
Novel Methods for Classical Simulation of

Quantum Circuits via ZX-Calculus

Matthew Sutcliffe

Wolfson College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Hilary 2025

Dedicated to my late grandfather, Len.

Acknowledgements

I would firstly like to express my gratitude to Aleks for his invaluable supervision

throughout the course of my DPhil. I appreciate all the hours he kindly spared to

rack his brains with mine as we worked through research problems together in his

office. I can only apologise for all the whiteboard marker ink we must have gone

through. I thank him also for introducing me to ZX-calculus, which has since

become such a prominent part of my life, I can scarcely remember what it was

like to close my eyes and not see ZX-diagrams. Lastly, his very helpful software

packages, including PyZX, QuiZX, and TikZiT, have been imperative to my work

and surely saved me countless hours of tedious effort.

I would next like to thank all my friends and colleagues from, and adjacent to,

the Quantum Group, including John, Tein, Razin, Lia, Boldi, Tuomas, and partic-

ularly Richie and Alex, for all the engaging discussions — from the fascinating

to the silly — and for their ever-friendly company. I look forward to their future

research output and hope to continue collaborating with them on exciting projects.

Likewise, I owe considerable gratitude to the welcoming community at Wolfson

College and later Oriel College. Too numerous to name, their company has made

Oxford a place I’ve been happy to call home. Charlotte, Olivia, Thomas, Paul,

Lila, Zhenlong, Michael, Michail, and too many more to list, have been delightful

friends — ever warm, ever considerate, and ever entertaining. The punting trips,

the college balls, the dinners, the board games, the firewalk, all the rounds of pool,

and the many all-night hangouts at the common room are experiences I’ll cherish

for years to come. I couldn’t have asked for a better group of people with whom

to share these past few years.

As for Tom and Rose and all my other friends outside of Oxford, I appreciate them

ii

being a steady constant throughout the busy and hectic times among my studies.

Despite the distance, our online gaming sessions are always a very welcome break

after a hard day’s work.

I would also like to thank my partner, Miko, for her support over these past few

years and for listening to all my ramblings about my research and for sharing with

me all the commentary of hers. I’m happy to have shared a DPhil journey with

her, and I look forward to more adventures together.

Lastly, I am endlessly grateful to my parents and family for supporting and en-

couraging me through not just my DPhil but my entire education. I have them

to thank for being where I am today, fulfilling my dream of pursuing exciting

quantum research.

Abstract

With the limitations of today’s ‘NISQ era’ quantum hardware, classical simulation of quantum compu-

tations is an essential tool for understanding the quantum advantage and optimising quantum algorithms

and systems. However, without the features unique to quantum computers, simulating such computations

with classical hardware is (believed to be) a necessarily inefficient endeavour. For a general class of

quantum circuits, any classical simulator requires a resource overhead which grows exponentially with

one metric or another. Two notable and widely used techniques are tensor contraction and stabiliser de-

composition. The former suffers from both space and time complexities that scale exponentially with

the interconnectedness (or treewidth) of the circuit, while the latter is limited by a time complexity that

scales exponentially with the number of ‘non-Clifford’ gates in the circuit. Recent years have seen the

graphical language of ZX-calculus applied to this problem, with a particular growing body of research

utilising its benefits to discover more efficient stabiliser decompositions. This in turn reduces the growth

rate of the exponential time complexity, thereby rendering ever larger and more complex quantum circuits

classically simulable.

This thesis expands upon this literature by presenting various new techniques and approaches by which

the ZX-calculus may be used to classically simulate quantum circuits with improved efficiencies. This

work includes a new perspective on optimising stabiliser decomposition strategies, focusing on improved

heuristics and decomposition patterns rather than on discovering wholly new decompositions. Also in-

cluded is extensive use of GPU hardware to parallelise the workload, particularly used in conjunction

with a parameterisation of the ZX-calculus which allows large sets of similar circuits to be reasoned upon

as single entities. Lastly, this thesis features a hybrid method of classical simulation which leverages of

the strengths of both tensor contraction and stabiliser decomposition approaches, optimising a balance be-

tween these techniques. Ultimately, the chapters ahead demonstrate how these new techniques can greatly

increase the scope of classical simulation by reducing the runtime of this task by orders of magnitude and

providing a foundation for further research.

Preface

This thesis is based on the research I conducted as a DPhil student in the Quantum

Group of the Department of Computer Science at the University of Oxford, under the

supervision of Dr Aleks Kissinger, from October 2021 to December 2024.

In particular, this work comprises five research projects, listed here in chronological

order:

1. Matthew Sutcliffe and Aleks Kissinger, ‘Fast classical simulation of quantum cir-

cuits via parametric rewriting in the ZX-calculus’ (March 2024), Preprint (to ap-

pear in the proceedings of the 22nd International Conference on Quantum Physics

and Logic, Varna, Bulgaria, 14-18 July 2025). Available at: https://arxiv

.org/abs/2403.06777. (Sutcliffe & Kissinger, 2024a)

2. Matthew Sutcliffe and Aleks Kissinger, ‘Procedurally Optimised ZX-Diagram Cut-

ting for Efficient T-Decomposition in Classical Simulation’ (March 2024), Pro-

ceedings of the 21st International Conference on Quantum Physics and Logic,

Buenos Aires, Argentina, 15-19 July 2024, Electronic Proceedings in Theoretical

Computer Science 406, p.63-78, doi:10.4204/eptcs.406.3. Available at: https://

cgi.cse.unsw.edu.au/~eptcs/paper.cgi?QPL2024.3. (Sutcliffe &

Kissinger, 2024b)

3. Matthew Sutcliffe, ‘Smarter k-Partitioning of ZX-Diagrams for Improved Quan-

tum Circuit Simulation’ (September 2024), Preprint. Available at: https://

arxiv.org/abs/2409.00828. (Sutcliffe, 2024c)

4. Alexander Koziell-Pipe, Richie Yeung, Matthew Sutcliffe, ‘Towards Faster Quan-

tum Circuit Simulation Using Graph Decompositions, GNNs and Reinforcement

Learning’ (October 2024), Proceedings of the 4th Workshop on Mathematical Rea-

ii

https://arxiv.org/abs/2403.06777
https://arxiv.org/abs/2403.06777
https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?QPL2024.3
https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?QPL2024.3
https://arxiv.org/abs/2409.00828
https://arxiv.org/abs/2409.00828

University of Oxford Matthew Sutcliffe

soning and AI at NeurIPS’24, Vancouver, Canada, 10-15 December 2024. Avail-

able at: https://openreview.net/forum?id=54060pbCKY. (Koziell-

Pipe, Yeung, & Sutcliffe, 2024)

5. Wira Azmoon Ahmad and Matthew Sutcliffe, ‘Dynamic T-decomposition for clas-

sical simulation of quantum circuits’ (December 2024), Preprint (to appear in

the International Journal of Modern Physics C). Available at: https://arxiv

.org/abs/2412.17182. (Ahmad & Sutcliffe, 2024)

Of the collaborative efforts among these projects, the extent of their inclusion in this

thesis (except where stated otherwise) is focused on my own contribution. Specifically,

papers 1 to 3 were predominantly my own independent research, conducted under the

supervision and guidance of Dr Aleks Kissinger. The research presented in these three

papers appear in chapters 3, 5, and 4, respectively. Meanwhile, paper 4 was a joint col-

laborative project with two peers. The contents of this paper (except in brief reference)

are omitted from this thesis, though are expected to feature prominently in the upcoming

DPhil theses of Alex Koziell-Pipe (Koziell-Pipe, 2025) and Richie Yeung. Lastly, paper

5, featuring in chapter 6, represents work developed in collaboration with Wira Ahmad,

as an extension of their MSc thesis (Ahmad, 2024) which I proposed and supervised.

To the best of the author’s knowledge, the contents of this thesis are accurate and up to

date at the point of submission in February 2025.

iii

https://openreview.net/forum?id=54060pbCKY
https://arxiv.org/abs/2412.17182
https://arxiv.org/abs/2412.17182

Preliminaries

This thesis relies upon a number of terms which, in colloquial use, may have various

similar and loosely defined meanings. It is essential for the clarity herein that explicit

and precise definitions are provided for these terms. Similarly, this thesis introduces a

handful of new terms, notations, and conventions which require definition and explana-

tion.

Firstly, there is much reference made to the image of a function or parametric expres-

sion. In common parlance, this is often used interchangeably with its codomain. How-

ever, it is important for the understanding of the chapters ahead that this term is used

precisely and accurately:

Definition 1. The ‘image’ of a function f : X → Y is the set of all values in Y that f

maps elements of X to. Formally, the image of f is:

Image(f) = {f(x) | x ∈ X} ⊆ Y (1)

Essentially, Image(f) denotes the set of possible values which f(x) may return, given

accepted inputs from its domain, x ∈ X . For instance, given a function f(x) = 2x + 3

with x ∈ {0, 1}, it follows that Image(f) = {3, 5}.

Throughout this thesis, and particularly within chapter 3, there is a subtle but important

distinction maintained between concrete and abstract parameters:

Definition 2. Concrete parameters are variables that represent specific values drawn

from a defined set. These parameters essentially act as placeholders for values which

are as yet unspecified but nevertheless fixed.

p ∈ P defines a concrete parameter p whose value is fixed and belonging to the set P .

iv

University of Oxford Matthew Sutcliffe

Definition 3. Abstract parameters are variables, restricted to a defined set, which do

not represent specific values but rather the variable itself. These remain symbolic and

un-evaluated.

p
⋆
∈ P defines an abstract parameter p whose image is known, Image(p) = P , but its

value is not fixed to any particular element of P .

For instance, a ∈ {0, 1} describes a specific, but currently unspecified, Boolean value

(either a = 0 or a = 1), whereas a
⋆
∈{0, 1} describes a symbolic parameter that repre-

sents neither a = 0 nor a = 1 but rather refers to the abstract un-evaluated symbol itself.

In the simplest terms, the former acts as a temporary placeholder whereas the latter is,

by design, kept symbolic. Expressed another way, consider r ∈ R and r
⋆
∈ R. Here, r

refers to a particular (albeit undisclosed) real value, while r refers to the general concept

of a real variable.

An abstract parameter p
⋆
∈ P may later be instantiated to a specific value from the set P

like so: p→ p, where p ∈ P . For instance, if P = {1, 2, 3, 4}, the abstract parameter p

may later be instantiated to p = 2. Thereafter, p is no longer an abstract parameter, but

rather a specific value, namely 2.

Given lemma 1, which explicitly describes what each element of a function refers to,

the relationship between concrete variables, such as a ∈ B, and abstract variables, such

as a
⋆
∈ B, may be expressed as follows:

a(a) = a (2)

Lemma 1. Consider the following:

ϕ = Φ(a) = aπ (3)

v

University of Oxford Matthew Sutcliffe

where a ∈ {0, 1}. Here:

• ϕ refers to the output of the function Φ for a specific value of a. It hence refers to

a particular value, ϕ ∈ {0, π}.

• Φ refers to the function itself, described as Φ(a) = aπ. It can likewise be in-

terpreted to refer to the general expression aπ, for a symbolic, non-specific a. It

does not refer to a specific value, though its set of possible outcomes is known:

Image(Φ) = {0, π}.

• Φ(a) refers to the function Φ evaluated for a particular input a ∈ {0, 1}. For all

intents and purposes, to what it refers is the same as that of ϕ. Hence, Φ(a) ∈

{0, π}.

• aπ describes an algebraic expression. Depending on the context, it can refer to

either the expression for a specific value of a or generically for a general symbolic

a.

In typical circumstances, these precise distinctions are pedantic and superfluous. How-

ever, in parts of this thesis (particularly chapter 3) these distinctions are important and

this precision is necessary. Indeed, even further clarity can usually be garnered from

context. Nevertheless, to help reduce ambiguity, this thesis introduces and generally

— unless stated otherwise — adheres to a convention whereby abstract parameters are

written in Fraktur font:
α, β, γ, . . . ∈ R,

a, b, c, . . . ∈ B,

a, b, c, . . .
⋆
∈ B.

(4)

A circuit, ZX-diagram, or expression containing at least one abstract parameter is said to

be parameterised, and the word static is used in this thesis to mean non-parameterised.

Furthermore, this thesis (particularly chapter 4) utilises a number of mathematical struc-

vi

University of Oxford Matthew Sutcliffe

tures — often in a programmatic context — and conversions between them. For clarity,

except where stated otherwise, a tensor (see definition 4) is treated as an n-dimensional

array (with integer n ≥ 0) and is sometimes notated with an overset arrow. Where used,

this notation emphasises that, within the relevant context, a multi-dimensional tensor is

merely a useful conceptual abstraction of what, in software, is stored as a linear vector.

Consistent with programmatic notation, T⃗ [2, 5, 3] refers to the element at index (2, 5, 3)

of tensor T⃗ . Likewise, given a vector a⃗ = (2, 5, 3), the equivalent element may be re-

trieved by T⃗ [⃗a]. To this end, a set of abstract parameters, such as S = {a, b, c}, may

be converted into a vector, S⃗ = (a, b, c), (maintaining the order shown in the set) with

the notation: S⃗ := [S]. Moreover, if multiple sets or vectors share a common abstract

parameter, then its instantiation to a concrete value should, unless stated otherwise, be

considered to update every reference to it accordingly.

The following is a summary of the obscure and original terms and operators, together

with the pages on which they are defined:

Terms and Operators

Symbol Term / Operator Defined

Image(x) Image Page iv

a, b, c, . . . Abstract parameters Page iv
⋆
∈ Parameterised membership Page iv

Staticity Page vi

≈ Equal up to a scalar Page 22

∼=struct Structural isomorphism Page 22
ϵ
≈ Equal up to an error Page 33

Parametric symmetry Page 81

Phase polarisation Page 84

⊕ XOR Page 84

vii

University of Oxford Matthew Sutcliffe

viii

Table of Contents

1 Introduction 1

2 Background 4

2.1 Quantum Computing . 4

2.1.1 Quantum States . 5

2.1.2 Quantum Gates . 11

2.1.3 Quantum Circuits . 16

2.2 ZX-Calculus . 19

2.2.1 Introduction to ZX-Calculus 20

2.2.2 Rewriting Strategies . 24

2.2.3 Circuit Classes . 28

2.3 Classical Simulation . 31

2.3.1 Strong and Weak Simulation 33

2.3.2 Marginal Probabilities 35

2.3.3 Tensor Contraction . 37

2.3.4 Stabiliser Decomposition 40

2.4 Hypergraph Partitioning . 55

2.4.1 Weighted Hypergraphs 55

2.4.2 Minimum Balanced k-Cut 57

2.4.3 Partitioning ZX-Diagrams 58

2.5 GPU Parallelism . 63

2.5.1 Parallel Processing . 64

2.5.2 GPU Architecture . 69

2.5.3 GPU Memory Structure 72

2.5.4 Data Coalescing . 74

i

University of Oxford Matthew Sutcliffe

2.5.5 Data Pipelining . 78

3 Parameterised ZX-Calculus 80

3.1 Parametric Symmetry . 81

3.2 Parameterising ZX-Calculus . 83

3.2.1 Polarising Phases . 84

3.2.2 Parameterising State Copy 85

3.2.3 Parameterising the Remaining Rewriting Rules 88

3.2.4 Parameterised Scalar Expressions 96

3.3 GPU-Parallelised Evaluation . 102

3.3.1 Condensing the Data Structure 103

3.3.2 Further Considerations 106

3.3.3 Computing the Subterms 108

3.3.4 Computing the Terms . 119

3.3.5 Parallelised Summation Algorithm 122

3.3.6 Summary of the New Method 127

3.4 Application to Classical Simulation 132

3.4.1 Repeated Strong Simulation 132

3.4.2 Computing Individual Marginal Probabilities 132

3.4.3 Repeated Weak Simulation 133

3.5 Results . 135

3.5.1 Experimental Setup . 135

3.5.2 Experimental Measurements 136

3.6 Further Applications . 141

3.6.1 Application to Circuit Measurements 141

3.6.2 Parameterising Stabiliser Decompositions 147

3.7 Conclusions . 148

ii

University of Oxford Matthew Sutcliffe

4 Smarter ZX-Diagram Partitioning 151

4.1 Formalising the Existing Method 151

4.2 Redundancy Mitigation via Parameterisation 154

4.3 GPU-Parallelised Cutting . 161

4.4 Pairwise Partition Regrouping 162

4.5 The ZX-Partitioner . 174

4.6 Estimating Runtime . 181

4.6.1 Direct Decomposition 181

4.6.2 Smart Partitioning . 182

4.7 Results . 186

4.8 Tensor Contraction and Compound Circuits 192

4.9 Improving Partitionability . 195

4.10 Conclusions . 199

5 Procedurally Optimised ZX-Diagram Cutting 201

5.1 Efficient Graph Cutting . 202

5.1.1 Slicing Spider Sandwiches 203

5.1.2 CNOT Grouping . 205

5.1.3 Cutting in Tiered Structures 208

5.1.4 Cut Order Correction . 210

5.2 Optimised Cutting Procedure . 212

5.3 Results . 215

5.3.1 Circuit Generation . 215

5.3.2 Complexity and Efficiency 216

5.3.3 Experimental Measurements for Random Circuits 217

5.4 Conclusions . 221

6 Dynamic T-Decomposition 224

iii

6.1 Deriving Dynamic Decompositions 225

6.2 Results . 232

6.3 Conclusions . 239

7 Conclusions and Future Directions 241

Bibliography 244

iv

1 | Introduction

Classical simulation is a vital tool for understanding, verifying, and analysing

quantum computations, and for benchmarking and quantifying their quantum ad-

vantage, particularly as quantum hardware remains in its early and limited stages.

Although small and simple quantum systems are efficiently simulable with clas-

sical hardware, the same is not true for larger, more practical quantum systems.

Simulating such large quantum algorithms classically is a notoriously inefficient

task, with runtimes that grow exponentially with the size and/or complexity of the

system.

Stabiliser decomposition and tensor contraction are two effective methods by

which quantum circuits are classically simulated — both with their advantages

and disadvantages and both the subject of much research and improvement in re-

cent years. Notably, the graphical language of ZX-calculus has been extensively

applied in aid of this research, particularly for improving the efficiency of sta-

biliser decomposition.

It is in this context that this thesis originates. Its aim is to present novel tech-

niques, utilising ZX-calculus, by which quantum circuits may be classically sim-

ulated with greater efficiency than the existing approaches. Significantly, with few

exceptions, most of the prior literature using ZX-calculus for classical simulation

has focused on finding new, more efficient stabiliser decompositions. The work

presented in this thesis, on the other hand, deviates from this tradition, instead

focusing on offering new techniques altogether for improving the efficiency of

classical simulation of quantum circuits.

The subsequent chapters may be summarised as follows:

Chapter 2 covers the relevant technical background of quantum comput-

1

University of Oxford Matthew Sutcliffe

ing and GPU parallelism and provides an introduction and overview of ZX-

calculus. This chapter also contains an introduction to, and literature review

of, both classical simulation of quantum circuits and hypergraph partition-

ing. This includes an exploration and comparison of the prominent tech-

niques presently used to solve these problems, together with their benefits

and limitations.

Chapter 3 presents a generalisation of the rewriting rules of ZX-calculus

to support appropriately restricted parameterised phases. It is subsequently

demonstrated how this may be used to compute much of the work involved

in classical simulation in parallel, particularly making use of the GPU. Ul-

timately, it is shown that, even with commercial hardware, this offers a sig-

nificant linear speedup, sometimes beyond a factor of 100.

Chapter 4 greatly extends existing work on partitioning ZX-diagrams to aid

in classical simulation, taking advantage of known techniques in the graph

theory literature. Primarily, this chapter details a new hybrid method which

leverages the advantages of both stabiliser decomposition and tensor con-

traction to significantly improve the efficiency with which quantum circuits

(particularly those with more localised multi-qubit gates) may be classi-

cally simulated. The results include circuits for which classical simulation

is infeasible via the existing stabiliser decomposition and tensor contrac-

tion approaches, but which may be simulated within seconds via this hybrid

method.

Chapter 5 challenges the assumption, implicit in the literature, that sta-

biliser decomposition methods of classical simulation are improved solely

by finding new decompositions of higher efficiencies. To this end, this

chapter demonstrates that well-motivated applications of lower efficiency

2

University of Oxford Matthew Sutcliffe

decompositions can in fact lead to a greater overall efficiency after ZX-

calculus simplification is taken into account. This is exemplified with a

heuristic method based on propagating weights to determine efficient pat-

terns in which to apply the trivial ‘cutting’ decomposition. Lastly, it is

shown that this approach enables classical simulation with a computational

complexity of O(20.127t), as compared to O(20.196t) for the preceding state

of the art stabiliser decomposition approach, given a circuit with t ‘non-

Clifford’ gates.

Chapter 6 utilises the principles of chapter 5 to derive new stabiliser de-

compositions based on heuristically motivated applications of the trivial

‘cutting’ decomposition. The resulting decompositions take advantage of

patterns common to quantum circuits expressed as reduced ZX-diagrams

and, unlike typical decompositions in the literature, are dynamic and scal-

able in their structure. The results highlight exponential speedups for the

task of classical simulation, versus the use of existing alternative decom-

positions, with the extent of this speedup dependent on the class of circuit

considered.

Chapter 7 closes the thesis with a summary of the novel work introduced

and the conclusions that may be drawn from their results. This puts into

context the contribution this work offers to the literature and broadly high-

lights potential future work that may extend from this thesis.

3

2 | Background

2.1 Quantum Computing

As Moore’s Law (Schaller, 1997; Mack, 2011) — the observation that classical

computing power doubles approximately every two years — approaches phys-

ical limits due to transistor miniaturisation challenges (Theis & Wong, 2017),

quantum computing has begun to emerge as a promising alternative for sustaining

computational growth. This represents a paradigm shift in computation, leverag-

ing the strange phenomena of quantum mechanics to process information in ways

impossible with classical computers. With quantum bits that may exist in a su-

perposition of states, together with the entanglement of such ‘qubits’, massively

parallel computations are possible, beyond the scope of even theoretical classical

computation (Hey, 1999).

While still in its infancy, research into quantum computing has highlighted sig-

nificant potential (and dangers), with the design of quantum algorithms such as

the famous Grover’s algorithm (Grover, 1996), providing a quadratic speedup for

unstructured search problems against the best possible classical algorithms. In a

similar vein is Shor’s algorithm (Shor, 1999) for efficiently factoring large inte-

gers into prime numbers in polynomial time — a problem that is exponentially

slower to solve classically. This has profound implications for cryptography, as

it threatens the security of the RSA encryption protocol (Rivest, Shamir, & Adle-

man, 1978) upon which much of internet security currently relies (Boneh et al.,

1999), and which is dependent upon the presumed hardness of this problem.

There have likewise been many developments in quantum hardware in recent

years, giving rise to Noisy Intermediate-Scale Quantum (NISQ) devices (Preskill,

4

University of Oxford Matthew Sutcliffe

2018). Due to the technical difficulties of developing quantum computers, these

NISQ devices are limited to only tens or hundreds of qubits and are highly suscep-

tible to noise and errors (Lau, Lim, Shrotriya, & Kwek, 2022). Nevertheless, de-

spite not yet achieving full fault-tolerant quantum computing, these devices have

proven useful in exploring and demonstrating the potential advantages of quan-

tum algorithms in various fields, from quantum chemistry (Bharti et al., 2022) to

combinatorial optimisation problems (Blekos et al., 2024).

2.1.1 Quantum States

In classical computing, the smallest unit of data is a binary digit (‘bit’), existing,

at any given time, in one of two possible states: 0 or 1. Information is processed

on a classical computer by manipulating bits using logic gates, which map one or

more input bits to a single output bit, according to simple rules. These gates can

be expressed using truth tables, which show the output bit corresponding to every

possible input bitstring. Composing such gates together, with the outputs of some

entering the inputs of others, one may construct a Turing-complete (Turing, 1936)

complex network of logical operations, known as a logic circuit (Groote, Morel,

Schmaltz, & Watkins, 2021).

Conversely, the fundamental unit of information in a quantum computer is a quan-

tum bit (‘qubit’). Whereas a classical bit (in random access memory) is physically

stored as an electrical charge, or lack thereof, in a capacitor, a qubit is physically

realised using quantum systems, such as the spin of an electron (Harneit, 2002;

Wesenberg et al., 2009), the polarisation of a photon (Slussarenko & Pryde, 2019;

Takeda & Furusawa, 2019), or the energy states of a superconductor (H.-L. Huang,

Wu, Fan, & Zhu, 2020; Gambetta, Chow, & Steffen, 2017). As a result, qubits are

subject to, and may take advantage of, the phenomena of quantum mechanics.

This is what enables quantum computers to perform tasks which are practically

5

University of Oxford Matthew Sutcliffe

incomputable1 with a classical computer, giving rise to the quantum advantage.

As with a classical bit, a qubit may be in the 0 state or 1 state. In the context

of qubits, these are known as the computational basis states (Nielsen & Chuang,

2010) and are denoted |0⟩ and |1⟩ respectively. Here, |ψ⟩ denotes a quantum state

in Dirac notation (otherwise known as ‘Bra-Ket notation’) (Dirac, 1939). Unlike

a classical bit, however, a qubit may exist in a superposition of these basis states:

|ψ⟩ = α |0⟩+ β |1⟩ (2.1)

where α, β ∈ C are probability amplitudes, satisfying the normalisation condition

|α|2 + |β|2 = 1. Upon measurement, the qubit will collapse to the state |0⟩ with

probability |α|2 or to the state |1⟩ with probability |β|2.

Any such quantum state may be represented as a point on the surface of the

Bloch sphere (Nielsen & Chuang, 2010), where the poles denote the classical

basis states, |0⟩ and |1⟩. This is illustrated in figure 2.1.

A more compact notation sees equation 2.1 expressed as a column vector:

|ψ⟩ =

α
β

 (2.2)

with:

|0⟩ =

1
0

 |1⟩ =

0
1

 (2.3)

1Any Turing-complete classical computer can theoretically compute anything a quantum com-
puter can. However, quantum advantage tasks may necessarily require exponentially more time
(and/or space) to compute classically, meaning quantum computers can offer polynomial speedups
against even the theoretically most efficient classical algorithms for such tasks.

6

University of Oxford Matthew Sutcliffe

z

y

x

Figure 2.1: The Bloch sphere, illustrating the state of a qubit with two angles,
|ψ⟩ = cos

(
ϑ
2

)
|0⟩+ eiφ sin

(
ϑ
2

)
|1⟩.

The Hermitian adjoint (conjugate transpose) of such a ‘ket’ is then expressed as a

‘bra’:

⟨ψ| =
[
α∗ β∗

]
(2.4)

where α∗ and β∗ are the complex conjugates of α and β respectively.

Two parallel qubit states may be expressed as a single column vector by taking

their tensor product (⊗):

|ψϕ⟩ := |ψ⟩ ⊗ |ϕ⟩ (2.5)

such that the 2-qubit basis states are:

7

University of Oxford Matthew Sutcliffe

|00⟩ =


1

0

0

0

 |01⟩ =


0

1

0

0

 |10⟩ =


0

0

1

0

 |11⟩ =


0

0

0

1

 (2.6)

Hence, two general and parallel single-qubit states:

|ψ⟩ =

α
β

 |ϕ⟩ =

γ
δ

 (2.7)

may be expressed as:

|ψϕ⟩ =


αγ

αδ

βγ

βδ

 (2.8)

Returning to Dirac notation, this represents a linear combination of the 2-qubit

basis states:

|ψϕ⟩ = αγ |00⟩+ αδ |01⟩+ βγ |10⟩+ βδ |11⟩ (2.9)

with α, β, γ, δ ∈ C and |αγ|2 + |αδ|2 + |βγ|2 + |βδ|2 = 1.

Following this logic, any n-qubit state may be expressed as a length 2n column

vector. This may be interpreted as a vectorisation of a uniform rank n tensor of

length 2:

Definition 4. A tensor is an n-dimensional array with integer n ≥ 0 (and hence

8

University of Oxford Matthew Sutcliffe

a generalisation of an n = 0 scalar, n = 1 vector, and n = 2 matrix, supporting

higher dimensions).

Remark 1. The number of dimensions (or axes), n, of a tensor is known as its

rank.

Given dimension lengths m1,m2, . . . ,mn ∈ N, a rank n tensor, T , with (for ex-

ample) complex elements, is given by:

T ∈ Cm1×m2×···×mn (2.10)

Any element of the tensor may be indexed by specifying its Cartesian position in

each dimension, as such:

Ti1,i2,...,in ∈ C (2.11)

with ij ∈ {1, 2, . . . ,mj} ∀j.

A tensor with a consistent length, m ∈ N, in each dimension, mj = m ∀j, is said

to be uniform and its shape may be fully described by its rank n and length m,

giving a total of mn elements.

In addition to superposition, qubits may also exhibit entanglement, whereby the

quantum states of two or more qubits interact to become correlated. This means

the state of one qubit depends upon the state of another (regardless of the physical

distance between them). The most famous example is the following Bell state

(Nielsen & Chuang, 2010):

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) (2.12)

9

University of Oxford Matthew Sutcliffe

This demonstrates an entanglement of two qubits. If one qubit is measured and

its state collapsed to |0⟩ then the other qubit — regardless of its distance from

the first — will likewise instantly collapse to the same state, |0⟩. Similarly, if the

first qubit is measured and collapsed to |1⟩, the second qubit will also instantly

collapse to |1⟩, emphasising the instantaneous correlation between the qubits.

A final point to note is that quantum states are very delicate. When a quantum sys-

tem is in a superposition, its components (probability amplitudes) may interfere

with one another in a phenomenon known as quantum interference. Small envi-

ronmental noise, such as heat and electromagnetic radiation (Zurek, 2003; Breuer

& Petruccione, 2002), can induce small fluctuations in the quantum state (impact-

ing its probability amplitudes), leading to decoherence. This may also result in a

superposition collapsing prematurely.

Decoherence is a significant problem in the field of quantum computing and poses

practical limitations on the scale and accuracy of quantum circuits which may be

computed with NISQ hardware. Efforts to improve quantum hardware against de-

coherence are actively underway (De Leon et al., 2021). One key area of research

focuses on enhancing qubit coherence times by developing more stable qubit tech-

nologies, such as superconducting qubits (Kjaergaard et al., 2020; Devoret, Wall-

raff, & Martinis, 2004), trapped ions (Häffner, Roos, & Blatt, 2008; Bruzewicz,

Chiaverini, McConnell, & Sage, 2019; Georgescu, 2020), and topological qubits

(Freedman, Kitaev, Larsen, & Wang, 2003), which are less susceptible to environ-

mental noise.

Additionally, there has been much research into software improvements to miti-

gate the effects of quantum decoherence (Roffe, 2019; Lidar & Brun, 2013). This

is known as ‘Quantum Error Correction’ (QEC) and involves various techniques

designed to protect quantum information from errors due to decoherence. QEC

10

University of Oxford Matthew Sutcliffe

relies on encoding quantum information across multiple physical qubits to form

logical qubits. These logical qubits can then detect and correct errors without di-

rectly measuring the quantum state, preserving the delicate superpositions and en-

tanglements. However, implementing QEC requires a large overhead in terms of

the number of physical qubits and gates, which makes it particularly challenging

on current NISQ devices. Despite this, QEC is considered essential for achieving

fault-tolerant quantum computing at scale (Gottesman, 2002).

2.1.2 Quantum Gates

Conventionally, quantum algorithms are expressed in quantum circuit notation,

analogous to the traditional logic circuit notation of classical (binary) computing.

In this framework, qubits are represented as horizontal wires, with time progress-

ing from left to right. Quantum gates are shown as operations acting on one or

more qubits, mapping their input state (entering the left) to an output state (exiting

the right) (Nielsen & Chuang, 2010).

A classical logic gate maps one or two binary inputs to a single binary output2

and its behaviour is expressed with a truth table showing every input to output

mapping. Conversely, a quantum logic gate is reversible and maps n ≥ 1 qubit

inputs to n qubit outputs, and its behaviour is expressed as a unitary 2n×2n matrix

(or indeed a uniform rank 2n tensor of length 2 if not vectorised).

For example, the quantum NOT gate (also known as the Pauli-X gate), depicted in

circuit notation in either of the following forms:

X≡⊕

is defined by the following matrix:
2This is true at least of the seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and

XNOR.

11

University of Oxford Matthew Sutcliffe

X =

0 1

1 0

 (2.13)

such that, applied to the classical basis states, it acts just as the classical NOT gate:

X |0⟩ = |1⟩

X |1⟩ = |0⟩
(2.14)

The Pauli-X gate may be interpreted as inducing a π radian rotation around the X-

axis of the Bloch sphere. This gate belongs to the Pauli family of gates, together

with the Pauli-Y and Pauli-Z gates:

Y Z

which respectively act as π radian rotations about the Y- and Z- axes:

Y =

0 −i

i 0

 Z =

1 0

0 −1

 (2.15)

Note that the Pauli gates are often alternatively denoted as σx, σy, and σz.

Another important gate is the Hadamard gate:

H

This is defined by the following matrix:

H =
1√
2

1 1

1 −1

 (2.16)

such that, applied to either basis state this produces an equal superposition of both:

12

University of Oxford Matthew Sutcliffe

H |0⟩ = 1√
2
(|0⟩+ |1⟩) ≡ |+⟩

H |1⟩ = 1√
2
(|0⟩ − |1⟩) ≡ |−⟩

(2.17)

This also defines the |+⟩ and |−⟩ states, known as the Hadamard (or diagonal)

basis states:

|+⟩ = 1√
2

1
1

 |−⟩ = 1√
2

 1

−1

 (2.18)

The Hadamard gate can be interpreted as inducing a π
2

radian rotation around

the Y-axis of the Bloch sphere, followed by a π radian rotation about the X-axis:

H = XY 1/2.

Two more single-qubit gates of importance are the S and T gates:

S T

These are given by the following matrices:

S =

1 0

0 i

 T =

1 0

0 ei
π
4

 (2.19)

These act as Bloch sphere rotations about the Z-axis of π
2

radians and π
4

radians,

respectively. As such, S = T 2. Furthermore, the adjoint (or conjugate transpose)

of these, S† and T †, act as Z-axis rotations of−π
2

and−π
4
, respectively. (Note that

S† = S3 and T † = T 7 = S3T .)

In addition to these single-qubit gates, there are a handful multi-qubit gates im-

portant to this thesis. In particular, the controlled-NOT, or CNOT, gate (otherwise

known as the controlled-X or CX gate) acts upon two qubits, labelled the control

13

University of Oxford Matthew Sutcliffe

qubit and the target qubit:

⊕

where the smaller black circle denotes the control qubit.

This applies the quantum NOT gate (equation 2.13) to the target qubit if the con-

trol qubit is in the state |1⟩ and does nothing (applies the identity) if the control

qubit is in the state |0⟩. If the control qubit is in a superposition state and is not al-

ready entangled with the target qubit, and the target qubit is not in the |+⟩ or |−⟩

state, then the CNOT gate will create an entanglement between the two qubits.

The corresponding matrix of the CNOT gate follows:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.20)

Next, there is the controlled-controlled-NOT, or CCNOT, gate (otherwise known

as the Toffoli gate or CCX gate) (Aharonov, 2003):

⊕

This applies the quantum NOT gate to the target qubit when both control qubits

are in the |1⟩ state. Its matrix follows:

14

University of Oxford Matthew Sutcliffe

Toff =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



(2.21)

Similarly, the controlled-controlled-Z, or CCZ, gate:

(in the computational basis) applies the Z gate to the target qubit, conditional on

two control qubits. Interestingly, as one may observe from its depiction above,

the CCZ gate is symmetrical, meaning its behaviour remains unchanged when the

target qubit is swapped with either control qubit. The matrix representing the CCZ

gate is as follows:

CCZ =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1



(2.22)

15

University of Oxford Matthew Sutcliffe

Lastly, while trivial, it is worth noting that the wire itself induces no effect, essen-

tially mapping any quantum state to itself. It is hence equivalent to the identity

matrix:

I =

1 0

0 1

 (2.23)

and is sometimes expressed as a gate itself (namely the ‘identity gate’):

I≡

With this in mind, the SWAP gate, which unsurprisingly swaps the states of two

qubits3, may be visualised as two wires switching sides:

≡

This gate is represented by the following matrix:

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (2.24)

2.1.3 Quantum Circuits

Just as classical logic gates may be composed together to produce complex logic

circuits, being Turing-complete, so too may quantum gates be composed to con-

struct quantum circuits, capable of implementing any quantum algorithm (Nielsen
3On the topic of moving a quantum state from one qubit to another, it should be noted that —

due to the no-cloning theorem (Wootters & Zurek, 1982) — it is not possible to copy an arbitrary
unknown quantum state to another qubit.

16

University of Oxford Matthew Sutcliffe

& Chuang, 2010).

Two quantum gates, A and B, of n and m qubits respectively, may be composed

in parallel by taking their tensor (or Kronecker) product (Coecke & Kissinger,

2018), A⊗B:

A

B

()
()⊗ =

A

B
≡ A⊗B

(2.25)

In this case, n = m = 1. The result, (A⊗B), may be treated as a single (n+m)-

qubit quantum gate and may be composed further with other gates if desired.

Two quantum gates, C and D, may also be composed serially, provided they act

on the same number n of qubits, by taking their matrix product, D ◦ C:

D

C

()
()◦ = C D ≡ D ◦ C

(2.26)

In this illustration, n = 1. As with parallel composition, the result of serial com-

position may be treated as a single quantum gate, acting on n qubits.

In this way, large and complex quantum circuits may be constructed, as the fol-

lowing example demonstrates:

17

University of Oxford Matthew Sutcliffe

C DA

B
= A⊗B

D ◦ C

I

= A⊗B (D ◦ C)⊗ I

=
(
(D ◦ C)⊗ I

)
◦
(
A⊗B

)

(2.27)

Here, the four single-qubit gates — each expressible as a 2 × 2 matrix — have,

through applications of matrix multiplication and tensor products, been com-

pounded into a single gate expressible as a 4× 4 matrix.

Moreover, regarding serial composition, when there is not a one-to-one correspon-

dence between the outputs of one gate and the inputs of the next, one of the gates

may be composed in parallel with the identity gate (being just a wire), as the above

example highlights.

In fact, with only a very small handful of gates as ‘building block’, all higher

level gates and indeed any quantum computation may be constructed. More pre-

cisely, such a universal gateset (of which there are many options) may approxi-

mate any unitary operation, and hence any quantum algorithm, to arbitrary preci-

sion (Deutsch, Barenco, & Ekert, 1995). For instance, the {H,CNOT, T} gateset

is universal (Forest, Gosset, Kliuchnikov, & McKinnon, 2015).

Circuits comprised exclusively of the ‘Clifford’ gateset, {H,S,CNOT}, (plus

implicitly the identity gate) are in fact efficiently simulable classically:

Theorem 1 (The Gottesman-Knill Theorem). Any quantum computation that con-

sists solely of Clifford gates and Pauli measurements can be efficiently simulated

18

University of Oxford Matthew Sutcliffe

on a classical computer (Gottesman, 1998; Aaronson & Gottesman, 2004).

Therefore, the Clifford gateset is a very significant one, though it is not univer-

sal as these gates cannot approximate arbitrary unitary transformations. How-

ever, introducing the T-gate produces the universal gateset: {H,S,CNOT, T}4

(Kliuchnikov, 2013; Forest et al., 2015). This is known as the Clifford+T gateset.

Using this gateset, the SWAP gate may be expressed:

=
⊕

⊕ ⊕
(2.28)

and the CCZ gate:

⊕ T † ⊕ T ⊕ T † ⊕

T

T

⊕

T

T † ⊕≡
(2.29)

with the Toffoli gate following from the above:

⊕ T † ⊕ T ⊕ T † ⊕

T

T

⊕

T

T † ⊕

H H⊕

≡
(2.30)

2.2 ZX-Calculus

The ZX-calculus (Coecke & Kissinger, 2018; van de Wetering, 2020; Kissinger &

van de Wetering, 2024) is a graphical language for expressing and manipulating

quantum computations, originating in 2008 in the work of (Coecke & Duncan,
4This gateset is universal but not minimal, as S = T 2, making the S gate redundant. However,

with the significance of the Clifford gateset, the use of the Clifford+T set is very convenient.

19

University of Oxford Matthew Sutcliffe

2008, 2011). This language sees quantum circuits abstracted to ZX-diagrams,

which may be simplified and reasoned upon via the known rewriting rules. It

has been used extensively in a variety of quantum computing problems, including

circuit optimisation (Kissinger & van de Wetering, 2020b; Cowtan, Dilkes, Dun-

can, Simmons, & Sivarajah, 2019; De Beaudrap, Bian, & Wang, 2019; Duncan,

Kissinger, Perdrix, & Van De Wetering, 2020), quantum error correction (Carette,

Horsman, & Perdrix, 2019; Chancellor, Kissinger, Zohren, Roffe, & Horsman,

2023; Duncan & Lucas, 2013; Garvie & Duncan, 2017), solving #SAT problems

(de Beaudrap, Kissinger, & Meichanetzidis, 2020; Laakkonen, 2022; Laakkonen,

Meichanetzidis, & van de Wetering, 2022, 2023), natural language processing

(Kartsaklis et al., 2021; Coecke, de Felice, Meichanetzidis, & Toumi, 2020; Co-

ecke, de Felice, Meichanetzidis, Toumi, Gogioso, & Chiappori, 2020; Toumi,

2022), lattice surgery (de Beaudrap & Horsman, 2020; de Beaudrap, Duncan,

Horsman, & Perdrix, 2019; Gidney & Fowler, 2019; Hanks, Estarellas, Munro,

& Nemoto, 2020), measurement-based quantum computing (Duncan & Perdrix,

2010; Stollenwerk & Hadfield, 2024; Schwetz & Noack, 2024), and — most rel-

evant to this thesis — classical simulation (Kissinger & van de Wetering, 2022;

Kissinger, van de Wetering, & Vilmart, 2022; Koch, Yeung, & Wang, 2023; Codsi,

2022).

2.2.1 Introduction to ZX-Calculus

The building blocks of ZX-calculus are vertices known as ‘spiders’. Specifically,

there exist the green Z-spider and the red X-spider, being generalisations of the

Z- and X- phase gates, respectively. With reference to the basis states in section

2.1.1, these spiders may be defined as follows (Coecke & Kissinger, 2018):

20

University of Oxford Matthew Sutcliffe

α ...
... := |0 · · · 0⟩ ⟨0 · · · 0|+ eiα |1 · · · 1⟩ ⟨1 · · · 1|

α ...
... := |+ · · ·+⟩ ⟨+ · · ·+|+ eiα |− · · · −⟩ ⟨− · · · −|

(2.31)

A spider with m inputs (edges into its left) and n outputs (edges from its right) is

hence expressible as a 2n × 2m matrix. Thus, a spider with no inputs or outputs,

n = m = 0, is simply a scalar. Additionally, notice that spiders each have an

associate real ‘phase’, α ∈ [0, 2π), which is typically omitted if zero (and is

modulo 2π).

Special cases of equation 2.31 define the basis states (van de Wetering, 2020):

= |+⟩+ |−⟩ =
√
2 |0⟩

π = |+⟩ − |−⟩ =
√
2 |1⟩

= |0⟩+ |1⟩ =
√
2 |+⟩

π = |0⟩ − |1⟩ =
√
2 |−⟩

(2.32)

Due to its ubiquity, the Hadamard gate is given its own notation within ZX-

calculus, namely a small yellow box, though this too may be decomposed into

Z- and X- spiders by the Euler decomposition (Duncan & Perdrix, 2009):

≡ = e−i
π
4

π
2

π
2

π
2 (2.33)

Notice that an edge containing a Hadamard gate is often denoted as a ‘Hadamard

edge’, represented by a dotted blue edge.

Just as in quantum circuit notation, spiders may be composed sequentially or in

parallel by computing the matrix multiplication or tensor product of their matrices.

21

University of Oxford Matthew Sutcliffe

Such a composition of spiders is then known as a ZX-diagram, a very convenient

property of which follows (Coecke & Kissinger, 2018):

Theorem 2. Isomorphic ZX-diagrams semantically describe the same linear map.

Hence, ZX-diagrams may be arbitrarily deformed provided topology is conserved

and the inputs and outputs are fixed. This is commonly stated as the meta-rule:

only connectivity matters.

Two ZX-diagrams are hence considered equal if they represent the same linear

map. Furthermore, it is often convenient to neglect any non-zero constant scalar

factor associated with a ZX-diagram5. Two ZX-diagrams, A and B, which are

equal up to a non-zero constant scalar factor are thus, by convention, denoted:

A ≈ B (van de Wetering, 2020). For example:

≈√
2 (2.34)

Moreover, there is a broad type of equivalence between ZX-diagrams which con-

cerns its topological structure (and spider and edge types) but ignores phase val-

ues:

Definition 5. In the context of this thesis, two ZX-diagrams, A and B, are said to

be ‘structurally isomorphic’, denoted as A ∼=struct B, if:

• There exists a bijection f : VA → VB between their respective sets of ver-

tices, VA and VB, such that for every vertex v ∈ VA, the corresponding

vertex f(v) ∈ VB has the same colour (but not necessarily the same phase),

• for every edge (u, v) in A, the corresponding edge (f(u), f(v)) exists in B

and is of the same type,
5Often, for the sake of brevity, such factors are neglected when ZX-diagrams are written out,

but are nevertheless retained in any further calculations where these factors are relevant.

22

University of Oxford Matthew Sutcliffe

• for every input/output connected to a vertex u in A, there exists a corre-

sponding input/output connected to f(u) in B, and

• the connectivity of the vertices is preserved under this mapping, meaning

the graph structure remains identical.

With these building blocks, it is possible to translate any quantum gate into a

ZX-diagram, with some prominent examples following:

Z = π S = π
2

T = π
4

CNOT ≈ CZ ≈
X = π

(2.35)

Any quantum computation can be expressed as a ZX-diagram (Backens, 2016;

Q. Wang, 2022; Jeandel, Perdrix, & Vilmart, 2020), with Clifford and Clifford+T

circuits manifesting as follows (Kissinger & van de Wetering, 2024):

Definition 6. A Clifford ZX-diagram is a ZX-diagram with spider phases re-

stricted to nπ
2
, where n ∈ Z.

Definition 7. A Clifford+T ZX-diagram is a ZX-diagram with spider phases re-

stricted to nπ
4
, where n ∈ Z.

The latter case is sufficient to approximate any quantum computation up to arbi-

trary precision (Backens, 2016; Q. Wang, 2022). In such ZX-diagrams, a ‘T-like

spider’ (in certain contexts used interchangeably with ‘T-spider’) is a spider with

a phase nπ
4

given an odd integer n. (Note that the number of T-gates in a circuit,

or T-spiders in a ZX-diagram, is labelled its ‘T-count’.)

Moreover, a ZX-diagram with no open input or output wires represents a scalar:

Definition 8. A scalar ZX-diagram is a ZX-diagram with no open input or output

23

University of Oxford Matthew Sutcliffe

wires. Such a diagram is equivalent to a complex scalar.

Furthermore, the adjoint of a ZX-diagram amounts to its horizontal mirroring and

inverting the sign of every spider phase, plus a mapping of any scalar coefficient

to its complex conjugate. A simple example follows:

π
4

π
2

()†
-π
4

-π
2

=
(2.36)

2.2.2 Rewriting Strategies

A quintessential component of ZX-calculus is its small set of well-defined ‘rewrit-

ing rules’. These are equations describing how common structures within ZX-

diagrams may be rewritten in a more convenient manner. These rules are sum-

marised in figure 2.2, with their proofs available in (van de Wetering, 2020).

α
...

...
(f)
=

β ...
...

... α+ β
...

...

α ...
(cc)
= α ...

(π)
= α− 2aα

aπ

...

aπ

aπ
eiaα

α ...
aπ (sc)

=

aπ

...

aπ

aπ

eiaα√
2
(n−1)α ...

aπ

(b)
=
√
2

(id)
=
(hh)
=

Figure 2.2: The Clifford complete (Backens, 2016) fundamental rewriting rules of
ZX-calculus (van de Wetering, 2020), where α, β ∈ R and a ∈ B. Meanwhile, n
is the number of outgoing edges. These rules are: (f) fusion, (π) π-commutation,
(sc) state copy, (cc) colour change, (b) bialgebra, (id) identity removal, and (hh)
Hadamard cancellation. These rules remain applicable with all spider colours
inverted.

These rewriting rules may be used to simplify ZX-diagrams into smaller and sim-

pler equivalents. For instance, the following GHZ-state (Greenberger, Horne,

24

University of Oxford Matthew Sutcliffe

& Zeilinger, 1989) may be translated into a ZX-diagram and simplified via the

rewriting rules (Coecke & Kissinger, 2018):

|0⟩

|0⟩

|0⟩

H

⊕

⊕

≡ = = (2.37)

Such simplification can be used to reduce large quantum circuits to smaller, more

manageable ZX-diagrams, which in turn may be synthesised back into quantum

circuits. This can allow circuits to be expressed with fewer gates, thus minimising

decoherence when executed on a quantum computer. Specifically, this approach is

very effective at minimising the number of costly T-gates, as detailed in (Kissinger

& van de Wetering, 2020b).

The simplification strategy essentially amounts to applying the rewriting rules

wherever applicable until no further applications may be made. More precisely,

the method, as outlined in (Kissinger & van de Wetering, 2020b) and (Kissinger &

van de Wetering, 2022), utilises four broader rules derived from this basic set and

shown in figures 2.3. In addition to these rewriting rules are the scalar relations

shown in figure 2.4.

These basic rewriting rules of figure 2.2, together with these scalar relations, are

alone sufficient to reduce any scalar Clifford ZX-diagram to its scalar, consistent

with theorem 1.

On the other hand, scalar Clifford+T ZX-diagrams (required for completeness

(Backens, 2016; Q. Wang, 2022)) are not fully reducible to scalar via the rewriting

rules. Nevertheless, they may undergo (often considerable) simplification.

25

University of Oxford Matthew Sutcliffe

±π
2

... (LC)
=

α2 α3

α1 αn

· · ·· · ·

· · ·· · ·

...
α2 ∓ π

2
α3 ∓ π

2

α1 ∓ π
2

αn ∓ π
2

· · ·· · ·

· · ·· · ·

e±i
π
4

√
2

(n−1)(n−2)
2

kπ
... (P)

=

α1

· · ·

jπ

αn

· · ·

γ1

· · ·

γl

· · ·
β1

· · ·

βm

· · ·

...

...

(−1)jk
√
2
E

...
α1 + kπ

· · ·

αn + kπ

· · ·

γ1 + jπ

· · ·

γl + jπ

· · ·β1 + (j + k + 1)π

· · ·

βm + (j + k + 1)π

· · ·

...

...

Figure 2.3: The (P) pivoting and (LC) local complementation rules (van de We-
tering, 2020), derivable from the basic set of figure 2.2. Here, αi, βi, γi ∈ R ∀i,
l,m, n ∈ Z, j, k ∈ B, and E = (n− 1)m+ (l − 1)m+ (n− 1)(l − 1).

For simplicity, it is helpful to introduce two new rules, derivable from the basic

set of figure 2.2. These are summarised in figure 2.5.

Given these rules, the simplification procedure for reducing scalar diagrams may

be summarised as follows (Kissinger & van de Wetering, 2020b):

1. If applicable anywhere in the ZX-diagram, apply LC or P . Repeat until no

such instances are found. Every remaining Clifford spider will then take a

phase of 0 or π and be connected only to T-like spiders.

2. Apply PG to any remaining Clifford spiders (j ∈ {0, 1}).

3. ApplyGF wherever applicable. Repeat until no further instances are found.

This procedure will reduce any scalar Clifford ZX-diagram to a scalar result and

and scalar Clifford+T ZX-diagram to its reduced gadget form:

Definition 9. A scalar Clifford+T ZX-diagram is in reduced gadget form if and

26

University of Oxford Matthew Sutcliffe

α aπ =
√
2eiaα

α = 1 + eiα

α β = 1√
2

(
1 + eiα + eiβ − ei(α+β)

)
Figure 2.4: The basic scalar relations of ZX-calculus (van de Wetering, 2020),
where α, β ∈ R and a ∈ B.

only if every spider is either T-like or the root (internal spider) of a phase gadget:

α
... (2.38)

This procedure takes at most O(N3) elementary graph operations (vertex dele-

tions, edge toggles, etc.), where N is the number of initial spiders (Kissinger &

van de Wetering, 2022), and removes almost all Clifford phases and often many T-

like phases. Ultimately, it produces ZX-diagrams in reduced gadget form, which

resemble the following example case:

3π
4

3π
4

π
4

π
47π

4

5π
4

7π
4

π
4

π
4

7π
4

π
4

π
4

5π
4

7π
4

7π
4

π
4

π
4

π
4

3π
4

7π
4

5π
4

7π
4

π
4

5π
4

(2.39)

27

University of Oxford Matthew Sutcliffe

α

β
α1

αn

... α+ β

α1

αn

...(GF)
=

...

... ...

...

(
1√
2

)n−1

jπ
α1

(PG)
=

αn

β1 βm

γ1

γl

α

...

αn + kπ

β1 + (j + k + 1)π...βm + (j + k + 1)π

γ1 + jπα1 + kπ

γl + jπ

... ...
... ...

...
...

......

...
...

...
...

...
...

... ...

(-1)jα

eijα
√
2
E′

Figure 2.5: The (PG) gadgetisation (or pivoting gadget) rule and the (GF) gadget
fusion rule. Both are derivable from the rules of figure 2.2, with α, β ∈ R, αi, βi ∈
R ∀i, l,m, n ∈ Z, j, k ∈ B, and E ′ = (n− 1)m+ lm+ (n− 1)l.

2.2.3 Circuit Classes

There are a number of circuit classes which have been used for benchmarking

classical simulation methods in the ZX-calculus literature. Consistent with this

literature, this thesis considers randomly generated circuits from the four com-

monly benchmarked classes:

• Clifford+T circuits

• Clifford+T+CCZ circuits

• Instantaneous Quantum Polynomial (IQP) circuits

• Modified hidden shift circuits

In all cases, the ‘initial T-count’ is taken as the number of T-spiders in the ZX-

diagram after initial Clifford simplification.

Clifford+T circuits are generated with a random placement of gates from the

28

University of Oxford Matthew Sutcliffe

{S,HSH,CNOT, T} gateset (Kissinger & van de Wetering, 2019), with an ap-

proximately equal distribution of each. The depth and number of qubits are var-

ied to control the T-count and circuit size. A somewhat controlled approach to

generating random circuits in this class is via placements of exponentiated Pauli

unitaries, as described in (Kissinger & van de Wetering, 2022).

Clifford+T+CCZ circuits (or simply ‘CCZ circuits’) are generated in much the

same way, using the gateset of {H,S,CNOT,CZ, T, CCZ}, with T and CCZ

gates each having a 5% sampling probability, and the remaining (Clifford) gates

being uniformly sampled. While there are a few ways of translating a CCZ gate

into a ZX-diagram, the choice used in this thesis is consistent with the benchmark-

ing literature (Nielsen & Chuang, 2010):

π
4

-π
4

-π
4

π
4

π
4

π
4

-π
4

= (2.40)

Instantaneous Quantum Polynomial (IQP) circuits were used for benchmark-

ing in (Codsi, 2022; Codsi & van de Wetering, 2022), being considered feasible

for quantum hardware, though their hardness for classical simulation and their po-

tential for demonstrating quantum supremacy (Bremner, Montanaro, & Shepherd,

2017) have been debated (Codsi & van de Wetering, 2022).

IQP circuits are composed of Hadamard gates, Tm gates, and CZ(kπ
2
) gates, with

m, k ∈ Z and:

CZ(α) :=

α
2

α
2

−α
2 (2.41)

29

University of Oxford Matthew Sutcliffe

After Clifford simplification, such circuits look akin to the following (Codsi &

van de Wetering, 2022):

...

x1
π
4

x2
π
4

xn
π
4

...

y1,2
π
4

y1,n
π
4

y2,n
π
4...

(2.42)

where xi, yi,j ∈ Z ∀i, j.

Lastly, this thesis considers modified hidden shift circuits. Hidden shift circuits

are designed to solve hidden shift problems, where the goal is to find the unknown

shift s such that g(x) = f(x+s), given two oracles, f and g. Such circuits (Bravyi

& Gosset, 2016) served as benchmarks in a number of related papers (Kissinger

& van de Wetering, 2022; Kissinger et al., 2022; Bravyi et al., 2019; Peres &

Galvão, 2023), though, as some have argued, subsequent improvements in ZX-

calculus simplification has rendered these circuits trivial for classical computation,

with conjectures suggesting they are simulable in polynomial time (Codsi, 2022).

Consequently, modified hidden shift circuits (Koch et al., 2023) have since been

used in their place to regain their non-triviality. These circuits are composed of

randomly placed Clifford gates plus Controlled-SWAP gates (otherwise known as

Fredkin gates)6:

=

π
4

-π
4

-π
4

π
4

π
4

π
4

-π
4

(2.43)

6The original hidden shift circuits utilised CCZ gates instead of controlled-SWAP gates. The
similarity between the two is easily noticed.

30

University of Oxford Matthew Sutcliffe

2.3 Classical Simulation

In the present NISQ era of quantum computing, quantum hardware is scarce and

limited. Current quantum processors suffer from noise, short coherence times, and

gate errors, which restrict their ability to perform deep circuits reliably (Barak &

Marwaha, 2021; Bharti et al., 2022). Additionally, the number of available high-

quality qubits remains relatively low, making it difficult to execute large-scale

quantum algorithms without significant error mitigation. As a result, researchers

often rely on classical simulations to test and validate quantum algorithms before

running them on quantum devices (or indeed when doing so is infeasible with

the current hardware limitations) (Xu, Benjamin, Sun, Yuan, & Zhang, 2023; Vi-

dal, 2003; C. Huang et al., 2020). Ongoing advancements in hardware design

(Acharya et al., 2024; J. Wang, Sciarrino, Laing, & Thompson, 2020), error cor-

rection (Roffe, 2019; Duncan & Lucas, 2013), and hybrid quantum-classical ap-

proaches (Endo, Cai, Benjamin, & Yuan, 2021; McClean, Romero, Babbush, &

Aspuru-Guzik, 2016; Callison & Chancellor, 2022) continue to advance the limits

of quantum computers, though in the present and near term classical simulation

remains an essential tool.

The ability to simulate quantum algorithms with classical hardware has myriad

uses, both practical and theoretical, with the following among them:

• Verification of quantum algorithms: classical simulation can be used to

verify the correctness of quantum algorithms before running them on quan-

tum hardware (Hietala, Rand, Hung, Li, & Hicks, 2020; Liu et al., 2019;

Sander, Burgholzer, & Wille, 2024). This can also help with debugging

quantum circuits by comparing expected and observed results.

• Verification of quantum hardware: classical simulation may also be used

31

University of Oxford Matthew Sutcliffe

to verify the behaviour and correctness of quantum hardware in much the

same manner (Gheorghiu, Kapourniotis, & Kashefi, 2019; Mahadev, 2018).

• Measuring the quantum advantage: by computing the same circuit on

both classical and quantum hardware, it is possible to quantify the runtime

reduction offered by the latter for particular tasks. In this regard, classical

simulation can be used to set baselines against which to compare quantum

computing performance (C. Huang et al., 2020; Pan & Zhang, 2021).

• Simulating quantum many-body systems: modelling quantum systems

(Fauseweh, 2024; Jo & Kim, 2022) is an important part of quantum con-

densed matter physics (Hofstetter & Qin, 2018; Kennes et al., 2021), though

with their high noise and limited scale, such modelling on contemporary

quantum hardware is often infeasible. However, simulating these models

classically allows exact (noiseless) results to be attained.

• Quantum-classical hybrid algorithms: hybrid algorithms (McClean et al.,

2016; Endo et al., 2021; Callison & Chancellor, 2022) utilise the strengths

of both quantum and classical hardware, with the former handling such

tasks as exploring large solution spaces or finding optimal solutions to quan-

tum advantage problems, while the latter handles such tasks as optimisation

and error correction. Hybrid algorithms are heavily utilised in quantum ma-

chine learning (Rebentrost, Mohseni, & Lloyd, 2014; Cowlessur, Thapa,

Alpcan, & Camtepe, 2024; Zaman, Ahmed, Hanif, Marchisio, & Shafique,

2024), combinatorial optimisation problems (Farhi, Goldstone, & Gutmann,

2014; Blekos et al., 2024; S.-X. Zhang et al., 2022), and cryptography

(Scarani et al., 2009; Ren, Wang, & Su, 2022; Mazzoncini, Bauer, Brown,

& Alléaume, 2023), and often rely to some degree on classical simulation.

• Analysing cryptographic security: some quantum algorithms threaten clas-

32

University of Oxford Matthew Sutcliffe

sical cryptographic protocols. Famously, Shor’s quantum factorisation al-

gorithm (Shor, 1999) undermines the RSA (Rivest et al., 1978) protocol

upon which much of online security presently relies. Classical simulation

of such algorithms may provide insights which could help develop stronger,

quantum-safe security protocols.

This list is by no means exhaustive, but it serves to highlight the broad utility of

classical simulation to the field of quantum computing.

2.3.1 Strong and Weak Simulation

The term ‘classical simulation’ in the context of quantum computing may refer

to one of two concepts, namely strong simulation or weak simulation. These are

related but distinct ideas, defined as follows (Kissinger & van de Wetering, 2022):

Definition 10. Strong classical simulation of a quantum circuit is to determine

(possibly up to some acceptable margin of error, ϵ) the probability of a particular

measurement outcome. More concretely, it is to (either exactly or approximately)

determine — with classical hardware — the probability of measuring a particular

output bitstring, (b1, b2, . . . , bn) ∈ Bn, when executing an n-qubit quantum circuit,

C, with initial states (a1, a2, . . . , an) ∈ Bn:

b1π

b2π

bnπ

...
ϵ
≈ λC

a1π

a2π

anπ

...

(
1√
2

)2n
(2.44)

where λ ∈ C and P (b1, . . . , bn|C|a1, . . . , an) = |λ|2 is the probability in ques-

tion7. Note that
ϵ
≈ denotes ‘approximately equal within a margin of error, ϵ’.

7The global scalar factor arises from the states and effects, per equation 2.32.

33

University of Oxford Matthew Sutcliffe

Definition 11. Weak classical simulation of a quantum circuit is to probabilisti-

cally sample from a circuit’s output distribution. In other words, it is to emulate a

quantum computation. Concretely, given a particular initial state (a1, . . . , an) ∈

Bn, produce a randomly selected output bitstring (b1, . . . , bn) ∈ Bn with a proba-

bility consistent with P (b1, . . . , bn|C|a1, . . . , an).

As their names suggest, strong simulation is strictly more powerful than weak

simulation. The ability to compute exact (or approximate) probabilities of mea-

surement outcomes allows one to generate samples by drawing from the corre-

sponding probability distribution. Hence:

Strong Simulation ⇒ Weak Simulation (2.45)

Naturally, without the quantum advantage, simulating quantum circuits with clas-

sical hardware is necessarily, and notoriously, inefficient8. Restricted to bits,

rather than qubits, classical computers have no efficient means of representing

the superposition and entanglement inherent in quantum systems. Nevertheless,

any Turing-complete (Turing, 1936) classical computer can, given sufficient fi-

nite time, compute any quantum algorithm. However, unlike quantum computers,

classical computers require an exponentially growing amount of resources — both

time and memory — as the size of the quantum system increases. This exponen-

tial scaling is what limits the practical feasibility of classical simulation for large

quantum circuits. Thus, while classical simulation of any quantum system is the-

oretically possible, it becomes infeasible for large cases. This, after all, is what

makes quantum computers advantageous in solving certain problems.

There are a variety of approaches to both strong and weak classical simulation,
8In fact, this is a conjecture, though one underpinning the entire field of quantum computing.

34

University of Oxford Matthew Sutcliffe

which differ in how their exponentially growing resource requirements mani-

fest. Some methods scale exponentially with the number of qubits (Jamadagni,

Läuchli, & Hempel, 2024; Zulehner & Wille, 2018; Chundury, Li, Suh, & Mueller,

2024), while others scale exponentially with the number of (non-Clifford) gates

(Bravyi et al., 2019; Kissinger & van de Wetering, 2022; Kissinger et al., 2022).

Others still scale predominantly with the degree of qubit interconnectedness, en-

tanglement, or treewidth of the underlying graph representing the circuit (Wahl &

Strelchuk, 2023; Fried et al., 2018; Gray & Kourtis, 2021), though many meth-

ods, particularly hybrid approaches (Mandrà, Marshall, Rieffel, & Biswas, 2021;

Young, Scese, & Ebnenasir, 2023), may be impacted by any of all of these to

differing extents.

2.3.2 Marginal Probabilities

Most weak simulation techniques are stochastic (Aaronson, 2013; Bremner, Jozsa,

& Shepherd, 2011), including Monte Carlo methods (Bravyi, Gosset, & Liu, 2022;

Bravyi & Gosset, 2016), which weakly simulate circuits directly. However, fol-

lowing from equation 2.45, some methods rely upon firstly computing measure-

ment probabilities via strong simulation. In particular, these methods tend to

involve computing many marginal probabilities (Kissinger & van de Wetering,

2022; Kissinger et al., 2022), concerning the measurement of specific outcomes

for only a subset of qubits:

Definition 12. A marginal probability is the probability, given an n-qubit circuit

with a particular initial state (a1, a2, . . . , an) ∈ Bn, of measuring a particular

outcome (b1, b2, . . . , bk) ∈ Bk on a subset, k < n, of the qubits in the circuit,

without care of the measurement results on the remaining qubits.

The most obvious means of computing a marginal probability is to simply sum

35

University of Oxford Matthew Sutcliffe

over the probabilities of each irrelevant qubit, as per the ‘summing’ method of

lemma 2 (Kissinger & van de Wetering, 2022).

Lemma 2 (Summing method). Given an n-qubit circuit, C, with an initial state

(a1, . . . , an) ∈ Bn the probability of measuring an output (b1, . . . , bk) ∈ Bk on

the first k < n qubits is given by:

P (b1, . . . , bk|C|a1, . . . , an) = C

b1π

bkπ

c1π

cmπ

a1π

akπ

ak+1π

anπ

...
...

2

...
...∑

c1,...,cm

1
4n

(2.46)

where (c1, . . . , cm) ∈ Bm are the outcome measurements on the irrelevant qubits,

with k +m = n.

The ‘doubling’ method, described in lemma 3 (Kissinger & van de Wetering,

2022), provides an alternative approach, where the given circuit, together with

its open (irrelevant) qubit outputs, is composed against its own adjoint.

Lemma 3 (Doubling method). Given an n-qubit circuit, C, with an initial state

(a1, . . . , an) ∈ Bn the probability of measuring an output (b1, . . . , bk) ∈ Bk on

the first k < n qubits is given by:

P (b1, . . . , bk|C|a1, . . . , an) = C

b1π

bkπ

a1π

akπ

ak+1π

anπ

...
...

C†

a1π

akπ

b1π

bkπ

...
...

...
...

...
...

ak+1π

anπ

1
2n+k

(2.47)

The doubling approach enables the result to be computed from just a single in-

stance of strong simulation, rather than a number of instances exponential with

36

University of Oxford Matthew Sutcliffe

the number irrelevant qubits, m. This makes it the preferable choice when m ≈ n

(i.e. k ≪ n). However, this method also doubles the number of gates in the circuit,

which for certain strong simulation approaches, results in squaring the computa-

tional complexity. Using ZX-calculus simplification, and given that the doubled

circuit is mirrored, many of these gates may cancel, so that this method seldom

doubles the number of gates in practice. Nevertheless, it does still increase the

gate count, especially as k → n. Consequently, the preferable choice of method

depends on the size of the circuit and, more importantly, k.

Both of these methods utilise strong simulation to accomplish weak simulation.

As such, devising more efficient strong simulation techniques in turn provides

more efficient weak simulation, though indeed strong simulation is also a valuable

task in its own right. While there are a number of methods for strongly simulating

a circuit, as previously discussed, two are of particular interest to this thesis. These

are tensor contraction and, more prominently, stabiliser decomposition.

2.3.3 Tensor Contraction

Tensor contraction (Ran et al., 2017) is a method — used in this context for strong

simulation — based on the piecemeal merging of the tensors representing the gates

in a quantum circuit. This idea is very similar to — and indeed a generalisation of

— how individual constituent quantum gates were merged into larger compound

gates in section 2.1.3.

Section 2.1.2 highlighted how an n-qubit quantum gate may be expressed as a uni-

form tensor of rank 2n and length 2. By extension, a quantum circuit is therefore

a tensor network, with adjacent tensors (i.e. gates) sharing a number of indices

equal to the number of wires directly connecting them.

Two vertices (tensors) in such a tensor network may be contracted into one by

37

University of Oxford Matthew Sutcliffe

summing over their common indices. For example:

(2.48)

shows the contraction of two tensors, Aij and Bjk, into a new tensor Cik. Mean-

while, i, j, k serve as edge labels and, as subscripts, denote which edges are con-

nected to which tensors. The contraction itself is achieved by summing over the

indices common to both tensors, {i, j} ∩ {j, k} = {j}:

Cik =
∑
j

AijBjk (2.49)

This process may be iteratively repeated, contracting tensors pairwise until the

entire tensor network is fully reduced to a single tensor. This is essentially the

approach taken in equation 2.27. Applied to an n-qubit circuit, this results in

contracting all gates into a single n-qubit compound gate, stored as a tensor of

rank 22n tensor (or alternatively a 2n × 2n matrix).

On the other hand, applied to a scalar ZX-diagram, tensor contraction ultimately

results in a rank 0 tensor (no connected edges), which is simply a scalar. (Thus,

given a circuit with closed inputs and outputs, this acts as a method for strong

simulation.) Significantly, n-qubit circuits without open inputs and outputs (i.e.

scalar diagrams) are generally contractable to its final scalar without requiring the

full O(22n) memory overhead. The following example illustrates this point:

38

University of Oxford Matthew Sutcliffe

(2.50)

Each tensor is stored with O(2n) memory, where n is the number of indices it has

(equivalent to the number of edges connected to it). In the above example, this

means initially storing 6 tensors, A,B, . . . , F , with at most O(23) memory for

any given one (as the highest degree of any vertex here is 3).

The maximum memory used at any given time during the contraction is then given

by the maximum degree9 vertex observed at any step during contraction. In this

example, this never exceeds 3, ensuring a memory overhead of O(23). However,

had the corresponding circuit not been closed:
9The ‘degree’ of a vertex is simply the number of edges connected to it.

39

University of Oxford Matthew Sutcliffe

(2.51)

it would necessarily — regardless of contraction order — have resulted in a degree-

4 vertex, given 4 open inputs/outputs, corresponding to O(24).

Evidently, therefore, the space requirement when applied to scalar diagrams can,

in general, be kept magnitudes below the theoretical maximum. It is important to

contract the tensors in an appropriate order to ensure this memory requirement is

minimised.

There remains ongoing research into tensor contraction to further improve its

effectiveness. This includes parallel processing techniques (Abdelfattah et al.,

2016), approximate methods (Gray & Chan, 2024), and heuristic optimisations of

contraction paths (Orgler & Blacher, 2024). Recently, ZX-calculus has also been

employed to aid in tensor contraction for classical simulation (Raj, 2022).

2.3.4 Stabiliser Decomposition

Another prominent approach to strong classical simulation is that of stabiliser de-

composition, which involves translating circuits into sums of efficiently simulable

stabiliser states.

Definition 13 (Stabiliser state). A quantum state |ψ⟩ is a stabiliser state if it can

be generated by applying a Clifford circuit V to an initial computational basis

40

University of Oxford Matthew Sutcliffe

|0⟩⊗n (Bravyi & Gosset, 2016):

|ψ⟩ = V |0⟩⊗n (2.52)

Definition 14 (Total stabiliser decomposition). A ‘total’ stabiliser decomposition

is a relation mapping a quantum state to a weighted sum of χ stabiliser states,

where χ, known as its stabiliser rank, is the minimum number of such states re-

quired.

In the context of ZX-calculus, a total stabiliser decomposition manifests as a re-

lational equation mapping a t > 0 T-count ZX-diagram to a sum of χ Clifford

ZX-diagrams.

Less strictly, a stabiliser decomposition may be defined as follows:

Definition 15 (Stabiliser decomposition). A stabiliser decomposition is a relation

mapping one quantum state to a weighted sum of η quantum states, each contain-

ing fewer non-Clifford gates.

Expressed with ZX-diagrams, a stabiliser decomposition, by this definition, refers

to a mapping between a t > 0 T-count ZX-diagram and a sum of η ZX-diagrams

with T-counts < t.

With the use of stabiliser decompositions, it follows that:

Theorem 3. Any quantum circuit can be expressed as a sum of stabiliser terms

(Bravyi, Smith, & Smolin, 2016).

Together with the Gottesman-Knill theorem (theorem 1), which states that any sta-

biliser circuit is efficiently simulable with classical hardware, one may conclude

that any quantum circuit may be classically simulated by stabiliser decomposition

(provided the number of stabiliser terms is not too large).

41

University of Oxford Matthew Sutcliffe

From the definitions of Z- and X- spiders in equation 2.32, it follows that:

= 1√
2

()
+ π (2.53)

Utilising the fusion and state copy rules, this may be generalised as such:

= 1√
2

()
+ πα α α

= 1√
2

()
+ eiα π

=α (2.54)

A special case of this relation, with α = π
4
, provides a stabiliser decomposition

for the so-called ‘magic state’ |T ⟩ ≡ π
4 (Bravyi & Gosset, 2016):

π
4 = 1√

2

()
+ ei

π
4 π (2.55)

More broadly, this stabiliser decomposition (or T-decomposition) may be applied

to any T-like spider by first unfusing a magic |T ⟩ state:

(2n+ 1)π
4

... = nπ
2

...π
4 (2.56)

where n ∈ Z.

Therefore, the T-decomposition of equation 2.55 may be used to exchange any

T-like spider with a sum of two stabiliser terms. Applied to a ZX-diagram with

T-count t, this hence produces two new (and mostly identical) ZX-diagrams, each

of T-count t − 1. In turn, each of these two diagrams may have another T-spider

removed with another application of equation 2.55. This doubles the total number

of ZX-diagrams in the sum, but decrements the T-count of each, resulting in 4 ZX-

diagrams of T-count t − 2. Iteratively repeating this process leads to 2t Clifford

42

University of Oxford Matthew Sutcliffe

ZX-diagram terms.

In this way, any scalar Clifford+T ZX-diagram, such as arises from lemma 10,

may be reduced to a sum of scalar Clifford ZX-diagrams (Backens, 2015; Coecke

& Kissinger, 2018) which, per theorem 1, are efficiently simulable classically.

Each may be reduced to scalar by the means of section 2.2.2, with their sum

providing the scalar corresponding to the original scalar Clifford+T ZX-diagram.

Hence:

Theorem 4. Any Clifford+T quantum circuit may be strongly classically simu-

lated via stabiliser decomposition, with a computational complexity that grows

exponentially with its T-count.

Figure 2.6 illustrates how recursively applying a stabiliser decomposition in this

way reduces a non-stabiliser state into a sum of many stabiliser states10. While

the time complexity here is O(ηt/τ), computing this in a depth-first fashion avoids

an exponential space complexity, needing instead only a memory overhead of

O(t/τ). (Here, η is as defined in definition 15 and τ as defined in definition

16.) Consequently, time is the only expensive classical resource when strongly

simulating Clifford+T ZX-diagrams with this approach.

Definition 16 (α efficiency). A decomposition which reduces the T-count by τ and

produces η terms may be recursively used to reduce a t T-count Clifford+T ZX-

diagram to 2αt Clifford terms, where α quantifies the decomposition’s efficiency
10Instead of focusing on the stabiliser rank, χ, of a decomposition, an alternative metric one

could consider is its stabiliser extent, ξ. This is defined as the sum of the absolute values of the
coefficients of its stabiliser terms (Heimendahl, Montealegre-Mora, Vallentin, & Gross, 2021). By
neglecting those terms whose coefficients (and likely contributions) are small, one may obtain an
approximate solution more rapidly. This would amount to pruning less significant branches of the
decomposition tree (figure 2.6). While there is some promising literature along these lines (Bravyi
et al., 2019), such an approach is not considered any further in this thesis.

43

University of Oxford Matthew Sutcliffe

Gη1

Gη11 Gη1η

...
1

d = 0

Gηη

Gηη1 Gηηη

...
1

Gη

...
1

G11

G111 G11η

...
1

G1η

G1η1 G1ηη

...
1

G1

...
1

G

...
1

d = 1

d = 2

d = 3

Figure 2.6: A decomposition tree, demonstrating how recursive applications of
a stabiliser decomposition may translate a scalar Clifford+T ZX-diagram, G, of
T-count t into a sum of many Clifford terms. Each node represents a scalar ZX-
diagram with its T-count written beneath in green. Each application of the decom-
position exchanges a ZX-diagram with η new ones of τ fewer T-spiders, such that
at tree depth d = t

τ
one is left with ηt/τ Clifford terms.

and may be defined as:

α :=
log2 η

τ
(2.57)

The particular decomposition presented in equation 2.55 exchanges τ = 1 T-

spiders for a sum of η = 2 stabiliser terms. As a result, using this to fully reduce a

t T-count Clifford+T ZX-diagram would produce ηt/τ = 2αt Clifford terms, with

an efficiency of α = 1.

A more sophisticated stabiliser decomposition, introduced by Bravyi, Smith, and

Smolin (Bravyi et al., 2016), and later applied to ZX-calculus in the work of

Kissinger and van de Wetering (Kissinger & van de Wetering, 2022) is the ‘BSS’

decomposition (named for its authors):

44

University of Oxford Matthew Sutcliffe

eiπ/4 π
4

π
4

π
4

π
4

π
4

π
4
=

−1+
√
2

4
1−

√
2

4 π π π π π π
+

−2i

π

π
2

π
2

π
2

π
2

π
2

π
2−2

√
2i

π
2

π
2

π
2

π
2

π
2

π
2

2eiπ/4
−π

2

+8
√
2i

π
+8
√
2i

π

(2.58)

This decomposition exchanges τ = 6 T-states for a sum of η = 7 stabiliser states

and hence may reduce a t T-count ZX-diagram to a sum of 7t/6 ≈ 20.47t Clif-

ford terms11. As such, it achieves an efficiency of α ≈ 0.47 — a considerable

improvement upon the trivial decomposition of equation 2.55.

In the same paper, Kissinger and van de Wetering proposed using ZX-calculus to

simplify not only the initial ZX-diagram but every term before they are decom-

posed. This can allow T-like spiders to fuse and cancel out (or disappear by other

means, such as state copy), potentially reducing the T-count of each term along

the decomposition tree and requiring a shallower depth to stabilise (i.e. reduce to

Cliffords). This inter-step simplification means the number, N , of Clifford terms

to which a Clifford+T ZX-diagram reduces is, in practice, fewer than that pre-

dicted by the decomposition’s α efficiency. From this real measured N , and given

an initial T-count t, one may quantify the practical (as opposed to theoretical)

efficiency of the decomposition:
11When the T-count is below 6, alternative decompositions, or simply direct calculation, may

be used instead. So, to be precise, if t is not a multiple of 6 then this is an approximate result, or
an asymptotic (t→∞) result.

45

University of Oxford Matthew Sutcliffe

Definition 17 (αeff efficiency). For a particular t T-count ZX-diagram, the mea-

sured effective α efficiency of a decomposition (or decomposition strategy) is

given by:

αeff :=
log2N

t
(2.59)

where N is the number of Clifford terms to which it reduces.

As quantified in (Koch et al., 2023), and verified in experiments by the author

of this thesis, the BSS decomposition with inter-step simplification achieves an

average αeff ≈ 0.42 on randomly generated Clifford+T+CCZ circuits (of non-

trivial size). Notably, this is a significant reduction from the theoretical α ≈ 0.47

that is achieved without the use of inter-step simplification.

The subsequent work of Kissinger et al. (Kissinger et al., 2022) introduced the

concept of partial stabiliser decompositions:

Definition 18 (Partial stabiliser decomposition). A ‘partial’ stabiliser decompo-

sition is a relation mapping one quantum state to a weighted sum of η quantum

states, with at least one of which remaining non-Clifford.

In particular, this work introduced a |T ⟩⊗5 partial decomposition, as well as a

family of total decompositions which apply to |catn⟩ states (Qassim, Pashayan, &

Gosset, 2021):

Definition 19. A |catn⟩ state is defined as:

π
4

π
4

π
4

...
|catn⟩ := 1√

2

}
n (2.60)

These decompositions may be summarised as follows12:
12Using the π-commutation rule, these decompositions remain applicable with a π phase in

46

University of Oxford Matthew Sutcliffe

= 1
2

+ ieiπ/4√
2

π
2

π
2

π
2

π
2

π
2

−

π
4

π
4

π
4

π
4

π
4

−π
2

eiπ/4√
2

= 1
2

+ ieiπ/4√
2

π
2

π
2

π
2

π
2

π
2

− eiπ/4√
2 π

2

π
4

π
4

π
4

π
4

π
4

π
4

−π
2

=

π
4

π
4

π
4

π
4

e−iπ/4√
2

−π
2 + i

= e−iπ/4√
2

+ i

π
4

π
4

π
4

−π
2

(2.61)

Respectively, these achieve:

α|cat3⟩ ≈ 0.333,

α|cat4⟩ = 0.250,

α|cat5⟩ ≈ 0.317,

α|cat6⟩ ≈ 0.264.

(2.62)

Note that |cat1⟩ and |cat2⟩ states are reducible to Clifford by rewriting simplifi-

cation alone, without the need for decomposition. |catn⟩ states of n > 6, on the

other hand, may be constructed from compositions of lower n cat states, though

the same asymptotic efficiency in these cases may be achieved by simply using

the following |T ⟩⊗5 decomposition:

place of the 0 phase and, by spider (un)fusion, they remain applicable when any of its T-spiders
are instead T-like.

47

University of Oxford Matthew Sutcliffe

π
4

π
4

π
4

π
4

π
4

−3π
4

= 2 −π
4+ 2

√
2ieiπ/4

π
2

π
2

π
2

π
2

π
2

π
4− 2

√
2eiπ/4 (2.63)

In fact, this decomposition represents the state of the art for a |T ⟩n state, giving

the lowest discovered asymptotic efficiency of α ≈ 0.396. While the decomposi-

tions of equation 2.61 offer lower α values than this, since they rely upon specific

structures these are not universal. In other words, the above |T ⟩⊗5 decomposi-

tion is applicable anywhere there are 5 or more T-like spiders, making it (at least

asymptotically) universally applicable. The above cat decompositions, in contrast,

are applicable only when specific structures (namely cat states) are present13. As

such these cat decompositions, in general, are not alone sufficient to decompose

any Clifford+T ZX-diagram, and will generally need to be used in conjunction

with a universal decomposition such as that of equation 2.63.

With this in mind, Kissinger et al. (Kissinger et al., 2022) proposed a decompo-

sition strategy whereby, following initial Clifford simplification, |catn⟩ states of

n ≤ 6 are decomposed if present, with a preference order of ascending α|catn⟩:

|cat2⟩, |cat6⟩, |cat5⟩, and lastly |cat4⟩. If no such |catn⟩ states are found then the

universal |T ⟩⊗5 decomposition of equation 2.63 is used instead.

As it turns out, |catn⟩ states are ubiquitous among Clifford+T ZX-diagrams in re-

duced gadget form14. A fortunate consequence of this is that the ‘backup’ |T ⟩⊗5

13In general, non-universal decompositions may incur an additional runtime overhead to search
the ZX-diagram for applicable states. However, this is typically negligible compared to the runtime
reduction offered by the decomposition, and certainly in the case of finding cat states this is trivial.

14As will be seen in chapter 5, it is easy to derive arbitrarily low α decompositions for highly
specific, and conveniently designed, quantum states. The problem with this is that an extremely
efficient decomposition for a quantum state that is so specific as to likely never to appear in practice
is essentially useless. As such, it is important that decompositions act on reasonably general

48

University of Oxford Matthew Sutcliffe

decomposition is used rather rarely compared to the more efficient cat decompo-

sitions.

As this is a heuristic strategy, relying on several decompositions, it has no α. Nev-

ertheless, its αeff may be measured and quantified. Applied to randomly generated

Clifford+T+CCZ circuits of non-trivial size, this decomposition strategy is found

to give αeff ≈ 0.21. This impressive result, being at one time the state of the art

for a stabiliser decomposition approach to classical simulation, is commonly used

as a baseline against which to compare new strategies.

More recent work by Koch et al. (Koch et al., 2023) improved upon this result,

achieving αeff ≈ 0.19 on the same class of circuits. This was accomplished by

exploiting an alternative representation of the CCZ gate (Ng & Wang, 2018):

π= 2 (2.64)

making use of the ‘triangle’ operation introduced in (Jeandel, Perdrix, & Vilmart,

2018):

:= 1
2

−π
4

π
4

−π
4

π
4

(2.65)

together with a new set of decompositions optimised for this representation, with

α efficiencies ranging from approximately 0.167 to 0.250:

structures that are (at least somewhat) likely to arise in practice.

49

University of Oxford Matthew Sutcliffe

√
2

π
+ 2=

1
2
√
2 + 1

2
√
2 + 1

2
√
2 + 1√

2

π π

π π

π

π
+ 8

1√
2 + 1√

2

π π

π π+ 4=

=

3 −
π π π

+ 3√
2 −

π π π
3

2
√
2

=

1±3i
2

+
π π π

− 3−i
2
√
2

+
π π π

1∓i
2
√
2

1∓i
2

±π
2

±π
2

±π
2

=

γ1 ..
.

γm ..
.
..
.

β1..
.

βn..
.
..
. α

γ1 ..
.

γm ..
.
..
.

β1..
.

βn..
.
..
.

γ1 ..
.

γm ..
.
..
.

β1 + π..
.

βn + π..
.

..
.= 1√

2
n + eiα√

2
n+m

(2.66)

where:

:= π = π (2.67)

is a symmetric version of the triangle operation and known as a ‘star edge’.

This work nicely demonstrates how representing ZX-diagrams in a different man-

ner can lead to more amiable decompositions.

As a significant portion of the related literature has focused on discovering new,

50

University of Oxford Matthew Sutcliffe

lower α, decompositions, a natural question to ask is: how are new decomposi-

tions derived? While there are a few approaches to this, ranging from trial and

error to extending known decompositions for special cases, the most prevalent

method is via simulated annealing (Bravyi et al., 2016; Van Laarhoven, Aarts,

van Laarhoven, & Aarts, 1987; Rutenbar, 1989; Bertsimas & Tsitsiklis, 1993).

This method, broadly summarised in algorithm 1, involves initially selecting a set

of stabiliser states — either by random selection or motivated by a heuristic —

and assigning them random weights. These weights are then iteratively optimised

through a type of random walk, biased towards improving fidelity (similarity be-

tween the weighted sum of stabiliser states and the target quantum state).

Simulated annealing was used extensively in (Laakkonen, 2022) to discover many

competitive decompositions involving star edges (albeit using ‘H-box’ notation:

0 ≡). Among these was a ⊗4 decomposition into 5 sta-

biliser terms, achieving α ≈ 0.145, beating each of the decompositions of equa-

tion 2.6615. In the same work, the author experimented with using genetic algo-

rithms as a means of finding new stabiliser decompositions, as well as a method

based on composing states with known stabiliser decompositions in the hope of

finding terms which cancel out.

Meanwhile, (Codsi, 2022) explored methods by which higher degree (i.e. greater

n) |catn⟩ states could be decomposed into (sometimes sums of) lower degree |catn⟩

states. These methods involved elegant ‘un-simplifications’ (or complications) of

|catn⟩ states, together with a generalisation of equation 2.54:

α
...

...
...

...= + eiα
...

...
π π

ππ

()(
1√
2

)n
(2.68)

15This has since been improved further, with (Vollmeier, 2025) achieving an α ≈ 0.129 decom-
position for a ⊗5 state, using simulated annealing.

51

University of Oxford Matthew Sutcliffe

Algorithm 1 Simulated annealing method for finding stabiliser decompositions

1: Input: Target quantum state |ψ⟩, set of candidate stabiliser states S =
{|s1⟩ , . . . , |sχ⟩}, initial temperature T0, cooling rate γ, and iteration count
N

2:

3: Initialise random stabiliser state weights {w(0)
1 , . . . , w

(0)
χ }, with

χ∑
i=1

|wi|2 ≈ 1

4: Set initial temperature T ← T0
5:
6: for k = 1 to N do
7: Apply random small perturbations δwi to current weights: w′

i = wi+ δwi

8: Normalise weights to satisfy
χ∑
i=1

|w′
i|2 ≈ 1

9:

10: Compute fidelity: F = | ⟨ψ|ψapprox⟩ |2, where |ψapprox⟩ =
χ∑
i=1

w′
i |si⟩

11: Compute change in fidelity: ∆F = F ′ − F
12:
13: if ∆F > 0 then
14: Accept new weights: wi ← w′

i ∀i
15: else
16: Accept new weights with probability P = e∆F/T

17: end if
18:
19: Update temperature: T ← γT
20: end for
21:

22: Output: Optimised weights {w1, . . . , wχ} for |ψ⟩ ≈
χ∑
i=1

wi |si⟩ decomp.

52

University of Oxford Matthew Sutcliffe

where n is the number of outgoing edges. This simple decomposition is known as

the ‘vertex cutting’ (or simply ‘cutting’) decomposition and is derived by unfusing

a 1-degree spider from an n-degree spider (similar to equation 2.56) and apply-

ing equation 2.53 followed by state copy in each branch. Furthermore, as this

decomposition allows an arbitrary number of edges, it is considered ‘dynamic’:

Definition 20 (Dynamic decomposition). A stabiliser decomposition is said to be

‘dynamic’ if it allows for a variable number n of spiders and/or edges, such that

its efficiency α is a function of n.

A special case of the vertex cutting decomposition implements an edge cut:

= 1
2

()
+= π π (2.69)

With this, two examples from the work of (Codsi, 2022) follow, demonstrating

how larger |catn⟩ states may be divided into smaller |catn⟩ states:

π
4

π
4

π
4

π
4 ...

... =

π
4

π
4

...
π
4

π
4 ...

≈
π
4

π
4

...
π
4

π
4 ... + π

π
4

π
4

... π

π
4

π
4 ...

π
4

π
4

π
4

π
4 ...

... =

π
4

π
4

...
π
4

π
4 ... ≈

π
4

π
4

...
π
4

π
4 ...π

4
-π
2

π
4

(2.70)

The same approach was used to divide |starn⟩ states likewise:

53

University of Oxford Matthew Sutcliffe

Definition 21. A |starn⟩ state16 is defined as:

π
4

π
4

π
4

π
4

...
|starn⟩ :=

}
n (2.71)

In this way, (Codsi, 2022) found improved α decompositions for various high n

|catn⟩ and |starn⟩ states. Experimentally, this was found to produce an average

αeff ≈ 0.32 for random Clifford+T (without CCZ) ZX-diagrams, outperforming

(Kissinger et al., 2022) which achieved αeff ≈ 0.35 (Ahmad, 2024).

Overall, as this section highlights, there has been much research in recent years

applying ZX-calculus to classical simulation. With its ease of interpretability and

its powerful rewriting rules, ZX-calculus has proven a very natural and effective

tool for this task. Many highly efficient (low α) stabiliser decompositions have

been found (and continue to be found) with its aid, pushing the boundary of what

is feasibly computable with classical hardware. In practical experiments, these im-

provements have significantly reduced the exponential growth rate of the runtime

against the non-Clifford gate count when classically simulating quantum circuits.

This has enabled ever larger (greater T-count) quantum circuits to be brought into

the scope of computational feasibility for classical computers.

While the works discussed in this section have each demonstrated original tech-

niques towards this end, there remains a common thread throughout. With a few

exceptions, such as the original paper bringing these two areas of research together

(Kissinger & van de Wetering, 2022) and related work on ZX-diagram partition-

ing (Codsi, 2022) (which is discussed further in section 2.4.3), the literature on

applying ZX-calculus to classical simulation has focused on discovering new sta-
16Not to be confused with the unrelated star edge of equation 2.67.

54

University of Oxford Matthew Sutcliffe

biliser decompositions of ever lower α. This is, of course, a natural objective since

lower α decompositions are expected to reduce the O(2αefft) computational cost

of simulating t T-count circuits.

However, in a break from tradition, this thesis (with the exception of chapter 6,

depending on interpretation) avoids searching for lower α decompositions (or new

methods of finding them). Instead, the novel work introduced in the subsequent

chapters explores altogether new ideas for how classical simulation may be opti-

mised using ZX-calculus.

2.4 Hypergraph Partitioning

Throughout this thesis, quantum circuits are typically expressed as ZX-diagrams,

as detailed in section 2.2. Notably, a ZX-diagram is a type of graph and as such

it may take advantage of known techniques from graph theory literature. In par-

ticular, the well-established concept of hypergraph partitioning will play a crucial

role in chapter 4.

2.4.1 Weighted Hypergraphs

A hypergraph is a generalisation of a graph, with vertices connected by hyper-

edges rather than conventional edges. The difference is that hyperedges are able

to connect any arbitrary number of vertices, whereas conventional edges may only

connect two vertices (Bretto, 2013). Most commonly, hypergraphs are visualised

as a set of vertices, A,B, . . ., with hyperedges, a, b, . . ., represented by nets en-

compassing some subset of these vertices, like so:

55

University of Oxford Matthew Sutcliffe

a

b

c

d A

B

E

C F

D

However, for reasons that will hopefully become apparent in chapter 4, throughout

this thesis hypergraphs will instead be portrayed as vertices connected by n-ended

hyperedges, such that the above example may be visualised like so:

A

BC

D

E F

a

c

d

b

Furthermore, with the inclusion of weights on each of the vertices and hyperedges,

one may define a weighted hypergraph:

Definition 22. Formally, a weighted hypergraph H = (V,E, c, ω) consists of:

• a set of vertices V = {v1, v2, . . . , vn},

• a set of hyperedges E = {e1, e2, . . . , em}, where ei ⊆ V for each i ∈

{1, 2, . . . ,m},

56

University of Oxford Matthew Sutcliffe

• a function c : V → R+ assigning a weight to each vertex, and

• a function ω : E → R+ assigning a weight to each hyperedge.

(Schlag, 2020)

2.4.2 Minimum Balanced k-Cut

In graph theory, there exist a number of variations of the graph partitioning prob-

lem, where the aim is to partition a graph into k disjointed subgraphs while min-

imising (or maximising) some objective function. In each case, a generalisation

for hypergraphs may typically also be defined. One such variation of interest to

this thesis is the minimum balanced k-cut problem, which may be defined for

hypergraphs as follows:

Definition 23. Given a hypergraph H = (V,E, c, ω), the minimum balanced

k-cut problem aims to partition V into k ∈ Z+ balanced disjointed subgraphs

{V1, V2, . . . , Vk}, such that:

• the total summed weight of ‘cut’ hyperedges (i.e. those connecting vertices

between disjointed subgraphs) is minimised:

Minimise
∑
e∈C

ω(e) (2.72)

where C ⊆ E is the set of hyperedges that connect vertices across two or

more subgraphs, and

• the partitioned subgraphs are ‘balanced’, meaning each subgraph has an

approximately equal sum of vertex weights, up to some allowed imbalance

coefficient ϵ ≥ 0:

57

University of Oxford Matthew Sutcliffe

∑
v∈Vi

c(v) ≤ (1 + ϵ) · 1
k

∑
v∈V

c(v) ∀i. (2.73)

(Schlag et al., 2022)

Solving this problem exactly, or even approximately, is NP-hard (Bui & Jones,

1992; Lengauer, 2012). Nevertheless, good solutions can generally be found

within reasonable times via heuristic methods, such as that offered by the KaHy-

Par package (Schlag, 2020).

KaHyPar’s method involves an initial coarsening phase, where heuristics are used

to group together local vertex clusters based on their connectivity and hyperedge

weights. This essentially lowers the resolution of the hypergraph and allows it

to be simplified into a smaller approximate counterpart. This smaller ‘coarsened’

hypergraph can then be efficiently k-partitioned, before a phase of uncoarsening

and local refinement (Ravikumār, 1996) is employed to progressively account for

the lost details and refine the solution. This makes use of modified versions of

traditional graph partitioning algorithms such as those of (Kernighan & Lin, 1970)

and (Fiduccia & Mattheyses, 1988).

The intricacies involved are fairly complex, though for the scope of this thesis

KaHyPar can be treated as a black box function for finding good and quick heuris-

tic solutions to this partitioning problem, given a hypergraph H , a partition count

k, and a balance tolerance ϵ. This will be used notably in chapter 4 for partitioning

ZX-diagrams.

2.4.3 Partitioning ZX-Diagrams

Previous sections of this chapter demonstrated how a Clifford+T ZX-diagram may

be simplified via the rewriting rules to reduce its T-count. It was further shown

58

University of Oxford Matthew Sutcliffe

that, given a reduced T-count t, the ZX-diagram may be strongly classically simu-

lated via decomposition into 2αt stabiliser terms. In fact, it is possible, after initial

Clifford simplification, for the ZX-diagram to reduce to two or more separated

subgraphs, such as follows:

3π
4

5π
4

7π
4

3π
4

3π
4

5π
4

π
4

7π
4

7π
4

5π
4

5π
4

π
4

3π
4

5π
4

7π
4

π
4

3π
4

π
4

3π
4

7π
4

5π
4

7π
4

3π
4

5π
4

π
4

3π
4

(2.74)

In such cases, each subgraph may be independently reduced to scalar, with the

overall scalar result given by their product:

Lemma 4. A t T-count Clifford+T ZX-diagram composed of k ≥ 2 disjointed

sub-diagrams:

G G1≡ G2 Gk· · · (2.75)

may be more efficiently reduced to scalar by reducing each of its k sub-diagrams

independently and taking the product of the resulting scalars. If each sub-diagram,

i, contains ti ≤ t T-spiders, such that
∑k

i=1 ti = t, then the overall ZX-diagram

59

University of Oxford Matthew Sutcliffe

may be strongly classically simulated via

k∑
i=1

2αti ≤ 2αt (2.76)

stabiliser terms (Codsi, 2022).

Where applicable, this is liable to offer an exponential speedup versus naïvely

processing the ZX-diagram as a whole. For instance, if a ZX-diagram, G, may

be expressed by 2 disconnected subgraphs, GA and GB (of T-counts tA and tB

respectively), the best case scenario would divide the overall T-count, t, evenly

between the two subgraphs: tA = tB = t
2
. This would reduce the number of

stabiliser terms to compute from 2αt down to 2 · 2αt/2 (Codsi, 2022).

Naturally occurring partitions (via the rewriting rules) are not uncommon, though

seldom exist beyond very low k and max (ti) ≈ t. Such cases tend to offer small,

but not necessarily insignificant, runtime reductions. However, more ideal parti-

tions, such as the ‘best case’ bipartition described above, seldom arise naturally.

Nevertheless, such partitions can be induced by applying some instances of a lo-

cally partitioning decomposition. In particular, the edge cutting decomposition

introduced in equation 2.68 allows any edge to be removed from a ZX-diagram at

the cost of doubling the number of terms. Consequently, any ZX-diagram may be

partitioned into arbitrarily many subgraphs, given enough cuts:

Lemma 5. A ZX-diagram may be partitioned into k ≥ 2 disjointed parts at the

cost of 2c terms, given c cuts:

60

University of Oxford Matthew Sutcliffe

G GA≡ GB...
GA= GB

a1π

...

a1π

a2π a2π

acπ acπ

...

{0,1}∑
a1,...,ac

(2.77)

Thus, the ZX-diagram may be strongly classically simulated via:

2c
k∑
i=1

2αti (2.78)

stabiliser terms, given subgraph T-counts {t1, t2, . . . , tk}.

In fact, it is more efficient to apply vertex cuts (equation 2.68) rather than edge

cuts, as the former can be interpreted as a generalisation of the latter (having

the effect of cutting all of its edges individually). The goal, therefore, is to find a

minimal set of spider cuts that partitions a given ZX-diagram into k ≥ 2 disjointed

subgraphs of roughly equal T-counts:

Lemma 6. A ZX-diagram of T-count t is optimally partitioned into k ∈ Z≥2

disjointed subgraphs of T-counts {t1, t2, . . . , tk} when:

• the number of vertex cuts c is minimised:

Minimise(c) (2.79)

and

• each subgraph contains an approximately equal number of T-spiders, up to

some imbalance ϵ ∈ R≥0:

ti
ϵ
≈ t

k
∀i. (2.80)

61

University of Oxford Matthew Sutcliffe

In graph theory, this is known as a vertex separator problem (Rendl & Sotirov,

2018; Althoby, Biha, & Sesboüé, 2020). However, it may also be mapped to a

hypergraph partitioning problem (Gottesbüren, Heuer, Maas, Sanders, & Schlag,

2024), in which hyperedges are cut rather than vertices, as this has more extensive

literature and tools available. Specifically, this problem may be mapped to the

minimum balanced k-cut problem defined in section 2.4.2.

Before mapping to this problem, relevant vertex and edge weights need to be

included. As such, each spider receives a weight of 1 as — ignoring any Clifford

simplification that may be facilitated — the cost of a vertex cut is essentially the

same regardless of the vertex being cut. Meanwhile, for each T-spider an edge

weight of 1
n

is added to each of its n edges. This serves to ‘spread’ the weight due

to the T-spider into its edges (which will soon be translated into vertices).

Thereafter, the ZX-diagram must be translated into a hypergraph. This can be

achieved simply by exchanging each edge for a vertex and each spider for a hy-

peredge like so:

π

π
4

π
2

3π
4

v1

v2 v3

v4

→ (2.81)

Here, each vertex in the ZX-diagram, and its corresponding hyperedge in the hy-

pergraph, is labelled in grey, and the vertex weights in the hypergraph are shown

in black to two decimal places.

With the ZX-diagram translated to a weighted hypergraph, it may be efficiently

k-partitioned using the KaHyPar software described in section 2.4.2.

62

University of Oxford Matthew Sutcliffe

Such a method was employed in (Codsi, 2022) to bipartition ZX-diagrams with

the aim of speeding up strong classical simulation. Therein, it was found that for

random Clifford+T circuits, efficient partitions were rare due to their dense edge

connectivity.

In (Codsi, 2022), this method focused exclusively on bipartitions (i.e. k-partitions

where k = 2). This is presumably because, with the method as presented, bal-

anced k-partitions beyond k ≳ 3 are generally unhelpful due to the number of

cuts involved outweighing the effective T-count reduction. In other words, in

k-partitioning a given ZX-diagram up to some imbalance ϵ, the number of cuts

required typically (but not necessarily) grows at least proportionally to k.

Consequently, larger k tends to result in a reduced
∑k

i=1 2
αti factor (see lemma

5) but an increased 2c factor. This means, generally speaking, for a given ZX-

diagram there is some k beyond which k-partitioning actually performs worse than

direct stabiliser decomposition. Anecdotally, on typical Clifford+T ZX-diagrams

this crossover point tends to be very low at around k ≈ 3.

2.5 GPU Parallelism

Since the late 1990s and early 2000s, commercial computers have come equipped

with a Graphics Processing Unit (GPU)17 — a specialised circuit designed, as

its name suggests, for efficiently computing graphics, particularly for gaming

(Peddie, 2023). Unlike CPUs, which are designed for fast and general purpose

sequential processing, GPUs are very effective at computing very simple proce-

dures on elements of a large dataset in parallel.
17To be precise, there is a distinction between the ‘GPU’, being solely the processor component,

and the ‘graphics card’, being the whole hardware unit including the GPU and its memory and
interfaces. However, this thesis is not concerned with such pedantry and, consistent with colloquial
use, will use the terms interchangeably.

63

University of Oxford Matthew Sutcliffe

Its potential for applications beyond graphics was soon recognised, giving rise to

general purpose GPU (GPGPU) programming. Since the late 2000s GPUs have

been utilised for the likes of machine learning (Raina, Madhavan, Ng, et al., 2009;

Lopes & Ribeiro, 2011), physics simulations (Harada, 2007; Nylons, Harris, &

Prins, 2007; Crane, Llamas, & Tariq, 2007; Alerstam, Svensson, & Andersson-

Engels, 2008), bioinformatics (Li et al., 2012; Nobile, Cazzaniga, Tangherloni, &

Besozzi, 2017; Hasan, Chatterjee, Radhakrishnan, & Antonio, 2014), and more

(Whalen, 2005; Criminisi, Sharp, Rother, & Pérez, 2010; Garcia, Debreuve, &

Barlaud, 2008).

This section aims to cover the relevant background of GPGPU programming and

the limitations and considerations involved when taking advantage of GPU par-

allelism. As this is a very in-depth and nuanced topic with many intricacies, its

coverage in this chapter will be focused to a scope directly relevant to the later

chapters, with many details omitted and explanations oversimplified.

2.5.1 Parallel Processing

It is firstly important to clarify what is meant by parallelism and its distinction

from concurrency:

Definition 24. Parallelism refers to events occurring simultaneously. In com-

puting, this requires multiple independent processors or cores executing different

tasks at the same time.

Definition 25. Concurrency refers to the concept of managing multiple tasks at

once, though not necessarily at the same time. This is often handled through

interleaving the tasks and can often give the illusion of parallelism. A single

independent processor may process multiple tasks concurrently, though only one

is ever being processed at any given moment.

64

University of Oxford Matthew Sutcliffe

The following example of concurrency emphasises this distinction:

Example 1. The 1983 computer game, Manic Miner, famously featured back-

ground music alongside event-based sound effects — a feat previously considered

impossible on the limited hardware of the ZX-Spectrum home computer, which

contained only a single sound channel (McAlpine, 2015). This was accomplished

with a technique known as ‘arpeggiated multiplexing’, whereby the sound channel

rapidly alternated between the background music and sound effects, producing a

cohesive audio experience and giving the illusion of both being played simultane-

ously. In this instance, the music and effects were played concurrently but not in

parallel.

The simplest type of parallel processing is CPU parallelism. Since IBM released

the first commercial multicore processor in 2001 (Stallings, 2010), CPUs with

increasing core counts have become commonplace. Modern commercial CPUs

typically feature 4, 8, or even 16 cores, while high-performance workstations and

server CPUs may have significantly more. In simple terms, an n-core CPU be-

haves much like n individual processors, being able to execute up to n indepen-

dent tasks in parallel (albeit while sharing memory and cache bandwidth) (Sanders

& Kandrot, 2010).

Figure 2.7 highlights this point, showing how 7 independent and colour-coded

tasks may be processed either sequentially with a single CPU core or in parallel

with 4 CPU cores. Aside from rather trivial considerations, such as distributing the

tasks (by total runtime) as evenly as possible across the cores, there is very little

effort or difficulty involved in parallelising tasks in this way. The only notable

requirement is that tasks executed in parallel must be independent of one another

(that is, the input of one cannot depend upon the output of another).

CPU parallelism, therefore, can be a very simple and easy way to improve the

65

University of Oxford Matthew Sutcliffe

Runtime

Si
ng

le
 C

PU
 C

or
e

(a) Sequential processing of 7 independent tasks.

Runtime

Pa
ra

lle
l C

PU
 C

or
es

(b) Parallel processing of 7 independent tasks.

Figure 2.7: A simple illustration of how 7 independent tasks may be processed on
(a) a single CPU core versus (b) 4 parallel CPU cores.

overall runtime for computing a set of tasks by a small factor (no greater than the

number of cores). However, much more drastic results can be achieved with the

use of GPU parallelism, but this is much less universally applicable, being suitable

to a much narrower set of scenarios.

Parallelising tasks for a GPU is much more intricate and nuanced than doing so

for a CPU, and it is only viable when specific conditions are met. The most

important of these is outlined in remark 2. Essentially, GPUs are designed to

compute simple instructions to a large set of data simultaneously, which is in

contrast to CPU cores which act rather as independent processors able to compute

independent procedures in parallel. Figure 2.8 demonstrates a very simple and

66

University of Oxford Matthew Sutcliffe

trivial example of SIMD processing.

Remark 2. GPU architecture is based on a ‘Single Instruction Multiple Data’

(SIMD) model of computation (Hennessy & Patterson, 2011). This means each

parallel thread must execute the same procedure, applied to a different unit of

data, with each instruction executed in lockstep18.

1 2 3 4

9 2 5 1

16 12 3 2

0 8 7 11

3 5 7 9

19 5 11 3

33 25 7 5

1 17 15 23

x → 2x+1

Figure 2.8: A simple example of SIMD processing, where one function is applied
to many data simultaneously.

Figure 2.9 illustrates the processing pattern of tasks executed on a GPU. Compar-

ing this to figure 2.7, one may make a few observations:

1. There are many more parallel ‘threads’ available on a GPU as compared

to parallel cores on a CPU. Indeed, typical commercial GPUs are equipped

with many thousands of threads capable of executing in parallel.

2. Each thread must execute the same function (known as a ‘kernel’) at the

same time, albeit applied to different data. This is a consequence of the

GPU’s SIMD model.

3. Each process on a GPU is significantly slower than its equivalent on a CPU.

This is because GPU threads are individually much less powerful than CPU

cores, having a greatly reduced instruction set.
18This is a slight oversimplification, as different ‘warps’ of 32 threads may execute out of sync.

67

University of Oxford Matthew Sutcliffe

Runtime

Pa
ra

lle
l G

PU
 T

hr
ea

ds

Figure 2.9: A simple illustration of how three independent (and colour coded)
tasks are executed across many threads simultaneously on a GPU.

From each of these three points arises a notable implication:

1. To make full use of the GPU, it should be run at full capacity, meaning it is

best used when given a very large amount of data to process.

2. Due to the GPU’s SIMD execution model, all threads (within a ‘warp’ of

32) must follow the same instruction path at the same time. When a branch

occurs (such as via an If statement), some threads may take one path while

others take another. However, since all threads must execute both paths

(with inactive threads idling during its ‘false’ branch), this leads to ineffi-

ciencies known as warp divergence. Similarly, iteration loops (such as For

loops) should have a consistent iteration count across all threads to avoid

uneven execution times and idle threads. Therefore, to maximize efficiency,

one should ensure uniform workloads across all threads and avoid branch-

ing code.

3. As GPU cores are much less powerful than CPU cores, GPU kernels should

ideally rely only upon simple arithmetic, with data recorded in very prim-

68

University of Oxford Matthew Sutcliffe

itive data structures. Higher-level data structures and operations are not

generally viable as these would slow down operations drastically.

These restrictions (among others) render GPU parallelism much less universally

applicable and much less trivial to implement, as compared to CPU parallelism.

However, where it is applicable (or can be made so) it is liable to offer much more

drastic speedups in overall runtime, as will be seen in chapter 3.

2.5.2 GPU Architecture

GPUs execute a special type of function called a ‘kernel’, with many parallel

threads executing the function simultaneously (Sanders & Kandrot, 2010). Each

individual thread (and each block of threads) has a unique index number which

may be read within the kernel. This allows many threads to execute the same

function, but applied to different data. Algorithm 2 provides pseudocode for a

very simple example which, used as here, turns an array of zeroes into an array of

ones.

Algorithm 2 A very simple example of a GPU kernel.
1: function INCREMENT(data)≪ n≫ ▷ Define GPU kernel
2: i← GETTHREADINDX() ▷ Get unique thread index
3: data[i] = data[i] + 1
4: end function
5:
6: nums[1024]← 0 ▷ Define length-1024 array of zeroes
7: data← MEMTOGPU(nums)
8: INCREMENT(data)≪ 1024≫ ▷ Execute the kernel with 1024 threads
9: SYNCHRONISETHREADS()

10: nums← MEMFROMGPU(data)

Here, INCREMENT is a kernel which takes as input an array, data, and executes

on n threads, and GETTHREADINDX returns the unique thread index as a number

between 1 and n. This kernel, therefore, increments the first n elements of the

69

University of Oxford Matthew Sutcliffe

array, data, in parallel. All the code outside of the kernel is executed on the CPU,

while the kernel itself (when called) is executed on the GPU.

In this example, nums is defined as a length-1024 array of zeroes, which line 7

then sends from the CPU to the GPU. The copy of the data on the GPU is then

labelled data. Note that this MEMTOGPU function completes in full before pro-

ceeding to the next line (though an alternative ASYNCMEMTOGPU may be used

to asynchronously send the data to the GPU, meaning the next line will execute

right away, while this data transfer is still underway, but this should be used with

caution).

Line 8 then executes the kernel with 1024 threads, and passing in data (which

is already stored in GPU memory). As this kernel is executed on the GPU, the

CPU is immediately free after making this call, meaning it may continue onto

its subsequent lines while the GPU processes this request. In this example, it is

essential to ensure the kernel completes for all threads before running the next line

and so SYNCHRONISETHREADS() forces the CPU to wait for the GPU to finish

processing the kernel for all threads before continuing. This ensures that when

line 10 returns data from the GPU to the CPU, and pastes the result into nums,

that every element has been updated.

GPUs are highly specialised and process data in a hierarchical structure to very

efficiently optimise for its SIMD processing model. As such, there are several

tiers of abstraction at which threads are processed, as outlined ahead (NVIDIA,

2020):

• A thread is the smallest unit of execution, being a single instance running

a kernel with a unique thread identifier. It has its own registers and local

memory.

• A warp is a group of 32 threads which execute in lockstep, executing kernel

70

University of Oxford Matthew Sutcliffe

instructions in perfect unison. Any warp divergence will result in the whole

warp being slowed to the rate of its slowest member and should be avoided.

• A block is a group of warps, typically containing a collective 128 to 1024

threads, with shared memory and cache and some degree of synchronisa-

tion.

• A grid contains the entire set of blocks that execute a kernel. Together with

global (and constant) memory, the grid essentially encompasses the entire

scope of the GPU.

Each of the above refers to an abstract (logical) concept. The physical hardware

components that process these are as follows (NVIDIA, 2020):

• A GPU core (often referred to as a CUDA core for Nvidia brand hardware)

is the smallest processing unit, which executes a single thread at a time19.

They execute in parallel and each acts as an individual processor, perform-

ing arithmetic and logical operations to the data assigned to it.

• A streaming multiprocessor (SM) is broader processing unit, managing

many cores plus data transfer, memory, caching, and scheduling of threads

and warps.

• A graphics processing unit (GPU) is the entire hardware unit encompass-

ing the above.

One important takeaway from these points is the distinction between a thread and

a core. A thread is a single unit of execution of a kernel, while a core is physical

hardware which processes a thread. The former has no limit, while the latter is

finite. One may execute a kernel to process, for example, 100, 000 threads. If the
19In fact, with appropriate scheduling to minimise idle thread time (such as when waiting for

data access), each core will process many threads concurrently, but not simultaneously. For
simplicity, however, this point may be overlooked.

71

University of Oxford Matthew Sutcliffe

number of cores available were 1, 000 then (to greatly oversimplify) these threads

would be processed in 100 parallel batches of 1, 000. Hence, not all threads

execute in parallel, though to avoid frequently clarifying this point it is common,

when speaking abstractly, to colloquially describe them as though they do (for

instance, “this kernel processes these n threads in parallel.”).

2.5.3 GPU Memory Structure

A GPU contains various types of memory and cache, accessible within different

scopes and generally serving different purposes. The most significant of these,

together with their primary uses, are as follows (NVIDIA, 2020; Farber, 2011):

• Global memory is used for storing large datasets that are accessed by all

threads across all blocks. This will typically include the main dataset to

be processed on the GPU, with portions of it often later sent into shared

memory for faster access by the threads.

• Constant memory is designed for read-only data that is uniform across all

threads, such as constants and parameters that remain unchanged during

runtime.

• Shared memory is common to threads within the same block and benefits

from efficient data sharing and synchronisation between them. It often acts

as a fast cache to hold portions of global memory that threads within a block

need repeated access to.

• Registers are used to store temporary variables and intermediate results

local to individual threads. This includes, for example, loop counters and

any primitive variables, such as integers or floats, that are declared during

runtime. Registers are the only non-persistent memory type among these,

meaning its data only exists during the runtime of a particular thread.

72

University of Oxford Matthew Sutcliffe

• Local memory is private to each individual thread and is mostly used to

store runtime variables that are too big to be stored in registers. This in-

cludes most non-primitive data structures, such as arrays and structs. It is

also used as an overflow for primitive variables if the thread runs out of reg-

ister space. Physically, each thread’s local memory is a partitioned segment

of global memory, but being allocated to a specific thread means access pat-

terns are localised and contention is minimised. This, in practice, renders

local memory quicker than global memory.

Table 2.1 provides a broad overview of the speeds and scales of each of these

memory types, together with their access scope (NVIDIA, 2020; Farber, 2011). In

addition to the speed, which describes how quickly data can be read and written,

the latency (time delay between requesting data from memory and receiving it)

and bandwidth (rate, in GB/s, at which data can be transferred to and from mem-

ory) of each memory type are also important factors to consider, though these are

neglected here for simplicity.

Name Access Speed Size

Global
Memory

All threads Slow Large (~4–24GB)

Constant
Memory

All threads
(read-only)

Fast Small (~64KB)

Shared
Memory

Threads within
the same block

Very Fast Small (~48KB per block)

Local
Memory

Per thread Medium Small (~8–16KB per thread)

Registers Per thread Fastest Tiny (~32 bytes per thread)

Table 2.1: Overview of the main GPU memory types (Lai et al., 2019).

Figure 2.10 provides a visual overview of this memory structure (Lai et al., 2019).

73

University of Oxford Matthew Sutcliffe

Global Memory

Constant Memory

Registers

Local Memory

Shared Memory

Thread 0

Registers

Local Memory

Thread 1

Block 0

Registers

Local Memory

Shared Memory

Thread 0

Registers

Local Memory

Thread 1

Block 1

GPU

CPU

RAM

Storage

Figure 2.10: The memory structure of a GPU (Lai et al., 2019).

Note that the initial data is sent from the CPU to the global (and/or constant)

memory of the GPU, and, after processing, the result will be read back to the CPU

from global memory.

2.5.4 Data Coalescing

To ensure high performance computing on a GPU, it is essential to take extra care

to optimise the data access patterns. As reading data from global memory is very

slow compared to shared memory and registers, the number of such transactions

should be minimised. This can often by achieved by organising the data in such a

74

University of Oxford Matthew Sutcliffe

way as to ensure the data requested by individual threads within a block are stored

among consecutive memory locations, such that they may be transferred in fewer

bulk transactions rather than many individual ones. This is known as coalescing

the data (Farber, 2011). Example 2 demonstrates this concept.

Example 2. As an example prescient of chapter 3, consider the 5 × 6 matrix

presented in table 2.2, where aij ∈ Z ∀i, j, and suppose one desired to sum the

elements of each row. In other words, for each i ∈ {1, 2, . . . , 5} compute ai ∈ Z

where:

ai =
6∑
j=1

aij (2.82)

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56

Table 2.2: A simple example of two-dimensional data, where aij ∈ Z ∀i, j.

While it is convenient to interpret such data as two-dimensional, in memory it is

necessarily stored linearly. Ordinarily, this would be stored in row-major order,

like so:

a11 a12 a13 a14 a15 a16 a21 a22 a23 a24 a25 a26 a31 a32 · · ·

With typical sequential processing (such as by a single core CPU), each row

would be computed, via equation 2.82, one after the other. This means initial-

ising a1 = 0, and then adding a11, and then a12, and so on to a16, before next

moving onto the next line to begin computing a2. With this in mind, it is clear that

row-major ordering provides the most efficient data access pattern, with subse-

quently accessed elements being physically stored in adjacent memory addresses.

75

University of Oxford Matthew Sutcliffe

Now consider instead processing this data on a GPU, with each row being pro-

cessed in parallel on its own thread. In this scenario, after initialising ai = 0 ∀i,

at the first time step, each thread i would, in parallel, compute ai = ai+ ai1. This

means, at the first time step, every ai1 would be needed at the same time, as is

highlighted in blue in table 2.2. Evidently, linearising this data with row-major

ordering means that each of these elements are now far apart in memory.

Instead, to ensure the parts of data that are needed at the same time are physi-

cally near each other and hence can be accessed in fewer transactions and more

rapidly, it would be more efficient to store this data in column-major order, like

so:

a11 a21 a31 a41 a51 a12 a22 a32 a42 a52 a13 a23 a33 a43 · · ·

Essentially, in this case, the data in the first column may be moved in a single

transaction to a block’s shared memory. Thereupon, each thread within that block

may read its own individual element from shared memory. This would then repeat

for subsequent columns, one after the other.

This is an example of data coalescing, and in practice can result in very substan-

tial impacts to the runtime, just by optimising the memory access patterns.

In a similar vein is the concern of race conditions (Herlihy, Shavit, Luchangco,

& Spear, 2020). This is a problem which arises when multiple threads access

and modify shared data simultaneously without proper synchronisation, leading

to unpredictable and incorrect behaviour. A simple example follows.

Example 3. Consider the operation:

counter += 1 (2.83)

given a global counter variable, initialised to 0. This single operation in fact

76

University of Oxford Matthew Sutcliffe

consists of three steps:

1. Read counter.

2. Add 1.

3. Write result to counter.

Two threads executing this kernel at the same time might proceed as follows:

1. Thread A reads counter = 0.

2. Thread B reads counter = 0.

3. Thread A increments counter = 0 + 1 = 1.

4. Thread B increments counter = 0 + 1 = 1.

5. Thread A writes counter = 1.

6. Thread B writes counter = 1.

The result in this case is counter = 1, rather than the expected counter = 2.

Such race conditions can be avoided with the use of atomic operations (NVIDIA,

2020). These are special versions of primitive operators which process its con-

stituent steps as a single uninterrupted unit. For instance, AtomicAdd will pro-

cess its read, add, and write steps uninterrupted, meaning whenever a thread is

executing this on a particular global variable, other threads which aim to do like-

wise will first wait until the current thread has finished its whole operation.

Atomic operations avoid race conditions and ensure correct and predictable out-

comes when parallel threads read and write the same global data. But, they are

slower than than their non-atomic counterparts as parallel threads essentially (to

a certain degree) execute these operations in sequence rather than parallel. Fortu-

nately, in reality, it is not quite as slow and inefficient as this implies, since tiered

77

University of Oxford Matthew Sutcliffe

caching is used to maintain much of the parallelism.

2.5.5 Data Pipelining

To gain the full benefit of the hardware, a large amount of data ought to be pro-

cessed. Usually, this will mean the number of threads, t, will greatly exceed the

number of parallel cores, c, available. This (to greatly oversimplify) means the

threads will be processed in t
c

sequential batches of c threads. If sufficient space is

available on the GPU then it is often possible, and indeed appropriate, to send (or

at least begin to send) the next batch of data to the GPU while the current batch

is being processed. This ensures that when the current batch is finished it will

not have to wait (as long) for the next batch of data to arrive. This is known as

asynchronous memory transfer or simply pipelining the data.

This is particularly effective when the kernel runtime is greater than the data trans-

fer time for a whole batch. In this scenario, by the time the current batch of data

has finished processing, the next batch is already waiting on the GPU and thus

may immediately begin its processing without delay. With the exception of that of

the initial batch, the data transfer time is then negligible. Indeed, as the number of

threads to process is increased, the overall data transfer asymptotically approaches

zero.

Without pipelining, only one batch of data (plus, perhaps, some intermediate re-

sults) need be stored on the GPU at any given time. With pipelining, up to two

batches (or more in advanced pipelines) may be stored — the current one being

processed and the next one waiting — at any given time. Either way, this will

usually represent only a very small fraction of the total amount of data to be pro-

cessed, with most of it either already completed or not yet sent from the CPU.

This is helpful to note as it means huge amounts of data (10s or 100s of gigabytes

78

University of Oxford Matthew Sutcliffe

or more) that would exceed the global memory space of the GPU may still be

processed upon it.

79

3 | Parameterised ZX-Calculus

The motivation of this chapter arises from identifying a number of areas, partic-

ularly within classical simulation, where it is necessary to simplify a potentially

large set of ZX-diagrams that share a common structure and vary only in some

spider phases. To this end, it will be shown how such a set of diagrams may be

expressed as a single parameterised ZX-diagram and how reasoning upon this pa-

rameterised diagram can amount to reasoning upon each constituent element in

the greater set.

More tangibly, this chapter introduces a generalisation of the rewriting rules of

ZX-calculus to allow for a type of parametric rewriting that enables simplifica-

tion of ZX-diagrams with Boolean free parameters. In this way, the bulk of the

computational work in reducing many like-structured ZX-diagrams can be shared

across all instances, with only comparatively quick computation required after the

fact in order to attain all the independent results.

In fact, this final post-processing step can also be drastically sped up as the sym-

metry in both the data and the calculations lend themselves well to efficient GPU-

based parallel processing. Ultimately, for very common classical simulation tasks,

these techniques together can offer a runtime speedup up to and beyond a factor

of 100 given modest commercial hardware.

This chapter is based upon, and builds upon, the work presented in (Sutcliffe &

Kissinger, 2024a). Some terminology and notation has been altered from (the

original version of) this paper for the sake of clarity.

80

University of Oxford Matthew Sutcliffe

3.1 Parametric Symmetry

When dealing with ZX-calculus, it is common to process many ZX-diagrams that

are — at least prior to simplification — near identical aside from some localised

differences. Notably, this occurs when varying qubit outputs, as in the summation

method of weak simulation outlined in lemma 2, and when applying stabiliser de-

compositions. Indeed, the former case involves processing an exponential number

of ZX-diagrams that are in fact structurally identical. That is to say, the graph

structure, given by the set of spiders and the edge connections among them, is

the same for all instances involved. The only feature that distinguishes them from

one another is their respective unique basis effects, ⟨a1, . . . , an|, on their n qubit

outputs. In fact, it is precisely because of this commonality that their sum is ex-

pressible as a sum over a single parameterised ZX-diagram, varying in some free

Boolean parameters, a1, . . . , an ∈ B.

Sets of ZX-diagrams that share this kind of commonality occur frequently in clas-

sical simulation tasks especially and are the main focus of this chapter. As such,

it is helpful to introduce a formal definition that describes such sets:

Definition 26. A set of ZX-diagrams G = {g1, g2, . . . , gn} is said to be ‘paramet-

rically symmetric’ iff:

• every element in G is structurally isomorphic:

gi ∼=struct gj ∀i, j ∈ {1, 2, . . . , n} (3.1)

and

• for every vertex v among the full set of vertices V in this common graph

81

University of Oxford Matthew Sutcliffe

structure, its phase in each gi ∈ G is either the same or varies by ±π:

ϕgi(v) = ϕgj(v) or ϕgi(v) = ϕgj(v)± π ∀v ∈ V, ∀i, j ∈ {1, . . . , n}

(3.2)

where ϕgi(v) is the phase of v in graph gi.

To offer a graphical alternative definition: a set of ZX-diagramsG = {g1, g2, . . . , gn}

is parametrically symmetric iff, up to spider fusion:

ai1π

ai2π

aimπ

...
∀gi ∈ Ggi = hf(ai1, ai2, . . . , aim) (3.3)

given a common ZX-diagram h with a scalar coefficient given by a common func-

tion f . Here, aij ∈ {0, 1} ∀j ∈ {1, 2, . . . ,m} are Booleans associated with the

graph gi.

Essentially, parametrically symmetric ZX-diagram sets are those expressible as a

single ZX-diagram with Boolean free phases which are coefficients of π. When

expressed as a single such ZX-diagram, the set may be said to be ‘parameterised’.

Notice in the above definition that no care is given to any scalar factors that the

ZX-diagrams in the set may have. This is because any set of scalars can be pa-

rameterised fairly trivially. Even a set of n disparate scalars {A,B,C,D} can be

parameterised with log2(n) Boolean parameters a, b
⋆
∈ B like so:

A(1−a)(1−b) ·B(1−a)b · Ca(1−b) ·Dab (3.4)

82

University of Oxford Matthew Sutcliffe

However, this simple means of scalar parameterisation gives an expression con-

taining n factors when parameterising n unique scalars, which largely defeats the

point of parameterisation. Fortunately, in practice (and as will be seen in the sec-

tions ahead), ZX-diagrams forming parametrically symmetric sets tend not to be

unrelated, and so their scalars can generally be parameterised much more con-

cisely. Typically, most non-trivial variation among the scalar coefficients of such

diagrams arise from the rewriting rules, which map any scalars according to very

structured patterns. This is also helped by the fact that the scalar coefficient of

any Clifford+T ZX-diagram is restricted to the set D[eiπ/4], where D is the ring of

dyadic rational numbers (Giles & Selinger, 2013): D := Z
[
1
2

]
.

3.2 Parameterising ZX-Calculus

Most applications of ZX-calculus deal with wholly numerical (i.e. non-parametric)

‘static’ ZX-diagrams. These can be manipulated and simplified via the rewriting

rules very simply and straightforwardly. However, there are a number of appli-

cations, such as quantum machine learning (Toumi, Yeung, & de Felice, 2021;

Koch, 2022; Yeung, 2020) and circuit differentiation (Q. Wang, Yeung, & Koch,

2024; Q. Wang & Yeung, 2022), in which it is necessary to deal with param-

eterised ZX-diagrams. Generally, in such situations, the parameterised parts of

the ZX-diagrams are essentially abstracted and treated separately from the non-

parameterised parts.

Nevertheless, as outlined above, there is also much utility, particularly in the field

of classical simulation, in simplifying parameterised ZX-diagrams. Consequently,

this section presents generalisations to the rewriting rules to support (appropriately

restricted) parameterised phases, allowing such parameterised ZX-diagrams to be

simplified and reduced as one, while maintaining generality.

83

University of Oxford Matthew Sutcliffe

3.2.1 Polarising Phases

By definition 26, such parameterised ZX-diagrams support spiders of the form:

Ψ (3.5)

where Image(Ψ) = {0, π}.

In allowing spider fusion, it follows that parameterised spiders of a more general

form must also be permitted:

Ψα... = ... Ψ + α (3.6)

with Image(Ψ + α) = {α, α + π}, where α ∈ R.

Such parameterised phases, of this general form, may be referred to as ‘polarised’:

Definition 27. A parameterised spider phase Φ is said to be polarised iff:

Image(Φ) = {α, α + π} (3.7)

where α ∈ R.

This is so-called because the image of a polarised phase may be visualised as two

polar opposite points on the phase wheel of figure 3.1.

These phases may be given by a set of Boolean free parameters and a constant

component:

Lemma 7. A parameterised spider phase Φ may be expressed in the form:

ϕ = Φ(a1, a2, . . . , an) = (a1 ⊕ a2 ⊕ . . .⊕ an)π + α (3.8)

84

University of Oxford Matthew Sutcliffe

0
π
4

π
2

3π
4

π

5π
4

3π
2

7π
4

Figure 3.1: The phase wheel, depicting the possible numerical phases mod 2π
which a spider may take. Any parameterised spider phase must be such that its
image consists of two opposite points on this wheel.

where α ∈ R and ai
⋆
∈ B ∀i = 1, 2, . . . , n. Note here that ⊕ is the XOR operator

(addition modulo 2) and n ≥ 1.

Note that, due to the modulo 2π nature of phases, fusing two polarised spiders,

Image(Ψ) = {α, α + π} and Image(Φ) = {β, β + π}, gives another polarised

spider:

... Ψ ...Φ ...
...Ψ + Φ= (3.9)

where Image(Ψ + Φ) = {α + β, α+ β + π}, given α, β ∈ R.

Naturally, such phases are not limited to Z-spiders:

... Ψ ... Ψ= (3.10)

3.2.2 Parameterising State Copy

While the spider fusion and colour change rules generalise for polarised phases

rather trivially, most of the other rewriting rules require more consideration. In-

85

University of Oxford Matthew Sutcliffe

deed, the rewriting rules of ZX-calculus, as outlined in figures 2.2 and 2.3, depend

upon specific structures and, in some cases, with specific restrictions regarding its

spider phases. Consider, for example, the state copy rule1:

=
aπ

aπ

1√
2
eiaααaπ (3.11)

where a ∈ B and α ∈ R.

The requirements that must be met for this rule to be applicable fall into two

categories: the structural requirement and the phase requirement. The former

requires a 1-degree (‘lollipop’) spider of phase ϕ be connected via a normal edge

to an opposite coloured 3-degree spider of phase ψ (or, equivalently, to a like-

coloured spider via a Hadamard edge). Meanwhile, the phase requirement insists

ϕ ∈ {0, π} and ψ ∈ R. Together, the rule may be expressed as:

=
ϕ

ϕ

1√
2
eiϕψ/πψϕ ⇐⇒ ϕ ∈ {0, π} (3.12)

where ϕ, ψ ∈ R.

Firstly, it can be assumed that all spiders take a real phase and hence the ψ ∈ R

condition is necessarily met. Now suppose the lollipop spider takes a parame-

terised phase of ϕ = Φ(a) = aπ, as might be derived from parameterising a

parametrically symmetric pair of ZX-diagrams. Note here, and throughout this

chapter, that a, b, . . .
⋆
∈{0, 1} and a, b, . . . ∈ {0, 1} (see Preliminaries). While the

exact phase ϕ of this spider remains unknown, its set of possible states, or its ‘im-

age’, is very precisely and restrictively defined, namely Φ(a) ∈ {0, π} (or, equiva-

lently, Image(Φ) = {0, π}). Consequently, despite the phase of the spider remain-
1This is the n = 2 version of the rule, which may be used to derive the general n case.

86

University of Oxford Matthew Sutcliffe

ing unspecified, one can nevertheless say with certainty that the state copy rule

does in fact apply as both the structural and phase requirements are indeed met.

The same would be true given, for example, ϕ = Φ(a, b) = aπ+bπ+π mod2π2,

as this too has an image of Φ(a, b) ∈ {0, π}.

Thus, the state copy rule can be generalised (i.e. parameterised) as:

⇐⇒ Image(Φ) ⊆ {0, π}=
Φ

Φ

1√
2
eiΦΨ/π

ΨΦ (3.13)

where Φ and Ψ are algebraic expressions, each containing a subset of Boolean

parameters. That is, given some global set of parameters P = {a, b, . . .} where

a, b, . . .
⋆
∈{0, 1}, Φ(X) and Ψ(Y) are such that X, Y ⊆ P . Note that, as this is

a generalisation of the rewriting rule, the empty set is also a valid subset, ∅ ⊆ P ,

meaning Φ and/or Ψ may also take constant values.

This parameterised version of the state copy rule is subtly, but importantly, distinct

from the conventional version. The latter (equation 3.12) should be interpreted to

mean:

The rule, as expressed graphically, is valid if and only if the spider

phase ϕ takes the specific value of 0 or π.

The parameterised version (equation 3.13), meanwhile, should be interpreted as:

The rule, as expressed graphically, is valid if and only if the spider

phase Φ takes an algebraic expression whose image (set of possible

states) is {0, π}, {0}, or {π}.

Essentially, the difference is: in the conventional version of the rule, ϕ denotes a

specific real number, whereas in the parameterised version of the rule, Φ denotes
2or, equivalently, ϕ = Φ(a, b) = (a⊕ b⊕ 1)π.

87

University of Oxford Matthew Sutcliffe

an algebraic expression.

Lastly, note that a constant value, such as π, is also a valid algebraic expression,

with Image(π) = {π}. As such, the parameterised version of the rule (equation

3.13) is strictly a generalisation of the conventional form (equation 3.12).

3.2.3 Parameterising the Remaining Rewriting Rules

Most of the other rewriting rules can be trivially parameterised likewise, with two

exceptions. The first is identity removal:

ϕ = ⇐⇒ ϕ = 0 (3.14)

In attempting to parameterise this rule, one must first introduce a parameterised

phase Φ with a polarised image, Image(Φ) = {α, α + π}, to the left-hand side:

Φ

Rather problematically, this cannot always be resolved with certainty, despite the

polarised nature of the Φ phase. Unlike (most of) the other rewriting rules, identity

removal requires a specific phase, namely 0. Consequently, given a parameterised

phase such as Φ = aπ, with Image(Φ) = {0, π}, it remains ambiguous whether

the phase condition is met and hence ambiguous whether identity removal is ap-

plicable.

The second problematic rewriting rule is π-commutation:

= −ψ

ϕ

...
ϕ

ϕ

eiψ

ψ ...ϕ ⇐⇒ ψ = π (3.15)

88

University of Oxford Matthew Sutcliffe

though — as it turns out — only under certain conditions. The more general

expression of the rule:

= (−1)ϕ/πψ

ϕ

...
ϕ

ϕ

eiϕψ/π

ψ
...ϕ ⇐⇒ ϕ ∈ {0, π} (3.16)

gives a stronger starting point. However, attempting to parameterise this naïvely:

= (−1)Φ/πΨ

Φ

...
Φ

Φ

eiΦΨ/π

Ψ
...Φ ⇐⇒ Image(Φ) ⊆ {0, π} (3.17)

leads to Image(Φ) = {0, π} and Image((−1)Φ/πΨ) = {α,−α}. The problem lies

in the fact that the latter is, in general, not polarised (unless α ∈ {π
2
,−π

2
}) and, by

definition 26, all parameterised phases must be polarised to maintain parametric

symmetry.

By spider fusion, allowing such phases means allowing wholly arbitrary parame-

terised spiders:

... Ψ ...Φ ...
...Ψ + Φ= (3.18)

where Image(Φ) = {α,−α} and Image(Ψ) = {β,−β}, and hence:

Image(Φ + Ψ) = {α + β, α− β, −α + β, −α− β}.

Ultimately, this leads to phases Φ with Image(Φ) = R. Allowing such phases

89

University of Oxford Matthew Sutcliffe

would violate definition 26 by breaking the parametric symmetry.

So, in order to maintain parametric symmetry through rewriting, this general

parameterisation of the π-commutation rule cannot be permitted. Nevertheless,

special cases of the rule can be. Recall equation 3.17 and consider restricting

Image(Ψ) = {0, π}. In this special case, the phase mapping:

Ψ→ (−1)Φ/πΨ

is equivalent to:

Ψ→ Ψ

since −0 = 0 and −π = π. As a result, this special case of the rule can be

parameterised:

=
Ψ

Φ

...
Φ

Φ

eiΦΨ/π

Ψ
...Φ

Image(Φ) ⊆ {0, π},
Image(Ψ) ⊆ {0, π}⇐⇒ (3.19)

while maintaining polarisation on all parameterised phases. As another special

case, consider once more equation 3.17, this time with the restriction Image(Ψ) =

{π
2
,−π

2
}. Under this condition, the phase mapping:

Ψ→ (−1)Φ/πΨ

is equivalent to:

Ψ→ Ψ+ Φ

as −π
2
+ π = π

2
and π

2
+ π = −π

2
. This gives a second valid special case parame-

90

University of Oxford Matthew Sutcliffe

terisation of the π-commutation rule:

= Ψ + Φ

Φ

...
Φ

Φ

eiΦΨ/π

Ψ
...Φ

Image(Φ) ⊆ {0, π},
Image(Ψ) ⊆ {π

2
,−π

2
}⇐⇒ (3.20)

Between these two cases, the π-commutation rule has been fully parameterised

for the Clifford set, whereby every phase ϕi∀i is either:

ϕi =
nπ

2

or:

ϕi = Φi(ai1, ai2, . . . , aim), where Image(Φi) =
{nπ

2
,
nπ

2
+ π
}
,

given n ∈ {0, 1, 2, 3} and aij
⋆
∈{0, 1} ∀j ∈ {1, 2, . . . ,m}.

Unfortunately, beyond the Clifford regime, it is not possible to parameterise the

π-commutation rule (equation 3.17) without breaking the parametric symmetry:

Image((−1)Φ/πΨ) = {α, α + π} ⇐⇒ Image(Ψ) ∈
{
{0, π}, {π

2
,−π

2
}
}

(3.21)

where α ∈ R. This means when incorporating the wider Clifford+T gateset, ZX-

diagrams such as:

π
4Φ

π
4

where, for instance, ϕ = Φ(a, b) = (a ⊕ b)π, cannot be simplified, despite the

fact that for either possible state of ϕ ∈ {0, π} this diagram would be reducible to

Clifford. In other words, the two possible reduced states:

91

University of Oxford Matthew Sutcliffe

π
4

π
4

π
4

π
4→ π

2→

and

π
4ππ

4 → −π
4 ππ

4 → π → πe
iπ
4 e

iπ
4 e

iπ
4

cannot be expressed a single parameterised ZX-diagram with Boolean free param-

eters. That is to say, the set { π
2 , πe

iπ
4 } is not parametrically symmetric.

Furthermore, at first glance, it would appear that the bialgebra rule:

ϕ ψ =
√
2 ⇐⇒ ϕ, ψ = 0 (3.22)

runs into the same problem faced by identity removal, as this too insists upon

specific phases (again, of 0). So, given parameterised phases, Φ and Ψ, such

that Image(Φ) = {0, π} and Image(Ψ) = {0, π}, it is apparently ambiguous

whether bialgebra may apply. In fact, this issue can be resolved by first unfusing

the parameterised phases and performing non-parameterised bialgebra:

Φ Ψ =
√
2

Φ Ψ

=
Φ Ψ

(3.23)

From here, the parameterised π-commutation rule, introduced in equation 3.19,

allows Φ and Ψ to switch sides:

√
2

Φ Ψ √
2=

ΨΦ

Φ

√
2eiΦΨ/π=

Ψ Φ

Ψ Φ

(3.24)

Thus, a parameterised bialgebra rule has been derived:

92

University of Oxford Matthew Sutcliffe

=
√
2eiΦΨ/π

Ψ Φ

Ψ Φ

Φ Ψ
Image(Φ) ⊆ {0, π},
Image(Ψ) ⊆ {0, π}⇐⇒ (3.25)

The culmination of the above is a full set of parameterised rewriting rules, as col-

lected in figure 3.2, where every phase is either a specific real value or a polarised

algebraic expression:

∀ϑ ∈ {ψ, ϕ} :

• ϑ ∈ R, or

• ϑ = Θ(a1, a2, . . . , an) with Image(Θ) = {α, α + π}, given α ∈ R and

ai
⋆
∈ B ∀i ∈ {1, 2, . . . , n}.

Some higher level rewriting rules derived from the basic set can also be parame-

terised, such as local complementation and pivoting (see figure 2.3), as shown in

figure 3.3.

The rules expressed in figures 3.2 and 3.3 may be used to simplify any param-

eterised (or indeed static) ZX-diagram. With the exception of identity removal,

these rules are complete for parameterised Clifford ZX-diagrams, meaning any

such diagram is reducible to the same extent as its static counterparts (except for

any leftover 2-legged polarised spiders, which may be pushed to one side via

π-commutation). Any scalar parameterised Clifford ZX-diagram is thus fully re-

ducible to a parameterised scalar.

However, for parameterised Clifford+T ZX-diagrams, the π-commutation rule is

not fully complete, meaning that there are circumstances where it may not be ap-

plied, despite it being applicable in the static equivalents of the given diagram.

Specifically, a static phase ϕ ∈ {0, π} may commute through a T-phase (static

93

University of Oxford Matthew Sutcliffe

Ψ
...

...
=

Φ ...
...

... Ψ + Φ
...

...

Ψ ... = Ψ ...

ϕ =

=

=
Ψ

Φ

...
Φ

Φ

eiΦΨ/π

Ψ
...Φ

Image(Φ) ⊆ {0, π},
Image(Ψ) ⊆ {0, π}⇐⇒

= Ψ + Φ

Φ

...
Φ

Φ

eiΦΨ/π

Ψ
...Φ

Image(Φ) ⊆ {0, π},
Image(Ψ) ⊆ {π

2
,−π

2
}⇐⇒

= Ψ − 2ϕΨ/π

ϕ

...
ϕ

ϕ

eiϕΨ/π

Ψ
...ϕ ϕ ∈ {0, π}⇐⇒

⇐⇒ Image(Φ) ⊆ {0, π}
=

Φ

Φ

1√
2
n eiΦΨ/π

1

Ψ
...Φ

Φ

2

n

=
√
2eiΦΨ/π

Ψ Φ

Ψ Φ

Φ Ψ
Image(Φ) ⊆ {0, π},
Image(Ψ) ⊆ {0, π}⇐⇒

Ψ = 1 + eiΨ

Ψ =
√
2eiΦΨ/πΦ

≡ e−i
π
4

π
2

π
2

π
2 ≡

Ψ = 1√
2
(1 + eiΨ + eiΦ − ei(Ψ+Φ))Φ

⇐⇒ Image(Φ) ⊆ {0, π}

⇐⇒ ϕ = 0

Figure 3.2: The complete set of parameterised rewriting rules, where Ψ and Φ are
parameterised or static phases such that Image(Ψ) ⊆ {α, α+π} and Image(Φ) ⊆
{β, β + π}, given α, β ∈ R. Meanwhile, ϕ ∈ R is strictly static.

94

University of Oxford Matthew Sutcliffe

Ψ
... =

A2 A3

A1 An

......

......

...
A2 − Ψ A3 − Ψ

A1 − Ψ An − Ψ

......

......

e−i
Ψ
2 ei

π
2

√
2

(n−1)(n−2)
2

Ψ
... =

A1

...

Φ

An

...

C1

...

Cl

...
B1

...

Bm

...

...

...

eiΦΨ/π
√
2
E

...
A1 + Ψ

...

An + Ψ

...

C1 + Φ

...

Cl + Φ

...
B1 + Φ + Ψ + π

...

Bm + Φ + Ψ + π
...

...

...

⇐⇒ Image(Φ) ⊆ {0, π}
Image(Ψ) ⊆ {0, π}

⇐⇒ Image(Ψ) ⊆ {π
2
, 3π

2
}

Figure 3.3: Parameterised local complementation and pivoting rules, where
E = (n − 1)m + (l − 1)m + (n − 1)(l − 1) and each Θ ∈
{Ψ,Φ, A1, . . . , An, B1, . . . , Bm, C1, . . . , Cl} is a parameterised or static phase
such that Image(Θ) ⊆ {αΘ, αΘ + π}, given αΘ ∈ R ∀Θ.

95

University of Oxford Matthew Sutcliffe

or otherwise), such as π
4
, without issue, whereas a parameterised phase Φ with

Image(Φ) = {0, π} is not able to commute through such a T-spider without

breaking parametric symmetry, due to equation 3.21. Consequently, a parame-

terised Clifford+T ZX-diagram might not reduce as far as its static equivalents.

The consequence of this is emphasised in lemma 8. Despite this, as will be seen,

this is seldom a significant issue in practice, with parameterised Clifford+T ZX-

diagrams being reducible to almost the same extent as their static counterparts.

Lemma 8. Simplifying a parameterised scalar Clifford+T ZX-diagram will al-

ways result in at least as many stabiliser terms as would be attained from simpli-

fying the equivalent static (i.e. non-parameterised) diagram.

3.2.4 Parameterised Scalar Expressions

After fully decomposing and simplifying a parameterised scalar ZX-diagram, one

is left with a parameterised expression denoting its potential scalar values:

Lemma 9. A parameterised scalar ZX-diagram is reducible to a parameterised

expression S(a1, a2, . . . , an)
⋆
∈ C:

G
a2π

a1π

anπ

...
→ S(a1, a2, . . . , an)

⋆
∈ C

(3.26)

where ai
⋆
∈ B ∀i ∈ {1, 2, . . . , n}.

This resulting parameterised expression, S, acting as a function, may be evaluated

for any bitstring input, S(a1, a2, . . . , an) where ai ∈ B ∀i ∈ {1, 2, . . . , n}, to

obtain the scalar result of the corresponding ZX-diagram instance, such that the

96

University of Oxford Matthew Sutcliffe

following equality holds:

G
a2π

a1π

anπ

...
= S(a1, a2, . . . , an) ∈ C (3.27)

Given lemma 9 and a parameterised scalar ZX-diagram containing n Boolean free

parameters, a1, a2, . . . , an
⋆
∈ B, one may deduce all 2n scalar values (one for each

input bitstring) via just one instance of ZX-calculus reduction plus 2n evaluations

of the resulting parameterised scalar. This is as opposed to 2n full reductions of

unique ZX-diagrams, as would be required without parameterisation.

Importantly, the resulting parameterised scalar always follows a particular struc-

ture, being a sum of terms, where each term is the product of (a constant and) one

or more parameterised subterms:

S =
m∑
i=1

[
Ci

ni∏
j=1

sij

]
(3.28)

Here, sij denotes the j th subterm of the ith term of the parameterised scalar S. m

is then the number of terms and ni is the number of subterms in term i. Lastly,

Ci is a constant (i.e. non-parameterised) factor associated with term i. Figure 3.4

shows a visual breakdown of this structure.

From the parameterised rewriting rules and scalar relations presented in the pre-

vious subsection, one may observe that there are in fact four different types of

parameterised subterms that may arise. These are summarised in table 3.1.

In fact, it can be shown that these may all reduce to a single unique subterm type,

97

University of Oxford Matthew Sutcliffe

SCALAR

Term 1

1.1 1.n1× · · ·×

+ + · · · +Term 2

2.1 2.n2× · · ·×

Term m

m.1 m.nm× · · ·×

Figure 3.4: A breakdown of the structure of a parameterised scalar. A scalar Clif-
ford+T ZX-diagram may be reduced to a parameterised scalar expression, com-
prised of a sum of terms, with each term being comprised of a product of subterms
(and a constant).

Name Form Origin(s)

Node (1 + eiΨ) Ψ

Phase-pair
(
1 + eiΨ + eiΦ − ei(Ψ+Φ)

)
Ψ Φ

Half-π eiΨ/2 Figure 3.3

π-pair eiΨΦ/π Figures 3.2 and 3.3

Table 3.1: The different types of subterms that may arise from reducing parame-
terised ZX-diagrams, where Ψ and Φ are parameterised phases obeying the form
of lemma 7.

namely that labelled ‘phase-pair’. Lemmas 10 to 12 formalise this observation.

Lemma 10. Node-type subterms can be reduced to phase-pair subterms:

(
1 + eiΨ

)
= C

(
1 + eiΨ

′
+ eiΦ − ei(Ψ′+Φ)

)
(3.29)

where Ψ′ = Ψ+ π
2

and C =
√
2
4
(1− i).

98

University of Oxford Matthew Sutcliffe

Proof.

(
1 + eiΨ

)
= Ψ

= Ψ + π
2

−π
2

= Ψ + π
2

−π
2

= Ψ + π
2

−π
2e−i

π
4

π
2

π
2

π
2

= Ψ + π
2e−i

π
4

π
2

π
2

= Ψ + π
2

1√
2
e−i

π
4 π

2

= 1√
2
e−i

π
4 · 1√

2

(
1 + ei(Ψ+π

2
) + eiΦ − ei(Ψ+π

2
+Φ)
)

=
√
2
4
(1− i)

(
1 + eiΨ

′
+ eiΦ − ei(Ψ′+Φ)

)

(3.30)

Lemma 11. π-pair subterms can be reduced to phase-pair subterms:

eiΨΦ/π → C
(
1 + eiΨ + eiΦ − ei(Ψ+Φ)

)
(3.31)

where C = 1
2
.

Proof. There are five sources from which π-pair subterms, eiΨΦ/π, may arise, be-

ing:

• parameterised state copy (figure 3.13),

• parameterised pivoting (figure 3.3),

• parameterised π-commutation (figures 3.19 and 3.20),

• parameterised bialgebra (figure 3.25), and

99

University of Oxford Matthew Sutcliffe

• parameterised special case phase-pair (figure 3.2).

In each case, one may observe that Image(Φ) ⊆ {0, π}. Under this restriction,

the relation holds:

eiΨΦ/π =
1

2

(
1 + eiΨ + eiΦ − ei(Ψ+Φ)

)
(3.32)

Explicitly, if Φ = 0:

e0 =
1

2

(
1 + eiΨ + e0 − ei(Ψ+0)

)
(3.33)

1 =
1

2
(1 + 1)

1 = 1

∴ LHS = RHS

Likewise, if Φ = π:

eiΨ =
1

2

(
1 + eiΨ + eiπ − ei(Ψ+π)

)
(3.34)

eiΨ =
1

2

(
1 + eiΨ + (−1)− eiΨeiπ

)
eiΨ =

1

2

(
1 + eiΨ − 1 + eiΨ

)
eiΨ =

1

2

(
2eiΨ

)
eiΨ = eiΨ

∴ LHS = RHS

Hence, graphically:

Ψ Φ =
√
2eiΨΦ/π (3.35)

provided Image(Φ) ⊆ {0, π}.

100

University of Oxford Matthew Sutcliffe

Lemma 12. Half-π subterms can be reduced to phase-pair subterms:

eiΨ/2 → C
(
1 + eiΨ

′
+ eiΦ − ei(Ψ′+Φ)

)
(3.36)

where Ψ′ = −Ψ+ π
2

and C = 1
2
.

Proof. Half-π subterms arise from instances of parameterised local complemen-

tation (figure 3.3), from which it may be observed that Image(Ψ) ⊆ {π
2
, 3π

2
}.

These terms may be slightly rewritten with a change of variable:

e−i
Ψ
2 ei

π
2 = e

i
2
(−Ψ+π

2
)e

iπ
4 = e

i
2
Ψ′
e
iπ
4 (3.37)

where Ψ′ = −Ψ+ π
2

such that Image(Ψ′) ⊆ {0, π}.

Furthermore:

eiΨ
′/2 ≡ eiΨ

′Φ/π (3.38)

where Φ = π
2
.

Hence, the half-π subterm type is a special case of the π-pair type, which was

shown in lemma 11 to be reducible to the phase-pair type.

Given this, the parameterised scalar expressions are always expressible in a very

consistent format:

Lemma 13. Any parameterised scalar expression arising from reducing a pa-

rameterised scalar ZX-diagram, G(a1, a2, . . . , an), may be expressed according

to equation 3.28, where:

sij =
(
1 + eiΨij + eiΦij − ei(Ψij+Φij)

)
∝

Ψij

Φij

∀i, j (3.39)

101

University of Oxford Matthew Sutcliffe

given:

Ψij = αij + π
⊕
p∈Pψij

p

Φij = βij + π
⊕
p∈Pϕij

p
(3.40)

where:

αij, βij ∈ R ∀i, j (3.41)

and:

Pψ
ij , P

ϕ
ij ⊆ {a1, a2, . . . , an} ∀i, j (3.42)

Only minimal runtime reduction is achieved at this stage as evaluating a long

complex expression containing many terms and subterms is, in most cases, ap-

proximately as slow as reducing the corresponding ZX-diagram. In other words,

computing 2n evaluations of the resulting parameterised scalar is generally com-

parable in speed with 2n simplifications of the original ZX-diagram.

However, with the parameterised ZX-diagram reduced to a parameterised scalar

expression, whose terms all conform to a consistent format, evaluations of this

scalar can be very efficiently parallelised and even take advantage of the GPU.

3.3 GPU-Parallelised Evaluation

Each evaluation of such a parameterised scalar involves computing many identi-

cally structured subterms. This meets the SIMD requirement of GPU parallelism,

discussed in section 2.5. By translating the data into a more primitive data struc-

ture and avoiding calculations involving complex exponentials, the requirement

for simple instructions may also be met, as will be seen ahead.

102

University of Oxford Matthew Sutcliffe

3.3.1 Condensing the Data Structure

Specifically, as per lemma 13, any subterm, sij(Ψij,Φij), may be concisely recorded

as:

• The set of parameters in Ψij: pψij ⊆ P

• The constant part of Ψij: αij ∈ R

• The set of parameters in Φij: pϕij ⊆ P

• The constant part of Φij: βij ∈ R

where P = {a, b, c, . . .} is the full set of parameters in the scalar.

Hence, any parameterised scalar expression may be expressed concisely by record-

ing this data for each subterm (i.e. ∀i, j), together with the following metadata:

• The number of terms, m

• The constant factor of each term, Ci ∀i ∈ {1, 2, . . . ,m}

• The number of subterms in each term, ni ∀i ∈ {1, 2, . . . ,m}

Furthermore, for reasons that will become apparent, it is beneficial for every term

to contain the same number of subterms, ni = n ∀i where n = max
i

(ni). This

can be enforced by padding each term with ‘dummy’ subterms which equal unity,

and including a flag in each subterm to record whether it is a genuine subterm or

a dummy.

Given this, a parameterised scalar expression may be recorded as a (2nm)×(2p+

3) matrix of 1-byte elements, where m and n are respectively the number of terms

and the number of subterms per term, and p is the total number of parameters,

p = |P |.

103

University of Oxford Matthew Sutcliffe

An example follows:

Example 4. As per lemma 13, a parameterised scalar ZX-diagram, G(a, b, c, d),

may reduce to the following parameterised scalar expression:

g(a, b, c, d) = C1

[(
1 + eiΨ1,1 + eiΦ1,1 − ei(Ψ1,1+Φ1,1)

)
×
(
1 + eiΨ1,2 + eiΦ1,2 − ei(Ψ1,2+Φ1,2)

)
×
(
1 + eiΨ1,3 + eiΦ1,3 − ei(Ψ1,3+Φ1,3)

)]

+ C2

[(
1 + eiΨ2,1 + eiΦ2,1 − ei(Ψ2,1+Φ2,1)

)]

+ C3

[(
1 + eiΨ3,1 + eiΦ3,1 − ei(Ψ3,1+Φ3,1)

)
×
(
1 + eiΨ3,2 + eiΦ3,2 − ei(Ψ3,2+Φ3,2)

)]

(3.43)

which may alternatively be expressed as:

C1√
2
3

Ψ1,1

Φ1,1

Ψ1,2

Φ1,2

Ψ1,3

Φ1,3

+
C2√
2
1

Ψ2,1

Φ2,1

+
C3√
2
2

Ψ3,1

Φ3,1

Ψ3,2

Φ3,2

=g(a, b, c, d) (3.44)

where:

• in term 1:

⋄ C1 =
1
32

⋄ Ψ1,1 = aπ + bπ + π
2

⋄ Φ1,1 = bπ + cπ + dπ + 7π
4

104

University of Oxford Matthew Sutcliffe

⋄ Ψ1,2 = cπ + π

⋄ Φ1,2 = aπ + dπ + 3π
4

⋄ Ψ1,3 = aπ + bπ + cπ + dπ + 7π
4

⋄ Φ1,3 = aπ + cπ + dπ + 3π
2

• in term 2:

⋄ C2 =
√
2
8
− i

16

⋄ Ψ2,1 = bπ + cπ + 3π
2

⋄ Φ2,1 = aπ + bπ + dπ + 3π
4

• in term 3:

⋄ C3 =
1
4

⋄ Ψ3,1 = cπ + dπ

⋄ Φ3,1 = aπ + π
2

⋄ Ψ3,2 = bπ + cπ + π
2

⋄ Φ3,2 = aπ + cπ + π
4

This may then be recorded in matrix form as in table 3.2, with C1, C2, C3 recorded

separately among the metadata, together with p = 4, m = 3, and n = 3 record-

ing, respectively, the number of parameters, terms, and subterms per term.

Here, each row represents a single subterm (i.e. a particular sij), and each set

of n = 3 rows represents a whole term, with the column headers denoting the

following:

• The ‘∗’ column records whether the subterm is genuine (1) or a dummy for

padding (0).

105

University of Oxford Matthew Sutcliffe

Table 3.2: An example of a parametric scalar expression in matrix form.

Ψ Φ
∗ 4α/π aψ bψ cψ dψ 4β/π aϕ bϕ cϕ dϕ

1 2 1 1 0 0 7 0 1 1 1
1 4 0 0 1 0 3 1 0 0 1
1 7 1 1 1 1 6 1 0 1 1
1 6 0 1 1 0 3 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 2 1 0 0 0
1 2 0 1 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0

• The ‘4α/π’ column records the constant part (α) of Ψij for the subterm sij .

This is multiplied by 4
π

such that (within the Clifford+T regime) the result

may be recorded as an integer in the range [0, 7].

• The subsequent p = 4 columns, labelled aψ to dψ record whether each of

these variables (a to d) in turn are (1) or are not (0) included within Ψij for

the subterm sij . In this way, Ψ may be expressed as Ψ = (aψa ⊕ bψb ⊕

cψc⊕ dψd)π+ α, where a, b, c, d ∈ B are the parameter values to evaluate.

• The final columns are analogous to the previous p + 1 = 5, except relating

to Φij rather than Ψij .

Expressing parameterised scalars in this way ensures a concise and organised data

structure, which will be essential to take advantage of GPU parallelism. To this

end, there are some additional considerations, which are covered ahead.

3.3.2 Further Considerations

As a justification for row padding, consider the matrix of example 4, recording

the subterm data of a particular parameterised scalar. For convenience, this has

106

University of Oxford Matthew Sutcliffe

been visualised with clear distinctions between each block of 3 rows, to clearly

separate each term. As far as the software is concerned, however, this is simply

recorded as a single (2nm)× (2p + 3) = 9× 11 matrix of 1-byte elements, with

no such demarcation between the distinct terms.

Given there may be a variable number of subterms in each term, it is helpful to

include padding of dummy rows, as described, to ensure consistency. This ensures

that, given the knowledge of n = 3, the GPU will be able to easily identify each

distinct block term without additional cumbersome indexing and can compute the

same sets of calculations among each, further aiding in the efficiency of the GPU-

parallelism.

Furthermore, it is a small but important point that these matrices should be stored

in column-major order. Consider again the data of example 4, expressed in its ma-

trix form. For practical purposes, it is helpful to interpret this as a two-dimensional

data structure, but within memory it is necessarily stored linearly. As each row

is to be processed in parallel, with each successive column being processed at a

single time-step, storing this in column-major order ensures the data is coalesced

(as explained in more detail in section 2.5.4). This seemingly subtle consideration

has a drastic impact on the runtime.

The third and final technical consideration to aid performance on the GPU is a

combination of data pipelining and batching, as discussed in section 2.5.5. Be-

yond the most trivial cases, the total number of subterms (rows) to process will

exceed the number of available parallel threads manyfold. Given this fact, there

is no benefit in waiting for the entire dataset to be loaded onto the GPU before

the processing commences. In fact, by pipelining the data, its transfer time to the

GPU becomes negligible (except in trivially small cases). Similarly, if the size of

the data exceeds the space available on the GPU (which is generally just a few

107

University of Oxford Matthew Sutcliffe

gigabytes) then processing the data in batches ensures that this does not pose a

problem.

3.3.3 Computing the Subterms

To evaluate a parameterised scalar, g(a, b, c, . . .), expressed in matrix form on the

GPU, for a particular input, (a = a, b = b, c = c, . . .), where a, b, c, . . . ∈ B, there

are three broad steps to follow:

1. Reduce each subterm to a complex scalar for the given input.

2. Multiply together every subterm within each term.

3. Sum together the terms.

GPU parallelism may be utilised in each of these three steps, as will be seen.

With (at least the first batch of) the data on the GPU, the first step is to evaluate

all the subterms for the given input, as demonstrated in example 5.

108

University of Oxford Matthew Sutcliffe

Example 5. This step of evaluation amounts to reducing:

g(a, b, c, d) = C1

[(
1 + eiπ(a+b+ 1

2
) + eiπ(b+c+d+ 7

4
) − eiπ(a+b+ 1

2
+b+c+d+ 7

4
)
)

×
(
1 + eiπ(c+1) + eiπ(a+d+ 3

4
) − eiπ(c+1+a+d+ 3

4
)
)

×
(
1 + eiπ(a+b+c+d+ 7

4
) + eiπ(a+c+d+ 3

2
) − eiπ(a+b+c+d+ 7

4
+a+c+d+ 3

2
)
)]

+ C2

[(
1 + eiπ(b+c+ 3

2
) + eiπ(a+b+d+ 3

4
) − eiπ(b+c+ 3

2
+a+b+d+ 3

4
)
)]

+ C3

[(
1 + eiπ(c+d) + eiπ(a+

1
2
) − eiπ(c+d+a+ 1

2
)
)

×
(
1 + eiπ(b+c+ 1

2
) + eiπ(a+c+ 1

4
) − eiπ(b+c+ 1

2
+a+c+ 1

4
)
)]

(3.45)

to, for instance:

g(0, 1, 1, 0) = C1

(
1 +
√
2− i

)(
2
)(
1 + i− i

√
2
)

+ C2

(
1 +
√
2− i

)
+ C3

(
2i
)(
1−
√
2 + i

) (3.46)

where C1, C2, C3 ∈ C, such as:

C1 =
1

32

C2 =

√
2

8
− i

16

C3 =
1

4

(3.47)

The process for computing this step for each subterm in parallel efficiently on the

GPU follows:

109

University of Oxford Matthew Sutcliffe

1. If the row is marked as a dummy (i.e. the ‘∗’ column is 0) then skip to step

7. In such cases, the row can essentially be ignored and its subterm result

set immediately to 1 without needing to compute any of the following cal-

culations or steps. (This means the processing of dummy rows essentially

amounts to simply doing nothing and waiting for the non-dummy threads to

be processed.)

2. Substitute into each subterm expression (i.e. each row), in parallel, the

chosen parameter values. This amounts to a simple bitwise multiplication

(or AND operation):

1 1 a b c · · · 1 a b c · · ·

×

∗ 4α/π aψ bψ cψ · · · 4β/π aϕ bϕ cϕ · · ·

=

∗ 4α/π aψa bψb cψc · · · 4β/π aϕa bϕb cϕc · · ·

3. Calculate the XOR strings within Ψ = (aψa ⊕ bψb ⊕ cψc ⊕ . . .)π + α and

Φ = (aϕa⊕bϕb⊕cϕc⊕. . .)π+β. That is, reduce (aψa⊕bψb⊕cψc⊕. . .)→ x

and (aϕa ⊕ bϕb ⊕ cϕc ⊕ . . .) → y, where x, y ∈ B. This can be computed

for each row in parallel, relying only on basic arithmetic:

∗ 4α/π aψa bψb cψc · · · 4β/π aϕa bϕb cϕc · · ·

↓

∗ 4α/π x 4β/π y

4. Given Ψ = xπ+α mod 2π and Φ = yπ+β mod 2π, calculate 4Ψ
π

= 4x+

4α
π

mod 8 and 4Φ
π

= 4y + 4β
π

mod 8, such that 4Ψ
π
, 4Φ
π
∈ {0, 1, 2, . . . , 7}.

This too can be calculated for each row in parallel, using only simple oper-

ations on integers:

110

University of Oxford Matthew Sutcliffe

∗ 4α/π x 4β/π y

↓

∗ 4Ψ/π 4Φ/π

5. The next step is to calculate eiΨ and eiΦ. However, computing complex

exponentials, such as these, is computationally costly. So, to avoid this,

a lookup table may be used instead, mapping 4Ψ/π ∈ {0, 1, 2, . . . , 7} to

eiΨ ≡ Aψ +Bψ

√
2 + i(Cψ +Dψ

√
2), where this form is used to record the

complex numbers as a set of simple fractional numbers3:

4ψ/π Aψ Bψ Cψ Dψ

0 1 0 0 0
1 0 1/2 0 1/2
2 0 0 1 0
3 0 −1/2 0 1/2
4 −1 0 0 0
5 0 −1/2 0 −1/2
6 0 0 −1 0
7 0 1/2 0 −1/2

The same method may be used to compute eiΦ ≡ Aϕ + Bϕ

√
2 + i(Cϕ +

Dϕ

√
2) from 4Φ/π, and indeed to compute ei(Ψ+Φ) ≡ Aψ+ϕ + Bψ+ϕ

√
2 +

i(Cψ+ϕ +Dψ+ϕ

√
2) from 4Ψ

π
+ 4Φ

π
mod 8. As ever, these calculations can

be computed for each row in parallel:

∗ 4Ψ/π 4Φ/π

↓

∗ Aψ Bψ Cψ Dψ Aϕ Bϕ Cϕ Dϕ Aψ+ϕ Bψ+ϕ Cψ+ϕ Dψ+ϕ

6. Lastly, having computed eiΨ, eiΦ, and ei(Ψ+Φ) for each row, ij, each final

subterm result may be deduced in parallel by calculating sij = 1+eiΨ+eiΦ−
3More precisely, Aψ, Bψ, Cψ, Dψ ∈ D, where D is the ring of dyadic rational numbers (Giles

& Selinger, 2013).

111

University of Oxford Matthew Sutcliffe

ei(Ψ+Φ). The result, in each case, may be stored as four simple fractional

numbers (A,B,C,D ∈ D) via the form sij ≡ A + B
√
2 + i(C + D

√
2).

Note that adding two such complex numbers, eiΨ+eiΦ, in this form amounts

to adding the like terms, per lemma 14.

Now, each row will store four simple numbers to record its subterm scalar:

∗ Aψ Bψ Cψ Dψ Aϕ Bϕ Cϕ Dϕ Aψ+ϕ Bψ+ϕ Cψ+ϕ Dψ+ϕ

↓

∗ A1,ψ,ϕ,−(ψ+ϕ) B1,ψ,ϕ,−(ψ+ϕ) C1,ψ,ϕ,−(ψ+ϕ) D1,ψ,ϕ,−(ψ+ϕ)

7. Hiding the subscript labels here for brevity, the culmination of these steps

is a matrix wherein each row now records four simple numbers which col-

lectively denote a single subterm value:

A B C D

If the subterm was flagged as a dummy then one may jump straight to this

step with A = 1, B = 0, C = 0, D = 0.

Lemma 14. Two complex numbers, ψ, ϕ ∈ D[eiπ/4], each expressed via four

dyadic rational values,Ax, Bx, Cx, Dx ∈ D ∀xmay be summed together by adding

the like terms:

[
Aψ +Bψ

√
2 + i(Cψ +Dψ

√
2)
]
+
[
Aϕ +Bϕ

√
2 + i(Cϕ +Dϕ

√
2)
]

=
[
Aψ,ϕ +Bψ,ϕ

√
2 + i(Cψ,ϕ +Dψ,ϕ

√
2)
]

(3.48)

112

University of Oxford Matthew Sutcliffe

where here:
Aψ,ϕ = Aψ + Aϕ

Bψ,ϕ = Bψ +Bϕ

Cψ,ϕ = Cψ + Cϕ

Dψ,ϕ = Dψ +Dϕ

(3.49)

Taking the parameterised scalar matrix of example 4 and evaluating it for (a, b, c, d) =

(0, 1, 1, 0), the steps would proceed as follows, with each row being processed in

parallel:

∗ 4α aψ bψ cψ dψ 4β aϕ bϕ cϕ dϕ

1 2 1 1 0 0 7 0 1 1 1

1 4 0 0 1 0 3 1 0 0 1

1 7 1 1 1 1 6 1 0 1 1

1 6 0 1 1 0 3 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 2 1 0 0 0

1 2 0 1 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0

↓ step 2 ↓

113

University of Oxford Matthew Sutcliffe

∗ 4α 0aψ 1bψ 1cψ 0dψ 4β 0aϕ 1bϕ 1cϕ 0dϕ

1 2 0 1 0 0 7 0 1 1 0

1 4 0 0 1 0 3 0 0 0 0

1 7 0 1 1 0 6 0 0 1 0

1 6 0 1 1 0 3 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 2 0 0 0 0

1 2 0 1 1 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0

↓ step 3 ↓

∗ 4α x 4β y

1 2 1 7 0

1 4 1 3 0

1 7 0 6 1

1 6 0 3 1

0 0 0 0 0

0 0 0 0 0

1 0 1 2 0

1 2 0 1 1

0 0 0 0 0

↓ step 4 ↓

114

University of Oxford Matthew Sutcliffe

∗ 4Ψ/π 4Φ/π

1 6 7

1 0 3

1 7 2

1 6 7

0 0 0

0 0 0

1 4 2

1 2 5

0 0 0

↓ step 5 ↓

∗ Aψ Bψ Cψ Dψ Aϕ Bϕ Cϕ Dϕ Aψ+ϕ Bψ+ϕ Cψ+ϕ Dψ+ϕ

1 0 0 −1 0 0 1
2

0 −1
2

0 −1
2

0 −1
2

1 1 0 0 0 0 −1
2

0 1
2

0 −1
2

0 1
2

1 0 1
2

0 −1
2

0 0 1 0 0 1
2

0 1
2

1 0 0 −1 0 0 1
2

0 −1
2

0 −1
2

0 −1
2

0 − − − − − − − − − − − −

0 − − − − − − − − − − − −

1 −1 0 0 0 0 0 1 0 0 0 −1 0

1 0 0 1 0 0 −1
2

0 −1
2

0 1
2

0 −1
2

0 − − − − − − − − − − − −

↓ step 6 ↓

115

University of Oxford Matthew Sutcliffe

A B C D

1 1 −1 0

2 0 0 0

1 0 1 −1

1 1 −1 0

1 0 0 0

1 0 0 0

0 0 2 0

1 −1 1 0

1 0 0 0

This result is consistent with that of equation 3.46, albeit with the constant factors,

C1, C2, C3, neglected for now (and some redundant factors of 1 included). The

significance of this approach is that it processes each subterm in a parallel thread,

while relying only on simple arithmetic and performing the same calculations at

each step across these threads. It hence makes efficient use of GPU parallelism

that would not be achievable without such considerations as presented.

A CUDA kernel that implements this procedure is shown in listing 3.14. This

code is hopefully self-explanatory, though note that the variable names may not

be consistent with what is used above.

Listing 3.1: A CUDA kernel for GPU-parallelised evaluation of parameterised

subterms.

__global__ void calc_subterms(int n, char* rowGenuine, char*

rowConstA, char* rowConstB, char* rowsumA, char* rowsumB,

4Note that this implementation stores scalars in the form A + iB with A,B ∈ R, rather than
A+B

√
2 + i(C +D

√
2) with A,B,C,D ∈ D. This marginally reduces precision but improves

runtime.

116

University of Oxford Matthew Sutcliffe

double* real, double* imag) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i > n - 1) return;

if (rowGenuine[i] == 0) { // ignore dummy rows

real[i] = 1.0;

imag[i] = 0.0;

return;

}

const double root2 = 1.414213562373095;

char a = (rowConstA[i] + (rowsumA[i] * 4)) % 8;

char b = (rowConstB[i] + (rowsumB[i] * 4)) % 8;

char c = (a + b) % 8;

double factor_re = 1.0, factor_im = 0.0;

// 1 + cexp(a) + cexp(b) - cexp(c)...

switch (a) { // cexp(a)

case 0: factor_re += 1.0; break;

case 1: factor_re += 0.5*root2; factor_im += 0.5 * root2;

break;

case 2: factor_im += 1.0; break;

case 3: factor_re += -0.5*root2; factor_im += 0.5*root2;

break;

case 4: factor_re += -1.0; break;

case 5: factor_re += -0.5*root2; factor_im += -0.5*root2;

break;

case 6: factor_im += -1.0; break;

case 7: factor_re += 0.5*root2; factor_im += -0.5*root2;

break;

}

117

University of Oxford Matthew Sutcliffe

switch (b) { // cexp(b)

case 0: factor_re += 1.0; break;

case 1: factor_re += 0.5*root2; factor_im += 0.5 * root2;

break;

case 2: factor_im += 1.0; break;

case 3: factor_re += -0.5*root2; factor_im += 0.5*root2;

break;

case 4: factor_re += -1.0; break;

case 5: factor_re += -0.5*root2; factor_im += -0.5*root2;

break;

case 6: factor_im += -1.0; break;

case 7: factor_re += 0.5*root2; factor_im += -0.5*root2;

break;

}

switch (c) { // cexp(c)

case 0: factor_re -= 1.0; break;

case 1: factor_re -= 0.5*root2; factor_im -= 0.5 * root2;

break;

case 2: factor_im -= 1.0; break;

case 3: factor_re -= -0.5*root2; factor_im -= 0.5*root2;

break;

case 4: factor_re -= -1.0; break;

case 5: factor_re -= -0.5*root2; factor_im -= -0.5*root2;

break;

case 6: factor_im -= -1.0; break;

case 7: factor_re -= 0.5*root2; factor_im -= -0.5*root2;

break;

}

real[i] = factor_re;

imag[i] = factor_im;

118

University of Oxford Matthew Sutcliffe

return;

}

3.3.4 Computing the Terms

Having demonstrated how the subterms of a parameterised scalar expression may

be evaluated in an efficient and parallelised manner on a GPU, it remains to mul-

tiply together all the subterms with each term, before finally summing together

these terms.

The subterms within each term may be multiplied together sequentially, making

use of lemma 15. With each term assigned to its own thread, this too may be

parallelised. So, instead of each row corresponding to a parallel thread, now each

block of n rows is processed on a single thread.

With an unlimited number of threads, where each term could truly be computed

in parallel, this would require O(n) steps, where n is the number of subterms per

term. More practically, with a finite t < m threads (where m is the number of

terms), this would require m
t

sequentially processed batches of t parallel threads.

Hence, the runtime complexity of this step may be given as follows:

• If t ≥ m, the time complexity is O(n).

• If t < m, the time complexity is O(nm
t
).

Lemma 15. Two complex numbers, ψ, ϕ ∈ D[eiπ/4], each expressed via four

dyadic rational values, Ax, Bx, Cx, Dx ∈ D ∀x, in the form:

ψ = Aψ +Bψ

√
2 + i

(
Cψ +Dψ

√
2
)

ϕ = Aϕ +Bϕ

√
2 + i

(
Cϕ +Dϕ

√
2
) (3.50)

119

University of Oxford Matthew Sutcliffe

may be multiplied together, ϑ = ψ × ϕ, using only simple real arithmetic:

ϑ = Aϑ +Bϑ

√
2 + i

(
Cϑ +Dϑ

√
2
)

(3.51)

where:
Aϑ = AψAϕ + 2BψBϕ − CψCϕ − 2DψDϕ

Bϑ = AψBϕ +BψAϕ − CψDϕ −DψCϕ

Cϑ = AψCϕ + 2BψDϕ + CψAϕ + 2DψBϕ

Dϑ = AψDϕ +BψCϕ + CψBϕ +DψAϕ

(3.52)

Making use again of lemma 15, the scalar factors, Ci ∈ C (or, more precisely,

Ci ∈ D[eiπ/4]), of each term, i, may also be multiplied in as appropriate.

Example 6. Returning to the previous example, this step would reduce the matrix

as follows:

A B C D

1 1 −1 0

2 0 0 0

1 0 1 −1

1 1 −1 0

1 0 0 0

1 0 0 0

0 0 2 0

1 −1 1 0

1 0 0 0

↓ multiply together subterms ↓

120

University of Oxford Matthew Sutcliffe

A B C D

4 0 −4 0

1 1 −1 0

−2 0 2 −2

↓ multiply by constant factor, Ci ↓

A B C D

1
8

0 −1
8

0

3
16

1
8

− 1
16

− 3
16

−1
2

0 1
2

−1
2

This step is equivalent to reducing equation 3.46 to:

g(0, 1, 1, 0) = C1

(
4− 4i

)
+ C2

(
1 +
√
2− i

)
+ C3

(
− 2 + 2i− 2i

√
2
)

(3.53)

and lastly:

g(0, 1, 1, 0) =

(
1

32

)(
4− 4i

)
+

(√
2

8
− 1

16
i

)(
1 +
√
2− i

)

+

(
1

4

)(
− 2 + 2i− 2i

√
2

)

=

(
1

8
− 1

8
i

)
+

(
3

16
+

√
2

8
− 1

16
i− 3

√
2

16
i

)

+

(
− 1

2
+

1

2
i−
√
2

2
i

)
(3.54)

121

University of Oxford Matthew Sutcliffe

3.3.5 Parallelised Summation Algorithm

Now each term has been reduced to a complex number, expressed with four real

numbers, the final step is to sum these terms together. Via sequential (i.e. single

core CPU) computation, there is no more efficient method for summing all the

elements of a length n array of numbers than to simply iterate through them and

maintain a tally (Cormen, Leiserson, Rivest, & Stein, 2022). This, of course,

offers a runtime complexity of O(n).

However, in allowing parallel processing (such as that enabled by a GPU), it is

possible to improve upon this with methods (JáJá, 1992) that (asymptotically and

given enough parallel threads) achieve O(log n). Algorithm 3 describes such a

method, where PSum is a GPU kernel executing on n parallel threads (each with

a successive unique index provided by GetThreadIndx()).

Algorithm 3 The GPU-parallelised summation algorithm

1: Initialise and populate ARR[NELEMS]
2:
3: procedure PSUM(split, gap)<< n >>
4: i← GETTHREADINDX()
5: elem← i× split
6: if elem+ gap < NELEMS − 1 then
7: ARR[elem]← ARR[elem] + ARR[elem+ gap]
8: end if
9: end procedure

10:
11: split← 2
12: gap← 1
13: while gap < NELEMS do
14: nchunks ← ⌈NELEMS/split⌉
15: PSUM(split, gap)<< nchunks >>
16: split← split× 2
17: gap← gap× 2
18: end while

122

University of Oxford Matthew Sutcliffe

Best understood by demonstration, this procedure is illustrated in example 7.

123

University of Oxford Matthew Sutcliffe

Example 7. As an example, consider the following 10-element array of integers:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Every adjacent pair of elements may be allocated a single GPU thread. For a

general n-element array, this means allocating n/2 threads, which in this example

corresponds to 5 threads, divided as follows:

[0, 1, | 2, 3, | 4, 5, | 6, 7, | 8, 9]

Each thread, running in parallel, may then sum the two elements under its con-

sideration and overwrite its left element with the result, like so:

[1, 1, | 5, 3, | 9, 5, | 13, 7, | 17, 9]

The right element of each pair can hereafter be ignored and so is written in grey

here. The process may then repeat, with n/4 threads being allocated to consider

adjacent 4-elements groups, like so:

[1, 1, 5, 3, | 9, 5, 13, 7, | 17, 9]

Now, the leftmost element of each thread will be incremented by the value con-

tained 2 elements to its right (unless that index exceeds the length of the array):

[6, 1, 5, 3, | 22, 5, 13, 7, | 17, 9]

This process may then repeat iteratively, halving the number of threads needed at

each step and doubling the number of elements considered by each thread and the

gap between their relevant (non-grey) pairs of elements. The example case would

proceed as follows:

[6, 1, 5, 3, 22, 5, 13, 7, | 17, 9]

[28, 1, 5, 3, 22, 5, 13, 7, | 17, 9]

[28, 1, 5, 3, 22, 5, 13, 7, 17, 9]

124

University of Oxford Matthew Sutcliffe

[45, 1, 5, 3, 22, 5, 13, 7, 17, 9]

Once the number of required threads is reduced to 1 (itself containing the whole

array), the procedure is complete and the final result (in this case 45) — being the

sum of all elements in the original array — may be found in the leftmost element.

This method can equivalently be applied to multiply, rather than sum, all elements

of an array, and in either case requires ⌈log2 n⌉ iterations, rather than n as se-

quential processing would necessitate. This result is in fact a theoretical limit,

however, as it assumes an unlimited number of available parallel threads. In fact,

if the number of available threads is fewer than n/2, then full parallelisation is

not achieved and the true number of iterations increases beyond the theoretical

minimum of ⌈log2 n⌉. Hence, a more practical expression of the time complexity,

which recognises a finite t threads is:

• If t ≥ n
2
, the time complexity is O (log n).

• If t < n
2
, the time complexity is O

(
n
t
log n

)
.

Therefore, for non-trivial n, an improvement the parallelised array summation/-

multiplication method outperforms the sequential method when t > log2 n. In

reality, a typical GPU may have several hundreds, or even thousands, of paral-

lel threads (Martineau, Atkinson, & McIntosh-Smith, 2018), meaning that in any

feasible case:

t≫ log2 n (3.55)

and hence this method almost invariably results in drastic runtime improvements

versus the sequential alternative. Furthermore, data pipelining (as described in

section 2.5.5) may be employed when sending the initial n-element array from

the CPU to the GPU, and the result to be returned to the CPU is simply a single

numerical value. Consequently, for non-trivial cases the data transfer time of this

125

University of Oxford Matthew Sutcliffe

method turns out to be negligible.

With the evaluated scalar terms already expressed in a simple form as rows of

a matrix on the GPU, algorithm 3 may be utilised, together with lemma 14, to

efficiently sum these terms together. This makes one final use of GPU parallelism

and produces a single complex number as a result, which may be returned to the

CPU in negligible time.

This returned result gives the final result of evaluating the original parameterised

scalar expression for a particular set of parameter values.

Example 8. Returning one final time to example 6, this step will reduce the term

data as follows:

A B C D

1
8

0 −1
8

0

3
16

1
8

− 1
16

− 3
16

−1
2

0 1
2

−1
2

↓ Sum the terms (i.e. rows) ↓

A B C D

− 3
16

1
8

5
16

−11
16

This final result, equivalent to reducing equation 3.54 to:

g(0, 1, 1, 0) = − 3

16
+

√
2

8
+

5

16
i− 11

√
2

16
i (3.56)

may then be returned to the CPU.

126

University of Oxford Matthew Sutcliffe

3.3.6 Summary of the New Method

There is much utility in taking many repeat evaluations of a parameterised ZX-

diagram, for various sets of parameter values. Such use cases include, as will be

seen, parameterised stabiliser decompositions and mid-circuit measurements. Of

most relevance to this thesis, however, is the case of classical simulation, with

parameters arising from open circuit outputs.

Conventionally, the ZX-calculus approach to this problem is that of (Kissinger

& van de Wetering, 2022), described in section 2.3. For each evaluation, this

essentially involves substituting parameter values into a parameterised Clifford+T

ZX-diagram and decomposing it into many Clifford terms, which may be reduced

and summed to arrive at the final scalar result. This whole process need then be

repeated for every subsequent evaluation, with a new set of parameter values.

As seen in section 2.3, decomposing a t T-count ZX-diagram results in a sum of

2αt stabiliser terms, with α determined by the decomposition(s) used. For this rea-

son, decomposing a ZX-diagram of even a modest T-count is a very slow process.

Hence, repeating this slow process for many independent evaluations increases

this slow runtime manyfold.

The approach described in this chapter seeks to address this issue. Firstly, by gen-

eralising the decomposition and simplification strategy of ZX-calculus to support

(reasonably restricted) parameterised phases, this enables this slow process to be

computed just for all possible parameter values. The result is a parameterised

scalar expression which may be evaluated many times for various sets of param-

eter values, without needing to repeat any slow ZX-calculus reduction. Lastly,

given that such an evaluation of a parameterised scalar requires only very simple,

and highly-parallelisable, arithmetic, this step can be performed very efficiently

127

University of Oxford Matthew Sutcliffe

and rapidly, making use of GPU hardware.

Hence, in summary, with this approach one need only compute the slow ZX-

calculus reduction step once, with every subsequent evaluation (for a new set of

parameter values) being very quick to calculate. This is as opposed to repeating

the whole slow ZX-calculus reduction from scratch for every new evaluation. Fig-

ure 3.5 illustrates this distinction with an overview of the steps involved in each

method.

With the method outlined in this chapter, every successive evaluation of a non-

trivial parameterised Clifford+T ZX-diagram is expected to be calculable much

more rapidly than via the conventional approach of (Kissinger & van de Wetering,

2022). However, this method still requires one instance of ZX-calculus decom-

position and reduction to transform the initial parameterised ZX-diagram into a

GPU-ready parameterised scalar expression. Consequently, if one were taking

just a single evaluation, then no improvement would be expected, but as one takes

an ever greater number of evaluations this initialisation time begins to become

negligible and the overall runtime difference between the methods much more

drastic. Lemmas 16 and 17 provide a stronger mathematical analysis of this point.

Lemma 16. Let T oldeval be average time required to calculate a single evalua-

tion of a given parameterised ZX-diagram with the conventional ‘old’ method

of (Kissinger & van de Wetering, 2022). The overall time required to calculate N

such evaluations with this method is then:

T oldtotal = NT oldeval (3.57)

Alternatively, the ‘new’ method presented in this chapter requires a one-off initial-

isation time, T newinit , with subsequent evaluations computable in an average time

T neweval . This method thus requires the following runtime to calculate N evaluations

128

University of Oxford Matthew Sutcliffe

Parameterised ZX-
diagram

Static ZX-diagram

Substitute in
parameter values

Scalar

Decompose and
reduce

(fast)

(slow)R
ep

ea
t m

an
y

tim
es

(a) The conventional CPU-based ap-
proach, introduced in (Kissinger &
van de Wetering, 2022).

Parameterised ZX-
diagram (on CPU)

Parameterised scalar
(on CPU)

Parameterised
decompose and reduce

Parameterised scalar
(on GPU)

(Pipelined)
Transfer to GPU

(fast)

(slow)

R
epeat m

any tim
es

Unsimplified static
scalar (on GPU)

Substitute in
parameter values

(fast)

Scalar (on GPU)

Reduce efficiently
on GPU

(fast)

Scalar (on CPU)

Transfer to CPU(fast)

(b) The parallelised GPU-based ap-
proach outlined in this chapter.

Figure 3.5: A comparison of the two procedures for repeated evaluation of a pa-
rameterised ZX-diagram for various sets of parameter values. The boxes show the
state of the data at each step, connected by arrows indicating the processes that
update these data, together with a qualitative note of the speed of each process.
Purple boxes represent data being on the CPU () and green boxes data on the
GPU ().

129

University of Oxford Matthew Sutcliffe

of the given parameterised ZX-diagram:

T newtotal = T newinit +NT neweval (3.58)

The speedup factor, SN , achieved by using the new method versus the old for

taking N evaluations of a particular parameterised ZX-diagram is then given by:

SN =
T oldtotal

T newtotal

(3.59)

As the initialisation step of the new method and an evaluation via the old method

are both instances of a full decomposition of the given ZX-diagram (albeit with

the former maintaining parametric phases), it follows that, within a small factor:

T newinit ∼ T oldeval (3.60)

As a result, for smallN , the new method is not expected to offer a meaningful run-

time reduction, but as N increases the runtime ratio of the two methods becomes

increasingly drastic:
T oldtotal

T newtotal

→ T oldeval

T neweval

as N →∞ (3.61)

This N →∞ result may be labelled the terminal speedup factor, S∞:

S∞ =
T oldeval

T neweval

(3.62)

Lemma 17. The relationship between the speedup factor, SN , and the number of

evaluations, N , can be visualised as a sigmoid curve of the form:

SN (N) = S∞ ·
N

Ninflec +N
(3.63)

130

University of Oxford Matthew Sutcliffe

1 Ninflec

log(Number of evaluations, N)

1

S1
2

S1
S
p
ee

d
u
p

fa
ct

or
,
S

N

Figure 3.6: The relationship between the speedup factor, SN , and the number of
evaluations, N , for any particular ZX-diagram may be visualised as a sigmoid
curve. Note the logarithmic x-axis.

as in figure 3.6, where:

Ninflec =
T newinit

T neweval

(3.64)

is the inflection point: that is the value of N at which SN = S∞/2.

Proof. Using lemma 16:

SN =
T oldtotal

T newtotal

=
NT oldeval

T newinit +NT neweval

=
T oldeval

T neweval

· N

Ninflec +N
= S∞ ·

N

Ninflec +N
(3.65)

131

University of Oxford Matthew Sutcliffe

3.4 Application to Classical Simulation

The chapter thus far has presented a method by which parameterised ZX-diagrams

may be reduced to parameterised scalars which in turn may be repeatedly evalu-

ated for various sets of parameter values very rapidly, making use of GPU paral-

lelism. As such, it is applicable whenever one wishes to reduce and evaluate every

static ZX-diagram belonging to a particular parametrically symmetric set. This is,

in fact, a fairly common scenario, occurring in some stabiliser decompositions,

circuits with measurements, and, of course, classical simulation.

3.4.1 Repeated Strong Simulation

As discussed in section 2.3, a Clifford+T circuit may be strongly simulated for

a particular measurement outcome by ‘plugging’ its outputs with the appropri-

ate bitstring, before reducing it to a scalar via the strategies of ZX-calculus. If

one desired to strongly simulate such a circuit many times to, for instance, mea-

sure the probability of various measurement outcomes, then it is perhaps obvious

how the methods of this chapter could be of aid. Simply plugging the outputs of

the circuit with a parameterised bitstring would enable it to be reduced to a pa-

rameterised scalar, whereupon the amplitudes corresponding to various outcome

measurements could be calculated very hastily using this chapter’s approach.

3.4.2 Computing Individual Marginal Probabilities

Section 2.3 also demonstrated how a Clifford+T ZX-diagram may be weakly sim-

ulated by computing its marginal probabilities through the ‘summing’ or ‘dou-

bling’ method. The techniques of this chapter may be applied to either method, in

slightly distinct ways.

132

University of Oxford Matthew Sutcliffe

The summing method is simply to strongly simulate every element in a parametri-

cally symmetric set of scalar ZX-diagrams. This is exactly the situation described

above, and the relevance of this chapter here is apparent. The only additional step

required would be to sum the squares of the resulting evaluations (which could be

done ‘on the fly’ as they are each returned to the CPU).

Applied in this way, every individual instance of computing a marginal probabil-

ity may be sped up by effectively parallelising the sum in this ‘sum of squares’

approach. This can hence speed up the calculation of a single instance of weak

simulation.

3.4.3 Repeated Weak Simulation

Alternatively, there are many cases in which the doubling method of computing

marginal probabilities is more appropriate and efficient than the summing method.

In such cases, the techniques of this chapter may again be applied, provided one

wishes to compute many instances of weak simulation, rather than just one.

In this situation, each (1 ≤ k ≤ n) marginal probability computation of an n-qubit

circuit, U , can be computed parametrically:

U

a1π

akπ

...
...

U †

a1π

akπ

...
...

P (a1 · · · ak) =

(3.66)

With this approach, at each iteration (i.e. in incrementing k) of computing the

next marginal probability, one may deduce the next bit in the final bitstring, for

any number N of independent bitstrings. Hence, one will ultimately produce N

such bitstrings denoting N independent samples of weak simulation, while only

133

University of Oxford Matthew Sutcliffe

ever reducing n doubled ZX-diagram, given n qubits.

This is summarised in algorithm 4, where:

P (a1 · · · ak)
r← ⟨0 · · · 0|U †(|a1 · · · ak⟩ ⟨a1 · · · ak| ⊗ In−k)U |0 · · · 0⟩ (3.67)

denotes the reduction of the doubled marginal probability ZX-diagram (equation

3.66) to a parameterised scalar expression, P (a1 · · · ak), denoting its outcome

probability. P (B) then denotes a GPU-based evaluation of this scalar expression

for the bitstring B = a1 · · · ak, where ai ∈ B ∀i. Meanwhile, X||Y denotes the

concatenation of X and Y , such that [a, b, c]||d = [a, b, c, d], and Rand() returns

a random floating point number in the range [0, 1).

Algorithm 4 Algorithm for efficient repeated weak simulation
1: Input: A quantum circuit U with nqubits qubits, and Nevals

2:
3: Bi = [] ∀i ∈ {1, . . . , nqubits} ▷ Initialise empty lists
4: for k = 1 to nqubits do
5: P (a1 · · · ak)

r← ⟨0 · · · 0|U †(|a1 · · · ak⟩ ⟨a1 · · · ak| ⊗ In−k)U |0 · · · 0⟩
6: for i = 1 to Nevals do
7: PBi||0 = P (Bi||0) ▷ GPU-based evaluation
8: b← 0 if Rand() < PBi||0 else 1
9: Bi = Bi||b

10: end for
11: end for
12:
13: Output: Bi ∀i

There are further optimisations that may be made to this algorithm, with some par-

ticular redundancy among the first few iterations of k, where identical evaluations

are inevitable. But such considerations are perhaps superfluous.

134

University of Oxford Matthew Sutcliffe

3.5 Results

3.5.1 Experimental Setup

The method detailed in this chapter was benchmarked against the conventional,

CPU-based and non-parameterised, method of (Kissinger & van de Wetering,

2022) for fully reducing and evaluating randomly generated Clifford+T circuits.

These circuits were generated using the existing generate.cliffordT function of

Pyzx5 (Kissinger & van de Wetering, 2018, 2020a), before being translated into

ZX-diagrams. A wide range of T-counts were considered, as a means to vary the

size and complexity of the initial circuits, with the parameter count (or P-count)

in each case fixed at 10.

Specifically, the new method is compared against the Quizx (Kissinger & van de

Wetering, 2021) implementation of the conventional method, which is the Rust

port of Pyzx, developed to maximise speed. As such, direct comparisons of the

runtimes of the respective methods are reasonable and fair (certainly within ac-

ceptable error margins), particularly as Rust and C are languages comparable in

speed (Y. Zhang, Zhang, Portokalidis, & Xu, 2022).

Furthermore, Quizx utilises some degree of CPU parallelism which contributes to

its high speeds, and so runtime comparisons against it may be considered under-

stated. Given this, the speedup rates quoted among the upcoming results may be

seen as conservative measurements, and would be expected to be even greater if

compared to a single-core CPU implementation of (Kissinger & van de Wetering,

2022) in Quizx.

Lastly, note that all experimental measurements among these results were pro-
5Pyzx is a Python package which implements ZX-calculus, equipped with functions to visual,

manipulate, and simplify ZX-diagrams.

135

University of Oxford Matthew Sutcliffe

100 101 102 103 104

log(Number of evaluations, N)

0

25

50

75

100

125

150

S
p
ee

d
u
p

fa
ct

or
,
S

N

Figure 3.7: The measured speedup factors versus the number of evaluations, for
randomly generated parameterised circuits of various T-counts. The faint dotted
lines indicate the corresponding terminal speedup factors, with are approached
asymptotically.

duced on commercial hardware containing a 6-core 2.69GHz Intel i5-11400H

CPU and an 8GB NVIDIA GeForce GTX 1650 GPU, plus 8GB SODIMM RAM.

3.5.2 Experimental Measurements

In each experiment, the measured speedup factors varied with the number of eval-

uations in a manner consistent with that predicted by lemma 17. Figure 3.7 illus-

trates this for a random subset of the experiments (selecting one experiment for

each unique T-count).

Evidently, there is significant variation among these results, with a terminal speedup

factor ranging from< 1 to 149.5. This, as will soon be seen, is due largely (though

not entirely) to variation among the initial T-counts of these circuits. Neverthe-

less, in all these cases, several thousand evaluations prove sufficient to reach over

136

University of Oxford Matthew Sutcliffe

90% of the terminal speedup factor:

SN > 0.9S∞ when N ≳ 103 (3.68)

To consider a specific typical example, the conventional Quizx approach was able

to evaluate a particular 20-qubit circuit of T-count 36 and P-count 5 in 472 ±

112ms. On the other hand, the parameterised GPU-based approach, after an ini-

tialisation time of 651 ± 116ms, was able to evaluate the same circuit in just

4.66 ± 0.17ms. This produces a terminal speedup factor S∞ = 472/4.66 ≈ 101.

This means, given enough evaluations, the new method will perform up to 101

times more quickly than the old. In this case, a runtime improvement is observed

for any non-trivial number of evaluations, with 100 evaluations being enough to

see a speedup factor of 42 and 1, 000 enough to see a speedup factor of 89.

From lemmas 16 and 17, one may note that there are two important metrics which

may be used to quantify the effectiveness of this method, as compared against

the conventional approach (Kissinger & van de Wetering, 2022), for any given

parameterised ZX-diagram. These metrics are:

• the terminal speedup factor, S∞, which measures the theoretical maxi-

mum runtime improvement for the given parameterised ZX-diagram, and

• the inflection point, Ninflec, which measures how many evaluations are

required for the speedup factor to reach half of its theoretical maximum, and

which effectively quantifies the rate at which the speedup factor increases

against the number of evaluations taken.

For each experiment, these two metrics describe and quantify the behaviour of the

corresponding sigmoid curve (such as those of figure 3.7). Figure 3.8 plots these

metrics against the initial (post Clifford simplification) T-counts of the parame-

137

University of Oxford Matthew Sutcliffe

5 10 15 20 25 30 35 40

T-count

0

25

50

75

100

125

150

T
er

m
in

a
l
sp

ee
d
u
p

fa
ct

or
,
S

1

(a) The terminal speedup factors, S∞,
versus Quizx, plotted against T-count.

5 10 15 20 25 30 35 40

T-count

0

50

100

150

200

250

In
.
ec

ti
on

p
oi

n
t,

N
in

f
le

c

(b) The inflection points, Ninflec, plot-
ted against T-count.

Figure 3.8: The measured (a) terminal speedup factors and (b) inflection points of
various randomly generated parameterised ZX-diagrams versus the conventional
Quizx implementation (Kissinger & van de Wetering, 2022), plotted against the
initial T-counts (after Clifford simplification). These plots show a (5-point win-
dow) moving average of the measured results, with error margins given by the
standard deviation. Extreme outlier measurements have been excluded and indi-
cated with an ‘x’, and figure (a) includes a dashed grey line indicating the average
S∞ (with standard deviation error margins) across all (non-outlier) measurements
of T-counts ≥ 25, where S∞ appears to plateau.

terised ZX-diagrams to emphasise how they relate to the size and complexity of

the circuits.

From figure 3.8a, it is apparent that for very small T-counts, this method offers

minimal speedup versus Quizx. This is to be expected, as ZX-diagrams of small

T-counts decompose into a small number of stabiliser terms — too few to take

full advantage of GPU parallelism. This is especially true when the number of

terms is fewer than the number of available parallel threads. However, as can be

observed, when the T-count is increased beyond trivial scales, the effectiveness of

the method is likewise increased, and drastically so, with terminal speedup factors

near 100 becoming commonplace.

While the terminal speedup factor initially correlates positively with the T-count,

138

University of Oxford Matthew Sutcliffe

it evidently plateaus when the T-count extends beyond around 25. This is believed

to be the scale beyond which such ZX-diagrams reduce into a number of terms

sufficient to occupy the available parallel threads (on the specified GPU) at full

capacity. The precise point at which this plateau occurs, therefore, is highly de-

pendent upon the specific hardware used, with a greater number of GPU threads

equating to a later plateau. (Indeed, given a theoretical infinite number of paral-

lel threads, one would expect no such plateau, with the terminal speedup factor

continuing to grow endlessly with the T-count.) In the results presented here, the

average terminal speedup factor across all experiments (excluding extreme out-

liers) of T-counts ≥ 25 is 78.3± 10.2.

Within the plateau region, most cases produced terminal speedup factor measure-

ments between approximately 60 and 100. However, there were a handful of

exceptional cases (shown in figure 3.8a as outliers), with S∞ as low as 32.4 and as

high as 149.5. While such cases are less common, they demonstrate some inter-

esting phenomena. The effectiveness of this method on a particular parameterised

ZX-diagram depends on how well it is able to reduce while maintaining paramet-

ric generality. This can vary significantly from one ZX-diagram to another, even

for those of an equivalent T-count.

As per lemma 8, owing largely to the problematic π-commutation rule, reducing

a parameterised Clifford+T ZX-diagram results in more terms than reducing its

static equivalent. In practice, the difference in the number of terms appears to

be as random as the circuits themselves and independent of the T-count. Among

the experiments conducted in this chapter, the number of terms attained from re-

ducing the parameterised Clifford+T ZX-diagrams was, on average, 1.71 times

greater than those numbers attained from reducing their static counterparts. This

is accompanied by a standard deviation of 0.44 and a range of [1.12, 3.29].

139

University of Oxford Matthew Sutcliffe

Given the consistency of this ratio, it follows that the numbers of terms produced

for a given ZX-diagram by the two methods are approximately proportional (∝∼).

Given also that the runtime of reducing a ZX-diagram is proportional to the num-

ber of stabiliser terms to which it reduces, it stands to reason that T oldeval
∝∼ T newinit ,

and therefore S∞ ∝∼ Ninflec. This explains why figures 3.8a and 3.8b are approx-

imately proportional with a proportionality constant lingering relatively near the

expected 1.71.

In the rare extreme cases, such as when this ratio was measured as 3.29, the pa-

rameterised method has considerably more terms to compute compared to the

Quizx method and hence the terminal speedup factor falls short of the norm. This

phenomenon is what gives rise to the lower outliers of figure 3.8a. Such extreme

cases arise from particularly unfortunate ZX-diagrams which are poor at simplify-

ing while maintaining generality. This usually occurs if the π-commutation road-

blocks discussed in section 3.2.3 are encountered very earlier on, before much

decomposition has yet occurred, such as during the initial Clifford simplification

stage.

The higher (fortunate) outliers, meanwhile, likely benefit from encountering very

few, if any, instances of such roadblocks (and hence require both methods to com-

pute a near-equivalent number of terms). More significantly, they likely arise

from parameterised ZX-diagrams which happen to reduce very neatly into param-

eterised scalar expressions wherein each term contains a relatively small number

of subterms. In such fortunate cases, this would ease the computational workload

of the GPU-based method quite drastically.

In general, however, the number of subterms per term was found to be fairly con-

sistent among the experiments, with relatively minimal fluctuation, even across

T-counts. This helps to explain the relatively narrow error margins seen in figure

140

University of Oxford Matthew Sutcliffe

3.8a, as the speed at which the GPU is able to compute many terms is influenced

by how many subterms are within them. This in turn is determined by how many

times parameterised pivoting and local complementation occur, as well as how

many phase nodes and phase pairs become separated from the their diagram.

All the code relevant to this chapter is available at https://github.com/

mjsutcliffe99/ParamZX (Sutcliffe, 2024a).

3.6 Further Applications

With regard to this thesis, the primary use of the parameterisation work outlined

in section 3.2 is in application to classical simulation as described in section 3.4.

Nevertheless, this work has additional applications outside of this scope, as this

section briefly highlights.

3.6.1 Application to Circuit Measurements

Even without the GPU parallelism, the parameterised formalism of ZX-calculus

presented in section 3.2 has a separate useful application, regarding quantum cir-

cuits with measurements. Specifically, basis measurements and corresponding

probabilistic gates, used in fault tolerant circuits, may be expressed with Boolean

parameters. It is then possible to simplify such circuits, largely parametrically, to,

for instance, verify its behaviour across all possible measurement results.

An illustrative example follows. Figure 3.9, taken from (Kim, Baek, Hwang, &

Bang, 2024), shows a quantum circuit implementing a fault-tolerant T-gate, with

the explicit restriction of avoiding the inclusion of a probabilistic S gate 6.

where:
6The idea of applying this work to this example came from discussions with Harris Junseo Lee.

141

https://github.com/mjsutcliffe99/ParamZX
https://github.com/mjsutcliffe99/ParamZX

University of Oxford Matthew Sutcliffe

|A

MZ|ψ

|Y MX

Z

MZ

Z T|ψX

Figure 3.9: A quantum circuit implementing a fault tolerant T-gate without a prob-
abilistic S gate correction (Kim et al., 2024).

|Y ⟩ := SH |0⟩ = π
2

|A⟩ := TH |0⟩ = π
4

(3.69)

In this notation, MZ and MX denote measurements on the Z- and X- bases re-

spectively. Doubled lines then indicate classical bits, as opposed to qubits, with a

corresponding grey circle denoting the actions taken if this measurement returns

0 and a black circle if the measurement returns 1. For instance,

|A

MZ|ψ

|Y MX

Z

MZ

Z T|ψX

≡
bπ

bπ
(3.70)

denotes an X-basis measurement with a probabilistic Z-gate that is present only

if this measurement returns 1. As shown, this may be expressed in ZX-calculus

form, with the inclusion of a parameter b
⋆
∈ B. By extension,

|A

MZ|ψ

|Y MX

Z

MZ

Z T|ψX

≡ bπ

(1 + a)bπ

aπ

(3.71)

includes two such measurements, whose outcomes may be expressed with param-

eters, a, b
⋆
∈ B. This sub-circuit also includes a probabilistic Z gate that is applied

142

University of Oxford Matthew Sutcliffe

only if a = 0 and b = 1. This is hence expressed as a π-phase Z-spider conditional

on (1− a) ≡ (1 + a), enforcing a = 0, and b, enforcing b = 1.

By this reasoning, the circuit shown in figure 3.9 may be translated into the ZX-

diagram shown in figure 3.10, where a conditional Hadamard gate:

a ≡ =eia
π
4

{
aπ
2

aπ
2

aπ
2

if a = 1

if a = 0
(3.72)

is included to appropriately select the basis of the inner measurement, dependant

upon the result of the outer (top-qubit) measurement:

π
2

π
4

a bπ

aπ

bπ + abπ aπ aπ + abπ

Figure 3.10: The circuit of figure 3.9 expressed as a parameterised ZX-diagram.

As this ZX-diagram contains, from the conditional Hadamard gate, fractional pa-

rameterised phases, it may not be fully simplified while maintaining generality

without violating equation 3.21. However, by considering separately the two cases

a = 0 and a = 1, it is possible to show, by reduction of just two parameterised

ZX-diagrams, that this circuit implements a T-gate for all a, b ∈ {0, 1}.

The reduction of the a = 0 case follows:

143

University of Oxford Matthew Sutcliffe

π
2

π
4

bπ

bπ

π
2

π
4

bπ

bπ

≈

≈ π
2

π
4 bπ

bπ ≈

π
4
+ bπ

−π
2 bπ ≈

π
4
+ bπ

bπ ≈

π
4
+ 2bπ ≈ π

4

(3.73)

For the sake of brevity, each step may involve multiple rewriting rules. The ob-

servations that 2bπ = 0 and b = −b, given b
⋆
∈ B, are also used. The reduction

of the a = 1 case follows likewise:

144

University of Oxford Matthew Sutcliffe

π
2

π
4

bπ

π

bπ + bπ π π + bπ

≈

π
2

π
4

bπ

π

bπ + bπ ππ + bπ

≈

≈π
2

π
4

bπ

π

2bπ ππ + bπ

≈π
2

π
4

bπ

π

ππ + bπ

≈
5π
4

+ bπ

bπ − π
2

π

π

7π
4

+ 2bπ

π

π

≈ 7π
4

ππ ≈

π
4

π
4 π ≈π

(3.74)

Thus, it has been shown that the circuit does indeed always implement a T-gate.

This has been verified for all 22 = 4 possible combinations of measurement re-

sults, ab ∈ B2, despite only having reasoned on two distinct ZX-diagrams.

Likewise, a larger implementation, shown in figure 3.11, may be translated into

the P-count 5 parameterised ZX-diagram shown in figure 3.12. Via the same ap-

proach as above, it may be verified, by reducing only two ZX-diagrams, that for

145

University of Oxford Matthew Sutcliffe

|0

|+

MZ
|ψ

|A

|Y

|0

MX

MZ

MZ

MX

Z X X Z

MZ

MX

MX

MZ

X Z Z ZXZX T|ψ

Figure 3.11: A quantum circuit implementing a fault tolerant T-gate without a
probabilistic S gate correction (Fowler, 2012), as formulated in (Kim et al., 2024).

π
4

π
4

aπ

a

a

a

a

eπ

bπ

dπ

cπ

bπ + abπ

cπ + acπ

dπ + adπ

eπ + aeπ

aπ

aπ

abπ

acπ

adπ

aeπ

aeπ

Figure 3.12: The circuit shown in figure 3.11 translated into a pair of parame-
terised ZX-diagrams, where a ∈ B and b, c, d, e

⋆
∈ B.

all 25 = 32 cases this circuit implements a T-gate. While the full derivation is

excluded from this thesis, it is straightforward to show that in both the a = 0 and

a = 1 cases, the diagram reduces and its parameters cancel, to ultimately result in

a single T-gate.

Naturally, there is theoretically no limit to the number of measurements, N , that

may be involved in a circuit, and with parameterised rewriting it is possible to ver-

ify the behaviour of such circuits by reducing O(1) parameterised ZX-diagrams

rather than all O(2N) distinct cases.

146

University of Oxford Matthew Sutcliffe

3.6.2 Parameterising Stabiliser Decompositions

One additional use of the parameterisation work outlined in this chapter is in pa-

rameterising stabiliser decompositions. Many such decompositions contain terms

which are parametrically symmetric. This section highlights some examples.

Example 9. The cutting decomposition (Codsi, 2022) of equation 2.68 may be

parameterised as such:

α
...

... =
aπ ...

...
aπ

aπaπ
eiαa

1√
2
n

∑
a∈B

(3.75)

Example 10. The BSS decomposition (Bravyi et al., 2016) of equation 2.58 may

be parameterised like so:

eiπ/4 π
4

π
4

π
4

π
4

π
4

π
4
=

+−1+
√
2

4

∑
a∈B

(−1)a
aπ aπ aπ aπ aπ aπ

aπ

π
2

π
2

π
2

π
2

π
2

π
2

2eiπ/4
−π

2

+8
√
2i

π
+8
√
2i

π

−2
√
2i
∑
b∈B

(
1√
2

)b
(3.76)

Example 11. The work of (Koch et al., 2023) introduced a handful of new de-

compositions, shown in equation 2.66. Two of these may be parameterised to the

147

University of Oxford Matthew Sutcliffe

following:

=
aπ aπ aπ

+
bπ bπ bπ3√

2

∑
b∈B

(−1
2
)b

3
∑
a∈B

(
−1

3

)a
(3.77)

±π
2

±π
2

±π
2

=
aπ aπ aπ

+
bπ bπ bπ1

2
√
2
(i− 3)

∑
b∈B

(−2±i
5

)b
1
2
(1± 3i)

∑
a∈B

(−1∓2i
5

)a
(3.78)

Depending on the specific use case, parameterising stabiliser decompositions in

this way may be used to reduce the number of branches which need to be com-

puted.

3.7 Conclusions

There are many applications of ZX-calculus where it is useful to compute (and

often sum) many instances of the reduced scalar of a particular circuit, for various

Boolean input/output bitstrings. This chapter highlights the redundancy inherent

in such cases by demonstrating how the quantum circuit reduction strategies of

ZX-calculus can be parameterised, with appropriate considerations, to allow cir-

cuits to be reduced while maintaining arbitrary Boolean inputs/outputs. In effect

this means that instead of reducing a given circuit n times to compute its scalar

for n different input/output bitstrings, one can reduce it just once (while maintain-

ing generality), and efficiently evaluate the resulting parameterised expression n

times using GPU hardware. Ultimately, it was shown that, applied to classical

simulation, this led to an average speedup factor of 78.3± 10.2.

While not implemented within the scope of this chapter, there are a number of

148

University of Oxford Matthew Sutcliffe

small techniques that could be employed to further optimise the method outlined

here. For instance, after a given circuit has been reduced to a parameterised scalar,

there may often be many simplifications that could be applied to minimise the

number of subterms involved. For example, node-type subterms that share the

same set of parameters but whose constant terms differ by π may be cancelled

pairwise in place of a constant, such as:

(1 + eiπ(
2
4
+(a⊕b)))(1 + eiπ(

6
4
+(a⊕b))) = (1 + eiπ

2
4)(1 + eiπ

6
4)

= (1 + i)(1− i)

= 2

(3.79)

(This is true because the result, in such cases, is the same regardless of whether

a⊕ b = 0 or 1.) A special case of this is in cancelling such pairs whose constants

are 0 and π respectively, as this reduces overall to 0, hence reducing the entire

scalar term to 0, negating any need to compute it further. This would increase the

initial overhead time, and by extension the inflection point, but would reduce the

number of subterms to compute and hence improve the terminal speedup factor.

Furthermore, while this chapter highlights a few key applications of this method, it

remains very general and applicable in myriad areas. For instance, it is used again

in later chapters, particularly in relation to ZX-diagram partitioning by vertex cut-

ting in chapter 4. Conveniently, this method can typically be used in conjunction

with, rather than instead of, other optimisations to classical simulation. For exam-

ple, applied as it is in section 3.4, it is agnostic of the specific decompositions used,

meaning it may still be used likewise as newer, more efficient decompositions are

discovered. Moreover, it more effectively scales with the available hardware, as

it is more feasible to increase the number of GPU cores manyfold than it is to in-

crease the clockspeed of a CPU manyfold, particularly when utilising professional

149

University of Oxford Matthew Sutcliffe

computing clusters.

150

4 | Smarter ZX-Diagram Partitioning

This chapter presents a novel method by which Clifford+T ZX-diagrams may

be reduced to scalar more efficiently, thereby enabling faster strong simulation

of quantum circuits. In particular, this approach is based on partitioning ZX-

diagrams into k smaller sub-diagrams which may each be independently reduced

more efficiently. Thereafter, by appropriately cross-referencing these independent

results, the overall scalar result can be attained, in (potentially) drastically fewer

calculations than may be required otherwise.

After detailing this method and demonstrating example cases, the chapter also

provides an analysis exploring the types of circuits upon which it is more ef-

fective, considering various qubit counts, depths, and degrees of interconnect-

edness. Lastly, the chapter offers a means by which the method may be made

generally more effective by employing the rewriting rules to re-express the initial

ZX-diagrams in ways that better lend themselves to more efficient partitionings.

This chapter is based largely on the work presented in (Sutcliffe, 2024c).

4.1 Formalising the Existing Method

Lemma 18. A parameterised scalar ZX-diagram:

a1π

a2π

anπ

...
⋆
∈ CG (4.1)

151

University of Oxford Matthew Sutcliffe

may be equivalently expressed as a function:

G(a1, a2, . . . , an) : Bn → C (4.2)

which reflects that the diagram may be fully reduced to a complex scalar, given

some inputs: ai ∈ B ∀i.

Lemma 19. Consider a parameterised scalar ZX-diagram partitioned into k dis-

joint subgraphs:

A1 A2a2π a2π a5π

{0,1}∑
a1,a2,...,an

a1π

a3π

a1π

a3π

a4π

a6π

Akan−1π

an−2π

anπ

A · · ·≈ (4.3)

As per lemma 18, this may be expressed in terms of functions:

Ai(α⃗i) : Bdim(α⃗i) → C ∀i ∈ {1, 2, . . . , k} (4.4)

like so: ∑
a⃗∈Bn

[
k∏
i=1

Ai(α⃗i)

]
(4.5)

where a⃗ = (a1, a2, . . . , an), with aj ∈ B ∀j ∈ {1, 2, . . . , n}, and:

α⃗i ⊆ a⃗ ∀i ∈ {1, 2, . . . , k} (4.6)

Lemma 20. The runtime complexity for strong simulation of a Clifford+T quan-

tum circuit via the existing method (Codsi, 2022) of ZX-diagram partitioning is:

O

(
2c

k∑
i=1

2αti

)
(4.7)

152

University of Oxford Matthew Sutcliffe

where c is the number of parameters in the global ZX-diagram, k is the number

of subgraphs into which it is partitioned, and ti is the T-count of subgraph i.

Meanwhile, α is the decomposition efficiency which, given the present state of the

art (Qassim et al., 2021), is α ≈ 0.396.

Proof. The existing method in question is formalised mathematically in lemma

19, wherein expression 4.5 scales as O(2nk), given n (or c) total parameters

among k partitioned subgraphs.

More precisely, each step involves computing a particular function Ai(α⃗i), which

corresponds to fully reducing an instance of the ZX-diagram described by Ai.

From theorem 4, this itself is known to scale as O(2αti), given a T-count of ti in

subgraph Ai and decomposition efficiency α.

Lastly, as there are k such subgraphs to compute at each step, each with its own

local T-count, the overall time complexity scales as stated in lemma 20.

Lemma 21. Given an optimal partitioning for a particular k and c, the runtime

complexity given in expression 4.7 simplifies to:

O
(
2
αt
k
+ck
)

(4.8)

where t is the total T-count of the global ZX-diagram and the remaining variables

are as stated in lemma 20.

Proof. A k-partition via a given c cuts is optimal when the largest T-count sub-

graph is minimised. This is achieved when the local T-counts among the k sub-

graphs are as close to equal as possible: ti ≈ tj ∀i ∈ {1, 2, . . . , k}. This in turn

is attained when the overall T-count t is distributed evenly among them, such that

153

University of Oxford Matthew Sutcliffe

ti ≈ t
k
∀i ∈ {1, 2, . . . , k}. Hence:

O

(
2c

k∑
i=1

2αti

)
→ O

(
2c · k · 2α

t
k

)
→ O

(
2
αt
k
+ck
)

(4.9)

Note, however, that this assumes a fixed k and c. In reality, these are not indepen-

dent and finding an optimal partition in practice generally amounts to balancing

these two metrics.

4.2 Redundancy Mitigation via Parameterisation

Section 2.4.3 covered the existing method — namely (Codsi, 2022) — relating

to ZX-diagram partitioning for improved classical simulation. That section also

highlighted some of the primary limitations of this method, such as k-partitions

beyond k ≳ 3 being decreasingly likely to perform better than not partitioning at

all.

In fact, as will be shown in this section, there is much redundancy among the

calculations when this method is extrapolated for k ≥ 3, and this redundancy

can be mitigated at the cost of an increased memory overhead. Doing so resolves

much of the issue causing k ≳ 3 partitions to be impractical.

In particular, recall lemma 5 which states that a ZX-diagram partitioned k-ways

via c cuts ultimately produces 2c
∑k

i=1 2
αti stabiliser terms, where ti is the T-count

of partitioned subgraph i and α is the stabiliser decomposition efficiency. This is,

in fact, a naïvely motivated claim, providing an upper-bound result. In practice,

provided k ≥ 3, it is possible (and indeed likely) that each partitioned segment

depends only on a reduced subset of the c cuts:

154

University of Oxford Matthew Sutcliffe

Lemma 22. Consider a ZX-diagram partitioned into k ≥ 3 disjoint subgraphs

via c ≡ |Γ| cuts, denoted by parameters Γ = {a1, a2, . . . , ac}, where ai
⋆
∈ B ∀i ∈

{1, 2, . . . , c}.

Each such subgraph, i, depends upon a local subset of these global cut parame-

ters:

Γi ⊆ Γ ∀i ∈ {1, 2, . . . , c} (4.10)

Hence, each subgraph, i, has:

2|Γi| ≤ 2|Γ| (4.11)

unique states1, where |Γi| denotes the cardinality of (i.e. number of elements in)

Γi.

For each subgraph, one may pre-compute its unique states such that they can be

recalled from memory without recalculation:

Definition 28. Given a parameterised scalar ZX-diagram G(a1, a2, . . . , an):

a1π

a2π

anπ

...
⋆
∈ CG (4.12)

where G : Bn → C, its ‘scalar profile’ G⃗ is a uniform tensor of rank n and length

2, housing all the scalars which may be returned byG, given its 2n possible inputs:

G⃗ [⃗a] = G (⃗a) ∀a⃗ ∈ Bn (4.13)
1‘States’ in this context refer to static ZX-diagrams and not necessarily quantum states. Indeed,

in general throughout this chapter, the term will refer to static scalar ZX-diagrams.

155

University of Oxford Matthew Sutcliffe

where:

a⃗ = (a1, a2, . . . , an) (4.14)

Note that, with an appropriate change of indexing, a scalar profile may likewise

be treated as a linearised list of 2n elements. In fact, this is how it is managed in

memory and illustrated in examples later in the chapter.

Initialising the scalar profile of a ZX-diagram requires computing each unique

scalar and hence has an associated runtime cost:

O(2n) (4.15)

given n Boolean free parameters.

This serves to replace each subgraph, Gi ([Γi]) : B|Γi| → C, with a tensor, G⃗i,

storing its pre-computed unique scalars. While subtle, this change ensures that

future calls of Gi(⃗a) can instead be exchanged for simply referencing the scalar

result already recorded in memory: G⃗i [⃗a]. The former requires fully reducing the

subgraph via ZX-calculus decomposition which, as shown in previous chapters, is

a very slow and computationally heavy process. The latter, meanwhile, is simply

a retrieval of a complex scalar from memory and is hence trivial in its runtime

cost.

Therefore, every unique state of each subgraph need only be computed once.

Thus, the total number of calculations for strong simulation can potentially be

significantly reduced:

Lemma 23. Consider a ZX-diagram partitioned into k disjoint subgraphs via c

total cuts, where each such subgraph i depends locally upon ci ≤ c of these cuts

and contains a T-count ti.

156

University of Oxford Matthew Sutcliffe

By pre-computing the unique states of each subgraph, the overall ZX-diagram

may be strongly simulated by calculating:

Sprecomp =
k∑
i=1

2ci2αti (4.16)

stabiliser terms plus:

Scrossref = 2c (4.17)

calculations to appropriately cross-reference these unique sub-states.

Proof. From lemma 22 and theorem 4 it follows that each subgraph i has 2ci

unique states which may be calculated via 2ci2αti terms. Hence, given k such

subgraphs, there exist
∑k

i=1 2
ci unique sub-states, which may be pre-computed

via:

k∑
i=1

2ci2αti ≤ 2c
k∑
i=1

2αti (4.18)

terms.

Nevertheless, from lemma 5, the overall scalar result is given by summing over

every combination of values of the global set of cut parameters (a1, a2, . . . , ac) ∈

Bc. This amounts to a further 2c calculations to cross-reference the pre-computed

sub-terms.

Hence, the overall number of calculations required has potentially reduced as, for

ideal partitions (i.e. greater k with smaller ci ≪ c ∀i), the following inequality

typically holds:

157

University of Oxford Matthew Sutcliffe

2c +
k∑
i=1

2ci2αti ≤ 2c
k∑
i=1

2αti (4.19)

In essence, the computational cost of repeated calculation is mitigated by buffer-

ing the unique results. This comes at the cost of a memory overhead to store these

unique sub-states, scaling as:

k∑
i=1

2ci (4.20)

Ahead is an example to better illustrate how this optimisation works and to high-

light its potential:

Example 12. Consider the following ZX-diagram which has been partitioned into

4 disjoint subgraphs, A,B,C,D, via 9 cuts:

A Bbπ bπ eπ Ceπ hπ

{0,1}∑
a,b,...,i

aπ

cπ

aπ

cπ

dπ

fπ fπ

dπ gπ

iπ

Dhπ

gπ

iπ

(4.21)

In parameterised form, these 9 cuts manifest as 9 Boolean parameters, a, b, . . . , i ∈

B, over which to sum, resulting in 29 summand terms as shown above.

This can equivalently be expressed algebraically as:

{0,1}∑
a,b,...,i

A(a, b, c) ·B(a, b, c, d, e, f) · C(d, e, f, g, h, i) ·D(g, h, i) (4.22)

Notice that each subgraph depends only on some local subset of the 9 parame-

ters. For instance, subgraph A depends only on three of these, namely parameters

a, b, c.

158

University of Oxford Matthew Sutcliffe

In the first term, one has a, . . . , h, i = 0, . . . , 0, 0. This term is therefore given by:

A(0, 0, 0) ·B(0, 0, 0, 0, 0, 0) · C(0, 0, 0, 0, 0, 0) ·D(0, 0, 0) (4.23)

This means determining the scalar of subgraph A(0, 0, 0) by first decomposing it

to 2αtA stabiliser terms, given a local T-count of tA and decomposition efficiency

α. The other three subgraphs are reduced likewise. Depending on these local T-

counts, these steps alone can be computationally costly, requiring the computation

of

2αtA + 2αtB + 2αtC + 2αtD (4.24)

stabiliser terms just to compute this one summand term, given by expression 4.23.

The second such term, where a, . . . , h, i = 0, . . . , 0, 1, would next be calculated

likewise as:

A(0, 0, 0) ·B(0, 0, 0, 0, 0, 0) · C(0, 0, 0, 0, 0, 1) ·D(0, 0, 1) (4.25)

At this point the redundancy may be obvious. In computing this next term, one

must calculate via stabiliser decomposition each of: A(0, 0, 0), B(0, 0, 0, 0, 0, 0),

C(0, 0, 0, 0, 0, 1), and D(0, 0, 1). However, from the previous term, the first two of

these have already been calculated, as neither depends upon parameter i, which

is the only parameter whose value has changed.

As such, one could avoid the costly steps of re-computing both A(0, 0, 0) and

B(0, 0, 0, 0, 0, 0) every time they appear by keeping a record of the result the first

time they are computed and simply recalling this result whenever needed.

159

University of Oxford Matthew Sutcliffe

More generally, for each subgraph, such as A, instead of performing full sta-

biliser decomposition 29 times (once for each combination of parameter values

a, b, . . . , i), one can instead simply compute only the 23 unique results (in the

case of A) by iterating over every combination of the local parameters (in this

case: a, b, c). These results can then be stored and recalled as needed.

In this modest example case, this improvement reduces the number of (computa-

tionally costly) ZX-calculus reductions to compute from 4 · 29 = 2048 down to

23 + 26 + 26 + 23 = 144. This is at the cost of a small memory overhead to store

144 scalars.

Altogether, this optimisation may be generalised like so:

Lemma 24. Consider a ZX-diagram, A, partitioned into k disjoint subgraphs,

A1, A2, . . . , Ak:

A1 A2a2π a2π a5π

{0,1}∑
a1,a2,...,an

a1π

a3π

a1π

a3π

a4π

a6π

Akan−1π

an−2π

anπ

A · · ·≈ (4.26)

where the each subgraph contains a subset of the global Boolean parameters,

Γ = {a1, a2, . . . , an} where ai
⋆
∈ B ∀i:

Γi ⊆ Γ ∀i ∈ {1, 2, . . . , k} (4.27)

The full set of scalar profiles, {A⃗2, A⃗2, . . . , A⃗k}, can be computed and recorded

with a space and time complexity of:

O

(
k∑
i=1

2|Γi|

)
(4.28)

160

University of Oxford Matthew Sutcliffe

Then, the overall ZX-diagram A may be strongly simulated by computing:

∑
a⃗∈Bn

[
k∏
i=1

A⃗i[α⃗i]

]
(4.29)

which is a modification of equation 4.5 in lemma 19 to account for pre-computing

subterms.

In summary, this optimisation is to recognise that, after partitioning, each sub-

graph is likely to depend upon only a reduced subset of the cut parameters. Con-

sequently, when iterating over each unique global state, there is much repetition

of unique local subgraph states. As calculating these subgraph states can be slow,

significant speedup can be attained by pre-computing these unique subgraph states

such that any redundancy here can be avoided, in exchange for an increased mem-

ory overhead.

4.3 GPU-Parallelised Cutting

One immediate improvement that can be made in this area is to apply the work

proposed in chapter 3. Specifically, as formalised in lemma 5, when a Clifford+T

ZX-diagram is partitioned k-ways via c cuts, one is left with 2c Clifford+T terms

which each then need be reduced (i.e. via stabiliser decomposition). As these

partitions are induced via c instances of the vertex cutting decomposition, which

(as outlined in chapter 3) is parametrically symmetric, these 2c Clifford+T terms

are themselves parametrically symmetric. Indeed, this is apparent by inspection

of the general-case figure in lemma 5.

The natural implication of this observation is that the 2c Clifford+T terms pro-

duced after partitioning may be computed in parallel batches on the GPU via the

161

University of Oxford Matthew Sutcliffe

means presented in chapter 3. Better still, this technique can be extended to ac-

count for the redundancy mitigation outlined in section 4.2. Where each subgraph

A(a1, . . . , an) is pre-computed for every possible set of inputs, these 2n cases can

be computed in GPU-parallelised batches.

As noted in chapter 3, this improvement alone can yield a significant linear im-

provement to the runtime, particularly given enough cuts. In effect, the introduc-

tion of GPU parallelism here serves to speed up the rate, Rprecomp, at which the

unique subgraph scalars can be pre-computed.

4.4 Pairwise Partition Regrouping

Despite the optimisations outlined so far in this chapter, the number of calcula-

tions required for strong simulation via ZX-calculus still grows as O(2c) given

c total cuts for partitioning. This is highlighted in lemma 23. In other words,

there are still 2c summand terms to compute after partitioning, but each such term

can now be computed more rapidly. This limits runtime improvements to only

linear speedups. However, as this section will detail, even the number of cross-

referencing computations, and by extension the overall time complexity, can be

exponentially reduced.

The idea is to iteratively regroup the pre-computed scalars of the partitioned sub-

graphs pairwise, rather than regrouping the collective at once. It is best explained

by example:

Example 13. Recall the partitioned ZX-diagram from example 12:

A Bbπ bπ eπ Ceπ hπ

{0,1}∑
a,b,...,i

aπ

cπ

aπ

cπ

dπ

fπ fπ

dπ gπ

iπ

Dhπ

gπ

iπ

(4.30)

162

University of Oxford Matthew Sutcliffe

which algebraically is:

{0,1}∑
a,b,...,i

A(a, b, c) ·B(a, b, c, d, e, f) · C(d, e, f, g, h, i) ·D(g, h, i) (4.31)

Previously, each of the 29 summand terms here was computed iteratively. Con-

sider instead initially just regrouping a single pair of subgraphs by summing over

only the parameters common to both and ignoring the other parameters and sub-

graphs. For instance, one could regroup subgraphs A and B:

{0,1}∑
a,b,c

A(a, b, c) ·B(a, b, c, d, e, f) = AB(d, e, f) (4.32)

Recall that, after the initial pre-computation stage, each subgraph is stored no

longer as a ZX-diagram but rather as a list of 2ci scalars, where ci is the number

of parameters (i.e. cuts) local to the subgraph i. As such, A(a, b, c) is stored as

a list of 23 scalars and B(a, b, c, d, e, f) a list of 26 scalars. Given this, to ensure

the result, AB(d, e, f), is likewise recorded as a list of 23 scalars, rather than

some many-termed parameterised expression, it is important to sum over all the

parameters local to A and B, and not just those common to both. Hence, the

number of calculations involved in this step is 2p where p is the number of local

parameters involved.

In this example, there are 6 parameters local to A(a, b, c) and B(a, b, c, d, e, f)

and thus the two segments can be regrouped into AB(d, e, f) in 26 calculations:

AB eπ Ceπ hπ

{0,1}∑
d,e,...,i

dπ

fπ fπ

dπ gπ

iπ

Dhπ

gπ

iπ

(4.33)

By the same means, one may then regroup C(d, e, f, g, h, i) and D(g, h, i) into

163

University of Oxford Matthew Sutcliffe

CD(d, e, f) via 26 calculations:

AB eπ CDeπ

{0,1}∑
d,e,f

dπ

fπ fπ

dπ

(4.34)

This leaves one last iteration to regroupAB(d, e, f) and CD(d, e, f) intoABCD

via 23 calculations:

ABCD (4.35)

With all segments now regrouped into one with no parameters remaining, the re-

sult is just a single scalar, equivalent to the original ZX-diagram. Thus, the initial

circuit has been strongly classically simulated.

From these steps, one can observe that this example involved 26 + 26 + 23 = 136

cross-reference calculations to fully regroup all the segments pairwise. This is as

opposed to 29 = 512 such calculations as would have been required to directly

compute expression 4.31. Lastly, note that this is a modest example to illustrate

the concept and that in practical cases this difference could be many orders of

magnitude.

To generalise this, it is helpful to first define two new oprators:

Definition 29. Given a set of sets Ω = {A,B, . . .}, define the collapsed set oper-

ator ⋄ like so:

(A ⋄B)Ω := (A∆B) ∪

A ∩B ∩ ⋃
C∈Ω\{A,B}

C

 (4.36)

such that (A ⋄B)Ω is the set containing:

• elements that are in A or B but not both, and

164

University of Oxford Matthew Sutcliffe

• elements that are in both A and B and at least one other set in the parent

set Ω.

Definition 30. Given a set of sets Ω = {A,B, . . .}, define the exclusive internal

operator ⋄̄ like so:

(A ⋄̄B)Ω := (A ∩B) \
⋃

C∈Ω\{A,B}

C (4.37)

such that (A ⋄̄B)Ω is the set containing elements that are:

• in both A and B,

• but not in any other set in the parent set Ω.

With these new operators, the procedure of example 13 may be expressed in gen-

eral terms as follows:

Lemma 25. Consider a parameterised scalar ZX-diagram composed of two or

more disjoint subgraphs, where Γi ⊆ Γ is the set of parameters in subgraph Gi

among the global set Γ = {a1, a2, . . . , an} where ai
⋆
∈ B ∀i.

Define the scalar profile
−→
Gi as a tensor of rank |Γi| associated with subgraph Gi

such that:

−→
Gi [x⃗] = Gi (x⃗) ∀x⃗ ∈ B|Γi| (4.38)

Any pair of the subgraphs, GA and GB, may be effectively regrouped by populat-

ing a new scalar profile
−−→
GAB for its combined subgraph GAB like so:

−−→
GAB[z⃗] =

∑
w⃗∈Bdim(w⃗)

−→
GA [x⃗]×

−→
GB [y⃗] ∀z⃗ ∈ Bdim(z⃗) (4.39)

165

University of Oxford Matthew Sutcliffe

where:

x⃗ = [ΓA]

y⃗ = [ΓB]
(4.40)

and:

z⃗ =
[
ΓA∆ΓB

]
(4.41)

w⃗ =
[
ΓA ∩ ΓB

]
(4.42)

if using edge cuts, though — more generally and more powerfully — if using vertex

cuts:

z⃗ =
[(
ΓA ⋄ ΓB

)
Ω

]
(4.43)

w⃗ =
[(
ΓA ⋄̄ ΓB

)
Ω

]
(4.44)

and:

Ω = {ΓA,ΓB,ΓC , . . .} (4.45)

Example 14. Consider a ZX-diagram, containing parameters a, b, c, d
⋆
∈ B, com-

posed of a chain of three partitioned subgraphs, A,B,C, of which one aims to

regroup A and B:

166

University of Oxford Matthew Sutcliffe

A Bbπaπ bπ cπ Ccπ dπ

∑
b∈B

= ABaπ cπ Ccπ dπ

(4.46)

Here, each subgraph contains just two parameters:

ΓA = {a, b}, ΓB = {b, c}, ΓC = {c, d} (4.47)

and thus the three corresponding scalar profiles, A⃗a,b, B⃗b,c, C⃗c,d, may each be

recorded as a 2× 2 matrix of complex scalars.

Next, note that the prospective regrouped AB subgraph will contain parameters:

ΓAB = (ΓA ⋄ ΓB)Ω = ({a, b} ⋄ {b, c})Ω = {a, c} (4.48)

where Ω = {ΓA,ΓB,ΓC}.

Then, the regrouped
−→
AB may be initialised as a rank |ΓAB| tensor and populated

accordingly:

−→
AB[a, c] =

∑
b∈B

A⃗[a, b]× B⃗[b, c] ∀(a, c) ∈ B2 (4.49)

This will involve iterating over all:

ΓA ∪ ΓB = {a, b} ∪ {b, c} = {a, b, c} (4.50)

for a total of 2|{a,b,c}| = 23 cross-reference calculations.

167

University of Oxford Matthew Sutcliffe

a b c Aab Bbc (AB)abc
{0,1}∑
b

(AB)abc ≡ (AB)ac

0 0 0 A00 B00 A00B00 (A00B00 + A01B10) ≡ (AB)00
0 0 1 A00 B01 A00B01 (A00B01 + A01B11) ≡ (AB)01
0 1 0 A01 B10 A01B10

0 1 1 A01 B11 A01B11

1 0 0 A10 B00 A10B00 (A10B00 + A11B10) ≡ (AB)10
1 0 1 A10 B01 A10B01 (A10B01 + A11B11) ≡ (AB)11
1 1 0 A11 B10 A11B10

1 1 1 A11 B11 A11B11 peekaboo

Table 4.1: The (linearised) scalar profiles, Aab and Bbc, may be regrouped into
(AB)ac by iterating over the parameters involved and cross-referencing the scalars
accordingly.

Essentially, for each (a, b, c) ∈ B3, one may retrieve the scalars A(a, b) and

B(b, c) and multiply them to deduce the scalar AB(a, b, c). In turn, this newly

calculated scalar may be added to the relevant AB(a, c). In other words, after

computing all products AB(a, b, c)∀(a, b, c), the resulting list may be reduced to

AB(a, c) by summing
∑{0,1}

b AB(a, b, c) = AB(a, c) for each (a, c). This is il-

lustrated in table 4.1, and high-level pseudocode that implements this procedure

is shown in algorithm 5.

The simple examples discussed so far have been of neatly partitioned chains of

segments. Realistically, however, efficiently partitioning a graph k-ways is likely

to result in more chaotic and intertwined segment connections. In this context,

a connection between (or among) segments represents a cut that has been made

which gave rise to a parameter common to these segments. Moreover, as it is

vertices (i.e. spiders) rather than edges that are being cut, it is possible for a

cut to affect (and hence introduce a new parameter to) more than two segments.

Example 15 demonstrates a slightly more realistic case.

168

University of Oxford Matthew Sutcliffe

Example 15. The following equation shows an example of a partitioned ZX-

diagram undergoing one instance of pairwise regrouping:

A

CB

aπ

aπ bπ cπ

bπ cπ

gπ

hπ

gπ

hπ

dπ

dπ

dπ

eπ

eπ

fπ

fπ

=

D

iπ jπ

iπ jπ

lπ

lπ

kπ

kπ

kπ

C

AB

gπ

hπ

gπ

hπ

dπ

dπ

dπ

eπ

eπ

fπ

fπ

D

iπ jπ

iπ jπ

lπ

lπ

kπ

kπ

kπ

{0,1}∑
a,b,...,l

{0,1}∑
d,e,...,l

(4.51)

In this example, the initial subgraphs are:

• A(a, b, c, d, e, f)

• B(a, b, c, d, g, h, i, j, k)

• C(d, e, f, g, h, k, l)

• D(i, j, k, l)

such that, of the overall set of parameters Γ = {a, b, . . . , l}, each subgraph de-

pends upon some subset of Γ:

• ΓA = {a, b, c, d, e, f}

• ΓB = {a, b, c, d, g, h, i, j, k}

• ΓC = {d, e, f, g, h, k, l}

• ΓD = {i, j, k, l}

The process shown in equation 4.51 is the regrouping of subgraphsA(a, b, c, d, e, f)

169

University of Oxford Matthew Sutcliffe

and B(a, b, c, d, g, h, i, j, k) into a collective AB(d, e, f, g, h, i, j, k), where:

ΓAB = (ΓA ⋄ ΓB)Ω = {d, e, f, g, h, i, j, k} (4.52)

given Ω = {ΓA,ΓB,ΓC ,ΓD}.

Notice that the parameters common to A and B but which appear nowhere else:

(ΓA ⋄̄ΓB)Ω = {a, b, c} (4.53)

are completely removed when A and B are regrouped.

Consequently, the overall set of parameters in the system is reduced according to:

Γ← Γ \ (ΓA ⋄̄ΓB)Ω (4.54)

such that, after regrouping, Γ = {d, e, f, g, h, i, j, k, l}.

Algorithm 5 details the procedure for performing an iteration of such pairwise

regrouping. This is high-level pseudocode, making use of high-level data struc-

tures (such as sets) and functions (such as those pertaining to set theory and the

handling of bitstrings). While this aims to convey how the procedure works in

broad, and hopefully easy to follow, terms, it does mean this implementation is

sub-optimal for the time sensitive nature of its use case. Consequently, listing 4.1

presents a far more efficient, low-level implementation of this procedure, making

use of binary encoding, bitwise calculations, and GPU parallelism.

170

University of Oxford Matthew Sutcliffe

Algorithm 5 A high-level implementation of pairwise regrouping

1: function REGROUPPAIR(A⃗, B⃗)
2: commonParams← A⃗.localParams ∪ B⃗.localParams
3: exclusiveParams← A⃗.localParams ⋄ B⃗.localParams
4: n← length(commonParams)
5: m← length(exclusiveParams)
6:
7:

−→
AB ← [0, 0]m

8:
−→
AB.localParams← exclusiveParams

9: for all (a, b, c, . . .) ∈ Bn do
10: x⃗ ⊆ {(a, b, c, . . .)|(a, b, c, . . .) ∈ A⃗.localParams}
11: y⃗ ⊆ {(a, b, c, . . .)|(a, b, c, . . .) ∈ B⃗.localParams}
12: z⃗ ⊆ {(a, b, c, . . .)|(a, b, c, . . .) ∈ exclusiveParams}
13: a← a, b← b, c← c, . . .
14:
15: Aab ← A⃗.scalars[x⃗]

16: Bbc ← B⃗.scalars[y⃗]
17: ABabc ← Aab ×Bbc

18:
19:

−→
AB[z⃗]←

−→
AB[z⃗] + ABabc

20: end for
21: A⃗←

−→
AB

22: B⃗ ← null
23: end function

Listing 4.1: An efficient, low-level and GPU-parallelised CUDA kernel for pair-

wise regrouping.

__global__ void regroup_pair_gpu(int paramsA, int paramsB, int

paramsC, float * A_re, float * A_im, float * B_re, float *

B_im, float * AB_re, float * AB_im, const int N_params, const

int size)

{

int index = blockIdx.x * blockDim.x + threadIdx.x;

// LOCALLY INDEX...

171

University of Oxford Matthew Sutcliffe

int ab = 0;

int bc = 0;

int ac = 0;

int abc = index;

int x = 0; // current length of ab

int y = 0; // current length of bc

int z = 0; // current length of ac

for (int i=0; i<N_params; ++i)

{

if (paramsA & 1) ab = ((abc & 1) << x++) | ab;

if (paramsB & 1) bc = ((abc & 1) << y++) | bc;

if (paramsC & 1) ac = ((abc & 1) << z++) | ac;

abc >>= 1;

paramsA >>= 1;

paramsB >>= 1;

paramsC >>= 1;

}

// MULTIPLY SCALARS (A_ab * B_bc -> AB_abc) ...

// (A+ai)(B+bi) = (AB-ab) + (Ab+aB)i

float A = A_re[ab];

float a = A_im[ab];

float B = B_re[bc];

float b = B_im[bc];

//AB_re[index] = (A*B) - (a*b):

atomicAdd(&AB_re[ac], (A*B) - (a*b));

//AB_im[index] = (A*b) + (a*B):

atomicAdd(&AB_im[ac], (A*b) + (a*B));

__syncthreads();

}

172

University of Oxford Matthew Sutcliffe

This CUDA code shows the function regroup_pair_gpu. Be aware that this is a

CUDA kernel, rather than a conventional function, meaning it is executed many

times in parallel upon the GPU threads. While this kernel code is C-like, it may

be called from within Python, passing as arguments the local parameter sets of

segments A and B respectively, together with their exclusively uncommon pa-

rameters (i.e. those of the future grouped AB segment), and also the total number

of parameters involved among A and B.

Rather than using a high-level data structure like a set or even a list, this instead

records sets of parameters as individual integers. The example of table 4.1 in-

volved a segment A containing parameters {a, b} and a segment B containing

parameters {b, c}. So, for a collective set of parameters {a, b, c}, this here would

be expressed as paramsA = 110 and paramsB = 011. (As integers this would

be interpreted as paramsA = 6 and paramsB = 3, but for the purposes here it

makes more sense to interpret these as their binary bitstrings.) This example case

would also include paramsC = 101 being the exclusive uncommon parameter set

(i.e. {a, c}, which will be the parameters in the upcoming regrouped segment,

AB). Converting the sets into this form can be done quite trivially in Python in

advance of calling the kernel, and then this data can be passed among its argu-

ments, along with the total number of parameters involved (in this case, A and B

collectively contain 3 parameters, {a, b, c}, so N_params = 3). Meanwhile, the

argument size is just the number of parallel threads to compute (i.e. the number

of rows of table 4.1), 2N_params. (Note that the remaining arguments of the kernel,

such as A_re, refer to the memory wherein the real and imaginary parts of the list

of scalars of segments A and B are recorded, while those of AB_re and AB_im are

initially just empty blocks of data, acting as empty arrays to which the kernel will

be writing.)

The only difference among each parallel thread executing this kernel is its unique

173

University of Oxford Matthew Sutcliffe

identifier number, index, ranging from 0 to size-1. This index essentially gives

the values of the parameters for this thread. For instance, in the example case,

index=5 — which in binary would be 101 — would denote the case whereby

a = 1, b = 0, c = 1. (This is the (index+1)th row of table 4.1.) The logic

of the for loop in this kernel then serves to take this index, representing the full

set of parameters, {a, b, c}, and determine the respective local sets of parameters

of segments A and B — in this case {a, b} and {b, c}. (So, for index=5, this

would take abc=101 and deduce ab=10 and bc=01.) This works via clever usage

of bitshifting and bitwise operations, and — for the keen reader — the best way

to understand the logic is to work through the table 4.1 example step-by-step.

For each (parallel) iteration of the kernel, one scalar, ABac, among the new re-

grouped segment will be calculated and saved to memory. The only remaining

point to note here is the use of the atomicAdd(x,y) CUDA function. This adds

the value y to the memory address x, but does so in a parallel-friendly way which

avoids race conditions.

Regarding its use in the ZX-Partitioner, if the projected runtime is below a cer-

tain threshold then the high-level implementation of algorithm 5 is used (coded in

Python), as on such low scales the overhead in initialising the data to the kernel

makes the GPU approach actually slower than the higher-level implementation.

However, for sufficiently (non-trivially) sized cases, the efficient CUDA imple-

mentation is used, giving a drastic performance speedup (for this particular part

of the computations).

4.5 The ZX-Partitioner

The concept so far may be summarised as follows:

174

University of Oxford Matthew Sutcliffe

1. Start with an initial static scalar ZX-diagram, G, and apply Clifford sim-

plification (Kissinger & van de Wetering, 2020b) to transform it to reduced

gadget form.

2. Use an existing hypergraph partitioning algorithm (Schlag, 2020) and the

vertex cutting decomposition (equation 2.68) to partition G into k disjoint

parameterised ZX-diagrams, G1, . . . , Gk, of approximately equal T-counts.

3. For each parameterised ZX-diagram Gi(a, b, c, . . .) pre-compute its scalar

profile, G⃗i. That is, for each i, compute and record every possible scalar

G⃗i [a, b, c, . . .] = Gi(a, b, c, . . .)∀a, b, c, . . . ∈ B.

4. Regroup these k scalar profiles pairwise, G⃗i, G⃗j →
−−−→
GiGj , until all have

been reduced to a single rank 0 scalar profile,
−−−−−−−−→
G1G2 · · ·Gk. This is equal

a single scalar, which is the final result, equivalent to reducing the original

ZX-diagram G.

Essentially, the initial ZX-diagram is divided into parameterised subgraphs of

manageable T-counts, which are reduced, for all parameter values, via stabiliser

decomposition. These resulting scalar profiles, are simply tensors storing all pos-

sible scalars of each subgraph. These may be reduced via a tensor contraction

approach to deduce the final overall scalar result. It is helpful, after the initial ZX-

diagram has been partitioned and the scalar profiles of each subgraph deduced,

to thereafter treat the system as a tensor network, which may be expressed as a

hypergraph, as in the following example:

175

University of Oxford Matthew Sutcliffe

A

CB

aπ

aπ bπ cπ

bπ cπ

gπ

hπ

gπ

hπ

dπ

dπ

dπ

eπ

eπ

fπ

fπ
A⃗

C⃗B⃗

≡

2

1

2

3 (4.55)

This should not be confused with the hypergraph representation of a ZX-diagram

from section 2.4.3. Rather, each segment, A⃗, B⃗, C⃗, here denotes the scalar profile

of the corresponding subgraph, A,B,C. For ease of visualisation, where there

are multiple hyperedges connecting a set of nodes, these may be illustrated with a

single hyperedge, labelled with the number of such hyperedges it represents.

Given the goal is to eventually regroup all segments together, to do this efficiently

(that is, minimising the number of calculations involved), at each step, the pair se-

lected for regrouping should collectively have the fewest number of local param-

eters (i.e. hyperedges). For a hypergraph, H , containing k nodes (i.e. segments),

this number will be given by the function minpair(H), which can be computed in

O(k2) time (and as k is always relatively low, this runtime is generally negligible).

Given the methods presented in this chapter, the number of computations required

to fully reduce a t T-gate ZX-diagram to its scalar has been brought down from

2αt to a potentially much more modest Sprecomp + Scrossref (plus some negligible

overhead from the partitioning function itself), where:

Sprecomp =
k∑
i=1

2αti+ci

Scrossref =
k−2∑
i=0

2minpair(Hi)

(4.56)

176

University of Oxford Matthew Sutcliffe

The first equation here describes the computational cost of precomputing the

unique scalars of each partitioned segment. i iterates through each segment, such

that ti and ci are its local T-count and local parameter (i.e. hyperedge) count re-

spectively. Meanwhile, the second equation describes the computational cost of

cross-referencing these precomputed scalars (as in table 4.1). In other words, it

is the cost of regrouping the partitioned segments. Here, i denotes the regrouping

step - that is, i = 0 refers to the initial hypergraph state (with k segments) and

each successive step (i → i + 1) is defined by when the next cheapest pair of

segments is regrouped (reducing the number of segments by one: k → k−1). Hi,

therefore, is the state of the hypergraph after i instances of pairwise regrouping.

The culmination of this work is a new Python package called the ZX-Partitioner

(Sutcliffe, 2024d), which may be found on Github at: https://github.com/

mjsutcliffe99/zxpartitioner. At its most abstracted, this package of-

fers a function into which the user may provide a ZX-diagram (a graph from the

PyZX package (Kissinger & van de Wetering, 2020a, 2018)) and its scalar equiv-

alent will be calculated using the methods outlined in this chapter. For conve-

nience and to help the reader/user better understand the methodology, this routine

can also be run one phase at a time and with visualisations of the partitioned

ZX-diagrams and, more helpfully, their segment connectivity hypergraph at each

step. It may also be easily configured for different stabiliser state decomposition

strategies and hardware capabilities.

Of this main function, the initial step performed is to determine the most efficient

number of parts, k, into which the ZX-diagram should be partitioned. Partitioning

into a greater number of parts means that each will be of a lower T-count and hence

the number of precomputing calculations, Sprecomp, will be drastically reduced.

(For a given graph, the typical number of local cuts, ci, on each part, i, tends to

not vary too drastically regardless of k, and at any rate it is likely to be much

177

https://github.com/mjsutcliffe99/zxpartitioner
https://github.com/mjsutcliffe99/zxpartitioner

University of Oxford Matthew Sutcliffe

smaller than αti, so the local T-count tends to be the significant contributor to

Sprecomp. This is especially true when considering the projected runtimes rather

than the number of computations, as each computation in the 2ci component can be

computed much more rapidly than those in the 2αti component, as highlighted in

section 4.3.) However, taking a larger k comes at the cost of increasing the number

of total cuts, C. While ordinarily this would render larger k values infeasible, as

shown in section 4.4 this need not be the case. Nevertheless, taking a larger k

indeed increases the number of cross-reference calculations, Scrossref , albeit not

so drastically. This is because when a pair of segments, A and B, is regrouped,

the resulting segment will have a number of local cuts, cAB, equal to the number

of cuts in the symmetric difference of cA and cB. This in turn means that as more

segments are regrouped pairwise, there is a higher likelihood of segments having

larger numbers of local cuts, which results in a larger minpair(H).

Put concisely, partitioning into a larger k results in decreasing Sprecomp but in-

creasing Scrossref . As the overall number of computations is given by the sum

of these two, then the most optimal k is that which produces the crossover point

where these two terms are as close to equal as possible, such that neither domi-

nates and renders the other negligible. (Note that the k-partitioning function itself

generally runs in negligible time.) Fortunately, for any k, Sprecomp and Scrossref

can be determined in advance in negligible time. Consequently, the optimal choice

of k can likewise be determined in advance in negligible time. (In fact, balanc-

ing the projected runtimes, Tprecomp and Tcrossref , as discussed in the following

section, yields even better results.)

With the optimal k determined, the next step is to k-partition the ZX-diagram,

which one can visualise as a hypergraph of partitioned segments with connected

edges representing common cut parameters, as in figure 4.1.

178

University of Oxford Matthew Sutcliffe

A

B

C

D

E

F

G

1

1

2

1

1

1

2

11

Figure 4.1: An example of a segment connectivity hypergraph, generated via the
ZX-Partitioner.

At this point, the segments may be precomputed — in each case, i, turning a

parameterised ZX-diagram (of ci parameters, arising from ci local cuts) into a list

of 2ci scalars. ci here also denotes the number of edges connected to the particular

segment, i, in the hypergraph (figure 4.1).

Next, the program will find the pair of connected segments, A and B, with the

fewest collective number of local edges, cA + cB. This will be the cheapest con-

nected pair to regroup and so regrouped it is, into segment AB (as detailed in

section 4.4). Having fused these two segments together, the hypergraph will now

contain one fewer segment in total. This step may then be repeated, regrouping

whichever connected pair of segments is now the cheapest. This process contin-

ues until the final two segments are regrouped into one. Figure 4.2 shows this in

action.

This final segment will have no edges (i.e. local cuts) and hence will record a

single (as 20 = 1) scalar. This scalar is the final result, which is equivalent to the

original scalar ZX-diagram.

Lastly, note that the example of figure 4.1 is a very simple case for illustrative

purposes. More realistic examples are shown in figure 4.3.

179

University of Oxford Matthew Sutcliffe

A

B

C

D

E

F

G

1

1

2

1

1

1

2

11

A

B

C

D

E

FG

1

1

2

1

1

1

2

2

AB

C

D

E

FG

1

2

1

1

1

2

2

ABC

D

E

FG

2

1

1

2

2

ABCFG

D

E

5

2 ABCEFG

D
2

Figure 4.2: The precomputed segments of a partitioned ZX-diagram may be re-
grouped pairwise (selecting the cheapest pair to regroup at each step) until one
segment remains. The steps in this figure are shown chronologically in row-major
order. In each case, the local edges among the cheapest pair are highlighted, with
the sum of their weights, w, giving the computational cost of regrouping, 2w. Re-
grouping the final remaining pair will provide the overall scalar result. (Note that
the edge colours are random and exist for visual clarity but bear no meaning.)

180

University of Oxford Matthew Sutcliffe

A

B

C
D

E

F

G

H

I
J

K8

2

2

1

3

1
9

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

A

B

C

D
EF

G

H

I

J

K

L

M N
O

P

Q

5

1 5

1

1

241

3

2

1

1

2

1

7

2

3

3

11

1

3

1

1 4

1
1

2

1

1

2
5

11 4

31

Figure 4.3: Two heftier examples of segment connectivity hypergraphs, generated
from partitioning random ZX-diagrams via the ZX-Partitioner.

4.6 Estimating Runtime

4.6.1 Direct Decomposition

Section 2.3.4 described the existing non-partitioning approach to strong simula-

tion via ZX-calculus, as introduced in (Kissinger & van de Wetering, 2022). As

outlined therein, the runtime of this method is proportional to the number of sta-

biliser terms produced, which itself grows exponentially with the initial T-count.

This information can be used to quantify an estimate of the runtime of such a

method:

Lemma 26. The runtime of strong simulation via stabiliser decomposition of ZX-

diagrams without the use of partitioning (such as the methods of (Kissinger &

van de Wetering, 2022; Kissinger et al., 2022)) can be approximated as:

Tdecomp ≈
Sdecomp
Rdecomp

(4.57)

181

University of Oxford Matthew Sutcliffe

where Sdecomp = 2αt, given decomposition efficiency α and initial T-count t, is

the the number of stabiliser terms to compute. Rdecomp is then the average rate at

which such terms can be computed, measured in terms per second.

The average computation rate,Rdecomp, can be determined experimentally by mea-

surement across many instances of ZX-diagram reduction. For the purposes of this

thesis, this rate was measured for over a hundred randomly generated circuits of

various practical T-counts, qubit counts, depths, and partitionabilities, giving an

average of:

Rdecomp = 1, 730± 650 calcs/s (4.58)

These measurements, quoted to 3 significant figures with error margins given by

standard deviation, were recorded on a commercial laptop with an 11th Gen Intel

Core i5-11400H @ 2.70GHz CPU, NVIDIA GeForce GTX 1650 GPU, and 8GB

SODIMM RAM.

Unsurprisingly, these measurements exhibited variance across the circuit metrics

(depth, T-count, etc.), contributing to this notable 38% error margin. However, this

is not a problem for the concerns of this thesis, which is focused on approximate

scale and order of magnitude, for comparison of methods, rather than precise

runtime figures (which, regardless, would depend upon hardware). As such, the

above figure forRdecomp can be taken as approximately accurate for any non-trivial

circuit given the hardware used.

4.6.2 Smart Partitioning

On the other hand, the method outlined in section 4.2 separates the computations

into two parts: pre-computing the unique subgraph scalars and cross-referencing

182

University of Oxford Matthew Sutcliffe

these results to attain the overall scalar result. The overall runtime in this case

then conforms to the following:

Lemma 27. Given the number of calculations, being Sprecomp + Scrossref as per

lemma 23, the overall runtime for strong simulation via such ZX-diagram parti-

tioning can be approximated as:

Ttotal ≈ Toverhead +
Sprecomp
Rprecomp

+
Scrossref
Rcrossref

(4.59)

where Rprecomp and Rcrossref are the calculation rates (number of calculations

computable per second) for the pre-computation and cross-referencing stages re-

spectively. Toverhead, meanwhile, is the initialisation time to partition the ZX-

diagram.

As before, the computation rates for each part can be measured experimentally

across a wide range of random examples. Given the same restrictions and hard-

ware as above, the average measurements were:

Rcpu
precomp = 1, 730± 650 calcs/s (4.60)

Rcpu
crossref = 148, 000± 34, 000 calcs/s (4.61)

The overhead time, Toverhead, was measured similarly and found to vary signifi-

cantly with the degree to which the given ZX-diagram was partitioned. Neverthe-

less, even in the most extreme cases this seldom exceeded a few seconds (and gen-

erally was well below one second). As such, for all bar the trivially small and rapid

cases, Toverhead represented a negligible contribution to the overall runtime, being

drastically overshadowed by both the pre-computation time, Sprecomp/Rprecomp,

183

University of Oxford Matthew Sutcliffe

and the cross-referencing time, Scrossref/Rcrossref .

An instance of precomputing a subgraph and decomposing a full graph is func-

tionally the same — both are full ZX-calculus reductions of ZX-diagrams. This

explains why Rprecomp = Rdecomp. Furthermore, it is understandable that the

cross-referencing calculations can be computed much more rapidly than decom-

posing and precomputing as these calculations are very simple, compared to full

ZX-calculus decompositions and reductions.

Estimating the runtimes in this way is justified in that the results shown in this

chapter aim to highlight scales and trends, rather than exact numerical runtimes

(which at any rate would vary with hardware). Notably, these runtime rates are

rather consistent (certainly with regard to order of magnitude). Indeed, the results

presented are plotted on logarithmic scales and so the variance due to the uncer-

tainty in the runtime rates above would not make a noticeable difference. This

is especially true given that these small uncertainties would be negligible com-

pared to the existing magnitudes-wide error margins (i.e. in figure 4.5b) due to

the variance among the different ZX-diagrams.

As each cross-reference calculation can be computed much more quickly than

each precomputation calculation, the program can in fact aim to balance the pro-

jected runtimes of these two parts, rather than simply their number of calculations.

This step improves efficiency by ensuring neither part dominates the overall run-

time. Lastly, note that all runtime results shown in this chapter quote the pro-

jected runtime unless this is below 100 seconds, in which case the real runtime is

computed and measured. This ensures that speedy results - where there is more

fluctuation and minor contributions to runtime can no longer be assumed to be

negligible - are also accurate.

As a brief note on the memory overhead for the ZX-Partitioner, this scales as

184

University of Oxford Matthew Sutcliffe

max (minpair(Hi)) for i ∈ {0, 1, . . . , k− 2} (see section 4.4). What this means is

that, while this can result in Gigabytes of memory overhead, at scales beyond this

the runtime would already become infeasible. In other words, assuming Gigabytes

to be the upper-bound of what would be feasible, the memory overhead tends not

to become infeasible before the runtime would - so this is not a limiting factor for

the method.

Lastly, as suggested, the use of GPU parallelism here improves the rate, Rprecomp,

at which the unique subgraph scalars can be pre-computed. As per equation 4.59,

this in turn is liable to reduce the total runtime for strong simulation. Given the

hardware specified in section 4.6, this produced a measured improvement of factor

12 to the averaged pre-computation rate:

Rgpu
precomp = 21, 400± 13, 300 calcs/s (4.62)

Similarly, the use of GPU parallelism when pairwise regrouping, as described in

listing 4.1, provides a factor 3 improvement to the rate at which this step may be

computed:

Rgpu
crossref = 412, 000± 145, 000 calcs/s (4.63)

By balancing the projected runtimes, Sprecomp
Rprecomp

and Scrossref
Rcrossref

per equation 4.59,

rather than simply the forecast number of calculations, Sprecomp and Scrossref , a

more practically significant and fine-tuned balance can be achieved. This ensures

neither component dominates the runtime and that the balance between stabiliser

decomposition and tensor contraction is optimally chosen as to minimise the total

runtime of each.

185

University of Oxford Matthew Sutcliffe

4.7 Results

To benchmark the effectiveness of the ZX-Partitioner, its projected runtimes for

fully reducing random Clifford+T ZX-diagrams was compared to that of directly

reducing them via stabiliser decompositions (Kissinger et al., 2022) (with no par-

titioning). The same random dataset was also benchmarked for a naïve parti-

tioning method which k-partitions (for its own self-determined optimal k) but

does not apply the techniques outlined in this chapter. In particular, n-qubit

circuits (of various n) were constructed by randomly placing gates of the set

{T, S,HSH,CNOT} with equal probability, up to the count of d gates (which

is labelled its depth). (This is the generate.cliffordT function of PyZX.) The cir-

cuits were then plugged with ⟨+|⊗n and |+⟩⊗n to turn them into scalar diagrams,

before finally they underwent an initial round of Clifford simplification. The re-

sulting ZX-diagram, in each case, was taken as its initial state for the benchmarks,

with the goal of each method being to fully reduce it to a scalar.

Figure 4.4 shows the log2 of the projected runtime results (in seconds) for each

method on the random dataset of diagrams, varying in depth and number of qubits.

The scale is log2 such that, approximately speaking, 0 represents a second, 6 a

minute, and 12 an hour. 16, meanwhile, represents just over 18 hours, which

is taken as the rough upper limit of what is computationally feasible. Thus, in

these heatmaps, black denotes trivial cases while white denotes practically in-

computable cases. The coloured region in between then represents the region of

interest, which may be referred to as the frontier.

Note that for each circuit size, 10 random samples were computed, with the aver-

age result shown. The first observation one might make is that the ZX-Partitioner

never performs meaningfully slower than the direct decomposition approach. This

186

University of Oxford Matthew Sutcliffe

200 400 600 800 1000 1200

Depth

180

160

140

120

100

80

60

40

20

Q
ub

its

Naïve (no partitioning)

12.27

10.03

11.79

12.21

10.67

14.35

16.27

19.53

19.31

17.71

11.95

12.59

18.83

24.91

24.91

27.63

26.35

27.31

27.79

21.55

27.79

33.39

33.55

31.31

31.15

33.87

35.53

36.02

-9.97

-9.97

-9.97

-9.97

-9.97

-9.97

-7.89

-7.09

-2.93

-8.37

-8.53

-7.25

-6.93

-4.05

-1.97

2.19

5.23

4.91

-5.17

-4.69

-3.09

0.11

4.91

1.55

4.75

6.35

2

4

6

8

10

12

14

200 400 600 800 1000 1200

Depth

180

160

140

120

100

80

60

40

20

Q
ub

its

ZX-Partitioner

11.79

12.21

12.75

19.53

19.31

17.71

22.44

27.63

26.35

27.31

27.79

14.13

26.33

31.31

31.15

33.87

35.53

36.02

-3.56

-3.32

-3.37

-3.39

-3.24

-4.00

-3.58

-2.57

-2.91

-3.98

-4.05

-3.12

-2.68

-0.81

-1.30

-6.92

5.63

5.02

-0.96

-1.82

-0.13

0.93

0.99

0.56

1.96

0.87

1.51

1.44

1.24

3.12

2.15

1.55

2.45

5.13

2.21

2.03

2

4

6

8

10

12

14

Figure 4.4: The average log2 runtimes (in seconds) for fully reducing a ZX-
diagram via (left) the direct decomposition approach and (right) the smart par-
titioning approach, for uniformly random Clifford+T circuits of various depths
and qubit counts.

is because the latter can be seen as a special case of the former, whereby the most

optimal partition count is k = 1 (that is, where any amount of partitioning would

result in worse performance and so the reduction proceeds without any). More

significantly, the figure shows that, for certain sizes of circuits, the ZX-Partitioner

method outperforms the naïve approach by many orders of magnitude.

In practice, the ZX-Partitioner is most effective for many-qubit circuits of rela-

tively low depth (albeit higher depths than the naïve approach), as well as few-

qubit (≲ 10 qubits) circuits of any depth. In fact, in the latter case, if initial Clif-

ford simplification were avoided and partitions were enforced along qubit-lines,

then it would always be possible to partition an n-qubit circuit into arbitrarily

many parts, connected linearly in a chain, where each part connects to the next

via n edges. Consequently, with just slight modification, the smart partitioning

approach could always achieve a runtime proportional to O(22n). However, few-

qubit circuits are already known to be efficiently simulable (by computing the

187

University of Oxford Matthew Sutcliffe

state vector (Jamadagni et al., 2024) or via tensor contraction (Markov & Shi,

2008)). This leaves the more interesting case of shallow many-qubit circuits. It is

easy to understand why these circuits are also particularly effective for the smart

partitioner approach, as ‘depth’ in this context refers to the total number of gates.

Hence, when the ratio of the depth to the number of qubits is low, this describes

circuits with few gates per qubit, and hence few CNOTs connecting these qubits,

meaning few cuts would likely be needed to partition along these lines.

Beyond these cases, the ZX-Partitioner appears to offer no improvement versus

direct decomposition. However, recall that this dataset was generated completely

randomly, and so it is understandable that the frequency of good vertex cuts for

partitioning shrank as the overall size of the graphs grew. In more realistic cir-

cuits, one would expect more inherent structure and, as such, a less sporadic place-

ment of CNOTs. Indeed, most physical implementations constrain gates to nearby

qubits (Markov & Shi, 2008). To try to model this with a new randomly generated

dataset, a slight modification is needed in how the CNOTs are placed. Whereas

previously both ends of the CNOT were placed on different random qubits, the

new dataset instead places one end of the CNOT on a random qubit and then ran-

domly decides the qubit of its other end according to a non-uniform probability

distribution, to favour nearer qubits over further ones. Specifically, when deciding

where to place the target qubit of the CNOT, the probabilities of the qubits are

weighed according to a normal distribution about the control qubit, such that the

probability of a CNOT spanning ∆q ≥ 1 qubits is given by:

P (∆q) =
1√
2πσ2

e−
(∆q−1)2

2σ2

This is derived from the general form of the normal distribution function, where

σ denotes the standard deviation (and hence σ2 denotes the variance). Figure 4.5a

188

University of Oxford Matthew Sutcliffe

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Target qubit's distance from source qubit

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

at
iv

e
pr

ob
ab

ili
ty

(a) The probability amplitudes for a
CNOT spreading ∆q qubits, according
to a normal distribution with a standard
deviation, σ.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
100

101

102

103

104

105

106

107

108

109

1010

E
st

im
at

ed
 r

un
tim

e
(s

)

No partitioning
Naïve partitioning
Smart partitioning

(b) The average projected runtimes for
strongly simulating Clifford+T circuits
of 30 qubits and a depth (gate count) of
1, 000, using three different methods.

Figure 4.5: Random Clifford+T circuits were generated, with the spread of each
CNOT decided probabilistically according to a normal distribution. By adjusting
the variance of this distribution (left), the runtime for strongly classically simulat-
ing the circuits (right) is also affected.

shows what this distribution looks like for various values of σ. Note that these

have each been scaled (un-normalised) to show the probabilities relative to that

of P (∆q = 1). This way they are all clearly readable within the same plot. For

instance, when σ = 3 the span of a CNOT (i.e. the distance between its control

and target) is roughly 0.6 times as likely to be exactly 4 qubits as it is to be exactly

1 qubit. Moreover, when σ = 0, this means that CNOTs always connect to their

nearest neighbouring qubit (either immediately above or immediately below, with

equal probability). Meanwhile, at the other extreme, when σ = ∞, the target of

each CNOT will be placed on any of the qubits in the circuit with uniformly equal

probability (as in the experiments of figure 4.4).

Given this modification, consider — as an illustrative example — randomly gen-

erated circuits of 30 qubits and depth 1, 000. On such circuits, this experiment

was repeated for various values of σ, in each case taking the averaged log runtime

189

University of Oxford Matthew Sutcliffe

over 10 repeats. The direct decomposition (i.e. no partitioning) method, as well

as the naïve partitioning method, were also tested against the same dataset. The

results are shown in figure 4.5b, with error bars given by the standard deviation of

the log runtimes over the 10 repeats for each σ.

From this figure one will immediately observe that the effectiveness of the smart

partitioning method is heavily impacted by σ. For circuits of this particular size,

one may notice that the method generally outperforms both the ‘no partitioning’

and ‘naïve partitioning’ approaches (often by many orders of magnitude) when

σ ⪅ 3. Indeed, as lower values of σ are used to generate the random circuits,

this improvement becomes ever more drastic, though even for very small σ, the

smart partitioner’s runtime doesn’t fall much below a second, despite what would

be predicted by estimating the runtimes from the number of precomputing and

cross-referencing calculations. This is because, in these very speedy cases, the

overhead runtime from the partitioning function itself (which can take up to a few

seconds in the most extreme cases) is no longer negligible.

Moreover, the direct decomposition (‘no partitioning’) approach is relatively con-

sistent as σ is varied (as compared to the partitioning methods). This is because

the complexity of this approach depends primarily upon the initial T-count, which

itself is influenced by the distribution of CNOTs in only very roundabout ways.

Additionally, neither partitioning method ever performs meaningfully slower than

the naïve approach because, as noted earlier, ‘no partitioning’ is essentially the

k = 1 special case of partitioning

Furthermore, one may see here that once the partitioning method has been capped

by the naïve approach (that is, when no partitioning becomes optimal) it tends to

remain so as σ is further increased. Lastly, as σ → ∞ the methods each reach

their terminal runtimes. In this case — because k = 1 is deemed optimal —

190

University of Oxford Matthew Sutcliffe

0 2 4 6 8 10 12 14 16 18 20
100

102

104

106

108

1010

1012

E
st

im
at

ed
 r

un
tim

e
(s

)

No partitioning
Naïve partitioning
Smart partitioning

Figure 4.6: The average projected runtimes for strongly simulating Clifford+T
circuits of 110 qubits and a depth (gate count) of 1, 000, using three different
methods.

they each share the same terminal runtime, namely 108.36±1.09 seconds (which is

consistent with what was observed in figure 4.4). However, as evidenced by figure

4.4, there are circuit sizes for which even σ = ∞ leads to the smart partitioner

method reigning supreme, and in such cases — if plotted against σ like figure 4.5b

— one would observe that the smart partitioning method always remains below

the others. One such example is shown in figure 4.6.

Lastly, the figure 4.4 experiments were repeated for randomly generated circuits

with σ = 2 (as opposed to σ = ∞). These results are shown in figure 4.7.

Under these conditions, the naïve approach has scarcely changed, yet the ZX-

Partitioner shows significantly reduced runtimes, with a far shallower frontier.

Clearly, therefore, CNOTs with a more localised spread (i.e. a lower σ) lead

to circuits which are much more partitionable and hence even more suitable for

such methods. Indeed, given low σ, one may observe that for all bar the most

unfavourably sized circuits, the partitioner method offers orders of magnitudes

reduction to the runtime versus the naïve alternative. (Furthermore, section 4.8

191

University of Oxford Matthew Sutcliffe

200 400 600 800 1000 1200

Depth

180

160

140

120

100

80

60

40

20

Q
ub

its

9.39

11.15

12.43

11.47

13.71

17.55

17.71

18.99

8.27

11.15

14.67

18.19

24.27

24.91

23.47

26.83

25.07

20.43

21.87

24.43

30.51

31.47

33.39

34.19

32.59

34.83

-9.97

-9.74

-9.61

-9.82

-7.93

-9.01

-9.01

-6.45

-4.05

-9.01

-8.37

-8.53

-7.09

-4.37

-4.69

-2.13

3.63

3.63

-5.81

-3.73

-2.29

-0.21

1.07

4.91

0.43

2.51

5.55

5.87

2

4

6

8

10

12

14

200 400 600 800 1000 1200

Depth

180

160

140

120

100

80

60

40

20

Q
ub

its

11.21 18.99

9.24

25.07

18.57

28.00

-4.41

-3.40

-1.63

-3.16

-3.41

-4.99

-3.96

-3.31

-1.78

-4.24

-2.98

-4.75

-3.04

-1.54

-1.63

0.29

0.21

-0.05

-2.27

-1.58

-0.16

1.05

0.50

2.22

1.94

1.34

1.04

1.72

1.73

2.33

1.43

3.36

2.74

4.97

1.99

1.84

2.88

3.82

3.64

4.27

2.90

2.48

2.78

3.40

4.29

3.76

4.20

4.56

2

4

6

8

10

12

14

Figure 4.7: The average log2 runtimes (in seconds) for fully reducing a ZX-
diagram via (left) the direct decomposition approach and (right) the smart par-
titioning approach, for random Clifford+T circuits of various depths and qubit
counts, with the spread of each CNOT given by a normal distribution with σ = 2.

discusses how these results compare to those achieved by tensor contraction and

consider a slightly modified type of randomly generated circuit which is perhaps

more realistic.)

4.8 Tensor Contraction and Compound Circuits

The smart partitioner method detailed in this chapter combines stabiliser decom-

position with a tensor contraction approach. As such, it is helpful to also consider

how it compares to such tensor contraction approaches (Markov & Shi, 2008;

Brennan et al., 2021) to strong classical simulation. Both have a memory over-

head and runtime complexity that grow exponentially with the interconnectedness

(or treewidth) of the circuit. Indeed, for the experiments run in this chapter, many

of the cases that were particularly favourable to the smart partitioner approach

(such as shallow circuits or those with especially low σ) were also effectively

192

University of Oxford Matthew Sutcliffe

simulable with the tensor contraction method.

Despite this, it is not strictly true that all circuits for which the smart partitioner

method is effective could also be effectively simulated via tensor contraction

alone. In fact, it is very easy to design example cases which showcase this point.

As a very simple example, consider a set of subgraphs, G1, . . . , G5, which are

each internally very highly interconnected such that each individually is beyond

the scope of tensor contraction but within the scope of stabiliser state decompo-

sition. Now suppose these subgraphs are connected to one another in a relatively

inexpensive way (that is, with relatively few edges).

As each subgraph is individually beyond the scope of tensor contraction, it follows

that whole is likewise. Nevertheless, the smart partitioner method could very ef-

fectively (and at a relatively small computational cost) partition the graph into its

5 locally dense subgraphs and reduce each using stabiliser decomposition, before

cross-referencing the results to attain the final amplitude. Indeed, on randomly

generated examples similar to this, experimental results verified that tensor con-

traction (using the Quimb (Gray, 2018) Python library) would fail (due to exceed-

ing a reasonable runtime limit or 128GB of memory overhead) while the smart

partitioner would complete within seconds and requiring (in some cases) only a

matter of bytes in memory overhead.

So, while there is a notable overlap in the applicability of these two methods on

the types of circuits used in the experiments presented in this chapter, this es-

sentially is a consequence of the means by which the random circuits were gener-

ated. With slight modification, one can generate a similar class of random circuits,

which have non-uniform CNOT spreads and are realistically justified and which

are (generally) effectively simulated via the smart partitioner but not tensor con-

traction.

193

University of Oxford Matthew Sutcliffe

Specifically, one can randomly generate k distinct Clifford+T circuits of q qubits

(with uniform CNOT spreads, i.e. σ = ∞). These circuits may be vertically

composed and some number, n, of additional CNOTs may be inserted which each

connect between some pair of the sub-circuits. For each of these external CNOTs,

when deciding how far away the target sub-circuit should be from the source, one

can - as before - use a normal distribution (albeit acting on a sub-circuit by sub-

circuit level rather than a qubit by qubit level). Generating circuits in this way

leads to structures like that of figure 4.8.

...
...C3

...
...C2

...
...C1

...
...Ck

...{
q

{
q

{
q

{
q

...

Figure 4.8: The structure of a compound circuit.

These ‘compound circuits’ manifest highly interconnected local cliques, which in

turn are connected to one another by only a relatively modest number of edges.

Moreover, they arguably offer fairly realistic examples of circuit structures, being

composed of smaller independent subroutines which relay some information to

one another.

While it is difficult to fairly quantify such results (as such circuits can be made as

generously or ungenerously to these aims as desired), in preliminary experiments,

it was observed that - generally speaking - such circuits are practically unsim-

194

University of Oxford Matthew Sutcliffe

ulable for both tensor contraction and direct decomposition, yet are effectively

simulated with the smart partitioning approach presented in this chapter.

4.9 Improving Partitionability

Presented in this chapter thus far are a number of optimisations to the calculations

involved in a partitioning-aided method of quantum circuit simulation. However,

the partitioning function itself remains essentially unaltered from the graph theory

literature. Notably, the partitioner treats ZX-diagrams as generic graphs, without

any regard for how they may be transformed via the rewriting rules. Addressing

this issue, the rules of ZX-calculus could be utilised to optimise the ZX-diagrams

in such a way as to improve partitionability. This has the potential to yield dras-

tic further reductions to the runtime. Indeed, this could be very interesting and

promising area of research in its own right, being a twist on the usual simplifica-

tion strategies which aim to exclusively minimise, for instance, T-count (usually

at the expense of increased edge connectivity).

While this topic has not yet been extensively researched within the scope of this

thesis and remains for future work, there are nevertheless some ideas and consid-

erations worth expressing here. For instance, recall that the simplification strategy

used for reducing scalar ZX-diagrams, as described in section 2.2.2, makes signif-

icant use of both pivoting and local complementation (see figure 2.3). These rules,

whenever applicable, are applied left to right to aid in spider (and hence T-count)

minimisation. However, notice that this comes at the cost of greatly increasing the

edge connectivity among the remaining spiders, which may serve to considerably

hinder partitionability. Consequently, it may be advisable to be more discrimina-

tory when deciding when and where to apply these rules, or even to apply them

in reverse (right to left) where it may be appropriate. For instance, in many cases

195

University of Oxford Matthew Sutcliffe

it will likely be worthwhile to un-gadgetise the phase gadgets after full Clifford

simplification.

Likewise, consider the bialgebra rule (see figure 2.2). Appropriately applying

this rule in reverse (right to left) could also be very helpful in aiding partitioning.

Suppose the leftward edges connect to a subgraph, G1, and the rightward edges to

a subgraph, G2, which are otherwise unconnected:

≈...
......

...
G1 G2 G1 G2 (4.64)

Assume there are n leftward edges entering G1 and m rightward edges entering

G2. By applying the bialgebra rule in reverse one can reduce the number of vertex

cuts required to separate these two subgraphs from min(n,m) down to just 1.

Similarly, imagine each of these n+m outgoing edges were connected to its own

independent (and otherwise disconnected) subgraph:

≈...

......
...G1

G3
G1

G3

G2

G4

G5

G2

G4

G5

(4.65)

In this case, applying bialgebra right to left would reduce the number of cuts

required to fully disconnect all these subgraphs from min(n,m) down to just 2.

Moreover, from local complementation and the cutting decomposition (plus the

derivable rule whereby two parallel Hadamard edges between a pair of like-coloured

spiders may cancel out (van de Wetering, 2020)), one may derive a new rule which

allows one to toggle the (Hadamard) edge connectivity among any set of n ≥ 2

like-coloured spiders at the cost of one cut, as in the following example:

196

University of Oxford Matthew Sutcliffe

α4

α3α2

α1

=

≈
α4 + π

2

α3 + π
2

α2 + π
2

α1 + π
2

π
2 ≈

α4 + π
2
+ aπ

α3 + π
2
+ aπα2 + π

2
+ aπ

α1 + π
2
+ aπ{0,1}∑

a

α4

α3α2

α1

(4.66)

Notice that in the initial diagram (left-hand side) of the above example, one could

alternatively have chosen to toggle the edge connectivity among the set {α1, α2, α3}

or {α1, α2, α4}, or even α1, α4 or α2, α3, etc. Each of these options would have

represented fully connected cliques and so applying the new rule in any of these

cases would have removed edges without introducing any new ones. Neverthe-

less, the best of these options would have only partitioned the diagram into 2

disconnected parts, whereas the incomplete (but near) clique set of α1, α2, α3, α4,

to which the rule was applied in equation 4.66, enabled partitioning into 3 discon-

nected parts.

When deciding when and where to apply this rule, it is not always obvious, partic-

ularly among larger graphs with lots of connected cliques and near-cliques, what

the best set of spiders to select in each case is. The following example illustrates

this point:

197

University of Oxford Matthew Sutcliffe

G1

G2

G3

G5

G4

α1

α2

α3α4

α5

≈

G1

G2

G3

G5

G4

α1 + π
2
+ aπ

α2 + π
2
+ aπ

α3 + π
2
+ aπα4

α5 + π
2
+ aπ

{0,1}∑
a

≈

G1

G2

G3

G5

G4

α1 + π
2
+ aπ

α2 + π
2
+ aπ

α3 + π + aπ + bπα4 + π
2
+ bπ

α5 + π + aπ + bπ
{0,1}∑
a,b

(4.67)

Here, there are 5 otherwise disconnected subgraphs, G1, . . . , G5, which meet

among these 5 spiders, α1, . . . , α5. There are many different ways in which the

new rule may be applied to fully disconnect these subgraphs, with option for the

cheapest approach (costing just 2 cuts) shown here. Yet, devising an algorithm to

determine the optimal applications of this rule (particularly for cases too large and

complex to deduce by inspection) is something which remains for future research.

Due in part to the partitioning function described in section 2.4.2 being a heuristic

method, the ‘partitionability’ of a ZX-diagram (that is, how effectively it may be

partitioned into k ≥ 2 subgraphs such that the overall runtime for classical sim-

ulation is minimised) is difficult to describe and formulate. It evidently depends

upon such factors as edge connectivity, but does so in very complex, and often

indirect, ways. Simple metrics such as the overall number of edges may, gener-

ally, be helpful indicators of the partitionability of a ZX-diagram, but even this,

as shown above, can be difficult to optimise for, and indeed it is possible for a

198

University of Oxford Matthew Sutcliffe

ZX-diagram to become less partitionable when the number of edges is reduced, if

the locations of these edges become undesirable.

While it can be difficult to know how to effectively optimise for partitionability,

what is known is the set of actions one may take, namely the rewriting rules (in

both directions). Furthermore, while difficult to formulate, the partitionability

is, as per section 4.6, measurable and quantifiable. Given these observations,

the problem of optimising for partitionability lends itself well to reinforcement

learning. Such work remains for future research, with substantial potential for

improving the results even further.

4.10 Conclusions

The existing literature (Codsi, 2022) on partitioning ZX-diagrams for classical

simulation, as outlined in section 2.4.3, essentially amounts to three observations:

• A scalar ZX-diagram composed of two or more disjoint subgraphs may

be simulated more efficiently by computing each subgraph independently

(lemma 4).

• A ZX-diagram may be partitioned by inducing c vertex cuts, at the compu-

tational cost exponential in c (lemma 5).

• Existing state of the art hypergraph partitioning methods (Schlag, 2020)

may be employed to find a heuristically optimal partitioning of a ZX-diagram

(see definition 23).

The present chapter furthers this literature — significantly improving both the

efficiency and applicability for a partitioning-based method of classical simulation

via ZX-calculus — via a handful of new techniques and optimisations, namely:

199

University of Oxford Matthew Sutcliffe

1. applying the GPU parallelism work of chapter 3 (as well as GPU parallelism

for the tensor contraction calculations), and

2. precomputing the unique sub-scalars to avoid redundancy in recalculating

them,

3. regrouping the partitioned segments’ scalar profiles pairwise in a tensor con-

traction like approach, and

4. optimally k-partitioning the ZX-diagrams and optimally balancing the com-

putational workload of stabiliser decomposition and tensor contraction.

Functionally, this method acts rather like a hybrid of a stabiliser decomposition ap-

proach and a tensor contraction approach, reaping the benefits of both and largely

evading the limitations of either. Essentially, stabiliser decomposition is employed

within dense local cliques, with a tensor contraction like technique then utilised

to collapse these together. As such, dense local cliques, which are each high in

interconnectedness but contain only a fraction of the diagram’s total T-count, are

reduced using stabiliser decomposition, with a complexity scaling exponentially

with this reduced local T-count. Conversely, these cliques themselves are con-

nected to one another with considerably fewer edges and are reduced via a tensor

contraction like approach whose complexity scales exponentially with this modest

cross-clique edge count.

Benchmarked against the direct decomposition (no partitioning) approach, as well

as a naïve partitioning approach, the results demonstrate a runtime increase of or-

ders of magnitude for random circuits under realistic (low σ) conditions. Further-

more, its effectiveness is shown to vary with the interconnectedness of the circuits,

and promising future research to further optimise for this is proposed in section

4.9.

200

5 | Procedurally Optimised ZX-Diagram Cut-

ting

A broad assumption among the ZX-calculus literature relating to classical simula-

tion is that more efficient results will be achieved by utilising more efficient (lower

α) stabiliser decompositions. Consequently, much of the research on this topic has

been dominated by work (Kissinger et al., 2022; Koch et al., 2023; Codsi, 2022;

Laakkonen, 2022) focused on discovering new decompositions of ever lower α.

Conversely, the present chapter seeks to challenge this assumption by demonstrat-

ing how apparently weaker (higher α) decompositions can, in fact, lead to more

efficient overall results, when applied thoughtfully. This observation was implicit

in the work of (Codsi, 2022) but is more formally and substantially addressed

here.

Specifically, this chapter identifies a general pattern, common among Clifford+T

circuits, to which the cutting decomposition enables significant T-count reduction.

This is paired with a weighting heuristic upon the gates, together with a means of

propagating these weights to take into account the broader neighbourhood, such

that (heuristically) optimal applications of the decomposition may be determined.

In short, this approach procedurally designs a sequence of vertex cuts optimised

for the particular circuit provided.

Ultimately, the method is benchmarked against the more conventional ZX-calculus

based approaches, outperforming the state of the art when applied to structured

circuits, with a practical effective α efficiency considerably below that of the al-

ternative methods.

This chapter is based upon the work introduced in (Sutcliffe & Kissinger, 2024b).

201

University of Oxford Matthew Sutcliffe

5.1 Efficient Graph Cutting

Most of the ZX-calculus literature on stabiliser decomposition approaches to clas-

sical simulation (Kissinger et al., 2022; Koch et al., 2023; Codsi, 2022; Laakko-

nen, 2022) has aimed at discovering new, more efficient, decompositions of lower

α in an effort to reduce the rate at which the number of stabiliser terms grows

with the initial T-count. As such, ever more elaborate decompositions have been

employed to this problem, including those of section 2.3.4.

In contrast, and perhaps contrary to intuition, this chapter relies exclusively upon

the simplest and most naïve decomposition of all, namely the cutting decompo-

sition presented in equation 2.68. Unlike the more sophisticated decompositions

in the literature, which achieve α values as low as 0.396 (Qassim et al., 2021)

(or even lower when including the asymptotic α of known partial decompositions

(Kissinger et al., 2022)), the cutting decomposition, applied to a T-like spider,

achieves a markedly meagre efficiency of α = 1.

Despite its ostensibly poor α, this unassuming decomposition in its simplicity

possesses a few key features that render it rather powerful in practice, namely:

• It has perfect parametric symmetry, meaning every time it is applied its

two branching terms can be expressed as one parametric term, effectively al-

lowing simplification and reasoning (and, to some extent, evaluation) across

all branches simultaneously.

• It is highly locally partitioning, in that whenever it is applied to an n-

degree spider, it locally partitions n-ways, making it effective at separating

ZX-diagrams into disjointed parts.

• It is universally applicable, meaning it does not depend on some specific

202

University of Oxford Matthew Sutcliffe

structure but rather can be applied anywhere there is a spider (of any colour,

edge-set, and phase).

• It has a low stabiliser rank of 2, meaning each application only increases

the total term count by a factor of 2.

In addition to these points, the cutting decomposition is also dynamic, being ap-

plicable to both Z-spiders and X-spider (and indeed even edges), as well as a total

(as opposed to partial) stabiliser decomposition. Lastly, it is also very neat, which

makes its behaviour easier to track as compared to decompositions which intro-

duce many sporadic edge connections. On the whole, it is a very modest, and

therefore often overlooked, decomposition whose beauty lies in its simplicity.

The hypothesis of this chapter is thus to consider how well-motivated applications

of this decomposition can in fact lead to very efficient results, with a lower effec-

tive α than would be achieved with the apparently more powerful decompositions.

5.1.1 Slicing Spider Sandwiches

When a T-decomposition is applied, there is an initial set of T-spiders that are re-

moved and replaced with stabiliser terms. This is quantified by the α efficiency

of the decomposition. However, what this fails to take into account is the extent

to which further T-spiders may be removed thanks to ZX-calculus simplification

facilitated by the decomposition. Measuring the αeff after such simplification pro-

vides a much more practical quantity of the decomposition’s efficiency, though

this will vary from circuit to circuit and is not determinable in advance of its ap-

plication.

Nevertheless, by analysing a given circuit at a broader scale than that to which

the prospective decomposition is to be applied, one can gauge whether significant

simplification, leading to notable T-count reduction, is likely to result. Searching

203

University of Oxford Matthew Sutcliffe

for particular patterns and structures is one way to approach this.

Definition 31. A spider sandwich describes a pattern within a ZX-diagram con-

sisting of two like-coloured T-like spiders sat either side of the opposite coloured

end of a CNOT, like so:

nπ
4

mπ
4

where n and m are odd integers and all spider colours may be inverted.

Consider, for instance, a pair of T-like spiders sandwiched between a CNOT, as

pictured in definition 31. Such a pattern may be labelled a ‘T-CNOT-T sandwich’

or, rather grotesquely, a ‘spider sandwich’. While cutting either T-spider here

would only reduce the T-count by one, it is in fact possible to remove both of the

T-spiders by cutting one of the Clifford spiders, as addressed in lemma 28.

Lemma 28. A spider sandwich, such as follows:

π
4

π
4

may be decomposed into two fully Clifford terms via one cut.

Proof. Cutting one end of the CNOT (the end matching in colour to the T-spiders)

in such a structure produces two terms, like so:

π
4

π
4

π
4

π
4

≈ +

π π

π
4

π
4

π

(5.1)

Using the rewriting rules of ZX-calculus, each of these terms is reducible to Clif-

204

University of Oxford Matthew Sutcliffe

ford:

π
4

π
4

=
π
4

π
4

=
π
4

π
4

=
π
2

(5.2)

and:

π π

π
4

π
4

=π =
π π

π
4 π π

4

π π

π
4 π−π

4

π π

π

e
iπ
4 = e

iπ
4

(5.3)

Thus, despite the cut itself being applied to a Clifford spider and hence achieving

an ineffectual α =∞, after simplification this in fact leads to αeff = 0.5. Indeed,

a slight variation of this would see a T-like spider being cut and achieve αeff =
1
3
,

such as follows:

π
4

π
4

π
4

≈
π
2

π π

π

+ e
iπ
2

(5.4)

5.1.2 CNOT Grouping

More generally, it is possible for any number of such spider sandwiches to be

aligned such that their CNOTs may fuse and be cut as one. In such cases, each

pair of T-like spiders may fuse to Clifford as above, though still at the cost of a

single collective cut. This is detailed in lemma 29.

Lemma 29. A set of adjacent spider sandwiches, each with their CNOT’s controls

205

University of Oxford Matthew Sutcliffe

sharing a common qubit, may reduce to two Clifford terms:

n1
1
π
4

a1π

β1

n2
1
π
4

n1
2
π
4

a2π

β2

n2
2
π
4

≈......

... ...

... ...

......

... ...

m1
π
4

a1πA
...... m2

π
4

a2π

+

... ...

m′
1
π
4 (a1 + 1)πB

...... m′
2
π
4 (a2 + 1)π

(5.5)

where:
nji ∈ Z is odd ∀i, j

ai ∈ B ∀i

βi ∈ R ∀i

(5.6)

and:
A := ei

π
4
(a1n2

1+a2n
2
2+ ···)

B := ei
π
4
(n2

1−a1n2
1+n

2
2−a2n2

2+ ···)+i(β1+β2+ ···)
(5.7)

and ∀i:
mi := n1

i + n2
i − 2ain

2
i

m′
i := n1

i − n2
i + 2ain

2
i

(5.8)

such thatmi,m
′
i ∈ Z are odd ∀i and hencemi

π
4

andm′
i
π
4

are necessarily Clifford.

Given N such adjacent spider sandwiches, the T-count reduction that may be

induced by a single cut is then 2N + b, where:

b =

0, if 4
π

∑N
i=1 βi is even,

1, if 4
π

∑N
i=1 βi is odd.

(5.9)

206

University of Oxford Matthew Sutcliffe

Hence, such a cut, after simplification, achieves:

αeff =
1

2N + b
(5.10)

A simple example follows, demonstrating how a pair of adjacent spider sand-

wiches may reduce in this way:

Example 16.

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

=

π
4

π
4

π
4

π
4

≈ π
4

π
4

π
4

π
4

π π

+
π

π

π
2

π
2

= π

π

π π

+...= e
iπ
2

(5.11)

In this case, the T-count has reduced by 4, at the expense of one vertex cut (hence

2 Clifford terms). This corresponds to αeff = 0.25 (or indeed αeff = 0.2 had the

cut spider instead been T-like).

Naturally, there is no upper bound for the number of adjacent spider sandwiches

which could be reduced to two Clifford terms in this fashion, with αeff → 0.

While not expressed in quite these terms, a similar concept was recognised in

(Codsi, 2022), where T-count reductions of up to 286 were achieved via a sin-

gle cut in practical SAT counting circuits (de Beaudrap et al., 2020; Berent,

207

University of Oxford Matthew Sutcliffe

Burgholzer, & Wille, 2022), giving αeff ≈ 0.0035. However, this work utilised

a very simple heuristic amounting to prioritising decompositions of T-gates with

the maximum number of immediately relevant connections. As it turns out, de-

spite its impressive effectiveness of SAT counting circuits, this naïve heuristic

seldom produces the most efficient solutions on more general circuit classes, and

indeed can often be rather suboptimal. Moreover, their approach to recognising

instances where these cuts are applicable is essentially limited to those where the

decomposition is to be applied to a T-like spider, rather than any arbitrarily-phased

spider as per the means outlined above. Lastly, by acting on ZX-diagrams after

they have undergone full Clifford simplification, their approach risks losing much

of the graph’s structure and thus missing relevant patterns.

5.1.3 Cutting in Tiered Structures

Just as a CNOT may be the only obstacle preventing two or more T-like spiders

from fusing, so too may a CNOT be the only obstacle preventing some T-CNOT-T

sandwiches from grouping. Consider, as a prime example, the structured circuit

that follows, where the Z-spiders here have been labelled for easy reference:

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

1 3 5 7 10 12 14 16

2

4

6

8

9

11

13

15

Immediately, one might recognise 7 T-CNOT-T sandwiches, centred on vertices

#2, #4, #6, #9, #11, #13, and #15, respectively. Notably, however, there is

some clashing here, in that — for example — the sandwich centred on #2 and

that centred on #4 are mutually exclusive, as they a share one of their T-gates.

208

University of Oxford Matthew Sutcliffe

Indeed, there are a number of possible ways of reducing this circuit via the means

outlined so far in this chapter.

For example, cutting vertices #4, #9, and #13 would allow 6 T-gates to reduce to

Clifford. Alternatively, cutting #2, #6, #11, and #15 would reduce all 8 T-gates,

at the cost of 4 cuts (hence α = 0.5). But, the best solution here would be to firstly

cut vertex #8 - even though this doesn’t immediately allow any T-gates to reduce

- as this then allows vertices #2, #6, #11, and #15 to fuse into one. Cutting

this newly fused vertex then would allow all 8 T-gates to reduce. So, this solution

would reduce the T-count entirely (all 8 T-gates) at the cost of just 2 cuts (hence

α = 0.25). Of course, this reasoning could be extended for higher tiers, where the

optimal initial cuts are two, three, or more, steps away from any T-gates.

Similarly, there may be instances where multiple CNOTs are directly blocking

some set of T-gates from fusing. In such cases, the likelihood that cutting all of

those CNOTs would be worthwhile to reduce the T-gates they block will be deter-

mined by the ratio of the CNOTs to T-gates involved, as well as whether some of

those CNOTs are considered worthwhile cuts in their own right, with regard to any

other T-gates that they alone may be blocking. One may call such groups of spi-

ders ‘spousal’, with respect to the children spiders they are collectively blocking

from reducing.

Evidently, therefore, selecting which vertices to cut, and indeed in which order,

is a very intricate task (though the former is more important as suboptimality in

the latter can be corrected for via a slight modification and parametric analysis, as

detailed in the next subsection). Naïvely tackling this problem via an exhaustive,

brute force, approach would require checking the reduction achieved by every

possible combination of vertex cuts. This is obviously infeasible for large-scale

graphs, as the time complexity scales exponentially with the number of vertices.

209

University of Oxford Matthew Sutcliffe

Consequently, a heuristic approach is desired. On this note, as has been shown

here, simply prioritising vertices which are directly blocking the most number of

T-like pairs from fusing is not generally optimal. Rather, it is preferential to look

at the whole picture and determine the optimal cuts on higher tiers.

5.1.4 Cut Order Correction

It was shown in section 5.1.3 that determining the order in which to cut the ver-

tices is apparently at least as important as determining which vertices to cut. In

the example showcased there, it seemed necessary for the optimal solution to cut

vertex #8 first, such that vertices #2, #6, #11, and #15 could then be fused and

cut as one. It would appear that recognising the same vertices to cut but apply-

ing a different cut ordering (specifically cutting vertex 8 last) would achieve the

same ends at the cost of 5 cuts rather than 2 (and hence a much less efficient 32

stabiliser terms rather than 4). However, with slight alteration (using the modified

PyZX package of (Sutcliffe, 2024a)) to denote the cuts parametrically, followed

by some simple parametric analysis, a suboptimal cut ordering can effectively be

corrected to its more optimal arrangement at a negligible cost to the runtime.

Firstly, one may consider the parameterised formulation of the cutting decompo-

sition, as presented in equation 3.75. Consider again the circuit shown in section

5.1.3, and imagine cutting first vertices #2, #6, #11, and #15. Writing this in

the parameterised form – needing only one parameterised graph (rather than 16

static graphs) — leads to the following, after only some trivial spider fusion:

210

University of Oxford Matthew Sutcliffe

π
4 aπ

(a+ b)π

π
4

π
4 bπ

(b+ c)π

π
4

π
4 cπ

(c+ d)π

π
4

π
4 dπ

π
4

aπ dπ

{ 0,1 }∑
a,b,c,d

Cutting lastly vertex #8 results in the following:

π
4 aπ

(a+ b+ e)π

π
4

π
4 bπ

(b+ c+ e)π

π
4

π
4 cπ

(c+ d+ e)π

π
4

π
4 dπ

π
4

aπ dπ

{ 0,1 }∑
a,b,c,d,e

eπ eπ

The graph at this stage contains 5 parameters (a, b, c, d, e) and 3 free nodes (legless

spiders). As the parameters are Boolean, it necessarily follows that each of these

free nodes can be replaced with a scalar factor of 0 or 2, such as follows:

(a+ b+ e)π =
2 if a⊕ b⊕ e = 0

0 if a⊕ b⊕ e = 1

{
(5.12)

Moreover, for any combination of parameter values that results in a scalar factor

of 0 in one or more of these free nodes, one can ignore the entire corresponding

graph (as the whole graph then becomes 0). In other words, one is only interested

in the sets of parameter values which result in non-zero scalar factors for all free

nodes. So, given equation 5.12, the leftmost free node must equal 2 and thus

a ⊕ b ⊕ e = 0. Rearranging this for, say, a gives: a = b ⊕ e. And now, every

instance of a throughout the parameterised graph can be substituted out for b⊕ e,

thus reducing the number of parameters from 5 to 4. Repeating this reasoning for

the remaining two free nodes finds that b = c ⊕ e and c = d ⊕ e, resulting in all

parameters being reduced to some combination of d and e:

211

University of Oxford Matthew Sutcliffe

Consequently, while only needing to reason on one graph, the number of parame-

ters has been reduced from the 5 attained via a suboptimal cut ordering to the most

optimal 2. Indeed, this graph is now equivalent to what would have been attained

if the more optimal cut ordering had been adopted (namely cutting vertex #8 first

and then fusing the remaining 4 before cutting them as one). Having effectively

corrected suboptimal cut ordering, one can then expand the parameterised graph

out into its (in this case 4) distinct evaluated graphs and proceed with simplifica-

tion.

Note, however, that the procedure outlined in section 5.2 prioritises higher tiers

so that the cut ordering is already optimised and thus this parametric reasoning

should not generally be necessary. Nevertheless, it might prove beneficial to the

procedure in extreme cases, and indeed is applicable in other cutting techniques

(such as the brute-force verifications of section 5.3.2).

5.2 Optimised Cutting Procedure

The solution this chapter presents is a procedure based on assigning weights to

vertices, determined by how many T-like gates they are preventing from fusing to

Clifford, and then propagating these weights through any neighbours which are

then preventing weighted vertices from fusing, and so on up the tiers. Particular

care is given to balance the weightings appropriately, especially in places where

multiple ‘spousal’ cuts are required to facilitate a fusion of their children.

Note that one may label the weight of a vertex (i.e. spider) v, for a particular tier

t, as wtv, such that, for instance, w2
12 refers to the weight of vertex 12 with respect

to tier 2. Given this, the procedure steps are as follows:

1. Partially simplify the circuit such that any instances of spider fusion are

212

University of Oxford Matthew Sutcliffe

applied (so no like-coloured spiders remain directly connected via a solid

edge) and any π-phase spiders are pushed to one side or into CNOTs via

the π-commutation and fusion rules. Then, let t = 0 and assign an initial

weight of 0 to every spider (i.e. let w0
v = 0 ∀v).

2. For any pair of T-like spiders that are separated by k (that is, one or more)

CNOTs, add 2/k to the weights of the opposite ends of each of those CNOTs.

(For any given CNOT, take care not to count a particular T-spider more than

once.) Now, for instance, any CNOT that is preventing 2 T-spiders from

fusing to Clifford will have a corresponding weight of 2, and any CNOT

preventing, collectively, 4 T-spiders from reducing to Cliffords will have a

corresponding weighting of 4, etc. Similarly, if, for instance, 3 CNOTs are

collectively blocking a single pair of T-spiders from fusing, then each will

have a weighting of 2/3.

3. Increment t ← t + 1. Then, similar to step 2, for any weighted vertex v

of the previous tier (i.e. any v for which wt−1
v ≥ 0) that is separated from

fusing with another weighted vertex of any lower tier (i.e. any v for which

wuv ≥ 0 for any u < t) by k (that is, one or more) CNOTs, add γ(wt−1
v)/k

to the weight of the opposite ends of each of those CNOTs. Here, the γ

function normalises a given weighting to the range [0, 1], such that (crudely

speaking) 0 roughly means “very unlikely to be a worthwhile cut” and 1

“very likely to be a worthwhile cut”: γ(w) := min (w
2
, 1).

4. Repeat step 3 until no new changes are made (that is, until no weightings,

wtv, are found for any v, given the current t) or until a pre-defined tier limit

is reached. At this point, one will be left with weightings for every vertex,

for every tier (wtv ∀v, t). From this, one can trivially extract the relevant

data, namely, for every vertex v, its maximum weight wtv (for any t) and,

213

University of Oxford Matthew Sutcliffe

respectively, the maximum t for which the vertex has a weight (i.e. largest

t for which wtv ≥ 0). One may label the maximum weight of a vertex, Wv,

and its maximum tier for which it has a non-zero weight, Tv.

5. Among the vertices with the largest recorded T , namely Tmax, select the

one with the greatest max weight Wv (i.e. select vertex V s.t. WV ≥ Wv

∀v s.t. Tv = TV = Tmax). (Note that for this step only, an additional weight

of 1 may be added to any vertex of a T-like phase.) If this weight is below

2 (hence γ(WV) ≤ 1, implying the cut would not likely be worthwhile),

then search instead among the vertices of the lower tier (i.e. for which

Tv = Tmax−1), until an appropriate vertex is found for which WV ≥ 2. This

is the vertex which the heuristic has concluded is likely an optimal choice

to cut. As such, cut this vertex (i.e. decompose it into two branches as per

section 2.3.4).

6. Partially simplify each branch, without compromising the graph structure.

Specifically, push any new π-phase spiders to one side, and/or into CNOTs,

via repeated applications of the π-commutation rule (and fusion), and there-

after apply the fusion rule until no like-coloured spiders remain connected

via a solid edge. Moreover, when fusing weighted spiders, update their

combined weight accordingly as the sum of their respective max weights

(i.e. in fusing vertex B into vertex A, the former is removed along with

its recorded weightings and tier data and the latter is updated as WA ←

WA +WB). Similarly, the max tier of the newly fused vertex takes that of

the larger of the two fused vertices (i.e. TA ← max (TA, TB)). Moreover,

recalculate the weightings on any vertices whose children have been altered

by this partial simplification.

7. Repeat steps 5 and 6 until no further cuts are made (or the number of T-

214

University of Oxford Matthew Sutcliffe

spiders ≤ 2). If any T-like spiders remain, then these may be decomposed

via a typical T-decomposition (e.g. the BSS decomposition outlined in sec-

tion 2.3.4).

Applying this procedure to a scalar Clifford+T ZX-diagram will result in a (heuris-

tically) minimal number of stabiliser terms.

Python code, based on the PyZX package (Kissinger & van de Wetering, 2018,

2020a), that implements this procedure may be found at https://github

.com/mjsutcliffe99/ProcOptCut (Sutcliffe, 2024b), and a step-by-step

illustrative example of this procedure in action is shown therein.

5.3 Results

5.3.1 Circuit Generation

The procedure presented in this chapter, by design, works best on circuits that

are highly structured. This raised an interesting problem when benchmarking, as

testing on wholly random circuits would not properly showcase its effectiveness

and, conversely, demonstrating only ideal example cases would not yield particu-

larly informative results as such circuits could be made arbitrarily ideal, sending

α → 0. Consequently, for the benchmarking experiments, random circuits were

generated in such a way as to include some localised structural elements, so as

to avoid trivial (unstructured) cases, while also not simply designing ‘best case’

circuits on which to experiment. As such, Toffoli gates were prominently utilised.

Specifically, the main benchmarking tests (figure 5.1) consider randomly gener-

ated circuits of the {CNOT,Zα,Toffoli} gateset, where Zα are Z-phase gates

of phase α = nπ
4

with n ∈ {0, 1, 2, . . . , 7}. The number of such instances of

these components was varied in order to vary the T-counts of the circuits. Mean-

215

https://github.com/mjsutcliffe99/ProcOptCut
https://github.com/mjsutcliffe99/ProcOptCut

University of Oxford Matthew Sutcliffe

while, the circuits for the initial, small-scale verification experiments (section

5.3.2) were generated likewise, with random T-CNOT-T sandwiches included and

Toffoli gates neglected (as even one or two of these produce circuits too large to

verify). Note that in randomly placing multi-qubit gates, each of its qubits may

be placed randomly among the circuit’s qubits, and note also that in these experi-

ments, Toffoli gates were expressed in ZX-diagram form as follows (Kissinger &

van de Wetering, 2020b):

7π
4

π
4

7π
4

π
4

π
4

π
4

7π
4

⊕
≡

This approach ensures the generated circuits are appropriately random and of non-

trivial local structure, akin to that of section 5.1.3 or the composed-Toffolis cir-

cuits seen in (Kissinger & van de Wetering, 2020b).

5.3.2 Complexity and Efficiency

The exact runtime complexity of the procedure is difficult to discern as it depends

on the density of the graph (i.e. typical number of neighbours the vertices have)

and its number of ‘tiers’, Tmax, (which is heuristically determined). Very reason-

ably, one could assume Tmax ≪ V (for a non-trivial number of vertices, V), and

so a crude upper-bound (taking, very unrealistically, maximal density) may be

given by O(V 2). Even this gross over-estimate of the runtime complexity shows

that, compared to the number of stabiliser terms produced (2αt for t T-gates and

an α < 1), the procedure’s runtime is negligible beyond trivial scales, so that any

improvements it offers to the number of the stabiliser terms can be taken as is.

To test the effectiveness of the proposed method, experiments were run to explore

how often - for circuits small enough to verify - it was able to find the most optimal

set of vertex cuts, rather than simply an optimal set. Specifically, many random,

216

University of Oxford Matthew Sutcliffe

non-trivially structured (see section 5.3.1) ZX-diagrams of 16 internal Z-spiders

or fewer were generated and fully decomposed using the procedure of section 5.2,

with the number of stabiliser terms produced in each case measured. Given the

small circuit sizes in this dataset, it was possible to test every possible combination

of vertex cuts on the internal Z-spiders (applying the reasoning of section 5.1.4 to

correct for any suboptimal cut ordering). Thus, it was possible to determine with

certainty the most optimal set of vertex cuts (on Z-spiders) and correspondingly

the number of stabiliser terms produced (or, by extension, the effective α) and

compare this, in each case, to the result achieved by the procedural method. In

this way, it was observed that this chapter’s method found the most optimal set of

cuts possible (on Z-spiders) 71% of the time.

Even so, in every case in which the method failed to find the most optimal solution,

it still invariably found a very good solution with an αeff usually only marginally

above that of the best. It is worth noting, however, that for larger circuits, too big

to manually verify by brute force, it is very unlikely that this rate will be upheld.

Nevertheless, this at least provides a broad indication of the method’s ability to

find effective solutions. Furthermore, as the circuit scales are increased and scope

for greater structure is enabled, it is expected that lower αeff solutions will become

more likely. As such, the analysis was extended to compare the results achieved

by this method on larger circuits, versus the conventional approaches of (Kissinger

& van de Wetering, 2022) and (Kissinger et al., 2022).

5.3.3 Experimental Measurements for Random Circuits

The procedural method presented in this chapter was benchmarked against the

conventional direct decomposition approaches of (Kissinger & van de Wetering,

2022) and (Kissinger et al., 2022), for a dataset of randomly generated circuits of

the form of section 5.3.1. In each case, the number of stabiliser terms to which

217

University of Oxford Matthew Sutcliffe

0 10 20 30 40 50 60 70 80

T-count

100

101

102

103

104

105

106

N
um

be
r

of
 s

ta
bi

lis
er

 te
rm

s

BSS
Cats
Proc

(a) Number of stabiliser terms versus T-
count.

0 10 20 30 40 50 60 70 80

T-count

0

0.1

0.2

0.3

0.4

0.5

E
ffe

ct
iv

e
,

BSS
Cats
Proc

(b) Effective α efficiency versus T-count.

Figure 5.1: (a) The number of stabiliser terms, n, produced after decomposing all
t T-gates, and correspondingly (b) the effective overall decomposition efficiency
α (given by α = 1

t
log2 n) for numerous randomly generated Clifford+T circuits

(see section 5.3.1) of various T-counts. In each case, the experimental results are
shown for the conventional ‘BSS’ (Kissinger & van de Wetering, 2022) and ‘Cats’
(Kissinger et al., 2022) methods, as well as the procedurally optimised cutting
(‘Proc’) approach presented in this chapter.

the circuit may be reduced was measured and, from this, the corresponding αeff

deduced. These results are shown in figure 5.1. These plots show the measured re-

sults from each individual circuit, via each of the three methods, as plotted against

the initial (post Clifford simplification) T-counts of these circuits.

For very small T-counts, each method shows a lot of inconsistency in its effec-

tiveness and generally produces worse αeff measurements than at higher T-counts.

This is unsurprising, as such circuits are likely too small to exhibit much structure

and indeed small enough in T-count to rely more heavily on less efficient backup

decompositions. For instance, when the T-count falls below 6, the BSS method re-

lies upon a smaller, higher α, decomposition. Similar is true of the other methods.

The especially effective results in this low T-count range, meanwhile, are presum-

ably due to such small circuits being more likely to fully reduce after just one or

218

University of Oxford Matthew Sutcliffe

two applications of decomposition, as the simplicity of small circuits generally

leads to easier simplification via the rewriting rules.

Regardless, circuits of very small T-count are trivially simulable and as such the

results in this range are of little interest. Importantly, as the T-count is increased,

each method, and particularly cats, becomes considerably more consistent in its

effectiveness. Given this, it is sensible to consider the average αeff that each

method achieves for circuits of T-counts ≥ 40, where their results become more

stable. These averaged results are shown on the figures as lines, and may be

quoted as:

αbsseff ≈ 0.380

αcatseff ≈ 0.196

αproceff ≈ 0.127

(5.13)

It is already known (Kissinger et al., 2022) that the cats decomposition strategy

supersedes the older BSS strategy, and this conclusion evidently remains true on

these {CNOT,Zα,Toffoli} circuits. The more interesting comparison then is that

between the (presently state of the art) cats approach and the procedural cutting

approach offered in this chapter.

The αcatseff ≈ 0.196 result measured here is very consistent with αcatseff ≈ 0.205

measured for Clifford+T+CCZ circuits in (Ahmad, 2024). This is sensible as the

random circuits benchmarked in this chapter are indeed very similar to random

Clifford+T+CCZ circuits, with Toffoli gates and CCZ gates being only marginally

distinct when expressed in ZX-diagram form. Likewise, the low variance exhib-

ited by the cats results here (beyond trivial T-counts) reinforces the observations

of (Kissinger et al., 2022).

219

University of Oxford Matthew Sutcliffe

The most significant observation among these results is the promising perfor-

mance of the new procedural method introduced in this chapter. Based on fig-

ure 5.1 and the result of αproceff ≈ 0.127, this method appears to outperform the

cats strategy quite reliably and significantly. To quantify more concretely, the cats

strategy provides a 48% reduction in αeff compared to the preceding BSS method,

and in turn the new procedural approach offers a further 35% reduction from cats.

Recalling that the runtime is proportional to the number of terms, which grows

exponentially with αeff, such improvements are very significant and of much prac-

tical interest. The new method would thus enable much larger T-count circuits to

be simulable within computable timeframes.

There are a number of reasons which may help explain why an approach based

solely on vertex cutting was able to outperform a strategy utilising more sophis-

ticated decompositions. Firstly, the cats method is essentially a greedy algorithm

with a very localised scope. At each step, it opts for the decomposition with the

highest immediate α, without regard for how much or little simplification it is

likely to facilitate. The procedural method, on the other hand, motivates its choice

at each step very thoroughly, taking on board how much simplification (specifi-

cally T-count reduction) each possible move is liable to produce. This takes into

account a much broader scope than the immediate vicinity of the cuts themselves.

Furthermore, as emphasised in section 5.1, the cutting decomposition’s simplic-

ity in practice works to its advantage. It is very effective at facilitating further

simplification, particularly in the specific circumstances of which this method is

designed to take advantage, and is applicable to any vertex in any ZX-diagram,

giving much choice at each step.

Moreover, the procedure of section 5.2 is specifically designed for structured cir-

cuits, while strategies such as cats is more general and universal. It is perhaps to

220

University of Oxford Matthew Sutcliffe

be expected then that the procedural method proved to be more effective on highly

structured circuits.

One final point to note is that the procedural method exhibits higher variance in

its results as compared to the cats method. This is believed to be due to random-

ness of the circuit generation providing some variance in how structured they are.

Even so, there is some indication to suggest the procedural method may reduce

in variance as the T-count is further increased. Nevertheless, this greater vari-

ance also means there are many instances in which the procedural method is even

more effective than suggested by the above quoted average, with αeff < 0.1 being

reasonably common.

These experiments may be reproduced from the related Github repository (Sutcliffe,

2024b).

5.4 Conclusions

The main conclusion of this work is that, contrary to the assumption implicit in the

literature, finding lower α decompositions is not the only, nor even necessarily the

most effective, means of improving the efficiency of classical simulation via sta-

biliser decomposition. Instead, as demonstrated in this chapter, better motivating

applications of existing decompositions shows arguably more promise.

By analysing, and taking advantage of, the structures inherent in any given quan-

tum circuit, rather than applying decompositions arbitrarily, the method presented

in this chapter is able to automatically optimise its decomposition strategy for

the specific circuit. Consequently, despite its reliance on the apparently ineffi-

cient ‘cutting’ decomposition, this ensures a more optimal overall αeff efficiency

by predicting the extent of ZX-calculus simplification that each vertex cut may

221

University of Oxford Matthew Sutcliffe

facilitate (whether immediately or many steps ahead).

Applied to randomly generated circuits small enough to verify with brute force,

this method found the most optimal vertex cutting pattern 71% of the time, with

the remaining instances still finding highly optimal patterns. While it is presumed

that on larger circuits it will become increasingly unlikely to find the most optimal

patterns, the results suggest it continues to find highly optimal solutions. Indeed,

in quantifying the effectiveness of the method on larger circuits, it is found to

achieve an efficiency of αeff ≈ 0.127, being a substantial improvement over the

αeff ≈ 0.196 achieved by (Kissinger et al., 2022) on the same dataset. This rep-

resents an exponential improvement to runtime for classically simulating such

circuits.

While already very effective, there are many ways in which this method could be

improved - many stemming from the rigid scope with which it applies and prop-

agates weights. After all, T-gate fusion facilitated by cutting a CNOT is just one

way in which the T-count of a circuit may be reduced. It would be worth consid-

ering also the potential of cuts to remove T-gates by pushing them into the scalar

factor (e.g. via the state copy rule) or to partition small segments from the graph.

The method ought also to consider simplification and weight propagation laterally,

rather than solely through the lens of ‘tiers’. Indeed, the ‘partial simplification’

strategy used (to simplify while maintaining the structure) does not take into ac-

count some vital steps in the normal ‘full reduce’ (Kissinger & van de Wetering,

2018) function (namely pivoting - i.e. on CNOTs - and local complementation).

It is suspected that this is largely the reason for not observing even higher suc-

cess rates in verifying how often the method was able to find the best solutions

on small circuits. Moreover, a more robust analysis could determine appropriate

weightings without the need for the circuit to be expressed in a very rigid graph-

like form, such that further simplification between steps could be enabled and, for

222

University of Oxford Matthew Sutcliffe

instance, Toffolis could be expressed as phase gadgets (so as to not be restricted

due to the arbitrary choice of which way around to decompose each Toffoli’s con-

trol qubits). And lastly, of course, one could consider cuts on X-spiders as well

as just Z-spiders (this might be particularly relevant if there are many Hadamards

involved, resulting in many X-spiders of T-like phase).

There are also a number of ways in which this concept, more broadly, could be

improved, such as developing newer and better heuristics - perhaps even different

heuristics for different types of circuit (e.g. dense circuits, or those with many Tof-

folis, etc.). Moreover, utilising additional decompositions is a promising avenue

for improvement. In particular, the cat decompositions (Kissinger et al., 2022)

possess some very helpful behaviours. For instance, decomposing cat states is

very effective at producing more cat states. This likely helps explain the consis-

tency and low variance of the method’s effectiveness, as well as its ability to avoid

relying significantly on its backup |T ⟩⊗5 decomposition. As such, it is a promising

candidate for the type of approach offered in this chapter.

Nevertheless, this work demonstrates very clearly how analysing the circuit struc-

ture and applying decompositions discriminately can offer vastly more efficient

results than simply decomposing the T-spiders directly with a decomposition that

has a better immediate efficiency.

223

6 | Dynamic T-Decomposition

Chapter 5 demonstrated how well motivated applications of weaker (lower α) T-

decompositions can in fact lead to more efficient overall results following Clifford

simplification via ZX-calculus rewriting. This challenged the broad assumption

in the literature that the means to improving efficiency is by finding lower α de-

compositions.

The present chapter expands upon this by identifying a handful of circuit struc-

tures which occur frequently in common circuit classes (when expressed in re-

duced gadget form) and which may be decomposed efficiently with some rewrit-

ing and vertex cutting. This is ultimately expressed as a set of four new T-

decompositions which, in one sense, are more specific than the likes of the cats

decompositions of equation 2.61 in that the structures involved are less generic,

but which, in another sense, are more dynamic in that they are arbitrarily scalable.

Due to their scalability, the α efficiencies of these decompositions depend upon

the number of spiders involved, though this is easily measured and can be used

to heuristically determine which decomposition is likely to be most effective at

any given moment. In short, this chapter outlines a general heuristic approach to

efficient Clifford+T circuit reduction.

Lastly, these new decompositions are benchmarked against the method of (Kissinger

et al., 2022) for four different circuit classes, with results showing significant im-

provements to runtime in three of the four cases.

This chapter covers the work presented in (Ahmad & Sutcliffe, 2024), which in

turn expands upon a master’s project (Ahmad, 2024) I proposed and supervised

during my DPhil studies.

224

University of Oxford Matthew Sutcliffe

6.1 Deriving Dynamic Decompositions

Scalar Clifford+T ZX-diagrams, simplified to reduced gadget form, tend to exhibit

common structures and patterns. Consequently, there is much justification for

designing stabiliser decompositions which take advantage of this fact. The cat

decompositions (Kissinger et al., 2022), for example, utilise |catn⟩ states, which

are characteristic of reduced gadget graphs, and achieve impressive α efficiencies.

However, with |catn⟩ states being rather generic and minimalistic structures, their

corresponding decompositions fail to take advantage of more specific and niche

patterns which, paired with very simple decompositions, are liable to undergo

more drastic simplification.

By manual analysis, four such decompositions were derived, each based upon one

instance of vertex cutting (figure 2.68) and, in the latter two cases, some initial

rewriting. These decompositions, together with their derivations, are shown in

lemmas 30 to 33. For convenience, they may be divided into two categories:

• Singled decompositions, being those of lemmas 30 and 31, which are each

derived via one instance of vertex cutting, and

• Doubled decompositions, being those of lemmas 32 and 33, which are each

derived via an initial instance of pivoting, followed by a vertex cut.

The former describe structures which are decomposed directly via an instance

of vertex cutting, while the latter require an initial simplification step (namely

pivoting) before undergoing a vertex cut.

225

University of Oxford Matthew Sutcliffe

Lemma 30 (Lone phase decomposition). The following decomposition:

π
4

π
4

π
4

...

· · ·

x1 xn

≈
∑

a∈{0,1}

eia
π
4

(
1 + eiπ(

1
4
+a)
)n

· · ·
aπ aπ

(6.1)

is valid and achieves:

α =
1

n+ 1
(6.2)

Proof.

π
4

π
4

π
4

...

· · ·
≈

∑
a∈{0,1}

eia
π
4

π
4

π
4· · ·

· · ·aπ aπ

x1 xn x1 xn

≈
∑

a∈{0,1}

eia
π
4

(
1 + eiπ(

1
4
+a)
)n

· · ·
aπ aπ

≈
∑

a∈{0,1}
eia

π
4

π
4
+ aπ π

4
+ aπ...

· · ·
aπ aπ

x1 xn

aπ aπ
(6.3)

Lemma 31 (Multi-|cat3⟩ decomposition (Codsi, 2022)). The following decompo-

sition:

π
4

π
4

π
4

π
4

π
4

...

π
4

π
4
...

...

...

x1 x2 xn

y1 y2 ynv

≈ (1 − a)π
2

(1 − a)π
2

(1 − a)π
2

...
aπ aπ

∑ eia(n+1)π
4

a∈{0,1}

...
y1 y2 yn

(6.4)

226

University of Oxford Matthew Sutcliffe

is valid and achieves:

α =
1

2n+ 1
(6.5)

Proof.

π
4

π
4

π
4

π
4

π
4

...

π
4

π
4
...

≈
∑

a∈{0,1}

...

...

≈ (1 − a)π
2

(1 − a)π
2

(1 − a)π
2

...
aπ aπ

∑ eia(n+1)π
4

a∈{0,1}

...

π
4

π
4

π
4

π
4

π
4

...

π
4 ...

...
...

aπ aπ

aπ aπaπ

≈
∑

a∈{0,1}

aπ aπ

π
4

π
4

π
4

π
4

π
4

...

aπ

π
4 ...

...
...

aπ aπ

≈
∑

a∈{0,1}

π
4
− aπ

2

π
4
− aπ

2

π
4

π
4

π
4

...

π
4
− aπ

2

...
...

aπ aπ

eia
π
4

eia(n+1)π
4

x1 x2 xn

y1 y2 ynv

x1 x2 xn

y1 y2 yn

x1 x2 xn

y1 y2 yn

eia
π
4

y1 y2 yn

y1 y2 yn

x1
x2

xn

(6.6)

Lemma 32. The following decomposition:

(1 − a)π
2

(1 − a)π
2

...
... ...

≈
∑

a∈{0,1}

x1 xneia(n+1)π
4

(1 − a)π
2

aπ... aπ...
π
4

π
4

...

π
4

π
4

π
4

π
4

... ...

......
z1 z2

x1 xn

yny1

(6.7)

227

University of Oxford Matthew Sutcliffe

is valid and achieves:

α =
1

2n+ 2
(6.8)

228

University of Oxford Matthew Sutcliffe

Proof.

π
4

π
4

...

π
4

π
4

π
4

π
4

... ...

......

π
4

π
4

...

π
4

π
4

π
4

π
4

... ...

......

≈
∑

a∈{0,1}

≈
∑

a∈{0,1}

z1 z2

v≈
π
4

π
4

...

π
4

π
4

π
4

π
4

... ...

......
z1 z2

x1 xn

yny1

x1 xn

yny1

x1 xn

yny1

z1 z2

(1 − a)π
2

(1 − a)π
2

...
... ...

≈
∑

a∈{0,1}

x1 xneia(n+1)π
4

π
4

π
4
− aπ

2
π
4
− aπ

2
π
4...

... ...

x1 xn

yny1

eia(n+1)π
4 z1 z2π

4
− aπ

2

aπ aπ...

π
4

...

(1 − a)π
2

aπ... aπ...

≈
∑

a∈{0,1}

aπ aπaπ

π
4

π
4

...

π
4

π
4

π
4

π
4

... ...

......

aπ aπ

aπ

x1 xn

yny1

z1 z2

(6.9)

229

University of Oxford Matthew Sutcliffe

Lemma 33. The following decomposition:

π
4

π
4

π
4

π
4

π
4

π
4

...

......
y1 y2

≈
∑

a∈{0,1}

(1 − a)π
2

aπ...

(
1 + eiπ(

1
4
+a)
)n
aπ...

xnx1 x2 xn−1

(6.10)

is valid and achieves:

α =
1

n+ 2
(6.11)

230

University of Oxford Matthew Sutcliffe

Proof.

π
4

π
4

π
4

π
4

π
4

π
4

...

......
y1 y2

v

...
π
4

π
4

π
4

π
4

aπ aπ
≈
∑

a∈{0,1}

π
4

π
4

π
4

π
4

π
4

π
4

...

......
y1 y2

≈

aπ aπ

≈
∑

a∈{0,1}
(1 − a)π

2

aπ...

π
4

π
4
......

y1 y2

aπ

...π
4
+ aπ π

4
+ aπ π

4
+ aπ π

4
+ aπ

≈
∑

a∈{0,1}
π
4

π
4
......

y1 y2
aπ

≈
∑

a∈{0,1}

(
1 + eiπ(

1
4
+a)
)n

eia
π
4

(
1 + eiπ(

1
4
+a)
)n

aπ...

xnx1 x2 xn−1
xnx1 x2 xn−1

xnx1 x2 xn−1

xnx1 x2 xn−1

≈
∑

a∈{0,1}

y1 y2

eia
π
4

(
1 + eiπ(

1
4
+a)
)n

π
4
− aπ

2

aπ aπ...

π
4

...

π
4

π
4
......

y1 y2
aπ

(6.12)

231

University of Oxford Matthew Sutcliffe

These decompositions apply to patterns which, while less ubiquitous than |catn⟩

states, are relatively common among ZX-diagrams in reduced gadget form. They

are patterns for which a single vertex cut enables significant simplification via the

rewriting rules, and, importantly, they are dynamic, in that they are each arbitrarily

scalable.

Note that, as with applying the |catn⟩ decompositions, the following lemma holds

true here:

Lemma 34. The decompositions introduced in lemmas 30 to 33 each remain valid

(albeit with minor changes to scalars and/or spider phases) with any number of

T-spiders (π
4

...) replaced with T-like spiders ((2n+ 1)π
4

...).

Algorithm 6 summarises the decision process of selecting which decomposition

to apply at each step.

6.2 Results

Using algorithm 6, these new dynamic decompositions were benchmarked against

the existing method of Kissinger et al. (Kissinger et al., 2022) for strongly simu-

lating randomly generated circuits of the following four distinct classes:

• Controlled-CZ (CCZ) circuits

• Modified hidden shift (MHS) circuits

• Instantaneous Quantum Polynomial (IQP) circuits

• Pauli exponentials circuits

These circuit classes are detailed in section 2.2.3.

232

University of Oxford Matthew Sutcliffe

Algorithm 6 Algorithm for determining which decomposition to apply
1: Input: A ZX-diagram, G, in reduced gadget form
2:
3: Function: α(d) returns the α value corresponding to decomposition d
4: Let αbest = α(|T⟩⊗5) = log2(3)/4
5:
6: if there exists an instance of |catn⟩ in G for any 3 ≤ n ≤ 6 then
7: Let |catbest⟩ be the lowest-α |catn⟩ that exists within G
8: if α(|catbest⟩) < αbest then
9: Let αbest = α(|catbest⟩)

10: end if
11: end if
12:
13: for each decomposition Dn among those of lemmas 30 to 33 do
14: if there exists an instance of Dn in G for any n ≥ 1 then
15: Let N be the largest n for which an instance of Dn exists within G
16: if α(DN) < αbest then
17: Let αbest = α(DN)
18: end if
19: end if
20: end for
21:
22: Output: The decomposition instance corresponding to αbest

233

University of Oxford Matthew Sutcliffe

The results of these experiments are displayed in figures 6.1 to 6.4, showing how

both the decomposition efficiency and the measured runtime vary with the scale

of the circuit. In each case, the results are shown for:

• the Kissinger et al. (Kissinger et al., 2022) decompositions only,

• the above plus the singled dynamic decompositions introduced in this chap-

ter, and

• the above plus also the doubled dynamic decompositions introduced in this

chapter.

Note that, consistent with the literature (Codsi & van de Wetering, 2022; Ahmad,

2024), the effective decomposition efficiency for IQP circuits is measured with

βeff rather than the usual αeff. This is a more appropriate metric1 for benchmark-

ing such circuits as it neglects the trivially handled T-gates and provides a neat

measure against the qubit count, which such circuits notably scale against. This

metric is defined as follows:

Definition 32 (βeff efficiency). Given a ZX-diagram in reduced gadget form, with

t′ T-like spiders which are not part of phase gadgets and Õ
(
(t′)k

)
phase gadgets,

for k ∈ R>1, the effective β efficiency is defined:

βeff :=
N

t′
(6.13)

where N is the number of stabiliser terms to which the circuit is decomposed

(Ahmad, 2024).

The first observation one might make is that the new method appears to never

perform worse than that of Kissinger et al. (Kissinger et al., 2022) with regards

to its effective α, but sometimes (though very seldom and marginally) does so
1See (Ahmad, 2024) for a more explicit justification of this metric.

234

University of Oxford Matthew Sutcliffe

50 100 150 200 250
Reduced initial T-count

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lo
g

(r
un

tim
e

[m
s]

)

Kissinger et al. Our method (singled decomps only) Our method (singled + doubled decomps)

0 25 50 75 100 125 150 175 200
Reduced initial T-count

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Ef
fe

ct
iv

e

(a) Overall αeff versus T-count.

0 25 50 75 100 125 150 175 200
Reduced initial T-count

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

lo
g

(r
un

tim
e

[m
s]

)

(b) The (log2) runtimes versus T-count.

Figure 6.1: The measured results for classically simulating CCZ circuits, versus
the method of Kissinger et al. (Kissinger et al., 2022)

50 100 150 200 250
Reduced initial T-count

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lo
g

(r
un

tim
e

[m
s]

)

Kissinger et al. Our method (singled decomps only) Our method (singled + doubled decomps)

0 50 100 150 200 250 300
Reduced initial T-count

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ef
fe

ct
iv

e

(a) Overall αeff versus T-count.

0 50 100 150 200 250 300
Reduced initial T-count

0.0

2.5

5.0

7.5

10.0

12.5

15.0

lo
g

(r
un

tim
e

[m
s]

)

(b) The (log2) runtimes versus T-count.

Figure 6.2: The measured results for classically simulating modified hidden shift
circuits, versus the method of Kissinger et al. (Kissinger et al., 2022)

235

University of Oxford Matthew Sutcliffe

50 100 150 200 250
Reduced initial T-count

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lo
g

(r
un

tim
e

[m
s]

)

Kissinger et al. Our method (singled decomps only) Our method (singled + doubled decomps)

10 12 14 16 18 20 22 24 26 28
Number of qubits

0.4

0.5

0.6

0.7

0.8

0.9

Ef
fe

ct
iv

e

(a) Overall βeff versus qubit count.

10 12 14 16 18 20 22 24 26 28
Number of qubits

0.0

2.5

5.0

7.5

10.0

12.5

15.0

lo
g

(r
un

tim
e

[m
s]

)

(b) The (log2) runtimes versus qubit count.

Figure 6.3: The measured results for classically simulating IQP circuits, versus
the method of Kissinger et al. (Kissinger et al., 2022)

50 100 150 200 250
Reduced initial T-count

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lo
g

(r
un

tim
e

[m
s]

)

Kissinger et al. Our method (singled decomps only) Our method (singled + doubled decomps)

10 20 30 40 50 60 70
Reduced initial T-count

0.15

0.20

0.25

0.30

0.35

0.40

Ef
fe

ct
iv

e

(a) Overall αeff versus T-count.

10 20 30 40 50 60 70
Reduced initial T-count

0

5

10

15

lo
g

(r
un

tim
e

[m
s]

)

(b) The (log2) runtimes versus T-count.

Figure 6.4: The measured results for classically simulating random Pauli circuits,
versus the method of Kissinger et al. (Kissinger et al., 2022)

236

University of Oxford Matthew Sutcliffe

with regards to real runtime. This is explained by the fact that, as per algorithm

6, the new method theoretically supersedes the old in that it only applies the new

dynamic decompositions if and when they are expected (as measured by α) to

outperform the decompositions introduced in (Kissinger et al., 2022). Despite

this, there remain two possible ways in which the new method can offer worse

runtime results than the old:

• The αeff of the new method is marginally lower than that of the old method,

but the additional computational overhead in finding applications of the new

decompositions makes up more than the difference in runtime.

• At a given step, one of the new decompositions offers the best α and is

hence chosen, but a |catn⟩ (or |T⟩⊗5) decomposition, despite its greater α,

happens to lead to a better αeff (for the current step) by enabling greater

simplification. While theoretically possible, this seems to occur with ex-

ceptional rarity, if at all, and, amongst the experimental results presented

here, was never sufficient to worsen the overall αeff.

Fortunately, neither of these issues occur in practice to any degree of significance,

except in cases of trivially small circuits.

It should be noted that both the trailing off visible at high T-counts in figure 6.1 and

the gaps present in figure 6.2 are artifacts of the parameters used for the random

circuit generation. Specifically, as both depth d and qubit count q were modified

to vary the T-counts of the generated circuits, the former artifact is a consequence

of circuits with particularly low q
d

ratios leading to uncharacteristically trivial ZX-

diagrams after simplification. Meanwhile, the gaps in figure 6.2 are due to the

number of Fredkin gates (from which the T-counts arise) being incremented in

steps of 10, rather than a more granular increment. These artifacts should be

overlooked and emphasis should be placed instead on the stable portions of these

237

University of Oxford Matthew Sutcliffe

figures.

Overall, these results show that the introduction of the four new dynamic decom-

positions invariably leads to significant reductions in runtime for strongly simulat-

ing three of the four circuit classes. Furthermore, the trends predict that as larger

scale circuits are considered, these improvements are even more significant, and

exponentially so. This is as would be expected from reducing αeff (or βeff), and

shows that the potential added complexity of searching for applications of these

dynamic decompositions proves not to be an obstacle.

Interestingly, the improvements are not uniform among the three circuit classes to

which the new method was successful. Instead, one observes that the individual

effectiveness of each dynamic decompositions varies noticeably with the circuit

class. In particular, the singled dynamic decompositions appear to offer a signif-

icant improvement to the runtime of simulating CCZ circuits, with the inclusion

of the doubled decompositions providing a comparable additional improvement.

For modified hidden shift circuits, meanwhile, the inclusion of the singled de-

compositions results in only a small difference, though incorporating also their

doubled counterparts leads to a substantial improvement. The converse appears to

be true of IQP circuits, where a notable enhancement is seen by the singled de-

compositions, with the doubled cases making only a marginal difference. Lastly,

neither set of dynamic decompositions seem to make a significant difference ver-

sus the existing method when applied to fully random circuits generated via Pauli

exponentials. These observations are qualitatively summarised in table 6.1.

One may make sense of these results by closely considering the structures of

these different circuit classes (see section 2.2.3) and how they relate to the struc-

tures among these dynamic decompositions. For instance, CCZ gates contain

structures comparable to those of which the doubled decompositions take advan-

238

University of Oxford Matthew Sutcliffe

Circuit Class Singled Doubled

CCZ ✓ ✓

MHS — ✓

IQP ✓ —

Pauli ✗ ✗

Table 6.1: A qualitative analysis of the dynamic decomposition sets, highlighting
significant improvements (✓), marginal improvements (—), and negligible/no im-
provements (✗) in runtime rates for the different circuit classes.

tage, justifying the effectiveness of these decompositions on both CCZ and MHS

circuits. However, without the additional Hadamard and CNOT gates (compare

equations 2.40 and 2.43), CCZ circuits are more susceptible to simplification via

the rewriting rules, producing reduced gadget diagrams with a greater ubiquity of

such structures seen in the singled decompositions. This, it is suspected, explains

why these decompositions are effective on CCZ circuits but less so when applied

to MHS circuits.

Meanwhile, from equation 2.42, it is evident that IQP circuits are essentially just

composed sets of multi-|cat3⟩ states. As such, it is unsurprising that the multi-

|cat3⟩ decomposition (categorised as singled) is highly effective on such circuits.

Lastly, Pauli circuits are the most random and unstructured of the classes circuits,

which explains why these structure-specific dynamic decompositions are largely

ineffective. Fortunately, being essentially fully random, these circuits are arguably

the least realistic among the four classes under consideration.

6.3 Conclusions

This work identified a number of common circuit structures and patterns to which

well-placed vertex cuts lead to significant reductions in T-count after ZX-calculus

239

University of Oxford Matthew Sutcliffe

simplification is applied along each branch. These patterns are formalised as dy-

namically structured T-decompositions with efficiency α calculated as a function

of the scale of the pattern. Due to the dynamic nature of these decompositions,

as compared to most alternatives in the literature (Kissinger & van de Wetering,

2022; Kissinger et al., 2022; Koch et al., 2023; Laakkonen, 2022), they are typi-

cally highly applicable and are often able to achieve very low α efficiencies.

Benchmarked against the state of the art decomposition strategy of (Kissinger

et al., 2022), these dynamic decompositions are shown to be extremely effec-

tive on three of the four circuit classes considered. Moreover, the effectiveness

of the individual decompositions is not uniform across these circuit classes, and

this observation is analysed and explained through close inspection of the circuit

structures involved in each case. Overall, significantly lower αeff are achieved

with these new decompositions, enabling classical simulation of CCZ, MHS, and

IQP circuits of much greater T-count than would be achievable with the existing

non-dynamic decompositions.

The results shown in this chapter relate to the specific dynamic decompositions in-

troduced in lemmas lemmas 30 to 33. However, a more general conclusion from

this chapter is the demonstration of the potential of such dynamic decompositions

more broadly. Along these lines, and with further analysis of common circuit

structures, a greater number of such decompositions may be discovered. Addi-

tionally, as this chapter demonstrates, such decompositions can be found through

manual analysis and extending known decompositions (such as the cutting de-

composition) to special cases, rather than relying on such catch-all techniques as

simulated annealing.

240

7 | Conclusions and Future Directions

Classical simulation of quantum circuits is a vital tool for understanding the quan-

tum advantage, verifying quantum software and hardware, and optimising quan-

tum algorithms. However, it is a notoriously inefficient problem to solve, with

resource requirements that grow exponentially with one or more metrics of the

given quantum circuits. Various methods of classical simulation have been em-

ployed in recent years, including notably those of tensor contraction and stabiliser

decomposition. To the latter method especially, the graphical language of ZX-

calculus has been thoroughly applied, with a growing body of literature continu-

ing to demonstrate newer, more efficient stabiliser decompositions. This research

has steadily improved the exponential growth rate with which the computational

complexity scales with the number of costly ‘T-gates’ in the circuit.

Building off of this existing literature, the work presented throughout this thesis

introduces new techniques and methods by which quantum circuits may be clas-

sically simulated, with the aid of ZX-calculus. This includes:

• a parameterisation of ZX-calculus which allows many similar ZX-diagrams

to be reduced as one and efficiently evaluated with the use of a GPU,

• a hybrid method, optimally combining stabiliser decomposition and tensor

contraction approaches,

• a procedure for heuristically motivating decomposition choices, predicting

the likely simplification facilitated in each case, to optimise for the overall

efficiency, αeff, and

• a set of new ‘dynamic’ stabiliser decompositions, derived from common

special cases of the cutting decomposition.

241

University of Oxford Matthew Sutcliffe

These new methods are benchmarked against the comparable alternative approaches,

particular via stabiliser decomposition, and in each case an appropriate analysis

of the types of circuits upon which these methods excel is provided. For each of

the above methods, the results indicate substantial improvements to the runtime

for classical simulation of particular types of quantum circuits.

The parameterisation work of chapter 3 is widely applicable to a number of tasks

within classical simulation and beyond, and is largely agnostic of the circuit met-

rics. It may be used in conjunction with the other techniques introduced and, even

with a modest commercial GPU, offers linear runtime improvements near a factor

100.

Meanwhile, the hybrid method introduced in chapter 4 theoretically always out-

performs (or at least matches) both stabiliser decomposition and tensor contrac-

tion, as both may be seen as special cases of this new method. In fact, in practice,

this method is extremely effective — outperforming both naïve methods by many

orders of magnitude — on circuits consisting of scattered cliques which are inter-

nally dense.

A broad conclusion of 5 is that deciding when and where to apply decompositions

can be more important than deciding which decompositions to use. The weighted

heuristic method presented in this chapter utilises only a very simple and trivial

decomposition, though manages to improve upon the overall decomposition ef-

ficiency, reducing the runtime scaling factor against T-count t from O(20.196t) to

O(20.127t).

The final content chapter (chapter 6) considers addition heuristics for deciding

when and where to apply the cutting decomposition, expressed as new dynamic

decompositions, which likewise improve upon the runtime complexity, with no-

table variance across circuit classes. On almost all circuit classes considered, this

242

University of Oxford Matthew Sutcliffe

resulted in drastic improvements to the overall efficiency.

Ultimately, the methods presented in this thesis seek to reduce the computational

cost of simulating quantum circuits with classical hardware. This means reducing

the runtime for simulating given circuits and improving the rate at which this

computational cost scales with the size and complexity of the circuit. Importantly,

this raises the limits of what is classically simulable, with ever larger and more

complex circuits being rendered simulable within reasonable timeframes. This in

turn has significant implications for understanding the quantum advantage and for

verifying and optimising quantum software and hardware — which is vital in the

NISQ era of today.

To this end, these methods prove very effective, with particular benefits and limi-

tations of each. Some are more favourable for certain circuit classes, while others

depend more on the shape of the circuit or structures therein. To some extent,

these methods may be used to complement one another and may be used in con-

junction with existing approaches, while others supersede the known alternatives

under certain conditions. Moreover, in each case, the ideas demonstrated may be

further expanded and built upon in future research, as has already been seen in

some recent works (Ahmad, 2024; Koziell-Pipe et al., 2024; Vollmeier, 2025).

Overall, the research presented in this thesis expands the catalogue of tools avail-

able for classical simulation of quantum circuits, with proven and effective meth-

ods of practical utility. In addition to this, on a more theoretical note, these works

highlight and demonstrate ideas and concepts which may shed light on how fur-

ther developments and optimisations of classical simulation may follow.

No spiders were harmed in the making of this thesis.

243

Bibliography

Aaronson, S. (2013). Quantum computing since democritus. Cambridge Univer-

sity Press.

Aaronson, S., & Gottesman, D. (2004). Improved simulation of stabilizer cir-

cuits. Physical Review A — Atomic, Molecular, and Optical Physics, 70(5),

052328.

Abdelfattah, A., Baboulin, M., Dobrev, V., Dongarra, J., Earl, C., Falcou, J., . . .

others (2016). High-performance tensor contractions for gpus. Procedia

Computer Science, 80, 108–118.

Acharya, R., Aghababaie-Beni, L., Aleiner, I., Andersen, T. I., Ansmann, M.,

Arute, F., . . . others (2024). Quantum error correction below the surface

code threshold. arXiv preprint arXiv:2408.13687.

Aharonov, D. (2003). A simple proof that toffoli and hadamard are quantum

universal. arXiv preprint quant-ph/0301040.

Ahmad, W. A. (2024). Efficient heuristics for classical simulation

of quantum circuits using zx-calculus (Master’s thesis, University of

Oxford). Retrieved from https://www.cs.ox.ac.uk/people/

aleks.kissinger/theses/ahmad-thesis.pdf

Ahmad, W. A., & Sutcliffe, M. (2024). Dynamic t-decomposition for classical

simulation of quantum circuits. arXiv preprint arXiv:2412.17182.

Alerstam, E., Svensson, T., & Andersson-Engels, S. (2008). Parallel computing

with graphics processing units for high-speed monte carlo simulation of

photon migration. Journal of biomedical optics, 13(6), 060504–060504.

Althoby, H. Y., Biha, M. D., & Sesboüé, A. (2020). Exact and heuristic methods

for the vertex separator problem. Computers & Industrial Engineering, 139,

106135.

244

https://www.cs.ox.ac.uk/people/aleks.kissinger/theses/ahmad-thesis.pdf
https://www.cs.ox.ac.uk/people/aleks.kissinger/theses/ahmad-thesis.pdf

University of Oxford Matthew Sutcliffe

Backens, M. (2015). Making the stabilizer zx-calculus complete for scalars. arXiv

preprint arXiv:1507.03854.

Backens, M. (2016). Completeness and the zx-calculus. arXiv preprint

arXiv:1602.08954.

Barak, B., & Marwaha, K. (2021). Classical algorithms and quantum limitations

for maximum cut on high-girth graphs. arXiv preprint arXiv:2106.05900.

Berent, L., Burgholzer, L., & Wille, R. (2022). Towards a sat encoding for quan-

tum circuits: A journey from classical circuits to clifford circuits and be-

yond. arXiv preprint arXiv:2203.00698.

Bertsimas, D., & Tsitsiklis, J. (1993). Simulated annealing. Statistical science,

8(1), 10–15.

Bharti, K., Cervera-Lierta, A., Kyaw, T. H., Haug, T., Alperin-Lea, S., Anand,

A., . . . Menke, T. (2022). Noisy intermediate-scale quantum algorithms.

Reviews of Modern Physics, 94(1), 015004.

Blekos, K., Brand, D., Ceschini, A., Chou, C.-H., Li, R.-H., Pandya, K., & Sum-

mer, A. (2024). A review on quantum approximate optimization algorithm

and its variants. Physics Reports, 1068, 1–66.

Boneh, D., et al. (1999). Twenty years of attacks on the rsa cryptosystem. Notices

of the AMS, 46(2), 203–213.

Bravyi, S., Browne, D., Calpin, P., Campbell, E., Gosset, D., & Howard, M.

(2019). Simulation of quantum circuits by low-rank stabilizer decompo-

sitions. Quantum, 3, 181.

Bravyi, S., & Gosset, D. (2016). Improved classical simulation of quantum cir-

cuits dominated by clifford gates. Physical review letters, 116(25), 250501.

Bravyi, S., Gosset, D., & Liu, Y. (2022). How to simulate quantum measurement

without computing marginals. Physical Review Letters, 128(22), 220503.

Bravyi, S., Smith, G., & Smolin, J. A. (2016). Trading classical and quantum

245

University of Oxford Matthew Sutcliffe

computational resources. Physical Review X, 6(2), 021043.

Bremner, M. J., Jozsa, R., & Shepherd, D. J. (2011). Classical simulation of

commuting quantum computations implies collapse of the polynomial hi-

erarchy. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 467(2126), 459–472.

Bremner, M. J., Montanaro, A., & Shepherd, D. J. (2017). Achieving quan-

tum supremacy with sparse and noisy commuting quantum computations.

Quantum, 1, 8.

Brennan, J., Allalen, M., Brayford, D., Hanley, K., Iapichino, L., O’Riordan,

L. J., . . . Moran, N. (2021). Tensor network circuit simulation at exascale.

In 2021 ieee/acm second international workshop on quantum computing

software (qcs) (pp. 20–26).

Bretto, A. (2013). Hypergraph theory: An introduction. Springer Interna-

tional Publishing. Retrieved from https://books.google.co.uk/

books?id=lb5DAAAAQBAJ

Breuer, H.-P., & Petruccione, F. (2002). The theory of open quantum systems.

OUP Oxford.

Bruzewicz, C. D., Chiaverini, J., McConnell, R., & Sage, J. M. (2019). Trapped-

ion quantum computing: Progress and challenges. Applied physics reviews,

6(2).

Bui, T. N., & Jones, C. (1992). Finding good approximate vertex and edge parti-

tions is np-hard. Information Processing Letters, 42(3), 153-159. Retrieved

from https://www.sciencedirect.com/science/article/

pii/002001909290140Q doi: https://doi.org/10.1016/0020-0190(92)

90140-Q

Callison, A., & Chancellor, N. (2022). Hybrid quantum-classical algorithms in

the noisy intermediate-scale quantum era and beyond. Physical Review A,

246

https://books.google.co.uk/books?id=lb5DAAAAQBAJ
https://books.google.co.uk/books?id=lb5DAAAAQBAJ
https://www.sciencedirect.com/science/article/pii/002001909290140Q
https://www.sciencedirect.com/science/article/pii/002001909290140Q

University of Oxford Matthew Sutcliffe

106(1), 010101.

Carette, T., Horsman, D., & Perdrix, S. (2019). Szx-calculus: Scalable graphical

quantum reasoning. arXiv preprint arXiv:1905.00041.

Chancellor, N., Kissinger, A., Zohren, S., Roffe, J., & Horsman, D. (2023).

Graphical structures for design and verification of quantum error correc-

tion. Quantum science and technology, 8(4), 045028.

Chundury, S., Li, J., Suh, I.-S., & Mueller, F. (2024). Diaq: Efficient state-vector

quantum simulation. arXiv preprint arXiv:2405.01250.

Codsi, J. (2022). Cutting-edge graphical stabiliser decompositions for clas-

sical simulation of quantum circuits [Master’s thesis]. Retrieved from

https://www.cs.ox.ac.uk/people/aleks.kissinger/

theses/codsi-thesis.pdf

Codsi, J., & van de Wetering, J. (2022). Classically simulating quantum

supremacy iqp circuits through a random graph approach. arXiv preprint

arXiv:2212.08609.

Coecke, B., de Felice, G., Meichanetzidis, K., & Toumi, A. (2020). Founda-

tions for near-term quantum natural language processing. arXiv preprint

arXiv:2012.03755.

Coecke, B., de Felice, G., Meichanetzidis, K., Toumi, A., Gogioso, S., & Chiap-

pori, N. (2020). Quantum natural language processing. url: http://www. cs.

ox. ac. uk/people/bob. coecke/QNLP-ACT. pdf .

Coecke, B., & Duncan, R. (2008). Interacting quantum observables. In Inter-

national colloquium on automata, languages, and programming (pp. 298–

310).

Coecke, B., & Duncan, R. (2011). Interacting quantum observables: categorical

algebra and diagrammatics. New Journal of Physics, 13(4), 043016.

Coecke, B., & Kissinger, A. (2018). Picturing quantum processes: A first course

247

https://www.cs.ox.ac.uk/people/aleks.kissinger/theses/codsi-thesis.pdf
https://www.cs.ox.ac.uk/people/aleks.kissinger/theses/codsi-thesis.pdf

University of Oxford Matthew Sutcliffe

on quantum theory and diagrammatic reasoning. In Diagrammatic repre-

sentation and inference: 10th international conference, diagrams 2018, ed-

inburgh, uk, june 18-22, 2018, proceedings 10 (pp. 28–31).

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction

to algorithms. MIT press.

Cowlessur, H., Thapa, C., Alpcan, T., & Camtepe, S. (2024). A hybrid quantum

neural network for split learning. arXiv preprint arXiv:2409.16593.

Cowtan, A., Dilkes, S., Duncan, R., Simmons, W., & Sivarajah, S. (2019). Phase

gadget synthesis for shallow circuits. arXiv preprint arXiv:1906.01734.

Crane, K., Llamas, I., & Tariq, S. (2007). Real-time simulation and rendering of

3d fluids. GPU gems, 3(1).

Criminisi, A., Sharp, T., Rother, C., & Pérez, P. (2010). Geodesic image and

video editing. ACM Trans. Graph., 29(5), 134–1.

De Beaudrap, N., Bian, X., & Wang, Q. (2019). Techniques to reduce

π/4-parity-phase circuits, motivated by the zx calculus. arXiv preprint

arXiv:1911.09039.

de Beaudrap, N., Duncan, R., Horsman, D., & Perdrix, S. (2019). Pauli fusion:

a computational model to realise quantum transformations from zx terms.

arXiv preprint arXiv:1904.12817.

de Beaudrap, N., & Horsman, D. (2020). The zx calculus is a language for surface

code lattice surgery. Quantum, 4, 218.

de Beaudrap, N., Kissinger, A., & Meichanetzidis, K. (2020). Tensor net-

work rewriting strategies for satisfiability and counting. arXiv preprint

arXiv:2004.06455.

De Leon, N. P., Itoh, K. M., Kim, D., Mehta, K. K., Northup, T. E., Paik, H.,

. . . Steuerman, D. W. (2021). Materials challenges and opportunities for

quantum computing hardware. Science, 372(6539), eabb2823.

248

University of Oxford Matthew Sutcliffe

Deutsch, D. E., Barenco, A., & Ekert, A. (1995). Universality in quantum compu-

tation. Proceedings of the Royal Society of London. Series A: Mathematical

and Physical Sciences, 449(1937), 669–677.

Devoret, M. H., Wallraff, A., & Martinis, J. M. (2004). Superconducting qubits:

A short review. arXiv preprint cond-mat/0411174.

Dirac, P. A. M. (1939). A new notation for quantum mechanics. In Mathematical

proceedings of the cambridge philosophical society (Vol. 35, pp. 416–418).

Duncan, R., Kissinger, A., Perdrix, S., & Van De Wetering, J. (2020). Graph-

theoretic simplification of quantum circuits with the zx-calculus. Quantum,

4, 279.

Duncan, R., & Lucas, M. (2013). Verifying the steane code with quantomatic.

arXiv preprint arXiv:1306.4532.

Duncan, R., & Perdrix, S. (2009). Graph states and the necessity of euler decom-

position. In Mathematical theory and computational practice: 5th confer-

ence on computability in europe, cie 2009, heidelberg, germany, july 19-24,

2009. proceedings 5 (pp. 167–177).

Duncan, R., & Perdrix, S. (2010). Rewriting measurement-based quantum com-

putations with generalised flow. In International colloquium on automata,

languages, and programming (pp. 285–296).

Endo, S., Cai, Z., Benjamin, S. C., & Yuan, X. (2021). Hybrid quantum-classical

algorithms and quantum error mitigation. Journal of the Physical Society of

Japan, 90(3), 032001.

Farber, R. (2011). Cuda application design and development. Elsevier.

Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate opti-

mization algorithm. arXiv preprint arXiv:1411.4028.

Fauseweh, B. (2024). Quantum many-body simulations on digital quantum com-

puters: State-of-the-art and future challenges. Nature Communications,

249

University of Oxford Matthew Sutcliffe

15(1), 2123.

Fiduccia, C. M., & Mattheyses, R. M. (1988). A linear-time heuristic for improv-

ing network partitions. In Papers on twenty-five years of electronic design

automation (pp. 241–247).

Forest, S., Gosset, D., Kliuchnikov, V., & McKinnon, D. (2015). Exact synthe-

sis of single-qubit unitaries over clifford-cyclotomic gate sets. Journal of

Mathematical Physics, 56(8).

Fowler, A. G. (2012). Time-optimal quantum computation. arXiv preprint

arXiv:1210.4626.

Freedman, M., Kitaev, A., Larsen, M., & Wang, Z. (2003). Topological quantum

computation. Bulletin of the American Mathematical Society, 40(1), 31–38.

Fried, E. S., Sawaya, N. P., Cao, Y., Kivlichan, I. D., Romero, J., & Aspuru-

Guzik, A. (2018). qtorch: The quantum tensor contraction handler. PloS

one, 13(12), e0208510.

Gambetta, J. M., Chow, J. M., & Steffen, M. (2017). Building logical qubits in

a superconducting quantum computing system. npj quantum information,

3(1), 2.

Garcia, V., Debreuve, E., & Barlaud, M. (2008). Fast k nearest neighbor search

using gpu. In 2008 ieee computer society conference on computer vision

and pattern recognition workshops (pp. 1–6).

Garvie, L., & Duncan, R. (2017). Verifying the smallest interesting colour code

with quantomatic. arXiv preprint arXiv:1706.02717.

Georgescu, I. (2020). Trapped ion quantum computing turns 25. Nature Reviews

Physics, 2(6), 278–278.

Gheorghiu, A., Kapourniotis, T., & Kashefi, E. (2019). Verification of quantum

computation: An overview of existing approaches. Theory of computing

systems, 63, 715–808.

250

University of Oxford Matthew Sutcliffe

Gidney, C., & Fowler, A. G. (2019). Efficient magic state factories with a cat-

alyzed |CCZ⟩ to 2 |T ⟩ transformation. Quantum, 3, 135.

Giles, B., & Selinger, P. (2013, March). Exact synthesis of multiqubit clifford+t

circuits. Physical Review A, 87(3). Retrieved from http://dx.doi

.org/10.1103/PhysRevA.87.032332 doi: 10.1103/physreva.87

.032332

Gottesbüren, L., Heuer, T., Maas, N., Sanders, P., & Schlag, S. (2024). Scalable

high-quality hypergraph partitioning. ACM Transactions on Algorithms,

20(1), 1–54.

Gottesman, D. (1998). The heisenberg representation of quantum computers.

arXiv preprint quant-ph/9807006.

Gottesman, D. (2002). An introduction to quantum error correction. In Proceed-

ings of symposia in applied mathematics (Vol. 58, pp. 221–236).

Gray, J. (2018). quimb: A python package for quantum information and many-

body calculations. Journal of Open Source Software, 3(29), 819.

Gray, J., & Chan, G. K.-L. (2024). Hyperoptimized approximate contraction

of tensor networks with arbitrary geometry. Physical Review X, 14(1),

011009.

Gray, J., & Kourtis, S. (2021). Hyper-optimized tensor network contraction.

Quantum, 5, 410.

Greenberger, D. M., Horne, M. A., & Zeilinger, A. (1989). Going beyond bell’s

theorem. In Bell’s theorem, quantum theory and conceptions of the universe

(pp. 69–72). Springer.

Groote, J. F., Morel, R., Schmaltz, J., & Watkins, A. (2021). Logic gates, circuits,

processors, compilers and computers. Springer.

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search.

In Proceedings of the twenty-eighth annual acm symposium on theory of

251

http://dx.doi.org/10.1103/PhysRevA.87.032332
http://dx.doi.org/10.1103/PhysRevA.87.032332

University of Oxford Matthew Sutcliffe

computing (pp. 212–219).

Häffner, H., Roos, C. F., & Blatt, R. (2008). Quantum computing with trapped

ions. Physics reports, 469(4), 155–203.

Hanks, M., Estarellas, M. P., Munro, W. J., & Nemoto, K. (2020). Effective

compression of quantum braided circuits aided by zx-calculus. Physical

Review X, 10(4), 041030.

Harada, T. (2007). Real-time rigid body simulation on gpus. GPU gems, 3,

611–632.

Harneit, W. (2002). Fullerene-based electron-spin quantum computer. Physical

Review A, 65(3), 032322.

Hasan, K. S., Chatterjee, A., Radhakrishnan, S., & Antonio, J. K. (2014). Perfor-

mance prediction model and analysis for compute-intensive tasks on gpus.

In Network and parallel computing: 11th ifip wg 10.3 international confer-

ence, npc 2014, ilan, taiwan, september 18-20, 2014. proceedings 11 (pp.

612–617).

Heimendahl, A., Montealegre-Mora, F., Vallentin, F., & Gross, D. (2021). Stabi-

lizer extent is not multiplicative. Quantum, 5, 400.

Hennessy, J. L., & Patterson, D. A. (2011). Computer architecture: a quantitative

approach. Elsevier.

Herlihy, M., Shavit, N., Luchangco, V., & Spear, M. (2020). The art of multipro-

cessor programming. Newnes.

Hey, T. (1999). Quantum computing: an introduction. Computing and Control

Engineering, 10(3), 105–112.

Hietala, K., Rand, R., Hung, S.-H., Li, L., & Hicks, M. (2020). Proving quantum

programs correct. arXiv preprint arXiv:2010.01240.

Hofstetter, W., & Qin, T. (2018). Quantum simulation of strongly correlated

condensed matter systems. Journal of Physics B: Atomic, Molecular and

252

University of Oxford Matthew Sutcliffe

Optical Physics, 51(8), 082001.

Huang, C., Zhang, F., Newman, M., Cai, J., Gao, X., Tian, Z., . . . others

(2020). Classical simulation of quantum supremacy circuits. arXiv preprint

arXiv:2005.06787.

Huang, H.-L., Wu, D., Fan, D., & Zhu, X. (2020). Superconducting quantum

computing: a review. Science China Information Sciences, 63, 1–32.

JáJá, J. (1992). Parallel algorithms.

Jamadagni, A., Läuchli, A. M., & Hempel, C. (2024). Benchmarking quan-

tum computer simulation software packages: state vector simulators. arXiv

preprint ArXiv:2401.09076.

Jeandel, E., Perdrix, S., & Vilmart, R. (2018). A complete axiomatisation of the

zx-calculus for clifford+ t quantum mechanics. In Proceedings of the 33rd

annual acm/ieee symposium on logic in computer science (pp. 559–568).

Jeandel, E., Perdrix, S., & Vilmart, R. (2020). Completeness of the zx-calculus.

Logical Methods in Computer Science, 16.

Jo, M., & Kim, M. (2022). Simulating open quantum many-body systems

using optimised circuits in digital quantum simulation. arXiv preprint

arXiv:2203.14295.

Kartsaklis, D., Fan, I., Yeung, R., Pearson, A., Lorenz, R., Toumi, A., . . . Coecke,

B. (2021). lambeq: An efficient high-level python library for quantum nlp.

arXiv preprint arXiv:2110.04236.

Kennes, D. M., Claassen, M., Xian, L., Georges, A., Millis, A. J., Hone, J., . . .

Rubio, A. (2021). Moiré heterostructures as a condensed-matter quantum

simulator. Nature Physics, 17(2), 155–163.

Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for parti-

tioning graphs. The Bell System Technical Journal, 49(2), 291-307. doi:

10.1002/j.1538-7305.1970.tb01770.x

253

University of Oxford Matthew Sutcliffe

Kim, T., Baek, K., Hwang, Y., & Bang, J. (2024). Resource-compact time-optimal

quantum computation. arXiv preprint arXiv:2405.00191.

Kissinger, A., & van de Wetering, J. (2019). Pyzx: Large scale automated

diagrammatic reasoning [Computer software manual]. Retrieved from

https://pyzx.readthedocs.io/en/latest/api.html

Kissinger, A., & van de Wetering, J. (2018). Pyzx. Retrieved from https://

github.com/Quantomatic/pyzx

Kissinger, A., & van de Wetering, J. (2020a). PyZX: Large Scale Automated

Diagrammatic Reasoning. In B. Coecke & M. Leifer (Eds.), Proceedings

16th International Conference on quantum physics and logic, chapman uni-

versity, orange, ca, usa., 10-14 june 2019 (Vol. 318, p. 229-241). Open

Publishing Association. doi: 10.4204/EPTCS.318.14

Kissinger, A., & van de Wetering, J. (2020b, August). Reducing the

number of non-clifford gates in quantum circuits. Physical Review A,

102(2). Retrieved from http://dx.doi.org/10.1103/PhysRevA

.102.022406 doi: 10.1103/physreva.102.022406

Kissinger, A., & van de Wetering, J. (2021). Quizx. Retrieved from https://

github.com/Quantomatic/quizx

Kissinger, A., & van de Wetering, J. (2022). Simulating quantum circuits with

zx-calculus reduced stabiliser decompositions. Quantum Science and Tech-

nology, 7(4), 044001.

Kissinger, A., & van de Wetering, J. (2024). Picturing Quantum Software: An

Introduction to the ZX-Calculus and Quantum Compilation. Preprint.

Kissinger, A., van de Wetering, J., & Vilmart, R. (2022). Classical simulation of

quantum circuits with partial and graphical stabiliser decompositions. arXiv

preprint arXiv:2202.09202.

Kjaergaard, M., Schwartz, M. E., Braumüller, J., Krantz, P., Wang, J. I.-J., Gus-

254

https://pyzx.readthedocs.io/en/latest/api.html
https://github.com/Quantomatic/pyzx
https://github.com/Quantomatic/pyzx
http://dx.doi.org/10.1103/PhysRevA.102.022406
http://dx.doi.org/10.1103/PhysRevA.102.022406
https://github.com/Quantomatic/quizx
https://github.com/Quantomatic/quizx

University of Oxford Matthew Sutcliffe

tavsson, S., & Oliver, W. D. (2020). Superconducting qubits: Current state

of play. Annual Review of Condensed Matter Physics, 11(1), 369–395.

Kliuchnikov, V. (2013). Synthesis of unitaries with clifford+ t circuits. arxiv

eprints. arXiv preprint arXiv:1306.3200.

Koch, M. (2022). Quantum machine learning using the zxw-calculus. arXiv

preprint arXiv:2210.11523.

Koch, M., Yeung, R., & Wang, Q. (2023). Speedy contraction of zx diagrams with

triangles via stabiliser decompositions. arXiv preprint arXiv:2307.01803.

Koziell-Pipe, A. (2025). Enhancing quantum computing using ai (Unpublished

doctoral dissertation). University of Oxford.

Koziell-Pipe, A., Yeung, R., & Sutcliffe, M. (2024). Towards faster quan-

tum circuit simulation using graph decompositions, GNNs and reinforce-

ment learning. In The 4th workshop on mathematical reasoning and ai

at neurips’24. Retrieved from https://openreview.net/forum

?id=54060pbCKY

Laakkonen, T. (2022). Graphical stabilizer decompositions for count-

ing problems [Master’s thesis]. Retrieved from https://

www.cs.ox.ac.uk/people/aleks.kissinger/theses/

laakkonen-thesis.pdf

Laakkonen, T., Meichanetzidis, K., & van de Wetering, J. (2022). A graphi-

cal# sat algorithm for formulae with small clause density. arXiv preprint

arXiv:2212.08048.

Laakkonen, T., Meichanetzidis, K., & van de Wetering, J. (2023). Picturing

counting reductions with the zh-calculus. arXiv preprint arXiv:2304.02524.

Lai, J., Li, H., Tian, Z., & Zhang, Y. (2019). A multi-gpu parallel algorithm

in hypersonic flow computations. Mathematical Problems in Engineering,

2019(1), 2053156.

255

https://openreview.net/forum?id=54060pbCKY
https://openreview.net/forum?id=54060pbCKY
https://www.cs.ox.ac.uk/people/aleks.kissinger/theses/laakkonen-thesis.pdf
https://www.cs.ox.ac.uk/people/aleks.kissinger/theses/laakkonen-thesis.pdf
https://www.cs.ox.ac.uk/people/aleks.kissinger/theses/laakkonen-thesis.pdf

University of Oxford Matthew Sutcliffe

Lau, J. W. Z., Lim, K. H., Shrotriya, H., & Kwek, L. C. (2022). Nisq computing:

where are we and where do we go? AAPPS bulletin, 32(1), 27.

Lengauer, T. (2012). Combinatorial algorithms for integrated circuit layout.

Springer Science & Business Media.

Li, X., Han, W., Liu, G., An, H., Xu, M., Zhou, W., & Li, Q. (2012). A specula-

tive hmmer search implementation on gpu. In 2012 ieee 26th international

parallel and distributed processing symposium workshops & phd forum (pp.

735–741).

Lidar, D. A., & Brun, T. A. (2013). Quantum error correction. Cambridge

university press.

Liu, J., Zhan, B., Wang, S., Ying, S., Liu, T., Li, Y., . . . Zhan, N. (2019). Formal

verification of quantum algorithms using quantum hoare logic. In Computer

aided verification: 31st international conference, cav 2019, new york city,

ny, usa, july 15-18, 2019, proceedings, part ii 31 (pp. 187–207).

Lopes, N., & Ribeiro, B. (2011). Gpumlib: An efficient open-source gpu machine

learning library. International Journal of Computer Information Systems

and Industrial Management Applications, 3(2), 355–362.

Mack, C. A. (2011). Fifty years of moore’s law. IEEE Transactions on semicon-

ductor manufacturing, 24(2), 202–207.

Mahadev, U. (2018). Classical verification of quantum computations. In 2018

ieee 59th annual symposium on foundations of computer science (focs) (pp.

259–267).

Mandrà, S., Marshall, J., Rieffel, E. G., & Biswas, R. (2021). Hybridq: A hy-

brid simulator for quantum circuits. In 2021 ieee/acm second international

workshop on quantum computing software (qcs) (pp. 99–109).

Markov, I. L., & Shi, Y. (2008). Simulating quantum computation by contracting

tensor networks. SIAM Journal on Computing, 38(3), 963–981.

256

University of Oxford Matthew Sutcliffe

Martineau, M., Atkinson, P., & McIntosh-Smith, S. (2018). Benchmarking the

nvidia v100 gpu and tensor cores. In European conference on parallel pro-

cessing (pp. 444–455).

Mazzoncini, F., Bauer, B., Brown, P., & Alléaume, R. (2023). Hybrid

quantum cryptography from communication complexity. arXiv preprint

arXiv:2311.09164.

McAlpine, K. B. (2015). All aboard the impulse train: a retrospective analysis of

the two-channel title music routine in manic miner. The Computer Games

Journal, 4, 155–168.

McClean, J. R., Romero, J., Babbush, R., & Aspuru-Guzik, A. (2016). The theory

of variational hybrid quantum-classical algorithms. New Journal of Physics,

18(2), 023023.

Ng, K. F., & Wang, Q. (2018). Completeness of the zx-calculus for pure qubit

clifford+ t quantum mechanics. arXiv preprint arXiv:1801.07993.

Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum

information. Cambridge university press.

Nobile, M. S., Cazzaniga, P., Tangherloni, A., & Besozzi, D. (2017). Graph-

ics processing units in bioinformatics, computational biology and systems

biology. Briefings in bioinformatics, 18(5), 870–885.

NVIDIA. (2020). Cuda c++ programming guide. NVIDIA, July.

Nylons, L., Harris, M., & Prins, J. (2007). Fast n-body simulation with cuda.

GPU gems, 3, 62–66.

Orgler, S., & Blacher, M. (2024). Optimizing tensor contraction paths: A

greedy algorithm approach with improved cost functions. arXiv preprint

arXiv:2405.09644.

Pan, F., & Zhang, P. (2021). Simulating the sycamore quantum supremacy cir-

cuits. arXiv preprint arXiv:2103.03074.

257

University of Oxford Matthew Sutcliffe

Peddie, J. (2023). The history of the gpu-steps to invention. Springer.

Peres, F. C., & Galvão, E. F. (2023). Quantum circuit compilation and hybrid

computation using pauli-based computation. Quantum, 7, 1126.

Preskill, J. (2018). Quantum computing in the nisq era and beyond. Quantum, 2,

79.

Qassim, H., Pashayan, H., & Gosset, D. (2021). Improved upper bounds on the

stabilizer rank of magic states. Quantum, 5, 606.

Raina, R., Madhavan, A., Ng, A. Y., et al. (2009). Large-scale deep unsupervised

learning using graphics processors. In Icml (Vol. 9, pp. 873–880).

Raj, S. (2022). Graphical calculus for tensor network contractions (Master’s

thesis). MA thesis, University of Oxford, 2022, visited on: 11/23/2022. 240

Victoria â¦.

Ran, S.-J., Tirrito, E., Peng, C., Chen, X., Su, G., & Lewenstein, M.

(2017). Review of tensor network contraction approaches. arXiv preprint

arXiv:1708.09213.

Ravikumār, S. (1996). Parallel methods for vlsi layout design. Bloomsbury

Academic. Retrieved from https://books.google.co.uk/books

?id=VPXAxkTKxXIC

Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector ma-

chine for big data classification. Physical review letters, 113(13), 130503.

Ren, S., Wang, Y., & Su, X. (2022). Hybrid quantum key distribution network.

Science China Information Sciences, 65(10), 200502.

Rendl, F., & Sotirov, R. (2018). The min-cut and vertex separator problem.

Computational Optimization and Applications, 69(1), 159–187.

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM,

21(2), 120–126.

258

https://books.google.co.uk/books?id=VPXAxkTKxXIC
https://books.google.co.uk/books?id=VPXAxkTKxXIC

University of Oxford Matthew Sutcliffe

Roffe, J. (2019). Quantum error correction: an introductory guide. Contemporary

Physics, 60(3), 226–245.

Rutenbar, R. A. (1989). Simulated annealing algorithms: An overview. IEEE

Circuits and Devices magazine, 5(1), 19–26.

Sander, A., Burgholzer, L., & Wille, R. (2024). Equivalence checking of

quantum circuits via intermediary matrix product operator. arXiv preprint

arXiv:2410.10946.

Sanders, J., & Kandrot, E. (2010). Cuda by example: an introduction to general-

purpose gpu programming. Addison-Wesley Professional.

Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N.,

& Peev, M. (2009). The security of practical quantum key distribution.

Reviews of modern physics, 81(3), 1301–1350.

Schaller, R. R. (1997). Moore’s law: past, present and future. IEEE spectrum,

34(6), 52–59.

Schlag, S. (2020). High-quality hypergraph partitioning (PhD thesis). Karlsruhe

Institute of Technology, Germany.

Schlag, S., Heuer, T., Gottesbüren, L., Akhremtsev, Y., Schulz, C., & Sanders, P.

(2022, mar). High-quality hypergraph partitioning. ACM J. Exp. Algorith-

mics. Retrieved from https://doi.org/10.1145/3529090 doi:

10.1145/3529090

Schwetz, M., & Noack, R. (2024). Three-qubit deutsch–jozsa in measurement-

based quantum computing. International Journal of Quantum Information,

22(07), 2350046.

Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and dis-

crete logarithms on a quantum computer. SIAM review, 41(2), 303–332.

Slussarenko, S., & Pryde, G. J. (2019). Photonic quantum information processing:

A concise review. Applied physics reviews, 6(4).

259

https://doi.org/10.1145/3529090

University of Oxford Matthew Sutcliffe

Stallings, W. (2010). Computer organization and architecture: Designing for

performance 8th edition. Pearson Education, Inc.,.

Stollenwerk, T., & Hadfield, S. (2024). Measurement-based quantum approximate

optimization. In 2024 ieee international parallel and distributed processing

symposium workshops (ipdpsw) (pp. 1115–1127).

Sutcliffe, M. (2024a). Paramzx. Retrieved from https://github.com/

mjsutcliffe99/ParamZX

Sutcliffe, M. (2024b). Procoptcut. Retrieved from https://github.com/

mjsutcliffe99/ProcOptCut

Sutcliffe, M. (2024c). Smarter k-partitioning of zx-diagrams for improved quan-

tum circuit simulation. arXiv preprint arXiv:2409.00828.

Sutcliffe, M. (2024d). Zx-partitioner. Retrieved from https://github.com/

mjsutcliffe99/zxpartitioner

Sutcliffe, M., & Kissinger, A. (2024a). Fast classical simulation of quan-

tum circuits via parametric rewriting in the zx-calculus. arXiv preprint

arXiv:2403.06777.

Sutcliffe, M., & Kissinger, A. (2024b, August). Procedurally optimised zx-

diagram cutting for efficient t-decomposition in classical simulation. Elec-

tronic Proceedings in Theoretical Computer Science, 406, 63â78. Re-

trieved from http://dx.doi.org/10.4204/EPTCS.406.3 doi:

10.4204/eptcs.406.3

Takeda, S., & Furusawa, A. (2019). Toward large-scale fault-tolerant universal

photonic quantum computing. APL Photonics, 4(6).

Theis, T. N., & Wong, H.-S. P. (2017). The end of moore’s law: A new beginning

for information technology. Computing in science & engineering, 19(2),

41–50.

Toumi, A. (2022). Category theory for quantum natural language pro-

260

https://github.com/mjsutcliffe99/ParamZX
https://github.com/mjsutcliffe99/ParamZX
https://github.com/mjsutcliffe99/ProcOptCut
https://github.com/mjsutcliffe99/ProcOptCut
https://github.com/mjsutcliffe99/zxpartitioner
https://github.com/mjsutcliffe99/zxpartitioner
http://dx.doi.org/10.4204/EPTCS.406.3

University of Oxford Matthew Sutcliffe

cessing (Doctoral dissertation, University of Oxford). Retrieved from

arXivpreprintarXiv:2212.06615

Toumi, A., Yeung, R., & de Felice, G. (2021). Diagrammatic differentiation for

quantum machine learning. arXiv preprint arXiv:2103.07960.

Turing, A. M. (1936). On computable numbers, with an application to the

entscheidungsproblem. J. of Math, 58(345-363), 5.

van de Wetering, J. (2020). Zx-calculus for the working quantum computer sci-

entist. arXiv preprint arXiv:2012.13966.

Van Laarhoven, P. J., Aarts, E. H., van Laarhoven, P. J., & Aarts, E. H. (1987).

Simulated annealing: Theory and applications. Springer.

Vidal, G. (2003). Efficient classical simulation of slightly entangled quantum

computations. Physical review letters, 91(14), 147902.

Vollmeier, Y. (2025). Graphical stabilizer decompositions for multi-control

toffoli gate dense quantum circuits. High school thesis. Retrieved from

https://arxiv.org/abs/2503.03798

Wahl, T. B., & Strelchuk, S. (2023). Simulating quantum circuits using efficient

tensor network contraction algorithms with subexponential upper bound.

Physical Review Letters, 131(18), 180601.

Wang, J., Sciarrino, F., Laing, A., & Thompson, M. G. (2020). Integrated photonic

quantum technologies. Nature Photonics, 14(5), 273–284.

Wang, Q. (2022). Completeness of the zx-calculus. arXiv preprint

arXiv:2209.14894.

Wang, Q., & Yeung, R. (2022). Differentiating and integrating zx diagrams. arXiv

preprint arXiv:2201.13250.

Wang, Q., Yeung, R., & Koch, M. (2024). Differentiating and integrating zx dia-

grams with applications to quantum machine learning. Quantum, 8, 1491.

Wesenberg, J. H., Ardavan, A., Briggs, G. A. D., Morton, J. J., Schoelkopf, R. J.,

261

arXivpreprintarXiv:2212.06615
https://arxiv.org/abs/2503.03798

University of Oxford Matthew Sutcliffe

Schuster, D. I., & Mølmer, K. (2009). Quantum computing with an electron

spin ensemble. Physical Review Letters, 103(7), 070502.

Whalen, S. (2005). Audio and the graphics processing unit. Author report,

University of California Davis, 47, 51.

Wootters, W. K., & Zurek, W. H. (1982). A single quantum cannot be cloned.

Nature, 299(5886), 802–803.

Xu, X., Benjamin, S., Sun, J., Yuan, X., & Zhang, P. (2023). A her-

culean task: Classical simulation of quantum computers. arXiv preprint

arXiv:2302.08880.

Yeung, R. (2020). Diagrammatic design and study of ansatze for quantum ma-

chine learning. arXiv preprint arXiv:2011.11073.

Young, K., Scese, M., & Ebnenasir, A. (2023). Simulating quantum computations

on classical machines: A survey. arXiv preprint arXiv:2311.16505.

Zaman, K., Ahmed, T., Hanif, M. A., Marchisio, A., & Shafique, M. (2024). A

comparative analysis of hybrid-quantum classical neural networks. arXiv

preprint arXiv:2402.10540.

Zhang, S.-X., Wan, Z.-Q., Lee, C.-K., Hsieh, C.-Y., Zhang, S., & Yao, H. (2022).

Variational quantum-neural hybrid eigensolver. Physical Review Letters,

128(12), 120502.

Zhang, Y., Zhang, Y., Portokalidis, G., & Xu, J. (2022). Towards understand-

ing the runtime performance of rust. In Proceedings of the 37th ieee/acm

international conference on automated software engineering (pp. 1–6).

Zulehner, A., & Wille, R. (2018). Advanced simulation of quantum computations.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 38(5), 848–859.

Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the

classical. Reviews of modern physics, 75(3), 715.

262

	Introduction
	Background
	Quantum Computing
	Quantum States
	Quantum Gates
	Quantum Circuits

	ZX-Calculus
	Introduction to ZX-Calculus
	Rewriting Strategies
	Circuit Classes

	Classical Simulation
	Strong and Weak Simulation
	Marginal Probabilities
	Tensor Contraction
	Stabiliser Decomposition

	Hypergraph Partitioning
	Weighted Hypergraphs
	Minimum Balanced k-Cut
	Partitioning ZX-Diagrams

	GPU Parallelism
	Parallel Processing
	GPU Architecture
	GPU Memory Structure
	Data Coalescing
	Data Pipelining

	Parameterised ZX-Calculus
	Parametric Symmetry
	Parameterising ZX-Calculus
	Polarising Phases
	Parameterising State Copy
	Parameterising the Remaining Rewriting Rules
	Parameterised Scalar Expressions

	GPU-Parallelised Evaluation
	Condensing the Data Structure
	Further Considerations
	Computing the Subterms
	Computing the Terms
	Parallelised Summation Algorithm
	Summary of the New Method

	Application to Classical Simulation
	Repeated Strong Simulation
	Computing Individual Marginal Probabilities
	Repeated Weak Simulation

	Results
	Experimental Setup
	Experimental Measurements

	Further Applications
	Application to Circuit Measurements
	Parameterising Stabiliser Decompositions

	Conclusions

	Smarter ZX-Diagram Partitioning
	Formalising the Existing Method
	Redundancy Mitigation via Parameterisation
	GPU-Parallelised Cutting
	Pairwise Partition Regrouping
	The ZX-Partitioner
	Estimating Runtime
	Direct Decomposition
	Smart Partitioning

	Results
	Tensor Contraction and Compound Circuits
	Improving Partitionability
	Conclusions

	Procedurally Optimised ZX-Diagram Cutting
	Efficient Graph Cutting
	Slicing Spider Sandwiches
	CNOT Grouping
	Cutting in Tiered Structures
	Cut Order Correction

	Optimised Cutting Procedure
	Results
	Circuit Generation
	Complexity and Efficiency
	Experimental Measurements for Random Circuits

	Conclusions

	Dynamic T-Decomposition
	Deriving Dynamic Decompositions
	Results
	Conclusions

	Conclusions and Future Directions
	Bibliography

