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Approximate Abstractions of Stochastic Hybrid Systems

Alessandro Abate,1 Alessandro D’Innocenzo,2

and Maria D. Di Benedetto2

Abstract—We present a constructive procedure for obtaining a finite
approximate abstraction of a discrete-time stochastic hybrid system.
The procedure consists of a partition of the state space of the system
and depends on a controllable parameter. Given proper continuity
assumptions on the model, the approximation errors introduced by the
abstraction procedure are explicitly computed and it is shown that they
can be tuned through the parameter of the partition. The abstraction
is interpreted as a Markov set-Chain. We show that the enforcement
of certain ergodic properties on the stochastic hybrid model implies the
existence of a finite abstraction with finite error in time over the concrete
model, and allows introducing a finite-time algorithm that computes the
abstraction.

Index Terms—Stochastic Hybrid Systems, Markov Chains.

I. I NTRODUCTION AND RELATED WORK

The study of complex, heterogeneous, and probabilistic models
such as Stochastic Hybrid Systems poses challenges, both analytically
(e.g., steady-state analysis, synthesis of optimal controllers [1])
and computationally (e.g., reachability and safety analysis [2]). An
approach that is used to cope with this issue is that of approximate
abstraction: a system with smaller (possibly finite) state space is
obtained, which is approximately equivalent to the original system
[3]. Unlike the exact concept of equivalence, which is usually defined
by the notions of language equivalence and bisimulation [4]and as
such is quite restrictive since it requires a perfect correspondence
between the trajectories of the original system and those ofits
abstraction, approximate notions of system equivalence [3], [5], [6]
are endowed with a proper metric quantifying the distance between
the trajectories of the original system and those of the approximate
abstraction. The research on abstraction techniques for dynamical
systems has two general goals. The first objective is that of proving
the existence of a finite abstraction [4], while the second goal is that
of developing finite time and tunable abstraction algorithms [5].

Abstraction techniques have been adapted to probabilisticmodels,
for instance to discrete-space, continuous-time models [7]. Notions
of bisimulation, which naturally lead to abstracted models, have been
developed for classical discrete Markov processes in [8], [9], [10],
and for jump linear stochastic systems in [6].

Weak approximations of continuous-time probabilistic models as
locally-consistent Markov Chains have been introduced by [11], and
applied on hybrid models in [12], [13], whereas approximations of
discrete-time Markov models can be alternatively studied via renewal
theory, as in [14]. Notice that both approaches are different than the
present work in that they derive no explicit approximation bound.
Related to this work, recently [15] has proposed explicit error bounds
on a time and space discretization of a Markov process with certain
ergodic properties.

In this work we provide new results on approximate abstractions of
discrete-time stochastic hybrid systems (DTSHS). DTSHS encompass
a number of other classes of stochastic hybrid models in the literature
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[16]. The main contributions of this paper can be summarizedas
follows:

• We introduce a procedure to construct an approximate abstrac-
tion of a DTSHS, which involves the partition of the state space
and the approximation of the transition laws of the DTSHS over
the partition sets, with an explicit computation of the error.

• The abstraction is interpreted as a Markov set-Chain (MSC)
[17]. MSC are useful as they comprise both stochastic and non-
deterministic parts. In the present context, the stochastic quanti-
ties approximate the probability law of the original system, while
the non deterministic behaviors are used to quantitativelytake
into account the error introduced by the abstraction procedure.

• By posing some continuity assumptions on the DTSHS model,
we derive an explicit and tunable bound on the error between
the probability distribution of the abstracted model (the MSC)
and that of the original model (the DTSHS, considered over
the partition sets), for each time instant (and, in particular, in
steady-state). The tunable bound allows for refinements of the
abstraction procedure.

• Based on the derived error bound in time and given proper
assumptions on the ergodicity of the original DTSHS, the
contribution proposes a finite time algorithm to construct an
approximate abstraction with arbitrary positive precision. The
precision is related to the distance between the steady-state
distributions.

Using the concept of distance between the probability laws of the
original system and those of the abstraction, the proposed procedure
and the associated time-dependent bounds represent a step towards
a formalization of the notion ofapproximate stochastic bisimulation
for general probabilistic models [8], [9], [10]. Looking forward, our
work addresses the following general verification purpose:given a
DTSHS, verify the probabilistic properties of the originalsystem on
a finite-dimensional MSC abstraction with arbitrary precision.

Section II introduces the class of stochastic hybrid modelsunder
study, namely the DTSHS. Section III recalls some results onMSC
to be utilized in the rest of the work. Section IV introduces the
abstraction procedure as a partitioning of the state space.Section V
delves into the derivation of the errors associated with theabstraction,
which turns the original DTSHS into a MSC. We show that, under
proper ergodic assumptions on the DTSHS, it is possible to construct
an approximate abstraction with arbitrary precision over time. We
also propose an algorithm for building in finite time an abstraction
endowed with the property that its steady state is arbitrarily close
to that of the original system. Section VI concludes the article. The
appendix contains the proofs of the statements.

II. D ISCRETE-TIME STOCHASTICHYBRID SYSTEMS

Definition 1 (DTSHS):A discrete-time stochastic hybrid system is
a tupleH = (S , Tq, Tt, Tr), where

• S := ∪qi∈Q{qi}×Di, is the hybrid state space, which consists
of a set of discrete modesQ := {q1, q2, . . . , qm}, for some
finite m ∈ N, and of a set of continuous domains, one for each
mode qi ∈ Q, each of which is defined to be a compact set
Di ⊂ R

n(qi). The functionn : Q → N assigns to eachqi ∈ Q
the finite dimension of the continuous state spaceR

n(qi);
• Tq : Q×S → [0, 1] is a discrete stochastic kernel (the “discrete

transition kernel”) onQ, given S , which assigns to eachs =
(q, x) ∈ S a discrete probability distributionTq(·|s) over Q;

• Tt : B(D(·)) × S → [0, 1] is a Borel-measurable stochastic
kernel (the “continuous transition kernel”) onD(·), given S ,
which assigns to eachs = (q, x) ∈ S a probability measure
Tt(·|s) on the Borel space(Dq,B(Dq));
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• Tr : B(D(·))×S ×Q → [0, 1] is a Borel-measurable stochastic
kernel (the “reset kernel”) onD(·), givenS ×Q, that assigns to
eachs = (q, x) ∈ S , andq′ ∈ Q, q′ 6= q, a probability measure
Tr(·|s, q′) on the Borel space(D(q′),B(D(q′))). �

The system initialization at timek = 0 is specified by some
probability measureπ0 : B(S) → [0, 1] on the Borel space
(S ,B(S)). Here and in Definition 1,B(S) is theσ-field generated
by the subsets ofS of the form∪q∈Q{q} × Bq , with Bq denoting
a Borel set inDq. To understand the semantics of the model, let us
state the definition of a solution of the DTSHSH.

Definition 2 (Execution of a DTSHS):Given a DTSHSH and an
initial distribution π0, an execution ofH is a stochastic process1

{s(k) = (q(k),x(k)),∀k = 0, . . . , N + 1}, with values inS ,
generated by the following algorithm:

extract a values0 = (q0, x0) on S for s(0), according toπ0;

for k = 0 to N ,

extract a valueqk+1 ∈ Q for q(k + 1), according toTq(· |sk);
if qk+1 6= qk ∈ Q,

then extractxk+1 ∈ Dqk+1 for x(k + 1) from Tr(· |sk, qk+1);

else extractxk+1 ∈ Dqk for x(k + 1) from Tt(· |sk);
end (if);

end (for).
�

It is understood that, whenN = ∞, the algorithm does not
terminate. For the sake of conciseness, we make use of the following
shortened notation for the probability kernels:

T (ds|(q, x)) =







Tt(dx|(q, x))Tq(q
′|(q, x)), if q = q′,

Tr(dx|(q, x), q′)Tq(q
′|(q, x)), if q 6= q′,

(1)

where q, q′ ∈ Q, and s = (q, x) ∈ S . Notice that, for semantical
consistency, we avoid the definition of the reset kernelTr on q′ = q.
The executions(k) of H associated withs0 ∈ S is a stochastic
process with probability measurepks0 , at timek ∈ [1, N +1], which
is uniquely defined by the transition kernelT and the initial condition
s0 [18, Proposition 7.45]. It is easy to show that the executions(k)
of H is a Markov process with one-step transition kernelT [16]. We
refer the reader to the details contained in [16] for furtherinsights
on the model, the complete understanding of its properties,and the
comparison with other models in the literature (for instance, the
random evolution process[19], [20]).

While continuity of the probability kernels is not strictlyrequired
in Definitions 1 and 2, we now raise the following assumption and
suppose that it holds true throughout this work. The assumption will
be useful to prove certain bounds on the transition probability of the
DTSHSH.

Assumption 1 (Continuity of the Stochastic Kernels):Suppose
that the continuous stochastic kernelsTt, Tr of the DTSHSH admit
densitiest, r. Assume that the following Lipschitz properties hold
for Tq, t, r:

1) |Tq(q̄|s) − Tq(q̄|s′)| ≤ Lq‖x − x′‖, for all s = (q, x), s′ =
(q, x′) ∈ Dq , andq, q̄ ∈ Q;

2) |t(x̄|s) − t(x̄|s′)| ≤ Lt‖x − x′‖, for all s = (q, x), s′ =
(q, x′) ∈ Dq , and(q, x̄) ∈ Dq , q ∈ Q;

3) |r(x̄|s, q̄)− r(x̄|s′, q̄)| ≤ Lr‖x− x′‖, for all s = (q, x), s′ =
(q, x′) ∈ Dq , (q̄, x̄) ∈ Dq̄ , andq, q̄ ∈ Q, q̄ 6= q,

1In this work bold symbols denote (stochastic) processes, while a regular
typeset is used for sample values or points on the state space.

where Lq , Lt, Lr are finite positive constants, and‖ · ‖ is the
Euclidean norm onDq , q ∈ Q. �

III. M ARKOV SET-CHAINS

We recall the concept of Markov set-Chain (MSC), which in this
paper is later used to prove properties of the abstraction. The results
are from [17] and references therein. The framework is also related
to that of interval Markov chains [21].

Definition 3 (Transition Set):[17, Definition 2.5] Let P,Q ∈
R

n×n be nonnegative matrices (not necessarily stochastic) with
P ≤ Q, where≤ holds element-wise. A transition set is

[P,Q] = {A = (aij) ∈ R
n×n : aij ≥ 0,

n
∑

j=1

aij = 1, P ≤ A ≤ Q}.
�

In this article, we assume that the set[P,Q] 6= ∅. Whenever
the “bounding matrices” of the MSC will be clear from the context,
we will use the more compact notation[Π] for the transition set
characterized by the interval matrixΠ. A MSC is defined as a
discrete-time Markov Chain, where the transition probabilities vary
non-deterministically within a compact transition set[Π] at each time
step. More formally,

Definition 4 (Markov set-Chain):[17, Definition 2.5] Let[Π] be a
transition set, i.e. a compact set ofn×n stochastic matrices. Consider
the set of all non-homogeneous Markov Chains having their transition
matrices in[Π]. We call the sequence[Π], [Π]2, . . . a Markov set-
Chain, where[Π]k is defined by induction as the set of all possible
productsA1A2 · · ·Ak, such that∀i = 1, . . . , k, Ai ∈ [Π]. �

Let [π0] be a compact set made up of stochastic vectors of dimension
1×n, introduced as in Definition 3. We call[π0] the initial distribution
set. The compact set[πk] = [π0][Π]k is thek-th distribution set and
the structure[π0], [π0][Π], [π0][Π]2, . . . is the Markov set-Chain with
initial distribution set[π0].

Definition 5 (Coefficient of Ergodicity of a Stochastic Matrix):
[17, Definition 1.2] For a stochastic matrixA, its coefficient of
ergodicity is defined as follows:

T (A) =
1

2
max
i,j

||ai − aj ||,

whereai, aj are thei–th, j–th rows ofA, and‖ · ‖ is the standard
1-norm over row vectors:‖x‖ =

∑

k |xk|. �

It can be shown that the conditionT (A) < 1, along with the
condition of irreducibility of the chain, implies the existence of a
unique limiting and invariant distribution for the associated Markov
Chain [17]. The previous definition can be directly extendedto
Markov set-Chains:

Definition 6 (Coefficient of Ergodicity of a Transition Set):[17,
Definition 3.1] For any transition set[Π], its coefficient of ergodicity
is defined over the stochastic matrices that define[Π] as follows:

T ([Π]) = max
A∈[Π]

T (A).
�

Since T (·) is a continuous function and[Π] a compact set, the
argument of the max exists. Similar to the simpler case of Markov
Chains, the quantityT ([Π]) ∈ [0, 1] provides a measure of the
“contractive” nature of the Markov set-Chain: the smallerT ([Π]), the
“more contractive” the MSC. This quality is related to the regularity
properties of the stochastic matrices that build up the MSC and can
be exploited when studying its asymptotics [17]. The exact value of
T ([Π]) can be approximated, given anyA ∈ [Π], as in Proposition
1, on page 5. Let us define the diameter of a compact set (referred to
either matrices or vectors) as∆([Π]) = maxA,A′∈[Π] ||A − A′||.
Proposition 2 provides an upper bound for the diameter of the
transition set[Π]k, k > 0.
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The derived bounds are not necessarily tight, however they are
sufficient for the objectives of the study (finiteness of bounds, proof
of convergence), and as such they will be used in the following.
Tighter results can be obtained with more sophistication: in particular,
the notion of coefficient of ergodicity can be relaxed by looking
at the concept ofscrambling coefficient[17, Definition 3.3], which
is the minimum positive integerr such thatT (A) < 1, A =
∏r

i=1Ai, ∀Ai ∈ [Π]. The focus of the article is not that of seeking
a set of “optimal” bounds for the abstraction procedure proposed in
this work, but rather that of showing that finite bounds existand can
be properly tuned. We thus delegate the search for improved bounds
to future work, as mentioned in Section VI.

IV. A BSTRACTIONPROCEDURE: STATE SPACE PARTITIONING

The abstraction proposed in this work involves a partitioning
procedure described in this Section. The partitioning algorithm is
inspired by the work in [22], where a similar procedure is introduced
on a simplified dynamical model in order to solve a class of optimal
control problems via dynamic programming. Based on this procedure
and its related approximation error, we introduce a Markov set-Chain
[17] as the abstraction of the original DTSHS (see Section V-A). It is
desirable that, as the approximation error of the introduced abstraction
goes to zero, the dynamical properties of the original system hold
if they are true on the abstraction [3] (see Section V-B for the
computation of error bounds and for a study of asymptotic properties).
In order to achieve this, it is necessary to enforce some continuity
on the dynamics of the DTSHS: let us then uphold Assumption 1.

We introduce a finite partition of the hybrid state spaceS =
∪q∈Q{q}×Dq of H. Let us recall that each domainDq ⊂ R

n(q), q ∈
Q, is required to be compact. A partition{Dq}δ = {Di

q , i =
1, . . . ,mδ

q} (which depends on a parameterδ, to be defined shortly)
of the domainDq is a covering ofDq made up ofmδ

q non-overlapping

convex sets such thatDq ⊆ ⋃mδ
q

i=1D
i
q , andDi

q ∩Dj
q = ∅, i 6= j. The

setsDi
q can have any convex shape (we will be simply interested on

a parameterδ that characterizes them), which makes the procedure
general and flexible. In particular, the covering can be selected to
exactly coincide withDq . In this work, for the sake of simplicity, the
partition {Dq}δ of domainDq for modeq ∈ Q is characterized as
follows: consider a uniform square grid of widthδ/

√

n(q), defined
on R

n(q) and centered around points in the set
{

(

m1δ
√

n(q)
,
m2δ
√

n(q)
, . . . ,

mn(q)δ
√

n(q)

)

:(m1,m2, . . . ,mn(q)) ∈ Z
n(q)

}

.

(2)

Each spatial setDi
q ∈ {Dq}δ is introduced as a hyper-cube

centered around a point in (2) for a particular choice of

(m1,m2, . . . ,mn(q)) ∈ Z
n(q), and defined asDi

q
.
=

{

x ∈ Dq :
(

(m1 − 1
2
) δ√

n(q)
, (m2 − 1

2
) δ√

n(q)
, . . . , (mn(q) − 1

2
) δ√

n(q)

)

≤

x <

(

(m1 +
1
2
) δ√

n(q)
, (m2 +

1
2
) δ√

n(q)
, . . . , (mn(q) +

1
2
) δ√

n(q)

)}

.

The partition{Dq}δ is formally defined as the smallest collection
of partition setsDi

q that containsDq . If the cardinality of{Dq}δ
is mδ

q, then Dq ⊆ ⋃mδ
q

i=1D
i
q . In this case each partition setDi

q

has diameterδ, and in general the parameterδ is defined to be the
diameter of the partition sets (i.e., the maximum distance between
any two points in the same equivalence class), and influencesits
cardinality mδ

q (see equation (3) and following lines). The set
{S}δ = {{q}×Di

q , i = 1, . . . ,mδ
q, q ∈ Q} is then a partition of the

whole hybrid state spaceS with cardinality
∑

q∈Qm
δ
q, and is such

that S ⊆ ⋃

q∈Q

{q} ×
(

∪mδ
q

i=1D
i
q

)

. For any points = (q, x) ∈ S

there exists an element of the partition{q} × Di
q ∈ {S}δ such

that x ∈ Di
q . Let us introduce a function〈·〉 : S → {S}δ,

which associates to any hybrid points = (q, x) ∈ S its partition
set 〈s〉 = {q} × Di

q ∈ {S}δ for a specifici ∈ {1, 2, . . . ,mδ
q}.

Furthermore, given a hybrid points = (q, x) and its partition set〈s〉,
let us select any point̄s = (q, x̄) ∈ 〈s〉 to be therepresentative point
of the partition set〈s〉. For instance, we may select its centroid as in

(2): x̄ =

(

m1
δ√
n(q)

,m2
δ√
n(q)

, . . . ,mn(q)
δ√
n(q)

)

, for a particular

choice of (m1,m2, . . . ,mn(q)) ∈ Z
n(q). The following expression

relates a points = (q, x) ∈ S with its representative point̄s = (q, x̄),
within their equivalence class〈s〉:

∀s ∈ S , ∃〈s〉 ∈ {S}δ, s̄ ∈ S : (s, s̄ ∈ 〈s〉) ∧ (‖x− x̄‖ ≤ δ), (3)

where ‖ · ‖ is the Euclidean norm. As we just did above for the
partition sets, given anyq ∈ Q and any compact subsetW ⊆ R

n(q),
we define its diameter to be the largest distance between any two
points in W : λW = sup{‖x − y‖, x, y ∈ W }. Consider now
mode q ∈ Q, the parameter δ√

n(q)
that characterizes the partition

introduced for that domain, and the (finite) diameterλDq of the
associated domainDq. The domain is contained in a cube with

side equal to its diameter. Select the integer quantity

⌈

λDq

δ/
√

n(q)

⌉

.

The cardinality of the partition{Dq}δ can be upper bounded as

mδ
q ≤

⌈

λDq

δ/
√

n(q)

⌉n(q)
.
= k(q, δ). Thus the cardinality of the

complete partition{S}δ can be upper bounded by
∑

q∈Qm
δ
q ≤

∑

q∈Q k(q, δ)
.
= k(δ). It increases as the continuous dimensionn

increases, as the size of the domains (related to its diameter λD(·)
)

grows, and as the partition parameterδ is refined.

V. A NALYSIS OF THE ABSTRACTION AND OF ITSPRECISION

In this section, we quantify the precision of the abstraction by
providing explicit bounds on the approximation distance between the
transition probability for the DTSHS and that originating from the
partition procedure (to be introduced shortly). The boundsare used
to define intervals which, along with the approximated transition
probabilities computed over the finite partition, characterize the
abstraction as a MSC (see Definition 7). Furthermore, we investigate
the actual dynamics in time of the approximation error: if the obtained
abstraction is endowed with some ergodic property, it is shown that
the error remains finite over time. We also show that, under conditions
on the original DTSHS, it is possible to obtain an abstraction with
arbitrary precision by tuning the parameterδ associated with the
partition. This, in connection with the spectral properties of the
MSC (see Section III), allows to introduce a finite-time algorithm
that computes an abstraction, given a precision bound as an a-priori
specification.

Let us recall that for a generic hybrid points = (q, x) ∈ S , its
corresponding partition set is〈s〉 ∈ {S}δ, and its representative point
in 〈s〉 is s̄ = (q, x̄) ∈ S . Select a second partition set〈s′〉 ∈ {S}δ
as a target set and anyk0 ≥ 0. Let us approximate the one-step
transition probability

ps(〈s′〉) = Prob(s(k0 + 1) ∈ 〈s′〉 | s(k0) = s), (4)

with a related quantity defined on a representative point as

ps̄(〈s′〉) = Prob(s(k0 + 1) ∈ 〈s′〉 | s(k0) = s̄). (5)

(More generally, we writepks(〈s′〉) = Prob(s(k0 + k) ∈ 〈s′〉 |
s(k0) = s), wherek0, k ∈ N, and often omit the apex inpk when



TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ?, NO. ??, ?? 200? 4

k = 1.) As explained in (1), the values in (4) and (5) depend on
the kernelT , and can be obtained by marginalizing the probability
distribution of the DTSHS over the set〈s′〉. This approximation
introduces an error, which depends on the parameterδ associated
with the partition, and which we quantify in a closed form next.

A. Single step error and definition of the MSC abstraction

With reference to (4)-(5),∀〈s′〉 ⊆ S , where s′ = (q′, x′) and
assuming thatq′ = q ∈ Q, using equation (1) and Assumption 1,
the following holds:

|ps(〈s′〉)− ps̄(〈s′〉)|

=

∣

∣

∣

∣

∣

∫

〈s′〉

T ((q′, dz)|(q, x))−
∫

〈s′〉

T ((q′, dz)|(q, x̄))
∣

∣

∣

∣

∣

≤
∫

〈s′〉

{∣

∣

∣Tt(dz|(q, x))Tq(q
′|(q, x))− Tt(dz|(q, x))Tq(q

′|(q, x̄))
∣

∣

∣

+
∣

∣

∣
Tt(dz|(q, x))Tq(q

′|(q, x̄))− Tt(dz|(q, x̄))Tq(q
′|(q, x̄))

∣

∣

∣

}

≤ L〈s′〉(Lt + Lq)‖x− x̄‖,

whereLA is the Lebesgue measure of the Borel setA ∈ B(Dq),
denoting the volume of setA. If instead〈s′〉 ⊆ Dq′ , q

′ 6= q, we can
establish the following:|ps(〈s′〉)− ps̄(〈s′〉)| ≤ L〈s′〉(Lr +Lq)‖x−
x̄‖. Introducing the quantityL

.
= max{Lt + Lq , Lr + Lq} and the

finite constantn
.
= maxq∈Q n(q) it thus holds that,∀s, s′ ∈ S :

|ps(〈s′〉)− ps̄(〈s′〉)| ≤ L〈s′〉L‖x− x̄‖ ≤ δnLδ
.
= ǫ(δ, n, L). (6)

The quantityǫ(δ, n, L) denotes an upper bound on the error that
depends on the continuity of the transition kernels (constant L), and
which is an increasing function of the discretization diameter δ and
of the continuous dimensionn of the hybrid state space. By virtue of
the state space partition procedure and of the error bound computed
in (6), it is possible to associate to the DTSHS a MSC as follows:

Definition 7 (MSC Abstraction of a DTSHS):Given a DTSHSH,
let us introduce a partition{S}δ of its hybrid state spaceS ,
parameterized byδ. An approximate abstraction ofH is a Markov
set-Chain[M] with state space coinciding with the quotient space of
{S}δ. The transition intervals of the MSC[M] are defined by:

1) computing the transition probabilities in (5) over the sets 〈s〉 ⊆
{S}δ and their representative points̄s ∈ S ;

2) introducing the error bound defined by (6).

For any 〈s〉, 〈s′〉 ∈ {S}δ, the elements of the
MSC [M] are formally defined as: [ps̄(〈s′〉)] .

=
[max{0, ps̄(〈s′〉)− ǫ(δ, n, L)},min{1, ps̄(〈s′〉) + ǫ(δ, n, L)}],
and its k-th distribution set is denoted as[pks̄(〈s′〉)]. The state
cardinality of the MSC [M] is upper-bounded by the quantity

k(δ) =
∑

q∈Q

⌈

λDq

δ/
√

n(q)

⌉n(q)

. �

In general, we are interested in checking the validity of certain
properties of the DTSHSH on the MSC[M]. For instance, in Section
V-C we will exploit some spectral properties of[M] to show related
asymptotics ofH. To achieve this general goal, we first extend the
study of the approximation error over time.

B. Error dynamics

In this Section we analyze the dynamics in time of the approx-
imation error in equation (6) for the introduced MSC abstraction.
Consider a points ∈ S , the representative point̄s ∈ 〈s〉, any
partition set〈s′〉 ∈ {S}δ, and anyk > k0 = 0. Let us focus on
the following two entities:pks(〈s′〉) = Prob

(

s(k) ∈ 〈s′〉 | s(0) = s
)

andpks̄(〈s′〉) = Prob
(

s(k) ∈ 〈s′〉 | s(0) = s̄
)

. The distributionpks of
the DTSHSH over the sets of the partition{S}δ is derived, for any

model
state
space

probability distribution/interval at
k > 0 (conditional on s at k=0)

DTSHSH S pks(C), C ∈ B(S)

MC M {S}δ pks(〈s
′〉), 〈s′〉 ∈ {S}δ

MSC [M] {S}δ [pks̄(〈s
′〉)], 〈s′〉 ∈ {S}δ

TABLE I
SUMMARY OF NOTATIONS FOR THEMODELS UNDERSTUDY

k > 0, by marginalization. This distribution can be associated with a
non-homogeneous Markov ChainM which evolves on the quotient
space{S}δ. Additionally, the quantity[pks̄ ] is the distribution set over
the space of{S}δ, and is generated by the Markov set-Chain[M],
given an initial probability distribution concentrated on〈s〉. Table I
contains a summary of the different models used in this work.

Let us introduce a functionf(θ, n, k) : R
+ × N × N → R

+,
inductively defined over timek ≥ 0 as follows:

f(θ, n, 0) = f0, f0 ≥ 0, f(θ, n, k+1) = (θn+1)f(θ, n, k)+θ. (7)

The functionf is monotonically increasing, as it is clear from its

explicit form: f(θ, n, k) = (θn+ 1)kf0 + θ
k
∑

l=1

(θn+ 1)l−1, k > 0.

The following result extends the calculation of the error bound in
(6) over time, by looking at the distance between the probability
distribution pks of the MC M , (the chain obtained fromH by
marginalization over the partition sets at timek) and the distribution
set [pks̄ ] at timek induced by the MSC[M].

Theorem 1:Given a DTSHSH, let us introduce a partition{S}δ
of the hybrid state spaceS , characterized by parameterδ. Assume that
the corresponding Markov set-Chain abstraction[M] has coefficient
of ergodicity T ([M]). For anys ∈ S , corresponding point̄s, and
any partition set〈s′〉 ∈ {S}δ, the following holds,∀k > 0:

dh(p
k
s(〈s′〉), [pks̄(〈s′〉)]) ≤

min

{

f(ǫ, k(δ), k), T ([M])k + k(δ)ǫ

k−1
∑

l=0

T ([M])l
}

, (8)

wheredh is obtained by the Hausdorff metric [17];ǫ = ǫ(δ, n, L) is
the error bound introduced by the abstraction procedure in equation
(6); n is a finite upper-bound on the dimension of the continuous
state ofH; k(δ) is a finite upper-bound on the dimension of[M]; L
is a finite upper-bound on the Lipschitz constants of the probabilistic
kernels ofH; and f has been introduced in (7) and is such that
f(·, ·, 0) = 0. In particular, if [M] is ergodic, i.e. ifT ([M]) < 1,

dh(p
k
s(〈s′〉), [pks̄(〈s′〉)]) ≤

min

{

f(ǫ, k(δ), k), T ([M])k +
k(δ)ǫ

1− T ([M])

}

, (9)

which is finite, for anyk > 0. �

Equations (8)-(9) provide a time-dependent bound for the approx-
imation error. The bound is finite in time if the MSC abstraction
[M] induced by the partition parameterδ is ergodic (that is, if its
coefficient of ergodicityT ([M]) is strictly less than one). Next we
prove that, under the following Assumption 2 onH, there always
exists a procedure (i.e., a choice ofδ > 0 for the partition) that
yields an ergodic abstraction.

Let us recall a few notions. A DTSHSH is ψ-irreducible if there
exists a measureψ onB(S) such that, for allC ∈ B(S) with ψ(C) >
0, ∃m < ∞ : pmx (C) > 0, for anyx ∈ S [23, Sec. 4.2.1]. A setC
is said to be aνm-small set for a non-trivial measureνm on B(S)
if ∃m > 0 : ∀x ∈ C,∀B ∈ B(S), pmx (B) ≥ νm(B) [23, Sec. 5.2].
Suppose that DTSHSH is ψ-irreducible:H is strongly aperiodic if
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there exists aν1-small setC ∈ B(S) with ν1(C) > 0 [23, Sec.
5.4.3].

Assumption 2:The DTSHSH is ψ-irreducible and strongly ape-
riodic. �

Theorem 2:Consider a DTSHSH. If Assumption 2 holds, it is
possible to select a partition parameterδ > 0, such that the induced
abstraction[M] satisfiesT ([M]) < 1. �

C. Steady-State Computation with the Abstraction

Theorem 2 guarantees that, under some structural assumption on
a DTSHSH, it is possible to select a partition parameterδ > 0 and
to construct an approximate abstraction[M] which, by virtue of the
bound in (9), is “close” over time toH. In this section we propose
an algorithm which, given a DTSHSH and a desired precision
parameterφ > 0, determines in a finite number of steps the steady-
state behavior ofH with precisionφ by selecting a parameterδ(φ)
for the approximation procedure that generates the MSC[M] and by
computing its steady-state interval.

More formally, let us consider a DTSHSH and let us uphold
Assumption 2. By Theorem 2, there exists a positive parameter δ(φ)
and an associated approximation procedure onH that generates
a MSC [M] : T ([M]) < 1. The steady state interval[p∞]
of [M] can be bounded by the diameter∆([p∞]). A sufficient
condition to achieve the desired precision by the abstraction [M] is
thus ∆([p∞]) ≤ φ. Consider the one-step errorǫ(δ(φ), n, L) that
characterizes the abstraction with cardinalityk(δ(φ)). Theorem 1
guarantees that a sufficient condition for finding a partition parameter
δ(φ) that induces an MSC abstraction with the required precisionφ
is k(δ(φ))ǫ(δ(φ),n,L)

1−T ([M])
≤ φ. This bound holds ifT ([M]) < 1, which

is enforced by Theorem 2.
The following algorithm introduces a sequence of partitionproce-

dures characterized by monotonically decreasing parameters {δi}i≥0,
until the sufficient condition is satisfied. We defineMi to be the MC
computed over the partition sets characterized byδi, [Mi] to be the
associated MSC, and a variableτi to represents an upper bound for
T ([Mi]), as discussed in Section III.

Algorithm 1 (Compute steady state ofH with precisionφ > 0):

set integeri = 0, real τi = 0, and δi such thatk(δi)ǫ(δi, n, L) ≤ φ;
for i ≥ 0
computeMi according to the approximation with parameterδi;
setτi = T (Mi) + k(δi)ǫ(δi, n, L);
if τi ≥ min{1, τi−1}, then setδi+1 = aδi, for somea < 1;

else if k(δi)ǫ(δi,n,L)
1−τi

> φ, then set δi+1 s.t. k(δi+1)ǫ(δi+1,n,L)

1−τi
≤ φ;

elseexit;
end (if)
set i = i+ 1;
end (for)
compute the steady statep∞i of Mi.

Theorem 3:If Assumption 2 holds, Algorithm 1 terminates in a
finite number of steps. �

VI. CONCLUSIONS

This work has introduced an abstraction procedure for discrete-time
Stochastic Hybrid Systems (DTSHS). The approximate abstraction is
interpreted as a Markov set-Chain (MSC). By raising some continuity
assumptions on the stochastic kernels that characterize the DTSHS,
we have derived an analytic formula relating the accuracy ofthe
state space partition and the error of the approximate abstraction.
Additionally, we have shown a bound in time for the distance between
the transition probabilities of the abstract model (the MSC) and
those of the original DTSHS. Under proper assumptions, the error
bounds are finite over time and there exists a finite-time algorithm
that computes the abstraction.
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APPENDIX

Proposition 1: [17, Theorem 3.1] Let[Π] be the interval[P,Q]
andA ∈ [Π], then: |T ([Π])− T (A)| ≤ ||Q− P ||. �

The used matrix norm is the induced 1-norm:‖A‖ = maxx 6=0
‖xA‖
‖x‖

[17, Appendix A.1].
Proposition 2: [17, Theorems 3.4, 3.11] Given a Markov set-Chain

with transition set[Π] = [P,Q], then

∆([Π]k) ≤ T ([Π])k + (T ([Π])k−1 + . . .+ 1)∆([Π]).
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In particular, if T ([Π]) < 1, given any initial distribution set[π0],
there exists a unique limit set[π∞] that is invariant, i.e. such that
[π∞][Π] = [π∞], and such thatlimk→∞[πk] = limk→∞[π0][Π]k =
[π∞]. The following holds:∆([π∞]) ≤ ∆([Π])

1−T ([Π])
≤ ||Q−P ||

1−T ([Π])
. �

The notion of limit of a vector interval hinges on the Hausdorff
distance [17], which is a distance between sets.

Corollary 1: Given a Markov set-Chain with transition set[Π] =
[P,Q] such thatT ([Π]) < 1, and any initial interval vector[π0], then
for anyA ∈ [Π] such thatT (A) + ||Q− P || ≤ 1

∆([π∞]) ≤ ∆([Π])

1− T ([Π])
≤ ||Q − P ||

1− T (A)− ||Q− P || . �

Lemma 1:Consider a discrete-time homogeneous Markov Chain
defined by ann × n stochastic matrixP = {pij} and a legitimate
initial probability distributionp(0). Let p(k), k ≥ 0, be the associated
probability distribution vector. Given a real constantθ > 0, consider
the Markov set-Chain defined by then×n stochastic interval matrix
P̄ = {[max{0, pij−θ},min{1, pij+θ}]} and the initial probability
distribution p̄(0) = p(0), and let p̄(k), k ≥ 0, be the associated
probability interval vector. The following holds:

∀k ≥ 0, dh
(

p̄(k), p(k)
)

≤ f(θ, n, k), (10)

wheredh is the Hausdorff distance [17], andf(θ, n, k) is defined in
equation (7) withf(θ, n, 0) = 0. �

Proof: (By induction) Equation (10) is valid fork = 0, since
p̄(0) = p(0). Let (10) hold fork > 0. Introducing functionµ : R →
[0, 1], µ(x) = min{max{x, 0}, 1}, and resorting toP, P̄ :

dh
(

p̄(k + 1), p(k + 1)
)

≤

max
i = 1, . . . , n,
α ∈ [−θ,+θ],
β ∈ [−f(θ, n, k),+f(θ, n, k)]

{

|µ(pi1 + α)(p1(k) + β) + · · ·
+µ(pin + α)(pn(k) + β)− pi(k + 1)|

}

≤

max
i=1,...,n

|pi(k + 1) + θnf(θ, n, k) + θ + f(θ, n, k)− pi(k + 1)|,

which is (θn + 1)f(θ, n, k) + θ = f(θ, n, k + 1), and shows that
(10) holds. The first inequality is set up by expressing the probability
interval of the MSCP̄ at time k + 1 according to its structure,
whereas the second is derived by upper-bounding the multiplication
of probabilities. Ifdh(p̄(0), p(0)) 6= 0, the proof is adapted by taking
f0 = dh(p̄(0), p(0)) = ‖p̄(0)− p(0)‖, where‖ · ‖ is the 1-norm.

Proof of Theorem 1: The casek = 1 follows from equation
(6). If, instead of a single points ∈ S , the system is initialized over
a probability distributionπ0 over S , then bothM and [M] will be
initialized on a marginalization ofπ0 over the partition sets of{S}δ.
For anyk ≥ 1, one can show by direct calculation on the definition
of the MSC[M] and by Lemma 1 that the approximation error can
be upper-bounded as

dh(p
k
s(〈s′〉), [pks̄(〈s′〉)]) ≤ f(ǫ, k(δ), k), (11)

where f has been introduced in (7) and where we have inherited
the initializationf(·, ·, 0) = 0. This bound corresponds to the error
growth that is obtained when the MSC[M] is elevated to the power
of k. Being monotonically increasing, it can become conservative as
time k grows. This leads to consider a second bound, to be combined
with the first. Observe that the stochastic behavior[pks̄ ] (generated
by [M]) is conservative with respect topks (generated byM ). This
allows to state thatdh(pks(〈s′〉), [pks̄(〈s′〉)]) ≤ ∆([M]k). Resorting
to Proposition 2, it is possible to conclude that

dh(p
k
s(〈s′〉), [pks̄(〈s′〉)]) ≤

T ([M])k + (T ([M])k−1 + . . .+ 1)k(δ)ǫ(δ, n, L). (12)

By Corollary 1, if the MSC is ergodic withT ([M]) < 1, then

dh(p
k
s(〈s′〉), [pks̄(〈s′〉)]) ≤ T ([M])k +

k(δ)ǫ(δ, n, L)

1− T ([M])
. (13)

The right-hand side is made up of two terms: the first is finite and
decreasing ink, whereas the second is fixed. As a result, the bound
is finite in time. The inequalities in (8) and (9) in the statement of
the theorem follow by considering, respectively, the pair of bounds
(11)-(12) and (11)-(13).

Proof of Theorem 2: Pick a discretization
parameter δ > 0 for H. The obtained k(δ)-
dimensional MSC [M] is made up of the elements
[max{0, ps̄(〈s′〉)− ǫ(δ, n, L)},min{1, ps̄(〈s′〉) + ǫ(δ, n, L)}] and,
as per (6), ǫ(δ, n, L) ≤ δn+1L, n = maxq∈Q n(q), L =
max{Lt + Lq, Lr + Lq}. Select a generic stochastic matrix
A = (Aij) ∈ [M], where the elementAij refers to the partition
sets〈si〉, 〈sj〉, i, j = 1, . . . , k(δ). To claim the ergodicity of[M],
we are interested in showing that the generic MCA extracted from
[M] is such thatT (A) < 1. To achieve this, it is sufficient to show
that matrixA is irreducible and aperiodic [17].

Let us denote withb(ǫ, k(δ),m) the bound on the RHS of (8)
from Theorem 1 at timem > 0. With reference to the partition sets
〈si〉, 〈sj〉, i, j = 1, . . . , k(δ), generic pointsi ∈ 〈si〉, we have that
(Am)i,j ≥ max{pmsi(〈sj〉) − b(ǫ, k(δ),m), 0}. At any m > 0 and
as the discretization parameterδ ↓ 0, the termpmsi(〈sj〉) - whenever
positive - converges to zero as a function ofδn (which is due to the
volume of 〈sj〉), whereasb(ǫ, k(δ),m) converges to zero at least as
a function ofδn+1 (cfr. (6), (7), and bound in (8) – the convergence
can be made faster if local Lipschitz constants rather thanL are
considered in (6)). The continuity of the transition kernels of H
allows to select a partition parameterδ∗ > 0 small enough so that
the following two conditions hold:
1 Chooseδ∗ > 0 so that, if ψ(〈sj〉) > 0, then pmsi(〈sj〉) −
b(ǫ, k(δ∗),m) > 0, for i, j = 1, . . . , k(δ∗), where m =
maxj=1,...,k(δ∗)m(〈sj〉) and m(〈sj〉) is the finiteψ-irreducibility
index ofH over 〈sj〉. This allows to obtain that(Am)i,j > 0.
2 Consider anyν1-small setC ∈ B(S) with ν1(C) > 0, which
is such that∀s ∈ C, px(C) > ν1(C) > 0. Chooseδ∗ > 0
so that ∃i = 1, . . . , k(δ∗) : 〈si〉 ⊆ C ∧ ν1(〈si〉) > 0, and
psi(〈si〉)−b(ǫ, k(δ∗), 1) > 0. (Notice that the partition set〈si〉 is re-
lated to a positive probability of self-looppsi(〈si〉) > ν1(〈si〉) > 0.)
Then this yieldsAi,i > 0.
This choice ofδ∗ renders matrixA ∈ [M] irreducible (over the
ψ-irreducibility classes ofH) in view of condition 1, as well as
aperiodic thanks to condition 2. Thus,T (A) < 1. The conclusion that
T ([M]) < 1 is drawn based on the generic choice ofA ∈ [M] and
given the compactness of the interval matrix[M] and the continuity
of T (A) as a function of its entries inA.

Proof of Theorem 3: The updates on the parameterδi are
contractive, since the multiplicationk(x)ǫ(x, ·, ·) is monotonically
increasing with respect tox. Furthermore, notice that the “else
if” condition cannot be true for two consecutive choices of the
parameter. Therefore we have thatlim

i→+∞
δi = 0, which says that

lim
i→+∞

∆([Mi]) = 0 (see Section III) and thatlim
i→+∞

T ([Mi]) < 1

(by Theorem 2). The above two considerations imply thatlim
i→+∞

τi =

lim
i→+∞

T (Mi) < 1. Thus, there exists a finite indexi∗ such that for

any i > i∗ : k(δi)ǫ(δi,n,L)
1−τi

≤ φ. According to this condition, the
steady statep∞i of Mi is an estimate of the steady state ofH with
precisionφ. Notice that the condition provided by Assumption 2 is
sufficient, but not necessary.


