA. Equalities A = B are the
special case where f is precisely an identity (i.e. the carrier objects coincide
A = B). These coherent isomorphisms are similarly implicit in (extra)natural
transformations A⇒ B, where f is causal but f−1 need not be (when f is an
identity, cA ⊆ cB). Many of these natural transformations and isomorphisms
may resemble theorems of linear logic, though they are not guaranteed to match
the expectations from linear logic exactly (e.g. some isomorphisms from linear
logic will be strict equalities here). In Chapter 3, we will generalise these notions
to describe when any string diagram from C can lift to Caus [C] (see Section 3.2)
as well as make the connections to linear logic more explicit.

The other parts of this section will dive into the operators of Caus [C] to both see
how they lift the compositional structure of C and generate interesting examples.

2.3.2 Monoidal Unit

The unit I of C can be lifted to the following object I in Caus [C]. We claim here that
this will be the monoidal unit for several monoidal structures, and will prove it when
we introduce each of them.

Definition 2.3.12: Monoidal unit [78]

I ∶= (I, {idI})

I has a single valid state, which we typically view as an empty diagram. This
means that for any A, its states are precisely the homset Caus [C] (I,A) = cA and
effects are Caus [C] (A, I) = c∗A. Again, this reinforces the concept of causal normali-
sation since the composition of any state ρ ∶ I → A and effect π ∶ A → I must be idI ,
the unit (abstract) probability.

2.3.3 Dual Objects

Compact closure of C allows us to transpose any morphism f ∈ C(A,B) to f∗ ∈
C(B∗,A∗) as defined in Equation 2.19, giving us a time-symmetric view of our pro-

37

cesses. Transposition exchanges notions of states and effects and formally expresses
a duality between viewing morphisms as transforming states or transforming ef-
fects. This duality is lifted to Caus [C] as a similar (strong monoidal) functor (−)∗ ∶
Caus [C]op → Caus [C]. We will also prove that this is a proper duality when we look
at the monoidal structures.

Definition 2.3.13: Dual objects [78]

The duality functor (−)∗ ∶ Caus [C]op → Caus [C] is defined on objects as

A∗ ∶= (A∗, c∗A)

and sends morphisms to their transpose in C.

When viewing an object as describing a set of processes or implementations of an
interface, the dual object describes the set of effects/contexts that can be applied to
them with probability 1 or ways to consume or interact with a black-box presenting
that interface.

It is straightforward to see that the monoidal unit is self-dual I = I∗.

2.3.4 First-order Objects

First-order systems A1 and their duals A1∗ are the simplest atomic components of
a causal scenario, capturing degenerate interfaces that respectively represent outputs
with (in general) multiple distinguishable states but only one choice of effect A that
an external agent can apply, or inputs where an external agent can choose how to
interact with the system but they cannot receive information from it.

In most theories, states of a first-order system will correspond to basic data (dis-
tributions over a finite set) or descriptions of a physical system (density matrices of
a finite-dimensional Hilbert space) at a single point in time.

Definition 2.3.14: First-order objects [78, Definition 5.1]

An objectA ∈ Caus [C] is first-order when there is a unique causal effect, ∣c∗A∣ = 1.
By the assumption of flatness, the unique effect must be A, i.e. A up to some
invertible scalar. For each A ∈ Ob (C), there is a unique first-order object (up
to isomorphism) denoted as A1.

A1 ∶= (A,{ A}
∗)

38

Since the morphisms in Caus [C] can be fully characterised as those that preserve
effects (Equation 2.44), it follows immediately from this definition that morphisms
f ∶ A1 → B1 between two first-order objects precisely match Definition 2.1.1 for
first-order causal morphisms.

If a system is both first-order and first-order dual, i.e. it has a single state and
effect, then it is isomorphic to the trivial system I.

Definition 2.3.15: First-order subcategory

We denote the full subcategory of first-order objects as FO (Caus [C]). Within
this subcategory, I is terminal (Caus [C] (A1, I) = { A}).

2.3.5 Tensor and Par

In C, A⊗B represents parallel composition of two systems. There are multiple ways
of lifting this to Caus [C] depending on what kinds of states and effects we permit on
the joint system.

A⊗B is the smallest closed space containing all separable states over the joint
system, which may include some states that are not separable or even localisable.

Definition 2.3.16: Tensor [78]

The tensor product in Caus [C] is the bifunctor ⊗ ∶ Caus [C] × Caus [C] →
Caus [C] defined on objects as

A⊗B ∶= (A⊗B,{ ρA ρB ∣ρA ∈ cA, ρB ∈ cB}
∗∗
)

and on morphisms identically to ⊗ ∶ C × C → C.

Theorem 2.3.17: [78, Theorem 4.7]

(⊗, I) forms a symmetric monoidal structure in Caus [C].

At the other extreme, A`B is the full space of bipartite processes that act locally
like A and B, yielding an object with more states and fewer effects.

Definition 2.3.18: Par [78]

The par product in Caus [C] is the bifunctor ` ∶ Caus [C]×Caus [C]→ Caus [C]
defined on objects as

39

A`B ∶=
⎛
⎜
⎝
A⊗B,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h

RRRRRRRRRRRRR
∀πA ∈ c∗A, πB ∈ c∗B. h

πA
A B

πB

= idI

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟
⎠

(2.51)

=
⎛
⎜
⎝
A⊗B,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h

RRRRRRRRRRRRR
∀πA ∈ c∗A. h

πA
A B ∈ cB

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟
⎠

(2.52)

=
⎛
⎜
⎝
A⊗B,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h

RRRRRRRRRRRRR
∀πB ∈ c∗B. h

πB
BA ∈ cA

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟
⎠

(2.53)

and on morphisms identically to ⊗ ∶ C × C → C.

These three definitions for A`B are equivalent by Definition 2.3.6.
Whilst the local marginals show that this acts like an A and B in parallel, causal

contexts can only act locally on them (or at least are generated by closure (−)∗∗ of
the separable contexts). This allows us to model distributed protocols or physical
systems separated by a substantial distance in space or time, where there may not
be a way to present the A and B interfaces simultaneously for a localised agent to
interact with both.

In contrast, we can think of A⊗B as a system where the A and B are simul-
taneously accessible, so the contexts can freely pass information between them. For
example, if B =A∗ then a separable state is precisely a pair of state and effect for A
which we can plug together since the cap ϵA ∈ C (A⊗A∗, I) of the compact structure is
causal ϵA ∈ Caus [C] (A⊗A∗, I). In the multi-round communication protocol picture,
ϵA would play a copycat, forwarding each input from the A side to the corresponding
output on the A∗ side and vice versa.

The relationship between separable states of A⊗B (up to closure) and separable
effects of A`B is exhibited in the de Morgan duality between ⊗ and `:

(A⊗B)∗ =A∗ `B∗ (2.54)

We can understand ` a little better by looking at the internal hom A⊸B which
represents the space of transformations from A to B.

Definition 2.3.19: Internal hom [78]

⊸∶ Caus [C]op × Caus [C] → Caus [C] is the bifunctor on Caus [C] defined on
objects as

40

A⊸B ∶=A∗ `B (2.55)

=(A∗ ⊗B,{ h ∣∀ρA ∈ cA.
hρA

A A∗ B ∈ cB}) (2.56)

=
⎛
⎜
⎝
A∗ ⊗B,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h

RRRRRRRRRRRRR
∀πB ∈ c∗B. h

πB
A∗A B ∈ c∗A

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟
⎠

(2.57)

and on morphisms identically to (−)∗ ⊗ (=) ∶ Cop × C → C.

Each state of A⊸B is an encoding of a transformation which we can view in
either direction: composing it with any state of A gives a state of B, or dually
applying any effect B∗ yields an effect A∗. ⊸ makes Caus [C] monoidal closed wrt
⊗, with encodings and evaluations given by composing with the cup ηA ∶ I→A∗ `A

and cap ϵA ∶A⊗A∗ → I, precisely capturing the Choi-Jamiołkowski isomorphism.
As the symbols ⊗,`,⊸ suggest, these form a model of multiplicative linear logic,

or more specifically an extension called ISOMIX logic.

Theorem 2.3.20: [78, Theorem 4.10]

For any precausal category C, Caus [C] is an ISOMIX category; that is, a ∗-
autonomous category with a coherent isomorphism I ≅ I∗.

Corollary 2.3.21

(`, I) forms a symmetric monoidal structure in Caus [C], and ⊗ is closed
monoidal with right-adjoint ⊸ and duality functor (−)∗.

Proof. Immediate from 2.3.20.

This immediately generates equalities and natural transformations between expres-
sions over the operators. Examples of this include Equations 2.54 and 2.55 and the
natural transformations below representing subset inclusions on the state sets, which
corresponds to the mix and switch rules of deep inference for linear logic [58, 109]
(see Section 3.1).

A⊗B⇒A`B (2.58)
A⊗ (B`C)⇒ (A⊗B)`C (2.59)

However, additional equations exist specifically for first-order objects.

41

Proposition 2.3.22: [78, Corollary 5.5]

For any first-order objects A1, B1, their tensor and par coincide.

A1 ⊗B1 ≅A1 `B1

Furthermore, the result is the first-order object on A⊗B.

We will further address the implications of the logical structure of Caus [C] in
Section 3.2.3.

A final distinction we can make between ⊗ and ` is how they impact the level of
information signalling across their states and how this can be used to construct the
spaces of processes compatible with some simple causal structures.

Theorem 2.3.23: [78, Theorems 6.2, 6.3, 6.4, Corollary 6.9]

Fix some first-order objectsA1,B1,C1,D1 and consider some Choi operator h ∈
C (I,A∗ ⊗B ⊗C∗ ⊗D). The following statements hold up to the appropriate
permutation of the systems:

FO⊗. h ∶ (A1⊸B1)⊗ (C1⊸D1) iff h is the Choi operator of a first-order
causal non-signalling process A⊗C → B ⊗D.

FO`. h ∶ (A1⊸B1)` (C1⊸D1) iff h is the Choi operator of a first-order
causal process A⊗C → B ⊗D.

FO⊸. h ∶A1⊸ (B1⊸C1)⊸D1 iff h is the Choi operator of a first-order causal
one-way signalling process A⊗C → B ⊗D.

These all generalise to the multi-partite case accordingly. In the latter case, the
states of A1

0⊸ (. . . (A1
N−1⊸A1

N) . . .)⊸A1
2N−1 coincide with the N -combs on

(A0, . . . ,A2N−1).

The most surprising of these is the characterisation of ⊗. Unpacking the definition
of (A1⊸B1)⊗ (C1⊸D1), we start with the separable first-order causal channels
and then apply the closure operator (−)∗∗ which would add additional processes. This
result shows that this closure is capable of introducing correlations between the left
and right subsystems, but that the correlations it can introduce are too weak to allow
for information to pass between them. This is the first-step towards characterising
what the closure operator actually does from a linear algebra perspective, which we
will refine later (see the Affine Closure Theorem).

42

In addition to combs, Caus [C] is home to many other higher-order processes of
interest. In particular, whilst ⊗ seems to limit us to non-signalling processes - a
definite causal structure - dualising it to ` no only permits information signalling in
both directions but covers processes with indefinite causal structure.

Theorem 2.3.24: [78, Theorem 7.2] (simplified)

Fix some first-order objects A1,B1,C1,D1. h ∈ C (I,A∗ ⊗B ⊗C∗ ⊗D) is a
process matrix iff h ∶ ((A1⊸B1)⊗ (C1⊸D1))∗.

Example 2.3.25

The Choi operator QSw of the quantum switch over A ∈ CP is a morphism of
type ((A1⊸A1)⊗ (A1⊸A1))⊸ (C1 ⊗A1⊸C1 ⊗A1) in Caus [CP] where
C1 is the first-order object on C2.

2.3.6 Intersections

The final operation investigated in [78] was an intersection ∩ of causal objects, al-
lowing us to combine constraints to generate more general causal structures. Rather
than corresponding to a logical connective, this is intended to model intersection of
sets similarly to intersection types [35, 8] in programming languages.

One complication is that, if we try to take the intersection of two sets with different
underlying objects or different constants of proportionality (µA, θA), we will get the
empty set which is not flat.

Theorem 2.3.26: [78, Theorem 6.15] (simplified)

For any objects A = (A, cA), A′ = (A, cA′) with the same underlying object
A ∈ Ob (C) and the same normalisation scalars µA = µA′ and θA = θA′ , the
intersection object

A ∩A′ ∶= (A, cA ∩ cA′) (2.60)

yields a pullback for the causal cospan

A ∩A′ A

A′ A′′

idA

idA′
⌟

idA

idA′

(2.61)

43

Example 2.3.27

For any A and B, the objects A⊗B and A`B both have the same underlying
object (A⊗B ∈ Ob (C)) and normalisation scalars (µA ⋅ µB and θA ⋅ θB), so we
can construct their intersection

(A⊗B) ∩ (A`B) = (A⊗B, cA⊗B∩cA`B
) (2.62)

However, the natural transformation A⊗B⇒A`B (Equation 2.58) tells
us that cA⊗B ⊆ cA`B, so this intersection just collapses to the tensor:

(A⊗B) ∩ (A`B) =A⊗B (2.63)

Remark 2.3.28

The full version of [78, Theorem 6.15] also accounts for permutations, e.g. if
A and A′ are monoidal products of objects in different orders. For notational
ease, when writing A ∩A′ we will assume that the appropriate permutation
isomorphisms are implicitly applied to ensure the carrier objects in C match
exactly. At times, we may clarify by fixing the target permutation to, for
example, some ordering over the elements of a causal structure.

Using the following result, we can generate objects describing an arbitrary causal
structure ≤ from intersections of linear causal structures (characterised by the comb
construction FO⊸). This matches the standard philosophy of using partial orders to
represent multiple possible total orderings over elements, such as in event orderings
for distributed systems [82].

Theorem 2.3.29: [78, Theorem 6.12]

Given a causal structure ≤ ⊆ V ×V , a totalisation < ∶ V ×V is a total order with
the same elements, i.e. u ≤ vÔ⇒ u < v.

A process f is signal-consistent with respect to ≤ iff f is signal-consistent
with respect to every totalisation of ≤.

Example 2.3.30

Non-signalling can be expressed as the intersection of one-way non-signalling
in each direction.

(A1⊸B1)⊗ (C1⊸D1) = (A1⊸ (B1⊸C1)⊸D1)
∩ (C1⊸ (D1⊸A1)⊸B1) (2.64)

44

2.4 Assumptions on the Underlying Theory
When investigating higher order causal theories, it is useful to strengthen the def-
inition of a precausal category in a handful of ways. This section will present an
alternative set of axioms to assume with some brief justifications, before demonstrat-
ing how they provide additional mathematical tools from linear algebra and how this
affects our understanding of the structure of Caus [C].

2.4.1 Additive Precausal Categories

For the remainder of this thesis, we will adapt the definition of Caus [C] to be built
from an additive precausal category C.

Definition 2.4.1: Additive precausal category

Let C be a compact closed category with products. Such a category always has
biproducts and additive enrichment [69]: each homset is a commutative monoid,
writing summation of f, g ∈ C(A,B) as f + g ∈ C(A,B) and zero morphisms as
0A,B ∈ C(A,B). C is an additive precausal category if:

APC1. C has a discarding process A ∈ C(A, I) for every system A, compatible
with the monoidal and biproduct structures as below;

A⊗B = A ⊗ B (2.65)

I = idI (2.66)

A⊕B = [A, B] (2.67)

APC2. The scalar dA is invertible for all non-zero A;

dA ∶= A
A

(2.68)

APC3. Each object A ∈ Ob (C) has a finite causal basis: a minimal finite set
{ρi}i∈BCA ⊆ { A}

∗ of causal states (indexed by some set BCA with ∣BCA∣ =
dim (A)) which are sufficient to distinguish morphisms;

∀B. ∀f, g ∈ C(A,B).
⎛
⎝
∀i ∈BCA.

ρi

f =
ρi

g ⎞
⎠
Ô⇒ f = g (2.69)

APC4. Addition of scalars is cancellative (∀x, y, z. x+z = y+z Ô⇒ x = y), totally
preordered (∀x, y. ∃z. x = y + z ∨ y = x + z), and all non-zero scalars have
a multiplicative inverse.

45

APC5. All effects have a complement with respect to discarding: for any π ∈
C(A, I), there exists some π′ ∈ C(A, I) and scalar λ such that π+π′ = λ⋅ A.

The first 3 axioms relate closely to the corresponding ones in Definition 2.3.1,
whereas the last two are quite different in flavour, and are in some sense more elemen-
tary, as their proofs don’t rely on any particularly deep facts about our main classical
and quantum examples (see Examples 2.4.2 and 2.4.4 below).

The axioms APC1 and APC2 above are essentially identical to PC1 and PC2,
with the additional requirement that discarding be compatible with biproducts as
well as tensor products.

APC3 is a strengthening of condition PC3. Rather than requiring us to check a
pair of processes agree on all causal states to be equal, we only require agreement on
some fixed finite set of states. In other words, each system has a set of states that
behaves like a basis spanning all the others, for the purposes of distinguishing maps.
In the quantum foundations literature, this is sometimes called a fiducial set of states.

APC4 says that the semiring of scalars C (I, I) behaves somewhat like the set of
non-negative real numbers R+, allowing us to interpret them as (pseudo)-probabilities.
While the scalars need not be a field (indeed our main example R+ is not), any field
satisfies this axiom as well.

APC5 allows us to interpret effects (up to some renormalisation) as testing some
predicate. To see how this works, first assume for simplicity that λ = idI . We can
think of an effect π ∶ A→ I as some predicate over A, and π′ as its negation. For any
causal state ρ, we can think of the composition p1 ∶= ρ # π as the probability that π is
true for ρ and p2 ∶= ρ # π′ as the probability that π is false. The fact that π + π′ = A

lets us conclude that those probabilities sum to 1:

p1 + p2 = ρ # π + ρ # π′ = ρ # (π + π′) = ρ # A = idI (2.70)

If λ ≠ idI , the previous reasoning holds after re-normalising, i.e. replacing π and π′

with λ−1 ⋅ π and λ−1 ⋅ π′.

Example 2.4.2: Classical probability theory

Mat[R+] defined as in Example 2.3.2 is also an additive precausal category,
where ⊕ is given by the direct sum of matrices. The standard basis of unit
vectors gives a basis for APC3, the semiring of scalars Mat[R+](I, I) ≅ R+

satisfies APC4, and for APC5, we just need to choose a suitably large λ such
that π′ ∶= λ ⋅ A − π contains only positive numbers.

46

Example 2.4.3: Affine probability theory

In addition to R+, we can construct an additive precausal category Mat[K]
for any field of characteristic 0. In particular, Mat[R] is an additive precausal
category that is identical to Mat[R+] but without any positivity constraint,
describing affine or “quasi-probabilistic” maps where negative probabilities are
permitted.

Example 2.4.4: Finite-dimensional quantum theory

The quantum example is very nearly the category CP, as defined in Exam-
ple 2.3.3, but CP doesn’t have biproducts. If we freely add biproducts, we
obtain a category CP∗ whose objects are all finite-dimensional C∗-algebras (or
equivalently, algebras of the form L (H1)⊕ . . .⊕L (Hk)) and completely positive
maps. Discarding is again given by the trace operator, so APC1 and APC2 are
straightforward to verify. For APC3, we can fix a (non-orthogonal) basis of
states for each type. As in the classical case, the scalars are R+, so APC4 is
immediate and since A is an interior point in the cone of positive effects, π′

can be defined as λ ⋅ A − π for suitably large λ.

We note that the restrictions of (additive) precausal categories still omit a number
of interesting alternative settings, including:

• Categories of non-deterministic processes such as Rel, where the scalars are
boolean values with a non-cancellative addition given by disjunction. Rel is
also known to fail PC5 (see [78, Appendix A.3]).

• Settings with infinite-dimensional systems such as Hilb, which are rarely com-
pact closed.

• Real quantum mechanics (i.e. the subcategory of CP∗ containing the matri-
ces with real-valued entries) which is compact-closed but doesn’t admit local
discrimination, failing PC3/APC3.

2.4.2 Subtractive Closure

Note that, with the help of bases (APC3), we can promote additive cancellativity of
scalars to additive cancellativity for all processes.

47

Lemma 2.4.5
In an additive precausal category:

∀f, g, h ∈ C (A,B) . f + h = g + hÔ⇒ f = g (APC4a)

Proof. By APC3, we can fix bases of causal states {ρi}i∈BCA , {υj}j∈BCB∗ for the
systems A and B∗ respectively. By transposing the υj, we can regard them as
effects υ∗j ∶ B → I. Now, suppose f + h = g + h. Then, for all i, j:

ρi #(f + h)#υ∗j = ρi #(g + h)#υ∗j Ô⇒ ρi #f #υ∗j +ρi #h#υ∗j = ρi #g #υ∗j +ρi #h#υ∗j (2.71)

Applying cancellation for scalars APC4, we conclude that ρi # f # υ∗j = ρi # g # υ∗j .
Transposing and applying APC3 to the basis {υj}j∈BC

B∗
gives ρi #f = ρi #g. Then,

a second application of APC3 to {ρi}i∈BCA gives f = g.

This condition allows us to define the free subtractive closure Sub (C), which ex-
tends C with all negatives, and prove that there exists a faithful embedding [−] ∶ C →
Sub (C).

Definition 2.4.6: Subtractive closure

Given an additive precausal category C, the free subtractive closure Sub (C)
formed by the objects of C and morphisms A → B are equivalence classes of
pairs of morphisms f, g ∈ C (A,B) under the relation (f, g) ∼ (f ′, g′) def⇐Ô⇒
f + g′ = f ′ + g. Composition of morphisms is defined as (f, g) # (x, y) ∶=
(f # x + g # y, f # y + g # x).
The intent behind this construction is that a morphism (f, g) should represent

the expression f − g, and hence this should be seen as equivalent to f ′ − g′ when
(f − g) + g + g′ = f + g′ = f ′ + g = (f ′ − g′) + g + g′ by cancellativity.

Proposition 2.4.7

Sub (C) is an Ab-enriched category.

Proof. Firstly, we need ∼ to be an equivalence relation. Reflexivity and sym-
metry are both trivial. For transitivity, given (f, g) ∼ (a, b) ∼ (x, y) we have
f + b = a + g and a + y = x + b. Hence, f + y + b = a + g + y = x + b + g, so by
cancellativity f + y = x + g, i.e. (f, g) ∼ (x, y).

48

Since morphisms of Sub (C) are equivalence classes, we need composition
to be well-defined with respect to our choices of representatives. That is, if
(f, g) ∼ (f ′, g′) and (x, y) ∼ (x′, y′), then (f, g) # (x, y) ∼ (f ′, g′) # (x′, y′). From
f + g′ = f ′ + g and x + y′ = x′ + y we have:

f # x + g′ # x = f ′ # x + g # x
f ′ # y + g # y = f # y + g′ # y
f ′ # y′ + g # y′ = f # y′ + g′ # y′
f # x′ + g′ # x′ = f ′ # x′ + g # x′
f # x + f # y′ = f # x′ + f # y
g # x′ + g # y = g # x + g # y′
g′ # x′ + g′ # y = g′ # x + g′ # y′
f ′ # x + f ′ # y′ = f ′ # x′ + f ′ # y

(2.72)

We note that, since C is compact closed, tensor products distribute over
summation. In particular, ∀f. f + f = 2 ⋅ f where 2 is the scalar idI + idI .
Summing these equations and using cancellativity:

2 ⋅ (f # x + g # y + f ′ # y′ + g′ # x′) = 2 ⋅ (f # y + g # x + f ′ # x′ + g′ # y′) (2.73)

By APC4, 2 is invertible. Cancelling it out, the resulting equation exactly
gives us (f, g) # (x, y) ∼ (f ′, g′) # (x′, y′).

Next, composition must be unital. The identity on A is (idA,0A,A) since:

(f, g) # (idB,0B,B) ∼ (f # idB + g # 0B,B, f # 0B,B + g # idB)

∼ (f + 0A,B,0A,B + g)

∼ (f, g)

∼ (idA # f + 0A,A # g, idA # g + 0A,A # f)
∼ (idA,0A,A) # (f, g)

(2.74)

We also need composition to be associative. Given (f, g) ∶ A → B, (x, y) ∶
B → C, and (u, v) ∶ C →D:

((f, g) # (x, y)) # (u, v) ∼ (f # x + g # y, f # y + g # x) # (u, v)
∼ (f # x # u + g # y # u + f # y # v + g # x # v,

f # y # u + g # x # u + f # x # v + g # y # v)
∼ (f, g) # (x # u + y # v, x # v + y # u)
∼ (f, g) # ((x, y) # (u, v))

(2.75)

49

Finally, Ab-enrichment comes from inheriting the enrichment in commuta-
tive monoids from C via (f, g) + (x, y) ∶= (f + x, g + y) and we have inverses
− (f, g) ∶= (g, f). We can similarly show that these are well-defined regardless
of the choice of representatives by showing ∼ is preserved. Invertibility comes
from (f, g) + − (f, g) ∼ (f, g) + (g, f) ∼ (f + g, g + f) ∼ (0A,B,0A,B).

Proposition 2.4.8

There is a faithful embedding [−] ∶ C → Sub (C) that is the identity on objects
and maps morphisms as [f] ∶= (f, 0A,B).

Proof. For functoriality, (f, 0A,B) # (g, 0B,C) ∼ (f # g, 0A,C) and identities are
(idA,0A,A). The identity on objects is injective, so this functor is an embedding.
For faithfulness, if we have f, g ∶ A → B such that (f, 0A,B) ∼ (g, 0A,B), then
f = f + 0A,B = g + 0A,B = g.

To help distinguish between working in different categories, we will use ∼ for
both equivalence of representative pairs and equality of morphisms of Sub (C) as
equivalence classes, keeping = for equality of morphisms in C. The faithfulness of
the embedding ([f] ∼ [g] Ô⇒ f = g) allows us to use Sub (C) as a mathematical
environment with more structure and still always draw useful conclusions in C itself.

Example 2.4.9

Applying Sub (−) to our standard examples of additive precausal categories:

• Sub (Mat[R+]) ≅ Mat[R] since for each dimension the standard basis
vectors have non-negative entries, i.e. they live in Mat[R+], but under
linear combination can generate arbitrary real-valued vectors;

• Sub (Mat[R]) ≅Mat[R] since Mat[R] already contains all negations;

• Looking at CP∗, each elementary object L (Cn) is a vector space of dimen-
sion n2 in which the completely positive maps span only the Hermitian
maps under linear combination, forming a real vector space despite be-
ing built from complex matrices. For biproducts, the complete positivity
requirements act independently on each subspace, so we still obtain real
vector spaces. We then obtain arbitrary finite dimensions as biproducts
of L (C), concluding that Sub (CP∗) is also equivalent to Mat[R].

50

The next few results all show that a lot of categorical structure lifts from C to
Sub (C).

Proposition 2.4.10

The embedding [−] ∶ C → Sub (C) is strong monoidal, where the monoidal
product in Sub (C) acts on objects identically to C and on morphisms as (f, g)⊗
(x, y) ∶= (f ⊗ x + g ⊗ y, f ⊗ y + g ⊗ x).

Proof. Firstly, this monoidal product is well-defined, i.e. if (f, g) ∼ (f ′, g′) and
(x, y) ∼ (x′, y′) then (f, g) ⊗ (x, y) ∼ (f ′, g′) ⊗ (x′, y′). This can be proved
identically to the case for sequential composition.

We inherit the unit, associators, and unitors from C as I, [αA,B,C] ∶ (A ⊗
B)⊗C → A⊗ (B ⊗C), [λA] ∶ I ⊗A → A, [ρA] ∶ A⊗ I → A. These will still be
invertible by functoriality of the embedding. For naturality:

((f, g)⊗ (x, y))⊗ (u, v) # (αD,E,F ,0)

∼ (((f ⊗ x + g ⊗ y)⊗ u + (f ⊗ y + g ⊗ x)⊗ v) # αD,E,F ,
((f ⊗ x + g ⊗ y)⊗ v + (f ⊗ y + g ⊗ x)⊗ u) # αD,E,F

)

∼ (αA,B,C # (f ⊗ (x⊗ u + y ⊗ v) + g ⊗ (x⊗ v + y ⊗ u)) ,
αA,B,C # (f ⊗ (x⊗ v + y ⊗ u) + g ⊗ (x⊗ u + y ⊗ v)))

∼ (αA,B,C ,0) # (f, g)⊗ ((x, y)⊗ (u, v))
(2.76)

(f, g)⊗ (idI ,0I,I) # (ρB,0B⊗I,B)
∼ (f ⊗ idI + g ⊗ 0I,I , f ⊗ 0I,I + g ⊗ idI) # (ρB,0B⊗I,B)
∼ (f ⊗ idI , g ⊗ idI) # (ρB,0B⊗I,B)
∼ ((f ⊗ idI) # ρB, (g ⊗ idI) # ρB)
∼ (ρA # f, ρA # g)
∼ (ρA,0A⊗I,A) # (f, g)

(2.77)

and similarly for (λA,0I⊗A,A). In the above, we have used compact closure of C
to infer that f⊗0C,D = 0A⊗C,B⊗D. We may also inherit the triangle and pentagon
equations by functoriality of the embedding. We now have that Sub (C) is a
monoidal category.

For the embedding to be strong monoidal, the maps [−]0 ∶ ISub(C)
≅Ð→ [IC]

and ([−]2)A,B ∶ [A]⊗[B] ≅Ð→ [A⊗B] are given by identities. Naturality of [−]2 is
just (f, 0)⊗ (g, 0) ∼ (f ⊗ g + 0⊗ 0, f ⊗ 0 + 0⊗ g) ∼ (f ⊗ g, 0). The compatibility
equations reduce to α[A],[B],[C] ∼ [αA,B,C], λ[A] ∼ [λA] and ρ[A] ∼ [ρA].

51

Proposition 2.4.11

Sub (C) is compact closed, and the embedding from C preserves symmetry, duals,
cups, and caps.

Proof. The symmetry in Sub (C) is [σA,B]. The hexagon equation and invert-
ibility follow by functoriality. For naturality:

(f, g)⊗ (x, y) # (σC,D,0)

∼ (f ⊗ x + g ⊗ y, f ⊗ y + g ⊗ x) # (σC,D,0)

∼ ((f ⊗ x) # σC,D + (g ⊗ y) # σC,D, (f ⊗ y) # σC,D + (g ⊗ x) # σC,D)

∼ (σA,B # (x⊗ f) + σA,B # (y ⊗ g) , σA,B # (x⊗ g) + σA,B # (y ⊗ f))
∼ (σA,B,0) # (x⊗ f + y ⊗ g, x⊗ g + y ⊗ f)
∼ (σA,B,0) # (x, y)⊗ (f, g)

(2.78)

We appeal to the standard result that monoidal functors preserve duals [63,
Theorem 3.14], which constructs the cup [−]0 # [ηA] # ([−]2)−1A∗,A ∼ [ηA] ∶ I →
A∗ ⊗ A and cap ([−]2)A∗,A # [ϵA] # [−]−10 ∼ [ϵA] ∶ A ⊗ A∗ → I for all objects of
Sub (C) since the embedding is bijective on objects. Hence, Sub (C) is compact
closed.

Proposition 2.4.12

Sub (C) has biproducts, and the embedding from C preserves the biproduct
structure.

Proof. We can inherit the biproduct A ⊕ B with injections [ιA] ∶ A → A ⊕ B,
[ιB] ∶ B → A ⊕ B and projections [pA] ∶ A ⊕ B → A, [pB] ∶ A ⊕ B → B. The
characteristic equations

ιAi
pAj

=
⎧⎪⎪⎨⎪⎪⎩

idAi
i = j

0Ai,Aj
i ≠ j

(2.79)

pA # ιA + pB # ιB = idA⊕B (2.80)

are preserved by functoriality.

The next few proofs show that the ordering and invertibility of scalars from APC4
also lift to Sub (C).

52

Lemma 2.4.13

Every scalar in Sub (C) is either a scalar of C or a negation of one: ∀s ∈
Sub (C) (I, I) . ∃λ ∈ C (I, I) . s ∼ [λ] ∨ s ∼ − [λ].

Proof. Pick some candidate representatives s ∼ [s+]− [s−]. As C (I, I) is totally
ordered, either s+ ≥ s− or s+ ≤ s−. If there exists some λ such that s+ = s− + λ
then s ∼ [s−] + [λ] − [s−] ∼ [λ], and similarly for the other ordering.

Proposition 2.4.14

The total preorder on C (I, I) generalises to a preorder on any homset C (A,B).
Sub (C) (A,B) admits a similar preorder f ≤ g def⇐Ô⇒ ∃h ∈ C(A,B). f + [h] ∼ g
which satisfies the following:

1. The functor [−] ∶ C → Sub (C) is monotone wrt the preorders.

2. Sub (C) (I, I) is totally preordered.

3. A scalar s ∈ Sub (C) (I, I) satisfies 0 ≤ s iff s ∼ [λ] for some λ ∈ C(I, I).
Hence, the following notions of convex combinations coincide:

• ∑i si ⋅ [fi] with 0 ≤ si ∈ Sub (C) (I, I) and ∑i si ∼ idI ;

• [∑i λi ⋅ fi] with λi ∈ C(I, I) and ∑i λi = idI .

Proof. 1. If f ≤ g ∈ C (A,B) then we have some h ∈ C (A,B) with f + h = g.
Since [−] preserves the additive enrichment, [g] ∼ [f + g] ∼ [f] + [g] so
[f] ≤ [g].

2. Given any s, t ∈ Sub (C) (I, I), consider the scalar s− t. By Lemma 2.4.13,
either s − t ∼ [r] or s − t ∼ − [r] for some r ∈ C (I, I). This gives either
s ∼ t + [r] or s + [r] ∼ t.

3. 0 ≤ s iff there exists some λ ∈ C (I, I) such that s ∼ 0+[λ] ∼ [λ]. The equiv-
alence between the notions of convex combinations can then be obtained
by using this to map between the presentations of the scalars; pulling the
sum equation back into C (I, I) also uses the preservation of the additive
enrichment and faithfulness of the embedding [−].

53

Proposition 2.4.15

For any additive precausal category C, the scalars K ∶= Sub (C) (I, I) are a field,
and hence Sub (C) is enriched over K-vector spaces.

Proof. As the subtractive closure of the semiring C (I, I), we already know that
K is a ring, so it suffices to show that K has multiplicative inverses. Take a
non-zero element k ∈K. By Lemma 2.4.13, it is either [λ] or − [λ] for some λ ∈
C (I, I), which must also be non-zero by faithfulness of the embedding. Hence,
we can invert it by APC4 and take k−1 to be [λ−1] or − [λ−1] as appropriate.
Enrichment in K-vector spaces then follows immediately.

Sub (C) trivially has complements for all morphisms in the sense of APC5. We
can still extend APC5 to all morphisms of C by using compact closure to turn them
into effects and back again.

Lemma 2.4.16
In an additive precausal category, all morphisms f ∶ A→ B have a complement
f ′ ∶ A → B with respect to the uniform noise process A # B; that is, there
exists a scalar λ such that:

f + f ′ = λ ⋅ A # B (APC5a)

Proof. We can first make f into an effect πf ∶ A ⊗B∗ → I using the compact
structure: πf ∶= (f ⊗ idB∗) # ϵB. Then, applying APC5, we get a complement
π′ satisfying πf + π′ = λ ⋅ (A ⊗ B∗). Then, taking f ′ ∶= (idA ⊗ ηB) # (π′ ⊗ idB)
satisfies the required property APC5a.

The final results of this section concern the treatment of bases in APC3. In
particular, they are preserved by subtractive closure, and more usefully that Sub (C)
is expressive enough to have dual effects for any linearly independent set of states.

Proposition 2.4.17

Any set of states {ρi}i∈BCA ⊆ C (I,A) is a basis for A in C (in the sense of being a
minimal set of states that can distinguish any morphisms A → B as in APC3)
iff {[ρi]}i∈BCA is a basis for A in Sub (C).

54

Proof. It is sufficient to just show equivalence between the ability to distinguish
morphisms in each category, since preservation of minimality follows as a basic
consequence of this (any subset of the {ρi}i∈BCA would distinguish all morphisms
in C iff it does so in Sub (C)).
Ô⇒: Suppose {ρi}i∈BCA form a basis for A in C. Consider an arbitrary B and

some (f+, f−) , (g+, g−) ∈ Sub (C) (A,B). Suppose that ∀i ∈BCA. [ρi] #(f+, f−) ∼
[ρi] # (g+, g−). Unpacking this, we have ∀i ∈ BCA. ρi # (f+ + g−) = ρi # (g+ + f−).
Since {ρi}i∈BCA forms a basis in C, we have f+ + g− = g+ + f−, i.e. (f+, f−) ∼
(g+, g−).
⇐Ô: Suppose {[ρi]}i∈BCA forms a basis for A in Sub (C). Consider an arbi-

trary B and some f, g ∈ C(A,B) such that ∀i ∈BCA. ρi#f = ρi#g. By functoriality
of the embedding we get ∀i ∈BCA. [ρi] # [f] ∼ [ρi] # [g], and then we can use the
basis property to derive that [f] ∼ [g], which implies f = g by faithfulness.

Lemma 2.4.18

Given any set of states in C (I,A) that are linearly independent in Sub (C), they
can be extended to a basis in C with a dual basis in Sub (C).

Proof. Let {ρi}i∈BCA ⊆ C (I,A) be a minimal finite basis which must exist wlog
from APC3. We will start by showing that this has a dual basis, i.e. a set of
effects {ei}i∈BCA ⊆ Sub (C) (A, I) such that:

[ρi] # ej ∼ δi,j ∼ ⎧⎪⎪⎨⎪⎪⎩
idI i = j
0I,I i ≠ j

(2.81)

The vector of scalars ρi #π must uniquely identify any effect π ∈ C (A, I), giving
us a coordinate system for effects. Similarly, the set of effects {πj}j∈BC

A∗
⊆

C (A, I) formed as the transpose of a minimal basis for A∗ from APC3 can
yield coordinates ρ # πj that uniquely describe any state ρ ∈ C (I,A).

We can build a matrix of the scalars (in Sub (C)) formed by the inner prod-
ucts mi,j = [ρi # πj], so the rows describe coordinates of the states {ρi}i∈BCA
and columns for the effects {πj}j∈BC

A∗
. Performing column operations such as

rescaling by a non-zero scalar s or summing columns j and k generates the coor-
dinates of the effect s ⋅πj or πj +πk. By cancellative addition and invertibility of
non-zero scalars from APC4, we can still represent each effect in {πj}j∈BC

A∗
as a

linear combination of the new column effects. Since the scalars of Sub (C) form

55

a field, we can apply Gaussian elimination with column operations to yield
column effects {ej}j∈BC

A∗
⊆ Sub (C) (A, I) such that [ρi] # ej ∼ δi,j. Gaussian

elimination completes since zero columns would imply {πj}j∈BC
A∗

were linearly
dependent and unsolved rows would similarly contradict minimality of {ρi}i∈BCA ,
and by the same argument the matrix is square (dim (A) = dim (A∗)) so we can
reindex the column effects as {ei}i∈BCA .

The new column effects still represent a basis for A∗ in Sub (C) under trans-
position. The {[π∗j]}j∈BC

A∗
form a basis for A∗ in Sub (C) by Proposition 2.4.17,

and one output of Gaussian elimination (with back substitution) is a matrix of
constants {si,j}i∈BCA,j∈BC

A∗
⊆ Sub (C) (I, I) such that [πj] ∼ ∑i∈BCA

si,j ⋅ ei. Hence,
if any two morphisms f, g ∈ Sub (C) (A∗,B) agree on {e∗i }i∈BCA , they must agree
on any linear combination, meaning they agree on each of {[π∗j]}j∈BC

A∗
, and so

they are equal. Minimality comes from the need to distinguish {ρi}i∈BCA under
transposition (if some e∗i were excluded, the remainder would not be able to
determine [ρ∗i] /∼ [0A∗,I] ∈ Sub (C) (A∗, I) since all inner products will be zero
in both cases). We now have that {ei}i∈BCA is a dual basis to {ρi}i∈BCA .

Given any set of states {υk}k ⊆ C (I,A) that are linearly independent in
Sub (C), we can extend the set to {υ′i}i∈BCA by adding any terms from {ρi}i∈BCA
that preserve linear independence. We can then similarly diagonalise the inner
products with {ei}i∈BCA to represent each ρi as a linear combination of {υ′i}i∈BCA
and prove that they form a basis and construct a dual basis for it.

The existence of a dual basis notably implies that any state ρ ∈ Sub (C) (I,A)
can be uniquely characterised by an expansion in terms of basis states ∑i∈BCA

αi ⋅ [ρi],
making our notion of a basis fit the usual linear algebraic definitions.

2.4.3 Impacts on Caus [C]

Using an additive precausal category makes it easier to devise interesting closed sets
or interpret the impact of the closure operator since it just corresponds to taking
affine combinations of states. For this to make sense, we should say precisely what
we mean to take affine combinations of states in C.

Definition 2.4.19: Affine closure

For a set of states c ⊆ C (I,A), we define sets aff (c) ⊆ Sub (C) (I,A) and
aff+ (c) ⊆ C (I,A) as follows:

56

aff(c) ∶= {ρ ∈ Sub (C) (I,A) ∣ ∃{ρi}i ⊆ c,{si}i ⊆ Sub (C) (I, I) .
∑i si ∼ idI , ρ ∼ ∑i si ⋅ [ρi]

} (2.82)

aff+(c) ∶= {ρ ∈ C (I,A) ∣ [ρ] ∈ aff (c)} (2.83)

If we identify the set C (I,A) with its image under [−], we can think if aff+ (c)
as the intersection of the affine closure of c with the set C (I,A) ⊆ Sub (C) (I,A) of
“positive” states embedded in the subtractive closure. In the classical and quantum
cases, aff+ (−) arises from taking all the affine combinations of elements of c, then
intersecting the resulting set with the positive cone of (unnormalised) probability
distributions or quantum states, respectively.

To help prove that (−)∗∗ is affine closure, we attribute each flat set c with a
preferred basis which partitions into a subset which spans c and those disjoint from c.

Definition 2.4.20: Preferred basis

A preferred basis for a flat set of states c ⊆ C (I,A) is a basis {ρi}i∈BCA ⊆ C (I,A)
such that ∀i ∈ BCA. ρi # θ ⋅ A = idI (where θ ⋅ A ∈ c∗ by flatness) containing a
maximal linearly independent subset of c. These always exist by Lemma 2.4.18,
picking the additional states from the default first-order causal basis (APC3)
and renormalising. We write Bc ∶= {i ∈BCA ∣ ρi ∈ c} for the indices of the basis
elements in c and Bc =BCA ∖Bc.

A preferred basis for A ∈ Ob (Caus [C]) is a preferred basis for cA and we
write BA ∶=BcA and BA ∶=BcA .

Example 2.4.21

Let’s look at some preferred bases for some simple objects. For any first-order
object A1, APC3 immediately gives us a basis for A ∈ Ob (C) where every state
is causal. For example, the binary object 2 has a preferred basis given by the
two boolean states B2 =BC2 = {t,f}. By definition, we then have B2 = ∅.

Dually, 2∗ has a single causal state, 2∗ , so B2∗ = { 2∗}. We can then pick
any other state of 2∗ ≅ 2 ∈ Ob (C) with the same normalisation to extend this
to a full basis, such as BC2∗ = { 2∗ , µ−12 ⋅ t}, in which case B2∗ = {µ−12 ⋅ t}.

When we compare 2∗ ⊗ 2 and 2∗ ` 2 = 2⊸ 2, we know that they share the
same underlying object 2∗ ⊗ 2 ∈ Ob (C) and normalisation scalars, so let’s try
constructing a single basis for 2∗⊗2 that is preferred by both 2∗ ⊗ 2 and 2∗ ` 2.

57

From the definition of ⊗, we can start with the separable states consisting of
the elements from preferred bases of 2∗ and 2.

{t⊗ 2∗ ,f⊗ 2∗ ,t⊗ µ−12 ⋅ t,f⊗ µ−12 ⋅ t} (2.84)

The first two of these generate the states of 2∗ ⊗ 2, but this is not preferred for
2∗ ` 2: neither of the latter two states are causal for 2∗ ` 2 and yet they are
both required to generate (t⊗ t) + (f⊗ f) ∶ 2∗ ` 2 (the Choi operator of the
identity). If we replace one of the basis elements with this term, we reach a
point where three basis elements generate every state of 2∗ ` 2.

BC2∗⊗2 = {t⊗ 2∗ ,f⊗ 2∗ , (t⊗ t) + (f⊗ f) ,t⊗ µ−12 ⋅ t} (2.85)

B2∗⊗2 = {t⊗ 2∗ ,f⊗ 2∗} (2.86)
B2∗⊗2 = {(t⊗ t) + (f⊗ f) ,t⊗ µ−12 ⋅ t} (2.87)
B2∗`2 = {t⊗ 2∗ ,f⊗ 2∗ , (t⊗ t) + (f⊗ f)} (2.88)
B2∗`2 = {t⊗ µ−12 ⋅ t} (2.89)

Appendix B presents Python code for exploring Caus [Mat[R]], where we
represent each type A by a matrix whose column vectors describe BA for
some choice of preferred basis. It contains a number of additional examples of
preferred bases for different objects, and the code demonstrates how one can
algorithmically generate them.

Lemma 2.4.22

A preferred basis {ρi}i∈BCA for a flat set c ⊆ C (I,A) (θ ⋅ A ∈ c∗) with a dual basis
{ei}i∈BCA (as in Lemma 2.4.18) satisfies:

PB0. ∀i ∈Bc. ∀υ ∈ c. [υ] # ei ∼ 0;
PB∑. [θ ⋅ A] ∼ ∑i∈BCA

ei;

PBc. {ρi ∣ i ∈Bc}∗∗ = c∗∗;

PB∗. c∗ = {π ∈ C (A, I) ∣ ∃{si}i∈Bc
⊆ Sub (C) (I, I) . [π] ∼ [θ ⋅ A] +∑i∈Bc

si ⋅ ei};

PBC. ∀i ∈Bc. ∃π ∈ c∗, α ∈ C (I, I) . α ≠ 0 ∧ [π] ∼ [θ ⋅ A] + [α] ⋅ ei.

58

Proof. PB0: Since the basis contains a maximal linearly independent subset of
c, we must be able to express any υ ∈ c as a linear combination [υ] ∼ ∑i∈Bc

si ⋅[ρi],
and hence for any i ∈Bc. [υ] # ei ∼ 0.

PB∑: This follows by a resolution of the identity and normalisation of the
basis elements.

[θ ⋅ A] ∼
⎛
⎝∑i∈BCA

ei # [ρi]⎞⎠ # [θ ⋅ A]

∼ ∑
i∈BCA

ei # idI

∼ ∑
i∈BCA

ei

(2.90)

PBc: We will show the dual, {ρi ∣ i ∈Bc}∗ = c∗. The ⊇ direction is immedi-
ate from Equation 2.48. If an effect π satisfies ρi # π = 0 for any ρi ∈ c, then it
also satisfies this for any linear combinations, and any state in c is expressible
in this way by maximality of the linearly independent subset contained in the
basis.

PB∗: Since {ei}i∈BCA form a basis for Sub (C) (I,A∗) under transposition,
any effect in Sub (C) (A, I) has a unique expression as a linear combination
of them. Given the dual of PBc, each condition ρi # π = idI (from π ∈ c∗) is
equivalent to fixing one of the coefficients in this linear combination to match
that of θ ⋅ A ∈ c∗. This leaves the coefficients of each index in Bc as free.

PBC: Choose some representative decomposition ei ∼ [e+i]−[e−i] with e+i , e−i ∈
C (A, I). By APC5, there is some invertible λ ∈ C(I, I) and e′ ∈ C (A, I) such
that e′ + e−i = λ ⋅ A, i.e.

[θλ−1 ⋅ (e′ + e+i)] ∼ [θ ⋅ A] + [θλ−1] ⋅ ei (2.91)

This is in c∗ by PB∗.

Theorem 2.4.23: Affine Closure Theorem

Given any flat set c ⊆ C (I,A) for a non-zero A, c∗∗ = aff+ (c).

Proof. Fix a preferred basis {ρi}i∈BCA for c with a dual basis {ei}i∈BCA .

59

⊇: For any affine combination ∑i∈Bc
si ⋅ [ρi] and π ∈ c∗, linearity gives

(∑
i∈Bc

si ⋅ [ρi]) # π = ∑
i∈Bc

si ⋅ [ρi # π]
= ∑

i∈Bc

si

= [idI]

(2.92)

Hence any υ ∈ C (I,A) that is such an affine combination in Sub (C) is in c∗∗.
⊆: Consider an arbitrary υ ∈ c∗∗ and i ∈ Bc. By PBC, let π ∈ c∗ satisfy

[π] ∼ [θ ⋅ A] + [α] ⋅ ei.

[υ] # ei ∼ [α−1 ⋅ υ # θ ⋅ A] + [υ] # ei − [α−1]
∼ [α−1 ⋅ υ] # ([θ ⋅ A] + [α] ⋅ ei) − [α−1]

∼ [α−1 ⋅ υ # π] − [α−1]
∼ [α−1] − [α−1]

∼ 0

(2.93)

Repeating for each i ∈Bc and expanding υ, we now have [υ] ∼ ∑i∈BCA
([υ] # ei) ⋅

[ρi] ∼ ∑i∈Bc
([υ] # ei) ⋅ [ρi], i.e. υ is a linear combination of terms in c. This

combination is affine since:

∑
i∈Bc

[υ] # ei ∼ ∑
i∈Bc

([υ] # ei) ⋅ ([ρi] # [θ ⋅ A])

∼ (∑
i∈Bc

([υ] # ei) ⋅ [ρi]) # [θ ⋅ A] (2.94)

∼ [υ] # [θ ⋅ A]

∼ idI

With this in mind, we can now rephrase each of the operators in Caus [C] in terms
of the preferred bases of the component systems.

Proposition 2.4.24

Let {ρi}i∈BCA be a preferred basis for A ∈ Ob (Caus [C]) with dual basis {ei}i∈BCA .
For each i ∈BA, let πi ∈ c∗ be an effect such that [πi] ∼ [A]+ [αi] ⋅ei from PBC.
Then

c∗A = ({ A} ∪ {πi}i∈BA
)∗∗

60

Proof. Affine combinations allow us to generate any expression [A]+∑i∈BA
si ⋅ei,

coinciding with c∗ by PB∗.

Proposition 2.4.25

Let {ρAi }i∈BCA and {ρBj }j∈BCB be preferred bases for objects A,B ∈ Ob (Caus [C]).
Then

cA⊗B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
h

RRRRRRRRRRRRRR

[h] ∼ ∑i,j si,j ⋅ [ρAi ⊗ ρBj] ,
∑i,j si,j ∼ idI ,

∀i, j. i ∈BA ∨ j ∈BBÔ⇒ si,j = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Proof. ⊇ is immediate from the Affine Closure Theorem. For ⊆, by PBc the
states of A are affine combinations of {ρAi }i∈BA

and the same for B. Then
every product state ρA⊗ρB is an affine combination of the product basis states
{ρAi ⊗ ρBj }i∈BA,j∈BB

.

Proposition 2.4.26

Let {ρAi }i∈BCA and {ρBj }j∈BCB be preferred bases for objects A,B ∈ Ob (Caus [C]).
Then

cA`B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

h

RRRRRRRRRRRRRRRRRRRRRRRR

[h] ∼ ∑i,j si,j ⋅ [ρAi ⊗ ρBj] ,
∑i,j si,j ∼ idI ,

∀i, j. i ∈BA ∧ j ∈BB Ô⇒ si,j = 0
∀i ∈BA. ∑j si,j ∼ 0,
∀j ∈BB. ∑i si,j ∼ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Proof. Consider an arbitrary h ∈ C (I,A⊗B) with expansion [h] ∼ ∑i,j si,j ⋅
[ρAi ⊗ ρBj].

Equation 2.51 describes cA`B as those states that are causal with respect
to separable effects. By Proposition 2.4.24

c∗A = ({ A} ∪ {πA
i }i∈BA

)
∗∗

∀i ∈BA. [πA
i] ∼ [A] + [αA

i] ⋅ eAi
c∗B = ({ B} ∪ {πB

j }j∈BB
)
∗∗

∀j ∈BB. [πB
j] ∼ [B] + [αB

i] ⋅ eBi

(2.95)

We can then equate the conditions on the coefficients {si,j}i,j to causality
with respect to particular effects. Firstly, the combination is affine by causality

61

with respect to the uniform effect.

[h # (A ⊗ B)] ∼∑
i,j

si,j ⋅ [(ρAi ⊗ ρBj) # (A ⊗ B)]

∼∑
i,j

si,j ⋅ [idI ⊗ idI]

∼∑
i,j

si,j

(2.96)

h # (A ⊗ B) = idI ⇐⇒∑
i,j

si,j ∼ idI (2.97)

Under the assumption that ∑i,j si,j ∼ idI , then each i ∈ BA gives another
constraint.

[h # (πA
i ⊗ B)] ∼ [h] # (([A] + [αA

i] ⋅ eAi)⊗ [B])

∼ [h # (A ⊗ B)] + [αA
i] ⋅ [h] # (eAi ⊗∑

j

eBj)

∼ [idI] + [αA
i] (∑

j

si,j)

(2.98)

h # (πA
i ⊗ B) = idI ⇐⇒∑

j

si,j ∼ 0 (2.99)

Similarly, each j ∈BB gives

h # (A ⊗ πB
j) = idI ⇐⇒∑

i

si,j ∼ 0 (2.100)

Assuming all the above constraints are met, we then have a final constraint
for each pair of i ∈BA and j ∈BB.

[h # (πA
i ⊗ πB

j)] ∼ [h] # (([αA
i] ⋅ eAi +∑

i′
eAi′)⊗ ([αB

j] ⋅ eBj +∑
j′
eBj′))

∼ (∑
i′,j′

si′,j′) + [αB
j] (∑

i′
si′,j) + [αA

i] (∑
j′
si,j′) + [αA

i α
B
j] si,j

∼ [idI] + 0 + 0 + [αA
i α

B
j] si,j

∼ [idI] + [αA
i α

B
j] si,j

(2.101)

h # (πA
i ⊗ πB

j) = idI ⇐⇒ si,j = 0 (2.102)

Causality is preserved under affine combinations of effects, so these condi-
tions are equivalent to causality under separable effects, i.e. h ∈ cA`B.

62

Proposition 2.4.27

Suppose A and A′ share the same underlying object A ∈ Ob (C) and normali-
sation scalars, and let {ρi}i∈BCA be a preferred basis for both A and A′. Then

cA∩A′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
υ

RRRRRRRRRRRRRR

[υ] ∼ ∑i si ⋅ [ρi] ,
∑i si ∼ idI ,

∀i ∈BA ∪BA′ . si ∼ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Proof. Membership in cA and cA′ respectively mean that our state’s unique
expansion as an affine combination of the basis terms only uses the terms from
BA (∀i ∈BA. si ∼ 0) and only those from BA′ (∀i ∈BA′ . si ∼ 0).

A simple corollary of Proposition 2.4.25 captures what [117] refers to as the prin-
ciple of “no interaction with trivial degrees of freedom”. In particular, it recovers
the precausal category axiom PC5 by showing that every state of (A1⊸B1)∗ =
(A1∗ `B1)∗ =A1 ⊗B1∗ decomposes into a product of a state of A1 and B∗ .

Corollary 2.4.28

If A ∈ Ob (Caus [C]) is first-order dual (cA = { A}), then every h ∈ cA⊗B is a
product morphism of the form A ⊗ g for some g ∈ cB.

Proof. In any preferred basis for A, {ρAi }i∈BA
= { A}. From Proposition 2.4.25,

[h] ∼ [A]⊗∑j∈BB
sj ⋅ [ρBj]. Then

∑
j∈BB

sj ⋅ [ρBj] ∼ [A # A]⊗ ∑
j∈BB

sj ⋅ [ρBj]

∼
⎛
⎝
[A]⊗ ∑

j∈BB

sj ⋅ [ρBj]
⎞
⎠

[A ⊗ idB]

∼ [h # (A ⊗ idB)]

(2.103)

Hence h = A ⊗ (h # (A ⊗ idB)) with h # (A ⊗ idB) ∈ cB since it is expressible as
an affine combination of states of cB.

With that, we have almost completely recovered all the precausal category axioms
from those of additive precausal categories. The one remaining condition, PC4, was
only significant for Kissinger and Uijlen’s proofs of FO⊗ and FO⊸ (FO` did not
require this so it still holds).

We can already recover FO⊗ since the Affine Closure Theorem characterises the
states c(A1⊸B1)⊗(C1⊸D1) as the affine closure of separable processes, from which we can

63

follow the proof of Theorem 2.1.9 to equate this with the non-signalling processes. We
will later generalise this beyond first-order to arbitrary A⊗B (see the Non-signalling
Theorem).

In Section 2.6.4 we will recover a slightly weaker version of PC4 by the equiva-
lence of one-way signalling with the affine closure of semi-localisability (see the Seq
Equivalence Theorem). Through this, we obtain another monoidal product which
degenerates to A1⊸ (B1⊸C1)⊸D1 on first-order systems.

2.5 Additive Operators
As well as the monoidal product of C lifting to multiple non-degenerate monoidal
products on Caus [C], we can lift the biproduct structure to distinct products and
coproducts, modelling the additives of linear logic. In this section, we apply the
standard constructions from double-glueing and examine how the results give rise
to probabilistic choice and conditional operation. These operators will be key to
encoding (abstract) probability distributions in arbitrary causal categories.

2.5.1 Products and Coproducts

The following constructions for products and coproducts are the standards from
double-glueing [72] adapted to account for closure, where we can either describe
them in terms of states or effects. For completeness, we will explicitly prove that
the constructions do in fact give categorical products and coproducts for Caus [C],
along with the equivalence between the alternative forms.

Definition 2.5.1

We define bifunctors ×,⊕ ∶ Caus [C] × Caus [C] → Caus [C] by the following
actions on objects.

A ×B ∶=(A⊕B,({pA # πA ∣ πA ∈ c∗A ⊆ C(A, I)}
∪{pB # πB ∣ πB ∈ c∗B ⊆ C(B, I)})

∗

) (2.104)

= (A⊕B,{⟨ρA, ρB⟩ ∣ ρA ∈ cA, ρB ∈ cB}) (2.105)
A⊕B ∶= (A⊕B, ({ρA # ιA ∣ ρA ∈ cA} ∪ {ρB # ιB ∣ ρB ∈ cB})∗∗) (2.106)

= (A⊕B, {[πA, πB] ∣ πA ∈ c∗A ⊆ C(A, I), πB ∈ c∗B ⊆ C(B, I)}
∗) (2.107)

They respectively act on morphisms f ∶ A → B, g ∶ C → D as ⟨pA # f, pC # g⟩ ∶
A ×C→B ×D and [f # ιB, g # ιD] ∶A⊕C→B⊕D.

64

Proposition 2.5.2

The alternative definitions of A ×B of 2.104 and 2.105 are equivalent and,
furthermore, yield a categorical product in Caus [C].

Proof. ⊆: For any ρ ∈ ({pA # πA ∣ πA ∈ c∗A} ∪ {pB # πB ∣ πB ∈ c∗B})∗, the η-rule for
products allows us to expand it as ρ = ⟨ρ # pA, ρ # pB⟩. Then ρ # pA ∈ cA since ρ
satisfies ρ # pA # πA = idI for all πA ∈ c∗A, and similarly ρ # pB ∈ cB.
⊇: For any states ρA ∈ cA, ρB ∈ cB and effects πA ∈ c∗A, πB ∈ c∗B, we have

⟨ρA, ρB⟩ # pA # πA = ρA # πA = idI and ⟨ρA, ρB⟩ # pB # πB = ρB # πB = idI .
To show that we have a product, suppose we are given some f ∶C→A and

g ∶ C→B. The existence and uniqueness of ⟨f, g⟩ can be inherited from the
fact that A ⊕B is a (bi)product in C, so we just need to show that ⟨f, g⟩, pA,
and pB are all causal.

Given any state ρ ∈ cC, since f and g are causal we have ρ#f ∈ cA and ρ#g ∈ cB.
The product definition of cA×B now gives that ρ # ⟨f, g⟩ = ⟨ρ # f, ρ # g⟩ ∈ cA×B, so
⟨f, g⟩ ∶C→A ×B.

For the projections, we know that all states ofA ×B are of the form ⟨ρA, ρB⟩
for some ρA ∈ cA and ρB ∈ cB. Since ⟨ρA, ρB⟩ # pA = ρA ∈ cA, we have pA ∶
A ×B→A and similarly pB ∶A ×B→B.

Proposition 2.5.3

The alternative definitions of A⊕B of 2.106 and 2.107 are equivalent and,
furthermore, yield a categorical coproduct in Caus [C].

Proof. Dualising the proof of Proposition 2.5.2 (i.e. swapping the roles of
states/products/projections with effects/coproducts/injections) gives us the re-
quired results.

As expected, these give rise to a de Morgan duality.

Corollary 2.5.4

(A ×B)∗ =A∗ ⊕B∗

Proof. This is immediate from the symmetric definitions of cA×B and cA⊕B. For
example,

65

c∗A⊕B = {[πA, πB] ∣ πA ∈ c∗A ⊆ C (A, I) , πB ∈ c∗B ⊆ C (B, I)}

= {[ρ∗A, ρ∗B] ∣ ρA ∈ cA∗ ⊆ C (I,A∗) , ρB ∈ cB∗ ⊆ C (I,B∗)}

= {pA # ρ∗A + pB # ρ∗B ∣ ρA ∈ cA∗ , ρB ∈ cB∗}
= {(ρA # ιA∗ + ρB # ιB∗)∗ ∣ ρA ∈ cA∗ , ρB ∈ cB∗}
= {⟨ρA, ρB⟩∗ ∣ ρA ∈ cA∗ , ρB ∈ cB∗}

= cA∗×B∗ ⊆ C (A⊕B, I)

(2.108)

Here we have used that injections and projections may be treated as trans-
poses of one another when we suppose that the compact structure for the duality
A⊕B ⊣ A∗⊕B∗ in C is built from those of A ⊣ A∗ and B ⊣ B∗ in the canonical
way [63].

2.5.2 Probabilistic Choice

The intuition for how we can think of × and ⊕ operationally follow from their standard
interpretations in linear logic.

Instead of presenting a pair of interfaces in parallel, A⊕B and A ×B present
a single interface which can be chosen to act either like A or B. The distinction
is whether this choice is made in advance during state preparation for A⊕B, or
if the context is allowed to make the choice of projecting into A or B for A ×B.
As a linear resource, the choice is made to be exactly one of these, i.e. we can’t
choose to interact with both the A and B components of A ×B simultaneously, but
we can make the choice probabilistically since convex combinations can always be
constructed in Caus [C]. This interpretation allows us to view A⊕B instead as a
kind of probabilistic test which sometimes gives one result and prepares an A, and
otherwise prepares a B; dually, we could view A ×B as a system which accepts a
binary test result and conditionally prepares an A or a B.

Remark 2.5.5

Probabilistic choice has been handled slightly differently in the logic literature
through sub-additives [68], in which A⊕p B describes something that yields A
with probability 0 < p < 1 and B with probability 1 − p. These assumptions
ensure that both outcomes are actually possible.

The additives in Caus [C] simultaneously capture the traditional interpreta-

66

tion of A⊕B as either definitely A or definitely B (with the outcome possibly
dependent on some previous input), and sub-additives for any possible choice of
probability. This suits our desire to capture black-box systems, since an exter-
nal agent may not know the probability distribution generated by a particular
process up front.

Thinking of first-order types as describing systems with no input (i.e. no choice
in how to interact with them), both the product and coproduct have interesting
interactions with first-order types because of where the classical choice happens. For
coproducts, the choice is already fixed in the creation of a state, so we expect it to
preserve the first-order property. However, products introduce freedom of choice in
effects, allowing us to view the projections as inputs to the system dictating whether
it should prepare the left or the right state.

Proposition 2.5.6

If A and B are both first-order, then so is A⊕B.

Proof. If cA = { A}
∗ and cB = { B}

∗, then we have

cA⊕B = {[πA, πB] ∣ πA ∈ c∗A, πB ∈ c∗B}
∗ = {[A, B]}

∗ = { A⊕B}
∗ (2.109)

using APC1.

Proposition 2.5.7

A ×B is never first-order.

Proof. By flatness, both pA # A and pB # B are in cA×B. They are distinct as
morphisms of C since they can be distinguished using ⟨ρA,0I,B⟩ for any ρA ∈ cA
(projecting on B will give zero whereas projecting on A will give idI).

A particular first-order object that will play a special role throughout this thesis
is the binary object 2.

Definition 2.5.8

The binary object is defined as

2 ∶= I⊕ I (2.110)

for which we denote the two injections as t ∶= ι1 and f ∶= ι2.

67

This is the smallest non-trivial state space (i.e. a space with multiple distinguish-
able states), and hence the simplest system that can be used to send information. By
definition, the states of 2 are affine mixtures of the left and right injections which
we can model as two-dimensional vectors of scalars summing to idI (our interpreta-
tion of the abstract probability 1). In our standard examples for C, the scalars for
Mat[R+] and CP∗ are R+ and the (complete) positivity requirement constrains each
element of the vector to be positive, giving two-outcome probability distributions. For
Mat[R] we have R without any such positivity restriction, giving two-outcome pseudo-
probabilities. This construction generalises to I⊕n for n-outcome (pseudo-)probability
distributions.

Recall that we can view effects in C as testing a predicate on a given state, us-
ing APC5 to obtain its negation. APC5a allows us to generalise this beyond effects
to view any morphism in C as something that can be performed with some probabil-
ity (which may depend on the context, and need not be in the range [0,]), i.e. one
branch of a binary test. The following Lemma shows that we can encode the success
or failure of such a test into a separate output with type 2.

Lemma 2.5.9: Binary Test Lemma

For any f ∈ C(A,B) and A = (A, cA) ,B = (B, cB) ∈ Ob (Caus [C]), there exists
some non-zero scalar λ ∈ C(I, I), morphism f ′ ∈ C(A,B) and causal morphism
tf ∈ Caus [C] (A,B` 2) such that tf = (λ ⋅ f ⊗ t) + (f ′ ⊗ f).

Proof. Apply APC5a to f to get f ′ ∈ C(A,B) and λ ∈ C(I, I) where f + f ′ =
λ ⋅ A # B which is causal up to a scalar by flatness. We then pick tf =
(θAµBλ−1 ⋅ f ⊗ t) + (θAµBλ−1 ⋅ f ′ ⊗ f).

To check tf ∈ Caus [C] (A,B` 2), we consider an arbitrary effect π ⊗ 2 ∈
c∗B`2.

tf # (π ⊗ 2) = θAµBλ
−1 ⋅ (f ⊗ t # π ⊗ 2 + f ′ ⊗ f # π ⊗ 2)

= θAµBλ
−1 ⋅ (f # π + f ′ # π)

= θAµB ⋅ A # B # π (2.111)
= A # B # π
= A ∈ c∗A

In a time-oriented picture, the causality condition implies that the probability of
the test outcome must be independent of whatever the environment does with the

68

output, so one might have expected the causal type of the binary test to beA→B⊗ 2.
However, Caus [C] is not time-oriented like this; B could be some higher-order system
including an input which might affect the test outcome. In the special case of first-
order systems, we have B1 ` 2 ≅ B1 ⊗ 2 which recovers this independence, but ` is
necessary in general.

2.6 The Seq Operator
In dropping the assumption of equivalence of one-way signalling and semi-localisability
from PC4, we lost out on the characterisation ofA1⊸ (B1⊸C1)⊸D1 as first-order
causal one-way signalling processes from FO⊸. This section will recover this result
by explicitly building a monoidal structure for one-way signalling on higher-order
systems and showing that it degenerates in the appropriate way for first-order sys-
tems. We initially consider several alternative constructions for the set of valid states
based on one-way signalling, semi-localisability, and an asymmetric sum of products
inspired by a construction for probabilistic coherence spaces [17], before showing that
they all coincide up to affine closure.

2.6.1 One-Way Signalling

Let us return to the familiar causal structure between two parties, Alice and Bob,
where Bob is completely in the future of Alice. Rather than each being limited to the
first-order picture where they each receive a single input from their environment and
yield a single output, we now consider arbitrary protocols under which they interact
with the environment as described by some causal types A,B ∈ Ob (Caus [C]). The
joint process performed by Alice and Bob must, primarily, act locally like A at Alice
and B at Bob, so any valid state must be a state of A`B in addition to being
consistent with the causal structure.

One-way signalling states that the marginal process at Alice is independent of any
input given to Bob by the environment.

f

Aout

Ain Bin

= fA

Aout

Ain Bin

(2.112)

This generalises to independence of any choice over Bob’s context.

69

Definition 2.6.1: One-way signalling product

cA < cB ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
h

RRRRRRRRRRRRR
∀πB ∈ c∗B. h

πB
BA =

h

BA ∈ cA
⎫⎪⎪⎪⎬⎪⎪⎪⎭

This is clearly a refinement of the condition in Equation 2.53 for cA`B. To see
that this is generalises one-way signalling, we must first convince ourselves that this
recovers Definition 2.1.2 when the local systems describe first-order processes.

Proposition 2.6.2

Fix any first-order objects A1,B1,C1,D1 and consider some Choi operator
h ∈ C (I,A∗ ⊗B ⊗C∗ ⊗D). Then h ∈ cA1⊸B1 < cC1⊸D1 iff h is the Choi operator
of a first-order causal one-way signalling process A⊗C → B ⊗D.

Proof. First, consider what the effects π ∈ c∗
A1⊸B1 look like. As these are dual

to the set of first-order processes A1⊸B1, we can visualise them this way:

π ∶∶ f ↦ πf (2.113)

Consequently, the condition in the Definition 2.6.1 applied to cA1⊸B1 < cC1⊸D1

says that for any causal effect π ∈ cC1⊸D1 we have:

πh = h =∶ hAB (2.114)

However, the effects in c∗
C1⊸D1 always take the form of plugging a causal state

of C1 into the process and discarding the result by Corollary 2.4.28. Hence, the
equation above is equivalent to saying that for all states ρ ∈ cC1 , there exists
hAB such that:

h

ρ

= hAB = hAB ρ (2.115)

which, by APC3 recovers one-way non-signalling as shown in Definition 2.1.2:

h = hAB (2.116)

70

2.6.2 Semi-Localisability

Recall that semi-localisability asks the process to factorise into two local processes
with an intermediate system passed from one to the other.

f

Aout Bout

Ain Bin

=
fA

Aout Bout

Ain Bin

fB
M (2.117)

Taking this diagram and directly mapping it to higher-order systems would give the
following with fA ∶A`M and fB ∶M→B:

f

A B

=
fA

A B

fB
M (2.118)

This is not quite what we are looking for since an arbitrary intermediate system could
permit information flow in both directions. Instead, we restrict it to a first-order
object, following our understanding of the causality principle as limiting a backwards
information flow.

Definition 2.6.3

cA ◁ cB ∶= {
hAZ hZB

Z∗ZA B ∣ hAZ ∈ cA`Z1 ,
hZB ∈ cZ1∗`B

}

Again, we recover the original definition of semi-localisability if we fix A and B

to first-order processes.

Proposition 2.6.4

Fix any first-order objects A1,B1,C1,D1 and consider some Choi operator
h ∈ C (I,A∗ ⊗B ⊗C∗ ⊗D). Then h ∈ cA1⊸B1◁cC1⊸D1 iff h is the Choi operator
of a first-order causal semi-localisable process A⊗C → B ⊗D.

Proof. Using ∗-autonomy and Proposition 2.3.22, we can exhibit the following
equivalences:

(A1⊸B1)`Z1 ≅A1⊸ (B1 `Z1) (2.119)
≅A1⊸ (B1 ⊗Z1)

Z1∗ ` (C1⊸D1) ≅ (Z1 ⊗C1)⊸D1 (2.120)

71

So any hAZ and hZB from Definition 2.6.3 can equivalently be expressed as
first-order causal processes A→ B ⊗Z and Z ⊗C →D respectively. From this,
composing along Z immediately gives the form of a semi-localisable process.

2.6.3 Asymmetric Sum of Products

The final definition we will consider is inspired by an asymmetric monoidal product
on probabilistic coherence spaces.

Definition 2.6.5: Probabilistic coherence space [56, Theorem 2]

A probabilistic coherence space is a pair (X,A) of a finite set X and a subset A
of the functions X → R+ onto the non-negative reals such that:

• A is non-empty;

• A is closed under convex combinations;

• A is downward closed under the pointwise order on R+.

Definition 2.6.6: [17, Definition 6.9]

The seq product of probabilistic coherence spaces (X,A) and (Y,B) is given by
(X × Y,A;B) where

A;B ∶= {∑
i∈I
fi ⊗ gi ∣ ∑

i∈I
fi ∈ A, ∀i. gi ∈ B}

To adapt this for Caus [C], we keep the form of a sum of products, requiring that
each term on the right is individually causal, but only the sum of the terms on the
left need be causal. We also suppose the terms on the left are taken from Sub (C) to
make use of the affine-linear structure so long as their sum exists in C itself.

Definition 2.6.7

cA ; cB ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
h

RRRRRRRRRRRRRR

∃I,{fi}i∈I ⊆ Sub (C) (I,A),{gi}i∈I ⊆ cB, f ∈ cA.
[h] ∼ ∑i∈I fi ⊗ [gi] ,
[f] ∼ ∑i∈I fi

⎫⎪⎪⎪⎬⎪⎪⎪⎭

This is easy to convert to a form based on preferred bases, which clearly sits
somewhere on a spectrum between cA⊗B and cA`B.

72

Lemma 2.6.8

Let {ρAi }i∈BCA and {ρBj }j∈BCB be preferred bases for objects A,B ∈ Ob (Caus [C]).
Then

cA ; cB =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h

RRRRRRRRRRRRRRRRRRR

[h] ∼ ∑i,j si,j ⋅ [ρAi ⊗ ρBj] ,
∑i,j si,j ∼ idI ,

∀i, j. j ∈BBÔ⇒ si,j ∼ 0
∀i ∈BA. ∑j si,j ∼ 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Proof. ⊇ is straightforward by picking the indices I =BB and states {gj}j∈BB
=

{ρBj }j∈BB
and {fj}j∈BB

= {∑i si,j ⋅ [ρAi]}j∈BB
. The conditions guarantee that

∑j fj is an affine combination of causal basis elements and hence is causal.
For ⊆, we expand each fi and gi in terms of the basis states and group

matching terms.

fk ∼∑
i

sk,i ⋅ [ρAi] (2.121)

[gk] ∼∑
j

s′k,j ⋅ [ρBj] (2.122)

[h] ∼∑
k

fk ⊗ [gk] (2.123)

∼∑
i,j

(∑
k

sk,is
′
k,j) ⋅ [ρAi ⊗ ρBj]

As always, the combination is affine by flatness.

∑
i,j

(∑
k

sk,is
′
k,j) ∼∑

i,j

(∑
k

sk,is
′
k,j) ⋅ [(ρAi ⊗ ρBj) # (A ⊗ B)]

∼ [h # (A ⊗ B)]

∼∑
k

(fk # [A])⊗ [gk # B]

∼∑
k

fk # [A]
∼ [f # [A]] ∼ idI

(2.124)

Each gk is causal and hence an affine combination of only causal basis elements
- that is, for any j ∈BB, s′k,j ∼ 0.

∑
k

sk,is
′
k,j ∼∑

k

sk,i0 ∼ 0 (2.125)

Similarly, f is causal - for any i ∈BA,

∑
j

(∑
k

sk,is
′
k,j) ∼∑

i′,j

(∑
k

sk,i′s
′
k,j) ⋅ ([ρAi′] # ei)⊗ [ρBj # B]

73

∼ [h] # (ei ⊗ [B])
∼∑

k

(fk # ei)⊗ [gk # B] (2.126)

∼∑
k

fk # ei
∼ [f] # ei ∼ 0

2.6.4 Equivalence of Definitions

Knowing that one-way signalling and semi-localisability are equivalent for first-order
processes in both quantum theory and classical probability theory, we anticipate there
being some general relation between cA < cB and cA ◁ cB. By following a sequence
of inclusions, we find that cA < cB coincides with cA ; cB, preserves closure, and is
self-dual. It is unknown whether cA ◁ cB preserves closure in general, but manually
taking its affine closure (cA ◁ cB)∗∗ coincides with cA < cB.

We will start with stating the equivalence and the chain of inclusions used to
derive it to give context for the particular inclusions we will provide here.

Theorem 2.6.9: Seq Equivalence Theorem

cA < cB = (c∗A < c∗B)
∗ = (cA ◁ cB)∗∗ = cA ; cB

Proof. The following inclusions are annotated with the corresponding Lemma
references. Subscript ∗’s apply the Lemma to c∗A and c∗B, and superscript ∗’s
dualise the Lemma’s inclusion via Equation 2.48.

cA < cB cA ; cB (cA ; cB)∗∗ (c∗A < c∗B)
∗

(c∗A ◁ c∗B)
∗ (cA < cB)∗∗ (cA ◁ cB)∗∗

2.6.10 closure 2.6.11∗∗

2.6.12∗
2.6.12∗

2.6.14∗∗ 2.6.13∗∗

(2.127)

Lemma 2.6.10
cA < cB ⊆ cA ; cB

Proof. Consider an arbitrary h ∈ cA < cB and expand it in terms of a preferred
basis as [h] ∼ ∑i,j si,j ⋅ [ρAi ⊗ ρBj], aiming for the form of Lemma 2.6.8. The
constant marginal is causal h # (idA ⊗ B) ∈ cA, giving us the affine sum.

74

∑
i,j

si,j ∼∑
i,j

si,j ⋅ [(ρAi ⊗ ρBj) # (A ⊗ B)]

∼ [h # (idA ⊗ B) # A]

∼ idI

(2.128)

For each j ∈BB, use PBC to obtain some πB ∈ c∗B such that [πB] ∼ [B]+[α] ⋅eBj
with some invertible scalar α ∈ C (I, I). For any i, uniqueness of the marginal
gives the next condition.

si,j ∼ ∑
i′,j′

si′,j′ ⋅ [ρAi′ ⊗ ρBj′] # (eAi ⊗ eBj)
∼ [α−1] ⋅ [h] # ([α] ⋅ eAi ⊗ eBj)
∼ [α−1] ⋅ ([h] # idA ⊗ [πB] − [h] # idA ⊗ B) # eAi
∼ [α−1] ⋅ 0 # eAi
∼ 0

(2.129)

For each i ∈BA, we similarly pick πA ∈ c∗A such that [πA] ∼ [B]+[β] ⋅eAi , giving
us the remaining condition from causality of the marginal.

∑
j

si,j ∼∑
i′,j

si′,j ⋅ [ρAi′ ⊗ ρBj] # (eAi ⊗ [B])
∼ [h] # (eAi ⊗ [B])
∼ [h # (idA ⊗ B)] # ([πA] − [A]) (2.130)
∼ [idI] − [idI]

∼ 0

Lemma 2.6.11

cA < cB ⊆ (c∗A ; c∗B)
∗

Proof. Take any h ∈ cA < cB and any k ∈ c∗A ; c∗B, decomposing it as [k] ∼
∑i fi ⊗ [gi] with {gi}i ⊆ c∗B and f ∈ c∗A such that [f] ∼ ∑i fi.

[h # k∗] ∼ [h] # (∑
i

f∗i ⊗ [g∗i])

∼∑
i

[h # (idA ⊗ g∗i)] # f∗i
∼∑

i

[h # (idA ⊗ B)] # f∗i (2.131)

75

∼ [h # (idA ⊗ B) # f∗]
∼ [idI]

Faithfulness of the embedding pulls this back to h # k∗ = idI .

Lemma 2.6.12

(cA ◁ cB)∗ ⊆ c∗A < c∗B

Proof. Consider any h ∈ (cA ◁ cB)∗.
For any two ρ, ρ′ ∈ cB, their copairing is [ρ, ρ′] ∈ c2⊸B = c2∗`B up to partial

transpose. For any k ∈ cA`2:

k

A 2
[ρ, ρ′]
2∗ B ∈ cA◁B (2.132)

Taking the inner product of this morphism with h will give idI . Since this
holds for any k ∈ cA`2:

h [ρ, ρ′]
A∗B∗ 2∗ B ∈ c∗A`2 = cA∗⊗2∗ (2.133)

2 is first-order, so c∗2 = { 2}. By Corollary 2.4.28, the above morphism must
separate into π ⊗ 2 for some π ∈ c∗A.

h

A∗B∗

ρ
B =

h

A∗B∗

[ρ, ρ′]
2∗ B

ι1
2

=
π
A∗ 2∗

ι1
2

=
π
A∗ 2∗

ι2
2

=
h

A∗B∗

[ρ, ρ′]
2∗ B

ι2
2

=
h

A∗B∗

ρ′
B

(2.134)

Selecting ρ′ = B and keeping ρ arbitrary, we obtain uniqueness of the
marginal. The marginal is also causal (in c∗A) since, for any υ ∈ cA, the
product υ ⊗ B ∈ cA ◁ cB is trivially semi-localisable (I is first-order), and so
h # (υ∗ ⊗ B∗) = idI . With this, we conclude that h ∈ c∗A < c∗B.

76

Lemma 2.6.13
cA ◁ cB ⊆ cA < cB

Proof. Let h ∈ cA◁cB decompose into hAZ ∈ cA`Z1 and hZB ∈ cZ1∗`B. Applying
any effect π ∈ c∗B locally to hZB must result in a causal state of Z1∗. Since Z1

is first-order, this must be Z1∗ regardless of the choice of π. Thus, h # (idA ⊗
π) = hAZ # (idA ⊗ Z1) gives the unique witness in cA (from hAZ ∈ cA`Z1), so
h ∈ cA < cB.

Lemma 2.6.14

cA < cB ⊆ (c∗A ◁ c∗B)
∗

Proof. Consider any k ∈ cA < cB and h ∈ c∗A ◁ c∗B which decomposes into hAZ ∈
cA∗`Z1 and hZB ∈ cZ1∗`B∗ . For any ρ ∈ cZ1 (in particular, the elements of the
canonical basis from APC3), the following state is in c∗B:

ρ hZB

Z Z∗B∗ (2.135)

Composing this with k must yield the unique marginal regardless of the
choice of ρ. By equality on the basis states:

k hZB

A B Z∗B∗ =
k

A Z∗ (2.136)

This product state is causal forA⊗Z1∗ ≅ (A∗ `Z1)∗ and therefore is causal
in the context hAZ . In summary:

k h
A B A∗B∗ =

k hZBhAZ

A B A∗Z Z∗B∗ =
k hAZ

A A∗Z Z∗ = idI (2.137)

This was a minimal number of inclusions required to obtain all equalities in the Seq
Equivalence Theorem, though there will exist alternative direct proofs for some in-
clusions obtained by transitivity. It may be insightful for the reader to think about
how other inclusions between these operators may be proved directly - some straight-
forward examples include cA ; cB ⊆ cA < cB and cA ; cB ⊆ (c∗A ; c∗B)

∗. The converse
of the latter is a little more involved, but can be done using Lemma 2.6.8. Likewise,
all proofs in the remainder of this thesis will freely choose whichever form makes
for the simplest proof, though additional insight may be found from thinking about
alternative proofs using the others.

77

Example 2.6.15

In this example, we will highlight the inclusion cA<B ⊆ c∗∗A◁B. Suppose we
begin with a first-order causal process f that is signal-consistent with respect
to the following causal structure (each local system is first-order causal, e.g.
A =A1

in⊸A1
out):

A C

B

D F

E (2.138)

Using the above cut, such a process will satisfy the one-way signalling constraint
with {A,B,C} before {D,E,F}. Making similar observations on each half, this
shows it is of the following type:

((A⊗B) <C) < ((D < F)⊗E) (2.139)

By Seq Equivalence Theorem, we can express f as an affine-combination of
semi-localisable processes, each of which factorise into local processes for the
left and right half.

f

AoutBout

Ain Bin

Cout

Cin

Dout

Din

Eout

Ein

Fout

Fin

∼∑
i

αi
fl,i

Cout Eout

Cin Ein

fr,i

M

Aout

Ain

Bout

Bin

Eout

Ein

Fout

Fin

(2.140)

The power in the equivalence comes from the higher-order definition of◁, where
we can find particular first-order causal processes fl,i consistent with the same
local causal structure within {A,B,C} in the original causal structure, and
similarly the fr,i can preserve the causal structure within {D,E,F}.

A C

B
M1

D F

E
M1∗

(2.141)
fl,i ∶ ((A⊗B) <C)`M1 fr,i ∶ M1∗ ` ((D < F)⊗E) (2.142)

Remark 2.6.16

During the development of the Seq Equivalence Theorem, I initially began
with trying to prove it using the original precausal category assumptions (Def-
inition 2.3.1). Lemmas 2.6.13 and 2.6.14 were straightforward, and so were
Lemmas 2.6.11 and 2.6.12 with the minimal added assumption of biproducts.

Proving Lemma 2.6.10, however, seemed to require heavier assumptions on

78

the structure of the base category C. After proving the result in the specific
case of C = CP∗, I picked out the relevant abstract properties used by the proof
which gave rise to conditions APC3-APC5 and the definition of an additive pre-
causal category. Any future attempt to weaken the assumptions may struggle
to preserve this property, and therefore the equivalence of one-way signalling
and semi-localisability. Even without this Lemma, though, we still have a de
Morgan duality cA<B = c∗A∗◁B∗ , which looks similar to the operators of Slavnov’s
semi-commutative multiplicative linear logic [108].

2.6.5 Seq is a Monoidal Structure

One output of the Seq Equivalence Theorem is that cA < cB is closed, and flatness is
straightforward. We can therefore elevate it to a genuine object in Caus [C] or, more
specifically, a new monoidal structure.

Definition 2.6.17: Seq

The seq product in Caus [C] is the monoidal structure (<, I) from the bifunctor
< ∶ Caus [C] ×Caus [C]→ Caus [C] defined on objects as

A < B ∶= (A⊗B, cA < cB) (2.143)

and on morphisms identically to ⊗ ∶ C × C → C.

Proposition 2.6.18

The seq product is a monoidal structure.

Proof. Bifunctoriality of ` means product morphisms like f < g will preserve
semi-localisability of states, giving causality of f < g ∶A < B→C <D.

The associator α and unitors λ and ρ are inherited from C, which gives
naturality and the coherence identities for free. We just need to show that each
of these and their inverses are causal when using the seq product.

For αA,B,C ∶ (A < B) <C → A < (B <C), consider any one-way signalling
h ∈ c(A<B)<C = (cA < cB) < cC and effect π ∶ c∗B<C = c∗B ; c∗C with an asymmetric
sum of product form [π] ∼ ∑i fi ⊗ [gi] with [f] ∼ ∑i fi. We need to show
that composing h with π (via the associator) yields a constant marginal in cA
regardless of the choice of π.

79

A B C B∗C∗

[h] [π] ∼ ∑
i

A B C B∗ C∗

[h] fi [gi]
∼ A B C B∗

[h] [f] ∼ A B C
[h]

(2.144)
For λA ∶ I <A → A, consider any h ∈ cI<A and effect π ∈ c∗A. The marginal

of h must be idI because it is the only causal state of I, hence adjoining h and
π (via λA) will yield idI for normalisation.

For ρA ∶ A < I → A, consider any h ∈ cA<I. The unique effect from I is idI ,
so by causality of the marginal we have h # ρA = h # (idA ⊗ I) # ρA ∈ cA.

The inverses α−1, λ−1, and ρ−1 are all causal by dual arguments.

Unlike ⊗ and `, this monoidal structure is not braided/symmetric, owing to the
asymmetry in the definitions and, more broadly, in the directed nature of time in
causal structures. We will use A > B to refer to the symmetrically defined monoidal
structure, describing “A after B”.

We can think of a process of type A < B as something that presents an A interface
at some time and then presents aB interface at some later time, possibly requiring the
A protocol to be completed beforehand. The self-duality from the Seq Equivalence
Theorem states that the valid ways to interact with such a process are therefore to
first completely consume the A, before later consuming the B.

(A < B)∗ =A∗ < B∗ (2.145)

We see A < B as sitting somewhere in between A⊗B and A`B; the product
states that span cA⊗B are trivially semi-localisable, and Equation 2.53 defines cA`B

as identical to cA < cB without requiring the uniqueness of the marginal. These set
inclusions turn identities idA⊗B into natural transformations, refining the embedding
of A⊗B into A`B from Equation 2.58.

A⊗B⇒A < B⇒A`B (2.146)

Additionally, < combines with either ⊗ or ` to give a duoidal structure on Caus [C].

Definition 2.6.19: Duoidal Structure [4, Definition 6.1]

A duoidal structure is a pair of monoidal structures (C,◇, I), (C,⋆, J) on the
same category, along with a natural transformation

(A ⋆B) ◇ (C ⋆D)→ (A ◇C) ⋆ (B ◇D)

80

called the interchange, and morphisms

I → I ⋆ I J ◇ J → J I → J

satisfying some coherence conditions.

Remark 2.6.20

Structures similar to duoidal categories are common amongst the logic litera-
ture. In particular, rules corresponding to the interchange in deep inference
formalisms are often called medial rules [20, 110], and can be seen between a
wide variety of multiplicative and additive connectives. One translation of such
a rule into the language of category theory as a BV-category [17] gives some-
thing very similar to the definition of a duoidal structure but with a different
set of coherence conditions.

Proposition 2.6.21

(Caus [C] ,⊗, I) and (Caus [C] ,<, I) form a duoidal structure. The unit mor-
phisms are given by unitors and idI , and the interchange is the natural trans-
formation:

idA ⊗ σB,C ⊗ idD ∶ (A < B)⊗ (C <D)⇒ (A⊗C) < (B⊗D)

Another duoidal structure between (Caus [C] ,<, I) and (Caus [C] ,`, I) is ob-
tained by duality, with interchange:

idA ⊗ σB,C ⊗ idD ∶ (A`B) < (C`D)⇒ (A <C)` (B <D)
Proof. Naturality and the coherence conditions can be inherited from naturality
and coherence in C, so it suffices to show that the interchange is causal.

Let h ∈ cA ; cB and k ∈ cC ; cD be states with decompositions

[h] ∼∑
i

ai ⊗ [bi] ∀i. bi ∈ cB (2.147)

∃a ∈ cA. [a] ∼∑
i

ai (2.148)

[k] ∼∑
j

cj ⊗ [dj] ∀j. dj ∈ cD (2.149)

∃c ∈ cC. [c] ∼∑
j

cj (2.150)

81

Then

[(h⊗ k) # (idA ⊗ σB,C ⊗ idC)] ∼∑
i,j

ai ⊗ cj ⊗ [bi ⊗ dj] ∈ cA⊗C ; cB⊗D

∑
i,j

ai ⊗ cj ∼ [a⊗ c] ∈ cA⊗C (2.151)

∀i, j. bi ⊗ dj ∈ cB⊗D

Duoidal categories are commonly used to describe settings that allow for both an
independent composition (e.g. ⊗) and a dependent composition (e.g. <) [17, 104, 46],
fitting our interpretation of space-like and time-like separations in causal structures.

From the interchanges, fixing either object in the middle to I gives natural trans-
formations for linear distribution laws like Equation 2.59.

A⊗ (B <C)⇒ (A⊗B) <C (2.152)
(A < B)⊗C⇒A < (B⊗C) (2.153)
A < (B`C)⇒ (A < B)`C (2.154)
(A`B) <C⇒A` (B <C) (2.155)

Products and coproducts also form duoidal structures with any other monoidal
structure [104], giving yet more interchanges. These express the ideas that multiple
sources of external choice can always be amalgamated into a single global external
choice, and dually any internal choice about the global system (where each option
has the same relationship between the local systems) can be split into independent
local choices.

∀◻ ∈ {⊗,`,<,>,×,⊕} . (A ×B) ◻ (C ×D)⇒ (A ◻C) × (B ◻D) (2.156)
∀◻ ∈ {⊗,`,<,>,×,⊕} . (A ◻B)⊕ (C ◻D)⇒ (A⊕C) ◻ (B⊕D) (2.157)

2.6.6 Causality as a Type Equality

Recall Proposition 2.3.22, which demonstrated that there exist some equations be-
tween the operators of Caus [C] which hold on first-order objects but not in general.
It is natural to ask whether more equations similarly hold with seq when applied to
first-order objects. We can go one better and give an equation which holds precisely
when the subsystems are first-order, completely characterising them.

82

Theorem 2.6.22: First-Order Theorem

A∗ `A = A∗ <A⇐⇒ ∣c∗A∣ = 1. Consequently, the following equations hold for
any first-order objects A1,A′1 and any object B:

A1 `B =A1 > B (2.158)
A1 ⊗B =A1 < B (2.159)

A1 `A′1 =A1 <A′1 =A1 >A′1 =A1 ⊗A′1 (2.160)
A1∗ `B =A1∗ < B (2.161)
A1∗ ⊗B =A1∗ > B (2.162)

A1∗ `A′1∗ =A1∗ <A′1∗ =A1∗ >A′1∗ =A1∗ ⊗A′1∗ (2.163)

Proof. cA∗<A ⊆ cA∗`A always holds, so it is sufficient to just look at the converse.
Ô⇒: The cup ηA ∶ I → A∗ ⊗ A is always causal for A∗ `A up to some

invertible scalar. Composing this with any effect π ∈ c∗A reduces to its transpose
(up to scalar). If it is one-way signalling, then π∗ = ∗A means we have a unique
effect for A.
⇐Ô: If A has a unique effect, then any h ∶ A∗ `A trivially has a unique

marginal and hence is in cA∗ < cA.
As for the additional equations: 2.160 holds by the same argument as Propo-

sition 2.3.22; for 2.158, the unique effect implies a unique marginal by construc-
tion; and for 2.161, the unique state must be the unique marginal. The rest
hold by duality.

It is interesting to compare this result to the causality principle: that a the-
ory has no signalling from the future iff every system has a unique effect, i.e. the
theory describes first-order systems. We can more directly encode the proof of the
causality principle by considering probabilistic tests with input A and output B us-
ing Caus [C] (A,B`O) where O is an object into which we encode the outcome
of the test (generalising the Binary Test Lemma from binary output 2 to any sys-
tem). The test outcome is independent of any future handling of the output when
the test is in Caus [C] (A,B >O). Their equivalence is captured by the equation
A⊸ (B`O) ≅A⊸ (B >O). So long as O has at least two distinct states, one can
adapt the proof of the First-Order Theorem to show that this holds if and only if B
is first-order.

The additional equations shown also help us to finally recapture the characteri-
sation of first-order causal one-way signalling processes from FO⊸ without assum-

83

ing PC5. We can achieve this by simply rewriting the type expression using the
equations until it is of the form of Proposition 2.6.2.

A1⊸ (B1⊸C1)⊸D1 =A1∗ ` (B1∗ `C1)∗ `D1

=A1∗ < (B1∗ <C1)∗ <D1

≅A1∗ < B1 <C1∗ <D1

≅ (A1∗ `B1) < (C1∗ <D1)

= (A1⊸B1) < (C1⊸D1)

(2.164)

In later sections, it will become useful to have a means of generating counter-
example morphisms that fail non-signalling conditions in the sense that they can
actively signal information. We can view this as a constructive contrapositive to
the First-Order Theorem, working when we have at least two distinct states into
which we can encode information to produce a (noisy) binary channel. Given such
pairs of states in A and B for representing “true” and “false”, we call f ∶ A → B a
binary encoding if it acts as a noisy binary channel over these states.

Definition 2.6.23: Binary Encoding

Let A,B ∈ Ob (Caus [C]) be objects that are not first-order dual (∣cA∣ , ∣cB∣ > 1).
A binary encoding f ∶A→B for a choice of states ρA ≠ A ∈ cA, ρB ≠ B ∈ cB, is
a morphism which actively signals some information:

A # f = B

∃α. [ρA # f] ∼ α ⋅ [ρB] + (idI − α) ⋅ [B] /∼ [B]
(2.165)

Lemma 2.6.24

For any pair of objects A,B ∈ Ob (Caus [C]) and choices of distinct states
ρA ≠ A ∈ cA, ρB ≠ B ∈ cB, there exists a binary encoding f ∶A→B.

Proof. The key idea behind this proof is to use a dual basis to produce a perfect
binary channel in Sub (C), i.e. a process that sends ρA to ρB and A to B. The
final noisy channel in C will be some probabilistic combination of this perfect
channel and the completely noisy channel A # B, which exists by APC5a. We
finish by showing that this final channel is causal A→B.

Let {ρAi }i∈BCA be a preferred basis for A with dual basis {eAi }i∈BCA such that
ρA1 = ρA and ρA2 = A (we can fix these states before applying Lemma 2.4.18 when
generating the basis), and similarly {ρBj }j∈BCB ,

{eBj }j∈BCB
for B with ρB1 = ρB and

84

ρB2 = B.
We start by defining the following morphism:

t ∶= eA1 # [ρB1] +∑
i≠1
eAi # [ρB2]

∼ eA1 # [ρB1] + ([A] − eA1) # [ρB2]
∈ Sub (C) (A,B)

(2.166)

We can view this as a binary test for eA1 , with outcomes encoded into B instead
of 2. t might not have a corresponding morphism in C (i.e. if C is Mat[R+]
or CP∗, t may not be a positive operator), but we can still represent it as an
affine combination of morphisms from C: pick some representation t ∼ [t+]−[t−]
and apply APC5a to t− ∈ C (A,B) to give some invertible λ and t′ ∈ C (A,B)
such that [t′] ∼ [λ ⋅ A # B]− [t−] (wlog suppose λ is such that λθ−1A µ−1B + idI is
invertible, otherwise we could freely pick a larger λ and t′). We then define

f ∶= (λθ−1A µ−1B + idI)
−1 ⋅ (t+ + t′) ∈ C (A,B) (2.167)

so that t is an affine combination of f and A # B, and we claim that it is causal
f ∈ Caus [C] (A,B). Consider an arbitrary effect π ∈ c∗B.

[f # π]
∼ [(λθ−1A µ−1B + idI)

−1] ⋅ ([λ ⋅ A # B] + t) # [π]
∼ [(λθ−1A µ−1B + idI)

−1] ⋅
⎛
⎜⎜⎜
⎝

[λθ−1A µ−1B ⋅ A] # [ρB2]
+eA1 # [ρB1]
+[A] # [ρB2]
−eA1 # [ρB2]

⎞
⎟⎟⎟
⎠

[π]

∼ [(λθ−1A µ−1B + idI)
−1] ⋅
⎛
⎜⎜⎜
⎝

[λθ−1A µ−1B ⋅ A]
+eA1
+[A]
−eA1

⎞
⎟⎟⎟
⎠

∼ [(λθ−1A µ−1B + idI)
−1] ⋅ [λθ−1A µ−1B + idI] ⋅ [A]

∼ [A]

(2.168)

So f # π ∈ c∗A, i.e. f is causal, and there is no signalling from the output to the
input (its partial transpose is in cA∗<B). We can verify that it signals from the
input to output.

85

[A # f]
∼ [(λθ−1A µ−1B + idI)

−1] ⋅ [A] # ([λ ⋅ A # B] + t)

∼ [(λθ−1A µ−1B + idI)
−1] ⋅ [ρA2] # ⎛⎜⎜⎜

⎝

[λθAµ−1B ⋅ A] # [ρB2]
+eA1 # [ρB1]
+[A] # [ρB2]
−eA1 # [ρB2]

⎞
⎟⎟⎟
⎠

∼ [(λθ−1A µ−1B + idI)
−1] ⋅ [λθ−1A µ−1B + idI] ⋅ [ρB2]

∼ [B]

(2.169)

[ρA # f]
∼ [(λθ−1A µ−1B + idI)

−1] ⋅ [ρA] # ([λ ⋅ A # B] + t)

∼ [(λθ−1A µ−1B + idI)
−1] ⋅ [ρA1] # ⎛⎜⎜⎜

⎝

[λθ−1A µ−1B ⋅ A] # [ρB2]
+eA1 # [ρB1]
+[A] # [ρB2]
−eA1 # [ρB2]

⎞
⎟⎟⎟
⎠

∼ [(λθ−1A µ−1B + idI)
−1 ⋅ (ρB + λθ−1A µ−1B ⋅ B)]

(2.170)

We additionally note for the benefit of future proofs that f maps eB1 to eA1
(up to an invertible scalar).

[f] # eB1
∼ [(λθ−1A µ−1B + idI)

−1] ⋅
⎛
⎜⎜⎜
⎝

[λθ−1A µ−1B ⋅ A] # [ρB2]
+eA1 # [ρB1]
+[A] # [ρB2]
−eA1 # [ρB2]

⎞
⎟⎟⎟
⎠

eB1 (2.171)

∼ [(λθ−1A µ−1B + idI)
−1] ⋅ eA1

2.6.7 General Signalling Constraints

If we look back at Definition 2.1.7 for signal-consistency, we see that each non-
signalling condition always partitions the points in the causal structure into two sets:
viewing the condition as picking a space-like slice across the setup, we have the set
of points that occur in the past of the slice and another set for those in the future.
Under other circumstances, we may wish to consider more fine-grained non-signalling
conditions where we need not slice through the entire setup.

Fix a set V of agents and objects {Av}v∈V ⊆ Ob (Caus [C]) describing the local

86

system provided to each agent. A multi-partite process h is a state of
˙

v∈V Av

precisely when it acts locally according to Av from the perspective of each agent v,
regardless of the actions of the other agents - i.e. the marginal at v, which need not
be independent of the other systems, is causal for Av.

Given disjoint subsets P,Q ⊆ V , we say that h is one-way non-signalling from P

to Q if, regardless of the actions chosen by V ∖ (P ∪Q), the local behaviour at Q is
independent of any choices of actions by agents in P .

∀{πr}r∈V ∖(P∪Q) . ∀{πp}p∈P .

h

πr1 πrm πp1 πpn⋯ ⋯ ⋯
V ∖ (P ∪Q) P Q

=
h

πr1 πrm⋯ ⋯ ⋯
V ∖ (P ∪Q) P Q

(2.172)

Combining the definitions of ` via Equation 2.52 and < via Definition 2.6.1, this is
precisely captured by the typing:

h ∶
⎛
⎝

¸
r∈V ∖(P∪Q)

Ar

⎞
⎠
` ⎛
⎝
⎛
⎝
¸
p∈P

Ap

⎞
⎠
>
⎛
⎝
¸
q∈Q

Aq

⎞
⎠
⎞
⎠

(2.173)

Again, if we pick each Av to be a first-order channel B1
v ⊸C1

v this exactly coincides
with the usual presentation of a non-signalling condition, where the outputs of Q
are independent of the inputs of P , but possibly dependent on the inputs at Q and
V ∖ (P ∪Q). By taking affine combinations of local actions at P , this even accounts
for correlated and entangled states at their inputs.

∀ρ ∶⊗
p∈P

B1
p .

h

⋯ ⋯ ⋯
V ∖ (P ∪Q) P Q

⋯ ⋯ρ

=
h

⋯ ⋯ ⋯
V ∖ (P ∪Q) P Q

⋯ ⋯⋯

(2.174)

2.7 Unions and Intersections
We have already examined the prior work on intersections of objects in Section 2.3.6.
In this section, we will dualise this to a union of types based on union of sets and
examine the interplay between intersection, union, and the monoidal structures.

Similar to intersections, flatness of a set will generally not be preserved by taking
the union. We need to impose the same assumption on the underlying object and
normalisation scalars, which we will now denote as set-compatibility of the objects.

9As this is a new definition for this thesis, the ⋔ symbol was chosen for the main reason that it

87

Definition 2.7.1: Set-compatibility

Objects A,A′ ∈ Ob (Caus [C]) are set-compatible A ⋔ A′9 when they share the
same carrier object A ∈ Ob (C) and normalisation scalars µA = µA′ and θA = θA′ .

Proposition 2.7.2

For any objects A,A′ ∈ Ob (Caus [C]), the following are equivalent:

1. A ⋔A′;

2. They share the same carrier object A = A′ ∈ Ob (C) and cA ∩ cA′ ≠ ∅;

3. The identities on their carrier objects idA ∈ C (A,A), idA′ ∈ C (A′,A′)
form a causal cospan, i.e. there exists some B ∈ Ob (Caus [C]) such that
idA ∶A→B and idA′ ∶A′ →B;

4. The identities on their carrier objects idA ∈ C (A,A), idA′ ∈ C (A′,A′)
form a causal span, i.e. there exists some B ∈ Ob (Caus [C]) such that
idA ∶ B→A and idA′ ∶ B→A′.

Proof. 1 Ô⇒ 2: cA ∋ A = µA ⋅ A = µA′ ⋅ A = A′ ∈ cA′ gives an element in the
intersection.

1 ⇐Ô 2: By flatness, A ∈ cA and A ∈ c∗A.

µAθAdA = µAθA ⋅ A # A = A # A = idI (2.175)

Similarly µA′θA′dA = idI , so µA = µA′ iff θA = θA′ by invertibility and hence we
only need to show one.

Suppose there exists some ρ ∈ cA ∩ cA′ . In particular, ρ # A = idI = ρ # A′ .
Then

θA = θA ⋅ ρ # A′

= θAθA′ ⋅ ρ # A

= θA′ ⋅ ρ # A

= θA′

(2.176)

1 Ô⇒ 3: Since the carrier object is the same, idA = idA′ ∈ C (A,A) =
C (A′,A′). Let B = (A,{ A}∗). We can show causality by preservation of

does not clash with any other existing notation in the relevant literature. It also reinforces that this
is a symmetric relation and has visual similarities to ∩ and ∈ which connects it to sets.

88

effects (Equation 2.44), i.e. that A ∈ c∗A and A = θA ⋅ A = θA′ ⋅ A = A′ ∈ c∗A′ ,
which are both given by flatness.

1 ⇐Ô 3: idA ∶A→B implies the carrier object of B is A, and the same for
idA′ ∶A′ →B implies A = A′.

Using the same argument from the 1⇐Ô 2 case, it suffices to show θA = θA′ .
By preservation of effects, B ∈ c∗A and B ∈ c∗A′ , so by uniqueness of flatness
scalars θA = θB = θA′ .

1 ⇐⇒ 4: Similar, using B = (A,{ A}).

Proposition 2.7.3

For any set-compatible objects A ⋔A′, the union object

A ∪A′ ∶= (A, (cA ∪ cA′)∗∗) (2.177)
= (A∗ ∩A′∗)∗ (2.178)

yields a pushout for the causal span

A′′ A

A′ A ∪A′

idA

idA′ ⌜
idA

idA′

(2.179)

Proof. The union definition is the de Morgan dual of intersection

π ∈ c∗A∪A′ ⇐⇒ π ∈ (cA ∪ cA′)∗

⇐⇒ (∀ρ ∈ cA.ρ # π = idI) ∧ (∀ρ′ ∈ cA′ .ρ′ # π = idI)

⇐⇒ π ∈ c∗A ∩ c∗A′
⇐⇒ π ∈ cA∗∩A′∗

(2.180)

so the pushout property holds by duality.

Example 2.7.4

In Example 2.3.27, we saw that A⊗B ⋔ A`B but their intersection degen-
erates to A⊗B. We can similarly use cA⊗B ⊆ cA`B to show that their union
degenerates:

(A⊗B) ∪ (A`B) =A`B (2.181)

89

Just taking a union cA ∪ cA′ will generally not yield a closed set as it will fail
to account for any affine combinations of terms from different sets. We choose to
still use standard union notation for objects since they arise from the same pushout
construction and it can still be viewed as a strict union with respect to a preferred
basis.

Proposition 2.7.5

Suppose A ⋔A′, and let {ρi}i∈BCA be a preferred basis for both A and A′. Then

cA∪A′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
υ

RRRRRRRRRRRRRR

[υ] ∼ ∑i si ⋅ [ρi] ,
∑i si ∼ idI ,

∀i ∈BA ∩BA′ . si ∼ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Proof. This is immediate from viewing the states of A ∪A′ as affine combina-
tions of states of A and states of A′.

One of the most significant results we will show about unions and intersections is
that all the monoidal structures of Caus [C] will distribute over them. This means
that any object built from these operators can always be expressed in a form where
unions and intersections have been lifted to the top level.

Lemma 2.7.6: Setwise Distributivity

Given objects A,A′,B ∈ Ob (Caus [C]) with A ⋔ A′, each ◻ ∈ {⊗,`,<,>,×,⊕}
distributes over each ◇ ∈ {∪,∩}.

(A ◇A′) ◻B = (A ◻B) ◇ (A′ ◻B)

Proof. • (A ∩A′) < B = (A < B) ∩ (A′ < B):

ρ ∈ c(A∩A′)<B⇐⇒∀π ∈ c∗B. ρ # (idA ⊗ π) = ρ # (idA ⊗ B) ∈ cA∩A′

⇐⇒∀π ∈ c∗B. ρ # (idA ⊗ π) = ρ # (idA ⊗ B) ∈ cA
∧ ∀π ∈ c∗B. ρ # (idA ⊗ π) = ρ # (idA ⊗ B) ∈ cA′

⇐⇒ρ ∈ cA<B ∧ ρ ∈ cA′<B
⇐⇒ρ ∈ c(A<B)∩(A′<B)

(2.182)

• (A ∪A′) < B = (A < B) ∪ (A′ < B): Dual to above.

• (A ∩A′) > B = (A > B) ∩ (A′ > B): Note that equality of carrier objects

90

and normalisation scalars give A∩A′ = A = A′ .

ρ ∈ c(A∩A′)>B⇐⇒∀π ∈ c∗(A∩A′).

ρ # (π ⊗ idB) = ρ # (A∩A′ ⊗ idB) ∈ cB
⇐⇒∀π ∈ (c∗A ∪ c∗A)

∗∗
.

ρ # (π ⊗ idB) = ρ # (A∩A′ ⊗ idB) ∈ cB
⇐⇒∀π ∈ c∗A ∪ c∗A.

ρ # (π ⊗ idB) = ρ # (A∩A′ ⊗ idB) ∈ cB (2.183)
⇐⇒∀π ∈ c∗A. ρ # (π ⊗ idB) = ρ # (A ⊗ idB) ∈ cB

∧ ∀π ∈ c∗A′ . ρ # (π ⊗ idB) = ρ # (A′ ⊗ idB) ∈ cB
⇐⇒ρ ∈ cA>B ∧ ρ ∈ cA′>B
⇐⇒ρ ∈ c(A>B)∩(A′>B)

• (A ∪A′) > B = (A > B) ∪ (A′ > B): Dual to above.

• (A ∩A′)⊗B = (A⊗B) ∩ (A′ ⊗B): Consider each direction of inclusion
of causal states. For ⊆, given any ρA ∈ cA ∩ cA′ and ρB ∈ cB, we have
ρA ⊗ ρB ∈ cA⊗B and ρA ⊗ ρB ∈ cA′⊗B. All other causal states follow by
affine closure. For ⊇, we expand h ∈ cA⊗B ∩ cA′⊗B in terms of a joint
preferred basis for both A and A′ and another preferred basis for B. By
Proposition 2.4.25, the affine combination excludes any basis elements on
the left that aren’t causal for A, and excludes any that aren’t causal for
A′, leaving only basis elements in cA∩A′ . This gives a representation as
an affine combination of product states from c(A∩A′)⊗B.

• (A ∪A′)⊗B = (A⊗B) ∪ (A′ ⊗B): By ∗-autonomy, there is an ad-
junction between ⊗ and ⊸, so ⊗ preserves all colimits which includes
pushouts.

• (A ∩A′)`B = (A`B) ∩ (A′ `B): Dual to ⊗,∪ case.

• (A ∪A′)`B = (A`B) ∪ (A′ `B): Dual to ⊗,∩ case.

• (A ∩A′) ×B = (A ×B) ∩ (A′ ×B):

c(A∩A′)×B = {⟨ρA, ρB⟩ ∣ ρA ∈ cA∩A′ , ρB ∈ cB}

= {⟨ρA, ρB⟩ ∣ ρA ∈ cA ∩ cA′ , ρB ∈ cB}

91

= {⟨ρA, ρB⟩ ∣ ρA ∈ cA, ρB ∈ cB} (2.184)
∩ {⟨ρA, ρB⟩ ∣ ρA ∈ cA′ , ρB ∈ cB}

= cA×B ∩ cA′×B
= c(A×B)∩(A′×B)

• (A ∪A′) ×B = (A ×B) ∪ (A′ ×B): We also break this down into inclu-
sions in each direction. For ⊆, if we are given a pairing where the left
term is an affine combination of causal states mixing cA and cA′ , we can
lift the sum up to give an affine combination of pairings from cA×B and
cA′×B.

⟨∑
i

si ⋅ [ρAi] , [ρB]⟩ ∼ ⟨∑
i

si ⋅ [ρAi] ,∑
i

si ⋅ [ρB]⟩

∼∑
i

si ⋅ [⟨ρAi , ρB⟩]
(2.185)

As for ⊇, expand some h ∈ (cA×B ∪ cA′×B)∗∗ as an affine combination of
pairs. We push the summation into the pairings and recognise the affine
combination of terms from cB as an element of C (I,B), hence it is an
element of cB itself. We are then left with a single pair of an element of
cB and an affine combination of elements from cA and cA′ .

∑
i

si ⋅ [⟨ρAi , ρBi ⟩] ∼ ⟨∑
i

si ⋅ [ρAi] ,∑
i

si ⋅ [ρBi]⟩

∼ ⟨∑
i

si ⋅ [ρAi] , [h # pB]⟩ (2.186)

• (A ∩A′)⊕B = (A⊕B) ∩ (A′ ⊕B): Dual to ×,∪ case.

• (A ∪A′)⊕B = (A⊕B) ∪ (A′ ⊕B): Dual to ×,∩ case.

An additional distributivity equation holds for⊸, but the mixed variance switches
between union and intersection in line with the de Morgan duality.

(A ∪A′)⊸B = (A⊸B) ∩ (A′⊸B) (2.187)
(A ∩A′)⊸B = (A⊸B) ∪ (A′⊸B) (2.188)
B⊸ (A ∪A′) = (B⊸A) ∪ (B⊸A′) (2.189)
B⊸ (A ∩A′) = (B⊸A) ∩ (B⊸A′) (2.190)

92

If we aren’t looking for an exact equality of types, instead considering embed-
ding of spaces via natural transformations, we can apply distributivity rules between
intersection and union themselves to always yield an “intersection of unions” form.

Proposition 2.7.7

(A ∩C) ∪ (B ∩C)⇒ (A ∪B) ∩C (2.191)
(A ∩B) ∪C⇒ (A ∪C) ∩ (B ∪C) (2.192)

Proof. Any state of (A ∩C) ∪ (B ∩C) is an affine combination ∑i si ⋅[ρi] where
each ρi is either in cA and cC, or it is in cB and cC. Either way, each ρi is in cC
and so must be ∑i si ⋅ [ρi], and the sum is also an affine combination of states
from cA ∪ cB. The second natural transformation is given by duality.

Remark 2.7.8

Hoffreumon & Oreshkov showed that a theory matching an inductively-defined
subcategory of Caus [CP∗] admitted this distribution law as an equality (A ∪
B) ∩ C = (A ∩ C) ∪ (B ∩ C) [64]. This allowed them to reach either an “in-
tersection of unions” or a “union of intersections” form without loss of pre-
cision. Unfortunately, this equality doesn’t generalise to the full causal cate-
gory. Consider the space 3 = I ⊕ I ⊕ I in Mat[R+], which has a dual basis
formed by the injections and projections. We can define three flat, closed
spaces by Ai = (3,{ιi, 13 3}

∗∗) (i ∈ {1,2,3}). The intersection between any pair
of these spaces is the singleton space (3,{13 3}) ≅ 31∗ and the union of any
pair is the full first-order space 31. Then (A1 ∪A2) ∩A3 = 31 ∩A3 = A3 but
(A1 ∩A3) ∪ (A2 ∩A3) ≅ 31∗ ∪ 31∗ = 31∗.

Conceptually, there are a lot of similarities between ∪ and ⊕. Given A ⋔ A′, we
could also view A ∪A′ as describing some form of internal choice between providing
a state of A or a state of A′, where this choice is fixed upon the creation of the
state. Where this contrasts with ⊕ is that the information detailing whether we have
a state of A or A′ is not available (ignoring the possibility of identifying the state
through tomography which usually requires access to many identical copies of the
state). This forces any effect to handle each case identically (which is always possible
by set-compatibility), as opposed to copairings which can use the knowledge of the
state provided to choose between different effects. Given a state of A⊕A′, we can
always choose to freely “forget” the tagging information by applying the codiagonal
morphism.

93

∇A ∶= [idA, idA] ∶A⊕A′ →A ∪A′ (2.193)

If we look at discarding for A⊕A′, we can then see that this factorises via the
codiagonal in two ways, distinguishing between discarding the classical tagging infor-
mation and the physical system in either order.

A⊕A′ = [A, A′] = ∇A # A = [A # t, A′ # f] #∇I (2.194)

Similarly by duality, A ∩A′ describes an external choice but without the ability
to act conditionally based on that choice. The diagonal morphism realises that this
is just a special case of conditional actions where both branches act identically.

∆A ∶= ⟨idA, idA⟩ ∶A ∩A′ →A ×A′ (2.195)

2.7.1 Tensor is the Non-Signalling Space

The seq product < not only faithfully captures one-way signalling processes on first-
order systems, but on any choice of local systems, thus working for higher-order
protocol descriptions. On the other hand, we have so far only established that ⊗
characterises non-signalling on first-order causal processes. Kissinger and Uijlen’s
proof [78, Theorem 6.2] relied on PC5 which is a specific property of first-order systems
(Corollary 2.4.28). Similarly, the existing results which characterise non-signalling
processes as affine combinations of separable processes [60, 24, 21] only considered
first-order processes. However, by using the characterisations we already have in
terms of preferred bases, we can generalise the result to hold for arbitrary objects in
Caus [C] for any additive precausal category C.

Theorem 2.7.9: Non-signalling Theorem

A⊗B = (A < B) ∩ (A > B)

Proof. Compare the characterisations of Proposition 2.4.25 and Lemma 2.6.8.
For ⊇, all conditions are immediately provided. For ⊆, the only remaining
conditions are of the form ∀i ∈BA. ∑j si,j ∼ 0 which holds because each element
in the sum is itself zero.

For any inductively-defined higher-order objects A, B, one could arguably obtain
this result by embedding them into first-order processes (providing all inputs up front
and delaying all outputs to the end) and applying the existing results to demonstrate

94

that a process A⊗B is non-signalling. However, any constructive representations
(e.g. marginals, decompositions via semi-localisability, affine combinations of sep-
arable processes) will only be constrained to be first-order processes and may not
themselves be causal for the higher-order A, B. The advantage given by the Non-
signalling Theorem is that it constructively preserves any local structure within A

and B, avoiding such issues entirely.
We now have classifications of all three of ⊗, <, and ` that describe them as

different layers of a signalling hierarchy, where one embeds into the next via Equa-
tion 2.146.

• States of A⊗B are the bipartite states that locally act like A and B with no
information passing between them;

• States of A < B are the bipartite states that locally act like A and B with no
information passing from B to A but possibly some information passed in the
other direction;

• States of A`B are the bipartite states that locally act like A and B with
possible information being passed in either direction.

The extent of information signalling admitted by each level in this hierarchy can
be captured equationally in other forms by distributivity laws with the additive op-
erators.

Remark 2.7.10

Informally, distributivity between the additives and multiplicatives holds when-
ever the parallel content cannot influence the internal/external choices. Taking
a step back to C, the monoidal and biproduct structures distribute nicely, so
we don’t need to be cautious about distributivity at the level of morphisms.

δ ∶= [idA ⊗ ιB, idA ⊗ ιC] = pA⊗B # (idA ⊗ ιB) + pA⊗C # (idA ⊗ ιC) (2.196)
∶ (A⊗B)⊕ (A⊗C)→ A⊗ (B ⊕C) (2.197)

δ−1 ∶= ⟨idA ⊗ pB, idA ⊗ pC⟩ = (idA ⊗ pB) # ιA⊗B + (idA ⊗ pC) # ιA⊗C (2.198)
∶ A⊗ (B ⊕C)→ (A⊗B)⊕ (A⊗C) (2.199)

When does this lift to Caus [C]? For ⊗ and `, it follows the regular expectations
of MALL (MLL with additives). Any ∗-autonomous category has an adjunction
between ⊗ and⊸, so the left-adjunct ⊗ preserves all colimits and dually ` will

95

preserve all limits.

(A⊗B)⊕ (A⊗C) ≅A⊗ (B⊕C) (2.200)
(A`B) × (A`C) ≅A` (B ×C) (2.201)

As for the other combinations, δ and δ−1 are still causal for one direction (these
can be obtained by composing the interchange laws of Equations 2.156-2.157
with the diagonal A→A ×A or codiagonal A⊕A→A).

δ ∶ (A`B)⊕ (A`C)→A` (B⊕C) (2.202)
δ−1 ∶A⊗ (B ×C)→ (A⊗B) × (A⊗C) (2.203)

However, when we look at the final cases (the distributivity linear implications
that are not provable in MALL), they do not preserve causality. For a concrete
example, let’s take A = 2∗ and B =C = I and consider the following state:

ρ ∶= t⊗ t + f⊗ f ∶ 2∗ ` (I⊕ I) = 2⊸ 2 (2.204)

This just encodes an identity channel on a classical bit, so the choice between
B and C will clearly be dependent on external choices at A. This is in contrast
with (A`B)⊕ (A`C) where the (probabilistic) choice between B and C

must be fixed for any state and hence independent of actions at A. This is
clear when we apply δ−1 to ρ and compare the result with c(A`B)⊕(A`C).

ρ # δ−1 = (t⊗ idI) # ιA⊗B + (f⊗ idI) # ιA⊗C (2.205)
∉ c(A`B)⊕(A`C) = {(2∗ ⊗ idI) # ιA⊗B, (2∗ ⊗ idI) # ιA⊗C}∗∗ (2.206)

The argument that δ is not causal for (A⊗B) × (A⊗C)→A⊗ (B ×C) follows
by duality.

As for <, the one-way signalling condition means we always preserve internal
and external choices in the past.

(A <C)⊕ (B <C) ≅ (A⊕B) <C (2.207)
(A <C) × (B <C) ≅ (A ×B) <C (2.208)

But for choices in the future, we similarly have δ and δ−1 only preserving causal-
ity in one direction (using the same counterexample as for `).

δ ∶ (A < B)⊕ (A <C)→A < (B⊕C) (2.209)
δ−1 ∶A < (B ×C)→ (A < B) × (A <C) (2.210)

96

Remark 2.7.11

For the interest of those familiar with Barrett’s Generalised Non-Signalling
Theory [10] (a GPT which supports more non-local correlations than quan-
tum theory), we can reconstruct it perfectly as a particular subcategory of
Caus [Mat[R+]]. States are vectors of positive real numbers describing the
probabilities of each outcome in some set of fiducial measurements (i.e. a finite
set of measurements with finite outcomes that are sufficient to characterise the
state, fixed for each system up front). The set of allowed states of a single
system include any vector that gives a normalised probability distribution for
each fiducial measurement. An (n, k)-system (n fiducial measurements, each
with k outcomes) is characterised by the type (I⊕k)×n, since states are a vector
of n ⋅ k positive reals and the dual space of effects is generated by {pi # I⊕k}i≤n
(choosing a fiducial measurement and marginalising over the outcomes). For
multi-partite systems, the permissible states require both the normalisation
condition and an extra non-signalling condition, matching the characterisation
of A⊗B as the space of non-signalling processes. In terms of transformations,
the theory allows every matrix that preserves the normalisation condition on
all input states, i.e. yields idI for every normalised state provided as input
and normalised effect applied to the output, matching Equation 2.50 for causal
morphisms. There is no equivalent realisation of the Generalised Local Theory
(also from [10]) since the space of local multi-partite states is not affine-closed
and therefore will not have a corresponding object in any Caus [C].

2.7.2 Affine Combinations of Linear Orderings are Universal

As neat as the Non-signalling Theorem appears, the de Morgan dual arguably has
more significant consequences for the study of quantum causality.

Theorem 2.7.12: Sum of Orders Theorem

A`B = (A < B) ∪ (A > B)

Proof. This equation holds immediately from the Non-signalling Theorem by
duality.

97

Corollary 2.7.13

Any process matrix (including those that exhibit indefinite causal structure)
can be represented as an affine combination of processes with definite causal
structure.

Proof. Recall Theorem 2.3.24 which characterises process matrices as the states
of the following type:

((A1⊸B1)⊗ (C1⊸D1))∗ ≅ (A1 ⊗B1∗)` (C1 ⊗D1∗)

≅ (A1 ⊗B1∗) < (C1 ⊗D1∗)

∪ (A1 ⊗B1∗) > (C1 ⊗D1∗)

≅ A1 < B1∗ <C1 <D1∗

∪ C1 <D1∗ <A1 < B1∗

≅ A1 ⊗ (B1⊸C1)⊗D1∗

∪ C1 ⊗ (D1⊸A1)⊗B1∗

(2.211)

Therefore, every process matrix can be represented as an affine combination of
first-order causal processes arranged in the following ways:

∑
i

si ⋅

ρi

fi +∑
j

s′j ⋅

υj

gj (2.212)

Example 2.7.14

The OCB process of Oreshkov, Costa, and Brukner [96] is an example process
matrix on qubit systems which was shown to admit no decomposition as a
convex combination of processes with definite causal structure.

W = 1

4
(⊗ ⊗ ⊗ + 1√

2
(⊗Z ⊗Z ⊗ +Z ⊗ ⊗X ⊗Z)) (2.213)

where Z and X are the corresponding Pauli matrices. However, it is equal to
the following affine combination, where DZ applies decoherence in the Z basis

98

(e.g. by measuring non-destructively and discarding the classical outcome).

− 1√
2

∣+⟩

+ 1√
2

∣+⟩

DZ − 1√
2

DZ + 1√
2

DZ

(2.214)

Using this result, we can view the distinction between definite and indefinite causal
structures as precisely the distinction between convex and affine combinations over
some basis of processes. The capability to exceed bounds on channel capacities [47]
or causal inequalities [96] may all be explained by the fact that convex combinations
are expected to preserve inequalities satisfied by the components of the sum but affine
combinations can allow us to extrapolate outside the limits.

Since, computationally, affine combinations are just as easy to compute as convex
combinations, fixing a basis of processes with definite causal structure may simplify
computational tasks involved in investigating processes with indefinite causal struc-
ture.

2.8 Graph Types
Between ⊗ and <, we have a good way to interpret parallel and sequential causal
structures, and combining them could feasibly give a way to describe causal structures
whose partial order matches that of a series-parallel graph. Whilst such graphs are
exactly those that are N -free [113] (no induced subgraph on 4 vertices is in the shape
of the letter “N”), it takes infinitely many additional generators (one for each prime
graph) to extend them to arbitrary graphs [3]. For the sake of generality, we will
instead construct new n-ary operators, called graph types, in Caus [C] to directly
encode compatibility with respect to the causal structure represented by some graph.

Rather than aiming for some particular compositional properties, the approach
this section takes will propose several candidate definitions for graph types that en-
code either signal-consistency or causal realisability, and observe the properties that
emerge as consequences of these physically-motivated definitions. We set off with-
out any expectation or requirement that, for example, nesting of graph types should

99

relate to graph substitution, or that graph homomorphisms should induce natural
transformations between the graph types, or that intersections of graph types should
correspond to intersections of the edge sets of the graphs. In fact, whilst the first two
of these will be satisfied, the failure of the latter reflects the fact that the signalling
relations between individual parties does not determine all relations between subsets
(see Section 2.8.7).

Similar to the Non-signalling Theorem and Seq Equivalence Theorem, a novel high-
light of this section is the Graph Equivalence Theorem, which proves the equivalence
of signal-consistency and causal realisability up to affine combinations of processes
by showing that the corresponding candidate definitions for graph types coincide.

To set the common ground between these definitions, we will assume that each
point v in the causal structure is assigned some object Γ (v) ∈ Ob (Caus [C]) describing
how a valid process should locally appear at that point, thus any definition of a graph
type should embed into

˙
v∈V Γ (v). We also fix an ordering over V to give a canonical

carrier object ⊗v∈V U (Γ (v)) ∈ Ob (C) (in line with Remark 2.3.28, any definition
shown here is implicitly permuted to match this ordering).

Definition 2.8.1: Local interpretation

Let G = (V,E) be a directed graph, and suppose V is ordered. A local inter-
pretation for G is a function Γ ∶ V → Ob (Caus [C]) assigning a causal type to
each vertex.

2.8.1 Local Graph Types

The first direction we will look at generalises Definitions 2.3.16 and 2.6.3 based on
(semi-)localisability. These show the spaces as spanned (under affine combination)
by terms which factorise into local causal processes connected by wires along the
edges of a graph (trivially for ⊗). In Definition 2.6.3 in particular, we require the
intermediate system to be first-order, allowing information to travel from A to B but
never in the opposite direction. This concept is one that generalises straightforwardly
to factorising with wires given by the edges of a graph as in the definition of causal
realisability.

Morphisms in our example categories are linear maps and can be likened to tensor
nets. In this picture, wiring up any two interfaces corresponds to performing a tensor
contraction. In the following definition, we use the term contraction to refer to the

100

wiring up of interfaces in this way10.

Definition 2.8.2: Graph state

Let G = (V,E) be a graph with ordered vertices and a local interpretation Γ. An
edge interpretation for G is a function ∆ ∶ E → Ob (FO (Caus [C])). Together,
these determine a component typing for G CompΓ;∆

G ∶ V → Ob (Caus [C]) by:

CompΓ;∆
G (v) ∶=

⎛
⎜⎜
⎝

Γ (v)
`(˙(u→v)∈E ∆ (u→ v)∗)
`(˙(v→w)∈E ∆ (v → w))

⎞
⎟⎟
⎠

(2.215)

The contraction morphism for G is the morphism

ϵΓ;∆G ∈ C (⊗
v∈V
U (CompΓ;∆

G (v)) ,⊗
v∈V
U (Γ (v))) (2.216)

formed by the following rules:

• For each edge (u→ v) ∈ E, apply a cap ϵ∆(u→v) ∶∆ (u→ v)⊗∆ (u→ v)∗ →
I between the (u→ v) component of CompΓ;∆

G (u) and the (u→ v) com-
ponent of CompΓ;∆

G (v).

• For each vertex v ∈ V , apply an identity on the Γ (v) within CompΓ;∆
G (v).

A graph state over G is a morphism g ∶ I → ⊗v∈V U (Γ (v)) which factorises as
g = (⊗v∈V gv) # ϵΓG with the component at each vertex matching the component
typing ∀v ∈ V.gv ∶ CompΓ;∆

G (v).

Example 2.8.3

Let N be the following graph.

a

b

c

d

(2.217)

For simplicity, consider constant interpretations Γ, ∆ that map vertices to bit
channels 2⊸ 2 and each edge to a single bit 2. The graph states over N are
then morphisms of the following form where each component gv is a causal state
of CompΓ;∆

N (v):

10“Contraction” is also a common term in logic, referring to the duplication/merging of identical
terms - there is no intended relation between contraction in this thesis and logical contraction

101

2⊸ 2

2

2⊸ 2

2∗2∗

2⊸ 2

2 2

2⊸ 2

2∗

ga gb gc gd

ϵΓ,∆N

(2.218)

Unpacking each gv into the corresponding channel fv, we see more clearly that
the graph states encode networks that factorise according to the graph N .

2

2
2
2

2

2
2

2
2

2

2

fa

fb

fc

fd

(2.219)

Such graph states resemble Bayesian networks, with some slight modifications.
Understanding that many physical theories do not admit broadcasting maps for shar-
ing the output of a given point with its descendants, each local function has additional
outputs to pass on, accepting that this may not share information identically.

Whilst we have defined graph states for arbitrary graphs, whenever the graph
would admit a cycle we can (noisily) encode a logical paradox which breaks causality
- more specifically, there is no longer a uniform discarding effect which is causal for all
graph states. This turns the anti-symmetry of the partial order for a causal structure
into an emergent property by asking for flatness of the causally realisable processes.

Lemma 2.8.4: Acyclicity Lemma

The set of graph states over G with a fixed edge interpretation ∆ is flat iff in
every cycle of G there is some edge (u→ v) for which ∆ (u→ v) ≅ I.

Proof. ⇐Ô: Suppose that every cycle of G contains an I edge. Let G′ be the
graph obtained by removing each such edge from G, leaving a DAG. Since each
removed edge was interpreted as I, graph states over G are always graph states
over G′. We can then show that graph states over DAGs are flat by induction
on the number of vertices of the graph.

If G is acyclic, there must be some maximal vertex v with no outgoing edges.
Pick the effect Γ(v) ∶ Γ (v)→ I and apply it to a graph state g at gv.

gv # (Γ(v) ⊗ id) ∶ I→
¸

(u→v)∈E
∆ (u→ v)∗ (2.220)

Since ∆ can only pick first-order objects, the only causal morphism of this

102

type is ⊗(u→v)∈E ∆(u→v)∗ . Each ∆(u→v)∗ can be absorbed into gu to show that
g # (id⊗ Γ(v) ⊗ id) gives a graph state over G ∖ {v}. By induction, the set of
graph states over G∖ {v} is flat with causal effect ⊗u∈V ∖{v} Γ(u). We now have
g # (⊗u∈V Γ(u)) = idI for every graph state g, so ⊗u∈V Γ(u) is in the dual set.
⊗v∈V Γ(v) is trivially a graph state by supplementing it with a pair of local

causal state and effect for each edge of the graph.
Ô⇒: Suppose there exists a (wlog minimal) cycle σ of G for which ∆ assigns

an object with at least two distinct causal states to each edge.
For each edge (u→ v) ∈ σ, pick two distinct states ρuv ≠ uv ∈ c∆(u→v).

For each segment (u→ v → w) ∈ σ, let fv ∶ Caus [C] (∆ (u→ v) ,∆ (v → w))
be a binary encoding for the chosen states of ∆ (u→ v) and ∆ (v → w) from
Lemma 2.6.24.

We will use these binary encodings to construct two graph states that are
equal up to a non-unit scalar, and so by linearity there is no effect that can
send them both to idI .

Firstly, we pick a graph state g where every gv ∶ I→ CompΓ;∆
G (v) is separable:

gv = ρv ⊗
⎛
⎝ ⊗(u→v)∈E

πuv
⎞
⎠
⊗
⎛
⎝ ⊗(v→w)∈E

ρvw
⎞
⎠

ρv ∈ cΓ(v)
∀ (u→ v) ∈ E. πuv ∈ c∗∆(u→v)

∀ (v → w) ∈ E. ρvw ∈ c∆(v→w)

(2.221)

so g =⊗v∈V ρv (the state-effect pairs for each edge merge to unit scalars).
We build another graph state g′ by taking g and for every vertex v in the

cycle σ ((u→ v → w) ∈ σ), we obtain g′v by replacing πuv⊗ρvw with η # (id⊗ fv)
(where η is the appropriate cup state). This still gives g′v ∶ I→ CompΓ;∆

G (v), so
we have a valid graph state. Removing the state-effect pairs for edges not in
σ, we find that g′ is g with an additional circular morphism following σ (we
borrow the ∏ notation from linear algebra to refer to an indexed sequential
product of linear maps).

g′ = (η # (id⊗∏
v∈σ
fv) # ϵ) ⋅ g (2.222)

We expand one fv̂ in this scalar (with (û→ v̂ → ŵ) ∈ σ), and use the fact
that each fv is causal and noisily preserves the dual effect (see the proof of

103

Lemma 2.6.24) to simplify. Here, we use similar notations as in Lemma 2.6.24
for the chosen states, dual effects, and relevant scalars.

[η # (id⊗∏
v∈σ
fv) # ϵ]

∼ [(λv̂θ−1ûv̂µ−1v̂ŵ + idI)
−1] ⋅ [η] #

⎛
⎜⎜⎜
⎝
id⊗
⎛
⎜⎜⎜
⎝

⎛
⎜⎜⎜
⎝

[λv̂θ−1ûv̂µ−1v̂ŵ ⋅ ûv̂] # [ρv̂ŵ2]
+eûv̂1 # [ρv̂ŵ1]
+[ûv̂] # [ρv̂ŵ2]
−eûv̂1 # [ρv̂ŵ2]

⎞
⎟⎟⎟
⎠

[∏
v̂≠v∈σ

fv]
⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠

[ϵ]
∼ [ρv̂ŵ2] # [∏

v̂≠v∈σ
fv] # [ûv̂]

+ [(λv̂θ−1ûv̂µ−1v̂ŵ + idI)
−1] ⋅ ([ρv̂ŵ1] − [ρv̂ŵ2]) # [∏

v̂≠v∈σ
fv] # eûv̂1

∼ [ρv̂ŵ2] # [v̂ŵ]
+ [∏

v∈σ
(λvθ−1uvµ−1vw + idI)

−1] ⋅ ([ρv̂ŵ1] − [ρv̂ŵ2]) # ev̂ŵ1
∼ [idI +∏

v∈σ
(λvθ−1uvµ−1vw + idI)

−1]

(2.223)

The big product must be non-zero since it is invertible, so we can conclude that
g and g′ are equal up to a non-unit scalar.

Corollary 2.8.5

The set of graph states over G (with any edge interpretation) is flat iff G is
acyclic.

Proof. If G contains any cycle, we can choose an edge interpretation that
assigns a non-trivial object to every edge in the cycle and create counterex-
amples to flatness with Lemma Acyclicity Lemma. Similarly, if G is acyclic,
Lemma Acyclicity Lemma shows that all graph states are causal with respect
to the uniform effect (up to a constant which does not depend on the choice of
edge interpretation).

This brings us to our first candidate definition of a graph type, where the states
are affine combinations of graph states with arbitrary edge interpretations. We will
also consider artificially restricting all intermediate edges to the object 2, the simplest
object that can still carry information, as we will eventually see that this is sufficient
to recover arbitrary systems under affine combination.

104

Definition 2.8.6: Local graph type

Given a DAG G = (V,E) with ordered vertices and a local interpretation Γ, the
local graph type over G is

LoGrΓG ∶=
⎛
⎜
⎝
⊗
v∈V
U (Γ (v)) ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g

RRRRRRRRRRRRRR

g is a graph state
over G for some edge
interpretation ∆

⎫⎪⎪⎪⎬⎪⎪⎪⎭

∗∗
⎞
⎟
⎠

(2.224)

and the 2-local graph type over G is

LoGr2Γ
G ∶=
⎛
⎜
⎝
⊗
v∈V
U (Γ (v)) ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g

RRRRRRRRRRRRRR

g is a graph state
over G using
∆ ∶∶ (u→ v)↦ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

∗∗
⎞
⎟
⎠

(2.225)

2.8.2 Signalling Graph Types

Next, we turn to definitions based on signal-consistency with respect to a causal
structure. This expresses compatibility with the causal structure as a combination
of a number of elementary non-signalling conditions, each of which can be expressed
using < and ` as discussed in Section 2.6.7. The concept of a down-closed subset
of the causal structure corresponds to a partition of the entire set into past and
future, from which we can then impose non-signalling from the future. Because this
is a complete partition of the entire causal structure, we can simplify the form of a
non-signalling condition from Equation 2.173.

We provide two definitions of this kind: one which imposes no constraints on the
kinds of marginal states observed in the past, and one which recursively asks the past
marginals to continue respecting the signalling conditions of the graph.

Definition 2.8.7: Signalling graph type

Let G = (V,E) be a DAG with ordered vertices and fix a local interpretation
Γ. A subset of vertices U ⊆ V is down-closed if ∀ (u→ v) ∈ E. v ∈ U Ô⇒ u ∈ U .
The signalling graph type over G is

SiGrΓG ∶= ⋂
U⊂V down-closed

¸
u∈U

Γ (u) <
¸

v∈V ∖U
Γ (v) (2.226)

and the recursive signalling graph type over G is

RSiGrΓG ∶= ⋂
U⊂V down-closed

RSiGr
Γ[U]
G[U] <

¸
v∈V ∖U

Γ (v) (2.227)

105

where G[U] is the induced subgraph over U and Γ[U] similarly restricts the
domain of Γ to U .

Example 2.8.8

We claim that the graph states over the N graph from Example 2.8.3 satisfy the
signalling graph type conditions for the same graph. There are 8 down-closed
subsets to consider, specified by the following cuts through the graph:

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

(2.228)

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

(2.229)

Let’s look at the bottom-left one, describing {a, c} before {b, d} - that is, for
any choice of local effects on {b, d}, there is a unique marginal over {a, c}. The
local interpretation of each vertex was 2⊸ 2, so any choice of effect will always
decompose into a pair of a binary input state and discarding the binary output.
In the picture of Equation 2.219, the component at b is fb ∶ (2⊸ 2)` 2∗ ` 2∗, so
after applying the input and discarding the output we are left with something
of type 2∗ ` 2∗ of which the only possibility is the discard map. The same
applies to fd to give the following:

fa

fb

fc

fd

ρb ρd

=
fa fc

(2.230)

This marginal is independent of our choice of effects on {b, d}. The SiGrΓG

definition requires this marginal to be a state of (2⊸ 2)` (2⊸ 2), whereas
RSiGrΓG requires it to recursively satisfy more non-signalling conditions - in
this case, that there is no signalling in either direction between a and c, i.e. the
marginal is a state of (2⊸ 2)⊗ (2⊸ 2). The latter is immediate from the fact
that it is separable, and the former follows by the natural inclusion of ⊗ into
` (Equation 2.58).

If we instead use the semi-localisability definition of < (Definition 2.6.3),
compatibility with a given cut through the graph is immediate by applying the
same cut to the actual graph state in Equation 2.219 and observing that it
factorises via the first order system 2⊗ 2.

106

Where graph states resembled Bayesian networks, this holds more resemblance to
the causal Markov condition: a probability distribution is Markov relative to a DAG
iff every variable is independent of its non-descendants conditional on its parents.
Since C might not support the ability to freely construct conditional distributions, we
instead phrase it in terms of signalling (whether the choice of local effects, which may
cover marginalisation and some classes of interventions, has any observable effect on
the remaining state), and we look at all ancestors instead of just the parents since
graph states can permit transitive signalling.

2.8.3 Ordered Graph Types

Recall Theorem 2.3.29 which characterised compatibility of first-order processes with
a given causal order via compatibility with every totalisation. The final graph type
definition we will consider is a higher-order generalisation of this, where the total-
isations of the causal order correspond to topological sorts over the vertices of the
graph.

Definition 2.8.9: Ordered graph type

Given a DAG G with ordered vertices and a local interpretation Γ, the ordered
graph type over G is

OrGrΓG ∶= ⋂
[v1,...,vn]∈sort(G)

Γ (v1) < ⋯ < Γ (vn) (2.231)

where sort (G) is the set of all topological sorts of the graph G.

Example 2.8.10

Returning to our example of the N graph, we have to consider the following
topological sorts of the graph:

(a, c, b, d) (a, c, d, b) (c, d, a, b) (2.232)
(c, a, b, d) (c, a, d, b)

We can follow a similar argument to Example 2.8.8 to show that the graph states
on N are compatible with each of these orderings in terms of non-signalling
conditions or factorising via some first-order systems.

Making the same alterations to discuss non-signalling over conditional indepen-
dence, this has a similar resemblance to the ordered Markov condition: conditional

107

on its parents, each variable of a probability distribution is independent of all its
predecessors in a topological sort of the graph.

Relating to the category theory literature, the ordered graph type extends ⊗ and
< from series-parallel orders to arbitrary partial orders over the vertices using the
pullback construction of Shapiro & Spivak [104], elevating the duoidal structure to
a dependence structure (Caus [C] is a pseudo-algebra of the categorical symmetric
operad of finite posets).

2.8.4 Equivalence of Definitions

The following Theorem states the equivalence of all candidate graph type definitions
presented here. Notably, SiGrΓG =OrGrΓG lifts Theorem 2.3.29 from first-order chan-
nels to arbitrary local systems, and LoGrΓG = OrGrΓG generalises the Non-signalling
Theorem and Seq Equivalence Theorem from the empty graph for ⊗ or linear graphs
for < to arbitrary DAGs.

Theorem 2.8.11: Graph Equivalence Theorem

LoGrΓG = LoGr2Γ
G =RSiGrΓG = SiGrΓG =OrGrΓG

Proof. We will show a cycle of inclusions between the state sets of these types.
Inclusion 1 cLoGr2Γ

G
⊆ cLoGrΓG

: graph states using the constant edge inter-
pretation are included in the set of all graph states.

Inclusion 2 cLoGrΓG
⊆ cOrGrΓG

: for any topological order O, we proceed in
the manner of the ⇐Ô direction of the Acyclicity Lemma: applying any causal
effect at the maximal vertex v gives a constant marginal over V ∖ {v} as the
edges into it are first-order. We continue down the order of O inductively,
showing one-way signalling at each step.

Inclusion 3 cOrGrΓG
⊆ cSiGrΓG

: pick some state h ∈ cOrGrΓG
and some down-

closed set U ⊂ V . Since U is down-closed, there must exist some topological
sort O which lists all vertices in U and then all vertices in V ∖ U . There-
fore, h ∶ (<O

v∈U Γ (v)) < (<O
v∈V ∖U Γ (v)) which is a subtype of (

˙
v∈U Γ (v)) <

(
˙

v∈V ∖U Γ (v)).
Inclusion 4 cSiGrΓG

⊆ cRSiGrΓG
: by induction on the number of vertices in

G. The cases for zero and one vertex are trivial, so consider some h ∈ cSiGrΓG

(∣V ∣ > 1) and an arbitrary down-closed U ⊂ V . It is sufficient to show that the
constant marginal hU ∶

˙
v∈U Γ(v) is actually in c

SiGr
Γ[U]
G[U]

(since ∣U ∣ < ∣V ∣, this is
a subset of c

RSiGr
Γ[U]
G[U]

by the induction hypothesis).

108

Pick an arbitrary U ′ ⊂ U which is down-closed wrt G[U] (and hence down-
closed wrt G). Using the signalling graph type property of h, it has a constant
marginal hU ′ ∶

˙
v∈U ′ Γ (v) for any choice of local effects over V ∖U ′. Applying

any choice of effects {πv ∶ Γ (v)→ I}v∈U∖U ′ on hU then gives hU ′ as a constant
marginal, showing that hU ∶ (

˙
v∈U ′ Γ (v)) < (

˙
v∈U∖U ′ Γ (v)):

hU #⊗
v∈U
{ idΓ(v) v ∈ U ′
πv v ∈ U ∖U ′

= h #⊗
v∈V

⎧⎪⎪⎪⎨⎪⎪⎪⎩

idΓ(v) v ∈ U ′
πv v ∈ U ∖U ′
Γ(v) v ∈ V ∖U

= hU ′

(2.233)

Taking the intersections of these types for each down-closed U ′ ⊂ U gives hU ∶
SiGr

Γ[U]
G[U].

Inclusion 5 cRSiGrΓG
⊆ cLoGr2Γ

G
: This is by far the most involved direction.

It is, again, by induction on the number of vertices where the cases for zero and
one are trivial, so we focus on the inductive case. Firstly, we will fix a bunch
of notation. For each v ∈ V :

• Let {ρviv}iv ⊆ C (I,U (Γ (v))) be a preferred basis for Γ (v), with dual
effects {eviv}iv ⊆ Sub (C) (U (Γ (v)) , I).

• Let λv be an invertible scalar and {σv
iv
}
iv
⊆ C (I,U (Γ(v))) s.t. ∀iv. ρviv +

σv
iv
= λv ⋅ (e.g. apply APC5a for each ρviv to get λv,iv and take the

maximum with respect to the preorder of APC4).

• Let {tviv ∶ 2⊗∣in(v)∣ → Γ(v)` 2`∣out(v)∣}
iv

be binary tests for {ρviv}iv , condi-
tioned on all predecessors in the graph and broadcast to all successors.

⎛
⎝ ⊗u∈in(v)

ιxu

⎞
⎠

tviv ∶=
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

µvλ−1v ⋅
⎛
⎝

ρviv ⊗⊗w∈out(v) t
+σv

iv
⊗⊗w∈out(v) f

⎞
⎠

∀u ∈ in(v). ιxu = t

Γ(v) ⊗⊗w∈out(v) f otherwise
(2.234)

• Let {T v
iv
}
iv

be conditional preparations.

⎛
⎝ ⊗u∈in(v)

ιxu

⎞
⎠

T v
iv ∶=
⎧⎪⎪⎨⎪⎪⎩

ρviv ∀u ∈ in(v). ιxu = t
Γ(v) otherwise

(2.235)

For those iv ∈BΓ(v) (ρviv ∈ cΓ(v)), T
v
iv
∶ 2⊗∣in(v)∣ → Γ(v) is causal.

109

Let maxG = {v ∈ V ∣ /∃ (v → w) ∈ E} be the set of maximal vertices of the
graph (since G is acyclic, this must be non-empty). Let gÐ→

i
∈ cLoGr2Γ

G
be the

graph state overG wrt the constant-2 edge interpretation∆2 whose components
are {tviv ∣ v ∉maxG}∪{T v

iv
∣ v ∈maxG}; note that this is only a valid graph state

when iv ∈BΓ(v), otherwise T v
iv
is not causal for the appropriate component type.

Now, we take an arbitrary state h ∶RSiGrΓG.
For any v ∈maxV , we claim the following:

∀iv ∈BΓ(v). [h] # ⎛⎝⊗u∈V
⎧⎪⎪⎨⎪⎪⎩

eviv u = v
id u ≠ v

⎞
⎠
∼ 0 (2.236)

V ∖ {v} is down-closed, so the recursive signalling graph type tells us that
h ∶ RSiGr

Γ[V ∖{v}]
G[V ∖{v}] < Γ (v). Equation 2.236 then follows from Lemma 2.6.8, as

expanding h in terms of the basis for Γ (v) will only use the causal basis states.
Now, consider the following expression:

∑
Ð→
i

([h] #⊗
v∈V

eviv) ⋅ [gÐ→i] (2.237)

This is a linear combination of graph states wrt ∆2, since any choice of Ð→i for
which gÐ→

i
is not valid (∃v ∈maxV.ρviv ∉ cΓ(v)) would give a zero coefficient. It is

also affine by Lemma 2.6.8.
The rest of the proof will show that expanding the definitions of each tviv

and T v
iv

in Equation 2.237 equates gÐ→
i
to another affine combination, where

precisely one term in the sum is h itself (with a non-zero coefficient) and the
rest are other graph states wrt ∆2. From this, we could solve the equation for
h to represent it as an affine combination of graph states wrt ∆2, showing that
it lives in cLoGr2Γ

G
.

For each index iv in the sum of Equation 2.237, only eviv and either tviv or
T v
iv

depend on it. Summing over that index locally gives the following decom-
positions:

∑
iv

eviv # ⎡⎢⎢⎢⎢⎣
⎛
⎝ ⊗u∈in(v)

ιxu

⎞
⎠

tviv⎤⎥⎥⎥⎥⎦
∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[µvλ−1v] ⋅
⎛
⎝
∑iv e

v
iv

[ρviv ⊗⊗w∈out(v) t]
+∑iv e

v
iv

[σv
iv
⊗⊗w∈out(v) f]

⎞
⎠

∀u ∈ in (v) . ιxu = t

∑iv e
v
iv

[Γ(v) ⊗⊗w∈out(v) f] otherwise

110

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

[µvλ−1v] ⋅ (∑iv e
v
iv

[ρviv])⊗ [⊗w∈out(v) t]
−[µvλ−1v] ⋅ (∑iv e

v
iv

[ρviv])⊗ [⊗w∈out(v) f]
+(∑iv e

v
iv

[Γ(v)])⊗ [⊗w∈out(v) f]

⎞
⎟⎟
⎠

∀u ∈ in (v) . ιxu = t

(∑iv e
v
iv

[Γ(v)])⊗ [⊗w∈out(v) f] otherwise

(2.238)

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

[µvλ−1v] ⋅ [id]⊗ [⊗w∈out(v) t]
−[µvλ−1v] ⋅ [id]⊗ [⊗w∈out(v) f]
+[Γ(v) # Γ(v)]⊗ [⊗w∈out(v) f]

⎞
⎟⎟
⎠

∀u ∈ in (v) . ιxu = t

[Γ(v) # Γ(v)]⊗ [⊗w∈out(v) f] otherwise

∑
iv

eviv # ⎡⎢⎢⎢⎢⎣
⎛
⎝ ⊗u∈in(v)

ιxu

⎞
⎠

T v
iv

⎤⎥⎥⎥⎥⎦

∼
⎧⎪⎪⎨⎪⎪⎩

∑iv e
v
iv

[ρviv] ∀u ∈ in (v) . ιxu = t
∑iv e

v
iv

[Γ(v)] otherwise

∼
⎧⎪⎪⎨⎪⎪⎩

id ∀u ∈ in (v) . ιxu = t
[Γ(v) # Γ(v)] otherwise

(2.239)

In each case from these, we get an affine combination of a local channel
applied at the vertex (either the identity or completely noisy channel) and some
classical outcome passed to the next vertices. So in the complete expansion of
Equation 2.237, we get an affine combination of terms, each of which is h with
the completely noisy channel applied to some subset of vertices.

∑
Ð→
i

([h] #⊗
v∈V

eviv) ⋅ [gÐ→i] ∼ ∑
U⊆V

sU ⋅
⎡⎢⎢⎢⎢⎣
h #⊗

v∈V

⎧⎪⎪⎨⎪⎪⎩

id v ∈ U
Γ(v) # Γ(v) v ∉ U

⎤⎥⎥⎥⎥⎦
(2.240)

Not every such subset is generated, so some coefficients sU may be zero.
The U = V term reduces completely to h with coefficient sV =∏v∉maxV µvλ−1v

which is invertible and non-zero, so we really can solve this equation for h.
All that remains is to show that the other terms in this expansion are in

cLoGr2Γ
G
. Consider the term for some U ⊂ V with a non-zero coefficient.

U must be down-closed; for any (u→ v) ∈ E, if v ∈ U then Equations 2.238
and 2.239 tell us v must have received t from each of its predecessors, and the
only term from the expansion at u which yields t applies id at u, i.e. u ∈ U .

The U case of the recursive signalling graph type of h gives the seq type
h ∶ RSiGr

Γ[U]
G[U] <

˙
v∈V ∖U Γ (v), so after applying Γ(v) on each v ∈ V ∖ U , we

111

are left with the constant marginal hU ∶ RSiGr
Γ[U]
G[U]. Applying the induction

hypothesis gives hU ∶ LoGr2
Γ[U]
G[U] and hence can be represented as an affine

combination of graph states over G[U] wrt ∆2. Adding the local states Γ(v) at
each v ∈ V ∖U gives an affine combination of graph states over G with ∆2.

This equivalence offers us great flexibility for proving results about graph types
as we can freely switch between different characterising properties. Many of the
properties in the remainder of this section have multiple proofs using the different
kinds of graph types which may be interesting and provide insight in their own right.
Now the equivalence is established, we may use GrΓG to refer to graph types in a
canonical way, choosing between the alternative definitions as we see fit. We can
observe that the following special cases hold by the definitions:

Gr∅(∅,∅) = I (2.241)
Gra↦A

({a},∅) =A (2.242)
Gra↦A,b↦B

({a,b},∅) =A⊗B (2.243)
Gra↦A,b↦B

({a,b},{a→b}) =A < B (2.244)

Looking at other specific examples of graph types beyond A⊗B and A < B, we
find an exact correspondence between any object generated by {⊗,<} and graph types
of series-parallel graphs. This is important not only for meeting the expectations re-
garding compatibility with series-parallel causal structures, but it acts as the first step
on a theory of compositionality of causal structures which we refine in Section 2.8.6.

Corollary 2.8.12

Given graph types over non-empty disjoint vertex sets V and V ′,

GrΓ(V,E) ⊗GrΓ
′

(V ′,E′) =GrΓ,Γ
′

(V ∪V ′,E∪E′) (2.245)
GrΓ(V,E) <GrΓ

′

(V ′,E′) =GrΓ,Γ
′

(V ∪V ′,E∪E′∪{v→v′ ∣ v∈V,v′∈V ′}) (2.246)

Proof. For ⊗, consider the local graph type definition. Graph states over the
combined graph (V ∪ V ′,E ∪E′) are precisely the parallel composition of a
graph state over (V,E) and one over (V ′,E′). Each type just takes affine
combinations of these.

For <, use the ordered signalling type definition. Each topological ordering
of (V ∪ V ′,E ∪E′ ∪ {v → v′ ∣ v ∈ V, v′ ∈ V ′}) is a topological ordering of (V,E)

112

followed by a topological ordering of (V ′,E′). Setwise Distributivity between
< and ∩ allows us to combine the quantification over the separate graphs into
quantification over the combined graph.

The equivalence of local and 2-local graph types demonstrates that any channel
with arbitrary capacity over any kind of data, be it classical data, quantum states, or
other exotic systems, can be simulated by an affine combination of classical channels
with 1 bit capacity. This is not too surprising since affine combinations need not
preserve information capacity - whilst taking convex combinations of pure channels
will only preserve or decrease capacity, affine combinations can invert this allowing us
to recover pure channels of higher capacity from mixed channels of lower capacity. The
2-local graph type definition gives an additional alternative definition for sequence
types, refining Definition 2.6.3 to fix the intermediate system to 2.

Theorem 2.8.13: Affine-Bit Sufficiency Theorem

A < B = (A⊗B,{
hA2 h2B

2∗2A B ∣ hA2 ∈ cA`2,
h2B ∈ c2∗`B

}
∗∗

)

Proof. Immediate from Equation 2.244 and the Graph Equivalence Theorem.

Example 2.8.14

Circuit knitting is a technique in quantum computing to simulate a quantum
circuit that is too large to run on a single quantum device by running a collection
of smaller circuits across several devices and combining the statistics. This can
focus on either cutting qubit wires [111] or cutting entangling gates to divide
the circuit [48].

We can view the correctness of these methods as a consequence of the Sum
of Orders Theorem and Affine-Bit Sufficiency Theorem. For example, any en-
tangling gate between two qubits is a process of type (Q⊸Q)` (Q⊸Q).
We can, firstly, represent this as an affine combination of one-way signalling
processes (Q⊸Q) < (Q⊸Q) ∪ (Q⊸Q) > (Q⊸Q). Each of those may still
pass quantum information between the two qubits, but they can also be sim-
ulated by an affine combination of local channels that pass a single classical
bit between them. Our simulation can either involve live classical communi-

113

cation between multiple quantum devices to perform this, or handle it offline
by rerunning the later circuit multiple times with different classical inputs and
combining the probabilities of observations.

2.8.5 Standard Forms

Even after showing that all definitions of graph types coincide exactly, graph types
built from distinct graphs may describe the same subspace of linear maps. In this
section, we will work towards a standard form for graph types which are unique
and characterise inclusion and composition. Firstly, instead of the exact graph we
find that only the partial order induced by it (i.e. its transitive closure) matters.
Combining this with the Acyclicity Lemma gives a complete justification for using
partial orders to represent causal structures.

Lemma 2.8.15

GrΓG =GrΓG+

where G+ is the transitive closure of G.

Proof. This is immediate from the signalling graph type definition, since U ⊆ V
is down-closed wrt G iff it is down-closed wrt G+.

Next, we look towards details in the local interpretations and how they induce
equivalences between graph types. For example, if it maps every vertex to I (i.e. the
graph states are scalars), then there is a unique state.

Corollary 2.8.16

Gr
{v↦I}v∈V
(V,E) ≅ I

Proof.
Gr

{v↦I}v∈V
(V,E) = ⋂

O topological sort of (V,E)
<
v∈O

I =
¸
v∈O

I ≅ I (2.247)

Moreover, this can be observed piecewise by the ability to remove vertices with
trivial local interpretation. We still need to take the transitive closure so we don’t
lose any information pathways that passed through this vertex.

114

Lemma 2.8.17

GrΓ,v↦I
G ≅GrΓG+∖{v}

Proof. This is straightforward from the ordered graph type definition, since an
ordering of V ∖ {v} is topological wrt G iff it is topological wrt G+ ∖ {v}.

Suppose, instead, that a vertex is interpreted as a first-order object. Because of
the degeneracy of having a single causal effect, there is no way for a local external
agent to signal information to other vertices, so we can prune away any outgoing edges
from that vertex and preserve the graph type. Again, we need to consider transitive
closures so we don’t disturb indirect signalling pathways. Dually, for first-order dual
objects no information can be observed locally, so we can prune away incoming edges.
Combining the two recovers Lemma 2.8.17 by removing both incoming and outgoing
edges from a vertex.

Lemma 2.8.18

Given two transitive DAGs G = (V,E) and G′ = (V,E ∪ (u→ v)) differing by a
single edge, GrΓG =GrΓG′ iff Γ (u) or Γ (v)∗ is first-order.

Proof. Again, we will focus on the signalling graph type definition. cGrΓG
⊆ cGrΓ

G′

is immediate since any U ⊂ V that is down-closed wrt G′ is also down-closed
wrt G. We will just show that the opposite direction of inclusion holds iff Γ (u)
or Γ (v)∗ is first-order.
Ô⇒: aiming for the contrapositive, suppose neither of Γ (u) or Γ (v)∗ is

first-order, i.e. ∣c∗
Γ(u)∣ , ∣cΓ(v)∣ > 1. Then there exists a binary encoding f ∈

cΓ(u)<Γ(v) ∖ cΓ(u)>Γ(v) which actively signals from u to v. Let h be a parallel
composition of f with some separable states hv′ ∈ cΓ(v′) for each v′ ∉ {u, v}.
h ∈ cSiGrΓ

G′
because any down-closed set wrt G′ containing v also contains u.

However, inG (v) is down-closed wrt G and does not contain u, so the active
signalling of f means h ∉ cSiGrΓG

.
⇐Ô: Consider an arbitrary h ∈ cSiGrΓ

G′
, so it is non-signalling into any subset

down-closed wrt G′. Then consider some U ⊂ V that is down-closed wrt G but
not wrt G′, i.e. v ∈ U but u ∉ U . Transitivity of G and G′ then imply that both
U ∪ {u} and U ∖ {v} are down-closed wrt G′:

• U ∪ {u}: for any (w → u) ∈ G′, (w → v) ∈ G′ by transitivity and hence
w ∈ U by down-closure of U .

115

• U ∖{v}: for any (v → w) ∈ G′, (u→ w) ∈ G′ by transitivity and (u→ w) ∈
G since the only edge that differs is (u→ v). By down-closure of U wrt
G and u ∉ U , we have w ∉ U .

If Γ (u) is first-order, there is a unique effect Γ(u). We already have h is
non-signalling into U ∪ {u}, so applying Γ(u) must give a unique marginal over
U .

Suppose instead Γ (v) is first-order dual with unique state Γ(v). Picking
any choice of effects {πw}w∈V ∖U , we consider the marginal hU over U when we
apply these. Since Γ (v) is first-order dual, its local causal effects (the states of
Γ (v)∗) include a basis. Whichever basis element we apply to hU , we must get
the constant marginal hU∖{v} since h is non-signalling into U∖{v}, so by equality
on every element of a basis we have hU = hU∖{v} ⊗ Γ(v). This is independent of
our choices {πw}w∈V ∖U , so h is non-signalling into U .

Taking the transitive closure and then pruning edges at first-order (dual) objects
yields a procedure that reduces the graph G to a standard form G. The final two
lemmas for this section show that this form is a canonical normal form in the sense
that it uniquely identifies a graph type and characterises both inclusion of graph types
and dual inclusion (i.e. whether we can always compose graph states to yield the unit
scalar).

Theorem 2.8.19: Graph Inclusion Theorem

Given a DAG G = (V,E) and a local interpretation Γ, let G = (V,E) be the
DAG with

(u→ v) ∈ E def⇐Ô⇒ (u→ v) ∈ E+ ∧ ∣c∗Γ(u)∣ > 1 ∧ ∣cΓ(v)∣ > 1 (2.248)

Then GrΓG = GrΓ
G
. Furthermore, for any G′ = (V,E′) over the same vertices,

cGrΓG
⊆ cGrΓ

G′
iff E ⊆ E′.

Proof. GrΓG = GrΓ
G

follows from Lemmas 2.8.15 and 2.8.18 by pruning edges
one by one from the transitive closure. The remainder now requires us to show
that cGrΓ

G
⊆ cGrΓ

G′
iff E ⊆ E′.

⇐Ô: If E ⊆ E′, then the inclusion of graph types follows straightforwardly
from any of the graph type definitions.

116

Ô⇒: Suppose, aiming for the contrapositive, that there is some (u→ v) ∈
E ∖E′. By definition of E, ∣c∗

Γ(u)∣ > 1 and ∣cΓ(v)∣ > 1, so we can use a binary en-
coding Γ (u)→ Γ (v) to generate a counterexample in cSiGrΓ

E
∖cSiGrΓ

E′
, following

the same proof as the Ô⇒ direction of Lemma 2.8.18.

Example 2.8.20

Suppose we have graph types described by the following graphs, with the vertex
labels picking out some local interpretation:

G =

A

C1∗ D1

E1

I

F

B1∗

G′ =
A

C1∗

D1

E1 I

F

B1∗

G =
AC1∗

D1E1I F

B1∗

G′ =
AC1∗

D1E1I F

B1∗

(2.249)

By just looking at G and G′, it may not be immediately obvious whether one
structure generalises the other, whereas we can easily see that G′ is a subgraph
of G. To get from G to G, the arcs out of A and B1∗ are introduced by taking
the transitive closure. Then the first-order D1, E1, and I act as simple outputs
of the network, so we remove their outgoing edges; it is impossible for local
agents at them to signal to anything else since they only have a single choice
of effect to apply (discarding). Similarly, the first-order dual B1∗, C1∗, and
I act as simple inputs; an agent would see that the network acts locally like
discarding regardless of actions made at other vertices, so nothing can ever
signal to them.

Theorem 2.8.21: Graph Compatibility Theorem

Let G = (V,E) and G′ = (V,E′) be two DAGs over the same set of vertices,
and Γ,Γ∗ ∶ V → Ob (Caus [C]) be dual local interpretation functions, ∀v ∈
V. Γ∗ (v) = Γ (v)∗. Then cGrΓG

⊆ c(GrΓ
∗

G′)
∗ iff (V,E ∪E′) is acyclic.

Proof. From the Graph Inclusion Theorem, we get cGrΓG
⊆ c(GrΓ

∗
G′)

∗ iff cGrΓ
G
⊆

c(GrΓ
∗

G′
)
∗ . This inclusion holds exactly when, if we compose any pair of graph

117

states over G with Γ and over G′ with Γ∗ by contracting the components at
each vertex, then the resulting scalar is idI .
Ô⇒: Aiming for the contrapositive, assume (V,E ∪E′) is not acyclic. Pick

a minimal cycle σ (so it visits each vertex at most once) and break it down
into segments of edges in E and edges in E′ (if the edge is in both, we may
pick either arbitrarily). Let Gσ be the graph over V ⊎V consisting of G and G′

in parallel with additional edges between matching vertices marking the points
where σ transitions from one graph to the other:

(ua → vb) ∈ Eσ
def⇐Ô⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u→ v) ∈ E a = b = 1
(u→ v) ∈ E′ a = b = 2
⎛
⎝
∃ (w → u) ∈ σ ∩E,
(v → w′) ∈ σ ∩E′.u = v

⎞
⎠

a = 1, b = 2

⎛
⎝
∃ (w′ → u) ∈ σ ∩E′,
(v → w) ∈ σ ∩E.u = v

⎞
⎠

a = 2, b = 1

(2.250)

Graph states over Gσ resemble a pair of graph states over G and G′, con-
tracted only over the vertices where σ transitions from one graph to the other,
with local effects on all other vertices. They aren’t precisely the same thing,
since edge interpretations must be first-order objects and the contractions may
occur over some Γ (v) which is neither first-order nor first-order dual. However,
by construction of E and E′, we know that any transition from E to E′ at
vertex v has ∣cΓ(v)∣ > 1 since v must have a predecessor in E and a successor in
E′. This implies the existence of some binary encodings which signal to and
from Γ (v), e.g. if (u→ v) ∈ σ ∩E and (v → w) ∈ σ ∩E′, binary encodings give
morphisms in c∆(u→v)∗<Γ(v) ∖ c∆(u→v)∗>Γ(v) and cΓ(v)∗<∆(v→w) ∖ cΓ(v)∗>∆(v→w). We
can therefore apply the same cyclic feedback construction from the proof of
the Acyclicity Lemma to generate two pairs of graph states in GrΓ

G
and GrΓ

∗

G′

whose inner products give distinct scalars - at least one of these inner products
must be not idI .
⇐Ô: Now we suppose that (V,E ∪E′) is acyclic. If we take any pair of

graph states from GrΓ
G
and GrΓ

∗

G′
and contract the components at each vertex

into a single component, we obtain a valid graph state of Gr
{v↦I}v∈V
(V,E∪E′)

(this is
a valid object by the Acyclicity Lemma). Corollary 2.8.16 tells us there is a
unique scalar formed by this composition, which is idI .

118

Example 2.8.22

Let’s take the same graphs as Example 2.8.20 but dualise the local interpreta-
tion for G.

G =

A∗

C1 D1∗

E1∗

I

F∗

B1

G′ =
A

C1∗

D1

E1 I

F

B1∗

G =
A∗C1

D1∗E1∗I F∗

B1

G′ =
AC1∗

D1E1I F

B1∗

(2.251)

If we just looked at G and G′, we would see a cycle in E ∪E′ from A∗ → D1∗

in G and D1 →A in G′. However, because D1 is first-order, D1 <A =D1 ⊗A

and A∗ <D1∗ =A∗ ⊗D1∗ mean it is impossible to send any information around
this cycle. Once we prune off either edge, it becomes immediately clear that
the causal structures are compatible.

One can intuitively read this as saying that the graph types are compatible exactly
when there is a total causal ordering between the vertices that respects both graph
types. This falls in line with an exact characterisation of the dual space of a graph
type as a union of topological orderings.

Proposition 2.8.23

(GrΓG)
∗ = ⋃

[v1,...,vn]∈sort(G)
Γ(v1)∗ < ⋯ < Γ(vn)∗

Proof. This is immediate from the ordered graph type definition, the de Morgan
dualities between ∪ and ∩, and self-duality of < (Equation 2.145).

2.8.6 Preservation of Local Structure

This section will look at further interplay between graph types and the local inter-
pretation functions. In particular, if the local interpretation maps a vertex to an
object with some structure, we will see when that structure can be lifted to the level
of the graph types themselves. For example, we have a generalisation of the Setwise
Distributivity laws where graph types will preserve unions and intersections in the
local interpretations.

119

Proposition 2.8.24

GrΓ,v↦A∪B
G =GrΓ,v↦A

G ∪GrΓ,v↦B
G (2.252)

GrΓ,v↦A∩B
G =GrΓ,v↦A

G ∩GrΓ,v↦B
G (2.253)

Proof. ∪: Using Setwise Distributivity for `, the component type at v from
GrΓ,v↦A∪B

G satisfies:

CompΓ,v↦A∪B;∆
G (v) = (A ∪B)` (⋯) =A` (⋯)∪B` (⋯) (2.254)

The v component of any graph state of GrΓ,v↦A
G or GrΓ,v↦B

G is trivially valid
for the component typing above, and conversely the v component for any graph
state of GrΓ,v↦A∪B

G is an affine combination of valid components for GrΓ,v↦A
G

and GrΓ,v↦B
G . Hence, any graph state of one type can always be broken down

as an affine combination of graph states of the other.
∩: Immediate from the ordered graph type definition and Setwise Distribu-

tivity for <.

More generally, if a local interpretation maps a vertex to another graph type, then
we can flatten the nesting of graphs into a single graph type by graph substitution.

Definition 2.8.25: Graph substitution

Let G = (V,E) and G′ = (V ′,E′) be two DAGs with disjoint vertices V ∩V ′ = ∅,
and choose a vertex v ∈ V . We define the substitution of G′ for v in G as the
graph G [G′/v] ∶= ((V ∖ v) ∪ V ′,E [E′/v]) with

(u→ w) ∈ E [E′/v] def⇐Ô⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u→ w ∈ E u,w ∈ V ∖ {v}
u→ v ∈ E u ∈ V ∖ {v} ,w ∈ V ′

v → w ∈ E u ∈ V ′,w ∈ V ∖ {v}
u→ w ∈ E′ u,w ∈ V ′

(2.255)

i.e. G′ takes the place of v, and each edge into and out of v is duplicated for
every vertex in G′.

Proposition 2.8.26

Gr
Γ,v↦GrΓ

′
G′

G =GrΓ,Γ
′

G[G′/v]

120

Proof. We start with the transitive closure GrΓv

G = GrΓv

G+ from Lemma 2.8.15
where Γv = Γ∪{v ↦GrΓ

′

G′}. We can then use Lemma 2.8.17 to insert additional
vertices interpreted as I to collect predecessors and successors of v, meaning
v has precisely one predecessor p and one successor s. Let’s refer to this new
graph type as GrΓA

GA
.

Examining the component type at v (assuming wlog the constant edge in-
terpretation ∆2):

ΓA (v)`2∗ ` 2 ≅ 2∗ <GrΓ
′

G′ < 2

=Gri↦2∗

({i},∅) <GrΓ
′

G′ <Gro↦2
({o},∅)

≅GrΓ
′,i↦2∗,o↦2
(V ′∪{i,o},E′∪{i→u,u→o ∣ u∈V ′})

(2.256)

where we have used Corollary 2.8.12 to represent this as a single graph type.
This new graph, which we will denote as i < G′ < o, extends G′ with a global
source i and sink o.

Considering any graph state g of GrΓA

GA
, the component at v can hence be

expressed as an affine combination of graph states of i < G′ < o. By linearity,
g can be expressed as an affine combination of graph states of Gr

Γ,Γ′,{p,i,o,s}↦I
GB

where GB = ((V ∖ v) ∪ V ′ {p, i, o, s} ,EB) and

EB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

{(u→ w) ∈ E ∣ u,w ≠ v}
∪{(u→ p) ∣ (u→ v) ∈ E}
∪{(p→ i)}
∪{(i→ w) ∣ w ∈ V ′}
∪E′
∪{(u→ o) ∣ u ∈ V ′}
∪{(o→ s)}
∪{(s→ w) ∣ (v → w) ∈ E}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.257)

Note that the interpretations of i and o have become I as the 2∗ and 2 systems
have been contracted according to the edges (p→ i) and (o→ s). Conversely,
any graph state of Gr

Γ,Γ′,{p,i,o,s}↦I
GB

is immediately a graph state of GrΓA

GA
up to

unitors, hence these graph types are isomorphic.
Finally, we reach GrΓ,Γ

′

G[G′/v] by removing {p, i, o, s} with Lemma 2.8.17 and
undoing the transitive closure by Lemma 2.8.15.

In summary, we have achieved an isomorphism between Gr
Γ,v↦GrΓ

′
G′

G and
GrΓ,Γ

′

G[G′/v]. Furthermore, it is an equality, since the underlying carrier objects

121

are identical and the isomorphism is composed entirely out of structural mor-
phisms (e.g. unitors, associators, permutations) which must equal the identity
by coherence in C.

Example 2.8.27

The following sequence of graph types also shows the intermediate stages from
the proof of Proposition 2.8.26. A box represents a single vertex whose inter-
pretation is itself the graph type inside the box.

E

D

C

A B

X

Z

Y

≅

E

D

C

A B

X

Z

Y

Is

Ip

≅

E

D

C

A B

X

Z

Y

Is

Ip

Ii

Io

≅

E

D

C

A B

X

Z

Y

(2.258)

This result shows when it is safe to map between different levels of abstraction for
a causal scenario by grouping parties together or splitting them up. We can see this
as generalising Corollary 2.8.12, since both series and parallel composition of graphs
are instances of graph substitution. In terms of dependence categories [104], this
substitution result is exactly the natural associativity isomorphism from the pseudo-
algebra definition.

2.8.7 Causal Relations Beyond Graph Types

Viewing the partial order of a causal structure as a representation for the collection
of totalisations of the order immediately highlights a shortcoming of using partial
orders in the first place: that there exist combinations of total orderings which do not
correspond to any partial order. Analogously, Definition 2.8.9 for ordered graph types
does not give a universal way to describe any intersection of linear causal structures.
In particular, taking the set-wise intersection of two graphs is not precisely reflected
by the intersection of their graph types.

122

To see this, consider the encoder for the one-time-pad scheme enc ∶ 2→ 2⊗ 2:

enc(t) = 1
2(t⊗ f + f⊗ t) (2.259)

enc(f) = 1
2(t⊗ t + f⊗ f) (2.260)

This is a famous example to show that signalling relations between individual parties
are not sufficient to infer the signalling relations between subsets of parties. The input
cannot signal information successfully to either one of the outputs (i.e. marginalising
out the other output means we can no longer recover any information about the
input), but it does signal to the joint system over both outputs since we can recover
the input by XOR.

We can show that enc is in the intersection of the graph types GrΓIn→Out1 ∩
GrΓIn→Out2 with a single edge from In to one output and the other disconnected.

enc = 1

2
(¬ t + f) = 1

2
(t ¬ + f) (2.261)

Expanding the signalling graph type definitions, enc is compatible with:

Out1 < (In`Out2) (2.262)
Out2 < (In`Out1) (2.263)
In < (Out1 `Out2) (2.264)
(In`Out1) <Out2 (2.265)
(In`Out2) <Out1 (2.266)

However, whilst traditionally we would think of the intersection of these graphs
as being the graph with no edges, enc is not compatible with the corresponding graph
type GrΓ∅. This type requires all of 2.262-2.266 as well as (Out1 `Out2) < In which
enc fails to satisfy. Moreover, there is no graph type that exactly matches just the
intersection of 2.262-2.266.

In general, we still get an inclusion relating graph intersection to the intersection
of graph types, just not equality. Similarly, when (V,E ∪E′) is acyclic, union of
graphs is only preserved in one direction.

cGrΓ(V,E∩E′)
⊆ cGrΓ(V,E)∩GrΓ(V,E′)

(2.267)

cGrΓ(V,E)∪GrΓ(V,E′)
⊆ cGrΓ(V,E∪E′)

(2.268)

123

Remark 2.8.28

We conjecture that the distribution of union and intersection of Remark 2.7.8
does still hold over graph types with the same local interpretation, meaning
Hoffreumon and Oreshkov’s standard form [64] (a union of intersections of total
orderings) remains general enough to capture all causal data.

(GrΓG1
∪GrΓG2

) ∩GrΓG3

?= (GrΓG1
∩GrΓG3

) ∪ (GrΓG2
∩GrΓG3

) (2.269)

However, even if we can recover a union of intersections form, it still won’t
be unique in general. For example, a graph type on a graph with n vertices
and no edges can be written as an intersection of all n! orderings using the
ordered graph type definition, but by treating it as an n-fold tensor product we
can recursively apply the Non-signalling Theorem to write it as an intersection
of only 2n terms. It would be interesting for future work to determine exactly
when terms can be dropped from an intersection or union in this way.

2.9 Partiality in Higher-Order Theories
So far, we have only considered a theory of causal processes: those that can be phys-
ically realised with probability 1. There is a common need to instead investigate
partial processes - those that may only be realised with some probability, and where
this probability may depend on the context they are applied in. For example, oper-
ational theories phrased in terms of tests will want a way to talk about the process
occurring on particular test outcomes, or more broadly we need to break causality in
order to calculate probabilities of observations or conditionals. This section covers a
few candidates for ways to incorporate partiality into the Caus [−] construction and
where they fall short of either interacting well with causal categories or where the
adaptation to higher-order loses many key properties satisfied by first-order theories
of partial maps. Two of these options will be directly inspired by effectus theory.

Effectus theory is a popular framework in category theory for process theories ad-
mitting views either as a category of total maps (akin to causal processes) or partial
maps. Given the total map category, one can obtain the partial category using a sim-
ple construction, and vice versa. It is sufficiently general to encompass examples such
as sets and total/partial functions, first-order probability theory with stochastic/sub-
stochastic maps, and first-order quantum theory with trace-preserving/trace-non-
increasing maps. We refer the reader to [25] for a comprehensive introduction.

124

Definition 2.9.1: Effectus

An effectus is a category B with finite coproducts (+,0) and a terminal object
1, satisfying:

1. diagrams of the following forms are pullbacks in B:

X + Y X +B

A + Y A +B

[ι1,g#ι2]
[f #ι1,ι2]

⌟
[f #ι1,ι2]

[ι1,g#ι2]
(2.270)

X A

X + Y A +B

f

ι1

⌟
ι1

[f #ι1,g#ι2]
(2.271)

2. = [[ι1, ι2] , ι2] ∶ (1 + 1) + 1 → 1 + 1 and ∶ [[ι2, ι1] , ι2] ∶ (1 + 1) + 1 → 1 + 1

are jointly monic.

B is referred to as the category of total maps, and Par (B) (the Kleisli category
of the maybe monad (−) + 1) is the category of partial maps.
B is a monoidal effectus if it additionally carries a symmetric monoidal

structure ⊗ where the unit is the terminal object 1 and ⊗ distributes over finite
coproducts ((X ⊗A) + (Y ⊗A) ≅ (X + Y)⊗A and 0 ≅ 0⊗A).

Partial maps Par (B) (A,B) are total maps B (A,B + 1) that can either terminate
by successfully producing a state of B or otherwise fail over, modelled by a unique
error state from the terminal 1. The pullback conditions guarantee a degree of inde-
pendence between the subsystems of a coproduct; this notably implies that the error
branch can have no influence on the successful branch and vice versa.

Within Par (B), + is still a coproduct and 0 is now a zero object. This gives
partial projections which allow us to focus on a particular outcome of some branching
computation.

▷1 ∶= [idX ,0Y,X] ∈ Par (B) (X + Y,X) (2.272)
▷2 ∶= [0X,Y , idY] ∈ Par (B) (X + Y,Y) (2.273)

Joint monicity of and in B is equivalent to joint monicity of the partial projections

125

in Par (B), meaning that a branching computation can be completely characterised
by looking at each branch individually.

Without the distributivity law required by a monoidal effectus, a computation
that branches locally to a state of (X ⊕ Y) ⊗ A would have to unite both branches
into a common outcome (giving a global state Z ⊗A) before the two parallel systems
can interact. Elevating the local branching to a global branch (X ⊗A) + (Y ⊗A)
allows us to have different interactions with A dependent on the branch outcome.

These are all very natural and desirable properties which we would expect any
sensible theory of partial maps to satisfy. The final requirement of a monoidal effectus
is for the monoidal unit to be terminal, which perfectly captures causality for a first-
order theory but is too strong for a higher-order theory.

Proposition 2.9.2

In any ISOMIX category for which the monoidal unit is terminal, all objects
are isomorphic to the zero object.

Proof. By duality, 1∗ is initial and the ISOMIX rule 1 ≅ 1∗ implies it is a zero
object. Then any homset satisfies C(A,B) ≅ C(1,A∗ `B) = {0}.

The first obvious direction to take towards finding an appropriate higher-order
variant of an effectus is to simply apply the same maybe monad to some Caus [C] and
see whether it gives a similarly intuitive theory of partial maps.

2.9.1 Initial and Terminal Objects in Caus [C]

With the way we have constructed Caus [C], we can’t get very far with mimicking
effectuses exactly since the interesting examples won’t have a terminal object.

Proposition 2.9.3

Caus [C] has a terminal object (equivalently by duality, an initial object) iff
every object is isomorphic to I.

Proof. Suppose that Caus [C] has a terminal object 1. By flatness, there exists
a uniform state 1 and a uniform effect 1 such that 1 # 1 = idI .

Consider an arbitrary object A ∈ Ob (Caus [C]) and any effect π ∶ A → I.
By terminality, π # 1 ∶A→ 1 must equal the unique morphism !A ∶A→ 1. But
then π = π # idI = π # 1 # 1 =!1 # 1.

126

This shows that every object has a unique effect and also a unique state by
duality, making them all isomorphic to I.

It turns out that the flatness condition is too strong to allow for initial and terminal
objects to exist in Caus [C]. They exist in C by assumption via the zero object 0, but
the uniqueness of the state 00,I ∈ C (0, I) by initiality leaves only two candidates for
the causal sets - the empty set ∅ or the singleton {00,I} (with dual set {00,I}∗ = ∅) -
neither of which is flat. For the purpose of this section, we will consider relaxing the
flatness condition slightly to permit empty sets of states or effects.

Definition 2.9.4: Thin sets

A set c ⊆ C (I,A) is thin if either c is flat or one of c and c∗ is empty.

Redefining Caus [C] to be built from thin, closed sets of states gives a very similar
category. Almost all the properties shown for Caus [C] so far will still hold, since the
cases for empty cA or c∗A will tend to hold by some vacuous argument. Some additional
care must be taken when defining < as we cannot always assume a marginal exists,
just requiring it to be unique if it does. One exception to this is the First-Order
Theorem where the identity is now one-way non-signalling when there is at most one
causal effect.

Much like how the monoidal structure ⊗ and biproduct structure ⊕ are degener-
ate in C but gives rise to multiple distinct monoidal structures {⊗,<,`} or additive
structures {⊕,×} in Caus [C], the degenerate zero object 0 now gives distinct initial
and terminal objects.

Proposition 2.9.5

The initial and terminal objects in Caus [C] are respectively

0 ∶= (0,∅) (2.274)
1 ∶= (0,{0I,0}) (2.275)

and, furthermore, they are duals of each other and are respectively the units
for ⊕ and ×.

Proof. Given any A, there is a unique morphism 00,A ∈ C (0,A). The normal-
isation condition for 00,A ∶ 0 → A holds vacuously since there are no states of
0 to preserve. This is hence a unique morphism in Caus [C], making 0 initial.

127

An initial object is always a unit for coproducts.
Conversely, for any A there is a unique morphism 0A,0 ∈ C (A,0). For any

ρ ∈ cA, ρ # 0A,0 = 0I,0 ∈ c1 by terminality of the zero object, so 0A,0 ∶A→ 1. This
similarly makes 1 terminal in Caus [C], and a terminal object is always a unit
for products.

For the duality, we note that the zero object is self-dual in any compact
closed category C. ∅∗ will include the full homset of effects since the normalisa-
tion condition will vacuously hold. Since there is only one effect from the zero
object, c∗0 = c1. Conversely, note that 0I,I ≠ idI since the subtractive closure
of scalars is a field (Proposition 2.4.15) requiring the zero and unit to be dis-
tinct. Since composing 0I,0 with the unique effect 00,I gives 0I,I ≠ idI , we have
c∗1 = c0.

2.9.2 Descriptive Partiality

The first proposal we will consider is taking the Kleisli category for the maybe monad
(−)⊕ 1 on Caus [C]. Mapping the error branch into the zero state means the Kleisli
morphisms really only present what happens on the successful outcome.

By examining the possible states ofA⊕ 1, taking affine combinations with the zero
state leads to there being no bound on the scale of the states we could possibly create.
The weakening of flatness to thinness has created objects without any limitation on
their morphisms.

Proposition 2.9.6

Caus [C] (A,B⊕ 1) ≅ C (A,B)

Proof. By Equation 2.107, the effects of B⊕ 1 are copairings of effects of B and
effects of 1, of which there are none. Caus [C] (A,B⊕ 1) contains all morphisms
of C (A,B ⊕ 0) which preserve the causal effects, which in this case holds vacu-
ously for every morphism. The bijection follows from the isomorphism B⊕0 ≅ B
in C.

This provides a way to “undo” the Caus [−] construction and obtain the underly-
ing category. If we interpret the (additive) precausal category C as just providing the
mathematical formalism within which we work, this construction provides a notion
of descriptive partiality where a partial map can be any process that we can possi-
bly describe using the mathematical tools available, regardless of whether one could
physically realise it.

128

The isomorphism 0 ≅ 0⊕ 0 for the zero object in C lifts to the causal category as
1 ≅ 1⊕ 1. In computational terms, this means that there is no way to distinguish
between different error states - a computation with multiple error branches is treated
exactly the same as if there was a single erroneous branch. Relating back to the
properties of an effectus, = are now the unique morphisms by terminality of 1⊕ 1,
and (joint) monicity follows trivially from terminality of (1⊕ 1)⊕ 1. This matches
with the joint monicity of the partial projections ▷i, which are conveniently mapped
into the biproduct projections pi by the isomorphism A⊕ 0 ≅ A in C.

However, this conflation of error sources means our coproduct doesn’t represent
truly independent branches of computation, as seen by the failure of pullback squares
from Equations 2.270 and 2.271. For example, consider any cospan into 1⊕ 1. All
pullbacks from the terminal give products, which doesn’t fit the form required in
general.

(1⊕Y) × (X⊕ 1) /≅X⊕Y (2.276)
(X⊕Y) × 1 /≅X (2.277)

We will soon see in Propositions 2.9.8 and 2.9.10 that these pullbacks still hold for
objects with flat causal sets, meaning that we still have independence for non-error
branches.

2.9.3 Testable Partiality

One could argue that the role of the terminal in an effectus is to provide a canoni-
cal notion of discarding, and it is better to prioritise the essence of discarding over
uniqueness of morphisms. Despite I not being a terminal object, flatness would still
give a canonical discarding effect for every object. Let’s now return to restricting
objects of Caus [C] to have flat sets and look at the (−)⊕ I monad.

We can similarly interpret Kleisli morphisms A → B⊕ I as computations which
either successfully return some output B or an error state I, but when C has positivity
conditions (such as for Mat[R+] or CP∗) this is really a probabilistic combination of
the two. This puts a reasonable bound on the scale of partial maps.

Whilst discarding is a canonical effect, it is not necessarily unique in a higher-
order setting and we do not require the error branch of a partial map to correspond to
discarding here. The description of a partial map now not only depends on the partial
operation itself, but this additional information guaranteeing that it can definitely be
realised on some outcome of a test. In contrast to descriptive partiality, this gives
testable partiality from the guarantee of a physical implementation.

129

We can revisit the effectus properties again here and find that we do slightly better
in recovering them.

Proposition 2.9.7

The morphisms I = [[ι1, ι2] , ι2] ∶ (I⊕ I)⊕ I → I⊕ I and I = [[ι2, ι1] , ι2] ∶
(I⊕ I)⊕ I→ I⊕ I are jointly monic in Caus [C].

Proof. Consider some morphisms f, g ∶ A → (I⊕ I)⊕ I such that f # I = g # I

and f # I = g # I . By decomposing the biproducts in C, we have

f # p1 = g # p1 (2.278)
f # p2 + f # p3 = g # p2 + g # p3 (2.279)

f # p2 = g # p2 (2.280)
f # p1 + f # p3 = g # p1 + g # p3 (2.281)

Combining these with cancellativity of addition, we have f # p3 = g # p3. By
equality of their biproduct decomposition, we have f = g.

Proposition 2.9.8

Diagrams of the following form are pullbacks in Caus [C].

X⊕Y X⊕B

A⊕Y A⊕B

[ιX ,g#ιB]
[f #ιA,ιY]

⌟
[f #ιA,ιB]

[ιA,g#ιB]
(2.282)

Proof. The commutative diagram holds as an equation. For the universal prop-
erty, suppose we have some k ∶ Z → A⊕Y and l ∶ Z → X⊕B such that
k # [ιA, g # ιB] = l # [f # ιA, ιB]. Interpreting these in C where ⊕ is a biproduct, we
can project out each component to give k # pA = l # pX # f and k # pY # g = l # pB.
Let h ∶= l # pX # ιX + k # pY # ιY ∈ C (Z,X ⊕ Y) be our candidate witness for the
pullback.

Firstly, we need to show that h is causal for Z → X⊕Y, so consider some
arbitrary state ρ ∈ cZ and effect [πX , πY] ∈ c∗X⊕Y (i.e. πX ∈ c∗X and πY ∈ c∗Y).
Firstly, observe the following from causality of k and g:

130

ρ # k # pA # A + ρ # k # pY # πY = ρ # k # [A, πY]
= idI

= ρ # k # [A, g # B]

= ρ # k # pA # A + ρ # k # pY # g # B

= ρ # k # pA # A + ρ # l # pB # B

(2.283)

By cancellativity of addition (APC4), ρ #k #pY #πY = ρ # l #pB # B. We now apply
this equation to reduce causality of h to causality of l.

ρ # h # [πX , πY] = ρ # l # pX # πX + ρ # k # pY # πY
= ρ # l # pX # πX + ρ # l # pB # B

= ρ # l # [πX , B]

= idI

(2.284)

We lastly need to check that k and l factorise via h.

h # [f # ιA, ιY] = l # pX # f # ιA + k # pY # ιY
= k # pA # ιA + k # pY # ιY
= k

(2.285)

h # [ιX , g # ιB] = l # pX # ιX + k # pY # g # ιB
= l # pX # ιX + l # pB # ιB (2.286)
= l

As for the pullback of some X⊕Y
[f #ιA,g#ιB]ÐÐÐÐÐ→ A⊕B

ιA←Ð A, we need not get X

in general. If we take some X⊕Y
k←Ð Z

lÐ→ A with l # ιA = k # [f # ιA, g # ιB], we can
decompose it via the biproduct in C to give l = k # pX # f and k # pY # g = 0. However,
in general k # pY need not be zero itself, just something orthogonal to g in this way.
This means it may not be possible to factorise k via ιX .

This is the case when C is taken to be Mat[R], but with Mat[R+] and CP∗ we
find that the pullback still works because their positivity conditions dictate that the
only state which gives zero when discarded is the zero state.

131

Proposition 2.9.9

∀ρ ∈ C (I,A) . ρ # A = 0I,I ⇐⇒ ρ = 0I,A (2.287)

holds in the cases where C is Mat[R+] or CP∗.

Proof. In Mat[R+], states are column vectors of non-negative real numbers,
and the inner product with will sum the elements. The only way to sum
non-negative reals to obtain zero is if every element of the sum is zero.

In CP∗, states are positive semi-definite matrices, and the inner product
with will take the trace of a matrix, i.e. summing the eigenvalues. Positive
semi-definiteness implies all eigenvalues are non-negative, therefore a zero trace
implies all eigenvalues are zero, which only holds for the zero matrix.

Proposition 2.9.10

Suppose C satisfies Equation 2.287. Then diagrams of the following form are
pullbacks in Caus [C].

X A

X⊕Y A⊕B

f

ιX

⌟
ιA

[f #ιA,g#ιB]
(2.288)

Proof. Commutativity of the diagram is straightforward. Suppose we have
some k ∶ Z→A and l ∶ Z→X⊕Y such that k # ιA = l #[f # ιA, g # ιB]. Projecting
out the biproduct in C gives k = l # pX # f and 0Z,B = l # pY # g. If we can show
that l # pY is zero, then l # pX is a suitable candidate for the universal property.

From causality of l and g, we observe the following:

Z # l # pX # X + Z # l # pY # Y = Z # l # [X, Y]

= idI

= Z # l # [X, g # B]

= Z # l # pX # X + Z # l # pY # g # B

= Z # l # pX # X + Z # 0Z,B # B

= Z # l # pX # X + 0

(2.289)

by cancellativity (APC4), Z # l #pY # Y = 0. We can represent this as discarding

132

a state using compact closure, so l # pY = 0 follows by Equation 2.287 (and
invertibility of the flatness scalars).

Causality of l # pX ∶ Z → X follows from causality of l, since for any effect
πX ∈ c∗X:

l # pX # πX = l # pX # ιX # [πX , Y] (2.290)
= l # [πX , Y] ∈ c∗Z

Despite the fact that I is not terminal, we have recovered the rest of the nice
starting properties of an effectus. This can be pushed further in the same way to
recreate weaker forms of several other useful properties in the category of partial maps
(in each case the proofs similarly match those from [25] with minimal adjustment):

• ⊕ still forms coproducts with copairings matching those in Caus [C]/C, though
the lack of terminal object means we don’t have a unit/zero object;

• Diagrams of the form of Proposition 2.9.8 in the category of partial maps are
also pullbacks;

• We can similarly define partial projections using discarding instead of the termi-
nal morphisms, which means we lose the naturality (since not all higher-order
causal morphisms are discard preserving) but we can still pull back total maps
along them.

One curious difference between this construction and effectuses comes from how we
identify which partial maps are total from their interaction with effects. In an effectus,
the total maps can be obtained from the partial maps as those that preserve the unique
total effect. One might imagine that a higher-order setting would characterise total
maps by those that transform all total effects to (unspecified) total effects, but it
turns out that preserving totality for any one effect is sufficient to preserve totality
on all.

Proposition 2.9.11

A partial map f ∶ A → B⊕ I is total (∃f ′ ∶ A → B. f = f ′ # ιB) iff there exists
some effect πB ∶ B→ I such that f # [πB # ι1, ι2] ∶A→ I⊕ I is total.

Proof. The only if (Ô⇒) direction is trivial by composition, so we will focus on
the if direction (⇐Ô). Suppose there exists some πB ∈ c∗B and πA ∈ c∗A such that

133

f # [πB # ι1, ι2] = πA # ι1. Taking the pullback of B⊕ I
[πB#ι1,ι2]ÐÐÐÐÐ→ I⊕ I

ι1←Ð I using
Proposition 2.9.10, the universal property means πA and, more importantly, f
both factorise via some f ′ ∶A→B, i.e. f = f ′ # ιB is total.

The explanation for this highlights a small issue with the monadic design for
higher-order settings: if we view a partial map A→ B⊕ I as a combination of a suc-
cessful branch and a failure, the probability of success/failure (and therefore whether
it is total) is fixed only by the interaction with A and is independent of any interac-
tion with B! In other words, this construction is not time-symmetric. For example,
postselecting on one state of 2 can be expressed as a partial map 2 → I⊕ I (e.g.
id2 = [ι1, ι2] or [ι2, ι1]) but not as a partial map I → 2∗ ⊕ I since the probability of
success depends on the state being postselected.

To define a time-symmetric version of testable partial maps A → B, we first use
∗-autonomy to encode the space of total maps as effects A⊗B∗ → I, and then apply
the maybe monad to give A⊗B∗ → I⊕ I = 2, allowing the success/failure probability
to depend on the entire context. If we reapply ∗-autonomy, this is equivalent to
A → B` 2, i.e. the space of binary tests. Crucially, this resolves the differences
between descriptive and testable partiality, since any descriptive partial map (i.e. a
morphism of C) is a branch of a binary test up to some invertible scalar; modulo
scalars they are the same thing!

To fully recover a setting of partial maps, we need to be able to combine two
outputs 2` 2 into one, which is possible since 2 is first-order and so the outputs
exert no influence on each other and ⊗ distributes over ⊕ (see Remark 2.7.10).

2` 2 = 2⊗ 2 ≅ (2⊗ I)⊕ (2⊗ I) ≅ I⊕ I⊕ I⊕ I
[ι1,ι2,ι2,ι2]ÐÐÐÐÐ→ I⊕ I = 2 (2.291)

2.9.4 The Probabilistic Orthogonality

Looking outside of effectus theory, another route to a theory of partial maps is to
revisit the definition of the Caus [−] construction and adapt it to focus on processes
that are realisable with some probability in any context rather than those with exactly
probability 1. Since this was baked into the dual sets in Definition 2.3.6, we consider
a probabilistic version of it, which will still be a focussed orthogonality [72].

134

Definition 2.9.12

Given c ⊆ C (I,A), the sub-dual set is

c≤ ∶= {π ∈ C (A, I) ∣ ∀ρ ∈ c.
ρ

π
≤ idI} (2.292)

where ≤ refers to the preorder : f ≤ g def⇐Ô⇒ ∃h. f + h = g.

Proposition 2.9.13

If c = c≤≤ ⊆ C (I,A), then:

1. c is non-empty;

2. c is closed under convex combinations;

3. c is downward closed under the preorder ≤.

Proof. 1. 0I,A ∈ c as every inner product will be 0 ≤ idI .

2. Given ∑i αi ⋅ ρi with {ρi}i ⊆ c, ∑i αi = idI , and some π ∈ c≤:

(∑
i

αi ⋅ ρi) # π =∑
i

αi ⋅ (ρi + π)

≤∑
i

αi ⋅ idI

= idI

(2.293)

so ∑i αi ⋅ ρi ∈ c≤≤ = c.

3. If ρ ≤ υ ∈ c, then for any π ∈ c≤ we have ρ # π ≤ υ # π ≤ idI .

These properties correspond precisely to those satisfied by Probabilistic Coherence
Spaces in Definition 2.6.5. In fact, a PCS is more commonly defined to be precisely
some set c≤≤ in Mat[R+] [17]. Whether the conditions of Proposition 2.9.13 exactly
characterise sets of the form c≤≤ for any other additive precausal category is currently
unknown.

Generalising PCS’s to arbitrary additive precausal categories may not always give
something practical anyway. For example, if C = Mat[R], all negatives exist so the
only down-closed sets of states are full homsets for a given object Mat[R] (I,A).

It is also hard to relate a category of such spaces to Caus [C]. By taking the equiv-
alence classes of Caus [C] (A,2) under the action of the projection p1 ∈ C (I ⊕ I, I)

135

gives a set of morphisms that is closed under convex combination and down-closed
under ≤. However, not every convex-closed, down-closed set is formed in this way.
Furthermore, whilst the category of PCS’s is defined in this way, it is common for
operational theories from the quantum literature to prefer defining partial operations
to have a concrete relationship to the total/causal operations in order to guarantee
their existence in some test [23, 15]. So whilst applying double-glueing and restrict-
ing to spaces closed under (−)≤≤ is a neat way to get enough flexibility to examine
probabilistic operations, it is likely better to follow a construction that builds on top
of Caus [C].

136

Chapter 3

Logical Characterisation of Caus [C]

By now, we have a good grasp of the processes and types available in the category
Caus [C], so it is time we address causal consistency directly. The goal for this next
chapter is to formalise causal consistency of string diagrams within the language of
Caus [C] and find some simple way to verify causal consistency. This is achieved by
finding formal logics where the proofs can be mapped to casually consistent string
diagrams. The ideal solution to this would be to find one such logic whose proofs can
also generate every causally consistent diagram.

Each string diagram we draw is fundamentally a morphism consisting of identity,
cup, and cap morphisms between typed black boxes. We can either consider specific
morphisms, i.e. where each wire is interpreted with a fixed object, or view them
collectively as an extranatural transformation (see Definition 2.1.10). We will devise
definitions for causal consistency that apply in each case, so we can characterise
both the behaviour shared by all interpretations into local objects by the existence of
extranatural transformations, and any special case behaviour that arises for particular
interpretations. For example, we know from the First-Order Theorem that idA∗⊗A is
not causal for A⊸A → A∗ <A for any object A, but it is causal in the special
case where A is first-order. In fact, we will show that the degeneracy of first-order
systems is the only way to introduce special case behaviour and therefore, beyond
identification of first-order systems, causal consistency is completely independent of
the interpretation.

To do this, we design causal logic with a new proof-net criterion to exactly match
the semantics of causal consistency. Similar to the Sum of Orders Theorem, given
a string diagram, we can break down both the types of the black boxes and the
types of the wires into unions of graph types - in particular, the collection of graphs
will correspond to the switching graphs of the proof-structure - and use the Graph
Compatibility Theorem to deduce that each switching graph needs to be acyclic.

137

Since this logic will not incorporate any knowledge of the base category C or the
interpretation of the local systems (beyond marking first-order systems), the tight
correspondence with causal consistency immediate tells us that causal consistency is
both theory- and interpretation-independent.

We assume the reader has a basic understanding of concepts in formal logic,
though the first section will give a high-level overview of the specific logics we will
refer to throughout this chapter, demonstrating how one constructs proofs in each of
them. Novel content resumes in Section 3.2 which builds up our formal definitions of
causal consistency and gives examples of how to relate proofs of some existing logics
as causally consistent string diagrams.

Section 3.3 is where the bulk of the interesting results lie: we introduce causal
proof-nets and prove that they precisely characterise causal consistency. We then
compare it to existing logics in Section 3.4, focussing heavily on the close connection
to pomset [100, 102]. Up to this point, we will have focussed on causal logic with only
the connectives {⊗,<,`}, so we wrap up with some discussion on extending causal
logic to also handle unions and intersections, primitive graph types, and additives.

3.1 Background: MLL, BV, and pomset
Formal logics aim to provide a canonical syntax for mathematical reasoning, where
a goal statement is shown to be provable in the logic by giving either a derivation
from simple elementary rules or some other proof object which can be verified by
some simple consistency condition. The choices of what grammar to build terms
from, how one builds statements from terms (e.g. one- or two-sided, collections of
terms as sets/multisets/ordered lists, etc.), and which rules to permit or consistency
condition to enforce give the logic its flavour, determining the structure of proofs and
what semantic models exist for it.

Linear logic [55] exposes the hidden assumption of propositional logic that every-
thing is copyable: a proof of the implication F ⇒ G may use its premise F multiple
(or even zero) times to derive the conclusion G. The rules are “resource-aware”, en-
suring that each premise is used precisely once, in line with the reading of linear
implication F ⊸ G as “one instance of F can generate an instance of G”. Sequents
use multisets Γ,∆ of terms to explicitly track the quantities of any duplicate terms.
The operators of linear logic are typically grouped into the following classes:

• Duality (−)∗11 as the correspondent of negation, which is commonly interpreted
11Duality is more commonly written as (−)� since this is equivalent to (−)⊸ �. We choose to use
(−)∗ for a closer similarity to the duality operator in Caus [C].

138

in models as the duality between producing or consuming a use of a term.
Syntactic de Morgan equations can always push duals inside formulae to yield
a negation normal form (where duals are only applied on atoms).

• Multiplicatives {⊗,`,⊸} introduce multiple uses of terms in parallel, possibly
with some connection or relationship between them.

• Additives {×,⊕} capture a single-use choice between two terms, distinguished
as external choice (both are provided, and the choice selected at consumption)
versus internal choice (only one is provided, so a consumer must be able to
handle either).

• Exponentials {!, ?} annotate terms to reintroduce resources that can be used
multiple times.

• Units {1,�,0,⊺} for the multiplicative and additive operators represent trivial
or degenerate cases. Many extensions of linear logic will unify some of these
units.

We retain the usual distinction between classical and intuitionistic variants of the
logic (whether negation/duality is involutive F ∗∗⊸ F). For this presentation, we will
work with the classical logics that will be more relevant to the Caus [−] construction.

3.1.1 Sequent Calculus for MLL

Multiplicative Linear Logic (MLL) is the fragment just concerning the multiplicative
operators and their units. In the classical variant, linear implication F ⊸ G is syn-
tactically identified with F ∗`G. The standard presentation is as a sequent calculus,
inductively defined by the following rules:

Ax ⊢ A∗,A
⊢ Γ, F ⊢ F ∗,∆

Cut ⊢ Γ,∆

⊢ Γ, F ⊢∆,G⊗ ⊢ Γ,∆, F ⊗G
⊢ Γ, F,G` ⊢ Γ, F `G

1 ⊢ 1
⊢ Γ� ⊢ Γ,�

There exists a cut-elimination procedure which, given a derivation of a sequent
using the Cut rule, yields a derivation with the same conclusion that does not use
Cut (a cut-free derivation).

139

Example 3.1.1

Observe that the following derivation tree yields one of the properties needed
for associativity of ⊗:

Ax ⊢ A∗,A Ax ⊢ B∗,B⊗ ⊢ A∗,B∗,A⊗B Ax ⊢ C∗,C⊗ ⊢ A∗,B∗,C∗, (A⊗B)⊗C` ⊢ A∗,B∗ `C∗, (A⊗B)⊗C` ⊢ A∗ ` (B∗ `C∗), (A⊗B)⊗C` ⊢ A⊗ (B ⊗C)⊸ (A⊗B)⊗C

However, if we search for a cut-free derivation of A⊸ A⊗ � (i.e. using the
unit of ` with ⊗) the syntax-directed nature of the sequent calculus forces any
solution to finish with the following rules:

Ax ⊢ A∗,A

...
⊢� ⊢ �⊗ ⊢ A∗,A⊗ �` ⊢ A⊸ A⊗ �

But it is obvious from the rules that no cut-free proof exists for the empty
sequent, so we conclude /⊢ A⊸ A⊗ �.

Some settings will consider adding additional “mixing” rules to the logic, giving
rise to MLL+Mix [2, 51]:

Mix1 ⊢
⊢ Γ ⊢∆

Mix2 ⊢ Γ,∆

These are equivalent to adding axioms for ⊢ �,� (which gives ⊢ 1⊸ �) and ⊢ 1,1
(giving ⊢ � ⊸ 1) respectively, making the two units interchangeable [28]. Mix2 is
also equivalent to the binary case ⊢ A∗,B∗,A,B, which can be summarised as ⊗
“embedding into” ` as ⊢ A⊗B ⊸ A`B.

3.1.2 Proof-Nets for MLL

The primary alternative to sequent derivations as a presentation of linear logic proofs
is proof-nets [55, 40]. These consist of graphical objects annotated with terms where
correctness of the proof is determined by some global property of the graph, in contrast
with the local correctness of each rule in a derivation tree. One can translate proofs

140

back and forth, with each derivation tree yielding a unique proof-net but each proof-
net matching multiple derivation trees.

To specify a proof-net framework, we first define proof-structures as a particular
grammar of graphical objects under consideration which are composites of elementary
graphs called links. For simplicity in this introduction to proof-nets, we will not be
including units.

Definition 3.1.2: MLL links [55]

Links for MLL are graphs of the following forms, relating some premises to
some conclusions:

A A∗ F F ∗ F G

F ⊗G

F G

F `G

• Axiom links with no premises and a pair of conclusions A, A∗.

• Cut links with a pair of premises F , F ∗ and no conclusions.

• Tensor links with a pair of premises F,G and conclusion F ⊗G.

• Par links with a pair of premises F,G and conclusion F `G.

Definition 3.1.3: MLL proof-structure [55]

A proof-structure is a graph composed of links such that every occurrence of
a formula (i.e. vertex) is a conclusion of exactly one link and a premise of at
most one link. The conclusions of the proof-structure are the formulae that are
not the premises of any link.

Proof-nets are those proof-structures that correspond to “correct” proofs in the
sense that they satisfy a particular correctness criterion. The Danos-Regnier cri-
terion [40] derives a collection of variations on the proof-structure’s graph, called
switching graphs, and asks each to be acyclic.

Definition 3.1.4: MLL switchings [40]

A switching for a proof-structure P is a choice of one edge from each par link.
The corresponding switching graph is a copy of P in which we omit the edges
from par links that were not selected.

141

Definition 3.1.5: MLL proof-net [40]

A proof-structure is a MLL proof-net when every switching graph is connected
and acyclic. It is a MLL+Mix proof-net when every switching graph is acyclic
but need not be connected.

Proof-nets also admit cut-elimination. The syntax-directed nature of the links
means that cut-free proof-structures will resemble the syntax tree of the conclusion
with some choice of matching for the axiom links.

Example 3.1.6

Consider the following proof-structure:

A∗ B∗ C∗ A B C

B∗ `C∗

A∗ ⊗ (B∗ `C∗)

A`B

(A`B)⊗C

(3.1)

By looking at the switching graph where we take the paths to C∗ and A, we
can construct a cycle and conclude this is not a valid proof-net.

On the other hand, the following proof-structure representing the mixing
rule is a proof-net for MLL+Mix but not MLL as every switching graph is
disconnected.

A∗ B∗ A B

A∗ `B∗ A`B

(3.2)

There are multiple, equivalent notions of proof-nets for MLL or MLL+Mix, each
of which can provide a unique intuition for the logics. For Girard’s long-trip con-
dition [55], switchings define a route for traversing over the proof-structure and re-
quires that the entire proof is traversed. Topological criteria [86] can be very visually
intuitive. Handsome proof-nets [103] even forgo switchings, instead building proof-
structures as R&B-graphs and obtaining a more canonical representation of proofs in
which associativity of operators is a simple equality.

3.1.3 BV, MAV, and pomset Logic

Many settings will interpret ⊗ and ` as a form of parallel composition, but may also
carry a separate notion of time or sequential composition. BV [58] and pomset [100,
102] are two candidate solutions to this, where both extend MLL+Mix with a self-dual

142

non-commutative operator <, reading F < G as “F before G”. They were originally
speculated to express the same logic, but pomset contains strictly more theorems
than BV [94].

The deductive system of BV employs deep inference - a way to formulate a logic
where inference rules can be applied at any level of nesting within expressions, in
contrast to the sequent calculus rules we saw for MLL which all apply at the top level
of syntax trees. This is crucial to BV, and placing any bound on the nesting level
of applying rules strictly reduces the number of theorems [112]. Deep inference rules
are expressed with respect to term contexts, though the equivalent formalism of open
deduction [59] instead allows us to combine the rules themselves via the connectives of
the logic, giving a neater presentation for larger proofs as we will see in Example 3.1.7.

I ↓
I

Iai ↓
A∗ `A

(F `G) < (H `K)
q ↓
(F <H)` (G <K)

(F `G)⊗H
s
F ` (G⊗H)

Instead of commutativity, associativity, and unitality (I is a unit for all of {⊗,< `})
being properties which can be proved by the rules, they are permitted via a syntactic
equivalence relation ≡ which is a congruence so can similarly be applied at any level
within terms. A deep inference version of the Cut rule also exists, along with a
cut-elimination result [58].

Example 3.1.7

The following example BV proof of (A⊗B) < C ⊸ A < (B `C) demonstrates
the nested application of rules via open deduction. Dashed lines are applications
of the syntactic equivalence.

I ↓
I

(Iai ↓
A∗ `A

) <

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(
Iai ↓

B∗ `B
B∗ `B ` I

) < (Iai ↓
C∗ `C

)
q ↓

((B∗ `B) < C∗)` (I < C)
((B∗ `B) < (C∗ ` I)

q ↓
(B∗ < C∗)` (B < I))`C

(B∗ < C∗)`B `C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

q ↓
⎛
⎜
⎝

⎛
⎜
⎝

A∗ < B∗
(A∗ ` I) < (I `B∗)

q ↓
(A∗ < I)` (I < B∗)

⎞
⎟
⎠
< C∗
⎞
⎟
⎠
` (A < (B `C))

((A∗ `B∗) < C∗)` (A < (B `C))

143

The combination of sequential and parallel composition is not enough to recover
all partial orders or graphs over the atoms. A recent extension called GV adds new
operators based on prime directed and undirected graphs, from which we can obtain
every mixed graph from its modular decomposition. We refer the reader to Acclavio
et al. [3] for further details.

MAV [67] is another related logic, extending BV with additives {×,⊕}. This
adds the relevant rules from MALL (the extension of MLL with additives) and the
additional medial (m ↓) rule to ensure the additives integrate nicely with seq [67].

It ↓
I × I

Fl ↓
F ⊕G

Gr ↓
F ⊕G

(F `H) × (G`H)
e ↓

(F ×G)`H

(F ×G) < (H ×K)
m ↓

(F <H) × (G <K)

We finally turn to pomset logic, which is built on R&B-graphs, i.e. graphs with
red and blue edges. We still build proof-structures from links, with the correctness of
a proof-net becoming the absence of an alternating elementary cycle. The alternating
colour requirement restricts the paths through each link in the same way as switchings.

Definition 3.1.8: R&B-graphs [102]

A R&B-graph G = (V,R,B) is an edge-bi-coloured graph where:

• V is the set of vertices;

• R ⊆ V × V is the set of (directed and undirected) red edges, expressed as
an irreflexive relation;

• B ⊆ V ×V is the set of (undirected) blue edges, expressed as an irreflexive,
symmetric relation forming a perfect matching of the vertices ∀x ∈ V. ∃!y ∈
V. (x, y) ∈ B.

Definition 3.1.9: R&B proof-structure [102, Definition 3]

A R&B proof-structure is a R&B-graph composed of the following kinds of links:

A∗A F F ∗ F G

F ⊗G

F G

F < G

F G

F `G

The conclusions of the proof-structure may also be connected by directed red
edges according to a series-parallel partial order.

144

Definition 3.1.10: Pomset proof-net [102, Definition 4]

A pomset proof-net is a R&B proof-structure containing no alternating elemen-
tary cycle (a cycle with no repeated vertices except for the first and last, where
successive edges alternate colours).

Example 3.1.11

The following is a valid proof net of (A⊗B) < C ⊸ A < (B `C).

(A∗ `B∗) < C∗ A < (B `C)

A∗ `B∗

C∗ A

B `C

A∗ B∗ B C

(3.3)

The ` links prevent any alternating path from using the B axiom link alongside
either of those of A and C. The only other option for a cycle would be to use
both the A and C axiom links, but the directed arcs of the < links both lead
from A to C preventing us from building a cycle.

On the other hand, if we were to switch out the top right ` link for a ⊗ link
(giving overall conclusion (A⊗B) < C ⊸ A < (B ⊗C)), we could construct an
alternating elementary cycle [B,B∗, ⋅,A∗ `B∗,C∗,C,B].

The additional edges beyond the conclusions elevate the multiset structure of
MLL sequents to partially-ordered multisets, hence the name of the logic. The series-
parallel restriction means we can combine the conclusions using the ` and < links
to form an equivalent proof-structure with a single conclusion, reminiscent of how `
naturally combines conclusions in MLL.

From the construction of the links, any path from one link to another will change
colour at the transition: on each vertex labelled with a formula, the unique incident
blue edge belongs to the link where this vertex is a conclusion and any red edges
(if they exist) belong to the link where it is a premise. Therefore, the alternating
colour requirement only constrains the possible paths within each individual link;
notably, there is no alternating path between the premises of a ` link, and only one
direction between the premises of a < link. On the <-free fragment, these match
the connectivities induced by switchings on MLL proof-structures, so pomset is a
conservative extension of MLL+Mix because we can faithfully translate between cyclic
switchings in an MLL proof-structure and alternating cycles in a R&B proof-structure.

145

Deciding whether a given R&B proof-structure is a pomset proof-net is coNP-
complete [94] - it is easy to verify that a given alternating cycle witnesses incorrectness,
but searching for such cycles is hard. Determining whether a proof-net exists for a
given conclusion is even harder at Σp

2-complete (Σp
2 = NP

NP is NP extended with an
oracle for NP). On the other hand, verifying BV proofs takes time linear in the size
of the proof, and provability of a formula is NP-complete [76]. Pomset is even hard
compared to other proof-net formulations, where proof-nets can be verified for MLL
or MLL+Mix in linear time [90, 92]. Knowing these complexities will be useful for
deducing the complexity of deciding causal consistency through its relationship to
pomset (see Corollary 3.3.16).

3.1.4 Categorical Semantics

For any logic with a Cut rule and an algorithm for cut-elimination, we can study
categories C of modular proof invariants for the logic: each formula F is assigned a
denotation JF K ∈ Ob (C), and to each proof π ∶ F ⊢ G a morphism JπK ∶ JF K → JGK
such that:

• If cut-elimination on π outputs some proof π′ then JπK = Jπ′K.
• Applying the Cut rule to π ∶ F ⊢ G and π′ ∶ G ⊢ H gives a proof π′′ ∶ F ⊢ H

such that Jπ′′K = JπK # Jπ′K.
Each operator in the grammar gives rise to come categorical structure based on the
rules associated to the operator, such as a monoidal structure for ⊗. Canonical cate-
gories for the logic can be chosen as free categories with the required structure, though
we can view any category with the same structure as a model of the logic where each
proof defines some functorial way to combine morphisms in the category. The classic
Curry-Howard-Lambek correspondence draws an association between intuitionistic
propositional logic and cartesian closed categories, with this name given to any simi-
lar correspondence between a formal logic, a type theory for programming languages,
and a kind of categorical structure.

For a deep exploration on categorical semantics for linear logic, we recommend
the survey by Melliès [85]. For a brief summary, models of MLL are given by ∗-
autonomous categories with the additional mixing rules relating ISOMIX categories
to MLL+Mix. Then MALL just adds cartesian products and coproducts for the
additives {×,⊕}.

146

For BV, Blute, Panangaden & Slavnov’s BV-categories [17] combine linearly-
distributive categories and a ⊗-symmetric duoidal structure [4] (minus some of the
coherence equations) with isomorphic units. The examples shown include both the
categories of regular (non-deterministic) and probabilistic coherence spaces. As for
MAV, we again just add cartesian products and coproducts for the additives, and the
additional medial rule is guaranteed to hold by the fact that the monoidal structures
will always form duoidal structures with the products and coproducts [104]. A more
recent study of categorical semantics for BV and MAV has made the relations to
duoidal categories more concrete [6].

When it comes to pomset logic, its introduction was as a logic that precisely
captured the structure of coherence spaces - that is, there exists some denotational
semantics for the proof-nets in the category and, moreover, there is a 4-token coher-
ence space Z such that, under the interpretation mapping every atomic formula to
Z, a proof-structure is a proof-net iff its interpretation is a clique in the space associ-
ated with the conclusion [102]. This statement of faithfulness is not necessarily true
for arbitrary interpretations, and there is yet to be any wider study of categorical
semantics for pomset logic that characterise it by some kind of generic categorical
structure.

3.2 Causal Consistency
This section will introduce causal consistency as the property of interest within causal
categories that we will study as a model of different logics and aim to provide a com-
plete characterisation for it. By relating it to macroscopic properties of the categories
in terms of extranatural transformation, this characterisation will, in turn, give a
logical account of the compositional structure of Caus [C] in the vain of the Curry-
Howard-Lambek correspondence.

3.2.1 Causal String Diagrams for Black Boxes

Informally, causal consistency is a property of a collection of types in Caus [C] that
says any valid instances of those types can be composed in a string diagram to give a
closed, causal scenario. Here, we will formalise causal consistency via formulae that
represent the types of the black boxes in the given diagram.

Recall Theorem 2.3.20, where Kissinger and Uijlen proved that natural transfor-
mations in Caus [C] form a model of ISOMIX logic. For example, Equations 2.58
and 2.59 capture the mixing and linear distributivity between ⊗ and `. We can view

147

these as statements of causal consistency, e.g. the closed diagram formed by any state
of A⊗B and any effect of A`B evaluates to the unit scalar. It is implicit in this
description that we are wiring up the A part of the state to the A part of the effect,
and likewise for the B’s. We would like this scenario to be captured by the formula
(A⊗B) ⊸ (A`B), i.e. the one-sided description of the mixing property in linear
logic.

To simplify how we can generalise this to give formulae for arbitrary closed dia-
grams, suppose we have one with just a single black box. Morphisms in our example
categories are linear maps and can be likened to a tensor network, where the process
of wiring up inputs and outputs of this box will act like contracting the indices of
the tensor until it is reduced to a scalar - we denote the morphism of cups, caps, and
identities that performs the wiring between the black boxes the contraction morphism,
the same as we did when discussing local graph types (Definition 2.8.2). To map this
to a formula, we attribute variable names to indices so that each name appears twice,
implicitly specifying which pairs of indices to contract. These are combined with con-
nectives corresponding to the monoidal products in Caus [C] and an interpretation
function maps this information to concrete objects in Caus [C]. Given the special
behaviour of first-order and first-order dual objects, we will allow our formulae to
specify when variables should be mapped to first-order objects and only consider
interpretations that do so.

Definition 3.2.1: Causal formulae

We define causal formulae (in negation normal form) by the grammar

F,G ∶∶= A ∣ A∗ ∣ A1 ∣ A1∗ ∣ I ∣ F ⊗G ∣ F < G ∣ F `G (3.4)

The negation F ∗ of a formula is defined inductively:

A∗∗ = A

(A1∗)∗ = A1

I∗ = I

(F ⊗G)∗ = F ∗ `G∗

(F < G)∗ = F ∗ < G∗

(F `G)∗ = F ∗ ⊗G∗

(3.5)

A formula F is balanced if each atom A/A1 in F appears exactly once in each
of positive and negative form.

148

Definition 3.2.2: Interpretations

An interpretation Φ ∶ Var → Ob (Caus [C]) FO-respects12F when, for any atom
A ∈ Var, if A appears in F as A1 then Φ (A) is first-order. Φ strongly FO-
respects F when the converse additionally holds - Φ (A) is first-order only if
A1 appears in F - and no Φ (A) is first-order dual. An interpretation can be
extended to formulae inductively:

Φ (A∗) = Φ (A)∗

Φ (A1) = Φ (A)

Φ (A1∗) = Φ (A)∗

Φ (I) = I

Φ (F ⊗G) = Φ (F)⊗Φ (G)

Φ (F < G) = Φ (F) < Φ (G)

Φ (F `G) = Φ (F)`Φ (G)

(3.6)

Definition 3.2.3: Causal consistency

Given a balanced formula F and an interpretation Φ which FO-respects F , the
contraction morphism of F is the morphism ϵΦF ∈ C (U (Φ (F)

∗) , I) formed by
applying a cap ϵΦ(A) ∶ Φ (A∗)∗ ⊗Φ (A)∗ → I between the components for each
variable (regular and first-order). We say that F is causally consistent for C
under Φ (⊩Φ

C F) when ϵΦF is causal Φ (F)∗ → I, i.e. ϵΦF ∈ cΦ(F).

The above definition chooses the perspective that Φ (F) is describing the causal
structure of the contraction morphism, viewing the black box as an effect with only
inputs. This is a design choice which makes the formulae of causal consistency agree
with linear logic, at the expense of dualising to Φ (F)∗ when we want to talk about
the causal structure within the black box.

We can safely generalise this definition to talk about causal consistency of dia-
grams with multiple black boxes as both states and effects using multi-sequents. In
this case, G1, . . . ,Gm ⊩Φ

C F1, . . . , Fn asserts that the combination of identities, cups,
and caps in between the boxes is a causal morphism in Caus [C] (⊗j Φ(Gj),

˙
iΦ(Fi)).

12This term refers to the interpretation sending the designated variables to first-order objects in
Caus [C] - those representing elementary data - and has no intended relation to first-order logic.

149

∀{ρj ∶ I→ Φ(Gj)}j ,{πi ∶ Φ(Fi)→ I}i .

⋯
ρ1

⋯
π1

⋯
ρm

⋯
πn⋯

⋯

= (3.7)

Such a multi-sequent can always be encoded as a single formula in ⊩Φ
C (

˙
jG
∗
j)`

(
˙

iFi) using ∗-autonomy (see [81, Proposition 2.1.9]).
For examples of causal consistency, we return to the example diagrams drawn

in the Introduction. First, we had that two process matrices can be simultaneously
applied on each side of a bipartite channel. We can express this as a true statement
of causal consistency:

(3.8)

((A1⊸ B1)⊗ (C1⊸D1))∗ ,

((P 1⊸ Q1)⊗ (R1⊸ S1))∗ ,

A1⊸ B1, (C1⊸D1)` (P 1⊸ Q1) ,R1⊸ S1 ⊩CP∗
Φ

(3.9)

On the other hand, applying them to two bipartite channels simultaneously was not
causally consistent [75], as we could encode a paradoxical cycle:

(3.10)

((A1⊸ B1)⊗ (C1⊸D1))∗ ,

((P 1⊸ Q1)⊗ (R1⊸ S1))∗ ,

(C1⊸D1)` (P 1⊸ Q1) , (A1⊸ B1)` (R1⊸ S1) /⊩CP∗
Φ

(3.11)

Recall in Remark 2.3.11 we described that causality of an identity morphism
idA ∈ C (A,A) for A → A′ corresponds to an inclusion cA ⊆ cA′ , and showing this in
both directions would demonstrate an equality A =A′. If we fix an interpretation Φ

and some formulae F,G over the same set of atoms, this gives a precise correspondence
between the inclusion cΦ(F) ⊆ cΦ(G) and a statement of causal consistency F ⊩Φ

C G (or

150

into the standard right-sided form ⊩Φ
C F

∗`G by ∗-autonomy). By extension, we can
encode the search for coherent isomorphisms Φ (F) ≅ Φ (G) and equalities as a pair
of sequents in this way. Parameterising causal consistency by some specific C and Φ

means that characterising causal consistency will not just get the inclusions/isomor-
phisms that hold for every choice of local system, but also those that hold in special
cases such as the additional equations of the First-Order Theorem.

3.2.2 Extranatural Transformations

Definition 3.2.3 frames causal consistency as a property dependent on a specified
interpretation of local systems as objects of Caus [C]. If we actually want to draw
conclusions about the coherent structure of causal categories, we may wish for an
alternative definition of causal consistency that determines a property of the category
as a whole. We can achieve this by lifting formulae to functors and interpreting a
sequent as the existence of an extranatural transformation between them.

Definition 3.2.4: Causal functors

The causal functor FF of a formula F is defined inductively:

FA = 1Caus[C] ∶ Caus [C]→ Caus [C]

FA∗ = (−)∗ ∶ Caus [C]op → Caus [C]

FA1 = ι ∶ FO (Caus [C])↪ Caus [C]

FA1∗ = ιop # (−)∗ ∶ (FO (Caus [C]))op → Caus [C] (3.12)
FI = I ∶ 1→ Caus [C]

FF⊗G = (FF ×FG) #⊗ ∶ dom (FF) × dom (FG)→ Caus [C]

FF<G = (FF ×FG) # < ∶ dom (FF) × dom (FG)→ Caus [C]

FF`G = (FF ×FG) #` ∶ dom (FF) × dom (FG)→ Caus [C]

where I picks out I (⋆) = I, I (id⋆) = idI . Note that the objects of the domain
of FF coincide with FO-respecting interpretation functions over the atoms of
F , up to the unification of instances of the same atom.

Because each morphism in Caus [C] is a morphism in C, we can use the existence
of a basis of states/effects (APC3) to identify each term of an extranatural trans-
formation between causal functors and determine that it is necessarily just a wiring
diagram.

151

Lemma 3.2.5

Given a balanced formula F , there is at most one extranatural transformation
ηF ∶ I → FF which is extranatural across the pairs of indices given by matching
atoms in F . When it exists, the term attributed to an interpretation Φ ∶ Var→
Ob (Caus [C]) is precisely (ϵΦF)

∗, i.e. a selection of compact cups connecting
matching atoms. By ∗-autonomy, this extends to extranatural transformations
FG → FF for balanced G∗ ` F , where the terms now consist of a mixture of
cups, caps, and identity wires.

Proof. Consider an arbitrary extranatural transformation ηF of this kind and
pick any component of it. For each object A in the component index, it embeds
into some first-order object A1 by flatness (the causal effects of A includes the
unique causal effect of A1). This embedding is witnessed by the identity from
C, idA ∶ A → A1. Extranaturality applies for all causal morphisms, including
the identity which we highlight in the dashed boxes below:

A

A1A∗

⋯
ηF (A, . . .) =

A1

A1∗

A∗

⋯
ηF (A1, . . .) (3.13)

Doing this for each index, we find that all components of ηF are fixed by just
the first-order ones.

Let {ρAi }i∈BCA be the causal basis for A from APC3. Each ρAi is a causal
state of A1 up to a scalar, so we can apply extranaturality again.

A1

A1∗ ⋯
ηF (A1, . . .)

(ρAi)
∗

=

A1

⋯
ηF (I, . . .)

ρAi

(3.14)

Again, repeating this for each index reduces it to the basis state and the scalar
term of ηF which (up to unitors) must be idI , the only causal morphism I→ I.
Doing this for each choice of basis states allows us to completely identify our
original arbitrary component of ηF by local tomography, seeing that it acts
identically to just a compact cup for each index.

152

Definition 3.2.6: Causal consistency by extranatural transformation

A balanced formula F is causally consistent for C by extranatural transforma-
tion (⊩C F) when there exists an extranatural transformation ηF ∶ I → FF

which is extranatural across the pairs of indices given by matching atoms in
F . This generalises to two-sided multi-sequents G1, . . . ,Gm ⊩C F1, . . . , Fn for
an extranatural transformation (⨉j FGj

) #⊗→ (⨉iFFi
) #`.

It is always possible to construct the morphisms (ϵΦF)
∗ in C for any Φ, and they

will always collectively satisfy extranaturality by sliding morphisms around the cups.
This means the only thing left that determines ⊩C F is whether each ϵΦF is causal, i.e.
⊩Φ
C F .

Proposition 3.2.7

For any balanced formula F , ⊩C F iff for all interpretations Φ which FO-respect
F we have ⊩Φ

C F . More generally, G1, . . . ,Gm ⊩C F1, . . . , Fn iff ⊩Φ
C (

˙
jG
∗
j)`

(
˙

iFi) for every FO-respecting Φ.

Proof. By Lemma 3.2.5, ⊩C F iff we can build an extranatural transformation
where each component (specified by an interpretation function Φ) is given by
a cup connecting the pairs of matching variables from F , i.e. each such term
from C is causal I → Φ(F). This exactly describes the transpose of ϵΦF and so
occurs iff ϵΦF ∶ Φ(F)∗ → I, i.e. iff ⊩Φ

C F .
In the general case of two-sided multi-sequents G1, . . . ,Gm ⊩C F1, . . . , Fn,

any extranatural transformation (⨉j FGj
) #⊗→ (⨉iFFi

) #` is equivalent to one
of I → (⨉j F∗Gj

×⨉iFFi
)#` by ∗-autonomy. The codomain functor here is equal

to F(˙j G
∗
j)`(

˙
i Fi)

, bringing us to the definition of ⊩C (
˙

jG
∗
j)` (˙iFi). We

can then connect this to causal consistency for all interpretations as before.

Having now drawn this connection, we will continue to look at causal consistency
with respect to an interpretation with the confidence that it will have meaningful
consequences on the overall categorical structure.

3.2.3 Modelling Logics

From our existing understandings of the categorical structure of Caus [C] and the re-
sults mentioned in Section 3.1.4 relating them to formal logics, we can already deduce
some logics which will generate true statements of causal consistency. Consequently,

153

this can aid in greatly simplifying the task of verifying causal consistency of a given
setup, since if an automated theorem prover finds a proof in any of these logics we
can immediately conclude that consistency holds.

To start with, even before considering the new operators covered in this thesis,
Caus [C] is an ISOMIX category and hence any statement of MLL+Mix gives rise
to a causal structural morphism representing the proof, i.e. a statement of causal
consistency.

Example 3.2.8

The following example MLL+Mix proof verifies that one-way signalling pro-
cesses (encoded using the 2-comb form of FO⊸) embed into the space of all
bipartite causal processes.

Ax ⊢ A,A∗ Ax ⊢D,D∗⊗ ⊢ A⊗D∗,A∗,D

Ax ⊢ B,B∗ Ax ⊢ C,C∗
Mix2 ⊢ B,B∗,C,C∗` ⊢ B∗ `C,B,C∗⊗ ⊢ A⊗ (B∗ `C)⊗D∗,A∗,B,C∗,D` ⊢ (A⊗ (B∗ `C)⊗D∗)`A∗ `B `C∗ `D

A⊸ (B ⊸ C)⊸D ⊢ (A⊸ B)` (C ⊸D)

The corresponding statement of causal consistency says that a one-way sig-
nalling process can be placed within any context for generic bipartite causal
processes - up to affine combination, this is just separable effects.

B D

A C

= (3.15)

Proposition 2.6.21 gives the duoidal structure between ⊗/` and <, from which
checking that Caus [C] is a BV-category is straightforward (all coherence equations
hold from coherence in the compact closed category C).

Proposition 3.2.9

Let F be a formula over the grammar F ∶∶= A∣A∗∣F ⊗G∣F < G∣F `G (i.e. F
does not include any first-order atoms). If there exists a proof of F in BV, then
⊩Φ
C F holds for any interpretation Φ.

154

Proof. Note that since the formula does not contain any first-order atoms, any
interpretation Φ will automatically be FO-respecting for F .

We can build up the contraction morphism inductively from the steps of
the proof derivation. For each elementary rule, we can attribute it with a
corresponding morphism:

I ↓ idI ∶I→ I (3.16)
ai ↓ ϵ∗Φ(A) ∶I→ Φ (A∗ `A) (3.17)
q ↓ id⊗ σ ⊗ id ∶Φ ((F `G) < (H `K))→ Φ ((F <H)` (G <K)) (3.18)
s id⊗ id⊗ id ∶Φ ((F `G)⊗H)→ Φ (F ` (G⊗H)) (3.19)

Each context C {−} can be mapped to a functor which just tensors on appro-
priate identity morphisms, since {⊗,<,`} are all bifunctors. Therefore, any
application of the elementary rules (with a corresponding morphism of type
Φ(F) → Φ(F ′)) within the context C {−} can be sent to the relevant contrac-
tion morphism of type Φ (C {F})→ Φ (C {F ′}).

Composing each rule in the derivation of our goal F generates the contrac-
tion morphism (ϵΦF)

∗ as a causal morphism of type I → Φ(F). This concludes
that ⊩Φ

C F .

Example 3.2.10

If we take the proof of (A⊗B) < C ⊸ A < (B `C) from Example 3.1.7
and translate it to a statement of causal consistency, we can see it as a com-
patibility of graph types. Specifically, using Corollary 2.8.12, (A⊗B) <C and
A∗ < (B∗ ⊗C∗) are both graph types corresponding to sequence-parallel graphs.

A B C = (3.20)

Adding products and coproducts, we get the additional equations of MAV for

155

free. Examples here are harder to visualise in the language of string diagrams due to
the mixing of monoidal and cartesian structures (though possible through sheet dia-
grams [34]). Some simple ones include distributivity laws like those in Remark 2.7.10

(A`B) × (A`C)⇒A` (B ×C) (3.21)

and the interpretation of the medial rule as an interchange law between < and ×.

(A ×B) < (C ×D)⇒ (A <C) × (B <D) (3.22)

We note that the distributivity law merges two occurrences of A into one, so the
witness for this won’t just be a simple string diagram but is still composed of sim-
ple morphisms. For the following result, we extend Definition 3.2.4 to also apply
interpretations to products and coproducts.

Proposition 3.2.11

Let F be a formula over the grammar F ∶∶= A∣A∗∣F ⊗G∣F < G∣F`G∣F ⊕G∣F ×G.
If there exists a proof of F in MAV, then we can translate it to a causal
morphism I→ Φ(F) in Caus [C] for any interpretation Φ.

Proof. This follows the same proof strategy as Proposition 3.2.9. The elemen-
tary rules are witnessed by the diagonal ∇I = 2∗ ∶ I → I × I = 2∗, injections
ιF ∶ F → F⊕G, ιG ∶ G → F⊕G, and the appropriate distributor for e ↓ and
interchange for m ↓. We achieve deep inference through functoriality of the
contexts.

3.3 Causal Logic
However, none of these logics in the previous section are complete in the sense of
being able to determine all true statements of causal consistency, with none of them
having a way to account for the First-Order Theorem, and the additional equations
satisfied in the special case of first-order systems. For this, we will synthetically build
a logic up to match and then show that it can be faithfully encoded into pomset logic.
This section will present the novel causal proof-nets as a solution and prove that they
faithfully capture all equations of causal categories or, more specifically, all causally
consistent scenarios.

The intuition for building the logic is to use the Sum of Orders Theorem to both
break the goal type into a union of graph types and break the contraction morphism

156

into an affine combination of graph states, then use the Graph Compatibility Theorem
to reduce the question of compatibility to checking for acyclicity in the composite
graphs.

3.3.1 Causal Proof-Nets

This logic will follow similar conventions for proof-nets to those of MLL and pom-
set and will capture this idea of decomposing into a union of graph types via its
switchings.

Definition 3.3.1: Causal proof-structures

A causal proof-structure P is a graph defined by composition of the following
links:

A A∗ A1 A1∗ I F F ∗ F G

F ⊗G

F G

F < G

F G

F `G

• Axiom links with no premises and a pair of conclusions A, A∗.

• FO-axiom links with no premises and a pair of conclusions A1, A1∗.

• Unit links with no premises and conclusion I.

• Cut links with premises F , F ∗, and no conclusions.

• Tensor links with premises F , G, and conclusion F ⊗G.

• Seq links with premises F , G, and conclusion F < G.

• Par links with premises F , G, and conclusion F `G.

A balanced formula F identifies a unique cut-free causal proof-structure PF with
conclusion F by replacing each node in its syntax tree with the corresponding
link and joining pairs of matching atoms with axiom links. Conversely, for any
causal proof-structure P with conclusions {Ci}i we define its corresponding
(possibly unbalanced) formula FP = C1 `⋯`Cn.

In the graphical notation, the use of undirected edges is just to indicate that the
switchings can induce connectivity across the link in either direction, whereas directed
edges indicate that connectivity will be induced in only one direction.

157

Definition 3.3.2: Up-down switchings

An up-down switching s ∈ SP over a causal proof-structure P is a choice of
one option for each link dependent on its type from the options below, which
together define the switching graph Gs over the vertices of P built using the
subgraphs:

la ∶A A∗ ra ∶A A∗ lc ∶F F ∗ rc ∶F F ∗

fo ∶A1 A1∗ i ∶I
ul ∶F G

F ⊗G

ur ∶F G

F ⊗G

dl ∶F G

F ⊗G

dr ∶F G

F ⊗G

us ∶F G

F < G

ds ∶F G

F < G

up ∶F G

F `G

dp ∶F G

F `G

• For axiom links, one of {la, ra}.

• For FO-axiom links, the choice is fixed {fo}.

• For unit links, the choice is fixed {i}.

• For cut links, one of {lc, rc}.

• For tensor links, one of {ul, ur, dl, dr}.

• For seq links, one of {us, ds}.

• For par links, one of {up, dp}.

An up-down switching may similarly be defined over the syntax tree of a formula,
since this matches a cut-free causal proof-structure with atomic axioms in place
of axiom links.

The fact that each switching graph is a directed graph will help us to connect
them to graph types later on.

Definition 3.3.3: Causal proof-nets

A causal proof-structure P is a causal proof-net when, for every up-down switch-
ing s ∈ SP , the corresponding switching graph Gs is acyclic.

158

Example 3.3.4

Consider the formula F = (A⊗ (B < C)) ⊸ ((A < C)⊗B) with the following
corresponding proof-structure PF .

A∗ B∗ C∗ A BC

B∗ < C∗

A∗ ` (B∗ < C∗)
A < C

(A < C)⊗B

(3.23)

This fails to be a proof-net since it has a switching graph with a cycle, shown
in red.

A∗ B∗ C∗ A BC

B∗ < C∗

A∗ ` (B∗ < C∗)
A < C

(A < C)⊗B

(3.24)

However, if we replace the axiom link for B with an FO-axiom link, we obtain
a valid proof-net for (A⊗ (B1 < C))⊸ ((A < C)⊗B1).

A∗ B1∗ C∗ A B1C

B1∗ < C∗

A∗ ` (B1∗ < C∗)

A < C

(A < C)⊗B1

(3.25)

There are notable similarities amongst the switchings and correctness criteria be-
tween causal proof-nets and other acyclicity conditions for MLL+Mix (and extensions)
such as long-trip, Danos-Regnier, or R&B-graph. Taking a ` link as an example, each
of these switching methods (or the alternating colour restriction for R&B-graphs) al-
low a path between either premise and the conclusion in both directions but never a
path between the premises. Rather than implementing this by connecting the conclu-
sion to only one premise at a time, up-down switchings restrict the directions of paths
to either up from the conclusion to the premises (up) or down from the premises to
the conclusions (dp). Similarly, the switchings over < only disallow the path between
the premises in one direction, and ⊗ allows all paths within the link (though we still
split this into multiple choices of switchings to leave directed switching graphs, similar
to long-trip switchings). Using this observation, it is immediately obvious that causal
logic precisely coincides with MLL+Mix and pomset logic over the corresponding
fragments because any falsifying cycle for one kind of proof-net induces a cycle for
the others.

159

Proposition 3.3.5

The logic of causal proof-nets is a conservative extension of pomset logic. Specif-
ically, given a formula in the fragment F,G ∶∶= A ∣ A∗ ∣ F ⊗G ∣ F < G ∣ F `G,
there exists a causal proof-net for F iff there exists a pomset proof-net for F .

Proof. Comparing causal proof-nets to pomset proof-nets, there is an obvious
one-to-one correspondence between proof-structures for unit- and first-order-
free formulae, operating link-wise over the proof-structure. The proof-net con-
ditions both reduce down to finding cycles through the links with some connec-
tivity constraints within the links themselves. We can show inductively that
each link kind has the same connectivity between its premises and conclusions
induced by the alternating colour condition for pomset or the up-down switch-
ings for causal proof-nets, and therefore we can transform between any cycle in
an up-down switching and an alternating elementary circuit.

For example, the up-down switchings of a ` link permit a path in either
direction between one premise and the conclusion (the choice of switching just
determines the direction), but never a path between the two premises. The
corresponding bi-coloured link has a central vertex with undirected red edges
to the premises and an undirected blue edge to the conclusion. The alternating-
colour condition therefore prevents the path between the premises, but permits
the undirected path between each premise and the conclusion.

Similarly, < links only forbid connections between the premises in one di-
rection, and ⊗ and axiom links permit any connectivity between their compo-
nents.

In order for causal proof-nets to actually form a logic in the proof-theoretic sense,
we need to demonstrate a cut-elimination result for it. Thankfully, the similar-
ity with pomset logic means we can follow the outline of the proof of pomset cut-
elimination [102, Proposition 6, Theorem 7]. We first have to define a set of local
rewrites which reduce cuts down to smaller formulae, then prove that each rewrite pre-
serves the proof-net criterion, and show that the rewrites have confluence (regardless
of which rewrite we choose at each step, there are always some sequences of further
rewrites that end in the same state) and strong normalisation (there are no infinite
sequences of rewrites).

160

Definition 3.3.6: Cut-elimination Steps

We define the following five rewrites on proof-structures based on substitution
of subsets of the links:

AX/AX A A∗ A A∗

...
...
↦ A A∗

...
...

(3.26)

FO/FO A1 A1∗ A1 A1∗
...

...
↦ A1 A1∗

...
...

(3.27)

UN/UN I I ↦ (3.28)

SQ/SQ F ∗ G∗

F ∗ < G∗
F G

F < G

...
...

...
...

↦ F ∗ G∗ F G

...
...

...
...

(3.29)

TS/PR F ∗ G∗

F ∗ ⊗G∗

F G

F `G

...
...

...
...

↦ F ∗ G∗ F G

...
...

...
...

(3.30)

For UN/UN, note that we are using I∗ = I from Definition 3.2.1.

Proposition 3.3.7

The rewrites AX/AX, FO/FO, UN/UN, SQ/SQ, and TS/PR preserve the con-
clusions of a proof-structure and acyclicity of all up-down switchings.

Proof. The open premises and conclusions coincide between each pair of redex
(left-hand side) and reduct (right-hand side), so the rest of the proof-structure
will clearly yield identical conclusions.

It is clear that each redex and reduct cannot have any internal cycles for any
up-down switching, so it suffices to check that the rewrites do not introduce
any new connectivities between the open premises or conclusions (if a cyclic
switching exists after the rewrite, then we can translate it to a cyclic switching
in the original proof-structure). AX/AX and FO/FO preserve this exactly,
respectively allowing connections in either direction between A and A∗, and
only from A1∗ to A1. UN/UN is trivial as it has no open premises or conclusions
in the redex or reduct. SQ/SQ and TS/PR strictly decrease the connectivity,
maintaining connectivity in both directions between F ∗ and F , and between G
and G∗, but dropping any connectivities between F ∗ and G∗ (and between F
and G for SQ/SQ).

161

Proposition 3.3.8: Cut-elimination

The collection of rewrites {AX/AX,FO/FO,UN/UN,SQ/SQ,TS/PR} on causal
proof-structures enjoys confluence and strong normalisation. Furthermore, the
unique final proof-structure has the same conclusions and does not include any
cut links.

Proof. The only redexes that can overlap are AX/AX with itself, or FO/FO
with itself. In either case, this scenario looks like a chain of (first-order) axiom
links and cuts. Regardless of which cut is eliminated, the resulting chain of
axiom and cuts links is the same. All other redexes are disjoint, so confluence
follows immediately.

For strong normalisation, the number of links in the proof-structure is
strictly decreased by each rewrite application, so every sequence of rewrites
must eventually terminate.

Preservation of conclusions was shown in Proposition 3.3.7. In any proof-
structure with a cut, pick one of its premises F and consider the cases from the
grammar of causal formulae. In each case, there is a single kind of link that
generates a conclusion matching that pattern which uniquely identifies the link
before the cut. Doing the same for the other premise F ∗ will give a match for
the redex of one of the five rules. Therefore, if no more rewrites can be applied,
the proof-structure is cut-free.

We can give an interpretation of the switching options for links in terms of the
flows of information between their premises. As we saw in Definition 3.2.3, causal
consistency ⊩Φ

C F means the canonical wiring map ϵΦF ∶ Φ (F)∗ → I sends every state
in cΦ(F)∗ to the scalar idI . Crucial to the proof of the characterisation, this fails to
be the case precisely when plugging ϵΦF into some ρ ∶ Φ (F)∗ could result in a directed
cycle of signalling relations. The signalling relations introduced by ϵΦF are relatively
simple to characterise: a wire between X∗ and X for a generic type X can introduce
signalling in either direction, whereas information can only flow in one direction for
first order types (from A1∗ to A1). This follows from the fact that the only thing we
can “plug in” to A1 is the unique causal effect A1 , hence there is no way to use the
choice of effect to send any non-trivial information. On the other hand, we can plug
any causal state of Φ (A1) into A1∗, of which there will typically be many.

We can then combine this with the signalling relations allowed by Φ (F)∗. Since
Φ (F) appears under a (−)∗, the roles of ⊗ and `, with respect to (non-)signalling

162

relations, are reversed. Namely, an occurrence of X ⊗ Y in Φ (F)∗ means that sig-
nalling can occur in either direction between the premises X and Y , generalising the
case of process matrices from Theorem 2.3.24. Similarly, an occurrence of X < Y in
Φ (F)∗ means that signalling can only occur from X to Y , whereas X ` Y in Φ (F)∗

doesn’t allow any signalling between premises.
In addition to fixing a flow of information between premises, we also have to

consider the flow of information between a subexpression and its environment (i.e.
the rest of the syntax tree): either “up” toward the leaves of the tree or “down”
toward the root. Fixing this direction plus a signalling direction between premises
yields all the possible choices for connectives (4 choices for ⊗, 2 choices each for <
and `). The “up” vs. “down” signalling direction is slightly harder to think about
intuitively, but we can make this precise using (unions of) graph types, which we will
do in the next section.

3.3.2 The Characterisation Theorem

Recall that the Sum of Orders Theorem equates any A`B with a union of sequence
types. Applying this recursively along with Setwise Distributivity, we can reduce any
formula involving ` to a union of graph types. The up-down switchings are defined to
respect this decomposition so the switching graphs over the syntax tree of a formula
F inductively yield the graph types generating Φ(F)∗.

Lemma 3.3.9: Switching Lemma

Given a balanced formula F and an interpretation Φ which FO-respects F and
an additional object E ∈ Ob (Caus [C]), let V be the vertices of the syntax
tree of F (in negation normal form) and let Γ∗Φ,E ∶ V → Ob (Caus [C]) be the
function below which assigns Φ (a)∗ to each leaf labelled a, E to the root, and
I elsewhere (with a degenerate case for the one-vertex tree):

Γ∗Φ,E (v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Φ (F)∗ `E v is the only vertex F ∶∶= A∣ A∗∣A1∣A1∗∣I
Φ (a)∗ v is a leaf a ∶∶= A∣A∗∣A1∣A1∗∣I
E v is the root F
I otherwise

(3.31)

Then Φ (F)∗`E ≅ ⋃s∈SF Gr
Γ∗Φ,E

Gs
. In words with E = I, the state space of Φ (F)∗

coincides with the space generated by graph states over the switching graphs
of the syntax tree of F .

163

Proof. We proceed inductively over the syntax tree of F (in negation normal
form).

If F ∶∶= A∣A∗∣A1∣A1∗∣I, the syntax tree is a single node with a single trivial
switching graph.

Φ (F)∗ `E = Γ∗Φ,E (v) =Gr
Γ∗Φ,E

Gs
(3.32)

If F = G⊗H:

Φ (F)∗ `E = (Φ (G)⊗Φ (H))∗ `E

= (Φ (G)∗ `Φ (H)∗)`E

= ((Φ (G)∗ < Φ (H)∗) ∪ (Φ (H)∗ < Φ (G)∗))`E

= (Φ (G)∗ < Φ (H)∗ < E) ∪ (Φ (H)∗ < Φ (G)∗ < E)

∪ (E < Φ (G)∗ < Φ (H)∗) ∪ (E < Φ (H)∗ < Φ (G)∗)

=GrΓ⊗dr ∪GrΓ⊗dl ∪GrΓ⊗ur ∪GrΓ⊗ul

(3.33)

where the graphs dr, dl, ur, ul are given by the corresponding switching options
for the ⊗ link, and Γ⊗ maps the premise vertices to Φ(G)∗ and Φ(H)∗ and the
conclusion vertex to E.

Looking at GrΓ⊗dr as an example, the component typings for the graph
states (assuming wlog the constant edge interpretation ∆2) are Φ(G)∗`2,
Φ(H)∗` (2∗ ` 2), and E` 2∗. The inductive hypothesis identifies the premise
components with affine combinations of graph states over the switching graphs
of G and H. Identifying these within complete graph states gives GrΓ⊗dr =
⋃s∈SF ,s(F)=drGr

Γ∗Φ,E

Gs
(the leaf and otherwise cases of Γ∗Φ,E handle the fact that

we have moved the 2 parts of the premises from the local interpretation of
the inductive graph type to edge interpretations in the larger switching graph).
Repeating this for each of dl, ur, ul generates all switching graphs over F .

The cases for < and ` are similar with the following decompositions:

(Φ (G) < Φ (H))∗ `E = (Φ (G)∗ < Φ (H)∗ < E)

∪ (E < Φ (G)∗ < Φ (H)∗)

=GrΓ<ds ∪GrΓ<us

(3.34)

(Φ (G)`Φ (H))∗ `E = ((Φ (G)∗ ⊗Φ (H)∗) < E)

∪ (E < (Φ (G)∗ ⊗Φ (H)∗)) (3.35)
=GrΓ`

dp ∪GrΓ`
up

164

Example 3.3.10

Consider F = A < (I`A∗), interpreting Φ (A) =A and fixing some environment
object E. Then this lemma gives the following decomposition:

Φ (F)∗ `E =(A∗ < (I⊗A))`E

≅Gr(A∗
I A

I

E

) ∪Gr(A∗
I A

I

E

)

∪Gr(A∗
I A

I

E

) ∪Gr(A∗
I A

I

E

)

(3.36)

where these four graphs match the switching graphs of the syntax tree of F .

A

I A∗

I `A∗

A < (I `A∗)

(3.37)

This lemma presents a great simplification of characterising causal consistency
from needing to check causality of contractions of arbitrary types to just those for
graph types. Comparing this to our discussion of ` as a union of seq types in
Section 2.7.2, this holds physical significance as some types may contain processes
exhibiting indefinite causal structure where the patterns of influence are inconsistent
with any graph type no matter how we divide up the subsystems, yet they appear to
add no new behaviour that is relevant for determining causal consistency.

As for the axiom links, they tell us which pairs of systems we will wire up, corre-
sponding to the contractions in the analogy to tensor networks. We apply the same
decomposition to the contractions

ϵΦ(A) ∶ Φ (A∗)`Φ (A) = (Φ (A∗) < Φ (A)) ∪ (Φ (A∗) > Φ (A)) (3.38)

giving us directed switchings over the axiom links. If we ask that Φ is strongly FO-
respecting (Φ (A) is neither first-order nor first-order dual), then ϵΦ(A) must have
the capacity to signal information in each direction. This makes both switchings
necessary to cover all information flow in the contraction. Similarly, the FO-axiom
links only have a single switching option since

ϵΦ(A1) ∶ Φ (A1∗)`Φ (A1) = Φ (A1∗) < Φ (A1) (3.39)

is already one-way signalling. Φ being strongly FO-respecting here guarantees that
Φ (A1) /≅ I and so there necessarily is at least some information signalling capacity
that needs to be represented.

165

Combining the axiom decompositions and Switching Lemma into a single picture,
we obtain the switching graphs over the whole proof-structure. If there is a cycle,
we can devise an example implementation for the black box which, when contracted,
encodes a paradoxical situation (i.e. an information cycle which breaks normalisation)
to disprove causal consistency; otherwise, there is some linear ordering of the vertices
that all information flow respects, from which we can prove that normalisation is
preserved. This covers the intuition for the proof of the Causal Characterisation
Theorem.

Theorem 3.3.11: Causal Characterisation Theorem

Given a balanced formula F and an interpretation Φ which strongly FO-respects
F , ⊩Φ

C F iff PF is a causal proof-net.

Proof. Recall the definition of ⊩Φ
C as stating whether ϵΦF is causal Φ (F)∗ → I,

i.e. for all causal states ρ ∈ cΦ(F)∗ , ρ # ϵΦF = idI . We decompose ϵΦF into a
permutation followed by the individual caps in parallel ϵΦF = σ #⊗A∈F ϵΦ(A) with
each ϵΦ(A) ∶ Φ (A∗)∗ ⊗Φ (A)∗ → I.

We first claim that ⊩Φ
C F iff c⊗A∈F Φ(A∗)`Φ(A) ⊆ (cΦ(F)∗)

∗ up to the appro-
priate permutation of atomic wires. ⇐Ô is immediate from ϵΦ(A) ∈ cΦ(A∗)`Φ(A).
For Ô⇒, we note that any element of cΦ(A∗)`Φ(A) can be written in the form
ϵ∗
Φ(A) # (idΦ(A∗) ⊗ f) for some f ∶ Φ (A) → Φ (A) by ∗-autonomy. Given any
state ρ ∈ cΦ(F)∗ , we have ρ # (id⊗ f∗ ⊗ id) ∈ cΦ(F)∗ since every operator used
to construct Φ (F)∗ is functorial. We can apply this for each atom A in F to
reduce c⊗A∈F Φ(A∗)`Φ(A) ⊆ (cΦ(F)∗)

∗ to just checking ϵΦF ∈ cΦ(F), i.e. ⊩Φ
C F .

Next, the First-Order Theorem gives Φ (A∗) ` Φ (A) = Φ (A∗) < Φ (A) iff
Φ (A) is first-order. Since Φ strongly FO-respects F , this happens iff A appears
in F as a first-order atom A1. By Equation 2.244, Φ (A∗) < Φ (A) is a graph
type matching the only switching option available to first-order axiom links.
Similarly, the Sum of Orders Theorem gives the decomposition for generic atoms
as Φ (A∗)`Φ (A) = (Φ (A∗) < Φ (A)) ∪ (Φ (A∗) > Φ (A)) which match the two
switching options for regular axiom links.

Applying the Switching Lemma, (Φ (F)∗)∗ is the intersection of the dual
graph types for each switching graph over the syntax tree of F . Our goal
c⊗A∈F Φ(A∗)`Φ(A) ⊆ (cΦ(F)∗)

∗ is now inclusion of a union within an intersection,
meaning we need to quantify over both the switchings of axiom links and the
switchings of the syntax tree, i.e. over all switchings of the canonical cut-

166

free proof-structure. For each such switching s, we ask the graph type given
by the axiom switching (extended to all vertices of the syntax tree with I’s
via Lemma 2.8.17) is contained in the dual graph type over the syntax tree
(Gr

Γ∗Φ,I

Gs
)
∗
. Finally, the Graph Compatibility Theorem equates this with check-

ing acyclicity of the combined graph, i.e. the full switching graph over the entire
proof-structure (the fact that this takes the standard forms G of graphs does
not matter here, since the first-order axiom links will already be directed in the
appropriate direction, so any cycle can still be used to disprove causality).

Example 3.3.12

In Equation 3.11 we saw an example sequent which is not causally consistent,
describing two process matrices that are applied to two bipartite channels si-
multaneously. Writing it as a right-handed sequent with a single term gives us
the following, with the corresponding proof-structure (up to permutations of
systems) shown below.

/⊩Φ
C ((A1⊸ B1)⊗ (C1⊸D1))` ((P 1⊸ Q1)⊗ (R1⊸ S1))

` ((C1⊸D1)∗ ⊗ (P 1⊸ Q1)∗)` ((A1⊸ B1)∗ ⊗ (R1⊸ S1)∗)
(3.40)

C1D1∗ P 1Q1∗ A1B1∗R1S1∗S1R1∗Q1P 1∗D1C1∗B1A1∗

` ` ` `⊗ ⊗ ⊗⊗

⊗ ⊗⊗ ⊗
(3.41)

This fails to be a proof-net, as seen by the following switching with a cycle
shown in red.

C1D1∗ P 1Q1∗ A1B1∗R1S1∗S1R1∗Q1P 1∗D1C1∗B1A1∗

` ` ` `⊗ ⊗ ⊗⊗

⊗ ⊗⊗ ⊗
(3.42)

167

With the Switching Lemma we can interpret everything below the axiom
links as describing a graph type, with the axioms describing some contractions.
If we follow the construction used in the Acyclicity Lemma, we will build a
graph state which, when contracted, gives a cycle of information flow. We
depict such an example below, where the dashed lines subdivide it into the
two process matrices (outer left and inner right), the two bipartite channels
(inner left and outer right) and the contraction morphism (top). The individual
boxes represent the (noisy) channels used to encode binary data into arbitrary
systems and the dots represent local states and effects (e.g. the uniform states
and effects for the appropriate objects).

(3.43)
Rearranging this back into the standard graphical shapes used for process

matrices and channels for clarity (with the assumption all the systems are
identical, so the boxes can simply be replaced with identity wires):

(3.44)

This matches the cycle informally suggested by Equation 1.7 in the Introduction
and matches the observations of Jia and Sakharwade [75] in their analysis of
such pairs of process matrices.

Example 3.3.13

Example 3.3.4 gave a proof-net for F = (A⊗ (B1 < C)) ⊸ ((A < C)⊸ B1).
Rather than go through all 128 switching graphs, we will ignore the paths that
can’t induce connectivity between atoms (those greyed out in the graphs below)
and combine the switchings over the axioms for simplicity. That leaves just 4
cases, each of which we can relate to graph states that generate the full space of

168

Φ (F)∗ (the boxes are labelled with the corresponding vertex of the switching
graph). Each graph is acyclic, allowing us to easily verify causality.

A∗ B1∗ C∗ A B1C

<

`
<

⊗ Φ (A)

Φ (C)

Φ (B1)
A∗

A

B1∗

B1

C∗

C

<

A∗ B1∗ C∗ A B1C

<

`
<

⊗

Φ (A)

Φ (C)

Φ (B1)
A∗

A

B1∗

B1

C∗

C

<

A∗ B1∗ C∗ A B1C

<

`
<

⊗
Φ (A)

Φ (C)

Φ (B1)
A∗

A

B1∗

B1

C∗

C

<

A∗ B1∗ C∗ A B1C

<

`
<

⊗ Φ (A)

Φ (C)

Φ (B1)
A∗

A

B1∗

B1

C∗

C

<

When using this theorem as a way to determine causal consistency, we still have to
adhere to the restriction to strongly FO-respecting interpretations which won’t always
be guaranteed. However, we can always make minor adaptations to the formula
and interpretation to guarantee strong FO-respect whilst preserving the semantics of
causal consistency.

169

Proposition 3.3.14

Given any interpretation Φ for a formula F , there exists some formula F ′ and
interpretation Φ′ which strongly FO-respects F ′ such that Φ (F) = Φ′ (F ′) and
hence ⊩Φ

C F iff ⊩Φ′

C F ′.
Furthermore, if PF is a causal proof-net then so is PF ′ .

Proof. Failing to strongly FO-respect F means there is some atom A such
that Φ (A) is first-order or first-order dual and this is not reflected by the
occurrences of A in F . We construct F ′ and Φ′ to match F and Φ with the
following amendments:

• If Φ (A) ≅ I, then we replace all occurrences of A or A1 in F with I;

• If Φ (A) is first-order but not first-order dual, we replace all occurrences
of A with A1;

• If Φ (A) is first-order dual but not first-order, we dualise the interpretation
Φ′ (A) ∶= Φ (A)∗ and replace all occurrences of A with A1∗.

Each of these updates preserves the overall interpretation of the formula Φ (F) =
Φ′ (F ′).

As for how these updates affect the proof-structures, a subset of the axiom
links are replaced by FO-axiom links in one direction or the other, and we
replace some (FO-)axiom links by pairs of unit links. In the former case we just
end up with a subset of the switching graphs which means fewer of the same
acyclicity checks are required, and the latter we have a single switching graph
with fewer edges which cannot introduce cycles.

Corollary 3.3.15

⊩C F iff PF is a causal proof-net.

Proof. Proposition 3.2.7 states that ⊩C F is equivalent to checking ⊩Φ
C F for

every FO-respecting Φ.
If PF is a causal proof-net, then ⊩Φ

C F for all strongly FO-respecting Φ

immediately (by the Causal Characterisation Theorem), and Proposition 3.3.14
handles the rest - PF is a proof-net Ô⇒ PF ′ is also a proof-net Ô⇒ ⊩Φ′

C F ′ Ô⇒
⊩Φ
C F .

170

If PF is not a causal proof-net, it is straightforward to construct a strongly
FO-respecting interpretation which will fail causal consistency.

Beyond the usual Curry-Howard-Lambek style results where the logic describes
the behaviour common to all interpretations, this ability to make slight adaptations
to guarantee strong FO-respect means this proof-net criterion can capture causal
consistency for any specific interpretation! This has an extremely significant conse-
quence: the only information about atomic objects which is relevant for determining
causal relations is whether or not they are first-order or first-order dual. We already
knew from the First-Order Theorem that they satisfied additional equations between
causal types, but now we can now conclude that they are the only objects that do so.

In addition to being (almost entirely) independent of the interpretation, the proof-
net criterion is independent of our chosen base category C. Not only are the equations
between causal types independent of the atomic objects, but they are also completely
theory-independent: the inclusions between causal structures are the same for higher-
order quantum theory (Caus [CP∗]), classical probability theory (Caus [Mat[R+]]),
and pseudo-probability theory (Caus [Mat[R]]).

Recall from Proposition 3.3.5 that causal logic conservatively extends pomset logic,
improving on the lower bound of BV from Section 3.2.3. A major consequence of this
comes in terms of the computational complexity of checking causal consistency, since
it must be at least as hard as verifying a pomset proof-net which is coNP-complete [94].
coNP fits nicely with our picture of causality, since failure of consistency amounts to
giving a cycle of information flow through the system which can be efficiently verified.

Corollary 3.3.16

Causal consistency of a balanced formula is coNP-complete.

Proof. It is coNP-complete to verify that a proof-structure is a proof-net for
pomset, i.e. whether a balanced formula is satisfiable in pomset logic. Since
unit- and first-order free causal proof-nets coincide with pomset proof-nets,
causal consistency must be at least coNP-hard. It lies in coNP itself since giving
an up-down switching and a cycle gives an efficiently verifiable refutation.

3.3.3 Standardised Interpretations

We can see notable similarity between the Causal Characterisation Theorem and
Retoré’s result that pomset logic proof-nets have a sound and faithful interpretation

171

in coherence spaces [101]. In that result, it is shown that correctness of a proof-net
is not only implied by the existence of a clique for every interpretation of the atoms,
but it is sufficient to only consider interpretations that map each atom to some four-
token coherence spaces N and Z = N∗. We can do a similar thing here by picking a
standardised (almost) constant interpretation such that causal consistency precisely
matches the existence of causal proof-nets. By extension, if we wish to study causal
consistency by enumeration of states in the appropriate physical theory, it is sufficient
to check for this standardised interpretation to know what holds for an arbitrary one.

The distinction of being “almost” constant is the need to distinguish between
different classes of atoms. 2 is a good candidate for first-order variables, it being the
simplest object which is first-order but not first-order dual.

For regular variables, we should associate them with an object that is neither
first-order nor first-order dual, giving us a couple of options that stand out. A1 =
(3,{ι1, 13 3}

∗∗) from Remark 2.7.8 is similar to N in that it is the object with the
lowest dimensions (with respect to both the carrier object and state set) which is not
isomorphic to any object definable from I with ⊕,×, (−)∗,⊗,<.

Alternatively, we could encode the ability to send information in both directions
in the straightforward way by considering a first-order and a first-order dual system
side-by-side. We see this in any higher-order framework by mapping atoms to function
types like 2⊸ 2. This is appealing since we can then see the interpretation as built
entirely with I⊸ I (≅ I), I⊸ 2 (≅ 2), 2⊸ I (≅ 2∗), and 2⊸ 2. This reinforces
the idea that causal consistency is theory-independent, showing that it is sufficient to
consider stochastic maps on classical bits to even learn how causal structures compose
in, for example, quantum theory.

3.4 Sufficient Fragments
3.4.1 The pomset Fragment

Causal logic extends pomset with first-order atoms. The First-Order Theorem char-
acterises first-order objects as precisely those objects over which the identity process
(and hence the contraction morphism ϵΦ(A1) corresponding to an axiom link) is one-
way signalling. Instead of using the directed FO-axiom link, we can use this charac-
terisation to just describe that the two atoms are linked by a one-way channel, which
is something we can much more naturally express in a formula.

Consider the following component of a proof-structure:

172

X X∗

C (X;Y)
...

...

Y Y ∗

Y ∗ <X∗
(3.45)

Enumerating the switching graphs over this component, there are no internal cycles
possible and the only induced connectivity is from Y to X, matching exactly the
connectivity of an FO-axiom link. Because the connectivity matches, we can convert
any cycle in a proof-structure containing an FO-axiom link to a cycle in the same
proof-structure with the FO-axiom link replaced by this component and vice versa,
so this replacement must preserve the correctness of the proof-net criterion.

The following definition introduces this formally as a rewrite procedure between
causal proof-structures (and subsequently their corresponding formulae), which al-
ways reduces down to the fragment F,G ∶∶= A ∣ A∗ ∣ F ⊗G ∣ F < G ∣ F `G used by
pomset logic.

Definition 3.4.1

Any proof-structure P induces a proof-structure pom (P) with no unit or FO-
axiom links by applying the following rewrites exhaustively:

I
...

C(I)
↦

X X∗

X `X∗

...
C (X `X∗)

(3.46)

A1 A1∗

C (A1;A1∗)
...

... ↦
X X∗

C (X;Y)
...

...

Y Y ∗

Y ∗ <X∗
(3.47)

where X and Y are fresh variable names for each instance of the rewrite and C
denotes the labels at any other link in the proof-structure as a function of the
given subterms.

Example 3.4.2

Applying pom (−) to the proof-net of Equation 3.25 expands the FO-axiom link,
now representing the formula (A⊗ (Y < C))⊸ ((A < C)⊗X)` (Y ∗ <X∗):

173

A∗ Y C∗ A XC

Y < C∗

A∗ ` (Y < C∗)
A < C

(A < C)⊗X

Y ∗ X∗

Y ∗ <X∗
(3.48)

Example 3.4.3

Applying this transformation just to a formula, we can encode the characteristic
properties from the First-Order Theorem and show that they follow in pomset,
and even in BV. For example, the interesting direction of the equality

A1 ⊗B =A1 < B (3.49)

is given by the formula

(A1 < B)⊸ (A1 ⊗B) (3.50)

which pom (−) maps to the conclusion of the following BV derivation:
I ↓

Iai ↓

B∗ `
⎛
⎜⎜
⎝

B

(Iai ↓
Y ∗ ` Y

)⊗B
s

Y ∗ ` (Y ⊗B)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

B∗ ` Y ∗

(Iai ↓
X∗ `X

) < (B∗ ` Y ∗)
q ↓

(X∗ < B∗)` (X < Y ∗)

⎞
⎟⎟
⎠
` (Y ⊗B)

(X∗ < B∗)` (Y ⊗B)` (X < Y ∗)

Proposition 3.4.4

For any causal proof-structure P , it is a causal proof-net iff pom (P) is.

Proof. Much like Proposition 3.3.5, this amounts to checking that connectivity
between the end-points is preserved through each of the selected rewrites when
locally quantifying over the up-down switchings, and that the replacements
don’t contain internal cycles. In each case, this is straightforward.

This draws an even closer link between the logic of causal proof-nets and pomset.
Not only do we have a conservative extension, but the theorems of pomset logic
completely determine the truth of all statements in causal logic. Whilst there is no

174

new behaviour that cannot be derived from pomset logic, there are still practical
benefits to the model from keeping first-order systems as part of the logic due to their
important physical semantics.

At the time of writing this thesis, there is no known category-theoretic character-
isation of pomset logic, but the existence of such extranatural transformations for all
provable formulae makes a convincing case that Caus [C] should be an instance of a
“pomset category” for any suitable definition.

3.4.2 Separating BV and pomset with Process Matrices

The process of expanding an axiom link to restrict it to a single direction performed by
the pom (−) translation is not new in the logic literature. For example, in [93, Figure
7], Nguyễn and Straßburger begin with (a formula equivalent to) the following, which
is not provable in MLL+Mix (and thus not provable in the conservative extensions,
BV and pomset):

/⊢ ((P ⊸ Q)⊗ (R⊸ S))∗⊸ ((Q⊸ R)⊗ (S ⊸ P)) (3.51)

They then apply a similar rewrite to direct the axioms and break any cycles,
generating a formula which is provable in pomset (and therefore causal logic) but still
not in BV. Like the pom (−) translation, this generates two variables in place of each
one so we use new names to distinguish them (for example, the two instances of P
above are replaced by A and H below).

⊢((A < B)⊗ (C <D))` ((E < F)⊗ (G <H))
` (A∗ <H∗)` (E∗ < B∗)` (G∗ <D∗)` (C∗ < F ∗) (3.52)

We could achieve the same result by just labelling the variables as first-order in
the following way:

⊢ ((P 1⊸ Q1)⊗ (R1⊸ S1))∗

⊸ ((Q1⊸ R1)⊗ (S1⊸ P 1))
(3.53)

Using the equality A1⊸ B1 = A1∗ < B1 (Equation 2.158), this is equivalent to:

⊢ ((P 1∗ < Q1)⊗ (R1∗ < S1))∗

⊸ ((Q1∗ < R1)⊗ (S1∗ < P 1))
(3.54)

One can verify that the formulae of Equations 3.54 and 3.52 are precisely related by
pom (−) translation, making this also a theorem of causal logic. Using the simpler

175

form in Equation 3.53, we recognise this as the statement: “any process matrix can
be represented as a non-signalling first-order process by swapping the outputs”.

P1

Q1

R1

S1

W

∼∑
i

αi

P1

Q1 S1

R1

li ri (3.55)

3.4.3 The First-Order Inductive Fragment

Another interesting fragment of causal formulae goes in the other direction - instead
of replacing all first-order atoms with regular ones, let us phrase everything in terms
of first-order atoms using the grammar F,G ∶∶= A1 ∣ A1∗ ∣ F ⊗G ∣ F `G. Since first-
order objects are some of the easiest to attribute physical meaning to, this sets up
our statements of causal consistency to potentially have simpler intuitions, similar to
what was achieved in the previous section. Inductively-defined frameworks that build
up a hierarchy on top of first-order systems are also well-understood in the quantum
causality literature, such as in the comb framework [22] or Bisio and Perinotti’s higher-
order operational theory for quantum processes [15].

We have already shown that causal consistency of a formula is independent of the
specific objects chosen by an interpretation function in the Causal Characterisation
Theorem. Therefore, it should be sufficient to consider interpretations that map
regular variables to channels over first-order objects Y1⊸X1 ≅ Y1∗ `X1 since the
channel types are neither first-order nor first-order dual. In terms of proof-structures,
we can replace any regular axiom link with a pair of FO-axiom links in opposite
directions which recovers connectivity in both directions.

One-way signalling processes are spanned by those which factorise by the first-
order system 2 by the Affine-Bit Sufficiency Theorem; that is, any state of A < B
can be represented as a state of (A` 2)⊗ (2∗ `B) contracted along 2. Making this
contraction explicit in our proof-structure introduces a new FO-axiom link to control
the direction of information flow betweenA andB. Working with right-sided sequents
and black box effects, we dualise this to replace A < B with (A⊗ 2∗)` (2⊗B).

Again, we formalise these ideas as a rewrite procedure.

Definition 3.4.5

Any proof-structure P induces a proof-structure fo (P) with no unit, regular
axiom, or seq links by applying the following rewrites exhaustively:

176

I
...

C(I)
↦

X1 X1∗

X1 `X1∗
...

C (X1 `X1∗)

(3.56)

A A∗

...
...

C (A;A∗)
↦

X1 Y 1∗

...
...

C (X1 ` Y 1∗;Y 1 ⊗X1∗)

Y 1 X1∗

X ` Y 1∗ Y 1 ⊗X1∗ (3.57)

F G

F < G
...

C (F < G)

↦
F ⊗X1∗ X1 ⊗G

(F ⊗X1∗)` (X1 ⊗G)
...

C ((F ⊗X1∗)` (X1 ⊗G))

X1∗ X1F G

(3.58)

where X1 and Y 1 are fresh first-order variable names.

Example 3.4.6

Applying fo (−) to the proof-net of Equation 3.25 expands the two regular axiom
links and the two seq links.

⊗ B1∗ ⊗ ` B1`

`
`

`
⊗

Y 1 X1∗ Z1 W 1∗ X1 Y 1∗ W 1 Z1∗

U1∗ U1 V 1∗ V 1

⊗ ⊗ ⊗ ⊗

(3.59)

(Y 1 ⊗X1∗)` (B1∗ ⊗U1∗)` (U1 ⊗Z1 ⊗W 1∗)`
[([(X1 ` Y 1∗)⊗ V 1∗]` [V 1 ⊗ (W 1 `Z1∗)])⊗B1]

(3.60)

Proposition 3.4.7

For any causal proof-structure P , it is a causal proof-net iff fo (P) is a causal
proof-net.

Proof. Similar to Proposition 3.4.4

177

Sufficiency shows that no more logical or structural behaviour exists in Caus [C]
than in an inductively-defined framework. Despite this, Caus [C] retains its flexibility
over such alternatives because some of the additional objects still have important
physical or computational interpretations - for example, in Caus [CP∗] we can build
qubit objects where the causal effects coincide with postselection within a chosen
axis/plane (and convex combinations of these) which cannot be formed inductively
but is useful for Measurement-Based Quantum Computing to describe the space of
measurements whose errors can be corrected (see Section 4.4.1).

Proof-nets over the first-order inductive fragment resembles a variant of polarised
MLL+Mix where only the atoms are polarised. Despite linear time verification of
MLL+Mix proof-nets [92], by faithfully encoding all causal formulae (and hence pom-
set) we find that the seemingly small change of directing the axiom links jumps the
complexity all the way to coNP-complete again.

3.5 Extensions
In the other direction from looking at taking fragments of the grammar of causal
formulae, we could look at expanding the grammar to include arbitrary graph types,
additives, unions, and intersections, and ask how causal logic should be extended to
remain sound and complete.

For unions and intersections, we can always lift these to the top level of a for-
mula (by Setwise Distributivity and Proposition 2.8.24) at which point they are just
existential and universal quantification over other formulae/proof-structures. Seman-
tically sensible formulae containing unions and intersections may involve duplicates of
atoms of the same name, so we would need to carefully adjust the notion of balanced
formulae to guarantee that each branch of this quantification yields balanced causal
formulae.

For graph types, we can either add them directly as primitives (prime graphs
would be sufficient as in GV [3]) or derive them as intersections of existing types.
To add graph types as primitive n-ary operators, we can generalise seq links to n
premises and switch up or down to the conclusion along with switching over every
linear ordering of the graph (in line with Proposition 2.8.23 and generalising the
switchings of tensor links).

178

F G H K

F

G

H

K (3.61)

F G H K

F

G

H

K

F G H K

F

G

H

K

F G H K

F

G

H

K

F G H K

F

G

H

K

F G H K

F

G

H

K

F G H K

F

G

H

K

F G H K

F

G

H

K

F G H K

F

G

H

K

F G H K

F

G

H

K

F G H K

F

G

H

K

For their dual types, we again switch up or down to the conclusion, but have a static
version of the graph connecting the premises (generalising the switchings of seq links).

F G H K

F ∗

G∗

H∗

K∗⎛
⎜
⎝

⎞
⎟
⎠

∗ (3.62)

F G H K

F ∗

G∗

H∗

K∗⎛
⎜
⎝

⎞
⎟
⎠

∗

F G H K

F ∗

G∗

H∗

K∗⎛
⎜
⎝

⎞
⎟
⎠

∗

The proof of the Switching Lemma generalises using Proposition 2.8.26.
Adding additives to causal logic can give some surprising features not present in

the other logics discussed in this thesis. To elaborate on this, we need to introduce
the time-symmetry property of a logic.

Definition 3.5.1: Time-symmetry

For any formula F , let its time-reversal rev (F) be the formula obtained by re-
placing each instance of < in F with > and vice versa. A logic is time-symmetric
if each formula F is provable iff rev (F) is provable.

179

Proposition 3.5.2

pomset, BV, and MAV are all time-symmetric.

Proof. For pomset logic, proof structures of F and rev (F) are identical up to
reversing the direction of seq links. Given an alternating elementary circuit
in one, we find a corresponding alternating elementary circuit in the other by
reversing the circuit.

For BV, the obvious inductive argument works by looking at each rule
instance, e.g. deriving F → F ′ and deriving a rule instance for the time-reversal
rev (F) → rev (F ′). To achieve this, we apply the time-reversal procedure to
the context - deep inference does not care about the form of a context, so this
preserves the ability to apply rules within it - and then look at the rules with
trivial contexts and reverse each of them. The only rule that actually includes
< is q ↓, where time-reversal transforms

(F `G) < (H `K)
q ↓
(F <H)` (G <K)

into
(F `G) > (H `K)
(K `H) < (G` F)

q ↓
(K < G)` (H < F)
(F >H)` (G >K)

Since each rule can be reversed, so can entire derivations.
MAV follows similarly to BV, where we additionally give a time-reversal for

m ↓ in the same way.

Given the close relationship between these logics and causal logic, it may be sur-
prising to find that extending causal logic with additives would not be time-symmetric,
but this is for good reason. When discussing distributivity laws in Remark 2.7.10,
seq preserves internal and external choice from the past in both directions, but ad-
ditives only distribute in one direction in the future. This occurs because of our
interpretation of < as one-way signalling which is fundamentally asymmetric - choices
in the past must be independent of future observations, but choices in the future may
depend on observations in the past.

180

Proposition 3.5.3

Any faithful extension of causal logic with additives will not be time-symmetric.

Proof. In Remark 2.7.10, we demonstrated that the following isomorphism
holds:

(A⊕B) <C ≅ (A <C)⊕ (B <C) (3.63)

In particular, this means that the formula

((A⊕B) < C)⊸ ((A < C)⊕ (B < C)) (3.64)

should be a valid theorem of any extension of causal logic with additives that
is faithful to causal consistency. The time-reversal of this is

((A⊕B) > C)⊸ ((A > C)⊕ (B > C)) (3.65)

but Remark 2.7.10 also established that the corresponding distributor fails to
be causal:

(A⊕B) >C /⇒ (A >C)⊕ (B >C) (3.66)

Remark 3.5.4

In Example 3.4.3, we showed that the equations characterising first-order ob-
jects can be encoded and proved in BV. Despite the simplicity of the proof
of Proposition 2.5.6, showing that coproducts preserve the first-order property,
we will demonstrate here that a statement for this property cannot be proved
in MAV.

We haven’t defined the pom (−) transformation in a way that works nicely
for additives, but we can argue that Proposition 2.5.6 can be boiled down to
causal consistency of:

((A∗ < B) × (C∗ <D))⊸ ((A∗ ×C∗) < (B ⊕D)) (3.67)

Suppose we have an interpretation where Φ (A) = Φ (B) and Φ (C) = Φ (D).
When these are first-order objects, we can interpret black boxes of A∗ < B and
C∗ < D as cups/identity wires. The identity on the coproduct Φ (A⊕C) =
Φ (B ⊕D) is formed by applying the relevant identity on each branch, which
we can do since we are provided the identities as a × pair. The formula then

181

says that this resulting identity (or tagged copairing in general) is one-way
signalling, i.e. Φ (A⊕C) is first-order.

Suppose, on the contrary, that this formula can be derived in MAV. Using
the Cut rule, this derivation could equivalently be presented as

(A∗ ⊕C∗) < (B ×D)
...

(A∗ < B)⊕ (C∗ <D)

which we use to derive the following distribution law:

I ↓
I

⎛
⎜⎜⎜⎜⎜⎜
⎝

It ↓
⎛
⎜
⎝

Iai ↓
A∗ ` (Al ↓

A⊕B)

⎞
⎟
⎠
× (Br ↓

A⊕B)

e ↓
(A∗ ×B∗)` (A⊕B)

⎞
⎟⎟⎟⎟⎟⎟
⎠

<
⎛
⎜⎜
⎝

It ↓
(Iai ↓

C∗ `C
) × (Iai ↓

C∗ `C
)

e ↓
C∗ ` (C ×C)

⎞
⎟⎟
⎠

s

((A∗ ×B∗) < C∗)`
⎛
⎜⎜⎜
⎝

(A⊕B) < (C ×C)
...

(A < C)⊕ (B < C)

⎞
⎟⎟⎟
⎠

((A⊕B) < C)⊸ ((A < C)⊕ (B < C))

By time-symmetry of MAV (Proposition 3.5.2), this would imply that we
could also prove the time-reversal, ((A⊕B) > C)⊸ ((A > C)⊕ (B > C)). By
Proposition 3.2.11, this would imply a corresponding statement of causal con-
sistency in Caus [C] which contradicts our counterexample in Proposition 3.5.3.

Unpacking this contradiction, we conclude that MAV cannot establish the
fact that ⊕ preserves the first-order property.

We leave the formulation of causal proof-nets with additives for future work. Meth-
ods already exist for incorporating additives into proof-nets for MALL [55, 70], and
we conjecture that incorporating these into the framework of causal proof-nets should
continue to faithfully capture causal consistency, but this deserves explicit verifica-
tion.

182

Chapter 4

Causal Structures in Quantum
Computing

So far, we have handled causal structures in a very abstract setting with most of
our motivating examples coming from quantum foundations and arranging systems
throughout spacetime, and inferring temporal relations by the capacity to signal in-
formation. Such definitions require us to have open systems, where each point of
interest can both be controlled and observed in order to send and detect information
flowing through the process. In many computational settings, however, the points of
interest can be simple events (such as an instruction being executed, or a message
sent between internal subsystems) with the only possible observation being the order
in which the events occurred. We can similarly build partial orders over the events to
describe whether two events always occur in a fixed order, or if it is possible for them
to occur in either order. This chapter looks at a few of these settings from the field
of quantum computing where the events have a degree of programmability - some
parameter that we can control to influence how the event is performed - and work
towards some elementary results linking the different partial orders together.

Within the quantum circuit model, each program consists of a collection of gates
which are applied to qubits to update their states in-place. Whenever the unitary
matrices of two gates commute, we can apply them to the qubits in either order to
achieve the same outcome.

e−i
γ
2 Y ⊗Y

RX (α)

Y

RZ (β)
= e−i

γ
2 Y ⊗Y

RX (α)

Y

RZ (β)
(4.1)

We can therefore build a partial order over the gates, describing whether there
exists a sequence of valid commutations that reorders each pair of gates. Equivalently,

183

whenever two gates do not commute, we record that one must occur before the other,
and we take the transitive closure of this relation as the partial order.

Y CZ

RX RZ e−i
γ
2 Y ⊗Y

(4.2)

Suppose that the gates are now parameterised, e.g. by the angle of rotation. We
can then describe the parameterised gate as some linear map taking both the initial
qubit state and a state encoding the parameter, and giving the final qubit state. This
opens up our representation of the gate to give a system on which we can both input
information through choosing the parameter, or observe this opening.

e−i
x
2Y ⊗Y

RX (x)

Y

RZ (x)

βα γProgrammer

Parameterised circuit (4.3)

We can do a similar trick withmeasurement patterns in Measurement-Based Quan-
tum Computing (MBQC) [99]. On their own, they look like special kinds of circuits
that prepare a fixed state and then perform measurements and conditional corrections
where the programmer may choose the angles of measurements to influence the linear
map that is implemented.

∣+⟩

∣+⟩

XY,β

XY,γ
X

X∣+⟩

XY,α

Y

Y

X

X

(4.4)

Similar to commuting gates, it may be possible to perform some measurements
simultaneously/in either order. This is described in the partial order of a flow [38, 19]
for the pattern, which also verifies the corrections to ensure the pattern implements a
single linear map deterministically (i.e. regardless of the measurement outcomes). If
we assume that corrections exist, we can instead treat the fixed resource state as our
open process, onto which the programmer specifies a choice of effect to apply locally
to each measured qubit.

This chapter builds up to two major new results. Firstly, we give a new algorithm
for the circuit extraction [7] problem: given a measurement pattern, efficiently iden-
tify a pure quantum circuit which implements the same linear map (see the Circuit

184

Extraction Theorem). It produces the circuit as a Clifford map C followed by a ro-
tation for each measurement, where the basis of rotation is given immediately by the
corrections over the output qubits; for example, the pattern of Equation 4.4 can be
extracted as:

ei
α
2X⊗X

e−i
β
2 Y ⊗Y

ei
γ
2X

C
(4.5)

In addition to this algorithm providing potential practical benefits for automated
conversion in quantum compilers and pedagogical benefits for understanding the
equivalence between the paradigms, it also guarantees that the partial order of com-
mutation between the rotations exactly matches the flow partial order.

The second result, the Flow Causality Theorem, uses this extraction algorithm to
show that the open process of the resource state/parameterised circuit obeys all non-
signalling conditions of the same partial order, since we can extract out and discard
all future measurement angles to give a unique marginal over the past systems.

As with the other chapters, we begin with some introductory material to introduce
MBQC, assuming the reader is already familiar with the more common paradigm of
quantum circuits. The extraction algorithm will make heavy use of a particular kind
of flow called focussed Pauli flow, so the first novel results focus around identifying
such a flow for any pattern in Section 4.2. Section 4.3 builds up the algorithm step-
by-step, finishing with a helpful visualisation of the extraction procedure using the
ZX-calculus [30, 114] which some readers may prefer over the linear algebra notation
used throughout the rest of the chapter. The chapter ends with a short discussion on
the connection to non-signalling conditions.

4.1 Background: MBQC
The one-way model follows the typical structure of Measurement-Based Quantum
Computing (MBQC) of building some resource state which is then consumed by
single-qubit measurements. The particular resources considered are constructed by
matching qubits (inputs and ancillas prepared in the ∣+⟩ = 1√

2
(∣0⟩ + ∣1⟩) state) with

vertices in a graph, and entangling them (with a CZ gate) according to the edges.
The measurements are generally non-deterministic so, in order to have a deterministic
effect overall, local gates can be applied to the remaining qubits to counteract the dif-
ference between the projectors for each outcome, giving the net effect of postselecting
the desired outcome. This background section will build up this description formally

185

and detail the main mechanisms used for determining how to correct for measurement
errors.

4.1.1 Measurement Patterns

Single qubit measurements are characterised by the bases they project into, which
themselves can be described by a vector in the Bloch sphere. For MBQC, we con-
ventionally restrict measurements into a plane of the Bloch sphere spanned by two
of the Pauli bases. Such planar measurement bases are described by the following
projectors for α ∈ [0,2π):

⟨+XY,α∣ = 1√
2
(⟨0∣ + e−iα ⟨1∣) ⟨−XY,α∣ = 1√

2
(⟨0∣ − e−iα ⟨1∣)

⟨+XZ,α∣ = cos (α2) ⟨0∣ + sin (α2) ⟨1∣ ⟨−XZ,α∣ = sin (α2) ⟨0∣ − cos (α2) ⟨1∣ (4.6)
⟨+Y Z,α∣ = cos (α2) ⟨0∣ − i sin (

α
2
) ⟨1∣ ⟨−Y Z,α∣ = sin (α2) ⟨0∣ + i cos (

α
2
) ⟨1∣

with the following special cases for Pauli measurements for α = aπ (a ∈ {0,1}):

⟨+X,aπ ∣ = 1√
2
(⟨0∣ + (−1)a ⟨1∣) ⟨−X,aπ ∣ = 1√

2
(⟨0∣ − (−1)a ⟨1∣)

⟨+Y,aπ ∣ = 1√
2
(⟨0∣ − i(−1)a ⟨1∣) ⟨−Y,aπ ∣ = 1√

2
(⟨0∣ + i(−1)a ⟨1∣) (4.7)

⟨+Z,aπ ∣ = (1 − a) ⟨0∣ + a ⟨1∣ ⟨−Z,aπ ∣ = a ⟨0∣ + (1 − a) ⟨1∣

For any measurement basis, the negative outcome at angle α is equivalent to the
positive outcome at angle α+π. We usually treat the positive measurement outcome
as the desired branch, i.e. the projector we want to apply to achieve our desired end
state.

For the purposes of this thesis, we will consider programming in MBQC to be the
act of specifying the angles of measurement and providing an input state to some
otherwise fixed protocol called a measurement pattern, implementing a parameterised
linear map. This pattern will perform a pre-determined sequence of entanglement,
measurement, and correction operations on the qubits along with some ancillas and
yield some output state.

Definition 4.1.1: Measurement pattern [39, Definition 1][19]

A measurement pattern consists of a collection V of qubits with distinguished
subsets I,O ⊆ V of inputs and outputs, and a sequence of commands from:

• Preparations - initialising a qubit u ∉ I to ∣+⟩;

• Entangling operators - applying a CZ gate between distinct qubits u, v ∈

186

V ;

• Destructive measurements - applying ⟨+λ,α∣ to qubit u ∉ O on outcome 0

or ⟨−λ,α∣ on outcome 1;

• Corrections - conditionally applying an X gate or a Z gate to qubit u ∈ V
if the outcome of the measurement for qubit v was 1.

A measurement pattern is runnable if additionally:

• All non-input qubits are prepared exactly once;

• A non-input qubit is not acted on by any other command before its prepa-
ration;

• All non-output qubits are measured exactly once;

• A non-output qubit is not acted on by any other command after its mea-
surement;

• No correction depends on an outcome not yet measured.

We denote non-input (prepared) qubits as I ∶= V ∖I and non-output (measured)
qubits as O ∶= V ∖O.

A measurement pattern is uniformly, strongly, and stepwise deterministic if,
for any choice of angles α ∶ O → [0,2π) (uniform), performing each individual
measurement and its associated corrections (stepwise) applies the same linear
map on each measurement outcome (strong) up to global phase.

It is most useful to visualise a measurement pattern (minus its corrections) as a
labelled open graph Γ, whose vertices represent qubits labelled by their measurement
planes and the edges indicate the entanglement. Herein, “vertex” and “qubit” will be
treated as interchangeable.

Definition 4.1.2: Labelled open graph [19]

A labelled open graph is a tuple Γ = (G, I,O,λ) where G = (V,E) is an undi-
rected graph, I,O ⊆ V are (possibly overlapping) subsets of vertices represent-
ing inputs and outputs respectively, and λ ∶ O → {XY,XZ,Y Z,X,Y,Z} is a
labelling function assigning a measurement plane or Pauli to each non-output

187

vertex.
When drawing a labelled open graph, we will distinguish between measured

and output vertices as filled and unfilled points respectively, and inputs are
specified by boxes around the vertices.

u ∼G v denotes vertices u, v ∈ V being adjacent in G. Neighbour sets are
given by NG(u) ∶= {w ∈ V ∣ w ∼G u} and odd neighbourhoods by OddG(A) ∶=
{w ∈ V ∣ ∣NG(w) ∩A∣ is odd}. We may drop the subscript when the graph G

is obvious from the context.

Example 4.1.3

The circuit below describes the quantum teleportation protocol [14]. We can
view this as a simple example of a measurement pattern with fixed measurement
angles, as described by the labelled open graph on the left.

i,X

j,X

o

∣+⟩

∣+⟩

X,0

X,0

ZX (4.8)

Since runnable patterns can be standardised to perform all initialisations first,
then all entangling gates, and finally alternate measurements and corrections, the
linear map implemented by the pattern also has a standard representation given by
the intended branch (where all measurement outcomes are 0 and hence no corrections
are required).

Definition 4.1.4: Linear map of a pattern [19, Theorem 1]

The linear map associated with a measurement pattern Γ applied with angles
α is given by

⎛
⎝∏
u∈O
⟨+λ(u),α(u)∣u

⎞
⎠
(∏
u∼v

CZu,v)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠

(4.9)

Subscripts indicate a map is applied to the given qubit(s) alongside the identity
on all others.

For any input state ∣ψ⟩, the state

(∏
u∼v

CZu,v)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠
∣ψ⟩I (4.10)

188

is referred to as the resource state 13.

4.1.2 Stabilizers and Corrections

So far we have brushed over how the corrections in a pattern can allow us to recover
the same linear map whenever we get a measurement error. This concept can already
be seen in the quantum teleportation protocol. If we review this example through
the lens of stabilizer theory, we can see how the same method can be generalised to
correct measurements on other resource states.

Let’s look at the concrete example of the measurement pattern for the quantum
teleportation protocol [14] from Example 4.1.3.

∣+⟩

∣+⟩

X,0

X,0

ZX (4.11)

Both the preparations and entangling gates are Clifford. Using the rules for sta-
bilizers

∣+⟩u =Xu ∣+⟩u (4.12)
CZuvXu =XuZvCZuv (4.13)

we can obtain a stabilizer per initialised vertex w ∈ I:

(∏
u∼v

CZu,v)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠
= (∏

u∼v
CZu,v)Xw

⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠

=
⎛
⎝ ∏v∈NG(w)

Zv

⎞
⎠
Xw (∏

u∼v
CZu,v)

⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠

(4.14)

In the teleportation case, this gives stabilizers ZiXjZo and IiZjXo. As stabilizers,
we can freely introduce these to mathematical expressions without performing any
corresponding physical operation. In particular, the Zj in IiZjXo will flip the projec-
tor of the X basis measurement, allowing us to deduce that the two branches give the
same linear map. In this derivation we use a binary variable a ∈ {0,1} to specify the

13They are commonly also referred to in the literature as graph states, but we use the alternative
name to avoid confusion with Definition 2.8.2.

189

outcome of the measurement, and therefore P a evaluates to either P 0 = I or P 1 = P
representing the conditional application of a Pauli P .

∣+⟩

∣+⟩ Xa

⟨+X,aπ ∣ = ∣+⟩

∣+⟩ Xa

⟨+X,aπ ∣Za

Xa

= ∣+⟩

∣+⟩

⟨+X,0∣ (4.15)

To correct the measurement on qubit i, we can similarly use the stabilizer ZiXjZo

which will flip the measurement outcome. If we reordered the measurements to handle
this qubit first, we could apply Xj as a correction before the measurement on j.
However, similar to the resource states admitting stabilizers, Paulis can be absorbed
by projectors into the same basis (up to a global phase).

⟨+X,aπ ∣u = (−1)
a ⟨+X,aπ ∣uXu

⟨+Y,aπ ∣u = (−1)
a ⟨+Y,aπ ∣u Yu

⟨+Z,aπ ∣u = (−1)
a ⟨+Z,aπ ∣uZu

(4.16)

This means that even if qubit j has already been measured, we can still correct the
measurement on i. Some people like to think of this as an “implicit correction in the
past”.

∣+⟩

∣+⟩ Zb

⟨+X,aπ ∣

⟨+X,bπ ∣

= ∣+⟩

∣+⟩ Zb

⟨+X,aπ ∣

⟨+X,bπ ∣

Zb

Xb

Zb

= (−1)a⋅b ∣+⟩

∣+⟩

⟨+X,aπ ∣

⟨+X,0∣

(4.17)

We can only correct in the past in this way on qubits that were measured in a
Pauli basis. Applying any Pauli before a planar projector will generally update the
angle either by π (the same as reintroducing a measurement error), negating it, or
both.

⟨+XY,α∣uZu = ⟨+XY,α+π ∣

⟨+XY,α∣uXu = ⟨+XY,−α∣

⟨+XY,α∣u Yu ≈ ⟨+XY,−α+π ∣

(4.18)

Suppose instead we changed the pattern to use different measurement labels and
wish to infer what corrections to apply.

i,XY

j, Y

o

∣+⟩

∣+⟩

⟨+XY,α(i)∣

⟨+Y,α(j)∣

(4.19)

190

The same stabilizers would work to correct the measurement errors, but the Xj in
ZiXjZu can no longer be absorbed and must be performed explicitly. Having to
perform the measurements in order increases the time for computations, so it would
be better if we could avoid it. Thankfully, the stabilizers of the resource state form a
group so we can combine them to give ZiYjYu where Zi still corrects the measurement
on i and Yj can be absorbed by the Y basis measurement on j.

4.1.3 Flow

A flow for a labelled graph is a data structure that captures this use of stabilizers
to propagate errors from unwanted measurement outcomes forward to the rest of the
circuit in order to correct them, aiming for stepwise determinism. Flow is typically
expressed as a purely graph-theoretic property, abstracting away any complexity from
the underlying quantum processes. The different types of flow conditions start with
a very basic definition that will only work for special cases of labelled graphs, and
gradually incorporate more of the ideas from the previous examples to correct on
more general graphs and account for more possible correction schemes.

Causal flow is the simplest case where we suppose all vertices are measured in the
XY basis and each error can be corrected by considering a single stabilizer of the
resource state.

Definition 4.1.5: Causal flow [38, Definition 2]

Given a labelled open graph Γ = (G, I,O,λ) such that ∀v ∈ O. λ (v) = XY , a
causal flow for Γ is a tuple (f,≺) of a map f ∶ O → I and a strict partial order
≺ over V such that for all v ∈ O:

• v ∼ f (v)

• v ≺ f (v)

• ∀u ∈ NG (f (v)) . u = v ∨ v ≺ u

The idea here is that Zv from the stabilizer (∏w∈NG(f(v))Zw)Xf(v) will eliminate
the effect of the measurement error on qubit v, meaning we can correct the error
by applying (∏w∈NG(f(v))∖{v}Zw)Xf(v) and implicitly invoking the stabilizer. The
partial order ≺ indicates a required order of the measurements, ensuring that none of
the vertices required for correcting v have been measured yet.

191

Example 4.1.6: [38, Example 2]

The labelled open graph below admits the causal flow described in the table.

a

b

c

d

e

f

g

v λ (v) f (v) NG (f (v)) {u ∣ v ≺ u}
a XY c a, e, f c, e, f
b XY d b, f, g d, f, g
c XY e c e
d XY g d g

The first row states that the correction of the measurement at a uses the sta-
bilizer XcZaZeZf , where the Za flips the projector at a (“correcting” the mea-
surement outcome) and the remaining terms must be cancelled out by explicitly
applying the inverse operations on those qubits. This requires c, e, and f to be
unmeasured at this point, and the final column states this with a ≺ c, e, f .

Generalised flow takes a similar approach, but allows us to take combinations of
the basic stabilizers. If the stabilizer of a candidate f (v) would require a Z correction
on some u ∈ NG (f (v)) that has already been measured, there may exist some other
stabilizer we can apply that cancels out the Z for us. Now, instead of the stabilizer
being determined by a single vertex f (v) ∈ I, we have a set g (v) ⊆ I.

∏
u∈g(v)

⎛
⎝ ∏w∈NG(u)

Zw

⎞
⎠
Xu ≈

⎛
⎝ ∏u∈g(v)

∏
w∈NG(u)

Zw

⎞
⎠
⎛
⎝ ∏u∈g(v)

Xu

⎞
⎠

=
⎛
⎝ ∏
u∈Odd(g(v))

Zu

⎞
⎠
⎛
⎝ ∏u∈g(v)

Xu

⎞
⎠

≈
⎛
⎝ ∏
u∈Odd(g(v))∖g(v)

Zu

⎞
⎠
⎛
⎝ ∏
u∈g(v)∩Odd(g(v))

Yu
⎞
⎠
⎛
⎝ ∏
u∈g(v)∖Odd(g(v))

Xu

⎞
⎠

(4.20)

We can summarise this stabilizer as

∏
u

P
g(v)→u
u (4.21)

where P g(v)→u is the Pauli induced on u when correcting v:

P g(v)→u ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

I u ∉ g (v) ∪Odd (g (v))
X u ∈ g (v) ∖Odd (g (v))
Y u ∈ g (v) ∩Odd (g (v))
Z u ∈ Odd (g (v)) ∖ g (v)

(4.22)

192

By relaxing these restrictions on the stabilizers used, we can also generate Y or
X on the measured vertex, allowing the correction of measurements in the XZ and
Y Z planes respectively.

Definition 4.1.7: Generalised flow [19, Definition 3]

Given a labelled open graph Γ = (G, I,O,λ) with planar labels (∀v ∈ O. λ (v) ∈
{XY,XZ,Y Z}), a generalised flow (or gflow) for Γ is a tuple (g,≺) of a map
g ∶ O → P [I] and a strict partial order ≺ over V such that for all v ∈ O:

• ∀u ∈ g (v) . v ≠ uÔ⇒ v ≺ u

• ∀u ∈ Odd (g (v)) . v ≠ uÔ⇒ v ≺ u

• λ (v) =XY Ô⇒ v ∈ Odd (g (v)) ∖ g (v)

• λ (v) =XZ Ô⇒ v ∈ g (v) ∩Odd (g (v))

• λ (v) = Y Z Ô⇒ v ∈ g (v) ∖Odd (g (v))

Example 4.1.8: [19, Example 2]

Even though all measured vertices are labelledXY , the following labelled graph
does not admit a causal flow but it does have gflow.

a

b

c

d

e

f

v λ (v) g (v) Odd (g (v)) {u ∣ v ≺ u}
a XY d a, b b, c, d, e, f
b XY e b, c c, d, e, f
c XY d, f c d, f

When all measurement labels are planar, every uniformly, strongly, and stepwise
deterministic measurement pattern is induced by a gflow [19, 89].

There exist polynomial-time algorithms for identifying whether a labelled open
graph admits causal flow or gflow [41, 88, 7], and for extracting an equivalent unitary
circuit for the measurement pattern given either type of flow [42, 7].

The final form we will look at in detail is Pauli flow, which can handle both
planar measurements λ (v) ∈ {XY,XZ,Y Z} and special cases for Pauli measurements
λ (v) ∈ {X,Y,Z}. Similar to gflow, it gives a stabilizer that applies a Pauli X to
vertices in p (v) and a Pauli Z to vertices in Odd (p (v)). However, because Equation
4.16 means Pauli corrections have no observable effect if the qubit is measured in
the same basis, it doesn’t matter if, for example, a vertex u ∈ p (v) ∖ Odd (p (v))

193

with λ (u) = X has already been measured before v. We saw this idea in play in the
example of quantum teleportation to eliminate any temporal dependency between
the two measurements and allow them to be performed simultaneously.

Additionally, whilst there is only one Pauli that will reliably correct planar mea-
surements uniformly, Pauli flow recognises that each Pauli measurement lives in two
such planes. For example, a measurement with λ (v) = X can be flipped by either a
Z or a Y - we don’t care whether or not v ∈ p (v) so long as v ∈ Odd (p (v)).

Definition 4.1.9: Pauli flow [19, Definition 5]

Given a labelled open graph Γ = (G, I,O,λ), a Pauli flow for Γ is a tuple (p,≺)
of a map p ∶ O → P [I] and a strict partial order ≺ over V such that for all
v ∈ O:

[≺ .X] ∀u ∈ p (v) . v ≠ u ∧ λ (u) ∉ {X,Y }Ô⇒ v ≺ u

[≺ .Z] ∀u ∈ Odd (p (v)) . v ≠ u ∧ λ (u) ∉ {Y,Z}Ô⇒ v ≺ u

[≺ .Y] ∀u ⪯ v. v ≠ u ∧ λ (u) = Y Ô⇒ u ∉ p (u)∆Odd (p (u))

[λ.XY] λ (v) =XY Ô⇒ v ∈ Odd (p (v)) ∖ p (v)

[λ.XZ] λ (v) =XZ Ô⇒ v ∈ p (v) ∩Odd (p (v))

[λ.Y Z] λ (v) = Y Z Ô⇒ v ∈ p (v) ∖Odd (p (v))

[λ.X] λ (v) =X Ô⇒ v ∈ Odd (p (v))

[λ.Z] λ (v) = Z Ô⇒ v ∈ p (v)

[λ.Y] λ (v) = Y Ô⇒ v ∈ p (v)∆Odd (p (v))

where u ⪯ v ∶= ¬ (v ≺ u) and A∆B ∶= (A ∖B) ∪ (B ∖A) denotes the symmetric
difference of sets.

Example 4.1.10

i a

b

c

o

v λ (v) p (v) Odd (p (v)) {u ∣ v ≺ u}
i XY a i, b, o b, o
a X o a o
b XY c b −
c X b, o c b, o

194

The conditions [≺ .X], [≺ .Z], [≺ .Y] permit corrections in the past for Pauli
vertices so long as they match the Pauli of the stabilizer. This can cause a phenomenon
where a qubit is entirely correctable in the past, i.e. there is no observable difference
in the linear maps induced by either measurement outcome. In Example 4.1.10 we
see this with qubit b. Such qubits can even be measured after yielding the output or
just discarded entirely.

Similar to gflow, any labelled graph with planar and Pauli measurement labels
has a uniformly, strongly, and stepwise deterministic measurement pattern iff it has a
Pauli flow. However, it is not the case that every such set of corrections is induced by
Pauli flow, just that some set of corrections matches a Pauli flow. There exists an even
more general description, called extended Pauli flow [89], which actually generates all
such correction schemes, though for the scope of this thesis regular Pauli flow is
sufficient to at least give us some means of correcting the widest possible range of
labelled graphs.

4.2 Identifying Pauli Flow
4.2.1 An Algorithm for Pauli Flow

Here we will build up to an algorithm for identifying a Pauli flow from a graph,
which follows the key principle of existing algorithms for causal flow and gflow [88, 7]
of searching for a maximally delayed flow, where each qubit is measured as late as
possible.

Definition 4.2.1: Measurement depth

Given a labelled open graph (G, I,O,λ) with a Pauli flow (p,≺), we define the
vertices at measurement depth k under ≺ by

V ≺k ∶=
⎧⎪⎪⎨⎪⎪⎩

O ∪ {u ∈ O ∣ /∃ v. u ≺ v} k = 0
{u ∈ O ∖ V ≺∪k−1 ∣ ∀v ≻ u. v ∈ V ≺∪k−1} k > 0

(4.23)

where the cumulative vertices up to depth k is

V ≺∪k ∶=⋃
i≤k
V ≺i (4.24)

(p,≺) is more delayed than (p′,≺′) if

∀k. ∣V ≺∪k∣ ≥ ∣V ≺
′

∪k ∣ (4.25)

195

and there exists a k for which this inequality is strict. (p,≺) is maximally
delayed if there does not exist a Pauli flow on the same labelled open graph
that is more delayed.

A finite graph can only admit a finite number of Pauli flows (there are only finitely
many possible choices of maps p and orders ≺) and the delayed relation is a strict
partial order, so if at least one Pauli flow exists there must be a maximally delayed
one. This ensures it is safe for our identification algorithm to specifically search for a
maximally delayed Pauli flow.

Qubits at measurement depth 0 are either output qubits or measurements that
require no correction (all other qubits involved in the correcting stabilizer are mea-
sured in the appropriate Pauli basis for it to have no effect). The remaining qubits are
arranged into layers of qubits that can be measured simultaneously because all the
active corrections involved happen in a later layer (at a lower depth from the output).
Since measurements at the same measurement depth are independent of each other,
we can guide our search for a maximally delayed Pauli flow to just find the largest
set of qubits at a given measurement depth before moving on to the next one. To do
this, it is easiest to break down the cases by measurement label.

Lemma 4.2.2: Generalisation of [88, Lemma 1/3][7, Lemma C.2/C.4]

For any Pauli flow (p,≺) we subdivide the vertices at measurement depth by
measurement label L ∈ {XY,XZ,Y Z,X,Y,Z}.

ΛL ∶= {u ∈ O ∣ λ (u) = L} (4.26)
V ≺,Lk ∶= V ≺k ∩ΛL (4.27)

This gives V ≺0 = O ∪⋃L V
≺,L
0 and then V ≺k = ⋃L V

≺,L
k for all k > 0.

If (p,≺) is a maximally delayed Pauli flow, then

V ≺,XY
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u ∈ ΛXY ∖ V ≺∪k−1

RRRRRRRRRRRRRR

∃K ⊆ K.
Odd (K) ∩ P = {u} ,
(K∆Odd (K)) ∩Y = ∅

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(4.28)

V ≺,XZ
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u ∈ ΛXZ ∖ V ≺∪k−1

RRRRRRRRRRRRRR

∃K ⊆ K.
Odd (K ∪ {u}) ∩ P = {u} ,
((K ∪ {u})∆Odd (K ∪ {u})) ∩Y = ∅

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(4.29)

V ≺,Y Z
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u ∈ ΛY Z ∖ V ≺∪k−1

RRRRRRRRRRRRRR

∃K ⊆ K.
Odd (K ∪ {u}) ∩ P = ∅,
((K ∪ {u})∆Odd (K ∪ {u})) ∩Y = ∅

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(4.30)

196

V ≺,Xk =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
u ∈ ΛX ∖ V ≺∪k−1

RRRRRRRRRRRRRR

∃K ⊆ K.
Odd (K) ∩ P = {u} ,
(K∆Odd (K)) ∩Y = ∅

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(4.31)

V ≺,Yk =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
u ∈ ΛY ∖ V ≺∪k−1

RRRRRRRRRRRRRR

∃K ⊆ K.
Odd (K) ∩ P = ∅,
(K∆Odd (K)) ∩Y = {u}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(4.32)

V ≺,Zk =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
u ∈ ΛZ ∖ V ≺∪k−1

RRRRRRRRRRRRRR

∃K ⊆ K.
Odd (K ∪ {u}) ∩ P = ∅,
((K ∪ {u})∆Odd (K ∪ {u})) ∩Y = ∅

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(4.33)

where

K ∶= I ∩ (V ≺∪k−1 ∪ΛX ∪ΛY) (4.34)
P ∶= O ∖ (V ≺∪k−1 ∪ΛY ∪ΛZ) (4.35)
Y ∶= ΛY ∖ V ≺∪k−1 (4.36)

Proof. The argument for each measurement label follows fairly similarly. Any
important differences will be highlighted.
⊆: By definition, any u ∈ V ≺,Lk is in ΛL ∖ V ≺∪k−1. Let us take the set K (or

K ∪ {u} for L ∈ {XZ,Y Z,Z}) to be p (u). p (u) ⊆ I because p is a function
O → P [I], and p (u) ⊆ V ≺∪k−1 ∪ ΛX ∪ ΛY ∪ {u} is equivalent to [≺ .X]. In
the L = XY case, [λ.XY] says that u ∉ p (u), and for L ∈ {X,Y } we have
u ∈ ΛX ∪ ΛY and the Pauli flow conditions neither require u to be present nor
absent from p (u).

For the next criterion, [≺ .Z] is equivalently stated as Odd (p (u)) ⊆ V ≺∪k−1 ∪
ΛY ∪ ΛZ ∪ {u}. If L = Y Z, [λ.Y Z] also says that u ∉ Odd (p (u)), and simi-
larly the conditions for each of L ∈ {XY,XZ,X} require u ∈ Odd (p (u)). The
remaining conditions for L ∈ {Y,Z} don’t impose any constraints on u’s mem-
bership in Odd (p (u)), which is handled by the exclusion of ΛY ∪ ΛZ from
P.

The final criterion on p (u)∆Odd (p (u)) precisely matches [≺ .Y]. In the
case of L = Y , it also factors in [λ.Y].

In summary, we can interpret K as the set of vertices the Pauli flow condi-
tions constrain p (u)∖{u} to live in (and hence could viably receiveX’s from the
correction stabilizer), P as the set of past/present vertices that need to be unaf-
fected by the Z’s on the correction stabilizer, and Y as the set of past/present
vertices measured in the Y basis that require special care for [≺ .Y] and [λ.Y].

197

⊇: We will suppose there is some u ∉ V ≺,Lk that satisfies the corresponding
conditions in the equations above and aim for a contradiction by generating
a new Pauli flow that is more delayed than (p,≺). Given the set K ⊆ I ∩
(V ≺∪k−1 ∪ΛX ∪ΛY), we define a new Pauli flow (p′,≺′):

p′(v) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

K v = u ∧L ∈ {XY,X,Y }
K ∪ {u} v = u ∧L ∈ {XZ,Y Z,Z}
p(v) v ≠ u

(4.37)

≺′ ∶= ≺ ∖{(u, v) ∣ u ≺ v ∧ v ∉ V ≺∪k−1} (4.38)

The Pauli flow conditions on u are met by the same reasoning as in the ⊆ case,
and they are trivially preserved for all other v ≠ u.

By construction, the depth of every vertex under ≺′ is no larger than its
depth under ≺, plus we now have u ∈ V ≺

′,L
k , so this is a more delayed Pauli

flow.

These characterisations of the sets V ≺,Lk give us an iterative method of identifying
them since we can simply search for possible witness sets K for each vertex. The
way in which these characterisations are written makes it easy to convert them into
a linear equation system to solve for each set K. We build an equation MX = S in
matrices over F2.

• X is a vector of length ∣K∣ where, should a solution exist, the 1 entries will
correspond to the vertices in a valid witness for K.

• M is a block matrix: the first block describes Γ the adjacency matrix of the
graph, so multiplication with X calculates Odd (K), and the second block is
the same adjacency matrix plus the identity to calculate K∆Odd (K).

• S is then a vector of length ∣P∣ + ∣Y∣ into which we encode the constraints
on Odd (K) and K∆Odd (K). For L ∈ {XZ,Y Z,Z} where the set p (u) would
actually correspond toK∪{u}, we can imagine pushing the vector for u through
M to yield the neighbourhood NΓ (u) and add incorporate this into S to encode
the same condition.

M ∶= [Γ ∩K × P
(Γ + Id) ∩K ×Y] (4.39)

198

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

{u}
0

⎤⎥⎥⎥⎥⎦
L ∈ {XY,X}

⎡⎢⎢⎢⎢⎣

(NΓ (u) ∩ P) ∪ {u}
NΓ (u) ∩Y

⎤⎥⎥⎥⎥⎦
L =XZ

⎡⎢⎢⎢⎢⎣

NΓ (u) ∩ P
NΓ (u) ∩Y

⎤⎥⎥⎥⎥⎦
L ∈ {Y Z,Z}

⎡⎢⎢⎢⎢⎣

0

{u}

⎤⎥⎥⎥⎥⎦
L = Y

(4.40)

Such a linear equation system can be solved by Gaussian elimination and back
substitution. To identify all vertices at a given measurement depth V ≺k , we can iterate
through all the unsolved vertices and run this procedure. Fortunately, for any fixed
measurement depth the matrix M is constant, meaning we can horizontally stack the
S vectors for each unsolved vertex and run just one instance of Gaussian elimination
to identify V ≺k .

Algorithm 1 details a function taking a description of a labelled open graph with
adjacency matrix Γ and returns true with a maximally delayed Pauli flow if one exists
(with the partial order encoded into a map d ∶ O → N describing the measurement
depth of vertices), and false otherwise.

Theorem 4.2.3: Pauli Flow Identification Algorithm

Algorithm 1 correctly identifies whether a given labelled open graph has a
Pauli flow, and outputs such a Pauli flow if it exists. Moreover, this output is
maximally delayed, and the algorithm completes deterministically in time that
grows polynomially with the number of vertices in the graph.

Proof. At each measurement depth, it solves the above linear equation system
to identify qubits that can be corrected by only applying gates to those other
qubits that have already been solved. Solving this step with Gaussian elimina-
tion and back substitution takes O (∣V ∣3) time. If no Pauli flow exists, there is
no set of solutions to the above linear equation system for all vertices, so the
algorithm must reach a point where no more solutions are found and returns
false. If one does exist, this will always make some progress, so will terminate
in at most V iterations, giving a total runtime of O (∣V ∣4). The resulting Pauli
flow is maximally delayed as we are constructing the largest set possible at each
measurement depth by Lemma 4.2.2.

199

PauliFlow (V,Γ, I,O,λ) = begin
ΛX ∶= ∅; ΛY ∶= ∅; ΛZ ∶= ∅;
forall u ∈ V ∖O do

if λ (u) ∈ {X,Y,Z} then Λλ(u).insert (u);
end
solved ∶= O;
K ∶= ΛX ∪ΛY ;
P ∶= V ∖ (O ∪ΛY ∪ΛZ);
Y ∶= ΛY ;
depth ∶= 0;
p ∶= {};
d ∶= {};
repeat

M ∶= [Equation 4.39];
S ∶= Matrix (∣P∣ + ∣Y∣ ,0);
forall u ∈ V ∖ solved do

Su ∶= [Equation 4.40];
S ∶= Matrix.hstack (S,Su);

end
sols ∶=M.solve (S);
if ∣sols∣ = 0 then return (false,∅,∅);
forall (u,K) ∈ sols do

if λ (u) ∈ {XY,X,Y } then p [u] ∶=K;
else p [u] ∶=K ∪ {u};
d [u] ∶= depth;
solved.insert (u);
if u ∉ I then K.insert (u);
P.erase (u);
Y.erase (u);

end
if depth = 0 then K ∶= K ∪ (O ∖ I);
depth ∶= depth + 1;

until solved = V ;
return (true, p, d);

end
Algorithm 1: An algorithm for identifying whether a labelled open graph has a
Pauli flow.

200

This algorithm may also be used to identify gflow, since the conditions for gflow
and Pauli flow coincide when all measurement labels are planar.

This algorithm fits nicely into the pipeline of taking a parameterised linear map
and searching for an MBQC implementation of it: start by finding a labelled open
graph which implements the linear map on its intended branch (e.g. by encoding the
map into the ZX-calculus and reduce it to a graphlike form [44]), then search for a
Pauli flow on that graph. The guarantee of a maximally delayed Pauli flow is rather
practical, as it guarantees the fewest number of rounds of simultaneous measurements
possible - the fewer rounds of simultaneous measurements and corrections needed,
the faster the pattern runs on a quantum computer and therefore has potential to
accumulate less noise. However, such a flow may still not be unique (e.g. the back
substitution step may find several solutions to the linear equation system) and it may
be beneficial to search for ones with additional useful properties.

4.2.2 Focussed Sets

If we have a qubit u measured in the X basis, then any X applied to u to correct
another measurement can be absorbed rather than being performed. If we can guar-
antee that u receives only X’s from correcting other measurements (∀v ≠ u. P p(v)→u ∈
{I,X}), then we can always include u in the first round of measurements. A focussed
flow asks that this is the case for any measurement label. We choose to associate
planar measurements with the Pauli they coincide with at measurement angle 0, e.g.
⟨+XY,0∣ = ⟨+X,0∣. At a minimum, this guarantees that the corrections applied to each
qubit are always a fixed Pauli.

Focussed gflow has seen interest in prior literature to characterise flow as a right-
inverse of the adjacency matrix [87] when all labels are XY .

Definition 4.2.4: Focussed flow [87] and sets

Given a labelled open graph Γ, a set p̂ ⊆ I is focussed over S ⊆ O if:

[FX] ∀u ∈ S ∩ p̂. λ (u) ∈ {XY,X,Y }

[FZ] ∀u ∈ S ∩Odd (p̂) . λ (u) ∈ {XZ,Y Z,Y,Z}

[FY] ∀u ∈ S. λ (u) = Y Ô⇒ (u ∈ p̂⇐⇒ u ∈ Odd (p̂))

p̂ is a focussed set for Γ if it is focussed over O. A Pauli flow (p,≺) is focussed
if p (u) is focussed over O ∖ {u} for all u ∈ O.

201

Proposition 4.2.5

If a labelled open graph has a focussed Pauli flow (p,≺), then there exists a
focussed Pauli flow (p,≺′) which satisfies ∀v ∈ O. λ (v) ∈ {X,Y,Z} Ô⇒ ∀u ∈
V. v ⪯′ u.

Proof. Let ≺′ ∶= ≺ ∖{(u, v) ∈ V ×O ∣ λ (v) ∈ {X,Y,Z}}. By construction, this
satisfies ∀v ∈ O. λ (v) ∈ {X,Y,Z}Ô⇒ ∀u ∈ V. v ⪯′ u. To show that (p,≺′) is a
valid Pauli flow, we just need to show that all [≺ .P] conditions are unaffected
which all follow from the focussed conditions.

The next few results work towards a way to transform any Pauli flow into a
focussed Pauli flow.

Lemma 4.2.6

Given a Pauli flow (p,≺) for a labelled open graph (G, I,O,λ) with two vertices
u, v ∈ O such that u ≺ v, then (p′,≺) is a Pauli flow where:

p′ (w) ∶=
⎧⎪⎪⎨⎪⎪⎩

p (u)∆ p (v) w = u
p (w) w ≠ u

(4.41)

Moreover, if (p,≺) is maximally delayed, then so is (p′,≺).

Proof. The Pauli flow conditions hold trivially for any vertex in O ∖ {u} since
the correction sets have not changed, so it is sufficient to show they are pre-
served for u. We should first observe that Odd (p′ (u)) = Odd (p (u)∆ p (v)) =
Odd (p (u))∆Odd (p (v)).
[≺ .X]: For any w ∈ p′ (u) with w ≠ u and λ (w) ∉ {X,Y }, we must have

either w ∈ p (u), w = v, or w ∈ p (v)∧w ≠ v. In any of these cases, we have u ≺ w
from [≺ .X] for (p,≺) and u ≺ v.
[≺ .Z]: This follows similarly from u ≺ v and [≺ .Z] on Odd (p (u)) and

Odd (p (v)).
[≺ .Y]: For any w ⪯ u with λ (w) = Y , we also must have w ⪯ v since

u ≺ v. Hence by [≺ .Y], w ∈ p (u) ⇐⇒ w ∈ Odd (p (u)) and the same for
p(v). Therefore, w ∈ p′ (u) = p (u)∆ p (v)⇐⇒ w ∈ Odd (p (u))∆Odd (p (v)) =
Odd (p′ (u)) as required.
[λ.XY]-[λ.Y Z]: u ∉ p (v) and u ∉ Odd (p (v)) by [≺ .X] and [≺ .Z] since

u ≺ v, so the requirements are given by the corresponding conditions for (p,≺).

202

[λ.X]: u ∉ Odd (p (v)) by [≺ .Z] and u ∈ Odd (p (u)) by [λ.X], so u ∈
Odd (p′ (u)).
[λ.Z]: u ∉ p (v) by [≺ .X] and u ∈ p (u) by [λ.Z], so u ∈ p′ (u).
[λ.Y]: u ∈ p (v) ⇐⇒ u ∈ Odd (p (v)) by [≺ .Y] and u ∈ p (u) ⇐⇒ u ∉

Odd (p (u)) by [λ.Y], then it is straightforward to show u ∈ p′ (u) ⇐⇒ u ∉
Odd (p′ (u)) by cases.

The maximally delayed property of a Pauli flow only concerns the partial
order between the vertices, so since (p,≺) and (p′,≺) both use ≺ the property
is trivially preserved.

This gives us a mechanism to generate new Pauli flows by adding correction sets
together. We now show that this can help us to make progress towards satisfying the
focussed property.

Lemma 4.2.7

For any labelled open graph Γ, if sets p̂, q̂ ⊆ I are focussed over S ⊆ O, then so
is p̂∆q̂.

Proof. [FX]: For any vertex v ∈ (p̂∆q̂) ∩ S, we have either v ∈ p̂ or v ∈ q̂.
Since p̂ and q̂ are focussed over S, the corresponding [FX] condition gives
λ (v) ∈ {XY,X,Y }.
[FZ]: Similarly, for any vertex v ∈ Odd (p̂∆q̂) ∩ S = (Odd (p̂)∆Odd (q̂)) ∩

S, we have λ (v) ∈ {XZ,Y Z,Y,Z} from either v ∈ Odd (p̂) or v ∈ Odd (q̂)
and [FZ].
[FY]: For any v ∈ S with λ (v) = Y , we have v ∈ p̂ ⇐⇒ v ∈ Odd (p̂)

and v ∈ q̂ ⇐⇒ v ∈ Odd (q̂) from [FY] for p̂ and q̂. Hence, v ∈ p̂∆q̂ ⇐⇒ v ∈
Odd (p̂)∆Odd (q̂).

Lemma 4.2.8

For any labelled open graph Γ, if sets p̂, q̂ ⊆ I are not focussed over {v} (v ∈ O),
then p̂∆q̂ is focussed over {v}.

Proof. We consider each case for λ (v) and how the focussed conditions could
fail for p̂ and q̂:

λ (v) ∈ {XY,X}: [FX] and [FY] are trivially satisfied, so we must have
v ∈ Odd (p̂) and v ∈ Odd (q̂) to fail [FZ]. This means v ∉ Odd (p̂)∆Odd (q̂) =

203

Odd (p̂∆q̂), satisfying [FZ] for p̂∆q̂.
λ (v) ∈ {XZ,Y Z,Z}: Similarly, [FZ] and [FY] hold trivially, so we must

have v ∈ p̂ and v ∈ q̂ to fail [FX]. We hence have v ∉ p̂∆q̂, satisfying [FZ] for
p̂∆q̂.

λ (v) = Y : Now [FX] and [FZ] are trivial and we have v ∈ p̂∆Odd (p̂)
and v ∈ q̂∆Odd (q̂) to fail [FY]. Combined, these satisfy [FY] since v ∉
(p̂∆Odd (p̂))∆ (q̂∆Odd (q̂)) = (p̂∆q̂)∆Odd (p̂∆q̂).

Combining these two lemmas, we can find combinations of correction sets that fix
unfocussed vertices whilst preserving those we have already focussed.

Lemma 4.2.9: Generalisation of [7, Lemma 3.13]

Let (G, I,O,λ) be a labelled open graph with a Pauli flow (p,≺) and some
vertex v ∈ O. Then there exists p′ ∶ O → P [I] such that:

1. ∀w ∈ O. v = w ∨ p′ (w) = p (w);

2. p′ (v) is focussed over O ∖ {v};

3. (p′,≺) is a Pauli flow for (G, I,O,λ).

Proof. Let J ∶ Z∣O∣ → O be some indexing of the vertices that respects the order
≺ (∀i, j < ∣O∣ . J(i) ≺ J(j)Ô⇒ i < j). We define a sequence of functions pk as:

p0 (u) ∶= p (u) (4.42)

pk+1 (u) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pk (u)∆ pk (J (k))
⎛
⎜⎜
⎝

u = v,
J (k) ≠ v,
pk (v) is not focussed over {J (k)}

⎞
⎟⎟
⎠

pk (u) otherwise
(4.43)

1 is satisfied for all (pk,≺) by construction, and 3 is also satisfied for all
by Lemma 4.2.6. To work towards 2, we proceed inductively with hypothe-
sis Φ (k) ∶= “pk (v) is focussed over {J (i)}i<k ∖ {v} ”. The k = 0 case holds
vacuously.

Suppose we have Φ (k). If J (k) = v, then pk+1 (v) = pk (v) and Φ (k + 1) is
an immediate consequence of Φ (k). If pk (v) is focussed over {J (k)}, then
pk+1 (v) = pk (v), so Φ (k + 1) follows from this assumption and Φ (k). If,

204

on the other hand, pk (v) is not focussed over {J (k)}, we have pk+1 (v) =
pk (v)∆ pk (J (k)). From conditions [λ.XY]-[λ.Y], pk (J (k)) is also not fo-
cussed over {J (k)}, so by Lemma 4.2.8 we have pk+1 (v) is focussed over {J (k)}.
For any of the remaining i < k (where J (i) ≠ v), Φ (k) says that pk (v) is fo-
cussed over {J (i)}. Since J respects the order ≺, we also have J (i) ⪯ J (k),
and hence the [≺ .P] conditions imply that pk (J (k)) is focussed over {J (i)}.
We combine these with Lemma 4.2.7 to deduce that pk+1 (v) is also focussed
over {J (i)}.

This chain ends in (p∣O∣,≺) where p∣O∣ is focussed over O ∖ {v}.

Lemma 4.2.10: Focussing Lemma

If a labelled open graph has a Pauli flow, then it has a maximally delayed,
focussed Pauli flow.

Proof. If a Pauli flow exists, then there must be a maximally delayed one (p,≺).
Applying Lemma 4.2.9 for each v ∈ O in turn, we reach some (p′,≺) where, for
every v ∈ O, p′ (v) is focussed over O ∖ {v}, i.e. (p′,≺) is a focussed Pauli flow.
Since the partial order ≺ remains the same, this is still maximally delayed.

It should be noted that the focussed conditions can be incorporated into the
linear equation system subroutine of Algorithm 1 to directly obtain focussed Pauli
flows without having to separately apply the above routine to focus the output.

For general measurement patterns, even focussed Pauli flows may not be unique.
However, given multiple focussed Pauli flows, the differences between their correction
sets are given by the focussed sets of the graph. Conversely, we can add focussed sets
to a flow at any point where it doesn’t mess up previous measurements.

Lemma 4.2.11

Let Γ be a labelled open graph with two focussed Pauli flows (p,≺) and (p′,≺′).
Then for any vertex v ∈ O, p (v)∆ p′ (v) is a focussed set.

Proof. Each of p (v) and p′ (v) are focussed over O ∖ {v}, so their combination
must also be by Lemma 4.2.7. For each case of λ (v), the corresponding con-
dition from [λ.XY]-[λ.Y] is then enough to show that p (v)∆ p′ (v) is also
focussed over {v}.

205

Lemma 4.2.12

Let Γ = (G, I,O,λ) be a labelled open graph with a focussed Pauli flow (p,≺)
and a focussed set p̂ ⊆ I. Let v ∈ O be a vertex where ∀w ∈ p̂ ∪ Odd (p̂) . λ (w) ∈
{XY,XZ,Y Z}Ô⇒ w ≠ v ∧ v ⪯ w. Then (p′,≺′) is a focussed Pauli flow, where:

p′ (w) ∶=
⎧⎪⎪⎨⎪⎪⎩

p (w)∆ p̂ w = v
p (w) w ≠ v

(4.44)

and ≺′ is the transitive closure of

≺ ∪{(v,w) ∣ w ∈ p̂ ∪Odd (p̂) ∧ λ (w) ∈ {XY,XZ,Y Z}} (4.45)

Proof. Firstly, ≺′ is still a strict partial order. Transitivity is immediate by
definition. For antisymmetry (and similarly for strictness), suppose on the
contrary that we have some a ≺′ b and b ≺′ a (or directly a ≺′ a). Unpacking the
transitive closure, this gives a cycle [a, . . . , b, . . . , a] where each step is either
in ≺ or {(v,w) ∣ w ∈ p̂ ∪Odd (p̂) ∧ λ (w) ∈ {XY,XZ,Y Z}}. Since ≺ is a strict
partial order, we cannot have such a cycle where every step is in ≺, so at least
one step must be some such (v,w). We can freely eliminate inner cycles around
v, so we can assume wlog that v only appears once in the cycle. This means the
rest of the cycle is only from ≺, so w ≺ v by transitivity. However, we assumed
that v ⪯ w since w ∈ p̂ ∪ Odd (p̂) and λ (w) ∈ {XY,XZ,Y Z}, giving us the
contradiction we need.

The [≺ .P] conditions are preserved from the extension to ≺′ covering planar
labels and the focussed property covering Pauli labels.

Conditions [λ.XY], [λ.XZ], and [λ.Y Z] are preserved since v ∉ p̂∪Odd (p̂)
gives v ∈ p′ (v)⇐⇒ v ∈ p (v) and v ∈ Odd (p′ (v))⇐⇒ v ∈ Odd (p (v)).

For conditions [λ.X], [λ.Z], and [λ.Y], the correction amounts to saying
that p′ (v) is not focussed over {v}. If this were not the case, then p′ (v)∆ p̂ =
p (v) would be focussed over {v} by Lemma 4.2.7, contradicting the correspond-
ing Pauli flow condition for p (v).

Finally, p′ (v) is focussed over O ∖ {v} using Lemma 4.2.7, so (p′,≺′) is
focussed.

An important consequence of this result is that, in order to fully identify the
space of all focussed Pauli flows for a given labelled open graph, it is sufficient to find
one using the Pauli Flow Identification Algorithm that we focus with the Focussing
Lemma, and find all the focussed sets. The following proofs show that the focussed

206

sets form a group, allowing us to reduce the search to just some generating set.

Proposition 4.2.13

The focussed sets of a labelled open graph form a group under ∆.

Proof. Closure under ∆ is a direct consequence of Lemma 4.2.7 with S = O.
The identity is simply the empty set ∅ and each focussed set is self-inverse.

Lemma 4.2.14

Any labelled open graph Γ = (G, I,O,λ) with a focussed Pauli flow has 2∣O∣−∣I ∣

distinct focussed sets.

Proof. There are 2∣I ∣ subsets of I.
Fix some focussed Pauli flow (p,≺). For each v ∈ O, p (v) is focussed over

O ∖ {v}. By Lemmas 4.2.12 and 4.2.11, (−)∆ p (v) defines a bijection between
those sets that are focussed for v and those that are not. So every time we
restrict our subsets to those focussed over an additional vertex, we half the
number of possible subsets.

Repeating this for all of O means we have 2∣I ∣−∣O∣ = 2∣O∣−∣I ∣ focussed sets.

Similar to the Pauli Flow Identification Algorithm, we can encode the conditions
for focussed sets into a linear equation system MX = S in F2 which can be solved by
Gaussian elimination and back substitution to obtain a single focussed set.

M ∶= [Γ ∩ P ×O
(Γ + Id) ∩ P ×ΛY] (4.46)

S ∶= [0
0
] (4.47)

P ∶= (O ∪ΛXY ∪ΛX ∪ΛY) ∩ I (4.48)
O ∶= ΛXY ∪ΛX (4.49)

In the above, we let Γ stand for the adjacency matrix of its graph. We define P to
be the set of vertices that could be included in a focussed set and O the set of vertices
that can’t be in the odd neighbourhood. Solutions satisfy [FX] since X only ranges
over P. The top block of the system encodes [FZ] since multiplying by Γ in F2 gives
the odd neighbourhood, and similarly the bottom block encodes [FY].

We need to add additional conventions to make sure that the focussed sets we
obtain are non-empty and independent. Since this system is underconstrained (when

207

there exist non-empty focussed sets), there will always be some freedom of choice
during the back substitution step. Since every focussed set must be a solution, these
free substitutions must generate the full set. Hence, we can obtain independent, non-
empty focussed sets by taking a single free substitution for each focussed set, iterating
through each free substitution in turn. Algorithm 2 demonstrates this.

FocussedSets (V,Γ, I,O,λ) = begin
M ∶= [Equation 4.46];
M ′ ∶= reduced_row_echelon (M);
FSets ∶= ∅;
leading_lookup ∶= {};
foreach c <M ′.cols do

p̂ ∶= {c};
leading = false;
foreach r <M ′.rows do

if M ′ (r, c) then
if r ∈ leading_lookup then

p̂.insert (leading_lookup [r]);
end
else

leading_lookup [r] ∶= c;
leading ∶= true;
break;

end
end

end
if !leading then FSets.insert (p̂);

end
return FSets;

end
Algorithm 2: An algorithm for identifying generators for all focussed sets of a
labelled open graph.

Lemma 4.2.15: Focussed Set Identification Algorithm

Given a labelled open graph Γ with focussed Pauli flow, Algorithm 2 identifies
∣O∣−∣I ∣ independent generators for the group of focussed sets of Γ. Furthermore,
it completes in polynomial time wrt the number of vertices in Γ.

Proof. All sets found are focussed sets since the linear equations encode the
focussed conditions. They are independent as each one contains a unique vertex
corresponding to the column c. We obtain the right quantity by Lemma 4.2.14,

208

since all focussed sets must be solutions to this linear equation system and
hence back substitution can break them down in terms of these generators.

Since both ∣P∣ and ∣O∣ are at most ∣V ∣, the Gaussian elimination takes
O (∣V ∣3) time which is the dominant cost of the algorithm.

Lemma 4.2.14 now puts a bound on the number of possible focussed Pauli flows for
a given labelled open graph. In the unitary case (∣O∣ = ∣I ∣) specifically, this implies the
uniqueness of focussed Pauli flows, generalising the known result for the uniqueness
of focussed gflow for unitaries [87].

In Sections 4.3.2 and 4.3.3, we will relate focussed flows and focussed sets to
properties of the linear map implemented by a measurement pattern. They make it
especially easy to construct equivalent parameterised quantum circuits for the same
linear map.

4.3 Circuit Extraction
Quantum circuits are far more common than MBQC as a model of quantum com-
putation and as a design space for quantum algorithms. Especially when working
at scale, measurement patterns can become hard to design or analyse through only
the linear map representation which could be alleviated with better tools for relating
them to quantum circuits.

The goal of circuit extraction is to identify a sequence of gates that implements
the same linear map as a given measurement pattern without calculating and decom-
posing the linear map. The method presented here will make use of a Pauli flow to
determine the effect that each measurement angle has on the outputs. Doing so will
yield a circuit in the form of a Clifford process followed by a sequence of parameterised
Pauli rotations, with one rotation per planar measurement.

4.3.1 Circuits as Products of Pauli Rotations

Quantum circuits will often be presented in terms of small elementary gates, such
as the universal gate set {CX,RZ,RX}, as these often very closely relate to the
operations available natively on a quantum computer. This can often come with the
downside of being quite difficult to identify the macroscopic structure of a circuit due

209

to the sheer quantity and locality of the elementary gates. Pauli rotations e−i
θ
2P 14

(P ∈ {I,X,Y,Z}⊗n) instead provide a universal gate set for unitary quantum circuits
with the ability to abstract away the influence of Clifford gates and represent non-local
logical effects in a way that makes it easy to identify commutations and large-scale
influence across a circuit. Let us briefly examine how these give rise to a convenient
data structure for examining a pure quantum circuit by expressing it as a Clifford
circuit C followed by a sequence of Pauli rotations (stored up to their commutation
relation).

(∏
j

e−i
θj
2 Pj)C (4.50)

This representation was notably covered in the work of Zhang and Chen [120] where
it was used to identify possible pairs of T gates which could be merged through some
sequence of gate commutations and Clifford gate relations in order to reduce the
number of T gates in the circuit. Similar structures have been studied in the context
of compiling circuits for lattice surgery [83] and as an intermediate for synthesis of
Clifford+T circuits [57]. Some of these presentations collected the Clifford process at
the end of the circuit rather than the start - for unitary circuits we can choose to have
them at either end, but in the general case we may not always be able to transport
qubit initialisations through the Pauli rotations to the end.

We can trivially get any circuit into this form, representing it as a set of qubit
initialisations followed by the sequence of Pauli rotations formed by decomposing each
gate in turn.

Gate Equivalent Pauli rotations (up to global phase)
CXct e−i

π
4ZcXtei

π
4Zcei

π
4Xt

CZct e−i
π
4ZcZtei

π
4Zcei

π
4Zt

RZ(θ) e−i
θ
2Z

RX(θ) e−i
θ
2X

H e−i
π
4Ze−i

π
4Xe−i

π
4Z

CCXabt e−i
π
8ZaZbXtei

π
8ZaZbei

π
8ZaXtei

π
8ZbXte−i

π
8Zae−i

π
8Zbe−i

π
8Xt

Converting back to elementary gates can be just as easy: if the Clifford circuit
is represented via a stabilizer tableau, we start by synthesising that back into a
circuit [1, 84] and then apply a standard decomposition to each Pauli rotation [9, 36],

14The convention of using e−i
θ
2
P rather than eiαP is to give a closer semblance to rotation gates

like RZ, RX, and their multi-qubit counterparts, and to make the notation easier once we get to
extraction from measurement patterns, but it is just a notational choice.

210

although this will typically add an extremely high amount of redundant Clifford
gates. More efficient synthesis can be performed using techniques for synthesising
pairs of rotations simultaneously [36] or by diagonalising sets of mutually commuting
rotations [115, 37]. It is also possible that future architectures may find efficient ways
to perform each Pauli rotation natively or employ lattice surgery where it is practical
to just perform them directly [83].

Decomposing each elementary gate into Pauli rotations will generate a represen-
tation that is no easier to handle than the original circuit, mostly in part due to
the large number of Clifford operations that will still hold their place in the rotation
list. A Pauli rotation is Clifford when the angle is an integral multiple of π

2 (i.e. the
coefficient in the exponential is a multiple of π

4). The action of Clifford rotations on
both Paulis and arbitrary Pauli rotations can be summarised in a few equations.

Lemma 4.3.1: Commutation Rules

For any Pauli strings P,Q ∈ {I,X,Y,Z}⊗n and angles θ, ϕ, if P and Q commute,
then

e−i
θ
2PQ = Qe−i

θ
2P (4.51)

e−i
θ
2P e−i

ϕ
2Q = e−i

ϕ
2Qe−i

θ
2P (4.52)

and otherwise (i.e. they anticommute)

e−i
π
4 PQ = (−iPQ)e−i

π
4 P (4.53)

e−i
π
4 P e−i

ϕ
2Q = e−i

ϕ
2 (−iPQ)e−i

π
4 P (4.54)

Proof. Any operator satisfying A2 = I and real α permit the decomposition
eiαA = cosαI + i sinαA by grouping terms in the Taylor expansion. Each equa-
tion follows from decomposing one of the exponentials in this way. Whilst the
right-hand side of Equation 4.54 appears to contain a real exponent, remember
that −iPQ is a real Pauli string when P and Q anticommute.

The above rules can be used to move any Clifford rotation to the start, leaving us
with a sequence of Pauli rotations describing the actions of the non-Clifford operations
in the circuit.

They also describe when rotations of any angle can commute with each other. We
can see the commutations as a point of redundancy in the representation. Because
anticommuting Pauli strings prevent commutation of their exponentials, any valid

211

ordering of the rotations will preserve the relative order of any pair with anticommut-
ing strings, inducing a temporal dependency between them. Taking the transitive
closure of these dependencies gives a partial order representing the sequence up to
any number of commutations.

Definition 4.3.2: Pauli graph

A Pauli graph is a data structure representing a quantum circuit, consisting of:

• A stabilizer tableau describing a Clifford circuit C. In general, C may
be an isometry, which we can represent using the tableau of its Choi
operator.

• A directed acyclic graph describing a partial order ≺ over pairs {(Pk, θk)}k
(Pk ∈ {I,X,Y,Z}⊗n, θk ∈ R). If (P, θ) and (P ′, θ′) are incomparable under
≺, then the Pauli strings P and P ′ must commute (and, therefore, so do
the rotations).

The linear map of the circuit is given by (∏≻k e−i
θk
2 Pk)C up to global phase.

We will draw the ordering relations ≺ via Hasse diagrams for simplicity. Imple-
mentations of Pauli graphs as a data structure may prefer storing the full relation for
practical reasons such as making the transport of Clifford operations (Equation 4.54)
a local change that does not require recalculating the entire graph [33].

Example 4.3.3

Suppose we start with the following circuit:

S RY (α3)

RX(α4)

RY (α5) RZ(α6)RZ(α0) RY (α2)

RZ(α1) RY (α7) (4.55)

Decomposing each gate into Pauli rotations gives a rather long form.

e−i
π
4Z e−i

α3

2 Y

e−i
α4

2 X

e−i
α5

2 Y e−i
α6

2 Z

e−i
α0

2 Z e−i
α2

2 Y

e−i
α1

2 Z

e−i
α7

2 Y

ei
π
4Z

ei
π
4X

e−i
π
4Z⊗X

ei
π
4Z

ei
π
4X

e−i
π
4Z⊗X

ei
π
4Z

ei
π
4X

e−i
π
4Z⊗X

ei
π
4Z

ei
π
4X

e−i
π
4Z⊗X

⋯

⋯

(4.56)

212

Now we move the Clifford-angled rotations to the start of the circuit. Let’s
start with the first e−i

π
4Z from the S gate. Since Y and Z anticommute, Equa-

tion 4.54 applies giving e−i
π
4Ze−i

α2

2 Y = e−i
α2

2 (−iZY)e−i
π
4Z = ei

α2

2 Xe−i
π
4Z . It then

commutes with the RZ rotations. Repeating this for the components of the
CX gates (noting that they cancel), we end up with the following circuit:

e−i
π
4Z

e−i
α3

2 Y ⊗X

e−i
α4

2 X
e−i

α5

2 Y ⊗X
e−i

α6

2 Ze−i
α0

2 Z ei
α2

2 X

e−i
α1

2 Z e−i
α7

2 Y (4.57)

This is in the product form we expect, with Clifford process C = e−i
π
4Z1

followed by a sequence of non-Clifford rotations.
We can note that the rotations e−i

α3

2 Y1X2 , e−i
α4

2 X2 , and e−i
α5

2 Y1X2 mutually
commute, but none can be moved before e−i

α1

2 Z2 or after e−i
α7

2 Y2 . This is sum-
marised by the graph below depicting the dependency relation ≺.

Ins Outs Sign
X Y +

X X +
Z Z +

Z Z +

(Z1I2, α0) (X1I2,−α2) (Y1X2, α3) (Z1I2, α6)

(Y1X2, α5)

(I1Z2, α1) (I1X2, α4) (I1Y2, α7)

(4.58)

Rewrite rules for Pauli graphs change the structure but preserve the linear map.
The most useful rewrite for circuit reduction is rotation merging: two nodes in the
graph j, k can be merged to give a single node with (Pj, θj + θk) if Pj = Pk and both
j /≺ k and k /≺ j (i.e. there is some valid topological ordering of the graph in which
these two rotations are adjacent).

Example 4.3.4

In the Pauli graph from Example 4.3.3, the nodes (Y1X2, α3) and (Y1X2, α5)
can be merged into a single node (Y1X2, α3 + α5). On the other hand, (Z1I2, α0)
and (Z1I2, α6) cannot be merged since there are intervening rotations between
them.

In addition to its use in constructing Pauli graphs, we can view Equation 4.54 as
an explicit rewrite allowing the movement of Clifford rotations through the circuit.
Combining this with merging/splitting of rotations and eliminating rotations with
angle 0 permits a more rigid canonical form where the range of angles for each rotation

213

is reduced to (0, π2). More explicitly, if (Pk, θk) has θk ≥ π
2 , we can split it into two

nodes (Pk, θk − π
2
) and (Pk,

π
2
) and move the latter through the graph into the tableau.

Example 4.3.5

Let’s again take the Pauli graph from Example 4.3.3 and suppose that α6 = π
2

and we wish to move it into the tableau. The nodes (I1X2, α4) and (I1Y2, α7)
are not predecessors of (Z1I2, α6) so we can ignore them. For the rest, Z1I2

anticommutes with Y1X2 and X1I2 but commutes with Z1I2 and I1Z2. As we
are moving a e−i

π
2Z1I2 rotation, Equation 4.54 updates Y1X2 to −iZ1I2Y1X2 =

−X1X2 and X1I2 to −iZ1I2X1I2 = Y1I2. To update the tableau, we look at the
output substring of each row and update it according to the Commutation Rules.
In this case, only the top row (Y1I2) needs updating to −iZ1I2Y1I2 = −X1I2.

Ins Outs Sign
X X −

X X +
Z Z +

Z Z +

(Z1I2, α0) (Y1I2,−α2) (X1X2,−α3)

(X1X2,−α5)

(I1Z2, α1) (I1X2, α4) (I1Y2, α7)

(4.59)

When the initial Clifford process includes some qubit initialisations, some rota-
tions will have no observable effect. For example, ∣0⟩ is an eigenstate for all RZ gates.
The following lemma generalises this idea, showing that free stabilizers over the out-
puts of the Clifford process can be used to change the Pauli strings of rotations.
The Commutation Rules can propagate stabilizers beyond the initial rotations to en-
able this rewrite to be performed elsewhere. Changing the Pauli strings of rotations in
this way can affect how they commute/anticommute with their neighbours, modifying
the dependency relation ≺.

This lemma will be of particular importance in Section 4.3.2 for its role in circuit
extraction.

Lemma 4.3.6: Product Rotation Lemma

Let P and Q be commuting Pauli strings such that QC = C for some linear
map C. Then e−i

θ
2PC = e−i

θ
2PQC.

Proof. For any analytic function F (P), we can expand its Taylor series in
F (P)C, then introduce and commute Q in each term to form the Taylor series
for F (PQ)C.

214

In this case, using the expansion e−i
θ
2P = cos θ

2I − i sin
θ
2P :

e−i
θ
2PC = cos θ

2C − i sin θ
2PC

= cos θ
2C − i sin θ

2PQC (4.60)

= e−i
θ
2PQC

Example 4.3.7

Taking the ongoing example from Example 4.3.3 and supposing that the second
qubit is initialised to the ∣0⟩ state at the beginning, we have the following Pauli
graph:

Ins Outs Sign
X Y +
Z Z +

Z +

(Z1I2, α0) (X1I2,−α2) (Y1X2, α3) (Z1I2, α6)

(Y1X2, α5)

(I1Z2, α1) (I1X2, α4) (I1Y2, α7)
(4.61)

If I1Z2 is a stabilizer of C, then it is also a stabilizer of e−i
α0

2 Z1I2C. Since
it also commutes with the string X1I2, we can apply the Product Rotation
Lemma to update that node to (X1Z2,−α2). We need to subsequently update
the graph now that X1Z2 commutes with Y1X2 and it no longer commutes with
I1X2.

Similarly, we can update (I1Z2, α1) to (I1I2, α1) - this is just a global phase
so we can freely remove it. Since I1Z2 anticommutes with Y1X2 and I1X2, we
can’t propagate it any further.

Ins Outs Sign
X Y +
Z Z +

Z +

(Z1I2, α0) (Y1X2, α3) (Z1I2, α6)

(X1Z2,−α2) (Y1X2, α5)

(I1X2, α4) (I1Y2, α7)
(4.62)

Similar to the phase teleportation procedure in ZX-calculus [79] or phase fold-
ing [5], one can consider using this in circuit optimisation where we retain the layout
of a circuit and just use the Pauli graph to spot where non-adjacent gates can be
merged. This is typically good when the original circuit has a relatively low density
of Clifford gates when it is unlikely that resynthesis will give as efficient a circuit.

215

Example 4.3.8

Example 4.3.4 showed that two rotations in our ongoing example could be
merged. By recording which rotations came from which gates in the original
circuit, we can merge the gates even though they are not adjacent. This main-
tains the overall structure of the circuit but enables some very simple peephole
optimisation to further reduce the gate count.

S RY (α3 + α5)

RX(α4)

RZ(α6)RZ(α0) RY (α2)

RZ(α1) RY (α7) (4.63)

Example 4.3.9

Suppose we have the following gates at the start of a circuit run from an initial
∣0⟩⊗n state.

∣0⟩

∣0⟩

X V

H RZ(α)

V †

H

H

V RZ(β)

H

V † (4.64)

This has a pretty basic Pauli graph; there are only two rotations which
commute with each other.

Outs Sign
Z −

Z +

(Y1X2, α)

(X1Y2, β)
(4.65)

The product stabilizer −Z1Z2 commutes with X1Y2 so the Product Rotation
Lemma can be applied, mapping the rotation to (−Y1X2, β) = (Y1X2,−β). The
two rotations can then be merged into (Y1X2, α − β). Reflecting this back in
the circuit changes the RZ (α) gate to RZ (α − β) and removes the RZ (β)
gate. This allows the second half of the circuit to be entirely removed using
gate-inverse cancellation. This example achieves the same result as reducing
the terms in an excitation operator modulo the stabilizers (such as done during
qubit tapering [18]) but can be applied to arbitrary circuits.

4.3.2 Extracting Measurement Rotations

We turn to the task of taking a measurement pattern described by a labelled open
graph Γ and measurement angles α, and searching for an ancilla-free pure quantum
circuit that implements the same linear map.

216

To motivate our method, recall the possible measurement bases from Equations 4.6
and 4.7. Each planar basis can be constructed as a basic rotation applied to some
Pauli basis:

⟨±XY,α∣ ≈ ⟨±X,0∣ ei
α
2 Z

⟨±XZ,α∣ ≈ ⟨±Z,0∣ ei
α
2 Y

⟨±Y Z,α∣ ≈ ⟨±Z,0∣ e−i
α
2X

(4.66)

In each case, the rotation is about the Pauli orthogonal to the measurement plane
and therefore coincides with P p(v)→v for any Pauli flow (p,≺). We can summarise
these by

⟨+λ(v),α(v)∣ ≈ ⟨+λ(v),0∣ e(−1)
Dv i

α(v)
2 P p(v)→v (4.67)

Dv ∶=
⎧⎪⎪⎨⎪⎪⎩

1 λ (v) = Y Z
0 otherwise

(4.68)

where Dv dictates the direction of rotation about the Bloch sphere. The equation
holds for Pauli measurements, where P p(v)→v may be either orthogonal Pauli, reflect-
ing the flexibility of the Pauli flow rules [λ.X], [λ.Z], and [λ.Y].

The key idea driving the method of circuit extraction presented here is to apply
the Product Rotation Lemma to alter these rotations and move them onto the output
qubits one at a time. This requires identifying an appropriate stabilizer of the resource
state to use.

To remove the rotation from qubit v, the stabilizer must contain P p(v)→v
v , so let’s

just look at the correcting stabilizers from the Pauli flow. If the stabilizer only uses v
and the outputs (i.e. we can immediately use it to extract the rotation) then v must
be at measurement depth 1, so we need something a little more general for this to
work for all vertices. Fortunately, if we assume all future vertices have already had
their measurement angles set to zero (making the corresponding projectors act in a
Pauli basis) we can use them alongside any Pauli measurements to absorb additional
Paulis.

Definition 4.3.10: Extraction string

Let (Γ, α) describe a measurement pattern with Pauli flow (p,≺) and choose a
measured vertex v ∈ O. A Pauli string Q is a P -extraction string (P ∈ {X,Y,Z})
for v if PvQO is a stabilizer of the following linear map:

217

⎛
⎜⎜⎜⎜⎜
⎝

∏
u∈O
u≻v

λ(u)∈{XY,XZ,Y Z}

⟨+λ(u),0∣u

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

∏
u∈O∖{v}

λ(u)∈{X,Y,Z}

⟨+λ(u),α(u)∣u

⎞
⎟⎟⎟
⎠
(∏
u∼w

CZu,w)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠

(4.69)
A primary extraction string for v is a P -extraction string for any Pauli P
orthogonal to λ (v).

A focussed flow guarantees that the components of the stabilizer on other mea-
sured qubits can always be absorbed by the projectors to leave something in the form
of an extraction string.

Lemma 4.3.11

Given a Pauli flow (p,≺) for a labelled open graph (G, I,O,λ), for any vertex
v ∈ O the size of p (v) ∩Odd (p (v)) is even.

Proof. Let G = (V,E) and define the subgraph G′ = (p (v) ,E ∩ (p (v) × p (v))).
For any vertex u ∈ p (v), u ∈ Odd (p (v)) if and only if u has odd degree in G′.
Since the sum of the vertex degrees must equal 2 times the number of edges in
G′, there must be an even number of vertices with odd degree.

Lemma 4.3.12

Let Γ = (G, I,O,λ) be a labelled open graph with some measurement angles
α ∶ O → [0,2π) and a focussed Pauli flow (p,≺). Then for any vertex v ∈ O,

ESp;v
O ∶= (−1)a+b+c∏

u∈O
P

p(v)→u
u (4.70)

with

a = ∣E ∩ (p (v) × p (v))∣ (4.71)
b = ∣p (v) ∩Odd (p (v))∣ /2 (4.72)
c = ∣(p (v) ∪Odd (p (v))) ∩ {u ∈ O ∣ λ (u) ∈ {X,Y,Z} ∧ α (u) = π}∣ (4.73)

is a primary extraction string for v.

218

Proof. Consider an arbitrary measured vertex v ∈ O.
Since each correction set p (v) is a subset of the non-input vertices, we can

combine their corresponding resource state stabilizers. We may reorder the Z
and X terms with the possible introduction of a (−1).

(∏
u∼w

CZu,w)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠
= (−1)a

⎛
⎝ ∏u∈p(v)

Xu

⎞
⎠
⎛
⎝ ∏
u∈Odd(p(v))

Zu

⎞
⎠
(∏
u∼w

CZu,w)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠

(4.74)
where a is the number of edges in the subgraph of p (v), since for each edge
here we have to reorder the Z and X terms on exactly one of the two vertices.

There are an even number of vertices with both an X and a Z in this
stabilizer (Lemma 4.3.11), so we can apply Y = iXZ on all such instances,
again introducing a possible (−1) term.

(∏
u∼w

CZu,w)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠
= (−1)a+b

⎛
⎝ ∏
u∈p(v)∖Odd(p(v))

Xu

⎞
⎠
⎛
⎝ ∏
u∈Odd(p(v))∖p(v)

Zu

⎞
⎠

⎛
⎝ ∏
u∈p(v)∩Odd(p(v))

Yu
⎞
⎠
(∏
u∼w

CZu,w)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠

= (−1)a+b (∏
u∈V

P
p(v)→u
u)(∏

u∼w
CZu,w)

⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠

(4.75)

Since (p,≺) is a Pauli flow, every vertex in p (v) or Odd (p (v)) is either
v itself, a Pauli measurement, or greater than v in ≺ (from conditions [≺ .X]
and [≺ .Z]). To fit the form an extraction string, we consider adding the cor-
responding projectors. Since (p,≺) is focussed, each vertex (besides outputs
and v) in p (v) ∖Odd (p (v)) is projected into an X basis eigenvector, and sim-
ilarly Odd (p (v))∖ p (v) into Z and p (v)∩Odd (p (v)) into Y . This means we
can absorb these Pauli operators into the projectors, again with the possible
introduction of a (−1).

219

⎛
⎜⎜⎜⎜⎜
⎝

∏
u∈O
u≻v

λ(u)∈{XY,XZ,Y Z}

⟨+λ(u),0∣u

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

∏
u∈O∖{v}

λ(u)∈{X,Y,Z}

⟨+λ(u),α(u)∣u

⎞
⎟⎟⎟
⎠
(∏
u∼w

CZu,w)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠

= (−1)a+b+c
⎛
⎝ ∏u∈O∪{v}

P
p(v)→u
u

⎞
⎠

⎛
⎜⎜⎜⎜⎜
⎝

∏
u∈O
u≻v

λ(u)∈{XY,XZ,Y Z}

⟨+λ(u),0∣u

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

∏
u∈O∖{v}

λ(u)∈{X,Y,Z}

⟨+λ(u),α(u)∣u

⎞
⎟⎟⎟
⎠
(∏
u∼w

CZu,w)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠

(4.76)

This stabilizer is exactly ESp;v
O over the outputs along with P p(v)→v

v which is
guaranteed to be orthogonal to λ (v) by the Pauli flow conditions.

Viewing these extracted rotations as the sequence of rotations in a Pauli graph, the
following result shows that the commutativity of the rotations is captured precisely
by the corrections used in the focussed Pauli flow; therefore, the partial order over the
planar measurements in the measurement pattern precisely coincides with the partial
order over the rotations in the extracted Pauli graph.

Lemma 4.3.13

Let (Γ, α) describe a measurement pattern with a focussed Pauli flow (p,≺).
Then for any vertices u, v ∈ O the primary extraction strings satisfy

ESp;u
O ESp;v

O = (−1)F
p(u)→v+F p(v)→u

ESp;v
O ESp;u

O (4.77)

where F p(x)→y ∶= ∣{y} ∩ (p (x) ∪Odd (p (x)))∣ indicates whether y is used in the
correction of x (P p(x)→y ≠ I).

Proof. Since ESp;u
O and ESp;v

O are tensor products of Pauli matrices, they must
either commute or anticommute. Consider the linear map:

220

⎛
⎜⎜⎜⎜⎜
⎝

∏
w∈O∖{u,v}

λ(w)∉{X,Y,Z}
u≺w∨v≺w

⟨+λ(w),0∣w

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

∏
w∈O∖{u,v}

λ(w)∈{X,Y,Z}

⟨+λ(w),α(w)∣w

⎞
⎟⎟⎟
⎠
(∏
u∼w

CZu,w)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠

(4.78)
This may not be in the exact form needed to introduce extraction strings

for u and v if they use each other for corrections.
We can still follow the construction in the proof of Lemma 4.3.12 to de-

duce that (−1)A
p(u)→v

P
p(u)→u
u P

p(u)→v
v ESp;u

O and (−1)A
p(v)→u

P
p(v)→u
u P

p(v)→v
v ESp;v

O

are stabilizers where

Ap(x)→y ∶=
⎧⎪⎪⎨⎪⎪⎩

F p(x)→y λ (y) ∈ {X,Y,Z} ∧ α (y) = π
0 otherwise

(4.79)

Comparing conditions [λ.XY]-[λ.Y] and the focussed conditions, we see
that, for any vertex x ∈ O, P p(x)→x is orthogonal to λ (x) and hence anti-
commutes with any P p(y)→x ≠ I. Equationally, this gives P p(x)→xP p(y)→x =
(−1)F

p(y)→x

P p(y)→xP p(x)→x.
Finally, we use the fact that the stabilizer group is abelian:

(−1)A
p(u)→v+Ap(v)→u

P
p(u)→u
u P

p(u)→v
v ESp;u

O P
p(v)→u
u P

p(v)→v
v ESp;v

O

= (−1)A
p(v)→u+Ap(v)→u

P
p(v)→u
u P

p(v)→v
v ESp;v

O P
p(u)→u
u P

p(u)→v
v ESp;u

O

= (−1)F
p(u)→v+F p(v)→u+Ap(u)→v+Ap(v)→u

P
p(u)→u
u P

p(u)→v
v ESp;v

O P
p(v)→u
u P

p(v)→v
v ESp;u

O

(4.80)

i.e. ESp;u
O ESp;v

O = (−1)
F p(u)→v+F p(v)→u

ESp;v
O ESp;u

O .

We can extract the rotations one at a time until we are left with the following
Clifford process:

⎛
⎜⎜
⎝

∏
u∈O

λ(u)∉{X,Y,Z}

⟨+λ(u),0∣u
⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

∏
u∈O

λ(u)∈{X,Y,Z}

⟨+λ(u),α(u)∣u
⎞
⎟⎟
⎠
(∏
u∼w

CZu,w)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠

(4.81)

If we can identify the stabilizer tableau of its Choi operator, we will complete the
Pauli graph description which we can then synthesise into a circuit.

221

4.3.3 Characterising Clifford Patterns

The Choi operator of a Clifford process C with ∣I ∣ inputs and ∣O∣ outputs is a (∣I ∣ + ∣O∣)-
qubit state. To identify the stabilizer group, we need to find ∣I ∣ + ∣O∣ independent
generators. In general this process will be an isometry, giving ∣I ∣ ≤ ∣O∣. In order to
span the full Pauli group on the input space, we can always find ∣I ∣ generators of
the form (Xu, P) where Xu = C†PC for each u ∈ I, and the same for each Zu. The
remaining ∣O∣− ∣I ∣ generators can be chosen to act as the identity over the input space.
This form is used in the examples of Pauli graphs shown in Section 4.3.1 and will help
guide our search for a characterisation of the process in Equation 4.81.

Since Z on an input will commute through the CZ gates, we can get the cor-
responding stabilizer row from the primary extraction string assuming P p(u)→u = Z
for this input. This is guaranteed since the correction set p (u) cannot contain any
inputs, including u itself.

We can use the same trick to obtain the X rows from primary extraction strings.
In this case, we find an altered pattern (Γ′, α′) implementing the same linear map up
to a Hadamard gate on the input of our chosen vertex - the Hadamard maps X to
a Z, meaning we can use the extraction string of the corresponding input to (Γ′, α′).
One way to achieve this is by input extension.

Definition 4.3.14: Input extension

Given an open graph (G, I,O), input extension about u ∈ I adds a new vertex
u′ that is only connected to u and replaces u in the input set.

V ′ = V ∪ {u′} (4.82)
E′ = E ∪ {u′ ∼ u} (4.83)
I ′ = (I ∪ {u′}) ∖ {u} (4.84)

Proposition 4.3.15

Let (Γ, α) describe a measurement pattern with some chosen input u ∈ I. Then
let (Γ′, α′) be the measurement pattern formed by taking an input extension
about u and setting λ′ ∶= λ∪{u′ ↦XY } and α′ ∶= α∪{u′ ↦ 0}. The linear map
implemented by (Γ′, α′) is identical to that of (Γ, α) with a Hadamard gate
applied to the input u′.

222

Proof. It is enough to verify the following equation, where the right-hand side
matches the difference between the measurement patterns:

H =
√
2 ⟨+XY,0∣u′ CZu,u′ ∣+X,0⟩u (4.85)

Lemma 4.3.16: Generalisation of [7, Lemma 3.8]

Let Γ and Γ′ be labelled open graphs related by an input extension on vertex
u ∈ I (generating u′ ∈ I ′). If Γ has a Pauli flow, then so does Γ′.

Proof. Suppose Γ has a Pauli flow (p,≺). Let p′ = p∪ {u′ ↦ {u}} and ≺′ be the
transitive closure of ≺ ∪{(u′,w) ∣ w ∈ NG (u) ∪ {u}}.

For any v ∈ V ∖O, u′ ∉ p′ (v) = p (v) and u′ ∉ OddG′ (p′ (v)) = OddG (p (v))
since its only neighbour u is an input in Γ which could not appear in any
correction sets from p. This allows us to inherit all the Pauli flow properties
from (p,≺) for v as they have remained unchanged.

For u′, the definition of ≺′ guarantees the [≺ .P] conditions since u′ ≺′ w
for every w ∈ NG (u) ∪ {u} = (OddG′ (p′ (u′)) ∖ {u′}) ∪ p′ (u′). p′ (u′) also satis-
fies [λ.XY] by construction.

The remaining stabilizer generators (those that act just over the outputs) can be
obtained from the focussed sets of the measurement pattern.

Lemma 4.3.17

Given a measurement pattern (Γ, α), for any focussed set p̂ of Γ,

ESp̂
O ∶= (−1)a+b+c∏

u∈O
P p̂→u
u (4.86)

is a stabilizer of the linear map in Equation 4.81 where a, b, c are defined as in
Lemma 4.3.12.

Proof. The proof is similar to Lemma 4.3.12. After applying the measurement
projectors, the only Pauli terms that are not absorbed into the projectors are
over the output qubits.

Lemma 4.2.14 implies that we can get ∣O∣− ∣I ∣ generators for the group of focussed
sets, and we are looking for ∣O∣ − ∣I ∣ generators for the free stabilizers. For this to

223

work, we need the generators for the focussed sets to not degenerate when mapped
into stabilizers, i.e. the map ES

(−)
O must be injective. We show this using the following

relationship with the extraction strings to ensure that only the empty set is mapped
to the identity.

Lemma 4.3.18

Let (Γ, α) describe a measurement pattern with a focussed Pauli flow (p,≺).
Then for any vertex u ∈ O and focussed set p̂, the respective primary extraction
string and stabilizer satisfy

ESp;u
O ESp̂

O = (−1)
F p̂→u

ESp̂
OES

p;u
O (4.87)

where F p̂→u ∶= ∣{u} ∩ (p̂ ∪Odd (p̂))∣ indicates whether u is used in the generation
of the stabilizer.

Proof. The proof is virtually the same as that of Lemma 4.3.13, though we only
need care about anticommuting Paulis on u.

Lemma 4.3.19

Given a labelled open graph Γ = (G, I,O,λ) with a focussed Pauli flow and any
focussed set p̂, then (p̂ ∪Odd (p̂)) ∩O = ∅⇐⇒ p̂ = ∅.

Proof. p̂ = ∅Ô⇒ (p̂ ∪Odd (p̂)) ∩O = ∅ is trivial. For the other direction, sup-
pose for a contradiction that we have a non-empty p̂ for which (p̂ ∪Odd (p̂)) ∩
O = ∅, so we have some v ∈ p̂ ∩O and the corresponding stabilizer ESp̂

O is the
identity. However, Lemma 4.3.18 implies that ESp̂

O must anticommute with
ESp;v

O , contradicting the identity assumption.

We go one step further by showing that the map from focussed sets to stabilizers
also preserves the group action.

Lemma 4.3.20

Let Γ = (G, I,O,λ) be a labelled open graph. For any pair of focussed sets p̂,
q̂, ESp̂

OES
q̂
O ≈ ES

p̂∆q̂
O .

Proof. This follows from the anticommutativity of X and Z and the decompo-
sition Odd (p̂∆q̂) = Odd (p̂)∆Odd (q̂).

224

ESp̂
OES

q̂
O ≈
⎛
⎝ ∏w∈O∩p̂

Xw

⎞
⎠
⎛
⎝ ∏
w∈O∩Odd(p̂)

Zw

⎞
⎠
⎛
⎝ ∏w∈O∩q̂

Xw

⎞
⎠
⎛
⎝ ∏
w∈O∩Odd(q̂)

Zw

⎞
⎠

≈
⎛
⎝ ∏w∈O∩p̂

Xw

⎞
⎠
⎛
⎝ ∏w∈O∩q̂

Xw

⎞
⎠
⎛
⎝ ∏
w∈O∩Odd(p̂)

Zw

⎞
⎠
⎛
⎝ ∏
w∈O∩Odd(q̂)

Zw

⎞
⎠

(4.88)

=
⎛
⎝ ∏
w∈O∩(p̂∆q̂)

Xw

⎞
⎠
⎛
⎝ ∏
w∈O∩Odd(p̂∆q̂)

Zw

⎞
⎠

≈ ESp̂∆q̂
O

Lemma 4.3.21

For any non-zero linear map C with stabilizers A and B, if A ≈ B then A = B.

Proof. Let B = eiθA. Since stabilizers form a group, AB = A (eiθA) = eiθI is
also a stabilizer, i.e. C = eiθC. eiθ ≠ 1 implies C is a zero map, so we must have
A = B.

Proposition 4.3.22

ES
(−)
O is a group monomorphism from the group of focussed sets on a labelled

open graph to the stabilizer group of the corresponding linear map.

Proof. The group action is preserved due to Lemmas 4.3.20 and 4.3.21. By
Lemma 4.3.19, the map is injective (if we had two distinct focussed sets with
the same stabilizer, combining them with ∆ would give a non-empty focussed
set that maps to the identity stabilizer).

Now that we definitely obtain ∣O∣ − ∣I ∣ independent stabilizers over the output
system from the focussed sets, combining these with the 2 ∣I ∣ rows from the focussed
Pauli flow for the inputs and their extensions, we now have the full tableau for the
Choi operator of a Clifford measurement pattern. All that remains is to put all the
steps together to present a formal procedure for circuit extraction.

4.3.4 A Complete Algorithm

Combining the extraction of planar measurement angles and characterisation of the
remaining Clifford process, we can rewrite the measurement pattern’s linear map into
the form of a Pauli graph. Algorithm 3 summarises the method following these steps:

225

1. Extend the graph with all input extensions. Identify a focussed Pauli flow
(p,≺) (using the Pauli Flow Identification Algorithm and Focussing Lemma)
along with generators for the focussed sets (using the Focussed Set Identification
Algorithm).

2. Starting from the outputs and working backwards, use the Pauli flow and Prod-
uct Rotation Lemma to move the rotation from each planar measurement to
the outputs.

3. Complete the data for a Pauli graph representation by interpreting the correc-
tions for the input measurements (and the input extensions) and the focussed
sets as rows of a stabilizer tableau:

• For each u ∈ I, the row (Zu,ES
p;u
O).

• For each u ∈ I, the row (Xu,ES
p;u′

O) where u′ is the new vertex from an
input extension at u.

• For each p̂, the stabilizer ESp̂
O.

4. Synthesise the resulting Pauli graph component-wise.

Theorem 4.3.23: Circuit Extraction Theorem

Let (Γ, α) describe a measurement pattern where Γ has a Pauli flow. Then
Algorithm 3 identifies an equivalent circuit (via its Pauli graph) requiring no
ancillas, and it terminates in time polynomial in the number of vertices in Γ.

Proof. Correctness of the output is guaranteed by the Product Rotation Lemma
applied to the extraction strings from Lemma 4.3.12 for the rotations, and
correctness of the tableau rows follows from Lemmas 4.3.12 and 4.3.17.

To examine the complexity, we suppose an explicit Pauli flow is not given
up front. The Pauli Flow Identification Algorithm runs in O (∣V ∣4) time. We
can extend the flow to consider all of the input extensions simultaneously using
Lemma 4.3.16 in O (∣I ∣) time (ignoring the update to ≺ since it won’t affect
the outcome of the extraction procedure). The Focussing Lemma focusses this
Pauli flow in O (∣V ∣3) time (we apply at most O (∣V ∣2) updates, each of which
takes O (∣V ∣) time to identify and apply). The Focussed Set Identification
Algorithm also takes O (∣V ∣3) time. Synthesising this into a circuit using the
naive CX ladder construction takes O (∣V ∣ ⋅ ∣O∣) time for the rotations from
non-Pauli measurements, and O (∣O∣3) to synthesise a stabilizer tableau using

226

ExtractCircuit (V,Γ, I,O,λ,α) = begin
[V ′,Γ′, I ′,O′, λ′] ∶= ExtendInputs (V,Γ, I,O,λ];
[_, p, d] ∶= PauliFlow (V ′,Γ′, I ′,O′, λ′);
[p, d] ∶= FocusFlow (p, d);
FSets ∶= FocussedSets (V,Γ, I,O,λ);
Rotations ∶= [];
foreach v ∈ V.sort_by (d) do

if λ (v) == Y Z then Rotations.push_front (ESp;v
O , α (v));

else Rotations.push_front (ESp;v
O ,−α (v));

end
ChoiTab ∶= CliffordTableau(I ⊎O);
foreach i ∈ I do

ChoiTab.add_row (Zi ⋅ESp;i
O);

i′ ∶= [Corresponding input in I ′];
ChoiTab.add_row (Xi ⋅ESp;i′

O);
end
foreach p̂ ∈ FSets do ChoiTab.add_row (ESp̂

O);
return PauliGraph (ChoiTab,Rotations);

end
Algorithm 3: An algorithm for extracting a circuit in the form of a Pauli graph
from a measurement pattern.

Aaronson and Gottesman’s method [1] (when we have an isometry, its circuit
will be some qubit initialisations followed by a unitary, and we can find such a
unitary by adding more rows to the tableau until they span the full Pauli group
over the outputs, which can be identified by Gaussian elimination in O (∣O∣3)
time). The overall complexity is therefore dominated by the O (∣V ∣4) Pauli flow
identification.

Example 4.3.24

Suppose we start with the following measurement pattern and focussed Pauli
flow.

i d

a

o2

c o1

b

v λ (v) p (v) Odd (p (v)) {u ∣ v ≺ u}
i XY b, o2 i, a a, b, c, o1, o2
a Y Z a, c, d, o2 d, o1, o2 c, o1, o2
b XY c, d, o1 b, d, o1, o2 c, o1, o2
c XY o1 c o1
d Y o2 d o2

(4.89)

Because we have two outputs and only one input, there is also an extra fo-

227

cussed set p̂ = {c, o2}. We start by constructing the primary extraction strings
for each vertex from Lemma 4.3.12. Let ad ∈ {0,1} be such that α (d) = adπ.
Recall that we get one phase flip per edge between adjacent vertices in the
correction/focussed set (∣E ∩ (p (v) × p (v))∣), one phase flip for every two Y s
that appear in the stabilizer (∣p (v) ∩Odd (p (v))∣ /2), and one for each term
in the stabilizer that is absorbed from a Pauli measurement with angle π

(∣(p (v) ∪Odd (p (v))) ∩ {w ∣ λ (w) ∈ {X,Y,Z} ∧ α (w) = π}∣).

S S ∩O Odd (S) ∩O Edges Y ’s Paulis ESS
O

p (i) o2 0 0 I1X2

p (a) o2 o1, o2 4 2 d (−1)ad+1Z1Y2
p (b) o1 o1, o2 2 2 d (−1)ad+1 Y1Z2

p (c) o1 0 0 X1I2
p (d) o2 0 0 I1X2

p̂ o2 o1 0 0 Z1X2

(4.90)

We start by extracting the planar angles as rotations in ≻-order. We must
start with c, extracting it as ei

α(c)
2 X1I2 over the outputs.

Having extracted this, the projector on c becomes ⟨+X,0∣ so it can absorb the
corresponding Paulis on the stabilizers from p (a) and p (b). Either a or b can
be extracted next, giving e(−1)

ad
α(a)
2 Z1Y2 and e(−1)

ad+1
α(b)
2 Y1Z2 respectively. Note

that the phase of the rotation from a got an extra −1 since Da = 1 (λ (a) = Y Z).
The final rotation to be extracted is ei

α(i)
2 I1X2 from i. We don’t extract any

rotation from d since the measurement is already in a Pauli basis, and hence
we can treat it as part of the leftover Clifford process.

We now turn to tableau for this Clifford process which we can read from the
primary extraction strings. Γ can already be viewed as an input extension of
Γ∖{i} with input b, so we don’t need to perform an input extension here to get
that X on the input is mapped to (−1)ad+1 Y1Z2 (ESp;b

O) over the outputs. Z on
the input is mapped to I1X2 (ESp;i

O), and we have an extra row Z1X2 obtained
from p̂.

Ins Outs Sign
X Y Z (−)ad+1

Z X +
Z X +

(I1X2,−α (i)) (Z1Y2,− (−1)ad α (a)) (X1I2,−α (c))

(Y1Z2, (−1)ad α (b))

(4.91)
See how the dependency relation matches the ≺ ordering of the Pauli flow.

228

We can then synthesise a circuit from the Pauli graph component-wise. We
start with the tableau, for which an example circuit is given below.

RX(π2) RX(−π
2)

Zad+1 H

∣0⟩

(4.92)

For the rotations, the (I1X2,−α (i)) and (X1I2,−α (c)) are simply RX gates.
The other two rotations commute, and so can be efficiently diagonalised simul-
taneously with the following circuit:

RY ((−1)adα(b))

RZ((−1)ad+1α(a))RZ(π2) RZ(−π
2)RX(π2) RX(−π

2) (4.93)

Putting it all together, we obtain the final circuit:

RX(π2) RX(−π
2)

Zad+1 H

∣0⟩ RY ((−1)adα(b))

RZ((−1)ad+1α(a))RZ(π2) RZ(−π
2)RX(π2) RX(−π

2)RX(−α(i))

RX(−α(c))

(4.94)

Remark 4.3.25

It is relatively easy to see what structure/redundancy is being exploited when
we move Clifford rotations around a Pauli graph or modifying rotations with
the Product Rotation Lemma to optimise a circuit. On the other hand, graph-
theoretic rewrites used to simplify measurement patterns have less obvious in-
terpretations in how they relate to optimisations in the circuit model, especially
through the lens of prior extraction algorithms [7] which would be very sensitive
to changes in the pattern. To compare the two, we can consider extracting a
Pauli graph from a measurement pattern before and after a rewrite to observe
the changes in the order, Pauli strings, and phases of the rotations from each
measurement or tableau row, and look for a sequence of simple rewrites on the
Pauli graph that produces the same effect, i.e. makes the following diagram
commute:

229

MBQC Pauli graph

MBQC Pauli graph

rewrite

extract

?

extract

(4.95)

In the paper presenting the extraction algorithm [105], we proved that the
following rewrites on measurement patterns can be simulated in the Pauli graph
framework:

• Vertex relabelling: if a planar measurement is fixed to some angle α (u) ∈
{0, π2 , π,

3π
2
}, then it is equivalent to some Pauli measurement so we can

change its label.

• Z vertex elimination: any vertex u measured in the Z basis can be re-
moved from the pattern, up to some modifications of the angles on its
neighbours and additional gates at any neighbour outputs.

• Local complementation and pivoting: similar to Z vertex elimination,
this modifies the local connectivity of the graph (complementing the con-
nectivity between neighbours of the chosen vertex) along with the mea-
surements themselves and gates on outputs.

• Switching one focussed Pauli flow for another.

Any additional gates at the end are Clifford, which we can spawn along
with their inverses and pull the inverses back through the Pauli graph into
the Clifford circuit at the start. Any changes to the measurement angles give
additional Clifford rotations throughout the Pauli graph, which can also be
simulated by pulling their inverses back to the start. These account for all the
changes to the Pauli strings of the rotations in the first three cases. As for
switching to a different focussed Pauli flow, the differences always correspond
to a combination of row updates to the tableau and applications of the Product
Rotation Lemma between the Clifford process and the rotations in the Pauli
graph.

The proofs are rather tedious but straightforward, following the steps:

1. Prove that the existence of Pauli flows is preserved by giving explicit
updates to the focussed Pauli flows (and focussed sets);

230

2. Give the explicit updates to the primary extraction strings (and free sta-
bilizers) for each rewrite;

3. Justify that the same updates are performed by the Pauli graph rewrite.

4.3.5 Interpretation in ZX-Calculus

This section will not contain any new results, instead serving as an alternative visual
representation of the extraction algorithm to cement the reader’s intuitions or support
readers who are less comfortable with the linear algebra used so far.

The ZX-calculus [30] provides a completely diagrammatic way to reason about
linear maps that arise in quantum computation with qubits. The generators can
universally represent any such linear map and the associated rewrite rules give a sound
and complete axiomatisation [91, 116] of equivalence of diagrams with respect to their
maps. The intuitive nature of visualisations make it an attractive representation for
teaching and exploring quantum computing. We will assume the reader is familiar
with the fundamentals, and recommend van de Wetering’s literature review [114] for
a full introduction.

Throughout this section, we will ignore all global scalars with ≈ (both global phase
and normalisation constants) and use the shorthand of ± on spiders to refer to ±π

2 .
The crux of the extraction algorithm is from the rules of Pauli rotations and their

relationship with stabilizers through the Product Rotation Lemma. We will adopt
the Pauli gadget notation from [36]. Starting with a standard circuit implementation
of e−i

α
2X1Y2Z3 , we can derive the form of the symmetric phase gadget [79] (Z1Z2Z3

rotation) and define the new notation to just consider the changes of local basis.

+
α

− ≈ +

α

− =∶

α

(4.96)

A red leg of a Pauli gadget indicates that it acts on that qubit in the X basis, and
similarly a green leg for the Z basis or mixed colours for Y . We will also allow the
phase to be imaginary, corresponding to a ±π

2 phase on the internal phase gadget,
allowing us to split Y legs according to Y = −iZX.

α

≈

−iα

∶=

α

−

(4.97)

231

From these definitions, one can see that adjacent legs of a Pauli gadget behave
in correspondence with the Pauli operators themselves in the sense that legs of the
same type cancel out and legs of different types can be reordered up to a phase flip
or combined to give the third kind.

α

⋯

≈
α

⋯

(4.98)
α

⋯

≈
−α
⋯

≈
−iα

⋯

(4.99)

This goes hand-in-hand with the visual representation of the Product Rotation
Lemma. Given each generator from the stabilizer fragment of the ZX-calculus (all
phases are multiples of π

2), one can find a generating set of stabilizers and prove that,
in each case, one can add/remove legs of a Pauli gadget exactly where π phases pop
up.

= π
π
π
= π

π

⇓ (4.100)

α

⋯

≈

α

⋯

≈

α

⋯

= π

⇓ (4.101)

α

⋯

≈
α

⋯

+ = + π
−i

π

⇓ (4.102)

+
α

⋯

≈ +
−iα

⋯

π = π π
−1

⇓ (4.103)

π
α

⋯

≈ π
−α
⋯

− = − π
i

π

⇓ (4.104)

−
α

⋯

≈ −
iα

⋯

We can actually view the Commutation Rules themselves as special cases of
the Product Rotation Lemma. The commutation of the Pauli strings just depends on
how many of the qubit wires have different colours - an even number of differences
means the Pauli strings commute and an odd number means they anticommute.

α β

=

α β

π

π π

π
π π ≈

αβ

(4.105)

232

α π
2

=

α π
2

π

π

π
≈

απ
2

≈

−iαπ
2

(4.106)

Now we turn to the measurement patterns themselves and interpret them in the
ZX-calculus. The resource states are modelled by a graph-like diagram (a ZX-diagram
with only green spiders connected by Hadamards), following from the fact that the
∣+⟩ state is given by a 0 phase green spider, and the CZ gates are green spiders on
each qubit with a Hadamard in between.uwwwv ∣+⟩

∣+⟩

}���~ ≈ = =∶ (4.107)

Since every spider here has 0 phase, the stabilizers of the resource state arise easily
from the π-copy rule.

= π π =
π

π
π

= π

π

π

= π

π

π

(4.108)

If we focus on the intended branch of the measurement pattern, it suffices to represent
the measurements by an appropriate postselection. The form of this depends on the
measurement label.

λ(v) =XY ↦ −α =
−α

(4.109) λ(v) =X ↦ aπ (4.110)

λ(v) =XZ ↦ + α ≈
−α

(4.111) λ(v) = Y ↦ aπ − π
2 (4.112)

λ(v) = Y Z ↦ α =
α

(4.113) λ(v) = Z ↦ aπ (4.114)

We can deterministically rewrite any ZX-diagram to a graph-like diagram [44],
resembling such a measurement pattern with all measurements in the XY plane (in-
cluding bothX and Y Pauli measurements). Therefore, tools like flows and extraction
methods for MBQC can be applied to arbitrary ZX-diagrams.

We can now piece it all together to start visualising the extraction procedure. We

233

will use the same pattern as Example 4.3.24 for consistency, fixing α (d) = π.

i d

a

o2

c o1

b
↦

+−α(b)

−α(i)

α(a) −α(c)

(4.115)

The Pauli flow told us that the rotation from vertex c should be extracted first.
The stabilizer generated by o1 introduces an X on that output and a Z at c, with
which we can apply the Product Rotation Lemma. This adds a Z leg to the gadget
at c, cancelling the existing one, and a new X leg at o1, effectively moving the Pauli
gadget to the output.

+−α(b)

−α(i)

α(a) −α(c)

=

+−α(b)

−α(i)

α(a)
−α(c)

π
π

≈

+−α(b)

−α(i)

α(a)

−α(c)

(4.116)

Extracting the rotation at a is a little more involved. Taking the stabilizer straight
from the flow gives some non-trivial effects at c and d, so if we were to just apply
the Product Rotation Lemma immediately we wouldn’t be removing it from the
graph completely, just moving it onto different qubits. However, we can remove these
additional Paulis because the flow is focussed and we have already extracted the
rotation from c.

+−α(b)

−α(i)

α(a)

−α(c) =

+

−α(b)

−α(i)

α(a)

−α(c)

π π

π

π
π

π

π

−1

234

=

+−α(b)

−α(i)

α(a)

−α(c)

π

π

π

π

−i

(4.117)

≈

+−α(b)

−α(i) α(a) −α(c)

Continuing in this fashion, we can extract the other rotations until we have the
form of a Clifford process followed by a sequence of rotations.

+

−α(b)−α(i) α(a) −α(c) (4.118)

Finally, we focus on the Clifford process to obtain the rows of the tableau: the Z
row,

+

=

+π
π

π

π

=

+
π

π =

+
ππ

(4.119)

the X row,

+

=

+

=

+

π π

π

π

π

π

π−1
=

+π

π

π

π−i
(4.120)

235

=

+

π

π

π−i

π
=

+

π

π

π−i

π

and the stabilizer over the outputs.

+

=

+

π
π

π

π

=

+

π

π

(4.121)

4.4 Causal Structure via Parameterisation
Measurement patterns and Pauli graphs share notions of temporal dependencies be-
tween the measurements/rotations, captured by the partial orders in the flow or graph.
This would, at least superficially, fall in line with viewing these as causal structures.
In this final section, we will reframe measurement patterns and Pauli graphs within
the framework of causal categories to more rigorously lay out this correspondence
with causal structures and information signalling.

4.4.1 Signalling Orders in Flow

To model something in a causal category, we need to be able to express it as an
open process, where there is a notion of interaction between the process and its
environment. To describe a measurement pattern, it is clear that the interface of this
open process should at least include the input and output qubits. The choices of
input state and observations on the outputs are made by the programmer, who also
chooses the measurement angles - let’s also include those in the interface. To keep the
picture simple, we will ignore the potential for measurement errors and any desire to
guarantee a deterministic pure quantum channel, and allow the programmer to choose
from a range of postselection operations. This reduces the “process and environment”
dynamic to the constant resource state interacting with the programmer. We will
still restrict the postselections available to the programmer according to the labels on
the qubits by defining the following objects in Caus [CP∗].

236

Definition 4.4.1: Measurement objects

For each label L ∈ {XY,XZ,Y Z,X,Y,Z}, we define the following object in
Caus [CP∗], where CP (−) ∶ FHilb→ CP∗ is the standard “doubling” functor:

QL ∶=
⎛
⎝
CP (C2) ,

⎧⎪⎪⎨⎪⎪⎩

{CP (∣+L,α⟩) ∣ α ∈ R}∗∗ L ∈ {XY,XZ,Y Z}
{CP (∣+L,0⟩) ,CP (∣+L,π⟩)}∗∗ L ∈ {X,Y,Z}

⎞
⎠

(4.122)

To each labelled open graph (G, I,O,λ), we associate a local interpretation
Γ ∶ V → Ob (Caus [C]):

Γ (v) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Q1∗ `Q1 v ∈ I ∩O
Q1∗ `Q∗

λ(v) v ∈ I ∩O
Q1 v ∈ I ∩O
Q∗

λ(v) v ∈ I ∩O

(4.123)

where Q1 ∶= (CP (C2) ,{ }∗) is the first-order object containing density matri-
ces for a single qubit.

The pure postselections are extremal points on the Bloch sphere, so the closure
just gives probabilistic mixtures to fully span a plane/axis of the sphere. If we take
L = XY as an example, the states in c∗QXY

are those which, when measured at any
angle in the XY plane, give each outcome with equal likelihood - this is precisely
those that lie on the Z axis of the Bloch sphere, including mixtures. In general,
Q∗L ≅QL′ where L′ is the orthogonal label to L.

It is important to note that these objects restrict postselections but not actual
measurements - we can still apply any binary test QL ` 2 as per the Binary Test
Lemma, as it only constrains the marginal effect to the appropriate subspace of the
Bloch sphere. When we discuss signalling across the resource state, we can use this
fact to assume the programmer has essentially complete access to the resource state
for the purposes of observations.

If we consider just the local effects (i.e. choices of input state, postselections, and
effect on the output), the resource state must at least be compatible with

¸
v∈V

Γ (v) ≅ (
¸
i∈I

Q1∗)` (¸
o∈O

Q1)` ⎛
⎝
¸
v∈O

Q∗λ(v)
⎞
⎠

≅ (⊗
i∈I

Q1⊸⊗
o∈O

Q1)` ⎛
⎝
¸
v∈O

Q∗λ(v)
⎞
⎠

(4.124)

237

i.e. any choice of measurement angles yield some quantum channel from the inputs
to the outputs. The bidirectional signalling of ` between the channel and measure-
ments captures the influence of programmability, where the channel implemented
may depend on the measurement angles chosen, and the intermediate state prior to
measurements may depend on the chosen input state.

The only scope left for refining this causal type to something more specific is to
look at signalling between the measured vertices. In the spirit of Equation 2.173, we
would consider signalling in the context of some chosen input state and discarding the
outputs - the constraint “P ⊆ O is non-signalling to O∖P” still permits the choices of
measurement angles over P to influence the outputs, just not any local measurements
at O ∖ P (even measurements outside the planes/axes specified by λ). If flow really
does give a causal structure, we expect this to hold for any P that is closed under
the ≺ relation.

Let’s take a simple example where λ assigns all vertices planar labels, so it is
sufficient to consider gflow, and P is a single vertex v at measurement depth 1, so
all corrections for the measurement at v must be over the outputs. For any choice of
local postselection ⟨+λ(v),α(v)∣, we can extract the angle as a rotation over the outputs
which is subsequently discarded, making the marginal state over O ∖ {v} the same as
if ⟨+λ(v),0∣ had been chosen. By linearity, this marginal must also be the same for any
mixed effect applied at v. This is enough to show that the resource state is of the
following type:

(⊗
i∈I

Q1⊸⊗
o∈O

Q1)` ⎛⎜
⎝

⎛
⎜
⎝

¸
u∈O∖{v}

Q∗λ(u)

⎞
⎟
⎠
<Q∗λ(v)

⎞
⎟
⎠

(4.125)

Now suppose that correcting v involves some Pauli corrections on non-outputs,
and let P = {u ∣ v ≺ u}∪ {v}. Trying the same trick with extracting the angle from v

will give a rotation across both the outputs and some of these future measured qubits.
However, by extracting the measurement angles from all qubits in P in measurement
depth order, we can inductively guarantee a constant marginal. At each step, all
future angles have already been extracted, so we can extract directly to the outputs
using a focussed Pauli flow.

(⊗
i∈I

Q1⊸⊗
o∈O

Q1)` ⎛
⎝
⎛
⎝
¸

u∈O∖P

Q∗λ(u)
⎞
⎠
< (

¸
u∈P

Q∗λ(u))
⎞
⎠

(4.126)

When Pauli measurement labels are involved, the process is a little more compli-
cated since now two vertices may be mutually involved in each other’s corrections.

238

The extraction algorithm supposes we have some fixed postselections on all qubits
with Pauli labels, so we instead only find that there is no signalling from P ⊆ O
to O ∖ P when restricted to the subsets with planar measurements. A Pauli flow
with order ≺ can be focussed without changing the ordering, enabling us to follow
the extraction algorithm exactly (i.e. using the focussed property to eliminate the
corrections on measured qubits to move the rotation to the outputs, where it can be
discarded straightforwardly).

(⊗
i∈I

Q1⊸⊗
o∈O

Q1)`
⎛
⎜⎜⎜
⎝

¸
u∈O

λ(u)∈{X,Y,Z}

Q∗λ(u)

⎞
⎟⎟⎟
⎠
`
⎛
⎜⎜⎜
⎝

⎛
⎜⎜⎜
⎝

¸
u∈O∖P

λ(u)∉{X,Y,Z}

Q∗λ(u)

⎞
⎟⎟⎟
⎠
<
⎛
⎜⎜
⎝

¸
u∈P

λ(u)∉{X,Y,Z}

Q∗λ(u)

⎞
⎟⎟
⎠

⎞
⎟⎟⎟
⎠

(4.127)
We could even still extract the angles from the Pauli vertices in P as if they were

planar to get the slightly more specific type below.

(⊗
i∈I

Q1⊸⊗
o∈O

Q1)`
⎛
⎜⎜⎜
⎝

¸
u∈O∖P

λ(u)∈{X,Y,Z}

Q∗λ(u)

⎞
⎟⎟⎟
⎠
`
⎛
⎜⎜⎜
⎝

⎛
⎜⎜⎜
⎝

¸
u∈O∖P

λ(u)∉{X,Y,Z}

Q∗λ(u)

⎞
⎟⎟⎟
⎠
< (

¸
u∈P

Q∗λ(u))
⎞
⎟⎟⎟
⎠

(4.128)
For any choice of P that is closed under ≺, O ∖ P is down-closed in the sense of

Definition 2.8.9, and all down-closed sets can be formed in this way. So by taking the
intersections of 4.127 for every P , we obtain a graph type matching ≺ over the planar
vertices.

Theorem 4.4.2: Flow Causality Theorem

Let (G, I,O,λ) be a labelled open graph with a Pauli flow (p,≺). Then the
linear map

CP
⎛
⎝
(∏
u∼v

CZu,v)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠
⎞
⎠

(4.129)

is a causal morphism of type

⊗
i∈I

Q1 → (⊗
o∈O

Q1)`
⎛
⎜⎜⎜
⎝

¸
u∈O

λ(u)∈{X,Y,Z}

Q∗λ(u)

⎞
⎟⎟⎟
⎠
`Gr

{u↦Q∗
λ(u) ∣ λ(u)∉{X,Y,Z}}

G≺
(4.130)

where G≺ is the graph over {u ∈ O ∣ λ (u) ∉ {X,Y,Z}} with edges given by ≺.

239

Proof. By linearity, we can consider pure input states and postselections, so we
will just work in the category FHilb rather than CP∗ for clarity.

Wlog, assume that (p,≺) is focussed (otherwise, we apply the Focussing
Lemma which retains the order ≺).

Fix an input ∣ψ⟩ and Pauli postselections {⟨+λ(u),auπ ∣u}λ(u)∈{X,Y,Z}. Then
consider any arbitrary down-closed set Q ⊆ {u ∈ O ∣ λ (u) ∉ {X,Y,Z}}, so the
remaining planar vertices P ∶= {u ∈ O ∣ λ (u) ∉ {X,Y,Z}} ∖Q are closed under
≺. For any choices of postselection angles α over P , look at the linear map:

(∏
u∈P
⟨+λ(u),α(u)∣u)

⎛
⎜⎜
⎝

∏
u∈O

λ(u)∈{X,Y,Z}

⟨+λ(u),auπ ∣u
⎞
⎟⎟
⎠
(∏
u∼v

CZu,v)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠
∣ψ⟩I (4.131)

Guided by the focussed Pauli flow, we can extract each of the measurement
angles to leave the following linear map followed by some Pauli rotations over
the outputs (up to global phase):

(∏
u∈P
⟨+λ(u),0∣u)

⎛
⎜⎜
⎝

∏
u∈O

λ(u)∈{X,Y,Z}

⟨+λ(u),auπ ∣u
⎞
⎟⎟
⎠
(∏
u∼v

CZu,v)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠
∣ψ⟩I (4.132)

The Pauli rotations are trace-preserving, so we can ignore them when tracing
over the outputs. The above linear map is independent of the choices of angles
α, so we have the non-signalling condition required for the graph type.

As for the converse of inferring the existence of a flow from causal types, the basic
type of

˙
v∈V Γ (v) (Equation 4.124) implies that every combination of measurement

outcomes occurs with the same probability. Using results by Mhalla et al. [87], this
implies the existence of gflow in the case where ∣I ∣ = ∣O∣ and ∀v ∈ O. λ (v) =XY , but
they also gave an example open graph with ∣I ∣ ≠ ∣O∣ which has equal probability of
all measurement outcomes but no gflow.

We have shown above how to infer non-signalling across partitions of the planar
vertices of the graph, but given partial orders can be completely defined by pairs of
vertices, can we narrow this down to determine from flow exactly when one vertex
can signal to another? Whilst the corrections for vertex v show that it can clearly
signal to the set p (v) ∪ Odd (p (v)), it may not be possible to actually detect the
difference when we only have access to a subset of this, similar to the one-time pad

240

example discussed in Section 2.8.7. We conjecture that the ability to signal between
any two vertices is actually determined by the common orderings amongst all Pauli
flows.

Conjecture 4.4.3

Let (G, I,O,λ) be a labelled open graph that admits a Pauli flow. Then, for
any two u, v ∈ O, the linear map

CP
⎛
⎝
(∏
u∼v

CZu,v)
⎛
⎝∏
u∈I
∣+⟩u
⎞
⎠
⎞
⎠

(4.133)

is a causal morphism of type

⊗
i∈I

Q1 → (⊗
o∈O

Q1)` ⎛⎜
⎝

¸
w∈O∖{u,v}

Q∗λ(w)

⎞
⎟
⎠
` (Q∗λ(v) <Q∗λ(u)) (4.134)

(i.e. there is no signalling from u to v) iff there exists some Pauli flow (p,≺)
such that v ⪯ u and if λ (v) ∈ {X,Y,Z} then ∀w ≻ u. v ∉ p (w) ∪Odd (p (w)).

The “if” direction of this conjecture is straightforward to prove, as such a Pauli
flow can be focussed without removing this property and then we can extract the any
angle from u to the outputs without using v. The “only if” direction remains for future
investigation. If this conjecture were to hold, this would be especially important for
the unitary (∣I ∣ = ∣O∣) case where there is a unique focussed Pauli flow, and hence
a unique partial order ≺ that precisely describes the signalling between any pair of
vertices.

4.4.2 Causal Structure in Parameterised Quantum Circuits

We can apply an analogous construction to view parameterised quantum circuits as
a multi-party protocol with some potential signalling between the parties who decide
the parameter values. For this discussion we will consider linear parameters - rotations
may be parameterised by a sum of real-valued parameters with some constant offset,
and each parameter appears in the circuit once.

If we start with a representation of the quantum circuit in the ZX-calculus, each
parameterised rotation gate is a spider with the parameter as part of the phase. We
can unfuse these spiders to pull each parameter out as a unique one-legged spider
matching one of the planar projector cases of Equations 4.109, 4.111, and 4.113. If

241

we cut these off of the diagram, we obtain a presentation of the parameterised circuit
as a linear map onto which we can apply postselections to initialise the parameters.

RZ (α)

RZ (β)
ZZPhase (γ)

H

⇓

α
γ

β
(4.135)

⇓
α β γ

We can then immediately specify a local interpretation in terms of objects of
Ob (Caus [CP∗]) in the same way as Equation 4.124.

The possible circuit implementations of this parameterised linear map give infor-
mation about the causal structure, as parameter α cannot signal to parameter β if
there exists some circuit implementation in which the gate parameterised by α ap-
pears after the one for β. All gates are trace-preserving, so in the context where we
discard the outputs of the circuit we can remove gates, including the α rotation, to
leave a marginal process at β that is independent of α.

The Pauli graph representation of the parameterised circuit would allow us to ab-
stract away commutativity between some parameterised gates, indicating that there is
no signalling in either direction between them. Given there are semantics-preserving
rewrites that can alter the dependency relation in the Pauli graph, it cannot capture
the entire causal structure of the parameterised linear map; though if Conjecture 4.4.3
holds, the correspondence between the focussed Pauli flows of a measurement pattern
and the Pauli graph of the extracted circuit would allow us to obtain an exact char-
acterisation of signalling between parameters as the necessary orderings across every
Pauli graph for the given circuit.

Such a result could be significant for the compilation of parameterised quantum
circuits. Any causal structure between the parameters implies some necessary order-
ings between their corresponding parameterised gates in any implementation of the
same linear map, which reduces the search space of possible circuit implementations.

Additionally, knowledge of the causal structure can help reduce the complexity
of parameter optimisation in quantum machine learning applications [13]. Relating

242

causal structure to structures like Pauli flow or Pauli graphs that are easy to con-
struct in advance may be fruitful in highlighting more ways to speed up the training
procedure for a given parameterised circuit.

243

Chapter 5

Outlook

This thesis contributes to the literature of causal structures in higher-order processes
across abstract process theories, formal logic, and practical quantum computing, all
using the common framework of causal categories. Between the standard examples of
Caus [CP∗] for finite-dimensional quantum theory, Caus [Mat[R+]] for finite-outcome
classical probability theory, and Caus [Mat[R]] for its pseudo-probabilistic equivalent,
they share identical constructions for a hierarchy of types characterising non-signalling
constraints, and in every case the processes compatible with a given causal structure
by signal-consistency (i.e. obeying the appropriate restrictions on information sig-
nalling between parties) are exactly the same as those that are causally realisable
(determined by factorising into the shape of a graph, which we can restrict further to
passing a single classical bit between each local process) up to affine combination.

The example categories additionally admit a common logic that exactly captures
composition of higher-order causal structures. The proof of this relied entirely on the
definite causal structures, showing that the existence of indefinite causal structures
does not introduce any new rules for composing black boxes. Similarly, the logic is
entirely determined by the fragment inductively generated by first-order systems and
transformations, meaning there is no new compositional behaviour satisfied by the
extension to arbitrary affine-closed spaces. The relation to pomset logic situates this
framework amongst the landscape of logics for mixing spacial and temporal connec-
tives, showing it has more structure than BV, GV, and MAV and giving physical
intuition for all theorems of these logics.

Specific to quantum computing, we gave a new construction relating MBQC to
parameterised quantum circuits through which it is clear that causal structure in
the form of ordering restrictions between the measurements or parameterised gates
is preserved faithfully. These relate to traditional causal structure by coinciding

244

with non-signalling constraints between the parameters when they are viewed as lo-
cal systems in a multi-party protocol deciding the overall channel. The extraction
algorithm itself is beneficial for automated circuit compilation where it is common
to convert the circuit to different representations to identify new optimisations, such
as the ZX-calculus which is closely related to MBQC [30, 45]. To this end, it im-
proves on the previous algorithm [7] by weakening the requirements on the input
pattern/ZX-diagram, and produces circuits in a form compatible with other existing
circuit optimisation procedures [120, 36, 37, 115]. The connection to causal struc-
ture also has potential to enable future circuit optimisations or algorithms guided
by causal inference where knowing the causal structure of the target linear map can
reduce the size of the search space for a circuit implementation.

As a research project, the majority of these results were straightforward by taking
the obvious generalisations of existing definitions and results known for first-order
quantum processes or by generating and studying example processes (where the code
in Appendix B was of great use), with a few exceptions. The Seq Equivalence Theorem
required imposing additional assumptions on the base category (see Remark 2.6.16)
without which it may have only been possible to show a de Morgan duality between
one-way signalling and semi-localisability - still an interesting result, but not quite
as satisfying as equivalence. The proof of the Graph Equivalence Theorem was also
challenging to find the right decomposition of an arbitrary process into a network of
local tests. Even the definitions of preferred bases and graph types were proposed late
in the project to simplify earlier proofs of the Non-signalling Theorem and Causal
Characterisation Theorem. The development of Section 2.9 was also surprising, where
I expected more of the results of effectus theory to carry over, but the failures gave
insight into why the concept of partiality in theories of higher-order processes is not
as trivial as in the first-order case.

Each avenue of research within this thesis could be pushed further by future
projects, with the following suggestions:

• In Section 2.8.1, we remarked that there was some aesthetic similarity between
graph states for local graph types and Bayesian networks, but this is not an
exact match. True Bayesian networks broadcast the observable outcome to
the dependents. In order to define another alternative graph type definition
that actually matches with this, there are two big hurdles to overcome. The
first is the lack of a broadcasting map in CP∗. One can define a linear map
that performs the right action but it will fail to be completely positive; that

245

just means that our definition would have to write the network expression in
Sub (C) and just assert that the overall composition exists in C. The second
issue is whether broadcasting would work with higher-order structure - when
effects are no longer unique, would we have to ensure that any causal effect
works as a counit for the broadcasting map (dually, restricting the ability to
only broadcast the causal states), or is the uniform effect sufficient knowing that
this constrains the local processes of the network to not only have a constant
marginal but this specific marginal? Would either of these give the right higher-
order generalisation or are Bayesian networks too inherently tied to a first-order
picture?

• The investigation into options for building a theory of partial maps in Section 2.9
eventually leaned towards combining the input and output spaces into a single
object and looking at the binary tests on it, possibly modulo an equivalence
relation. Relating this back to the inspiration of effectus theory, this unified
partial maps with predicates. Knowing that predicates in an effectus always
form an effect algebra, we could ask whether the same is true here and many
more similar questions about what structure and results move over, even as
special cases for partial first-order causal processes. Some definitions would
clearly need adapting to work, like image objects requiring us to explicitly take
affine closures again.

• A full characterisation of causal consistency would extend causal logic to richer
grammars to incorporate all operators present in the Caus [−] construction. Our
brief discussion of this in Section 3.5 showed that the additives, in particular,
would likely be a challenging task to integrate into the logic as we would need to
break the existing time-symmetry to capture the necessary distributive laws and
preservation of first-order systems under coproduct. There exist multiple meth-
ods of extending proof-nets for MLL to MALL [55, 70] that differ on whether
they equate sequent proofs that differ by reordering rules for ⊗ and ×. Knowing
that our additives are categorical (co)products and we don’t particularly care
for the size of proofs, we will want to equate such proofs; it remains to attempt
to integrate the corresponding techniques of [70] into causal proof-nets.

• The assumptions of an additive precausal category can be quite restrictive in
practice, eliminating several example categories of key interest such as Set, Rel,
Hilb, unitaries, and real quantum theory. Relaxing the assumptions on the

246

base category can help us to see more easily when the key results of this thesis
can be generalised to other contexts. To this end, we advocate for adopting
and extending the profunctorial framework of Hefford and Wilson [62] which
is fully generic and can apply to any symmetric monoidal category. Their ini-
tial results connecting logical content of the strong endoprofunctor category to
decomposition theorems are worth pushing further to give logical accounts of
physical structure and vice versa - especially if it can give a better physical mo-
tivation for the distinction between theories modelling BV and those modelling
pomset/causal logic. A starting point could be to generalise their framework to
suitably-enriched categories to reuse some of the linear algebraic proofs of this
thesis.

• To help further the study of categorical models of causation and relating them
to logic, it would help to have a true characterisation of pomset/causal logic
through some kind of free category construction. A good candidate could be a
weakening of a dependence category [104] to a pseudo-algebra of an operad that
just considers series-parallel graphs, on top of monoidal closure and a duality.

• Since the failure of causal consistency for some scenario amounts to the ex-
istence of a cycle of information flow (such as in Example 3.3.12), one can
analogise this as checking for deadlock-freedom in a concurrent programming
model. This raises some curiosity as to whether there is any correspondence
between deadlock-free π-calculus programs and pomset or a related logic that
can be proved using similar techniques. BV, GV, and MAV are already studied
as logics for session types [27, 3]. By imagining ideal send and receive opera-
tions as physical processes between the channels and the local threads, we could
argue about the information signalling present to obtain candidate causal types.
Connecting these in a fixed manner (to build a diagram we can check for causal
consistency) would impose a deterministic matching of the sends and receives
across the entire execution of the protocol as done with session types [65, 66].
More work is required to formalise this and verify the conjecture of capturing
deadlock-freedom.

• Conjecture 4.4.3 follows the evidence for strong links between signalling-based
causal structure in parameterised linear maps and temporal dependencies in
their circuit implementations or flows in MBQC. Beyond just answering the
conjecture, there is space for more work here to see if causal discovery algo-
rithms (existing ones or new ones based on characterisations from flow or Pauli

247

graphs) can be applied to improve the time complexity of parameterised circuit
synthesis. Though in the case where the parameterisations capture all non-
Clifford behaviour, it is likely that more efficient causal discovery is possible by
directly studying the tableau of the remaining Clifford process.

248

Bibliography

[1] S. Aaronson and D. Gottesman. Improved Simulation of Stabilizer Cir-
cuits. Physical Review A, 70(5):052328, jun 2004. doi:10.1103/PhysRevA.
70.052328.

[2] S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative
linear logic. Journal of Symbolic Logic, 59(2):543–574, jun 1994. doi:10.2307/
2275407.

[3] M. Acclavio, R. Horne, S. Mauw, and L. Straßburger. A Graphical Proof Theory
of Logical Time. In 7th International Conference on Formal Structures for
Computation and Deduction (FCSD 2022), Leibniz International Proceedings in
Informatics (LIPIcs), Haifa, Israel, 2022. doi:10.4230/LIPIcs.FSCD.2022.22.

[4] M. Aguiar and S. Mahajan. Monoidal Functors, Species and Hopf Algebras,
volume 29 of CRM Monograph Series. American Mathematical Society, Provi-
dence, Rhode Island, oct 2010. doi:10.1090/crmm/029.

[5] M. Amy. Formal Methods in Quantum Circuit Design. PhD thesis, University
of Waterloo, 2019. URL: http://hdl.handle.net/10012/14480.

[6] R. Atkey and W. Kokke. A Semantic Proof of Generalised Cut Elimination for
Deep Inference. In 40th Conference on Mathematical Foundations of Program-
ming Semantics (MFPS XL), Electronic Notes in Theoretical Informatics and
Computer Science doi:10.46298/entics.14870.

[7] M. Backens, H. Miller-Bakewell, G. de Felice, L. Lobski, and J. van de Wetering.
There and back again: A circuit extraction tale. Quantum, 5:421, mar 2021.
doi:10.22331/q-2021-03-25-421.

[8] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. Journal of Symbolic Logic, 48(4):931–
940, 1983. doi:10.2307/2273659.

249

https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.2307/2275407
https://doi.org/10.2307/2275407
https://doi.org/10.4230/LIPIcs.FSCD.2022.22
https://doi.org/10.1090/crmm/029
http://hdl.handle.net/10012/14480
https://doi.org/10.46298/entics.14870
https://doi.org/10.22331/q-2021-03-25-421
https://doi.org/10.2307/2273659

[9] P. K. Barkoutsos, J. F. Gonthier, I. Sokolov, N. Moll, G. Salis, A. Fuhrer,
M. Ganzhorn, D. J. Egger, M. Troyer, A. Mezzacapo, S. Filipp, and I. Tavernelli.
Quantum algorithms for electronic structure calculations: Particle-hole Hamilto-
nian and optimized wave-function expansions. Physical Review A, 98(2):022322,
2018. doi:10.1103/PhysRevA.98.022322.

[10] J. Barrett. Information processing in generalized probabilistic theories. Physical
Review A - Atomic, Molecular, and Optical Physics, 75(3):032304, mar 2007.
doi:10.1103/PhysRevA.75.032304.

[11] Ä. Baumeler and E. Tselentis. Equivalence of Grandfather and Information
Antinomy Under Intervention. In 17th International Conference on Quantum
Physics and Logic (QPL 2020), Electronic Proceedings in Theoretical Computer
Science, 340:1-12, sep 2021. doi:10.4204/EPTCS.340.1.

[12] D. Beckman, D. Gottesman, M. A. Nielsen, and J. Preskill. Causal and localiz-
able quantum operations. Physical Review A - Atomic, Molecular, and Optical
Physics, 64(5):21, oct 2001. doi:10.1103/PhysRevA.64.052309.

[13] M. Benedetti, M. Fiorentini, and M. Lubasch. Hardware-efficient variational
quantum algorithms for time evolution. Physical Review Research, 3(3):33083,
sep 2021. doi:10.1103/PhysRevResearch.3.033083.

[14] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Woot-
ters. Teleporting an unknown quantum state via dual classical and Einstein-
Podolsky-Rosen channels. Physical Review Letters, 70(13):1895–1899, 1993.
doi:10.1103/PhysRevLett.70.1895.

[15] A. Bisio and P. Perinotti. Theoretical framework for higher-order quantum
theory. Proceedings of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, 475(2225), may 2019. doi:10.1098/rspa.2018.0706.

[16] R. Blute. Linear logic, coherence and dinaturality. Theoretical Computer Sci-
ence, 115(1):3–41, 1993. doi:10.1016/0304-3975(93)90053-V.

[17] R. Blute, P. Panangaden, and S. Slavnov. Deep inference and probabilistic
coherence spaces. Applied Categorical Structures, 20:209–228, 2012. doi:10.
1007/s10485-010-9241-0.

250

https://doi.org/10.1103/PhysRevA.98.022322
https://doi.org/10.1103/PhysRevA.75.032304
https://doi.org/10.4204/EPTCS.340.1
https://doi.org/10.1103/PhysRevA.64.052309
https://doi.org/10.1103/PhysRevResearch.3.033083
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1098/rspa.2018.0706
https://doi.org/10.1016/0304-3975(93)90053-V
https://doi.org/10.1007/s10485-010-9241-0
https://doi.org/10.1007/s10485-010-9241-0

[18] S. Bravyi, J. M. Gambetta, A. Mezzacapo, and K. Temme. Tapering off qubits
to simulate fermionic Hamiltonians. jan 2017. arXiv:1701.08213.

[19] D. E. Browne, E. Kashefi, M. Mhalla, and S. Perdrix. Generalized flow and de-
terminism in measurement-based quantum computation. New Journal of Physics,
9(8):250–250, aug 2007. doi:10.1088/1367-2630/9/8/250.

[20] K. Brünnler and A. F. Tiu. A local system for classical logic. In Logic for
Programming Artificial Intelligence and Reasoning (LPAR 2001), Lecture Notes
in Computer Science, 2250:347–361, 2001. doi:10.1007/3-540-45653-8_24.

[21] P. J. Cavalcanti, J. H. Selby, J. Sikora, and A. B. Sainz. Simulating all multi-
partite non-signalling channels via quasiprobabilistic mixtures of local channels
in generalised probabilistic theories. Journal of Physics A: Mathematical and
Theoretical, 55(40):404001, apr 2022. doi:10.1088/1751-8121/ac8ea4.

[22] G. Chiribella, G. M. D’Ariano, and P. Perinotti. Theoretical framework for
quantum networks. Physical Review A, 80(2):022339, aug 2009. doi:10.1103/
PhysRevA.80.022339.

[23] G. Chiribella, G. M. D’Ariano, and P. Perinotti. Probabilistic theories with pu-
rification. Physical Review A, 81(6):062348, jun 2010. doi:10.1103/PhysRevA.
81.062348.

[24] G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron. Quantum compu-
tations without definite causal structure. Physical Review A, 88(2):022318, aug
2013. doi:10.1103/PhysRevA.88.022318.

[25] K. Cho, B. Jacobs, B. Westerbaan, and A. Westerbaan. An Introduction to
Effectus Theory. dec 2015. arXiv:1512.05813.

[26] M. D. Choi. Completely positive linear maps on complex matrices. Linear Alge-
bra and Its Applications, 10(3):285–290, 1975. doi:10.1016/0024-3795(75)
90075-0.

[27] G. Ciobanu and R. Horne. Behavioural analysis of sessions using the calculus of
structures. In Perspectives of System Informatics (PSI 2015), Lecture Notes in
Computer Science, 9609:91–106, 2016. doi:10.1007/978-3-319-41579-6_8.

251

http://arxiv.org/abs/1701.08213
https://doi.org/10.1088/1367-2630/9/8/250
https://doi.org/10.1007/3-540-45653-8_24
https://doi.org/10.1088/1751-8121/ac8ea4
https://doi.org/10.1103/PhysRevA.80.022339
https://doi.org/10.1103/PhysRevA.80.022339
https://doi.org/10.1103/PhysRevA.81.062348
https://doi.org/10.1103/PhysRevA.81.062348
https://doi.org/10.1103/PhysRevA.88.022318
http://arxiv.org/abs/1512.05813
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1007/978-3-319-41579-6_8

[28] J. R. Cockett and R. A. Seely. Proof theory for full intuitionistic linear logic,
bilinear logic, and MIX categories. Theory and Applications of Categories,
3(5):85–131, 1997.

[29] B. Coecke. Terminality implies non-signalling. In 11th International Workshop
on Quantum Physics and Logic (QPL 2014), Electronic Proceedings in Theoret-
ical Computer Science, EPTCS, 172:27–35, 2014. doi:10.4204/EPTCS.172.3.

[30] B. Coecke and R. Duncan. Interacting quantum observables. In Automata, Lan-
guages and Programming (ICALP 2008), Lecture Notes in Computer Science,
5126:298–310, 2008. doi:10.1007/978-3-540-70583-3_25.

[31] B. Coecke and A. Kissinger. Picturing Quantum Processes. Cambridge Univer-
sity Press, mar 2017. doi:10.1017/9781316219317.

[32] B. Coecke and R. Lal. Causal Categories: Relativistically Interacting Pro-
cesses. Foundations of Physics, 43(4):458–501, apr 2013. doi:10.1007/
s10701-012-9646-8.

[33] O. Cole. Quantum Circuit Optimisation Through Stabiliser Reduction of Pauli
Exponentials. MSc thesis, University of Oxford, 2022. URL: http://www.cs.
ox.ac.uk/people/aleks.kissinger/theses/cole-thesis.pdf.

[34] C. Comfort, A. Delpeuch, and J. Hedges. Sheet diagrams for bimonoidal cate-
gories. oct 2020. arXiv:2010.13361.

[35] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality
theory for the λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693,
1980. doi:10.1305/ndjfl/1093883253.

[36] A. Cowtan, S. Dilkes, R. Duncan, W. Simmons, and S. Sivarajah. Phase gadget
synthesis for shallow circuits. In 16th International Conference on Quantum
Physics and Logic (QPL 2019), Electronic Proceedings in Theoretical Computer
Science, EPTCS, 2020. doi:10.4204/EPTCS.318.13.

[37] A. Cowtan, W. Simmons, and R. Duncan. A Generic Compilation Strategy for
the Unitary Coupled Cluster Ansatz. jul 2020. arXiv:2007.10515.

[38] V. Danos and E. Kashefi. Determinism in the one-way model. Physical Review
A, 74(5), 2006. doi:10.1103/PhysRevA.74.052310.

252

https://doi.org/10.4204/EPTCS.172.3
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1017/9781316219317
https://doi.org/10.1007/s10701-012-9646-8
https://doi.org/10.1007/s10701-012-9646-8
http://www.cs.ox.ac.uk/people/aleks.kissinger/theses/cole-thesis.pdf
http://www.cs.ox.ac.uk/people/aleks.kissinger/theses/cole-thesis.pdf
http://arxiv.org/abs/2010.13361
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.4204/EPTCS.318.13
http://arxiv.org/abs/2007.10515
https://doi.org/10.1103/PhysRevA.74.052310

[39] V. Danos, E. Kashefi, and P. Panangaden. The measurement calculus. Journal
of the ACM, 54(2):8, apr 2007. doi:10.1145/1219092.1219096.

[40] V. Danos and L. Regnier. The structure of multiplicatives. Archive for Mathe-
matical Logic, 28(3):181–203, oct 1989. doi:10.1007/BF01622878.

[41] N. De Beaudrap. Finding flows in the one-way measurement model. Physical
Review A - Atomic, Molecular, and Optical Physics, 77(2):022328, feb 2008.
doi:10.1103/PhysRevA.77.022328.

[42] N. De Beaudrap. Unitary-circuit semantics for measurement-based computa-
tions. International Journal of Quantum Information, 08(01n02):1–91, 2010.
doi:10.1142/S0219749910006113.

[43] E. Dubuc and R. Street. Dinatural transformations. Reports of the Midwest
Category Seminar IV, Lecture Notes in Mathematics, 137:126–137, 1970. doi:
10.1007/bfb0060443.

[44] R. Duncan, A. Kissinger, S. Perdrix, and J. Van De Wetering. Graph-theoretic
Simplification of Quantum Circuits with the ZX-calculus. Quantum, 4:279, 2020.
doi:10.22331/q-2020-06-04-279.

[45] R. Duncan and S. Perdrix. Rewriting Measurement-Based Quantum Com-
putations with Generalised Flow. In Automata, Languages, and Program-
ming (ICALP 2010), Lecture Notes in Computer Science, 6199:285–296. 2010.
doi:10.1007/978-3-642-14162-1_24.

[46] M. Earnshaw, J. Hefford, and M. Román. The Produoidal Algebra of Pro-
cess Decomposition. In 32nd EACSL Annual Conference on Computer Science
Logic (CSL 2024), Leibniz International Proceedings in Informatics (LIPIcs),
288:25:1–25:19, 2024. doi:10.4230/LIPIcs.CSL.2024.25.

[47] D. Ebler, S. Salek, and G. Chiribella. Enhanced Communication with the Assis-
tance of Indefinite Causal Order. Physical Review Letters, 120(12), mar 2018.
doi:10.1103/PhysRevLett.120.120502.

[48] A. Eddins, M. Motta, T. P. Gujarati, S. Bravyi, A. Mezzacapo, C. Hadfield, and
S. Sheldon. Doubling the Size of Quantum Simulators by Entanglement Forging.
PRX Quantum, 3(1):10309, mar 2022. doi:10.1103/PRXQuantum.3.010309.

253

https://doi.org/10.1145/1219092.1219096
https://doi.org/10.1007/BF01622878
https://doi.org/10.1103/PhysRevA.77.022328
https://doi.org/10.1142/S0219749910006113
https://doi.org/10.1007/bfb0060443
https://doi.org/10.1007/bfb0060443
https://doi.org/10.22331/q-2020-06-04-279
https://doi.org/10.1007/978-3-642-14162-1_24
https://doi.org/10.4230/LIPIcs.CSL.2024.25
https://doi.org/10.1103/PhysRevLett.120.120502
https://doi.org/10.1103/PRXQuantum.3.010309

[49] T. Eggeling, D. Schlingemann, and R. F. Werner. Semicausal operations are
semilocalizable. EPL (Europhysics Letters), 57(6):782, mar 2002. doi:10.1209/
EPL/I2002-00579-4.

[50] S. Eilenberg and G. M. Kelly. A generalization of the functorial calculus. Journal
of Algebra, 3(3):366–375, 1966. doi:10.1016/0021-8693(66)90006-8.

[51] A. Fleury and C. Retoré. The Mix Rule. Mathematical Structures in Computer
Science, 4(2):273–285, 1994. doi:10.1017/S0960129500000451.

[52] B. Fong and D. I. Spivak. An Invitation to Applied Category Theory: Seven
Sketches in Compositionality. Cambridge University Press, 2019. doi:10.1017/
9781108668804.

[53] T. Fritz. A synthetic approach to Markov kernels, conditional independence and
theorems on sufficient statistics. Advances in Mathematics, 370:107239, 2020.
doi:10.1016/j.aim.2020.107239.

[54] T. Fritz and A. Lorenzin. Involutive Markov categories and the quantum de
Finetti theorem. 2023. arXiv:2312.09666.

[55] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, jan
1987. doi:10.1016/0304-3975(87)90045-4.

[56] J.-Y. Girard. Between Logic and Quantic: a Tract. In Linear Logic in Computer
Science, pages 346–381. 2010. doi:10.1017/cbo9780511550850.011.

[57] D. Gosset, V. Kliuchnikov, M. Mosca, and V. Russo. An algorithm for the
T-count. Quantum Information and Computation, 14(15&16):1261–1276, nov
2014. doi:10.26421/QIC14.15-16-1.

[58] A. Guglielmi. A system of interaction and structure. ACM Transactions on
Computational Logic, 2007. doi:10.1145/1182613.1182614.

[59] A. Guglielmi, T. Gundersen, and M. Parigot. A proof calculus which reduces
syntactic bureaucracy. In Proceedings of the 21st International Conference on
Rewriting Techniques and Applications, Leibniz International Proceedings in
Informatics (LIPIcs), volume 6, pages 135–150, 2010. doi:10.4230/LIPIcs.
RTA.2010.135.

254

https://doi.org/10.1209/EPL/I2002-00579-4
https://doi.org/10.1209/EPL/I2002-00579-4
https://doi.org/10.1016/0021-8693(66)90006-8
https://doi.org/10.1017/S0960129500000451
https://doi.org/10.1017/9781108668804
https://doi.org/10.1017/9781108668804
https://doi.org/10.1016/j.aim.2020.107239
http://arxiv.org/abs/2312.09666
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1017/cbo9780511550850.011
https://doi.org/10.26421/QIC14.15-16-1
https://doi.org/10.1145/1182613.1182614
https://doi.org/10.4230/LIPIcs.RTA.2010.135
https://doi.org/10.4230/LIPIcs.RTA.2010.135

[60] G. Gutoski. Properties of Local Quantum Operations with Shared Entanglement.
Quantum Information and Computation, 9(9-10):0739–0764, may 2008. arXiv:
0805.2209.

[61] J. Hefford and C. Comfort. Coend Optics for Quantum Combs. In Fifth In-
ternational Conference on Applied Category Theory (ACT 2022), Electronic
Proceedings in Theoretical Computer Science, EPTCS, 380:63–76, aug 2023.
doi:10.4204/EPTCS.380.4.

[62] J. Hefford and M. Wilson. A Profunctorial Semantics for Quantum Su-
permaps. In Proceedings of the 39th Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 1–15, New York, NY, USA, jul 2024. ACM.
doi:10.1145/3661814.3662123.

[63] C. Heunen and J. Vicary. Categories for Quantum Theory. Oxford Graduate
Texts in Mathematics. Oxford University Press, Oxford, 2019. doi:10.1093/
oso/9780198739623.001.0001.

[64] T. Hoffreumon and O. Oreshkov. Projective characterization of higher-order
quantum transformations. 2022. arXiv:2206.06206.

[65] K. Honda. Types for dyadic interaction. In CONCUR 1993, Lecture Notes in
Computer Science, 715:509–523, 1993. doi:10.1007/3-540-57208-2_35.

[66] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In Conference Record of the Annual ACM Symposium on Principles of Pro-
gramming Languages, 273–284, 2008. doi:10.1145/1328438.1328472.

[67] R. Horne. The consistency and complexity of multiplicative additive system
virtual. Scientific Annals of Computer Science, 25(2):245–316, 2015. doi:10.
7561/SACS.2015.2.245.

[68] R. Horne. The sub-additives: A proof theory for probabilistic choice extending
linear logic. In 4th International Conference on Formal Structures for Com-
putation and Deduction (FSCD 2019), Leibniz International Proceedings in
Informatics (LIPIcs), 131, 2019. doi:10.4230/LIPIcs.FSCD.2019.23.

[69] R. Houston. Finite products are biproducts in a compact closed category. Journal
of Pure and Applied Algebra, 212(2):394–400, feb 2008. doi:10.1016/j.jpaa.
2007.05.021.

255

http://arxiv.org/abs/0805.2209
http://arxiv.org/abs/0805.2209
https://doi.org/10.4204/EPTCS.380.4
https://doi.org/10.1145/3661814.3662123
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1093/oso/9780198739623.001.0001
http://arxiv.org/abs/2206.06206
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.7561/SACS.2015.2.245
https://doi.org/10.7561/SACS.2015.2.245
https://doi.org/10.4230/LIPIcs.FSCD.2019.23
https://doi.org/10.1016/j.jpaa.2007.05.021
https://doi.org/10.1016/j.jpaa.2007.05.021

[70] D. J. Hughes and R. J. Van Glabbeek. Proof nets for unit-free multiplicative-
additive linear logic. In ACM Transactions on Computational Logic, 6:784–842,
oct 2005. doi:10.1145/1094622.1094629.

[71] M. Huth and M. Ryan. Logic in Computer Science. Cambridge University Press,
aug 2004. doi:10.1017/CBO9780511810275.

[72] M. Hyland and A. Schalk. Glueing and orthogonality for models of linear
logic. In Theoretical Computer Science, 294:183–231, 2003. doi:10.1016/
S0304-3975(01)00241-9.

[73] B. Jacobs. New directions in categorical logic, for classical, probabilistic and
quantum logic. Logical Methods in Computer Science, 11(3):1–76, 2015. doi:
10.2168/LMCS-11(3:24)2015.

[74] A. Jamiołkowski. Linear transformations which preserve trace and positive
semidefiniteness of operators. Reports on Mathematical Physics, 3(4):275–278,
dec 1972. doi:10.1016/0034-4877(72)90011-0.

[75] D. Jia and N. Sakharwade. Tensor products of process matrices with indefinite
causal structure. Physical Review A, 97(3):032110, mar 2018. doi:10.1103/
PhysRevA.97.032110.

[76] O. Kahramanoǧullari. System BV is NP-complete. Annals of Pure and Applied
Logic, 152(1-3):107–121, 2008. doi:10.1016/j.apal.2007.11.005.

[77] A. Kissinger, M. Hoban, and B. Coecke. Equivalence of relativistic causal struc-
ture and process terminality. aug 2017. arXiv:1708.04118.

[78] A. Kissinger and S. Uijlen. A categorical semantics for causal structure. Logical
Methods in Computer Science, 15(3):4426, 2019. doi:10.23638/LMCS-15(3:
15)2019.

[79] A. Kissinger and J. van de Wetering. Reducing the number of non-Clifford
gates in quantum circuits. Physical Review A, 102(2):022406, aug 2020. doi:
10.1103/PhysRevA.102.022406.

[80] E. H. Kronheimer and R. Penrose. On the structure of causal spaces. Mathemat-
ical Proceedings of the Cambridge Philosophical Society, 63(2):481–501, 1967.
doi:10.1017/S030500410004144X.

256

https://doi.org/10.1145/1094622.1094629
https://doi.org/10.1017/CBO9780511810275
https://doi.org/10.1016/S0304-3975(01)00241-9
https://doi.org/10.1016/S0304-3975(01)00241-9
https://doi.org/10.2168/LMCS-11(3:24)2015
https://doi.org/10.2168/LMCS-11(3:24)2015
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1103/PhysRevA.97.032110
https://doi.org/10.1103/PhysRevA.97.032110
https://doi.org/10.1016/j.apal.2007.11.005
http://arxiv.org/abs/1708.04118
https://doi.org/10.23638/LMCS-15(3:15)2019
https://doi.org/10.23638/LMCS-15(3:15)2019
https://doi.org/10.1103/PhysRevA.102.022406
https://doi.org/10.1103/PhysRevA.102.022406
https://doi.org/10.1017/S030500410004144X

[81] F. Lamarche and L. Strassburger. From proof nets to the free *-autonomous
category. Logical Methods in Computer Science, 2(4):1–44, 2006. doi:10.2168/
LMCS-2(4:3)2006.

[82] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558–565, jul 1978. doi:10.1145/359545.
359563.

[83] D. Litinski. A Game of Surface Codes: Large-Scale Quantum Comput-
ing with Lattice Surgery. Quantum, 3:128, mar 2019. doi:10.22331/
q-2019-03-05-128.

[84] D. Maslov and M. Roetteler. Shorter Stabilizer Circuits via Bruhat Decomposi-
tion and Quantum Circuit Transformations. IEEE Transactions on Information
Theory, 64(7):4729–4738, jul 2018. doi:10.1109/TIT.2018.2825602.

[85] P.-A. Melliès. Categorical Semantics of Linear Logic. Panoramas et Synthèses,,
27:15–215, 2009.

[86] P.-A. Melliès. A Topological Correctness Criterion for Multiplicative Non-
Commutative Logic. In Linear Logic in Computer Science, 316:283–322. London
Mathematical Society, 2010. doi:10.1017/cbo9780511550850.009.

[87] M. Mhalla, M. Murao, S. Perdrix, M. Someya, and P. S. Turner. Which
Graph States are Useful for Quantum Information Processing? In Theory
of Quantum Computation, Communication, and Cryptography, 174–187, 2014.
doi:10.1007/978-3-642-54429-3_12.

[88] M. Mhalla and S. Perdrix. Finding Optimal Flows Efficiently. In Automata,
Languages, and Programming (ICALP 2008), Lecture Notes in Computer Sci-
ence, 5125:857–868, 2008. doi:10.1007/978-3-540-70575-8_70.

[89] M. Mhalla, S. Perdrix, and L. Sanselme. Characterising Determinism in MBQCs
involving Pauli Measurements. 2022. arXiv:2207.09368.

[90] A. S. Murawski and C. H. Ong. Fast verification of MLL proof nets via IMLL.
ACM Transactions on Computational Logic, 7(3):473–498, jul 2006. doi:10.
1145/1149114.1149116.

[91] K. F. Ng and Q. Wang. A universal completion of the ZX-calculus. jun 2017.
arXiv:1706.09877.

257

https://doi.org/10.2168/LMCS-2(4:3)2006
https://doi.org/10.2168/LMCS-2(4:3)2006
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.1109/TIT.2018.2825602
https://doi.org/10.1017/cbo9780511550850.009
https://doi.org/10.1007/978-3-642-54429-3_12
https://doi.org/10.1007/978-3-540-70575-8_70
http://arxiv.org/abs/2207.09368
https://doi.org/10.1145/1149114.1149116
https://doi.org/10.1145/1149114.1149116
http://arxiv.org/abs/1706.09877

[92] L. T. D. Nguyên. Unique perfect matchings, forbidden transitions and proof
nets for linear logic with mix. Logical Methods in Computer Science, 16(1):27:1–
27:31, 2020. doi:10.23638/LMCS-16(1:27)2020.

[93] L. T. D. Nguyên and L. Straßburger. BV and Pomset Logic Are Not the Same.
In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022),
Leibniz International Proceedings in Informatics (LIPIcs), 216:1–32, 2022. doi:
10.4230/LIPIcs.CSL.2022.32.

[94] L. T. D. Nguyên and L. Straßburger. A System of Interaction and Structure
III: The Complexity of BV and Pomset Logic. Logical Methods in Computer
Science, 19(4):25:1–25:60, dec 2023. doi:10.46298/lmcs-19(4:25)2023.

[95] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Infor-
mation. 2010. doi:10.1017/cbo9780511976667.

[96] O. Oreshkov, F. Costa, and Č. Brukner. Quantum correlations with no causal
order. Nature Communications, 3(1):1–8, oct 2012. doi:10.1038/ncomms2076.

[97] A. J. Parzygnat. Inverses, disintegrations, and Bayesian inversion in quantum
Markov categories. jan 2020. arXiv:2001.08375.

[98] S. Popescu and D. Rohrlich. Quantum nonlocality as an axiom. Foundations of
Physics, 24(3):379–385, mar 1994. doi:10.1007/BF02058098.

[99] R. Raussendorf and H. J. Briegel. A one-way quantum computer. Physical
Review Letters, 2001. doi:10.1103/PhysRevLett.86.5188.

[100] C. Retoré. Réseaux et séquents ordonnés. PhD thesis, Université Paris-Diderot
- Paris VII, feb 1993. URL: https://theses.hal.science/tel-00585634.

[101] C. Retoré. On the relation between coherence semantics and multiplicative proof
nets . Technical Report RR-2430, INRIA, dec 1994. URL: https://inria.hal.
science/inria-00074245.

[102] C. Retoré. Pomset logic: A non-commutative extension of classical linear logic.
In Typed Lambda Calculi and Applications (TLCA 1997), Lecture Notes in
Computer Science, 1210:300–318, 1997. doi:10.1007/3-540-62688-3_43.

[103] C. Retoré. Handsome proof-nets: Perfect matchings and cographs. In Theo-
retical Computer Science, 294:473–488, 2003. doi:10.1016/S0304-3975(01)
00175-X.

258

https://doi.org/10.23638/LMCS-16(1:27)2020
https://doi.org/10.4230/LIPIcs.CSL.2022.32
https://doi.org/10.4230/LIPIcs.CSL.2022.32
https://doi.org/10.46298/lmcs-19(4:25)2023
https://doi.org/10.1017/cbo9780511976667
https://doi.org/10.1038/ncomms2076
http://arxiv.org/abs/2001.08375
https://doi.org/10.1007/BF02058098
https://doi.org/10.1103/PhysRevLett.86.5188
https://theses.hal.science/tel-00585634
https://inria.hal.science/inria-00074245
https://inria.hal.science/inria-00074245
https://doi.org/10.1007/3-540-62688-3_43
https://doi.org/10.1016/S0304-3975(01)00175-X
https://doi.org/10.1016/S0304-3975(01)00175-X

[104] B. T. Shapiro and D. I. Spivak. Duoidal Structures for Compositional Depen-
dence. oct 2022. arXiv:2210.01962.

[105] W. Simmons. Relating Measurement Patterns to Circuits via Pauli Flow. In
18th International Conference on Quantum Physics and Logic (QPL 2021), Elec-
tronic Proceedings in Theoretical Computer Science, EPTCS, 343:50–101, sep
2021. doi:10.4204/EPTCS.343.4.

[106] W. Simmons and A. Kissinger. Higher-Order Causal Theories Are Models of
BV-Logic. In 47th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2022), Leibniz International Proceedings in Informat-
ics (LIPIcs), 241:80:1–80:14, 2022. doi:10.4230/LIPIcs.MFCS.2022.80.

[107] W. Simmons and A. Kissinger. A complete logic for causal consistency. mar
2024. arXiv:2403.09297.

[108] S. Slavnov. On noncommutative extensions of linear logic. Logical Methods in
Computer Science, 15(3):25, 2019. doi:10.23638/LMCS-15(3:30)2019.

[109] L. Straßburger. A local system for linear logic. In Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR 2002), Lecture Notes in Computer
Science, 2514:388–402, 2002. doi:10.1007/3-540-36078-6_26.

[110] L. Straßburger. Linear Logic and Noncommutativity in the Calculus of
Structures. PhD thesis, Technische Universität Dresden, 2003. URL:
https://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/papers/
dissvonlutz.pdf.

[111] W. Tang, T. Tomesh, M. Suchara, J. Larson, and M. Martonosi. CutQC: Us-
ing small Quantum computers for large Quantum circuit evaluations. In In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems - ASPLOS, 473–486, apr 2021. doi:10.1145/3445814.
3446758.

[112] A. Tiu. A system of interaction and structure II: The need for deep infer-
ence. Logical Methods in Computer Science, 2(2):1–24, 2006. doi:10.2168/
LMCS-2(2:4)2006.

[113] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel
digraphs. In Proceedings of the Annual ACM Symposium on Theory of Com-
puting, 1–12, apr 1979. doi:10.1145/800135.804393.

259

http://arxiv.org/abs/2210.01962
https://doi.org/10.4204/EPTCS.343.4
https://doi.org/10.4230/LIPIcs.MFCS.2022.80
http://arxiv.org/abs/2403.09297
https://doi.org/10.23638/LMCS-15(3:30)2019
https://doi.org/10.1007/3-540-36078-6_26
https://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/papers/dissvonlutz.pdf
https://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/papers/dissvonlutz.pdf
https://doi.org/10.1145/3445814.3446758
https://doi.org/10.1145/3445814.3446758
https://doi.org/10.2168/LMCS-2(2:4)2006
https://doi.org/10.2168/LMCS-2(2:4)2006
https://doi.org/10.1145/800135.804393

[114] J. van de Wetering. ZX-calculus for the working quantum computer scientist.
dec 2020. arXiv:2012.13966.

[115] E. van den Berg and K. Temme. Circuit optimization of Hamiltonian simulation
by simultaneous diagonalization of Pauli clusters. Quantum, 4:322, sep 2020.
doi:10.22331/q-2020-09-12-322.

[116] R. Vilmart. A Near-Minimal Axiomatisation of ZX-Calculus for Pure Qubit
Quantum Mechanics. In 2019 34th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), 1–10, jun 2019. doi:10.1109/LICS.2019.8785765.

[117] M. Wilson and G. Chiribella. Causality in Higher Order Process Theories.
18th International Conference on Quantum Physics and Logic (QPL 2021),
Electronic Proceedings in Theoretical Computer Science, 343:265–300, jul 2021.
doi:10.4204/eptcs.343.12.

[118] M. Wilson and G. Chiribella. Free Polycategories for Unitary Supermaps of
Arbitrary Dimension. 2022. arXiv:2207.09180.

[119] M. Wilson, G. Chiribella, and A. Kissinger. Quantum Supermaps are Charac-
terized by Locality. may 2022. arXiv:2205.09844.

[120] F. Zhang and J. Chen. Optimizing T gates in Clifford+T circuit as π/4 rotations
around Paulis. mar 2019. arXiv:1903.12456.

260

http://arxiv.org/abs/2012.13966
https://doi.org/10.22331/q-2020-09-12-322
https://doi.org/10.1109/LICS.2019.8785765
https://doi.org/10.4204/eptcs.343.12
http://arxiv.org/abs/2207.09180
http://arxiv.org/abs/2205.09844
http://arxiv.org/abs/1903.12456

Appendix A

Notational Conventions

The following tables provide a key for symbols, fonts, and notational standards used
in this thesis. Some of these meanings will be dependent on the context, due to
conflicting conventions from different disciplines.

Notation for category theory content

C,D Categories
Mat[R+] The category of matrices over positive reals
Mat[R] The category of matrices over real numbers

CP The category of completely positive (linear) maps between finite-
dimensional Hilbert spaces

CP∗ The category of completely positive maps between finite-
dimensional C∗-algebras

Caus [−] The Caus [−] construction on categories (Definition 2.3.9)
FO (−) The first-order subcategory of Caus [−] (Definition 2.3.15)
Sub (−) The subtractive closure of a category (Definition 2.4.6)
[−] The embedding functor C → Sub (C) (Proposition 2.4.8)
U The forgetful functor Caus [C]→ C (Definition 2.3.9)
= Exact equality of morphisms in C
∼ Equivalence of morphisms in Sub (C)

A,B, . . . Objects of some category C
A,B, … Objects of some Caus [C]

A∗ Dual object in C (from compact closure)
A∗ Dual object in Caus [C] (Definition 2.3.13)
⊗ Monoidal product in both C and Caus [C] (Definition 2.3.16)
` De Morgan dual of ⊗ in Caus [C] (Definition 2.3.18)
< Seq monoidal product in Caus [C] (Definition 2.6.17)
I Monoidal unit of ⊗ in C
I Monoidal unit of {⊗,`,<} in Caus [C] (Definition 2.3.12)

A1 First-order object in Caus [C] (Definition 2.3.14)
⊕ Biproduct in C and coproduct in Caus [C] (Definition 2.5.1)

261

× Product in Caus [C] (Definition 2.5.1)
0 Zero object in C
0 Initial object in Caus [C] (Proposition 2.9.5)
1 Terminal object in Caus [C] (Proposition 2.9.5)

f, g, . . . Morphisms
ρ, υ States in C(I,A)
h, k Bipartite states in C(I,A⊗B)
π Effects in C(A, I)

α,β, δ, λ, µ, θ Scalars in C(I, I)
e Effects in Sub (C) (A, I)
s Scalars in Sub (C) (I, I)# Left-to-right sequential composition of morphisms (e.g. f ∶ A → B,

g ∶ B → C compose to f # g ∶ A→ C)
∏ Indexed sequential product
⋅ Scalar multiplication (e.g. λ ∶ I → I, f ∶ A → B compose to λ ⋅ f ∶
A→ B)

[−,=] Copairings (e.g. f ∶ A→ C, g ∶ B → C combine to [f, g] ∶ A⊕B → C)
⟨−,=⟩ Pairings (e.g. f ∶ A→ B, g ∶ A→ C combine to ⟨f, g⟩ ∶ A→ B ×C)
(−,=) Representative pairs in Sub (C) (Definition 2.4.6)

ιA Injections (e.g. ιA ∶ A→ A⊕B)
pA Projections (e.g. pA ∶ A ×B → A)
+ Summation via additive enrichment (e.g. f, g ∶ A→ B sum to f + g ∶

A→ B)
0A,B Zero morphisms
ηA Cup state I → A∗ ⊗A
ϵA Cap effect A⊗A∗ → I
f∗ Transpose of f wrt the compact structure (Equation 2.19)

The discarding effect in C(A, I)
The maximally mixed state (∗) in C(I,A) (Equation 2.19)

cA The set of states of some object A ∈ Ob (Caus [C])
∶ Type membership, ρ ∶A is equivalent to ρ ∈ cA
⇒ Natural transformation
θA Scalar for the uniform effect in c∗A (Definition 2.3.9)
µA Scalar for the uniform state in cA (Definition 2.3.9)
A The scaled uniform effect in c∗A (Definition 2.3.9)
A The scaled uniform state in cA (Definition 2.3.9)
W Process matrices (Definition 2.1.14)

i, j, . . . Indices in some collection
Γ Local interpretation (Definition 2.8.1)
∆ Edge interpretation (Definition 2.8.2)

262

Notation for logic content

MLL Multiplicative Linear Logic (Section 3.1.1)
MLL+Mix Multiplicative Linear Logic with Mix rules (Section 3.1.1)

MALL Multiplicative Additive Linear Logic
BV Basic system Virtual (Section 3.1.3)

MAV Multiplicative Additive system Virtual (Section 3.1.3)
GV Extension of BV with graphs [3]

pomset pomset logic (Section 3.1.3)
Var The set of all variable names

A,B, . . . Variables/atoms
A1,B1, . . . First order (FO) atoms
F,G, . . . Formulae

Γ,∆ Multisets of formulae
⊗ Multiplicative conjunction with unit 1 or I
` Multiplicative disjunction with unit � or I
× Additive conjunction with unit 0
⊕ Additive disjunction with unit ⊺
< Seq operator

(−)∗ Duality/Negation
⊸ Linear implication
π Proof
P Proof-structure (Definitions 3.1.3, 3.1.9 3.3.1)
PF The unique cut-free proof-structure of a balanced formula (Defini-

tion 3.3.1)
FP The formula associated with a proof-structure (Definition 3.3.1)
SP The set of switchings of a proof-structure (Definition 3.3.2)
s Switching (Definition 3.3.2)

Gs Switching graph (Definition 3.3.2)
Φ Interpretation (Definition 3.2.2)
ϵΦF Contraction morphism (Definition 3.2.3)
FF Causal functor of a formula (Definition 3.2.4)
⊢ Logical entailment in a given logic
⊩ Semantic entailment in a given model
⊩Φ
C Causal consistency under the interpretation Φ (Definition 3.2.3)
⊩C Causal consistency by extranatural transformation (Definition 3.2.6)

pom (−) Reduction to the pomset fragment (Definition 3.4.1)
fo (−) Reduction to the first-order inductive fragment (Definition 3.4.5)

263

Notation for quantum computing content

Γ Labelled open graph (Definition 4.1.2)
u, v, w Vertices/qubits in a labelled open graph/measurement pattern

I Inputs to an open graph/measurement pattern
I Non-inputs V ∖ I, a.k.a. prepared qubits
O Outputs from an open graph/measurement pattern
O Non-outputs V ∖O, a.k.a. measured qubits
λ A labelling of measurements λ ∶ O → {XY,XZ,Y Z,X,Y,Z}
L An individual label in {XY,XZ,Y Z,X,Y,Z}
α An assignment of measurement angles α ∶ O → [0,2π), or an individual

measurement angle
fv Application of a linear map f to the qubit v alongside the identity on

all other qubits
u ∼G v Adjacent vertices in a graph G
NG (u) Neighbours of u in the graph G

Odd (A) Odd neighbourhood of A ⊆ V in G (Definition 4.1.2)
ML,α Destructive measurement at angle α in plane/Pauli L

f Correction function for a causal flow (Definition 4.1.5)
g Correction function for a generalised flow (Definition 4.1.7)
p Correction function for a Pauli flow (Definition 4.1.9)
≺ Ordering of vertices in a flow
⪯ u ⪯ v ∶= ¬ (v ≺ u)

A∆B Symmetric difference of sets
V ≺k Vertices at measurement depth k under ≺ (Definition 4.2.1)
V ≺∪k Cumulative vertices up to measurement depth k under ≺ (Defini-

tion 4.2.1)
V ≺,L∪k Vertices at measurement depth k with label L (Lemma 4.2.2)
ΛL Vertices with measurement label L (Lemma 4.2.2)
p̂, q̂ Focussed set (Definition 4.2.4)
P , Q Pauli strings in {I,X,Y,Z}⊗n (with some associated phase)

P p(v)→u The Pauli correction at u from the measurement of v (Equation 4.22)
ESp;v

O Primary extraction string (Definition 4.3.10)
ESp̂

O Stabilizer related to a focussed set (Lemma 4.3.17)

264

Appendix B

Exploring Caus [Mat[R]] in Python

The code samples in this section will help to provide additional examples of many of
the key operators of the Caus [−] construction in a way that is easy to customise and
generate. To simplify the representation and not have to worry about any positivity
constraints, these examples work with Caus [Mat[R]].

Each object of Caus [Mat[R]] is a pair (N, c) of a natural number N and an
affine-closed set c of N -dimensional real vectors. It is sufficient to store a maximal
linearly-independent subset of these vectors (i.e. the causal portion of a preferred
basis for the object), which we arrange as the columns of a matrix. Floating-point
errors can cause issues around keeping within the affine space generated by these
vectors, so it is best to use a symbolic representation such as sympy.Matrix.

All code here is compatible with Python 3.11.9 and sympy 1.12.1.

PREAMBLE
from sympy import (

Matrix ,
init_print ing ,
StrPrinter ,
ones ,
Rational ,
BlockMatrix ,
Array ,
Symbol ,
tensorcontraction ,
permutedims ,
sqrt ,

)
from sympy . physics . quantum import TensorProduct
from typing import Tuple

in i t_pr int ing (use_unicode=True)
pr inter = StrPrinter ()

Pretty print ing
def pprint (mat : Matrix) −> None :

print (mat . table (printer , co lsep=”␣”) , ”\n”)

265

In addition to representing an affine-closed space, we need to restrict ourselves to
looking at flat sets. This is harder to achieve by construction, so we instead provide
a method that can verify flatness during testing.

FLATNESS VERIFICATION

Veri f ies a Matrix represents an object , i . e . the s ta te se t i s f l a t
def check_flatness (c : Matrix) −> bool :

S t r i c t f l a t n e s s requires at l e a s t one s ta te and one e f f e c t
i f c . co l s == 0:

return False

Check that the uniform e f f e c t i s in the dual s ta te
i . e . a l l columns have the same norm
norms = c .T @ ones (c . rows , 1)
for i in range(c . co l s) :

i f norms [i] != norms [0] :
return False

Check that the uniform sta te i s generated by a f f ine combinations of s ta t e s
i . e . adding the uniform sta te to the matrix does not change i t s rank
added = c . col_insert (0 , ones (c . rows , 1))
return added . rank () == c . rank ()

To start with, let’s just define some methods for generating elementary spaces.
Most importantly, the matrix of the first-order object for a given dimension is just
the identity - the columns enumerate an orthonormal basis. If we just take a subset of
the basis vectors (along with the uniform state to ensure flatness), we can construct
objects that cannot be inductively defined from first-order objects and the operators
like those seen in Remark 2.7.8.

ELEMENTARY SPACES

The f i r s t −order space of a given dimension can be generated by the ide n t i t y
Matrix

def fo (dim : int) −> Matrix :
return Matrix . eye (dim)

Verify that a space i s f i r s t −order (up to isomorphism) , i . e . i t has a unique
e f f e c t

def is_fo (c : Matrix) −> bool :
Rank of the dual se t i s dim (c . rows) + 1 − c . rank () , so i s 1 i f f c . rank () =

dim
Checking that the unique s ta te i s uniform i s done by checking f l a t n e s s
return check_flatness (c) & (c . rank () == c . rows)

Creates a f l a t space of a given carr ier dimension and a f f ine dimension by picking
the uniform sta te and the f i r s t (n−1) bas is vectors

def simple_space (rows : int , co l s : int) −> Matrix :
a s se r t co l s <= rows

266

asse r t co l s >= 1
return Matrix (

BlockMatrix (
[

[Matrix . eye (co l s − 1 , co l s − 1) , Rational (1 , rows) ∗ ones (co l s − 1 ,
1)] ,

[
Matrix . zeros (rows + 1 − cols , co l s − 1) ,
Rational (1 , rows) ∗ ones (rows + 1 − cols , 1) ,

] ,
]

)
)

TEST ELEMENTARY SPACES

for m in [fo (1) , fo (3) , simple_space (3 , 1) , simple_space (3 , 2) , simple_space (3 , 3)
] :
print (check_flatness (m))
print (is_fo (m))
pprint (m)

True
True
[1]

True
True
[1 0 0]
[0 1 0]
[0 0 1]

True
False
[1/3]
[1/3]
[1/3]

True
False
[1 1/3]
[0 1/3]
[0 1/3]

True
True
[1 0 1/3]
[0 1 1/3]
[0 0 1/3]

An alternative way to view an affine space is to use a single parameterised vector.
This can provide ways to quickly see at a glance which coefficients remain constant
(or near constant) across a space and which ones can vary significantly. This is also
the form provided by sympy when solving linear equation systems, so we provide the
following functions for mapping between the forms. Using a single vector to represent
the space also makes it easier to reshape into tensors to handle tensor product spaces.

267

CONVERSIONS FOR SYMBOLIC FORM

Maps between a Matrix descr ib ing a l inear ly −independent set , and a s ing l e Array (
tensor) using symbols to represent degrees of freedom

def mat_to_sym_tensor(c : Matrix , tensor_shape : Tuple [int]) −> Array :
vec = c . co l (0)
for i in range(1 , c . co l s) :

tau = Symbol(”tau_” + str (i − 1))
vec += tau ∗ (c . co l (i) − c . co l (0))

return Array (vec , tensor_shape)

def sym_tensor_to_mat(t : Array) −> Matrix :
Pick out one solution , then vary each parameter to give independent so lu t ions

that span the ent ire space
t_vec = Matrix (t . reshape (len (t) , 1))
params = t_vec . free_symbols
set_zero = {tau : 0 for tau in params}
base_sol = t_vec . xreplace (set_zero)
a l l_so l s = l i s t ()
a l l_so l s . append(base_sol)
for tau in params :

tau_sol = t_vec . xreplace ({ tau : 1}) . xreplace (set_zero)
a l l_so l s . append(tau_sol)

Reformat so lut ion vectors into a s ing l e matrix
return Matrix . hstack (∗ a l l_so l s)

TEST SYMBOLIC FORM

space = simple_space (5 , 3)
sym_space = mat_to_sym_tensor(space , (5))
print (sym_space)
pprint (sym_tensor_to_mat(sym_space))

composite = simple_space (6 , 4)
sym_space = mat_to_sym_tensor(composite , (3 , 2))
print (sym_space)
pprint (sym_tensor_to_mat(sym_space))

[-tau_0 - 4*tau_1/5 + 1, tau_0 + tau_1/5, tau_1/5, tau_1/5, tau_1/5]
[1 1/5 0]
[0 1/5 1]
[0 1/5 0]
[0 1/5 0]
[0 1/5 0]

[[-tau_0 - tau_1 - 5*tau_2/6 + 1, tau_0 + tau_2/6],
[tau_1 + tau_2/6, tau_2/6], [tau_2/6, tau_2/6]]

[1 0 0 1/6]
[0 1 0 1/6]
[0 0 1 1/6]
[0 0 0 1/6]
[0 0 0 1/6]
[0 0 0 1/6]

This finally brings us to our first way to generate new objects from old ones: the
duality functor (−)∗. We can express the constraints on the inner products as a linear

268

equation system and solve it for (a generating subset of) the dual set. Solving this
may fail if the dual set is empty, but success is guaranteed when the input represents
a flat set.

DUALITY

Obtain the dual ob jec t of a given Matrix
Given s ta te x as a column vector , M.T ∗ x gives the inner product with each s ta te

in the Matrix M. x i s a s ta te of the dual ob jec t i f f M.T ∗ x = (1 . . . 1) .T.
Treat t h i s as a system of l inear equations and i d e n t i f y the space of so lu t ions

def dual_set (c : Matrix) −> Matrix :
c_size = c . co l s
dim = c . rows

Use sympy Gauss Jordan to obtain parameterisation of dual space . The
so lu t ions are given as a symbolic vector , parameterising the so lut ion space

try :
so l , _ = c .T. gauss_jordan_solve (ones (c_size , 1))

except ValueError :
return Matrix . zeros (dim , 0)

return sym_tensor_to_mat(so l)

TEST DUALITY

ss_5_2 = simple_space (5 , 2)
pprint (ss_5_2)
pprint (dual_set (ss_5_2))

[1 1/5]
[0 1/5]
[0 1/5]
[0 1/5]
[0 1/5]

[1 1 1 1]
[4 3 3 3]
[0 1 0 0]
[0 0 0 1]
[0 0 1 0]

The simplest mathematical definitions are for the setwise constructions for union
and intersection. Union of objects combines their preferred basis by union (Proposi-
tion 2.7.5), so we can just append the matrices side-by-side and find some maximal
linearly-independent subset to maintain a simple form. We could handle intersection
using the de Morgan duality, but we can also express it directly as the solution space
of a linear equation system.

These methods also give rise to easy ways to compare objects for containment or
equality since union will degenerate in these cases. When two objects are not equal,
we can also use them to generate counterexamples to containment.

269

SETWISE

def union (cA: Matrix , cB : Matrix) −> Matrix :
Assert that the dimensions of systems match
asse r t cA. rows == cB . rows

Combine and reduce to a maximal l inear ly −independent subset
combined = Matrix (BlockMatrix ([[cA, cB]]))
columns = combined . columnspace ()
return Matrix . hstack (∗columns)

def i n t e r s e c t i on (cA: Matrix , cB : Matrix) −> Matrix :
Assert that the dimensions of systems match
asse r t cA. rows == cB . rows

Every vector in the in tersec t ion i s both an a f f ine combination of columns of
cA and an a f f ine combination of columns of cB, and hence can be uniquely
i d e n t i f i e d by the vector of c o e f f i c i e n t s in one of these sums . We
character ise t h i s space by f inding a l l pos s i b l e a f f ine c o e f f i c i e n t s that
represent i d e n t i c a l s ta t e s .

Phrase t h i s as a l inear problem Ax = b where x has dimension cA. co l s + cB.
co l s . We have two equations to ensure the c o e f f i c i e n t s sum to one . The res t

regenerates the a f f ine combinations as vectors in the or i g ina l space and
asser t s they are equal (the i r d i f f erence i s zero) .

lhs = Matrix (
BlockMatrix (

[
[cA, −cB] ,
[ones (1 , cA. co l s) , Matrix . zeros (1 , cB . co l s)] ,
[Matrix . zeros (1 , cA. co l s) , ones (1 , cB . co l s)] ,

]
)

)
rhs = Matrix . zeros (cA. rows + 2 , 1)
rhs [cA. rows , 0] = 1
rhs [cA. rows + 1 , 0] = 1

Use sympy Gauss Jordan to obtain parameterisation of c o e f f i c i e n t space . The
so lu t ions are given as a symbolic vector , parameterising the so lut ion space

try :
so l , _ = lhs . gauss_jordan_solve (rhs)

except ValueError :
return Matrix . zeros (cA. rows , 0)

sol_mat = sym_tensor_to_mat(so l)

Compute a f f ine combinations to y i e l d a subspace of cA
return cA @ sol_mat [0 : cA. cols , :]

COMPARISON FUNCTIONS

def equal_objects (cA: Matrix , cB : Matrix) −> bool :
return (cA. co l s == cB . co l s) & (cA. co l s == union (cA, cB) . co l s)

Returns whether A i s completely contained within B
def check_containment (cA: Matrix , cB : Matrix) −> bool :

return cB . co l s == union (cA, cB) . co l s

270

Returns bas is s ta t e s of cA that are not in cB
def d i f f e r e n c e (cA: Matrix , cB : Matrix) −> Matrix :

un = union (cB , cA)
The f i r s t cB. co l s columns of un w i l l match cB, so jus t take the res t
return un [: , cB . co l s :]

TEST COMPARISON FUNCTIONS

asse r t equal_objects (fo (2) , fo (2))
as se r t not equal_objects (simple_space (4 , 2) , simple_space (4 , 3))
as se r t check_containment (simple_space (4 , 2) , simple_space (4 , 3))
as se r t not check_containment (simple_space (4 , 2) , 0.25 ∗ dual_set (simple_space (4 , 3)

))
as se r t check_containment (Matrix ([[0 . 5] , [0 . 5] , [0] , [0]]) , simple_space (4 , 3))
as se r t not check_containment (Matrix ([[0] , [0] , [0] , [1]]) , simple_space (4 , 3))
pprint (d i f f e r e n c e (simple_space (4 , 3) , simple_space (4 , 2)))

[0]
[1]
[0]
[0]

TEST SETWISE OPERATIONS

asse r t equal_objects (
union (simple_space (5 , 3) , Rational (1 , 5) ∗ dual_set (simple_space (5 , 3))) , fo (5)

)
as se r t equal_objects (

in t e r s e c t i on (simple_space (5 , 3) , Rational (1 , 5) ∗ dual_set (simple_space (5 , 3)))
,

0.2 ∗ dual_set (fo (5)) ,
)

However, when looking in terms of preferred bases, the additives are even simpler
to construct. For coproducts, we just list the bases side by side (injected into the
larger space), and for products we take all pairs.

ADDITIVES

def coproduct (cA: Matrix , cB : Matrix) −> Matrix :
Block matrix of cA, zero , zero , cB
return Matrix . diag (cA, cB)

def product (cA: Matrix , cB : Matrix) −> Matrix :
Itera te through pairs of s ta t e s
S p l i t t i n g the matrix into the A and B components , we can represent each as a

tensor product of cA/cB with a row vector of a l l 1s
top = TensorProduct (cA, ones (1 , cB . co l s))
bottom = TensorProduct (ones (1 , cA. co l s) , cB)
return Matrix (BlockMatrix ([[top] , [bottom]]))

271

TEST ADDITIVES

pprint (coproduct (simple_space (4 , 2) , simple_space (5 , 3)))
pprint (product (fo (2) , simple_space (3 , 2)))

[1 1/4 0 0 0]
[0 1/4 0 0 0]
[0 1/4 0 0 0]
[0 1/4 0 0 0]
[0 0 1 0 1/5]
[0 0 0 1 1/5]
[0 0 0 0 1/5]
[0 0 0 0 1/5]
[0 0 0 0 1/5]

[1 1 0 0]
[0 0 1 1]
[1 1/3 1 1/3]
[0 1/3 0 1/3]
[0 1/3 0 1/3]

Finally, we have the multiplicatives. Tensor is again very straightforward, com-
bining the preferred bases by tensor product. We could define par and the linear
implication/internal hom ⊸ via a single linear equation system following Proposi-
tion 2.4.26, but for simplicity we will just dualise the tensor.

MULTIPLICATIVES

def tensor (cA: Matrix , cB : Matrix) −> Matrix :
Simply take the tensor product of the bas is vectors
return TensorProduct (cA, cB)

def parr (cA: Matrix , cB : Matrix) −> Matrix :
Define in terms of tensor and dual
return dual_set (tensor (dual_set (cA) , dual_set (cB)))

def lin_impl (cA: Matrix , cB : Matrix) −> Matrix :
Define in terms of tensor and dual
return dual_set (tensor (cA, dual_set (cB)))

TEST MULTIPLICATIVES

asse r t equal_objects (tensor (fo (2) , fo (3)) , fo (6))
as se r t equal_objects (parr (fo (2) , fo (3)) , fo (6))
as se r t equal_objects (tensor (dual_set (fo (2)) , dual_set (fo (3))) , dual_set (fo (6)))
as se r t equal_objects (parr (dual_set (fo (2)) , dual_set (fo (3))) , dual_set (fo (6)))

fo2d_x_fo2 = tensor (dual_set (fo (2)) , fo (2))
fo2d_p_fo2 = parr (dual_set (fo (2)) , fo (2))
pprint (fo2d_x_fo2)
pprint (fo2d_p_fo2)
as se r t check_containment (fo2d_x_fo2 , fo2d_p_fo2)

272

asse r t not check_containment (fo2d_p_fo2 , fo2d_x_fo2)

[1 0]
[0 1]
[1 0]
[0 1]

[1 1 0]
[0 0 1]
[1 0 1]
[0 1 0]

Seq is the most complicated operator to code up. We will give two example con-
structions based on the one-way signalling and (affine) semi-localisability definitions
(restricting the intermediate system to the binary object by the Affine-Bit Sufficiency
Theorem). In the case of the latter, we naively take each pair of local processes and
perform a tensor contraction, then take a linearly-independent subset of the results.
This is obviously an expensive procedure, but it guarantees that every column vector
in the resulting matrix is actually semi-localisable rather than some affine combina-
tion of them, which is helpful for finding circuit implementations.

To swap the direction of seq from < to >, we can make use of a permutation matrix
based on permuting the indices of a tensor.

ONE−WAY SIGNALLING

def seq_sig (cA: Matrix , cB : Matrix) −> Matrix :
Constructs the seq type using the one−way s i g n a l l i n g de f in i t i on .
We prepare a se t of l inear equations Ax = b where x has dimension (cA. rows ∗

cB. rows) + cA. co l s . The f i r s t sect ion of t h i s g ives the true vector , and
the second gives the c o e f f i c i e n t s of the marginal when expressed as an
a f f ine combination of columns of cA.

For each column of dual_set (cB) , we add a constraint that the marginal i s
i d e n t i c a l to the same as the uniform (i . e . the i r d i f f erence i s zero) .

We add a constraint that the a f f ine combination regenerates the marginal of
the actual vector and a f i n a l constraint that i t i s a f f ine .

normB = (ones (1 , cB . rows) @ cB . co l (0)) [0 , 0]
dB = dual_set (cB)
dB_diff_uniform = dB − (1 / normB) ∗ ones (dB. rows , dB. co l s)
pro jectors = TensorProduct (Matrix . eye (cA. rows , cA. rows) , dB_diff_uniform .T)
lhs = Matrix (

BlockMatrix (
[

[projectors , Matrix . zeros (pro jectors . rows , cA. co l s)] ,
[

TensorProduct (
Matrix . eye (cA. rows , cA. rows) , −(1 / normB) ∗ ones (1 , cB .

rows)
) ,
cA,

] ,
[Matrix . zeros (1 , pro jectors . co l s) , ones (1 , cA. co l s)] ,

]

273

)
)
rhs = Matrix . zeros (lhs . rows , 1)
rhs [lhs . rows − 1 , 0] = 1

Use sympy Gauss Jordan to obtain the so lut ion space . The so lu t ions are given
as a symbolic vector , parameterising the so lut ion space

try :
so l , _ = lhs . gauss_jordan_solve (rhs)

except ValueError :
return Matrix . zeros (cA. rows ∗ cB . rows , 0)

sol_mat = sym_tensor_to_mat(so l)

Cut o f f c o e f f i c i e n t s to ju s t leave raw vectors
return sol_mat [0 : (cA. rows ∗ cB . rows) , :]

SEMI−LOCALISABILITY

def contracted_basis (
bas i s : Matrix , tensor_shape : Tuple [int] , i nd i ce s : Tuple [int]

) −> Matrix :
Take each bas is element , in terpre t as a tensor , then contract .
Col lec t these and reduce to a minimal bas is .
bas is i s a bas is whose elements can be interpreted as a tensor of shape

tensor_shape .
We contract along a l l of indices
full_tensor_shape = (bas i s . cols , ∗tensor_shape)
fu l l_ ind i ce s = tuple ((ind + 1 for ind in i nd i ce s))
ar = Array (bas i s .T, full_tensor_shape)
contracted = tensorcontract ion (ar , fu l l_ ind i ce s)
contracted_mat = Matrix (

contracted . reshape (bas i s . cols , len (contracted) // bas i s . co l s)
) .T
columns = contracted_mat . columnspace ()
return Matrix . hstack (∗columns)

def seq_lo2 (cA: Matrix , cB : Matrix) −> Matrix :
Constructs the seq type as the 2−l o c a l graph type over two ver t i ce s and one

edge
fo2 = fo (2)
lhs = parr (cA, fo2)
rhs = lin_impl (fo2 , cB)
A poss i b l e future improvement for performance might be to convert these to

symbolic form to cut down on the dimension of the tensor that i s bu i l t , and
hope fu l l y leveraging the symbolic s imp l i f i ca t ion to optimise the space as

we compute
return contracted_basis (tensor (lhs , rhs) , (cA. rows , 2 , 2 , cB . rows) , (1 , 2))

PERMUTATIONS

import numpy as np

def tensor_permutation (
tensor_shape : Tuple [int] , index_permutation : Tuple [int]

) −> Matrix :

274

asse r t len (tensor_shape) == len (index_permutation)
total_dim = int (np . prod (tensor_shape))
id = Matrix . eye (total_dim , total_dim)
full_tensor_shape = (total_dim , ∗tensor_shape)
full_perm = tuple ((0 , ∗(ind + 1 for ind in index_permutation)))
ar = Array (id , full_tensor_shape)
permuted = permutedims (ar , full_perm)
return Matrix (permuted . reshape (total_dim , total_dim))

TEST SEQ

chan2x2 = lin_impl (fo (2) , fo (2))
chan3x3 = lin_impl (fo (3) , fo (3))
oneway_lr = seq_sig (chan2x2 , chan3x3)
print (oneway_lr . shape)

semilocal_lr = seq_lo2 (chan2x2 , chan3x3)
as se r t equal_objects (oneway_lr , semi local_lr)

oneway_rl = tensor_permutation ((9 , 4) , (1 , 0)) @ seq_sig (chan3x3 , chan2x2)
as se r t not equal_objects (oneway_lr , oneway_rl)

as se r t equal_objects (seq_sig (fo (2) , chan2x2) , tensor (fo (2) , chan2x2))
as se r t equal_objects (seq_sig (dual_set (fo (2)) , chan2x2) , parr (dual_set (fo (2)) ,

chan2x2))
as se r t equal_objects (seq_sig (chan2x2 , fo (2)) , parr (chan2x2 , fo (2)))
as se r t equal_objects (

seq_sig (chan2x2 , dual_set (fo (2))) , tensor (chan2x2 , dual_set (fo (2)))
)

(36, 27)

Beyond Caus [Mat[R]], we can reuse most of this code to explore Caus [CP∗] by
taking the real vectors to indicate coefficients of some basis of completely positive
matrices. For example, qubits can be encoded through the Pauli basis {I,X,Y,Z} or
some choice of four independent density matrices, e.g. {∣0⟩ ⟨0∣ , ∣1⟩ ⟨1∣ , ∣+⟩ ⟨+∣ , ∣i⟩ ⟨i∣}.
The code for the operators should still work, but the verification of flatness will need
changing to adapt the uniform state and effect for the chosen basis.

Let’s go through a quantum example. We will aim to verify that 1-qubit process
matrices are spanned by the definite causal orderings, and find the expansion of the
OCB process as in Example 2.7.14.

Firstly, we pick out a basis for qubit states, effects, preparations (conditioned on
some binary input), and binary tests. Using the basis {∣0⟩ ⟨0∣ , ∣1⟩ ⟨1∣ , ∣+⟩ ⟨+∣ , ∣i⟩ ⟨i∣},
qubit states are still spanned by fo(4) and the uniform effect is still [1, 1, 1, 1],
but the uniform state is now [1/2, 1/2, 0, 0]. We choose to create the bases
explicitly to provide easy interpretability later.

275

h = Rational (1 , 2)

qubit = fo (4)
ket0 = qubit [: , 0]
ket1 = qubit [: , 1]
mix = h ∗ (ket0 + ket1)
ketp = qubit [: , 2]
ketm = ket0 + ket1 − ketp
ket i = qubit [: , 3]
ketmi = ket0 + ket1 − ketm

qdiscard = dual_set (qubit)

b i t = fo (2)
b0 = bit [: , 0]
b1 = bit [: , 1]
bmix = h ∗ (b0 + b1)

constant_ket0 = Matrix . vstack (ket0 , ket0)
constant_ket1 = Matrix . vstack (ket1 , ket1)
constant_ketp = Matrix . vstack (ketp , ketp)
constant_keti = Matrix . vstack (keti , ke t i)
z_prep = Matrix . vstack (ket0 , ket1)
x_prep = Matrix . vstack (ketp , ketm)
y_prep = Matrix . vstack (keti , ketmi)
prep_basis = Matrix . hstack (

constant_ket0 , constant_ket1 , constant_ketp , constant_keti , z_prep , x_prep ,
y_prep

)
as se r t equal_objects (prep_basis , lin_impl (bit , qubit))

constant_0 = TensorProduct (ones (4 , 1) , b0)
constant_1 = TensorProduct (ones (4 , 1) , b1)
meas_z = Matrix . vstack (b0 , b1 , bmix , bmix)
meas_x = Matrix . vstack (bmix , bmix , b0 , bmix)
meas_y = Matrix . vstack (bmix , bmix , bmix , b0)
test_basis = Matrix . hstack (constant_0 , constant_1 , meas_z , meas_x , meas_y)
asse r t equal_objects (test_basis , lin_impl (qubit , b i t))

qubit_channel = contracted_basis (tensor (test_basis , prep_basis) , (4 , 2 , 2 , 4) , (1 ,
2))

as se r t equal_objects (qubit_channel , lin_impl (qubit , qubit))

To construct the definite causal orderings, we can take separable combinations of
states, channels, and effects. By symmetry of the systems, we can reverse the order
by permuting the tensors. Then we can verify that their union coincides with the
space of density matrices.

l_to_r = tensor (tensor (qubit , qubit_channel) , qdiscard)
r_to_l = tensor_permutation ((4 , 4 , 4 , 4) , (2 , 3 , 0 , 1)) @ l_to_r

process_matrix = union (l_to_r , r_to_l)
as se r t equal_objects (process_matrix , dual_set (tensor (qubit_channel , qubit_channel))

)

We then build the OCB process using the encodings of the Pauli matrices and
identify the coefficients that express it as an affine combination of the basis processes.

276

i_state = 2 ∗ mix
z_state = Matrix ([1 , −1, 0 , 0])
x_state = Matrix ([−1 , −1, 2 , 0])
i_e f f e c t = qdiscard
z_ef fect = Matrix ([1 , −1, 0 , 0])

i i i i = tensor (tensor (i_state , i_e f f e c t) , tensor (i_state , i_e f f e c t))
i z z i = tensor (tensor (i_state , z_ef fect) , tensor (z_state , i_e f f e c t))
z ixz = tensor (tensor (z_state , i_e f f e c t) , tensor (x_state , z_ef fect))
w_ocb = Rational (1 , 4) ∗ (i i i i + sqrt (h) ∗ i z z i + sqrt (h) ∗ z ixz)

as se r t check_containment (w_ocb, process_matrix)

c o e f f s = process_matrix . so lve (w_ocb)

for i , c in enumerate(c o e f f s) :
i f c != 0:

print (i , c)

0 1/4
1 1/4
2 -sqrt(2)/4
4 sqrt(2)/4
13 1/4
14 1/4
15 -sqrt(2)/4
17 sqrt(2)/4
52 -sqrt(2)/4
61 -sqrt(2)/4
70 sqrt(2)/2

Being a combination of 11 terms is fine, but may be too many terms to realistically
use in practical contexts. Choosing a different basis set would get a simpler expression.
For example, promoting the uniform state and the noisy channel to basis elements
reveals the exact decomposition given in Example 2.7.14.

noisy = Matrix . vstack (mix , mix , mix , mix)

qubit_alt = union (mix , qubit)
qubit_channel_alt = union (noisy , qubit_channel)
l_to_r_alt = tensor (tensor (qubit_alt , qubit_channel_alt) , qdiscard)
r_to_l_alt = tensor_permutation ((4 , 4 , 4 , 4) , (2 , 3 , 0 , 1)) @ l_to_r_alt
process_matrix_alt = union (l_to_r_alt , r_to_l_alt)

coe f f s_a l t = process_matrix_alt . so lve (w_ocb)

for (i , c) in enumerate(coe f f s_a l t) :
i f c != 0:

print (i , c)

0 1
2 -sqrt(2)/2
4 sqrt(2)/2
52 -sqrt(2)/2
70 sqrt(2)/2

277

	Introduction
	Content of the Thesis
	Prerequisites

	Causal Structures in Caus[C]
	Background: Quantum Causal Structures
	Related Work: Categories for Causality
	Background: the Caus[-] Construction
	Deriving the Construction
	Monoidal Unit
	Dual Objects
	First-order Objects
	Tensor and Par
	Intersections

	Assumptions on the Underlying Theory
	Additive Precausal Categories
	Subtractive Closure
	Impacts on Caus[C]

	Additive Operators
	Products and Coproducts
	Probabilistic Choice

	The Seq Operator
	One-Way Signalling
	Semi-Localisability
	Asymmetric Sum of Products
	Equivalence of Definitions
	Seq is a Monoidal Structure
	Causality as a Type Equality
	General Signalling Constraints

	Unions and Intersections
	Tensor is the Non-Signalling Space
	Affine Combinations of Linear Orderings are Universal

	Graph Types
	Local Graph Types
	Signalling Graph Types
	Ordered Graph Types
	Equivalence of Definitions
	Standard Forms
	Preservation of Local Structure
	Causal Relations Beyond Graph Types

	Partiality in Higher-Order Theories
	Initial and Terminal Objects in Caus[C]
	Descriptive Partiality
	Testable Partiality
	The Probabilistic Orthogonality

	Logical Characterisation of Caus[C]
	Background: MLL, BV, and pomset
	Sequent Calculus for MLL
	Proof-Nets for MLL
	BV, MAV, and pomset Logic
	Categorical Semantics

	Causal Consistency
	Causal String Diagrams for Black Boxes
	Extranatural Transformations
	Modelling Logics

	Causal Logic
	Causal Proof-Nets
	The Characterisation Theorem
	Standardised Interpretations

	Sufficient Fragments
	The pomset Fragment
	Separating BV and pomset with Process Matrices
	The First-Order Inductive Fragment

	Extensions

	Causal Structures in Quantum Computing
	Background: MBQC
	Measurement Patterns
	Stabilizers and Corrections
	Flow

	Identifying Pauli Flow
	An Algorithm for Pauli Flow
	Focussed Sets

	Circuit Extraction
	Circuits as Products of Pauli Rotations
	Extracting Measurement Rotations
	Characterising Clifford Patterns
	A Complete Algorithm
	Interpretation in ZX-Calculus

	Causal Structure via Parameterisation
	Signalling Orders in Flow
	Causal Structure in Parameterised Quantum Circuits

	Outlook
	Notational Conventions
	Exploring Caus[Mat[R]] in Python

