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SUMMARY

This paper studies the problem of congestion control on wireless networks. A dynamical model for
the end-to-end network flow control is proposed, which exploits the differentiation between congestion
loss and physical channel error loss. The introduction of a specific wireless model is motivated by
the distinctive presence of channel errors, which are often not known exactly. We assume that each
wireless link is associated with an additional error function that depends on the current flow along
the link and which accounts for the packet loss rate caused by the physical channel. This leads to a
new dynamic flow control scheme that naturally extends a known mathematical model for the fluid
flow approximation of the Transmission Control Protocol for wireline networks. The main objective of
this work is to study the dynamical properties of the new model: we analyze its nonlinear dynamics,
derive its stability properties, and study its robustness to delays. We also present and discuss some
ns-2 simulations of its dynamics. This work additionally looks at the actual implementation of the
proposed scheme: by requiring only modifications to the application layer rather than the transport
one, no alterations to the network infrastructure or transport protocols are needed. The article argues
that the new scheme appears to be not only theoretically meaningful but also practically relevant for
an application layer implementation.
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1. Introduction

Transmission Control Protocol (TCP) has been considerably successful on the wireline Internet
since its first implementation by Jacobson [25] in 1988. TCP Reno, the most widely used
TCP version today, is a window-based scheme that adapts itself according to the measured
conditions of the network. Specifically, in the congestion avoidance stage, it increases its window
size by a constant if no packet is lost in the previous round trip time, while it halves it if there
is any packet loss during the previous round trip time. This latter case indicates the presence
of information overflow on the network, since the key assumption TCP relies on is that packet
loss is a sign of congestion. In wireless networks however, packet loss can also be caused by
physical channel errors, due to message corruption, presence of noise or interference. Thus,
the assumption holding for the wireline case breaks down, resulting in underutilization of
the wireless bandwidth [24]. Similar observations hold for TCP-friendly schemes, e.g. TCP-
Friendly Rate Control (TFRC) [12,21] or other modifications of the Reno protocol (for instance
NewReno [22]), since they share the same key assumption as TCP.

There have been a number of efforts to improve the performance of TCP (or TFRC) over
wireless, which exploit information from the network [4,5,8,10,16–18,24,35,47,48,52,54,60]. For
instance, Snoop [5] is a TCP-AWARE link layer approach which suppresses acknowledgement
packets (ACK) from the TCP receiver, and does local retransmissions when a packet is
corrupted by wireless channel errors. More generally, local retransmissions are widely used
in todays wireless system design [19]. However, even with local retransmissions, there may still
be packet losses caused by wireless error: in either wireless local area network (WLAN) or
cellular systems the number of local retransmissions is usually small and cannot be arbitrarily
increased to make the wireless link free of packet-losses because it would incur a large end-to-
end delay variation. This would cause TCP in the transport layer to suffer from timeout, which
affects the throughput much more severely than wireless packet loss. Explicit Loss Notification
(ELN) [4] can be applied to notify the TCP sender when a packet loss is caused by the
physical channel rather than by the presence of congestion. Furthermore, end-to-end statistics
can also be used to detect congestion when a packet is lost [8, 35, 48, 52, 54]. For instance, by
examining trends in the one-way delay variation, one could interpret loss as a sign of congestion
if the one-way delay is increasing, and a sign of wireless channel error otherwise [8, 48]. From
another perspective, TCP Westwood is a technique that tries to counteract wireless lossy
links using end-to-end bandwidth estimation [41]. Vegas [9] and, more recently, FAST [43,56]
rely on queuing delays as the congestion signal. The principle is nicely tailored to wireless
networks, however it can suffer from underutilization due to high levels of noise in the delay
measurement [37]. Additionally, [40] investigates pricing strategies coming from optimization
problems in a wireless setting. A survey of the cited end-to-end approaches is contained in [10].
All these methods either hide end-hosts from packet loss caused by wireless channel error, or
provide end-hosts with the ability to distinguish between packet loss caused by congestion, and
that caused by wireless channel error. The disadvantage of these schemes is that they either
require support from the network infrastructure or require modifications to the transport layer
protocols. As such they are less likely to be widely deployed.

A recent approach called MULTFRC [12], which is based on modifications of TFRC
only to the application layer, puts forward a new method to improve the performance in
wireless networks, and is also applicable to TCP. MULTFRC opens an appropriate number
of connections depending on the observed round trip time, so as to fully utilize the wireless
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bandwidth, while keeping the packet loss rate and the round trip time at a minimum. An
important and challenging issue to be addressed in the MULTFRC framework is the study of
its dynamical properties. In particular, how should the problem of flow control over wireless
network be systematically redefined? Are there any end-to-end stable and robust application
layer schemes that address the problem, without changing the network infrastructure or the
protocol stack?

Recently there has been a great deal of research activities on algorithm synthesis and
analysis for decentralized, end-to-end network flow control. A widely recognized setting for
the wireline case has been introduced by Kelly et al. in the seminal work [29], and is based on
a fluid-flow approximation of the TCP Reno in its congestion avoidance stage. It associates a
utility function to each flow, a cost function to each resource, and maximizes the aggregate
net system utility function. Under this framework, flow control schemes can be viewed as
algorithms to compute the optimal solution to this maximization problem. The work proposes
two complementary flow control algorithms, the primal and the dual. In primal algorithms,
the users adapt their sending rates dynamically based on the costs that incur along the path
through the network, while the routers determine their prices directly from the arrival rates
at the links according to a static law [2, 3, 26, 29, 32, 55]. In dual algorithms, on the other
hand, the routers adapt the prices dynamically based on the link rates, and the users select a
static law to determine the source rates directly from the prices along the path and the source
parameters [29,39,43,57]. These two approaches can be also combined [28,39,43,53].

The major difference between wireline and wireless networks is that in the latter the physical
layer is a major source of packet loss. The TCP schemes devised for the wireline case are
documented to underperform on wireless networks [24]. In this paper, we shall analyze a new
scheme for the wireless scenario that mitigates this underutilization issue. The new model is
related to that in [29] for the wireline case, and by explicitly including the physical error loss
aims at improving the TCP scheme over the network utilization. More precisely, in the model
we assume that each wireless link, which is associated with a fixed capacity, is enhanced with
an additional error function as an additive term that depends on the current flow along the
link. This error function accounts for the packet loss rate caused by the physical channel. We
then introduce a new dynamic flow control scheme that is based on feedback from the channel,
and prove that the new system will perform as optimally as the corresponding one for the
wireline case. The main objective of the work is to study its dynamical properties and to offer
a theoretical support for its actual application, which has been investigated in [14, 15]. By
exploiting the heterogeneous time scales of the system, we prove global stability of the new
model. Furthermore, we derive some conditions for local stability of the scheme in the presence
of delays. We provide some numerical results in ns-2 to validate our analysis.

We then interpret the proposed modification of the fluid-flow model from a practical
perspective and justify the claim that no actual change in the corresponding TCP scheme
for the wireline case or in the underlying infrastructure is required to implement it. We in fact
suggest that the new scheme can be practically implemented by opening parallel connections
by the user, each of which employs the original TCP protocol. We remark that the possibility
of relying on the existing TCP protocol sets this work apart from the adjacent literature.
In a related work [14], an actual implementation of a protocol derived from the ideas here
presented is shown. This approach also connects back to the techniques proposed in [12], and
revisits them within a systematic framework. The presence of channel errors is the cause of
imperfect feedback from the network to the users. These errors prevent the exact measurement
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of the congestion status on the network. This issue is overcome by exploiting other available
information as feedback coming from the network. This suggests a practical way of turning
our proposed schemes into actual protocols. A number of schemes following similar ideas have
been proposed recently [13, 14], which further argues in favor of the implementability of the
model introduced and studied in this work.

The paper introduces the problem of congestion control for wireline networks and the
extension to the wireless case in Section 2. In Section 3 the proposed modification is introduced
and described. The main theoretical contributions of the article are contained in Section
4, where the dynamical properties of the model are analyzed. A discussion on its practical
implementability is contained in Section 5. Finally, simulations in ns-2 are presented in Section
6. Future research directions conclude the contribution.

2. Problem Formulation

In this section we describe the dynamical model of the well known general flow control problem
first introduced in [29]. In doing so, we adhere to the notation in [29]. Starting from the wireline
scenario, we motivate and build up the extensions for the more challenging wireless case.

2.1. A fluid-flow Model as a primal algorithm for Congestion Control of Wireline Networks

A communication network is described via a set J of resources, i.e. links, and a set R of
users, i.e. sender-receiver pairs, or routes through the network. Each j ∈ J has a finite
capacity Cj < ∞. The network interconnections are described via a constant 0-1 routing
matrix A = (ajr, j ∈ J, r ∈ R), where ajr = 1 if j ∈ r and is equal to zero otherwise.

A fluid-flow, continuous-time model for the TCP scheme has been proposed in order to
facilitate the analysis of the properties of the protocol [29]. To each user r a sending rate xr ≥ 0
and a utility function Ur(xr) are associated. Users are supposed to behave independently.
Ur(xr) is assumed to be increasing, strictly concave and continuously differentiable over the
range xr ≥ 0, according to the hypothesis of elastic traffic in [50]. Assume the utilities are
additive, so that the aggregate benefit for the entire system is

∑
r∈R Ur(xr). Define the cost

incurred at link j as Pj(·). The exchange of information between users over the links can be
interpreted as a concave maximization problem [38, 39] depending on the aggregate utility
functions for the rates and on the costs at the links:†

max
∑
r∈R

Ur(xr)−
∑
j∈J

Pj

∑
s:j∈s

xs

 , (1)

where the cost functions Pj(·), similarly to the one introduced in [32], are defined as

Pj(y) =

∫ y

0

pj(z) dz. (2)

The terms pj(y) can be interpreted as “prices” at the link and are assumed to be non-negative,
continuous and increasing functions; they represent a congestion measure and, as can be

†The abuse in notations on the indices of the sum in the argument of the prices adheres to [29].
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inferred from their structure, they have a local dependence on the aggregate rate passing
through the link. With these assumptions on pj(z), the function Pj(y) is strictly convex. As
in [28], in this paper we choose the following “packet loss rate”:

pj(y) =
(y − Cj)+

y
. (3)

Fig. 1(left) shows an example of pj(·) as packet loss rate on a link with capacity of 1 kilobits-

per-second (kbps). The end-to-end packet loss rate for user r is 1−
∏
j∈r

(
1− pj(

∑
s:j∈s xs)

)
,

which is approximately
∑
j∈r pj(

∑
s:j∈s xs) when pj(

∑
s:j∈s xs) is small for each j. In the rest

of this paper we assume the price function to be small enough so that
∑
j∈r pj(

∑
s:j∈s xs) is

the end-to-end packet loss rate for any user r.
Flow control can also be examined from a dynamical perspective, studying its evolution

around an equilibrium that is the solution of (1). For the logarithmic utility function
Ur(xr) = wor log xr, where wor is a weight and can be understood as pay per unit time, Kelly et
al. [29] have shown that both primal and dual algorithms can be used to solve the optimization
problem (1). In the rest of this paper, we focus on the primal algorithm only, since primal
algorithms result in an end-to-end based TCP-like behavior. The rate control scheme has the
following shape:

d

dt
xr(t) = kr

wor − xr(t)∑
j∈r

pj

∑
s:j∈s

xs(t)

 , r ∈ R, (4)

with kr a positive scale factor affecting the adaptation rate. The constant wor , rather than
being thought of as another adaptation rate, can be physically interpreted as the number
of connections that the user establishes within the network. To see that, assume wor is set
to wir in (4) to control the rate of connection when user r opens one (the ith) connection.
Then, opening N − 1 additional connections can be thought of adding N − 1 additional users
along the same path as user r, and associating the same source parameter wir to control their
rate. Thus, the aggregate rate of these N connections, xr, is the sum of the rates of these
N users, and is adjusted in a way shown in (4) but with wor = N · wir. Hence the source
parameter wor is proportional to the number of connections opened by user r, and changing
the number of connections is equivalent to adjusting wr proportionally. Later we shall further
exploit this interpretation. As already discussed, the congestion signal, i.e. the packet loss rate,
depends on the sum of the prices along all the links that are crossed by the user. Therefore, the
system exploits only aggregate, end-to-end information from the network. The system in (4)
corresponds to the TCP-like additive increase and multiplicative decrease algorithm. A wealth
of research on the dynamical and robustness properties of the scheme in (4) is summarized in
the contributions [26,29,55].

If the end users and the links in the network deploy the algorithm in (4), the unique, globally
asymptotically stable rates of the entire network, denoted vectorially by xo = (xor, r ∈ R), are
given by

xor =
wor∑

j∈r pj

(∑
s:j∈s x

o
s

) , r ∈ R. (5)

This unique solution is also optimal in the sense that the network bottlenecks are fully utilized,
the total net utility is maximized, and the users are proportionally fair to each other [29].
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Figure 1. Examples of the price function as packet loss rate on a link with capacity 1 kbps. The error
rate is taken to be a constant, while in general it depends on the aggregate flow rate, as in Eqn. (6).

2.2. Extending the Model to the Wireless Scenario

Wireless channels are affected by errors, due to interference and noise. In a TCP-like setting
this directly influences the end-to-end packet loss rate at each link, i.e. the price sensing by
end-hosts via end-to-end measurements. We encompass this fact within a new price function
for each link j ∈ J :

qj

∑
s:j∈s

xs(t)

 = pj

∑
s:j∈s

xs(t)

+ εj

∑
s:j∈s

xs(t)

 ≥ pj
∑
s:j∈s

xs(t)

 . (6)

This function accounts for both the congestion measure, i.e. the dependence on the term pj(·),
as well as the channel error εj(·). The function εj(·) is assumed to be monotonically increasing
with respect to its variable, and accounts for the probability of errors on link j.

Another feature of wireless channels is their time-varying nature. The introduced model
inherits the assumption of constant capacity for each link from the framework in [29], which was
developed for wireline networks. This point is key in technically proving fundamental results
in this paper and its extension to the time-varying case continues to be an open problem.
Our model also deals with a constant routing matrix A. These hypotheses are reductive in
general, especially for some networks such as ad-hoc or sensor networks: this is because of
the actual time-varying nature of wireless channels (e.g., due to the fading characteristic of
their structure), as well as because of the observed dependence of the capacity on the current
information flow along each link. However, in practice the assumptions can be verified in the
study of certain classes of static wireless access cellular networks, such as WLAN, CDMA
or WiMax. Furthermore, the constant capacity assumption can practically hold within the
relatively short time scales we are interested in. This premise has also been adopted by other
practical work that stem from similar ideas, and the positive performance over both 802.11b
access networks and commercial cellular networks again hints to its validity [14, 15, 58]. We
thus realistically expect that the performance of the schemes will also be reasonable in cases
where such assumptions might not strictly hold.

Fig. 1(right) shows an example of qj(·) as packet loss rate on a link with capacity of 1 kbps,
a fixed εj = 0.05, while pj(·) is shown in Fig. 1(left). When the wireless link is not congested,
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qj(·) becomes equal to εj(·) since all the packet loss is caused by channel error. When the link
is congested and packets are dropped at the router, qj(·) gradually increases, similar to pj(·) in
Fig. 1(left). Notice that in general the quantity qj(·) is monotonically increasing as a function
of its variable, because of a similar assumption on the two terms that compose it.

The TCP model (4) then depends on this new function qj(·). It is straightforward to calculate
the equilibrium of this new dynamic relation, x∗ = (x∗r , r ∈ R):

x∗r =
wor∑

j∈r qj

(∑
s:j∈s x

∗
s

) , r ∈ R. (7)

Comparing the stable point x∗ in (7) with xo in (5), which is the optimal solution for the
optimization problem shown in Eqn. (1), we have x∗r < xor if

∑
j∈r εj(·) > 0. Since the optimal

solution for problem in (1) is unique, the equilibrium point x∗ is then a suboptimal solution.
Interpreting this fact through an underlying optimization problem, as in (1), shows that the
new equilibrium will be suboptimal, as long as there is nonzero channel error, and hence the
network bottleneck could be underutilized. This motivates and defines the flow control problem
over wireless, which we address in this paper by the introduction of an enhancement to the
wireline scheme, as described in the following section.

3. A New Flow Control Scheme for Wireless Networks

In this section we introduce a new scheme as an enhancement to the TCP protocol model,
aimed at compensating the suboptimality of the equilibrium point of the rates when the
wireline scheme in (4) is employed on wireless links.

As argued later, an important advantage is that it works at the application layer level, thus
not requiring any modifications of the infrastructure or the transport layer protocols of the
network. As anticipated on page 5, the underlying rationale for the described approach is that
the parameter wr for each user r can be directly modified.

Let wr(t) denote the source parameter for user r, which is assumed to be a function of time. It
is desirable to adjust wr(t) slowly so that (a) the number of connections is also adjusted slowly,
and (b) the sensitivity to measurement error in packet loss rate is decreased. We consider the
case where wr(t) is dynamically updated as follows: ∀r ∈ R,

d

dt
wr(t) = cr

(
wor − wr(t)

∑
j∈r pj(

∑
s:j∈s xs(t))∑

j∈r qj(
∑
s:j∈s xs(t))

)
, (8)

where pj(·) and qj(·) are defined in (3) and (6) respectively. The source rate for user r then is
given by:

d

dt
xr(t) = kr

wr(t)− xr(t)∑
j∈r

qj(
∑
s:j∈s

xs(t))

 . (9)

The intuition behind this approach is that when noise is significant and qj(t) is large, wr(t) in
(8) is increased so as to compensate for the xr(t)

∑
j∈r qj(t) term in (9), and hence to properly

control xr(t). It is easy to see that the unique equilibrium point referring to the rates for the
system (8)-(9) is xo, as given by Eqn. (5). It is also the solution for the optimal problem in
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Eqn. (1), studied by Kelly et al. for wired networks. In the following, we shall denote the
equilibrium referring to the connection variables as w∗.

The composite system built upon Eqn. (9) for the rates xr and Eqn. (8) for wr, is a nonlinear,
coupled, and multivariable one. Also, note that the two equations (8)-(9) are not exactly
symmetric. In Section 4 we analyze in detail stability and delay properties of this system.

As already mentioned in Section 1, existing approaches [4,5,8,10,16–18,24,35,47,48,52,54,60]
have been translated into a number of practical schemes to provide user r with the correct
price

∑
j∈r pj(t), or its estimated value. End users can then modify the source rate control law

to react to
∑
j∈r pj(t) rather than to the noisy

∑
j∈r qj(t). Hence, in most existing techniques

the problem of flow control over wireless is reduced to the problem of flow control over wireline
networks by directly synthesizing a communication protocol. Our approach, on the other hand,
adjusts wr to solve the problem. The intuition is clearly seen from Eqn. (7), in that if the
numerator wor is changed to a larger value, then it is possible to preserve x∗r = xor. It is
important to notice that this scheme can be easily implemented by interpreting the quantity
wr as the number of connections which an application opens in an actual network: from a
fluid-flow perspective, the new scheme suggests a way to adjust this term. Therefore, it is an
application layer -based approach and is thus easy to deploy, since it does not require changes
to the infrastructure of the network or to its transport layer protocols. From a performance
standpoint, it achieves the optimal total net utility. We stress that in this approach we assume
the end user r to have access to both the correct price function

∑
j∈r pj(t) and the noisy one∑

j∈r qj(t) – we will revisit this important assumption in the light of the proposed model in
Section 5.

4. Analysis of the New Scheme

In this Section, some dynamical properties of the scheme introduced in Section 3 are studied.
The focus is initially on global stability. We then provide proper conditions to retain local
stability in the presence of delays. Throughout the paper, given a vector v = [v1, . . . , vn]T ,
diag(vi) (or diag(v)) denotes the n × n diagonal matrix with elements taken in order from
vector v.

4.1. Global Stability

Global stability ensures that in an arbitrarily large network with any number of users and at
any condition, the rates xr, r ∈ R converge to the optimal finite point xor. This means the
rates are appropriately controlled according to the network congestion conditions such that
bottlenecks are fully utilized and, at the same time, congestion collapse [25, 53] is avoided.
Motivated by the work in [29], we prove here the global stability of the interconnections by
Lyapunov arguments. While in this manuscript we have adopted a specific form for the price
function, i.e. Eqn. (3), we in fact do not make any assumptions in the stability proofs, other
than the basic ones for general price functions in Sec. 2.1. Hence our stability results apply to
more general models.
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The Two Time Scales Assumption

In this subsection we will show that the dynamic update system, explicitly defined by (8)-
(9), is endowed with some stability properties. To begin with, we make the following key
observation: the dynamics corresponding to (8) and (9) evolve in two different time scales:
the first in a faster one, while the second in a slower one. This assumption reflects the fact
that in practice wr(t), interpreted as the number of connections of a user within the network,
should be adjusted much more slowly than the source rate xr(t). We will further discuss this
assumption in Section 5. After vectorizing (8)-(9), we can then rewrite the coupled equations
as the pair:

ηẋ(t) = F(x,w); (10)

ẇ(t) = G(x,w). (11)

The term η is a very small number which we introduce to reframe our current setting within
the classical small-perturbations framework [30, 49]; this change can be practically obtained
through rescaling of the constant vector parameters kr, cr, r ∈ R. Intuitively, since w changes
much more slowly than x, it can be considered a fixed parameter within equation (10).
On the other hand, (11) may be thought of evolving once (10) has reached its equilibrium
configuration. More rigorously, by formally applying the two time scales decomposition, we
can decouple the entire system into two subsystems: namely, ∀r ∈ R at fast time scale, a
boundary layer system, which is obtained through a rescaling of time, τ = t/η and letting
η → 0: {

ẋr(t) = kr

(
wr(t)− xr(t)

∑
j∈r qj(

∑
s:j∈s xs(t))

)
,

wr(t) = constant;
(12)

furthermore, ∀r ∈ R at slow time scale, a reduced order system, which is obtained letting
η → 0:  xr(t) = wr(t)∑

j∈r qj(
∑
s:j∈s xs(t))

,

ẇr(t) = cr

(
wor − wr(t)

∑
j∈r pj(

∑
s:j∈s xs(t))∑

j∈r qj(
∑
s:j∈s xs(t))

)
.

(13)

We leverage the notion of semi-global exponential stability (as in [49, Chapter 5]) to describe
the asymptotic properties of the equilibrium of the overall system (10)-(11) as follows:

Theorem 1. For the singularly perturbed system (10)-(11) the following holds:

• Eqn. (10) has a region of equilibrium points F(x,w) = 0 that identifies a manifold w = h(x);
• Within this manifold, Eqn. (11) has a unique global equilibrium which is the solution of
G(x,h(x)) = 0. This composition is the reduced order system, described in (13);

• The equilibrium manifold for the boundary layer system in (12) is semi-globally exponentially
stable;

• For the reduced order system in (13), ẇ = ∂h
∂x ẋ = G(x,h(x)) is also semi-globally exponentially

stable.

Hence, by the stability properties of singular perturbation non-linear systems, there exists an
η∗ > 0 such that, ∀η ≤ η∗, the global equilibrium point of the composite system is semi-globally
exponentially stable.
Proof: Refer to Appendix I.1.
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10 ABATE, CHEN, WANG, ZAKHOR, SASTRY

The main point of the theorem is that, under the assumption that the source rates xr(t) are
adjusted much faster than the connection terms wr(t) (practically implied by the condition
cr � kr,∀r ∈ R), and assuming that both entities are bounded in value, the network
exponentially converges to its equilibrium point regardless of its initial condition and the size
of the system. We remark that it can be shown that the unique equilibrium of the proposed
scheme solves the optimal problem in Eqn. (1), studied by Kelly et al. for wired networks.

4.2. Stability in the presence of Delays

It is also important to investigate whether our proposed control system is stable when there
is bidirectional delay (sender-receiver) between the entities that generate the feedback signals
from the network, i.e. pj(t) and qj(t), and the users that receive the feedback signals. We
investigate the delay stability locally, i.e. in a region around equilibrium point for the rates
xo– this will enable us to make use of arguments in the frequency domain. Focusing for the sake
of simplicity on the dynamics of the wired system (4), delays can be modeled as follows [55]:

d

dt
xr(t) = kr

wor − xr(t− Tr)∑
j∈r

µj(t− d2(j, r))

 , (14)

where

µj(t) = pj

∑
s:j∈s

xs(t− d1(j, s))

 , ∀j ∈ J,

and

d1(j, r) + d2(j, r) = Tr, ∀r ∈ R.

Here d1(j, r) is the forward delay from the sender of route r to link j, and d2(j, r) is the
backward delay from link j to the receiver r. Tr is thus the round trip time on route r. Here
we assume that Tr is fixed: this is quite a common assumption, at least for the time scales
we are interested in, as also argued in [26, 29]. The following theorem provides a sufficient
condition on each end user for the entire network to be robust to heterogeneous delay, that is,
different Tr values for different users r.

Theorem 2. The system (8)-(9), affected by heterogeneous delay Tr, r ∈ R, is locally stable
if the following two conditions hold, ∀r ∈ R:

kr

∑
j∈r

qj +
∑
j∈r

q′j
∑
s:j∈s

xos

 <
π

2Tr
; (15)

cr

(∑
j∈r pj +

∑
j∈r p

′
j

∑
s:j∈s x

o
s

)
minr∈R

∑
j∈r qj

<
π

2Tr
, (16)

where pj , qj , p
′
j , q
′
j denote respectively the values of pj(·), qj(·) and the derivatives of pj(·),

qj(·), all evaluated at the corresponding equilibrium point.
Proof: Refer to Appendix I.2.
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Interpreting kr as the speed at which user r adapts its rate xr, similar to the results in [26,55],
Theorem 2 suggests that user r should change its rate within a time interval that depends
on the round trip time Tr. This is because kr and cr are bounded by numbers inversely
proportional to Tr. This confirms the general intuition, already pointed out in [25,26,55], that
end users in a network should change their rate at the time scale at least on the order of their
round trip time.

It is interesting to compare the delay stability condition for the wireless scenario, in

particular Eqn. (15), to the one for the wireline case: kr

(∑
j∈r pj +

∑
j∈r p

′
j

∑
s:j∈s x

o
s

)
<

π
2Tr

, ∀r ∈ R. As seen, the conditions for user r in the wireline and the wireless case only
differ by a route-dependent constant, which is larger than one when pj(·) and qj(·) take the
forms of, respectively, (3) and (6). Hence the upper bound on kr in the wireless case, given
by (15), is smaller than that in the wireline case. Intuitively this can be explained as follows:
since in the wireless case both wr(t) and xr(t) are adjusted based on the feedback prices, the
system is more sensitive to old prices caused by delays in the system; hence the system should
get adjusted more cautiously, eventually resulting in a smaller upper bound on the step size
kr. As a side comment, the reader should notice that, in a worst case scenario, the second
bound may not be too tight.

For the sake of completeness we mention here that recent results extended the results on
delay stability to the global case, either by exploiting a Lyapunov-Razumikhin approach [61], or
by invariance-based global stability arguments for nonlinear ordinary differential equations [46].
These interesting results cannot however be applied to the current setup because, unlike [55],
they derive assumptions that are based on the specific structures of the utility functions and
the prices associated with the models, and which unfortunately do not encompass those used
in this work.

5. Discussion on the Practical Implementation of the Dynamic Update Scheme

From the structure of Eqn. (8) we observe that the implementation of the control law on wr

depends on the precise measurement of the ratio
∑
j∈r pj(

∑
s:j∈s xs(t))∑

j∈r qj(
∑
s:j∈s xs(t))

, which is the portion of the

end-to-end packet loss rate for user r that is exclusively caused by congestion. From an end-to-
end point of view, a user can infer that a packet is lost and determine the missing one by merely
observing a discontinuity in the sequence number that is carried by every packet.‡ Hence, the
total end-to-end packet loss rate, i.e.

∑
j∈r qj(

∑
s:j∈s xs(t)), can be precisely measured by the

user. However, the actual cause of the loss (congestion or channel error) would not be directly
assessable. Therefore, in practice the user needs to estimate the quantity caused exclusively
by congestion,

∑
j∈r pj(

∑
s:j∈s xs(t)), in order to implement the control law for wr. It is in

general not advisable to require a direct modification of the existing TCP for this estimate.
Our approach robustly achieves this estimation with no need of direct modification of the
control protocol.

The literature has witnessed a considerable amount of work on the issue of practical

‡In practice, the sender waits for three duplicate acknowledgements while asking for the retransmission of the
missing packet before it asserts that the packet is lost.
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12 ABATE, CHEN, WANG, ZAKHOR, SASTRY

estimation of the packet loss rate caused by congestion [6–8,10,31, 35, 36, 44, 48, 51, 52, 54, 59].
Essentially, the idea is to estimate whether the network route is congested whenever a packet
loss happens, by looking at the information delay around the instant when a packet is lost.
For example, [8, 10, 48] argue that a packet loss is caused by congestion if the two-way delays
are increasing at the time of the loss, while it is caused by wireless error otherwise. More
precisely, [48] argues how, on detecting a packet loss, if the measured RTT is less than a
calculated threshold, then the packet loss can be considered to be due to link noise, otherwise
the loss is attributed to congestion. This way, users can have the knowledge of the terms∑
j∈r pj(

∑
s:j∈s xs(t)).

One way to implement the scheme proposed in this work is the following. Users open
multiple TCP connections to transmit data, with TCP controlling the sending rates of each
individual connection. Moreover, users open an additional user datagram protocol (UDP)
connection to send small probing packets along the same network path, in order to estimate∑
j∈r pj(

∑
s:j∈s xs(t)) and

∑
j∈r qj(

∑
s:j∈s xs(t)) according to the techniques in [8, 48]. Since

the probing connection packets can be assumed to travel along the same path as the data
connection, the two packet loss rates measured by the probing connection are likely to be the
same. It is also reasonable to assume that their respective loss rates are comparable. The use of
dedicated UDP connections on the application layer is motivated because: 1. the functionality
of estimating

∑
j∈r pj(

∑
s:j∈s xs(t)) is not available in TCP; and 2. it is not desirable to

modify TCP to add such a functionality. Upon estimating the ratio, user r can then control
wr according to equation (8) by changing the number of connections. The number of probing
packets sent per second could be selected in the same way as the number of data packets, which
can be directly measured by sender. The packet size of the probing packets should be selected
to be small enough so that the probing overhead is only a small portion of the sending rate.
Notice that the robustness results that we have shown in this work suggest that the imprecision
that will come with this estimation procedure will not be detrimental to the performance of
the overall scheme.

In Section 1 we mentioned other existing schemes in the literature that attempt to
enhance the performance of flow control in wireless networks by applying end-to-end statistics
to differentiate packet loss due to congestion from that of channel error within TCP
[6–8, 10, 31, 35, 36, 44, 48, 51, 52, 54, 59]. The difference between our suggested techniques in
this paper and those schemes is that they implement those methodologies inside the TCP
protocol, and hence require all end user operating systems to implement a new TCP protocol.
On the contrary, our method performs the differentiation between channel error and congestion
at the application layer and hence requires no modifications to the transport layer protocols
such as TCP, nor the networking infrastructure.

It might appear to be a concern to approximate the dynamics of wr, which takes continuous
values, by finitely adjusting the number of connections, which is by itself an integer entity. In
particular, it may be argued at first that this discretization of the dynamics may disrupt its
properties. However, often the user opens a number of connections that is “large enough” to
justify the fluid model, similar to the case of the packet size dynamics. Furthermore, it should
be noticed that we can dynamically change the packet size of each connection to implement the
small dynamics of wr. For instance, if a change of wr corresponds to opening one connection
with packet size S, then it is also corresponds to opening two connections with packet size
S/2, and so on—these different implementations would result in the same change in aggregate
sending rate, which is at the end the net objective of the dynamic adjustment of wr.
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Figure 2. Network topology used for the simulations.

Since the data stream in our proposed scheme is transmitted using multiple connections, the
receiver could potentially receive packets that are out of order. However, reordering application
packets from multiple connections using a receiving buffer is a rather mature technology, which
is widely used in peer-to-peer applications, such as BitTorrent file sharing (e.g. Kazza [27]),
and peer-to-peer streaming (e.g. PPLive [45]). Hence, it is fair to delegate to these technology
the solution of this issue at the application layer.

6. Simulations

In this subsection, we perform simulations to qualitatively verify the results of our analysis.
We have implemented on ns-2 the schemes formally discussed in this work. The topology of the
network under study is known and used in the literature and shown in Fig. 2. It is made up of
three users in a nine-node network with two wireless links. A wireless link is represented by a
dashed line and is characterized by two parameters: a finite capacity C and a packet loss rate
ε that is caused by channel error. In this study, for the sake of simplicity we keep the channel
error fixed. The values of the parameters for the two links are C1 = 1.2 Mbps, ε1 = 0.01, and
C2 = 2.0 Mbps, ε2 = 0.02.

Each couple of end-users r apply Eq. (9) to control their source rate xr, and Eq. (8) to control
the source parameter wr. Since ns-2 is a packet-level simulator, the unit of xr is packets/sec,
which is in the text reported as Mbps. The packet size is taken to be equal to 500B. To meet
the two time scales assumption made in Theorem 1, we set the update frequency of wr to
be 20 times slower than the one of xr. This can be obtained by setting cr 20 times smaller
than kr. The parameters kr, r = 1, 2, 3 are all set to be equal to 20. Additionally, in order
to differentiate between the convergence of the three users, wo1 , wo2 and wo3 are set to 3, 4,
5 respectively. The initial conditions for the rates are x1 = x2 = x3 = 0.2Mbps. In order
to set a benchmark to compare our ns-2 simulations against, let us calculate the optimal
rate allocation for the scenario: x1 = 0.38Mbps, x2 = 0.82Mbps and x3 = 1.62Mbps. Time
is discretized, with an update period for both xr and wr of 0.1 second. After each update
of wr, we round it to an integer and feed this integer into the rate adapation algorithm of
Eq. (8). This is necessary in practice since wr is interpreted as the number of connections of
each source. Each simulation has a time horizon of 1000 seconds, which allows to observe its
long-term behavior. We set the size of a FIFO buffer in each wireless node Ni, i = 1, 2, 3, to be
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14 ABATE, CHEN, WANG, ZAKHOR, SASTRY

equal to 100 packets. In our simulations each packet has a sequence number, and a destination
feedbacks an acknowledgment to its source whenever it successfully receives a packet. Thus
a source calculates the packet loss rate based on the number of un-received packets. Reverse
traffic is a potential problem in ACK-based congestion control protocols and can lead to
utilization losses [42]. It is desirable to solve this issue at the router level—for instance, a
router can provide priority queues, enabling the placement of delay-sensitive traffic on the
outbound link before delay-insensitive traffic. If we place ACKs in the highest-priority traffic
class while we place data packets in the lowest-priority traffic class, ACKs are always serviced
before data packets and thus we avoid ACK to be congested by reverse traffic. [34] discusses
models of ow-size based priorities in Internet routers. If a router does not support priority
queues, end-to-end solutions are needed. For example in [20], whenever the sender detects an
ACK loss, it notifies the receiver to decrease the sending rate of ACKs. The use of selective
ACKs and delayed ACKs can also mitigate the effect of ACK losses caused by reverse traffic. A
second option to mitigate the reverse traffic problem is the following: since packets are sent in
sequence, a receiver can count how many packets circulate and notify the real packet loss rate
to its sender. In the present case study reverse traffic does not appear to be an issue. Arriving
packets are dropped when the buffer overflows, which thus denotes congestion loss. Besides,
packets sometimes cannot be transmitted successfully on a wireless link due to channel error,
which is related to channel loss. We will consider two approaches to differentiate congestion
losses from channel losses.

The ns-2 simulation is first run with perfect loss differentiation, which can be done as follows:
we mark (instead of dropping) a packet when it causes the buffer to overflow. The destination
feedbacks the congestion information using an acknowledgment when it receives a marked
packet. Thus, the sources can completely differentiate congestion losses from channel losses.
This mechanism is equivalent to explicit congestion notification (ECN) [32,33]. Fig. 3 plots the
dynamics of the process xr(t), wr(t), as well as channel loss rate and congestion loss rate as
estimated by sources. We draw a number of observations. Plot (a) shows that, in steady-state,
on average x1 = 0.39Mbps, x2 = 0.80Mbps and x3 = 1.60Mbps. These results are nearly the
same as the benchmark figures. Notice that the capacity of each link is saturated. Plot (b)
shows that, in steady-state, w1 = 5 or 6, w2 = 6, and w3 = 13 or 14 (the persistent oscillatory
behavior of w3 is due to its integer value, and results in some oscillation also on the source rate
x3). Plot (c) shows channel loss rate as estimated by each source. Notice that, in steady-state,
ε1 + ε2 = 0.029 (source 1), whereas ε1 = 0.010 (source 2) and ε2 = 0.020 (source 3). Thus
the channel loss estimations are nearly the same as our predefined settings. Finally, plot (d)
shows the congestion loss rate estimated by each source: p1 +p2 = 0.033 (source 1), p1 = 0.019
(source 2) and p2 = 0.012 (source 3).

As the second batch of ns-2 simulations, based on imperfect loss differentiation, we
implemented the scheme discussed in [8], which allows differentiating channel losses from
congestion losses based on end-host estimations. Fig. 4 represents the same entities as Fig. 3.
Let us draw a number of observations. Plot (a) shows that, in steady-state, on average
x1 = 0.52Mbps, x2 = 0.70Mbps, and x3 = 1.51Mbps. In spite of imperfect loss differention, the
result is acceptable when compared with the benchmark. Notice that the capacity of each link
is saturated. Plot (b) shows that, in steady-state, w1 = 8 or 9, w2 = 5 or 6, and w3 = 14 or 15.
Plot (c) shows the channel loss rate as estimated by each source. Notice that, in steady-state,
ε1 + ε2 = 0.042 (source 1), ε1 = 0.010 (source 2) and ε2 = 0.025 (source 3). Again the channel
loss estimation is not far from our predefined settings. Plot (d) displays the congestion loss
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(a) Source rates xr (b) Number of connections wr

(c) Estimated channel loss rate (d) Estimated congestion loss rate

Figure 3. ns-2 outcomes, based on perfect loss differentiation.

rate estimated by each source: in the long run p1 +p2 = 0.023 (source 1), p1 = 0.023 (source 2)
and p2 = 0.013 (source 3). Note that source 1 underestimates the congestion loss rate because
it overestimates the channel loss rate. Thus, x1 (0.52Mbps) is larger than its optimal rate
(0.38Mbps).

TCP NewReno improves retransmission during the fast recovery phase of TCP Reno [22],
however it is not designed for the wireless scenario with channel loss since it specifically assumes
that packet loss is a sign of congestion. Fig. 5 compares two ns-2 simulations run under the
same conditions of the previous experiments: the first simulation (left plot) implements the
NewReno scheme under no channel losses, whereas the second (right plot) is run over channels
characterized by the loss rates used in the previous simulations. One can observe that in
steady-state the first output yields a performance for the source rates that can be put in
relationship with that of Figure 3, as expected. The outcomes for the lossy channels instead
display a performance degradation, which is particularly evident over the two-hop source x1.
On average, the source rates are x1 = 0.30Mbps, x2 = 0.80Mbps, and x3 = 1.50Mbps, which
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(a) Source rates xr (b) Number of connections wr

(c) Estimated channel loss rate (d) Estimated congestion loss rate

Figure 4. ns-2 outcomes, based on imperfect loss differentiation.

leads to the observation that both link capacities are underutilized.

7. Conclusions

Motivated by the increasing importance of wireless networks and by their applications, this
work has studied a modified model of the classical TCP protocol and analyzed some of its
dynamical properties. After evaluating the possible limitations of the introduced mathematical
model, we have argued about its practical applicability, and outlined a comparison with other
schemes proposed in the literature. In adjacent research, we have performed further simulations
and actual experiments of an actual protocol derived from the one presented here. Further
extensions and improvements of the dynamical scheme, both from a design and analysis
standpoint [53], are currently under study. For instance, it would be interesting to extend
the global delay stability results in [46,61] to the current framework. Furthermore, exploiting
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(a) Channel with no losses (b) Channel with losses

Figure 5. ns-2 outcomes based on NewReno protocol.

non-standard techniques from Systems Theory may suggest ways to extend the current results
to the case of time-varying link capacities and round trip times.

Additional Material

The ns-2 software used for the simulation can be found at the following URL:

http://www.dcsc.tudelft.nl/∼aabate/ijrnc

APPENDIX

In this Section we adhere to the notations we used throughout the paper. In particular, let
us recall that the quantities pj , p

′
j , qj , q

′
j , εj , ε

′
j , j ∈ J are the values of the respective functions

evaluated at the equilibrium points.

I.1. Proof of Theorem 1

The first lemma elucidates the notion of semi-global exponential stability and its relationship
with local exponential stability and global asymptotical stability.

Lemma 1. Consider a system ξ̇ = ϕ(ξ, t) satisfying the following assumptions:

• ϕ(ξ, t) is continuous w.r.t. time and Lipschitz continuous w.r.t. variable ξ;
• it has a unique equilibrium at ξ = 0 that is locally exponentially stable and globally

asymptotically stable.

Then the equilibrium of the system is semi-globally exponentially stable [49, Chapter 5].
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Proof: Denoting with ξ(t, ξ0) the unique solution of the vector field ϕ starting at an arbitrary
ξ0 at time t = 0, by definition of local exponential stability there exist positive constants
r < 1,K > 1, and γ s.t. ‖ξ(t, ξ0)‖ ≤ K‖ξ0‖e−γt,∀ξ0 : ‖ξ0‖ ≤ r, ∀t ≥ 0. Define
Tr(ξ0) = inf{t ≥ 0 : ‖ξ(t, ξ0)‖ ≤ r}. By the assumption on the global asymptotical stability
of the system, Tr(ξ0) < ∞. Since the solution ξ(t, ξ0) is continuous with respect to t, let
Mr(ξ0) = max0≤t≤Tr(ξ0){K, ‖ξ(t, ξ0)‖} <∞. Define L = Mr(ξ0)eγTr(ξ0)/r. We claim that

‖ξ(t, ξ0)‖ ≤ L‖ξ0‖e−γt. (17)

If ‖ξ0‖ ≤ r, then the claim holds trivially. If instead ‖ξ0‖ > r, the following holds in the interval

t ∈ [0, Tr(ξ0)]: L‖ξ0‖e−γt = Mr(ξ0)‖ξ0‖r eγTr(ξ0)e−γt ≥ Mr(ξ0) ≥ ‖ξ(t, ξ0)‖. For t ≥ Tr(ξ0), let
t′ = t−Tr; we then have ‖ξ(t′ = 0, ξ0)‖ ≤ r, which leads to the first case. Equation (17) implies
semi-global exponential stability of the equilibrium [49, Definition 5.10]. (The semi-global part
comes from the dependency of L on the initial condition ξ0.) �

In the following we state two lemmas that are needed for proving the stability of the
complete model. The first lemma explores an interesting structure of the vector fields of both
the boundary layer system and the reduced order system.

Lemma 2. Consider the variables wr(t), r ∈ R, in the reduced order system (13). There
exists a compact set, denoted by Ω1 ⊆ Rcard(R), such that any set λ1Ω1, λ1 > 1, is positive
invariant. Similarly, consider the variables xr(t) in the boundary layer system (12). There
exists a corresponding compact set Ω2(w) ⊆ Rcard(R), defined as a function of w, such that
any set λ2Ω2(w), λ2 > 1, is positive invariant.

Proof: To construct the compact set Ω1 ⊆ Rcard(R) for the variables wr, r ∈ R in the reduced
order system, first note that there always exists a large enough wmaxr > 0 that makes route
r be congested regardless of the cross traffic (which happens if only user r is active and the
others are inactive). Furthermore, wmaxr > 0 can be chosen so that ẇmaxr ≤ 0. Cross traffic only
contributes to congestion and results in a larger value for

∑
j∈r pj(

∑
s:j∈s xs(t)). Consequently,

cross traffic increases the value of
∑
j∈r pj(

∑
s:j∈s xs(t))∑

j∈r qj(
∑
s:j∈s xs(t))

: hence, ẇmaxr remains negative in the

presence of cross traffic. By a similar argument, any wr > wmaxr will result in ẇr < 0. The set
Ω1 can be thus defined as Ω1

.
= [0, wmax1 ] × [0, wmax2 ] × · · · × [0, wmaxcard(R)]. It is easy to check

that the flow of the vector field satisfies the following: if wr(t) ≤ 0, then ẇr(t) > 0 according
to (8) or (13); if wr(t) ≥ wmaxr , then ẇr(t) ≤ 0 by the above arguments. Therefore, on the
boundary of any compact set λ1Ω1

.
= [0, λ1w

max
1 ]× [0, λ1w

max
2 ]× · · · × [0, λ1w

max
card(R)], λ1 > 1,

§ the vector field for wr defined in (13) points inward. Hence by definition, the compact set
Ω̄1 is positive invariant.

Similarly, a compact set Ω2(w) can be defined for the variables xr(t) in the boundary
layer system (12) as Ω2(w)

.
= [0, xmax1 (w1)]× [0, xmax2 (w2)]×· · ·× [0, xmaxcard(R)(wcard(R))], where

xmaxr (wr) = wr∑
j∈r(qj(

∑
s:j∈r xs))

satisfies the following, given a wr and regardless of cross traffics

§In practice, from a networking point of view, “containing Ω1” means that the number of connections of each
user should be allowed to take large enough values to fully utilize his bottleneck, even if only that user is active.
Similarly, in the following, “containing Ω2(w)” means that the sending rate of each user can be sufficiently
large to achieve its equilibrium. These requirements are trivial to meet in practice.
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along route r: if xr(t) ≤ 0, then ẋr(t) > 0 according to (9) or (12); if xr(t) ≥ xmaxr (wr), then
ẋr(t) ≤ 0.

�

The upcoming lemma investigates the global asymptotical stability of the reduced order
system. From a technical standpoint, we shall make use of a La Salle’s argument, as the
particular non-linear shape of the vector field for ẇr(t) in (13) makes the problem of finding
a suitable Lyapunov function apparently insurmountable – specifically, none of the classical
shapes [11,29] work in this instance. We believe that our solution may provide to be a general
choice for La Salle functions in similar problems.

Lemma 3. The unique equilibrium of reduced order system in (13) is globally asymptotically
stable.

Proof: We apply a La Salle’s argument to prove the global asymptotical stability for the
equilibrium of the reduced order system (13). According to Lemma 1 in [1], for the reduced
order system in (13) it is possible to write ẇ = diag(x)D ẋ, where

D =

diag

∑
j∈r

qj(
∑
s:j∈s xs)

xr

+ATdiag

q′j(∑
s:j∈s

xs)

A

 .

Notice that D � 0. Define the quantity E , diag(
x2
r

wr
) − D−1. From direct observation (see

also Appendix B in [1]) we see that E � 0. Introducing the new variable zr ,
wr
xr

, we have
that

∑
j∈r pj(

∑
s:j∈s xs) = zr −

∑
j∈r εj(

∑
s:j∈s xs),∀r ∈ R, and that the following holds:

ż = diag

(
1

xr

)
ẇ− diag

(
wr
x2r

)
D−1diag

(
1

xr

)
ẇ

= diag(zr)diag

(
1

xr

)
E diag

(
1

xr

)
ẇ.

Define the monotonically increasing functions fr(λ) = λ/(λ +
∑
j∈r εj(

∑
s:j∈s xs)),∀r ∈ R;

then fr(zr −
∑
j∈r εj(

∑
s:j∈s xs(t))) =

∑
j∈r pj(

∑
s:j∈s xs(t))∑

j∈r qj(
∑
s:j∈s xs(t))

. Given a vector w(0) of initial

conditions, let Σ be the minimal connected compact set containing w(0) and the invariant
set Ω1 defined in Lemma 2. Introduce the monotonically increasing functions φr(λ),∀r ∈ R as
follows:

φr(λ) =

∫ (f−1
r (λ)+

∑
j∈r εj(·))

(
∑
j∈r εj(·))

fr(y −
∑
j∈r εj(·))
y

dy.

Define a continuous function over Σ as follows:

V (z,w) = −
∑
r∈R

cr

[
wor ln(zr

∑
j∈r

εj(·)) +

zr∫
∑
j∈r εj(·)

wr
y
fr

y −∑
j∈r

εj(·)

 dy +

∫ ∞
wr
wor

φr

(
1

λ

)
dλ

]
.
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The time derivative of the above quantity is

V̇ (z,w) = −
∑
r∈R

cr

(
wo

r

zr
− wr

zr
fr

(
zr −

∑
j∈r

εj(·)

))
żr

−
∑
r∈R

cr

(
φr

(
wo

r

wr

)
− φr

(
fr

(
zr −

∑
r∈R

εj(·)

)))
ẇr (18)

−
∑
r∈R

cr

(
wo

r∑
j∈r εj(·)

+ wr

(
1

zr
− 1∑

j∈r εj(·)

))
∂(
∑

j∈r εj(·))
∂xr

ẋr.

The first term in the above expression can be written as ẇT diag
(

1
xr

)
E diag

(
1
xr

)
ẇ. It can

be noted that V̇ (z,w) ≤ 0. Exploiting the monotonicity assumption for the functions φr(·),
a few steps of algebra show that also the second term is a (negative) quadratic function of
ẇ. Finally, the third term, which comes from the time derivative of the error functions for
each link, can be also related to the dynamics of wr by noticing that it can be expressed as

−
∑
r∈R

ẇr∑
j∈r εj(·)

∂(
∑
j∈r εj(·))
∂xr

ẋr. By using the relationship between the time derivatives of x

and w, this term can be reordered and compactly written as

−ẇTdiag

(
1∑

j∈r εj(·)

)
ATdiag(ε′j(·))AD−1diag(x−1r )ẇ.

Let us denote this quantity −ẇT∆ẇ. This expression is again a negative quadratic function
of ẇ: the inverse ∆−1 of the kernel matrix can in fact be rewritten as

diag(xr)

(
diag

(∑
j∈r qj(·)
xr

)
A−1diag

(
1

ε′j(·)

)
(AT )−1 +ATdiag

(
q′j(·)
ε′j(·)

)
A

)
diag

(∑
j∈r εj(·)

)
,

and be shown to be positive definite by looking at its symmetric part, 1
2

(
∆−1 + (∆−1)T

)
, and

deduce its positive definiteness. Hence, relation (18) is negative, and equality is achieved if and
only if ẇ = 0, i.e. at the equilibrium point.
From the above consideration it follows that we can apply the La Salle principle (see for
instance [49]) to conclude that the trajectory starting from w(0) converges asymptotically
to the equilibrium. As w(0) is arbitrary, we conclude that the equilibrium is globally
asymptotically stable. Notice that the theorem holds in particular if the error quantities∑
j∈r εj(·) are constant functions of their variables. �

Proof of Theorem 1 We have shown that the reduced order system in (13) has a
unique equilibrium that is globally asymptotically stable (Lemma 3). Furthermore, its local
exponential stability can be shown by one of the following two arguments: by exploiting the
frequency analysis of Theorem (2) and choosing Tr = 0,∀r ∈ R; equivalently, by linearizing
Eqn. (8) around its equilibrium and applying similar arguments to those shown in Lemma
2, [1]. Invoking Lemma 1 we conclude that the unique equilibrium of the reduced order system
is semi-globally exponentially stable.

A similar argument is also true for the boundary layer system in (12). By leveraging the above
approach and slight variation of theorems in [29], it has a unique equilibrium that is globally
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asymptotically stable and locally exponentially stable. Hence, again by Lemma 1, we conclude
that the unique equilibrium of the boundary layer system is semi-globally exponentially stable.

It is necessary to define a compact set for the composition. As in Lemma 2, define a set Ω1,
where w̄ = max{wr : wr ∈ R} and wmaxr = w̄,∀r ∈ R; then Ω1 and any positive rescaling
Σ1

.
= λ1Ω1 are positive invariant, by the arguments developed for Lemma 2. We shall then

constrain w(t) to the compact set Σ1. Similarly, let us constrain x(t) into a compact set,
denoted by Σ2

.
= λ2Ω2(wmax), as defined for Lemma 2. On Σ1 × Σ2, the equilibrium of the

reduced order system in (13) is exponentially stable, and that of the boundary layer system in
(12) is exponentially stable, uniformly in w; the verification of this claim follows similarly to the
statement in Appendix II.F in [33]. Together with the fact that Σ1×Σ2 is a positive invariant
set, by the application of Theorem 11.4 in [30], we conclude that the singularly perturbed
system in (10)-(11) has a unique equilibrium in Σ1 × Σ2 that is exponentially stable. Hence,
the equilibrium is semi-globally exponentially stable. �

I.2. Proof of Theorem 2

Let us start with a technical lemma:

Lemma 4. Consider the matrices P = P ∗ � 0, Q = Q∗ � 0, L = diag(li), li ∈ C, ∀i. P,Q,L
are assumed to have the same size. Then

σ(Q−1LP ) ⊂ ρ(Q−1P )(Co(0 ∪ {li}) ∪ Co(0 ∪ {−li})),

where σ is the spectrum of a matrix, ρ its spectral radius, while the symbol Co denotes a
function giving the convex hull of its arguments.

Proof: Let v be a normalized right eigenvector of Q−1LP , corresponding to the eigenvalue
λ: Q−1LPv = λv. Then LPv = λQv ⇒ (Pv)∗L(Pv) = λ(Pv)∗Qv = λv∗P ∗(QP−1)Pv.
Therefore, naming k = ρ(Q−1P )((Pv)∗QP−1(Pv)) and observing that |k| ≥ 1, λ =

(Pv)∗L(Pv)
v∗P∗(QP−1)Pv = ρ(Q−1P )

(∑
i
|Pvi|2
k (±li) + 0

)
. The conclusion follows. �

Proof of Theorem 2 As in the proof of global stability for the dynamic update case, we shall
exploit the idea of the two time scales. To begin with, the condition in inequality (15) refers to
the boundary layer system (12 and is obtained as follows. By setting xr(t) = xor + yr(t), r ∈ R,
and linearizing the system equations around the equilibrium xor = wor/

∑
j∈r qj :

d

dt
yr(t) = −kryr(t− Tr)

∑
j∈r

qj − krxor
∑
j∈r

∑
s:j∈s

ys (t− d1(j, s)− d2(j, r)) q′j .

Taking the Laplace transform and simplifying by introducing matrix terms, we have

sY (s) = −diag
(
e−sTr

)
diag (xor)

diag
(
(xor)

−1) diag

∑
j∈r

qj

+M(s)

Y (s), (19)

where Y (s) = (Y1(s), Y2(s), . . . , Ycard(R)(s))
T is a card(R) × 1 vector made up of the Laplace

transforms Yi(s) of the elements yi(t), and M(s) = (mrq(s))card(R)×card(R) is a matrix with

elements mrq =
∑
j∈q∩r q

′
j · e−s(d1(j,q)−d1(j,r)). Comparing Eqn. (19) to (6) in [55], we can see

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2011; 00:1–26
Prepared using rncauth.cls



22 ABATE, CHEN, WANG, ZAKHOR, SASTRY

they only differ by the feedback functions from the links. Thus the local stability investigated
here is exactly the same as the one in [55]. The linearization of the relations for the reduced
order system (13) around its equilibrium, comprehensive of the delays, are, ∀r ∈ R:

ω̇r(t) = crω
o
r − crxr(t− Tr)

∑
j∈r

pj

∑
s:j∈s

xs(t− d1(j, s)− d2(j, r))

 ;

ωr(t− Tr) = xr(t− Tr)
∑
j∈r

qj

∑
s:j∈s

xs(t− d1(j, s)− d2(j, r))

 .

Taking the derivative of the second term, after a proper shift in time, we obtain:

ω̇r(t) = ẋr(t)
∑
j∈r

qj

∑
s:j∈s

x̃s(j, r)

+ xr(t)
∑
j∈r

q′j

∑
s:j∈s

x̃s(j, r)

 ∑
s:j∈s

˙̃xs(j, r),

where x̃s(j, r) = xs(t− d1(j, s)− d2(j, r) + Tr). Substituting this last relation within the first
one, letting xr(t) = xor + yr(t), ẋr(t) = 0 + ẏr(t), and linearizing around these equilibrium
points, yields:∑

j∈r
qj ẏr(t) =− crxor

∑
j∈r

p′j
∑
s:j∈s

ys(t− d1(j, s)− d2(j, r))− cryr(t− Tr)
∑
j∈r

pj

− xor
∑
j∈r

q′j
∑
s:j∈s

ẏs(t− d1(j, s)− d2(j, r) + Tr). (20)

Taking the Laplace transform and simplifying out common matrix terms, we obtain:[
diag

(
1

xor

)
diag

(∑
j∈r

qj

)
+N(s)

]
sY (s) = (21)

− diag(cr)diag(e−sTr )

[
diag

(
1

xor

)
diag

(∑
j∈r

pj

)
+M(s)

]
Y (s),

where N(s) and M(s) are made up of the following terms:

Nrq(s) =
∑
j∈r∩q

q′jexp(−s(d1(j, q)− d2(j, r)))

Mrq(s) =
∑
j∈r∩q

p′jexp(−s(d1(j, q)− d2(j, r))).

Introducing as intuitive the quantities Q̄(s) and P̄ (s), Eqn. (21) can be rewritten as

sY (s) = −Q̄(s)−1diag(cr)diag(e−sTr )P̄ (s)Y (s).

We are interested in checking for the stability of this interconnection, and in case

pose conditions on the cr terms to enforce it. Name L = diag
(
cr
π
2
exp(−jωTr)

jωTr

)
, P =

diag(
√
xr)P̄ (jω)diag(

√
xr), Q = diag(

√
xr)Q̄(jω)diag(

√
xr). Observing that the matrices

Q̄(s)−1diag(cr)diag(e−sTr )P̄ (s) and Q−1LP are similar [23], we then obtain

σ(Q−1LP ) ⊂ ρ(Q−1P )

(
Co

(
0 ∪

(
cr
π

2

exp(−jωTr)
jωTr

))⋃
Co

(
0 ∪

(
−cr

π

2

exp(−jωTr)
jωTr

)))
.
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The necessary introduction of the additional negative terms in the convex hull does not change
its structural property of exclusion of the point −1 in the complex plane. The problem then
boils down to posing conditions on the term ρ(Q−1P ); we know that ρ(Q−1P ) ≤ ρ(Q−1)ρ(P ) ≤

ρ(P )
minλσ(Q) . Notice that N(s) = AT (−s)diag

(∑
j∈s q

′
j

)
A(s) and that N(s) = N(−s), N(jω) �

0,∀ω. From a linear algebra fact [23], given two matrices A = A∗ � 0 and B = B∗, then the
eigenvalues of their sum, ranked increasingly, are correspondingly lower bounded by those of

B. Therefore, focusing on the structure of matrix Q = diag
(

1
xor

)
diag

(∑
j∈r qj

)
+ N(s), we

claim that minr{
∑
j∈r qj} ≤ minλ σ(Q). This translates into the condition that, ∀r ∈ R:

ρ(Q−1P ) < cr

(∑
j∈r pj +

∑
j∈r p

′
j

∑
s:j∈s x

o
s

)
minr∈R

∑
j∈r qj

<
π

2Tr
.

�
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