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SUMMARY

Owing to the ever increasing amount of available information on metabolic networks, and in particular
to the increase in information content from in vivo

13C dynamic labeling experiments, this work
investigates the problem of reconstructing dynamic fluxes and enzyme kinetics. The model structure
is based on the use of piecewise affine approximations. The optimization procedure at the basis of the
model identification is improved by separating the parameter estimation procedure into two different
phases. As a first step, a dynamic flux profile in time is reconstructed using functions that are piecewise
affine (in time). To achieve scalability for this step, several approaches have been developed and
compared. Afterwards, the time-dependent profiles are embedded in the concentration space and
the enzyme kinetic functions for single reactions are identified independently. This is an advantage
compared to standard complete kinetic network approaches, which are typically characterized by
hundreds of parameters, since now only a few need to be optimized simultaneously. Additionally,
different kinetic formats can be rapidly compared. The overall approach is demonstrated using an
informative in silico experiment. Copyright c© 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Biological production processes are based on sustainable resources and are expected to replace
chemical, petroleum-based production processes [1–3]. To be competitive, product yields and
rates of biological systems have to be optimized [4]. In the past, various successful bio-processes
based on renewable carbon sources have been commercialized, such as 1,3-Propanediol [5],
Isoprene [6], and Lysine [7]. Most of these processes have gone through long development cycles,
especially when the design of an appropriate microorganism (cell factory) was concerned. To
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reduce strain design time and development effort, rational approaches are essential [8]. These
approaches are formal and thus depend on precise models of metabolic, transcriptomic and
genetic networks [9]. In particular, to enable the prediction of metabolic states, metabolic
fluxes, and production yields, enzyme kinetic models are required. The work in [10] has
pioneered the identification of in vivo kinetic properties based on kinetic modeling and the
estimation of parameters based on time-series data from cells that are excited by a substrate
pulse, where the response of the metabolism is monitored by rapid sampling [11]. A series
of further studies [12, 13] has made more evident that the current data availability is not
sufficient for a statistically reliable parameter estimation [14], and thus further motivated the
development of models from data.
To enhance the modeling of metabolic networks, four main challenges have to be tackled:

(1) In vivo kinetic mechanisms. Many enzymes have been studied in much detail in vitro,
however it has been shown that their in vivo conditions can differ drastically [15]. In fact,
physiological parameters and enzyme kinetic mechanisms are peculiar to the living cell.
A variety of models with large parameter space have to be employed and tested [14, 16]
in order to select proper ones fitting in vivo data.

(2) Data availability. Data sets, even coming from rapid sampling [11] techniques, usually
contain only few observations, typically compounded with noise. The gathering of data
is impaired by technological limitations or sheer experimental costs.

(3) Limited excitation. In vivo experiments have typically limited dynamical ranges and,
besides the substrate, only a few metabolites in the network can be fully excited.
Additionally the limited information content associated to time-series of metabolites
concentrations leads to multiple possible outcomes for model identification problems.

(4) Computational overhead. Optimization procedures applied to large-scale kinetic models –
especially when isotopomer states are included – are demanding because of size, existence
of non-linearities in the flux vs. concentration dependence, and again presence of noise.

With regards to the challenges in (2) and (3) (scarceness of data with limited
information content), this study leverages dynamic datasets that are enriched by 13C
labeling measurements. Previous studies [17–19] have shown that adding 13C labeled tracers
increases the information content on pool turnover and with that intracellular fluxes. This
enhances the parameters estimation accuracy, particularly in the presence of exchange
and parallel fluxes, or of regulatory cycles. While [17, 18] focus on positional enrichment,
this work and [19] use full isotopomer labeling. Recent improvements in sampling [20, 21]
and measurement procedures [22, 23] enable labeling experiments under dynamic metabolic
conditions. Experiments performed with Penicillium chrysogenum under dynamic conditions
have shown a good reproducibility of labeling enrichments [24]. In dynamic experiments it is
of fundamental importance to gather information over time-dependent quantities [17, 18]: in
particular the study of flux profiles in time elucidates a number of regulation mechanisms that
are key for metabolic networks [19].
A modeling approach based on hybrid systems [25] is employed to address the challenges

in (1) and (4). In particular, this work is based on piecewise affine (PWA) [26] models, which
are a subclass of hybrid models [27]. Hybrid systems have recently been used in systems
biology studies [28–32] and are worth investigating since they are prone to formal mathematical
analysis [25]. PWA models are characterized by dynamics that are piecewise linear, with offset
(hence, piecewise affine) over their domain of definition (see Section 2.5) and offer an alternative
to other formalism for the simplification of kinetic functions [17,33,34]. Of interest to this work,
there exist developed approaches and software tools to study the system identification problem
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PWA APPROXIMATIONS OF FLUXES AND KINETICS FROM 13C EXPERIMENTS 3

for PWA models [35, 36]. This study uses this class of models for the identification of kinetic
equations from in vivo 13C labeling experiments.
Again with focus on challenges (1) and (4) over the problem of identification of in vivo

kinetic parameters, [37] has put forward an approach divided in data analysis and model
characterization, which is distinguished from standard techniques based on metabolic network
models inclusive of all (known) kinetic equations. The use of time-series concentrations (data
analysis) allows first extracting a dynamic flux profile using model-free smoothing functions
and linear algebra operations, then to estimate enzyme kinetic parameters in the flux vs.
concentration domain (model characterization). In a later work [38], hybrid models have been
employed for the reconstruction of enzyme kinetic functions – however, unlike the present
work, [38] uses power laws and allows the identification of discontinuous models. Both [37,38]
work exclusively with unlabeled data. Methodologically, while our approach is similar to that
in [37] in breaking the problem into two sequential parts, we use for both parts a model-based
approach (indeed, based on PWAmodels), whereas [37] exploits a model-free approach as a first
step, followed by a second step that leverages power laws approximations. The approach based
on PWA approximations allows using known theory and software from the literature [25, 39]
and promises to be computationally advantageous.

Recapitulating the previous discussion, the overall goal of this work is to provide a procedure
for the reconstruction of flux profiles and enzyme kinetic functions from in vivo 13C labeling
experiments, by leveraging piecewise affine models. The procedure is broken down into two
different phases. As a first step, dynamic flux profiles in time are reconstructed from in vivo 13C
labeling data using functions that are piecewise affine (also in time) (see Section 3). This step
allows one to extract quantitative information over time-dependent data, thus representing
a goal in itself. Afterwards, the reconstructed time-dependent profiles are embedded in
the concentration space and the enzyme kinetic functions for single reactions are identified
independently (see Section 4). This is an advantage compared to a whole-network approaches,
typically characterized by large sets of parameters to be optimized over. The approach is
demonstrated using an informative in silico experimental setup (see Section 2.4): using known
reference solutions, the proposed algorithms are benchmarked in Section 5.

2. MODELING OF KINETIC METABOLIC NETWORKS

This section discusses dynamical models for metabolic networks, and PWA models are put
forward as a framework for system identification based on dynamic experiments. We will work
with the following variables: c denote concentrations, v fluxes, x represent isotopomer fractions
(distributions), whereas y are mass isotopomers and cy are labeled concentrations.

2.1. Metabolite Concentration Balances in a Network

A metabolic reaction network consists of a set of c metabolites (their concentrations is denoted
by a vector c ∈ (R+)c) and a related set of v fluxes (denoted by a vector v ∈ R

v) between the
metabolites in pool c. The material fluxes in v depend on enzymatic reaction mechanisms
(e.g. Michaelis-Menten kinetics), substrate concentrations and allosteric effectors (c), and
parameters of the mechanisms (α, namely affinity constants, maximal conversion rates, etc.).
The rates of change for the concentrations in c are described by balancing the in- and out-
fluxes for each metabolite pool. These balances can be expressed with a stoichiometric matrix
N ∈ Z

c×v, which relates the number of balanced metabolites to the reactions present in the
network, and via the flux functions v. These fluxes depend on the metabolite concentrations
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c, as well as on the physio-chemical parameters α (e.g., kinetic parameters), and on additional
parameters β encompassing operational variables (e.g. substrate feed to the reactor, dilution
rates, and other experimental settings – please refer to the case study in this work for an
instantiation of β), as follows:

dc

dt
= Nv(c, α, β), (1)

where t ∈ T and T = [0, T ] denotes the time interval of interest. The metabolite concentrations
are measured over a finite discrete set of m+1 samples Tm = {tm0 , tm1 , . . . , tmm}, tmi ∈ T (sample
times do not have to be equidistant, in fact a samples set could also be characteristic of a
single metabolite). An example network, to be discussed shortly, is presented in Figure 1.
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Figure 1. a) Metabolic network considered for case study presented in Section 2.4. The network
presents four extracellular metabolites (Afeed, Aex, Eex, Fex), and six intracellular ones (A to F ). There
are nine fluxes affecting the dynamics of the compounds, of which one feed flux (vfeed), three transport
fluxes (vupt, v6, v7), and the remaining being internal fluxes. b) Labeled case: atom transitions for the

transfer of carbon atoms in the reaction network.

2.2. Isotopomer Balances for Labeled Networks

As an extension of the stoichiometric networks of the previous section, isotopomer networks
additionally balance the isotopomer states [40], namely the state of 12C- and 13C-combinations
in the backbone of a metabolite. For instance, glucose with six carbon atoms can provide a
total of 26 = 64 different isotopomer states when labeling a metabolite. In general, for each
metabolite with n carbons, 2n isotopomer states can be obtained. This significantly increases
the number of (differential) equations needed to describe the network dynamics. Additionally,
as will be seen shortly, the system of isotopomer balances may be non-linear [40], even if the
original fluxes v are linearly related to the rate of change of the concentrations c as in (1).
In the following, the balances for two labeled pools in the example network of Fig. 1 are

derived. For pool A, one in- (vupt) and one out-flow (v1) are present: the concentration of the
pool cA changes according to dcA/dt = vupt − v1, where v1 = v→1 − v←1 is a bidirectional flux
(as per Fig. 1). Introduce function ι : {1, . . . , c} → N, which associates to each metabolite (say
A) the number of its carbon atoms: ι(A) = 2, ι(C) = 4. For simplicity, we may also apply
function ι directly on the corresponding concentration: ι(A) = ι(cA). To balance isotopomer
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states for metabolite A, the isotopomer distribution (or fraction) vector xA is employed, which
is composed by the isotopomer states xA#, where # denotes a particular labeling pattern [40].

Vector xA has dimension equal to 2ι(A) and describes the fraction of the metabolite with a
particular labeling pattern. The product of xA# times a concentration cA yields a labeled
concentration. In the example, the labeled pool A has the following dynamics:

cA
dxA00

dt
= xAex00vupt − xA00v

→
1 + xB00v

←
1 ,

and similarly for the other three labeling patterns. Here ι(A) = 2, and # ∈ {00, 01, 10, 11}.
The impact of the two fluxes on the rate of change of the isotopic state depends on the isotopic
fractions for pool Aex, A, and B. Notice that the labeled pool A is involved in a linear sequence
of reactions, resulting in a linear set of differential equations. In case of a splitting reaction,
again linear equations are obtained – for example, for labeled metabolite F , one obtains:

cF
dxF0

dt
= (xC0000 + xC0001 + xC0010 + xC0011 + xC0100 + xC0101 + xC0110 + xC0111)v3

+ (xD000 + xD010 + xD100 + xD110)v4 − xF0v7,

cF
dxF1

dt
= (xC1000 + xC1001 + xC1010 + xC1011 + xC1100 + xC1101 + xC1110 + xC1111)v3

+ (xD001 + xD011 + xD101 + xD111)v4 − xF1v7.

However, this situation changes when bimolecular reactions are involved: for instance, in the
case of the balances for the labeled pool C, the inflow of labeling material depends on flux v2,
but its labeling pattern hinges on two metabolites, namely B and E. To produce an unlabeled
C0000, both B and E have to be unlabeled: the probability of this event is given by the product
of the corresponding isotopomer fractions xB00xE00. The differential equations relative to the
labeled metabolite C read as:

cC
dxC0000

dt
= xB00xE00v2 − xC0000v3,

cC
dxC0001

dt
= xB00xE01v2 − xC0001v3,
...

cC
dxC1111

dt
= xB11xE11v2 − xC1111v3.

In general, the isotopomer balances will described shortly as:

D(c)
dx

dt
= g(c, x, α, β), (2)

which depends on (1) and where x ∈ (R+)
∑

c

j=1 2ι(cj )

represents a vector including all the
isotopomer distribution vectors (one for each labeled metabolite), D(c) is a diagonal matrix
accounting for the metabolites concentrations (its dimension is given by the sum of the number
of isotopomers fractions per each of the c metabolites,

∑c

j=1 2
ι(cj)), g denotes a possibly

nonlinear vector function, α has the same meaning as in (1), and β additionally includes the
labeled input fractions.

2.3. Measurements

Isotopomer fractions cannot be directly measured [40]. Current technologies – in particular
mass spectrometry [41] and nuclear magnetic resonance [42] – allow the observation of linear
combinations of isotopomers. Using mass spectrometry isotopomers are separated according
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6 A. ABATE, R.C. HILLEN, S.A. WAHL

to their weight, which depends on the number of labeled carbon atoms. For metabolite C in
Figure 1, five different masses can be measured: C+0 when no labeled carbon atom is present
(this corresponds to the isotopomer state C0000), C + 1, C + 2, C + 3 if respectively 1, 2 or 3
carbon atoms are labeled, and finally C + 4 in case all carbon atoms are labeled (for C1111).
In general, a metabolite with n carbon atoms has n + 1 (so called) mass isotopomers. The
measured mass isotopomer fractions then result from a linear combination of the isotopomer
fractions as follows:

yC+0(t) = xC0000(t),
yC+1(t) = xC0001(t) + xC0010(t) + xC0100(t) + xC1000(t),

...
yC+4(t) = xC1111(t),

(3)

where t ∈ Tm. From the measured mass isotopomer fractions, the measured labeled
concentrations are obtained as cC+r(t) = cC(t)yC+r(t), r = 0, . . . , ι(C), t ∈ Tm, where cC(t) is
the tth measured sample of the unlabeled concentration of metabolite C.

2.4. Metabolic Network Case Study

The case study has been taken from [19]. The model, presented in Fig. 1, is a simplified
metabolic network that recapitulates the microbial central carbon metabolism. In [19], the
model has been used to analyze the impact of labeling measurements for the identification
of enzyme kinetic parameters (parameters α in (1)). The model includes a linear reaction
sequence (vupt, v1, v5), a branch-point metabolite E and allosteric reaction mechanisms (on
vupt, v3, v4). The substrate Aex is fed to the bioreactor by a flux vfeed. The mass balance

for the substrate Aex is d
dt
cAex

= cinvfeed − Vintra

Vextra
vupt − cAex

vfeed, where Vintra, Vextra

are the intra- and extra-cellular volumes (denoting for the extracellular metabolite Aex a
different balance space than the intracellular metabolites), cin (related to Afeed) is the input
concentration of the controllable feed flux vfeed. Notice that, according to equation (1) here
β = (cin, vfeed, Vintra, Vextra). The term vupt is the uptake flux as defined in Table III. The
extracellular substrate Aex is then taken up by a transport mechanism vupt which exhibits
product inhibition (via A). The intracellular metabolite A reacts to metabolite B by a
reversible Michaelis-Menten kinetic function. The bimolecular reactions v2 uses the substrates
B and E to produce C. This reaction follows a Hill type kinetic function. The reversible
reaction v5 refills the metabolite pool E. Metabolite C is consumed by reaction v3, producing
D and F . The reaction is inhibited by high D concentrations. D can be degraded to E and F
by reaction v4, which is inhibited by C. The export of E is facilitated by reaction v6, following
Michaelis-Menten kinetics. Unlike [19], this study excludes v7 and the metabolite Fex, since
Fex has dynamics that are very similar to Eex. Furthermore, exchange fluxes have not been
considered, thus the study is limited to the net flux of v1 and v5. The kinetic equations used
to simulate the network for the testcase are shown in Table III, whereas the parameters are
given in Table IV. The experimental conditions studied in [19] are modified in the present
work: rather than focusing on a single, highly concentrated pulse, a series of different input
signals is studied and compared: these, as well as the experimental parameters used for the test
case (accounting for the β term in (1)) are described in Table 3. This network also contains
C-atom transformations by bimolecular and splitting reactions, as depicted in Fig. 1 (right). In
particular, as discussed previously, the bimolecular reaction step v2 generates nonlinearities in
the isotopomer balances. For the current study it is assumed that all intracellular metabolite
pools can be quantified, including all mass isotopomer fractions. Additionally the extracellular
substrate concentration as well as the product Eex can be measured.
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2.5. Piecewise Affine Models

We are interested in providing an approximation of the system of ODE in (1)-(2) describing the
dynamics of metabolite concentrations and (labeled) isotopomer fractions. This work employs
a class of autonomous dynamical models, known as piecewise affine [43, 44], as follows:

{

ċ = Nv(c, α, β)
ẋ = D(c)−1g(c, x, α, β)

is approximated as

(

ċ
ẋ

)

= Ai

(

c
x

)

+ bi. (4)

Here the state variable z = (c, x)T ∈ R
n, n = c +

∑c

j=1 2
ι(cj), thus Ai ∈ R

n×n and bi ∈ R
n.

For both models, the measurable output is given by the quantities (ci, ci+r), i = 1, . . . , c, r =
0, . . . , ι(ci) representing measured unlabeled and labeled concentrations. Furthermore, the state
variable z ∈ Ωi, i = 1, . . . , p, Ωi ⊆ R

n,Ωi ∩ Ωj = ∅, i 6= j, t ∈ T . In other words the domain
of definition R

n is partitioned within p non-overlapping regions Ωi, within each of which the
dynamics appear with the form Aiz + bi, which is a linear-plus-offset (affine) function. It is
assumed that the vector fields are Lipschitz continuous over Rn, and in particular continuous
over the boundaries of the regions Ωi. For more details on PWA models, please refer to [25].
The parameters of the PWA approximation in (4) are related to the parameters α of the

model in (1)-(2). The objective of an identification problem is, given a structure for the
dynamics (v(c, α, β)) and measured data provided by various experiments (each characterized
by a parameter set β), to determine optimal parameters (α) for the dynamics. This is also the
main goal of the present study: that of selecting optimal Ai, bi,Ωi for the PWA approximation,
based on experimental data.

3. IDENTIFICATION OF DYNAMIC FLUX PROFILES

This section describes the approximation of time dependent concentrations and flux profiles
with (time dependent) PWA models.

3.1. Time-dependent Flux Identification

Given a time series of measured labeled concentrations ci(t)yi,r(t), t ∈ Tm, i = 1, . . . , c, r =
0, . . . , ι(ci), we are interested in approximating these signals by parameterized functions
ĉi(t, θ)ŷi,r(t, θ) obtained from the time-dependent flux vector v̂(t, θ) according to the dynamics
in (1)-(2). Here v̂(t, θ) is a v-dimensional vector of approximated flux functions and θ a vector
of parameters to be defined shortly.
This study introduces a PWA expression for the quantity v̂(t, θ). However, unlike in (4) where

the (c, x)-state space is partitioned, notice that at this stage the partitioning is introduced over
the time domain T . More precisely, each of the v approximated flux functions v̂i(t, θi) is defined
over T as:

v̂i (t, θi) =



























θ1i

[

t
1

]

if t0 ≤ t < t1,

...
...

θpi

[

t
1

]

if tp−1 ≤ t ≤ tp.

(5)

Here i = 1, . . . , v indicates the specific flux; p is the total number of regions characterized
by t0 = 0 < t1 < . . . < tp = T : there are p − 1 switching events that make up the set
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Ts
.
= {t1, . . . , tp−1}; θ = [θ1, . . . , θv]

T is the vector of parameters that one is interested in for

the optimization problem (it is related to α in (1)), where θi = [θ1i , . . . , θ
p

i ] and θji are pairs

θji = [θj,1i θj,2i ]. Notice that a single switching sequence Ts is applied (in parallel) to all the
v fluxes: this is grounded on computational reasons and on simulation outcomes, but by no
means technically necessary. Furthermore, let us remark the difference between the sets Tm
(measured samples) and Ts (switching times), both of which are finite subsets of the continuous
time horizon T . Continuity assumptions on the PWA approximation are raised, which result
in the following:

lim
t↑tj

θji

[

t
1

]

= θj+1
i

[

tj
1

]

⇒ θj,1i tj + θj,2i = θj+1,1
i tj + θj+1,2

i , (6)

j = 1, . . . , p− 1, i = 1, . . . , v.

Over the p regions and for each of the v fluxes, due to the continuity constraints a total of
v(2p− (p − 1)) = v(p + 1) free parameters making up θ is obtained.
Given a switching sequence Ts = {t1, . . . , tp−1}, let us introduce the following errors

ǫi,r(k, θ), k ∈ Tm, over the labeled concentrations

ǫi,r(k, θ) = ci(k)yi,r(k)− ĉi(k, θ)ŷi,r(k, θ), i = 1, . . . , c, r = 0, . . . , ι(ci),

and the following minimization problem

θ∗ = argmin
θ

∑

k∈Tm

ǫ(k, θ)TWǫ(k, θ), (7)

given the constraints in (6) and where ǫ(k, θ) is a vector composed by the elements
ǫi,r(k, θ). The quantities ŷi,r(k, θ) are samples taken over Tm from the observation vector

ŷ(t, θ), t ∈ T , which is a linear combination of the vector x ((x ∈ R

∑
c

j=1 2ι(cj) , ref. Sec. 2))
of isotopomer fractions and is derived from the nonlinear and high-dimensional dynamics
dx
dt

= D(c)−1g(c, x, α, β). Similarly, the quantities ĉi(k, θ) are derived from ĉ(t, θ), t ∈ T , which

is obtained as ĉ(t, θ) = ĉ(0, θ) +
∫ t

0
Nv̂(s, θ)ds. Furthermore, W ∈ R

∑
c

j=1 2ι(cj )×
∑

c

j=1 2ι(cj)

is a diagonal weighting matrix (made up of positive elements), which is used to bias the
cost function. This weight can be used to enhance certain labeled metabolite concentrations
over others, or can be chosen according to measurement error levels associated to the single
concentrations (W can also be made dependent on the samples k ∈ Tm). We also introduce
constraints over the approximated labeled concentrations, which have to be necessarily non-
negative: ĉi(k, θ)ŷi,r(k, θ) ≥ 0, ∀k ∈ Tm. The unlabeled case is a special case of the labeled
study above: we introduce the minimization problem in (7), where the parameter-dependent
function ǫ(k, θ), defined over Tm, is vector valued (of dimension c) and defines the error over
the concentrations:

ǫi(k, θ) = (ci(k)− ĉi(k, θ)) , i = 1, . . . , c.

In the unlabeled case, given a switching sequence Ts, by explicit integration in time of (5)
according to (1), it is possible to express the functions ĉ(k, θ) – and thus also ǫ(k, θ) – as
linear functions of the parameter set θ. Given the linear constraints on the fluxes and on the
concentrations, the quadratic problem in (7) can be globally solved and its solution θ∗ can be
easily computed with standard optimization software. For the labeled case, this optimization
is in general nonconvex over θ due to the nonlinear dynamics in (2), and can be performed
locally via Taylor expansions. Being a nonlinear problem, local minima may exist. Hence, a
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PWA APPROXIMATIONS OF FLUXES AND KINETICS FROM 13C EXPERIMENTS 9

multistart initialization and a proper choice of the initial conditions (e.g. when prior knowledge
on the parameters exists) is desirable. This study has initialized the parameters θ for the
labeled experiments based on the optimal set obtained from the unlabeled study run with
the unlabeled dynamics in (1) (ref. Sec. 5). This has allowed to obtain a numerically feasible
solution for the isotopomer differential equation (2).
Given a particular p-dimensional partitioning of the interval T , characterized by the set

Ts = {t1, . . . , tp−1}, the solution of the optimization problem (7) yields an optimal set of
parameters θ∗. In the following, three algorithms are described to come up with a sequence of
switching times Ts that adapts to the measured data and to the quality of the approximation.
The first two (described in Sections 3.1.1 and 3.1.2) compute the switching times sequentially
and are based on error trends, whereas the third one (presented in Section 3.1.3) directly looks
at the derivative of the measured concentrations with no error calculation. The algorithms are
presented for the labeled case, the unlabeled version being a special instance.

3.1.1. Error Interpolation (sequential) The first procedure (Algorithm 1 in the Appendix)
selects the p− 1 switching instants sequentially and is based on an interpolation over time of
the errors ǫ(k, θ̄), k ∈ Tm, given a parameter vector θ̄. For each of the i metabolites, i = 1, . . . , c
and of the mass isotopomer fractions r = 0, . . . , ι(ci), the error ǫi,r(k, θ̄) is summed over the
measurement times set Tm to yield the weighting parameter Ei,r , Ei,r

.
=

∑

k∈Tm
ǫi,r(k, θ̄).

Thereafter, selecting the largest of the weights (i∗, r∗) = argmaxi=1,...,c;r=0,...,ι(ci) Ei,r, the

maximum of the error ǫi∗,r∗(k, θ̄), k ∈ Tm, is calculated over time (this happens at time
t∗ ∈ Tm) for metabolite i∗ and mass fraction r∗. Based on this maximum, the time point
in T preceding t∗ where the error intercepts the zero axis (name it t⋆) is found via linear
interpolation as:

t⋆ = inf
{

t ∈ T : t = |αtm + (1− α)t∗|, (8)

tm = max{k ∈ Tm, k < t∗ : ǫi∗,r∗(k, θ̄) ≤ 0 ∨ k = t0}, α ∈ [0, 1]
}

.

The steps above always yield a time point t⋆ which is such that t⋆ ≥ t0. If the interpolated
point tk is distanced from other existing switching times more than a chosen tolerance δ, the
intercept is selected as the new switching point, otherwise the calculation is repeated with the
second largest weight element Ei,r . Algorithm 1 is easily shown to yield feasible outputs and
to terminate in a finite number of steps.

3.1.2. Clustering (sequential) Similar to the algorithm detailed in Section 3.1.1, a second
procedure is also based on the time-dependent errors for each metabolite and mass fraction.
A set Z is defined, which is valid for all the pools concentrations and is made up of all the
time points associated to an error signal being equal to zero (practically, within a proper
tolerance δ1). Each element in this set is given a weight that is proportional to the sum of all
measured errors up to the next element in time in Z. The k-means algorithm [45] then creates
clusters over the elements of Z. (The number of clusters depends on the discussed weights.)
The mean values associated to each cluster are added to the set of switching times Ts. Since the
contribution from all the metabolites are included in creating the set Z, the algorithm allows
for a global selection of the time switches for Ts. The procedure is detailed in Algorithm 2 in
the Appendix, which can again be shown to yield feasible outcomes and to terminate within
a finite number of steps.
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10 A. ABATE, R.C. HILLEN, S.A. WAHL

3.1.3. Concentration Trends (batch) An alternative algorithm for selecting the time switches
in Ts employs the trends in time of the labeled concentration levels. This is in contrast to
Algorithms 1 and 2, which focused on the magnitude of the errors as a function of time. Large
time derivatives in labeled concentration levels are often associated with significant changes
in the related fluxes, for instance when a saturation occurs or a sudden burst in substrate
level is experienced. Similarly, it is of interest to detect situations where the derivative of
a labeled concentration level is persistently small, which is related to the steady-state of the
related fluxes. Trends are found by numerically computing the forward time difference over the
labeled metabolite concentration levels. Algorithm 3 in the Appendix details the procedure,
which is a batch algorithm and thus does not depend on an iterated mechanism. On the other
hand, the presence of noise on the concentrations potentially disrupts the approach, and the
lack of a iterative procedure may lead to locally suboptimal outcomes.

4. RECONSTRUCTION OF KINETIC EQUATIONS VIA PWA APPROXIMATIONS

In this Section the kinetic equations are identified based on the time-dependent functions
obtained in Section 3. With reference to the dynamics in equation (1) and with the additional
information provided by the identified PWA dynamics of v̂(t, θ∗) and of ĉ(t, θ∗), t ∈ T , the
problem of reconstructing the concentration-dependent enzyme kinetic equation v(c, α, β) as
v̂(ĉ, ϑ,Ω) is investigated. The parameters ϑ,Ω will be specified shortly.
The embedding is performed as visualized for an arbitrary flux dependent on two

concentrations in Figure 2. First the profiles of the approximated concentrations are combined
within the concentration space by “eliminating” their time dependence. An additional
dimension is added to accommodate for the approximated flux profile: this returns a flux
function over the concentration space. This procedure generates data for the identification
of concentration-dependent kinetic equations describing the flux functions. Note that the
approach uses, along with the approximated flux profiles v̂(t, θ∗), also the approximated
concentrations ĉ(t, θ∗), t ∈ T , rather than the original concentration measurements c(t), t ∈ Tm:
this enables using a larger set of data points than exclusively those in Tm.
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Figure 2. From the data generated by the two approximated concentrations a profile is created over the
concentration space. Assuming a known interaction stoichiometry (namely, what metabolites influence

what flux), the approximated flux profile is expressed over the concentration space.

Classical identification techniques assume a known equation layout such that nonlinear
regression for parameter estimation can be used [34, 46]. This study instead aims at
reconstructing kinetic equations without prior knowledge on the actual equation layout – only
the interaction stoichiometry is taken to be known. More specifically, the goal is to approximate
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the nonlinear equation vj(ci, α, β) by a PWA function

v̂j (ĉi(t), ϑj ,Ωj) =



























ϑ1
j

[

ĉi(t)
1

]

if ĉi(t) ∈ Ω1
j ,

...
...

ϑp

j

[

ĉi(t)
1

]

if ĉi(t) ∈ Ωp

j ,

(9)

where j denotes a flux, j = 1, · · · , v, and i ∈ γ(j), where γ : {1, . . . , f} → 2{1,...,c} is a
set-valued map that associates to each flux a set of concentrations according to the known
stoichiometry of the system. Furthermore, ĉi(t) ∈ R

d(j), d(j) = card(γ(j)) ≤ c, represent the
concentration samples, which are drawn from T . The set of parameters referring to flux j

is ϑj =
[

ϑ1
j , . . . , ϑ

p

j

]

, where ϑi
j =

[

ϑi,1
j , . . . , ϑ

i,d(j)+1
j

]

, and depends on the selected domains

Ωi
j ⊆ Ωj ⊂ R

d(j), where Ωi
j ∩ Ωl

j = ∅, ∀i 6= l, l = 1, · · · , p, and ∪p

i=1Ω
i
j = Ωj . Usually, Ωj is

given by the cross product of intervals over concentrations, Ωj = [0, c1] × . . .× [0, cd(j)]. It is
assumed that the PWA approximation is continuous over the boundaries of the partitions of
Ωj . Notice the similarity between (9) and (5). However for v̂j (ĉi(t), ϑj ,Ωj) we shall optimize
over both the parameters and the partitions, whereas for v̂i (t, θi) we searched for an optimal Ts
defining the switching sequence and, given any Ts, we optimized just over the parameters θi. In
the present instance, the optimal parameter set ϑj and domains in Ωj are sought so that they
optimally describe the function vj(ci, α, β) by approximating it with equation v̂j (ĉi, ϑj ,Ωj) in
(9). Let us denote the global set of parameters as ϑ = [ϑ1, · · · , ϑf ]

T and Ω = [Ω1, · · · ,Ωf ]
T .

A number of methods have been proposed to solve identification problems related to PWA
functions [47, 48]. This works leverages either a clustering approach [35], or a bounded error
method [36], both of which are supported by existing software toolboxes, respectively HIT [49]
and PWAid [50]. We have integrated the two software tools, adapting a few algorithms within
them. The Appendix contains a description of the methods in [35, 36] and of the developed
software, and elaborates on the fundamental issue of data excitation for the model identification
procedure. An application of the two identification approaches is developed in Section 5.

5. APPLICATION TO A METABOLIC CASE STUDY

The techniques in Sections 3 and 4 are applied to a metabolic network case study.

5.1. Dynamic Inputs for Benchmark Case Study

The metabolic network used for the in silico test case is depicted in Figure 1 and first introduced
in Section 2.4. The kinetic equations used to simulate the metabolic network are taken from [19]
and recapitulated in the Appendix — however, these functions are used only to generate data
and for comparison with the outcomes of the methods.
For the test case, three realistic input profiles for the feed flux are used to simulate different

dynamic experiments. Let us describe the operational parameters β, as in Section 2.4. The
tunable parameters are the volume ratio VR between the extra- and intracellular concentrations
(Vintra, Vextra) within the reactor, and the influx of substrate vfeed with its concentration cin.
Both vfeed and cin are time varying, so that a dynamic experiment is simulated by varying
the labeling of the input: each experiment commences in steady state until the start of the
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Figure 3. Three different input profiles are used to generate experimental data via simulations. The
volume ratio VR(1/100, 1/10, 1/10) represents the ratio between the intracellular and extracellular volume
(in practice, the ratio between cell and reactor volume). The influx vfeed[L/s] is the (controllable)
feed of extracellular substrate into the reactor. The influx the feed concentration cin[mmol] is also
controllable. The organism is kept unlabeled and at steady state until τf1 = 2[s], after which a pulse

of labeled substrate is added until τf2 = τf1 +∆t, when the feed is switched off.

feed input at time t = τf1. Next, a labeled pulse or gradual increase of the extracellular
concentration is created for τf1 ≤ t < τf2, after which the influx is set to zero. A total
of three different input profiles are created, as recapitulated in Figure 3. Based on these
inputs, data sets are generated as measurements of concentrations and of mass isotopomer
fractions. The study considers rapid measurement sampling with frequency of 1 Hz, and
an artificial noise corresponding to 2% of the signal magnitude is added to the dynamics.
The simulations will result in concentration data c(t) ∈ R

(m+1)×c, mass isotopomer fractions

y(t) ∈ R
(m+1)×

∑
c

j=1(ι(cj)+1), over a set of discrete sample times t ∈ Tm = {tm0 , · · · , tmm}. Here
m+1 is the number of time samples, c is the number of metabolite concentrations, and ι(cj)+1
is the number of mass isotopomer fractions for the labeled concentration cj , which depends on
the number of carbon atoms of the corresponding metabolite.
For the test case, the washout term is omitted (namely, we assume that cAex

= 0).
Furthermore, it is assumed that all intracellular metabolite pools can be quantified (including
all mass isotopomer fractions), along with the extracellular substrate concentration and the
product Eex. Notice that the case study excludes v7 and the metabolite Fex, since Fex has
dynamics that are very similar to Eex. Exchange fluxes have not been considered, thus the
study is limited to the net flux of v1 and v5. Altogether, this results in 8 kinetic functions for
the unlabeled part, and 8 metabolites with a total of 26 mass isotopomers. The number of
parameters for the PWA approximations in time is in the order of 50.

5.2. Reconstruction of dynamic flux profiles in time

Before carrying out the time-dependent reconstruction, a search for the global minimum over
both parameter set θ and switching sequence Ts is performed, to set a benchmark for the
ensuing study. For the unlabeled case, the optimization problem is used as an objective function
for a global genetic algorithm, which includes the switching sequence Ts as a variable. In order
to avoid suboptimal results, the genetic algorithm is executed with random initial conditions
50 times for each of the three input sets, and for p = 3, 4, 5 switches in Ts. As a side result, this
global optimization has given useful recommendations on additional information to be used
for the later reconstruction, such as the placement in time of the first switch with reference
to parameters τf1, τf2, and the minimal distance between adjacent switches (parameters δ
in Algorithm 1, and δ2 in Algorithms 2 and 3). The complete cohort of experiments for the
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PWA APPROXIMATIONS OF FLUXES AND KINETICS FROM 13C EXPERIMENTS 13

genetic algorithm has run in about a day with a MATLAB ga procedure, over a cluster of four
desktops with Intel processors, 2.5GHz and 2GB RAM. The genetic algorithm turns out to be
computationally too demanding for the labeled case and is thus left out for this latter setup.

5.2.1. Switch allocation methods: unlabeled case

As anticipated, in all the experiments the following additional information, which is gathered
from the runs with the genetic algorithm as well as from the specific experimental setup, is
embedded:

• since the dynamic experiments are started in the (unlabeled) steady-state, for any

metabolite i the value of the constants ĉi(0, θ) =
∑

j N(i, j)θ1,2j will be determined
based on the first value of the corresponding metabolite concentration

• a 0th-order (flat) profile is enforced for the first domain of the approximated flux profile,

since all data sets start from steady state (θ1,1i = 0, i = 1, . . . , v)
• the feed start is associated by default to a switch
• no switches are allowed to be allocated in the very last second of the time horizon
• a threshold of 0.5 seconds is used to separate adjacent switches (with an exception for

the switches placed close to the feed start)

The three different switch allocation methods are compared and benchmarked against the runs
of the global genetic algorithm. The algorithms can select either 3, 4, or 5 switches (p). The
results are displayed in Table I for the case of p = 5. The tables display the errors over both
concentrations and fluxes. (Note again that the comparison between actual and approximated
fluxes is possible for the case under study since the structure of the kinetic equations is known.)

Allocation of 5 switches in the unlabeled case

Error on concentrations c Error on fluxes v

GA (c) GA (v) S.1 S.2 B.1 GA (c) GA (v) S.1 S.2 B.1

Set 1 4.48 5.61 4.78 4.58 4.57 12.86 1.06 6.95 6.89 5.47
Set 2 0.99 2.75 2.36 25.94 1.86 21.93 0.94 6.72 101.64 2.80
Set 3 1.84 3.58 2.28 2.32 2.59 4.15 0.06 2.62 2.42 0.94

Table I. Errors between the approximated and measured concentrations (left), and between the
approximated and real fluxes (right) for PWA approximations with 5 switches on unlabeled data.
GA (c) is the minimum of 50 runs of a genetic algorithm that minimizes the difference between
measured and approximated concentration. Similarly, GA (v) minimizes the difference between known
and approximated fluxes. The left part of the table compares the errors over the concentrations, for
the different methods, whereas the right table displays the errors of the difference between known
and approximated fluxes (the corresponding italicized columns are the benchmark for the theoretical
minimum). S.1 is the error interpolation procedure, S.2 the clustering method (S.1 and S.2 are
sequential), and B.1 the batch method based on concentration trends. The green numbers denote

the best method for each of the three datasets.

Comparing the outcomes of three switch allocation methods, it can be definitely concluded
that the batch method, which is based on the computation of the numerical derivative of the
metabolites concentrations, it the one that leads to the best performance. Furthermore, being
a one-shot technique (rather than sequential in nature), it also beats the other two methods
computationally: the computational time for the allocation of 5 switches, for each of the three
experiments, are respectively 19.90, 15.88 and 4.48 seconds. The results are obtained on an
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14 A. ABATE, R.C. HILLEN, S.A. WAHL

Intel c2d T9300 processor, with 2.5GHz and 2GB RAM. The output of the first sequential
technique has, in a few instances, also shown some issues related to overfitting, particularly in
the case of bidirectional fluxes with fast dynamics: this is a problem that is due to the network
structure, rather than to the mathematical approach. A solution can be found by fixing the
exchange flux at a high level and estimating only the net fluxes. In general the performance
of the batch technique, which depends on a numerical computation of the derivative, may be
disrupted in case the measured data comes with high noise levels.

5.2.2. Switch allocation methods: labeled case

The labeled case is studied similarly to the unlabeled case of Section 5.2.1. The experimental
setup and embedded additional information is also analogous. Recall that the genetic
algorithm is not feasible for the dimensions and complexity of the labeled network. The
labeled optimization problem requires a feasible initial parameter set, since in order to
obtain a numerically meaningful solution for the isotopomer differential equation the pool
concentrations have to be strictly positive. The parameters for the labeled experiments are
thus initialized based on the optimal set obtained from a run of the unlabeled study, which
is based on the optimization problem (7) defined over unlabeled concentrations and run with
the unlabeled dynamics. For the sequential methods this entails to solve an unlabeled problem
at the first iteration step, after which the labeled optimization problem is executed for each
remaining iteration. The batch method requires no iterations, thus the unlabeled problem is
run first, then the labeled one is executed. As in the unlabeled case, the initial conditions for
the variables c, x are taken from measurements (concentrations) and from the natural labeling
of the isotopomer states.
Due to space limitations, only the scenario with five switches is presented in Table II. Notice

that since the values in this table represent the accrued error of the labeled concentrations in
the value function of the optimization problem (7), which includes also the contribution from
the isotopomer mass fractions, they cannot be directly compared to the values presented in
Table I.
A few observations can be made. The error on the labeled concentrations is reduced by

using the labeled optimization problem (cfr. Table II, left vs right column): thus the solution
of the labeled problem yields results that are more accurate than the unlabeled one. The
batch method and the first sequential method perform similarly (cfr. Table II, right column).
It is interesting to note that in two of the three experiments the labeled results improve the
unlabeled outcomes — this again motivates resorting to the labeled scenario. As expected,
the computational time required to solve the labeled problem has increased. Increasing the
size of the network or the number of carbon atoms of the substrate (which is also related to
an increase of the network size) directly impacts the computational times. The computational
times required for the three experiments (initialization runs are excluded) are on average
respectively 35.3, 41.7, and 7.9 minutes: the batch method is still the fastest. Results are
obtained on an Intel c2d T9300 processor, with 2.5GHz and 2GB RAM. The procedure for
the labeled case is computationally much heavier than that for the unlabeled scenario.

5.2.3. Reconstruction of dynamic profiles

Since the batch method appears on overall to yield the best results, Figures 4 and 5 display
its outcomes for the third experimental scenario (as per Figure 3) over a labeled network. It
can be observed that the flux and concentration approximations are quite accurate. Outcomes
with similar performance have been obtained for the first two input sets.
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Allocation of 5 switches in the labeled case

Errors on c y
unlabeled optimization

Errors on c y
labeled optimization

S.1 S.2 B.1 S.1 S.2 B.1

Set 1 6.46 4.74 1.95 0.77 4.74 1.94
Set 2 5.62 6.06 6.22 5.62 6.06 6.22
Set 3 0.07 0.09 0.07 0.05 0.05 0.04

Table II. Errors between the approximated and measured labeled concentrations. The left column
displays the results of the initial unlabeled optimization, while the right figures refer to the labeled
optimization. For the labeled case there is no available benchmark from the genetic algorithm. The

data is ordered similarly to Table I.
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Figure 4. Reconstruction of labeled concentration profiles using the batch method for the switch
allocation. The figure shows the measurements (crosses) and the approximations (lines), for
metabolites Aex and A to E. The graphs display both the mass isotopomer fractions (yM+r on the
bottom plots, for a generic metabolite M and where r = 0, . . . , 4 denotes the weight difference; the

plots are in absolute units) and metabolite concentrations (top plots, with units µmol/gCDW).
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Figure 5. Reconstruction of flux profiles using the batch method for the switch allocation. This figure
displays the actual flux profiles (continuous lines) and the PWA approximated profiles (dashed).

5.3. PWA Reconstruction of enzyme kinetic equations

The identified flux profiles in time, along with being of interest to the biologist since they shed
light over the dynamic exchange of material among different labeled metabolites, represent
also an integral part of the reconstruction of the enzyme kinetic equations as functions of the
concentration levels.

Figure 6. Top row – Reconstructed flux profiles in time (colored lines, one for each experiment) are
embedded in the (approximated) concentration space. The shown fluxes – ordered per column: v̂upt, v̂2,
and v̂5 – refer to the metabolic network of Figure 1. The overlaid grid displays the corresponding actual
nonlinear enzyme kinetic equations (respectively vupt, v2, and v5). Bottom row – The reconstructed

PWA equations of the corresponding enzyme kinetic equations.

Each approximated flux profile is embedded in the corresponding concentration space. Recall
that this embedding is performed over the approximated signals instead of the measured ones,
since the former offer a larger amount of data to select from. Figure 6 (top row) displays the
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PWA APPROXIMATIONS OF FLUXES AND KINETICS FROM 13C EXPERIMENTS 17

set of three embedded flux profiles. For these fluxes the dynamics appear to be nicely excited,
however this is not the case for all reconstructed fluxes: data may aggregate along lower-
dimensional spaces. In general, exciting metabolite pools (particularly intracellular ones) that
are related to these fluxes is hard. Thus, while it is in general very hard to estimate all the
kinetic equations, the outcome may yield useful insight on the primary regulation mechanism
for specific fluxes for which the reconstruction is not feasible. Notice that it is possible to
generate additional information and embed it as newer data: for instance, this can be done if
it is known that a kinetic equation is equal to zero or if it is known to saturate at a particular
level corresponding to respectively low and high concentration levels of a certain metabolite.
We have reconstructed the kinetic equations in Figure 6 using the techniques in [49] and [50],

which are discussed in the Appendix. The procedure has been repeated 50 times per method.
For the HIT toolbox, the number of domains is varied between three and five. The relative
error bound δ used in PWAid is varied within δ ∈ {1/15, 1/25, 1/35}: its outcomes with three
domains are used for a comparison with HIT. In HIT, the expected number of domains is a
parameter chosen by the user. For PWAid, the error bound δ needs to be tuned to obtain a
similar number of domains. All identifications runs result in outcomes with two to six domains.
Since the computational demand is relatively low, the accuracy can be increased by considering
models with higher number of domains. However, the enforcement of continuity may become
heavy when a large number of modes is considered.
Of the two toolboxes, PWAid yields the best outcomes with regards to the minimal error

(although the difference with HIT is marginal), however the average and standard deviation
of the error in HIT is in general smaller than that in PWAid. Computationally, HIT seems to
outperform PWAid. The possibility to specify the number of domains as an initial parameter
is a valuable feature of HIT. The reconstructed PWA kinetic equations obtained by HIT are
shown in Figure 6 (bottom row). The identified kinetic equations are quite accurate when
compared to the original nonlinear equations used in the simulation: this especially holds for
the regions in the state space where the embedded data is present.

6. CONCLUSIONS AND FUTURE WORK

This work has shown an application of the PWA framework in system biology: dynamic
fluxes and kinetic functions have been identified from 13C labeling experiments. The use of
information from dynamic 13C data is an essential extension of the dynamic flux estimation
in [37], employed to identify fluxes at branch points, as well as bidirectional (fast-equilibrium)
reactions. While adding to the information content of observed data, the use of 13C labeling
significantly increases the amount of equations and introduces non-linearity in the system
dynamics: the computational complexity thus becomes critical for the proposed optimization
procedure.
With regards to the reconstruction in time of flux profiles, our contribution has put forward

three algorithms for their PWA approximation. These have been ranked over an informative
test metabolic network. For the ranking, different experimental setups have been chosen
(high/low pulses with fast/slow growth), and a benchmark PWA approximation has been
calculated using a global genetic algorithm. It has been observed that experiments with a high
dynamic range (first two setups) cannot be approximated as accurately as experiments with
slower dynamics (third experiment). Furthermore, the dynamics have an essential influence
on the minimal number of domains: while for the third experimental set four switches are
sufficient, at least five are needed for the first two experiments. Quite surprisingly, for the
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domain selection a batch approach has performed better than two sequential strategies. The
sequential algorithms seem to be outperformed especially for experiments that result in highly
dynamic flux profiles (first two sets). However, the performance of the batch technique may
decrease for experimental setups affected by high levels of noise.
For the second step (identification of enzyme kinetic equations), two techniques in the

literature with related software implementation have been tailored and integrated. Within the
current implementation, it is possible to perform PWA reconstructions of continuous models
(unlike the approximations proposed in [38]). This enables efficient comparison of different
kinetic hypotheses and thus promises to improve the biological knowledge of in vivo enzyme
kinetics.
Looking forward, the performance of the integrated procedure for flux profile reconstruction

has to be further optimized and parallelized in order to be applied to biologically relevant,
genome-scale networks with labeling enrichments.

APPENDIX

Time-dependent Flux Identification

We report the details of the three procedures for the reconstruction of dynamic flux profiles
in time: Algorithm 1 (page 18), Algorithm 2 (page 19), and Algorithm 3 (page 19).

Algorithm 1 Error Interpolation

Require: maximum number of regions p, parameter δ
1: initialize set of time points Ts := ∅, counter l := 1, and index set C := {(i, r) : i = 1, 2, . . . , c; r =

0, 1, . . . , ι(ci)}
2: while l < p ∧ C 6= ∅ do
3: solve problem (7) and find optimal θ∗

4: compute (i∗, r∗) := argmax(i,r)∈C Ei,r, and t∗ := maxk∈Tm ǫi∗,r∗(k, θ
∗), where Ei,r :=∑

k∈Tm
ǫi,r(k, θ

∗)

5: compute interpolation tl according to (8)
6: if mint∈Ts |tl − t| > δ then
7: set Ts := Ts ∪ {tl}, C := {(i, r) : i = 1, 2, . . . , c; r = 0, 1, . . . , ι(ci)}, l := l + 1
8: else
9: C := C \{(i∗, r∗)}

10: end if
11: end while
12: return Ts

PWA Identification Techniques

A number of methods have been proposed to solve identification problems related to PWA
functions [47,48]. Among them, a clustering approach [35] employs prescribed model structures
and allows identification of continuous functions, but it appears to get less accurate when
the model order is unknown. A bounded error method [36] uses a desired accuracy and
requires no prior knowledge on the model structure, but appears to be computationally
more demanding. Both methods are supported by existing software toolboxes: HIT [49] and
PWAid [50], respectively. In this work, we have integrated the two software tools and adapted
a few procedures. Technically, both toolboxes require the MPT [39] — modifications within
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Algorithm 2 Clustering

Require: maximum number of regions p, parameters δ1, δ2
1: initialize set of time points Ts := ∅, counter l := 1
2: while l < p do
3: solve problem (7) and find optimal θ∗

4: construct set Z := {(i, r, z) : |ǫi,r(z, θ
∗)| < δ1, i = 1, . . . , c, r = 0, 1, . . . , ι(ci), z ∈ Tm}. Z has

cardinality z,Z = {(·, ·, z1), (·, ·, z2), . . . , (·, ·, zz)}
5: define Ei :=

∑
zi≤k≤zi+1,k∈Tm

ǫj,r(k, θ
∗), where (j, r, zi) ∈ Z, j = 1, . . . , c, r = 0, 1, . . . , ι(cj), i =

1, . . . , z− 1, whereas Ez :=
∑

zz≤k≤tn,k∈Tm
ǫj,r(k, θ

∗)

6: use k-means algorithm to group zeros (·, ·, zi) ∈ Z – weighted according to Ei – within n clusters,
{z1i }, . . . , {z

n
i }, each of which with mean µ1, . . . , µn

7: µ∗ := argmaxi=1,...,n

∑
j:zj∈{zi

j
} Ej

8: if mint∈Ts |µ
∗ − t| > δ2 then

9: define set of time points Ts := Ts ∪ {µ∗}, l := l + 1
10: else
11: l := p

12: end if
13: end while
14: return Ts

Algorithm 3 Concentration Trends

Require: maximum number of regions p, parameters δ1, δ2
1: initialize set of time points Ts := ∅
2: based on dynamics of ci(t)yi,r(t), t ∈ Tm, i = 1, . . . , c, r = 0, 1, . . . , ι(ci), compute finite set Z ∈ T

made up of local maxima of the numerical derivative, and start- or end-points for steady-state
(based on zero crossing of numerical derivative according to tolerance δ1)

3: use k-means algorithm to cluster points zi,r ∈ Z within p clusters, {z1i,r}, . . . , {z
p

i,r}, each of which

with mean µ1, . . . , µp; associate weight Ej to point µj as in Algorithm 2; sort values µj according
to weight Ej so that µ̄1 is the largest

4: for i=1,. . . , p do

5: if mint∈Ts |µ̄
i − t| > δ2 then

6: define set of time points Ts := Ts ∪ {µ̄i}
7: else
8: define set of time points Ts := Ts

9: end if
10: end for
11: return Ts

this toolbox have been performed in order to increase the robustness of the LP solvers.
The underlying assumption for a successful identification procedure is the “excitation” of the

model dynamics: qualitatively, all states of the model ought to be excited in such a way that the
full range of dynamics is displayed in the output data [51]. In the case of metabolic networks
this entails the presence of enough data over the regions of the concentration space where
kinetic equations are to be reconstructed. This requirement may be infeasible for a number of
biological systems: for instance, the intracellular metabolite pools can only be excited up to
certain levels. Furthermore, since the concentration and labeling data used for the identification
is generated by dynamic experiments that always start in steady state, a single experiment will
typically span a limited region of the space. In addition, while some fluxes are stoichiometrically
dependent on several concentrations, in practice they may be mostly influenced by a single
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one. While it is in general impossible to estimate a kinetic equation over all concentration
ranges, a partial outcome may still yield useful insight on the primary regulation mechanism
for the specific flux.

Kinetic equations

We report the structure (Table III) and the parameters (Table IV) of the kinetic equations,
adapted from [19], for the network displayed in Figure 1.

Kinetic equations in the metabolic network of the case study

flux mechanism inhibitor kinetic equation

vupt Michaelis-Menten, 1 inhibitor A

vmaxcAex
(

KmA + cAex

)(

1 + cA
KI

)

v1 Reversible Michaelis-Menten
vmax

(

cA −
cB
Keq

)

KmA

(

1 + cB
KmP

)

+ cA

v2 2 Substrate Hill-Kinetic
vmaxc

hA
B

chB
E

(

KmA + chA
B

)(

KmB + chB
E

)

v3
Michaelis-Menten, 1 competitive
inhibitor D

vmaxcC

KmA

(

1 + cD
KI

+ cC

)

v4
Michaelis-Menten, 1 competitive
inhibitor C

vmaxcD

KmA

(

1 + cC
KI

+ cD

)

v5 Reversible Michaelis-Menten
vmax

(

cB −
cE
Keq

)

KmA

(

1 + cE
KmP

)

+ cB

v6 Michaelis-Menten
vmaxcE

KmA + cE

Table III. Kinetic equations for the metabolic network of Fig. 1 (the parameters are in Table IV).

.
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