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Approximate Abstractions of Stochastic Hybrid Systems

Alessandro Abaté, Alessandro D’Innocenzd,
and Maria D. Di Benedetto

Abstract—We present a constructive procedure for obtaining a finite
approximate abstraction of a discrete-time stochastic hybd system.
The procedure consists of a partition of the state space of thsystem
and depends on a controllable parameter. Given proper contiuity
assumptions on the model, the approximation errors introdeed by the
abstraction procedure are explicity computed and it is shavn that they
can be tuned through the parameter of the partition. The abstaction
is interpreted as a Markov set-Chain. We show that the enforement
of certain ergodic properties on the stochastic hybrid modkeimplies the
existence of a finite abstraction with finite error in time ove the concrete
model, and allows introducing a finite-time algorithm that computes the
abstraction.

Index Terms—Stochastic Hybrid Systems, Markov Chains.

I. INTRODUCTION AND RELATED WORK

The study of complex, heterogeneous, and probabilistic etsod

such as Stochastic Hybrid Systems poses challenges, baithieally
(e.g., steady-state analysis, synthesis of optimal chbetso [1])
and computationally (e.g., reachability and safety anglf2]). An
approach that is used to cope with this issue is that of ajypair
abstraction: a system with smaller (possibly finite) statacs is
obtained, which is approximately equivalent to the orifisgstem
[3]. Unlike the exact concept of equivalence, which is ulyudéfined
by the notions of language equivalence and bisimulationaf] as
such is quite restrictive since it requires a perfect cpoegence
between the trajectories of the original system and thosetsof
abstraction, approximate notions of system equivalente[38 [6]
are endowed with a proper metric quantifying the distandevéen
the trajectories of the original system and those of the apprate
abstraction. The research on abstraction techniques foardigal
systems has two general goals. The first objective is thatafifg
the existence of a finite abstraction [4], while the seconal gothat
of developing finite time and tunable abstraction algorgh).

Abstraction techniques have been adapted to probabitistidels,
for instance to discrete-space, continuous-time modgIsNations
of bisimulation, which naturally lead to abstracted modbbs/e been
developed for classical discrete Markov processes in B], [L0],
and for jump linear stochastic systems in [6].

Weak approximations of continuous-time probabilistic ®isdas
locally-consistent Markov Chains have been introduced1iy, [and
applied on hybrid models in [12], [13], whereas approximasi of
discrete-time Markov models can be alternatively studiedenewal
theory, as in [14]. Notice that both approaches are diffetiean the
present work in that they derive no explicit approximatiooubd.
Related to this work, recently [15] has proposed expligibebounds
on a time and space discretization of a Markov process wittaice
ergodic properties.

In this work we provide new results on approximate abstoastiof
discrete-time stochastic hybrid systems (DTSHS). DTSH®®Epass
a number of other classes of stochastic hybrid models intém@ture
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[16]. The main contributions of this paper can be summariasd
follows:

« We introduce a procedure to construct an approximate abstra
tion of a DTSHS, which involves the partition of the statecgpa
and the approximation of the transition laws of the DTSHS ove
the partition sets, with an explicit computation of the erro

« The abstraction is interpreted as a Markov set-Chain (MSC)
[17]. MSC are useful as they comprise both stochastic and non
deterministic parts. In the present context, the stoohagtanti-
ties approximate the probability law of the original systevhile
the non deterministic behaviors are used to quantitatitese
into account the error introduced by the abstraction proead

« By posing some continuity assumptions on the DTSHS model,
we derive an explicit and tunable bound on the error between
the probability distribution of the abstracted model (th&®)
and that of the original model (the DTSHS, considered over
the partition sets), for each time instant (and, in paréiguin
steady-state). The tunable bound allows for refinementief t
abstraction procedure.

« Based on the derived error bound in time and given proper
assumptions on the ergodicity of the original DTSHS, the
contribution proposes a finite time algorithm to construnt a
approximate abstraction with arbitrary positive preaisidhe
precision is related to the distance between the steatly-sta
distributions.

Using the concept of distance between the probability lafvhe
original system and those of the abstraction, the proposecedure
and the associated time-dependent bounds represent aostequld
a formalization of the notion opproximate stochastic bisimulation
for general probabilistic models [8], [9], [10]. Lookingr@ard, our
work addresses the following general verification purpageen a
DTSHS, verify the probabilistic properties of the origirsgistem on
a finite-dimensional MSC abstraction with arbitrary premis

Section Il introduces the class of stochastic hybrid modelder
study, namely the DTSHS. Section Il recalls some resultd@C
to be utilized in the rest of the work. Section IV introducés t
abstraction procedure as a partitioning of the state sgaeetion V
delves into the derivation of the errors associated withath&raction,
which turns the original DTSHS into a MSC. We show that, under
proper ergodic assumptions on the DTSHS, it is possible mstcact
an approximate abstraction with arbitrary precision oweret We
also propose an algorithm for building in finite time an ad@stion
endowed with the property that its steady state is arbligralose
to that of the original system. Section VI concludes thecktiThe
appendix contains the proofs of the statements.

II. DISCRETETIME STOCHASTICHYBRID SYSTEMS

Definition 1 (DTSHS):A discrete-time stochastic hybrid system is

atupleH = (S,7,,T%,Tr), where

o §:=Ugcof{q} x D, is the hybrid state space, which consists
of a set of discrete mode® := {qi,q2,...,qm}, for some
finite m € N, and of a set of continuous domains, one for each
mode ¢; € Q, each of which is defined to be a compact set
D; C R™9) The functionn : Q@ — N assigns to each; € Q
the finite dimension of the continuous state sp&&é&%);

o« Ty : QxS — [0,1] is a discrete stochastic kernel (the “discrete
transition kernel”) onQ, given S, which assigns to each =
(¢,z) € S a discrete probability distributioff, (-|s) over Q;

o« T; : B(Dy) x & — [0,1] is a Borel-measurable stochastic
kernel (the “continuous transition kernel”) aR(.), given S,
which assigns to each = (¢,z) € S a probability measure
T:(-|s) on the Borel spac€D,, B(Dy));
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o T :B(D(y) xS xQ —[0,1] is a Borel-measurable stochastiovhere L, L¢, L, are finite positive constants, angl- || is the
kernel (the “reset kernel”) oy, givenS x Q, that assigns to Euclidean norm orD,,q € Q. O
eachs = (¢,x) € S, andq’ € Q, ¢’ # ¢, a probability measure

T;(-|s,¢") on the Borel spac¢D ,/), B(D(y)))- g I1l. M ARKOV SET-CHAINS

The system initialization at timé = 0 is specified by some We recall the concept of Markov set-Chain (MSC), which irsthi
probability measurer, : B(S) — [0,1] on the Borel space paper is later used to prove properties of the abstractiba.résults
(S,B(S)). Here and in Definition 1B(S) is the o-field generated are from [17] and references therein. The framework is atdated
by the subsets of of the formUzeo{q} x By, with B, denoting to that of interval Markov chains [21].

a Borel set inD,. To understand the semantics of the model, let us Definition 3 (Transition Set){17, Definition 2.5] Let P,Q €
state the definition of a solution of the DTSH®& R™ ™ be nonnegative matrices (not necessarily stochastic) with

o ) ) P < @, where< holds element-wise. A transition set is
Definition 2 (Execution of a DTSHSYGiven a DTSHSH and an

initial distribution 7y, an execution of}{ is a stochastic process
{s(k) = (q(k),x(k)),Vk = 0,...,N + 1}, with values inS,
generated by the following algorithm:

extract a valuesy = (qo,x0) on S for s(0), according tomo;

[P,Q] ={A = (ai;) ER"" :ai; >0, ai; =1,P<A<Q}.
i=1 O
In this article, we assume that the dét Q] # @. Whenever
the “bounding matrices” of the MSC will be clear from the cmxit
for k=0t N, we will use the more compact notatidil] for the transition set
extract a valueg1 € Q for q(k + 1), according toT, (- |sx); characterized by the interval matrik. A MSC is defined as a
if grot £ e € O discrete-timg_M_alrkov C_Zhr_:\in, where the trar_lgition probaed vary
' non-deterministically within a compact transition §dt at each time
then extractxy41 € Dqk+l for X(k + 1) from T’,«( |81€7 Qk+1); step. More forma”y,
else extractzy 1 € Dy, for x(k + 1) from Ty (- |sy); Definition 4 (Markov set-Chain){17, Definition 2.5] Let[II] be a
transition set, i.e. a compact setrok n stochastic matrices. Consider

end (if); the set of all non-homogeneous Markov Chains having thasition

end (for). matrices in[IT]. We call the sequencfI], [IT%,... a Markov set-
. . U Chain, where[H]’c is defined by induction as the set of all possible

It is understood that, whellv = oo, the algorithm does not productsA; A, - - - Ay, such thatvi = 1,..., k, A; € [IL]. 0

terminate. For the sake of conciseness, we make use of {beiiag

Let be a compact set made up of stochastic vectors of dimension
shortened notation for the probability kernels: o} P P

1xn, introduced as in Definition 3. We cdito] the initial distribution

Ti(dxz|(q,2))Tq(q' (g, ), ifq=(, set. The compact sét| = [mo][I1]* is the k-th distribution set and
T(ds|(q,z)) = (1) the structurdmo], [mo][IT], [mo][II]?, . . . is the Markov set-Chain with
T, (dz|(q,z),q)T4(d'|(g, ), if ¢ # ¢, initial distribution set[mo].

Definition 5 (Coefficient of Ergodicity of a Stochastic Majri
[17, Definition 1.2] For a stochastic matrid, its coefficient of
ergodicity is defined as follows:

whereq,q € Q, ands = (¢,z) € S. Notice that, for semantical
consistency, we avoid the definition of the reset kefliebn ¢’ = q.
The executions(k) of #H associated withsg € S is a stochastic

process with probability measupé’o, at timek € [1, N + 1], which T(A) = lmax lla: — aj]|
is uniquely defined by the transition kerrigland the initial condition i.j o
so [18, Proposition 7.45]. It is easy to show that the execuith)  \whereq;, a; are theith, j—th rows of 4, and|| - || is the standard

of H is a Markov process WiFh one-st_ep trgnsition ker‘j‘Te[I16]: We  1_-norm over row vectorsljz| = 3, |zk].

refer the reader to the details contained in [16] for furtesights |+ can be shown that the conditioi(4) < 1, along with the
on the model, the complete understanding of its properéiad, the  congition of irreducibility of the chain, implies the exésice of a
comparison with other models in the literature (for ins@nthe nique limiting and invariant distribution for the assdeh Markov
random evolution procesd9], [20]). Chain [17]. The previous definition can be directly extended

While continuity of the probability kernels is not stricthgquired Markov set-Chains: o -
in Definitions 1 and 2, we now raise the following assumptionl a _ Definition 6 (Coefficient of Ergodicity of a Transition Sefl7,
suppose that it holds true throughout this work. The assiomjtill .Def|n|.t|on 3.1] For any tran3|.t|on s@], its coefficient of ergodicity
be useful to prove certain bounds on the transition probpluf the 1S defined over the stochastic matrices that defiieas follows:
DTSHS”H._ o _ T([T]) = max T(A). 0
Assumption 1 (Continuity of the Stochastic KernelSuppose ) ] ] Aeln]
that the continuous stochastic kern@ls 7, of the DTSHSH admit Since 7(+) is a continuous function andll] a compact set, the

densitiest, r. Assume that the following Lipschitz properties hold@rgument of the max exists. Similar to the simpler case ofkistar
for T, t, 7 Chains, the quantity7 ([II]) € [0,1] provides a measure of the

1 [T,(qls) = Ty(@ls')| < Lollz — ||, for all s = (q,2),s" = “contractive” nature of the Markov set-Chain: the smaflg({lI]), the

( qq ) €D *and sqe QC.’ ' e “more contractive” the MSC. This quality is related to thgutarity

2) |t(7i"|5) _ t?:%|s’)| - I H’»’C — 2|, for all s = (¢,2), ¢ properties of the stochastic matrices that build up the M8€ @an

(q.2') € D,, and (q’f) é Dy qc Q e be exploited when studying its asymptotics [17]. The exadtier of

3 |r(7:E|s 2 _q;ﬂ(:as’ (77)| < Lrﬁ; B x,”' for all s = (g, z),s' = T([I]) can be approximated, given any € [I1], as in Proposition

(q x’)7€ Dy, (§ j’) cD. andq,q € 'Q d#q e 1, on page 5. Let us define the diameter of a compact set (@efeor

’ ©An “ ’ ’ ' either matrices or vectors) a&([I1]) = maxa acm ||4 — A'||.

1In this work bold symbols denote (stochastic) processeslevehregular Proposition 2 provides an upper bound for the diameter of the

typeset is used for sample values or points on the state .space transition set[l'[]k7 k> 0.
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The derived bounds are not necessarily tight, however they ahat s C U {q} x (U?iglpi)_ For any points = (¢,z) € S
sufficient for the objectives of the study (finiteness of hdgjnproof -

of convergence), and as such they will be used in the follgwinthere eX|St5 an element of the partitidg} x D; € {S}s such
Tighter results can be obtained with more sophisticatiopairticular, that z € Dj. Let us introduce a function-) : S — {S}s,
the notion of coefficient of ergodicity can be relaxed by liogk Which associates 1o any hybrid poist= (¢,z) € S its partition

at the concept ocrambling coefficienf17, Definition 3.3], which Set (s) = {¢} x D} € {S}s for a specifici € {1,2,...,mg}.

is the minimum positive integer such that7(A) < 1,4 = Furthermore, given ahybnd poist= (¢, z) and its partltlon 59(8%
[T._, Ai, YA, € [T1]. The focus of the article is not that of seeking®t Us select any point = (¢, 7) € (s) to be therepresentative point

a set of “optimal” bounds for the abstraction procedure psepl in Of the partition se{s). For instance, we may select its centroid as in

this work, but rather that of showing that finite bounds eaistl can  (2): z = ( m;—2— mo—2— m., y—3— | . for a particular
: . , 50003 Min(q) ’ p

be properly tuned. We thus delegate the search for improvedds . Vi) vnia) (@) Y V@ ) .

to future work, as mentioned in Section VI. choice of (m1,ma,...,myq)) € Z™?. The following expression

relates a poing = (¢, ) € S with its representative poist= (¢, Z),

IV. ABSTRACTIONPROCEDURE STATE SPACE PARTITIONING within their equivalence C|aSS>.

The abstraction proposed in this work involves a partitigni Vs € S, 3(s) € {S}s,5€ S: (5,5 € (s)) A (lz — z|| <9), (3)
procedure described in this Section. The partitioning rétigm is
inspired by the work in [22], where a similar procedure isaduced
on a simplified dynamical model in order to solve a class oinagit
control problems via dynamic programming. Based on thisgdare
and its related approximation error, we introduce a MarketvGhain
[17] as the abstraction of the original DTSHS (see Sectigh) W is
desirable that, as the approximation error of the introdwdzstraction
goes to zero, the dynamical properties of the original systeld
if they are true on the abstraction [3] (see Section V-B foe thside equal to its diameter. Select the integer quanFHyA—

where || - || is the Euclidean norm. As we just did above for the
partition sets, given any € Q and any compact subst C R™(?),
we define its diameter to be the largest distance betweenvemy t
points in W: Aw = sup{|lz — yll,z,y € W}. Consider now
modeqg € Q, the parameter—( that characterizes the partition

introduced for that domain, and the (finite) diametes, of the
associated domairD,. The domain is contained in a cube with

computation of error bounds and for a study of asymptotipertes). The cardinality of the partition{D,}s can be upper bovu;g)ed as

In order to achieve this, it is necessary to enforce someiragtyt N n(q) !

on the dynamics of the DTSHS: let us then uphold Assumption 1mg < [5/—%-‘ = k(g,6). Thus the cardinality of the
n(q

We introduce a finite partition of the hybrid state spage= complete partition{S}s can be upper bounded bzqegmg <
Ugea{q} x D, of H. Let us recall that each domaip, c R™? ¢ qugk(q, 0) = k(0). It increases as the continuous dimension
Q, is required to be compact. A partitiofiD,}s = {D;,i = increases, as the size of the domains (related to its dlam(ﬂp))
1, ...,mq} (which depends on a parametgrto be defined shortly) grows, and as the partition paramedeis refined.
of the domairD, is a covering ofD, made up ofm5 non-overlapping
convex sets such tha, C U 3 Di, andDiNDJ = @,i # j. The V. ANALYSIS OF THEABSTRACTION AND OF ITSPRECISION

setsD}, can have any convex shape (we will be simply interested onlIn this section, we quantify the precision of the abstractiy
a paramete6 that characterizes them), which makes the procedupgoviding explicit bounds on the approximation distanceveen the
general and flexible. In particular, the covering can becteteto transition probability for the DTSHS and that originatingrh the
exactly coincide withD,. In this work, for the sake of simplicity, the partition procedure (to be introduced shortly). The bouands used
partition {D, }s of domainD, for modeq € Q is characterized as to define intervals which, along with the approximated titsors
follows: consider a uniform square grid of wid#y /n(q), defined probabilites computed over the finite partition, charsete the

on R™? and centered around points in the set abstraction as a MSC (see Definition 7). Furthermore, weshyate
the actual dynamics in time of the approximation error: & tbtained

{ m15 m25 m”<q)5 (m1,ma, ... M) € Zn<q)}_ abstraction is endowed with some ergodic property, it issshthat
vn \/ \/ e Tt the error remains finite over time. We also show that, undeditions

(2) on the original DTSHS, it is possible to obtain an abstraciidth
arbitrary precision by tuning the paramet&rassociated with the
artition. This, in connection with the spectral propestief the
SC (see Section lll), allows to introduce a finite-time altfom

Each spatial setD] € {D,}s is introduced as a hyper-cube
centered around a point in (2) for a particular choice

(m1,ma, ..., Mmap) € Z"9, and defined ady = ¢z € D, : that computes an abstraction, given a precision bound aspaiora
(( N5 ) L s ) specification.
mi — 35)—F7——,(Mm2 — my —3) 0= S
2 V@ V”<q @2t Let us recall that for a generic hybrid poist= (¢,z) € S, its
< ((mi+3)—2—, (m2+ 1) (M) + 1) . corresponding partition set {3) € {S}s, and its representative point
27 /na) V”<q ! V”“” in (s) is 5 = (¢,%) € S. Select a second partition s¢t') € {S}s

The partition{D, }5 is formally defined as the smallest collectionas a target set and arfyy > 0. Let us approximate the one-step
of partition setsDZ that containsDy. If the cardinality of {Dy}s transition probability

is md, thenD, C |J; ,"1 Dj. In this case egch partition séd, ps((s')) = Prob(s(ko + 1) € (s') | s(ko) = s), 4)
has diametep, and in general the parametéris defined to be the

diameter of the partition sets (i.e., the maximum distanesvben Wwith a related quantity defined on a representative point as
any two points in the same equivalence class), and influeitses Y 1 / o
cardinality mg (see equation (3) and following lines). The set ps((s')) = Prob(s(ko +1) € (s') | s(ko) = 5). ®)
{S}s ={{g} x D},i=1,...,md,q € Q} is then a partition of the (More generally, we writep*((s')) = Prob(s(ko + k) € (s') |

whole hybrid state spac& with cardinalityzqEQ mg, and is such s(ko) = s), whereko, k € N, and often omit the apex ip* when
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k = 1.) As explained in (1), the values in (4) and (5) depend on | model :g‘gse plgofaob'(lgznﬂifgﬁ;f'gﬂ"gf{"ﬂo?
the kernelT', and can be obtained by marginalizing the probability DTSHS 1 S P(C), C € B(S)
distribution of the DTSHS over the sét’). This approximation MC M STs pi?(?s’)),(s’) c(Sh
introduces an error, which depends on the paramé&tassociated MSC [M] Sts PE((SN], (5) € {S}s

with the partition, and which we quantify in a closed form nex TABLE |

SUMMARY OF NOTATIONS FOR THEM ODELS UNDERSTUDY
A. Single step error and definition of the MSC abstraction
With reference to (4)-(5)¥(s’) C S, wheres’ = (¢’,z') and
assuming that’ = ¢ € Q, using equation (1) and Assumption 1

the following holds: k > 0, by marginalization. This distribution can be associatétth &

, , non-homogeneous Markov Chaif which evolves on the quotient
Ps((s')) = ps({s) gpace(s}s. Additionally, the quantityip”] is the distribution set over
/ / _ the space of S}s, and is generated by the Markov set-ChaM],
/<5,> T((qd2)l(g, ) — /<S,> T'((q d2)l(g ) given an initial probability distribution concentrated ¢s). Table |
contains a summary of the different models used in this work.
Ti(dz|(q,2))Ty(q (g, ) —Tt(dZI(q,l”))Tq(qll(%i’))‘ Let us introduce a functiorf(f,n,k) : RT x N x N — R,
inductively defined over timé& > 0 as follows:

<L

+|Ti(d21(a, @) T (' (g, 2)) — Te(d2](a,2) Tu(d'|(a, )| }
< Lioy (Lo + Lo)lla - 2l

f(0,n,0) = fo, fo =0, f(0,n,k+1) = (6n+1)f(0, n, k)+6. (7)

. The function f is monotonically increasing, as it is clear from its
where £ 4 is the Lebesgue measure of the Borel getc B(D,), f y %

denoting the volume of sed. If instead(s') C D,/,q’ # ¢, we can explicit form: f(0,n, k) = (On+1)*fo+0 3 (On+1)'"", k> 0.

. . =1
establish the followinglps ((s")) —ps((s'))| < L(s) (Lr + La)lz = The following result extends the calculation of the errouiba in
z|. Introducing the quantity = max{L: + Lg, L, + L;z} and the (6) over time, by looking at the distance between the praiabi
finite constantr = maxseq n(q) it thus holds thatys, s’ € S: distribution p* of the MC M, (the chain obtained fron# by

Ips ((s)) = ps((s'))] < Loy Ll — Z|| < 6" L6 = €(8,n, L). (6) margiknaliza_tion over the partition sets at tirhpand the distribution
set[ps] at time k induced by the MSGM].

The quantitye(d,n, L) denotes an upper bound on the error that Theorem 1:Given a DTSHSH, let us introduce a partitiofS} s
depends on the continuity of the transition kernels (consty, and  of the hybrid state spac®, characterized by paramet@rAssume that
which is an increasing function of the discretization diéené and the corresponding Markov set-Chain abstractisn] has coefficient
of the continuous dimension of the hybrid state space. By virtue of of ergodicity T(IM]). For anys € S, corresponding poins, and
the state space partition procedure and of the error boumbeted any partition sets’) € {S}s, the following holds, vk > 0:
in (6), it is possible to associate to the DTSHS a MSC as fdalow

Definition 7 (MSC Abstraction of a DTSHSBiven a DTSHSH, dn(ps((s")), [pE((s)]) <
let us introduce a partition{S}s of its hybrid state spaceS, k=1
parameterized by. An approximate abstraction & is a Markov min {f(e,k(fs),/f), T(M]D* + k@)éZT([M])l} , (8
set-ChainM] with state space coinciding with the quotient space of 1=0
{S}s. The transition intervals of the MSQU] are defined by: whered,, is obtained by the Hausdorff metric [17;= ¢(5, n, L) is
1) computing the transition probabilities in (5) over thésgg) C  the error bound introduced by the abstraction proceduregiration
{S}s and their representative pointsc S; (6); n is a finite upper-bound on the dimension of the continuous
2) introducing the error bound defined by (6). state ofH; k(d) is a finite upper-bound on the dimension[g#t]; L
For any (s),(s’) c {S}s, the elements of the is a finite upper-bound on the Lipschitz constants of the gidistic
MSC [M] are formally defined as: [ps((s’))] = kernels of H; and f has been introduced in (7) and is such that
[max{0, ps((s')) — €(8,n, L)}, min{1, ps((s')) + €(8,n, L)}], f(-,-,0) = 0. In particular, if[M] is ergodic, i.e. ifT([M]) < 1,
and its k-th distribution set is denoted 4gs:((s'))]. The state P ko)
cardinality of the MSC[/(\/%] is upper-bounded by the quantity dn(ps({s), [ps (7)) < (@
Ao, | i koo *0)e
0) = oo [ 2| g win { fle k@0, TIMY + ==L @

In general, we are interested in checking the validity oftaiar
properties of the DTSH$. on the MSC[M]. For instance, in Section
V-C we will exploit some spectral properties p¥1] to show related
asymptotics ofH{. To achieve this general goal, we first extend th
study of the approximation error over time.

which is finite, for anyk > 0. |
Equations (8)-(9) provide a time-dependent bound for therap
imation error. The bound is finite in time if the MSC abstranti
?/\/l] induced by the partition parametéris ergodic (that is, if its
coefficient of ergodicity7 ([M]) is strictly less than one). Next we
. prove that, under the following Assumption 2 6#, there always
B. Error dynamics exists a procedure (i.e., a choice &f> 0 for the partition) that
In this Section we analyze the dynamics in time of the approxields an ergodic abstraction.

imation error in equation (6) for the introduced MSC abdtcac Let us recall a few notions. A DTSH¥# is ¢-irreducible if there
Consider a points € S, the representative poird € (s), any exists a measurg on3(S) such that, for alC’ € B(S) with ¢(C) >
partition set(s’) € {S}s, and anyk > ko = 0. Let us focus on 0, Im < oo : pi*(C) > 0, for anyz € S [23, Sec. 4.2.1]. A seC
the following two entitiesp? ((s')) = Prob(s(k) € (s') | s(0) = s) s said to be a/n,-small set for a non-trivial measure,, on B(S)
andp%((s')) = Prob(s(k) € (s') | s(0) = 5). The distributiorp? of if Im > 0:Vz € C,VB € B(S), pj*(B) > vm(B) [23, Sec. 5.2].
the DTSHSH over the sets of the partitiofS}s is derived, for any Suppose that DTSH$ is «-irreducible:  is strongly aperiodic if



TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ?, NO. ??, ?? 200?

there exists a/-small setC' € B(S) with v1(C) > 0 [23, Sec.
5.4.3].

Assumption 2:The DTSHSH is v-irreducible and strongly ape-

riodic. |
Theorem 2:Consider a DTSHSH. If Assumption 2 holds, it is

possible to select a partition parameger 0, such that the induced

abstraction| M] satisfiesT ([M]) < 1. O

C. Steady-State Computation with the Abstraction

Theorem 2 guarantees that, under some structural assummptio

a DTSHSH, it is possible to select a partition parameter 0 and
to construct an approximate abstractiowt] which, by virtue of the

bound in (9), is “close” over time t@{. In this section we propose
an algorithm which, given a DTSH3{ and a desired precision
parameterp > 0, determines in a finite number of steps the steady-

state behavior of{ with precision¢ by selecting a parametéi ¢)
for the approximation procedure that generates the NJ&C and by
computing its steady-state interval.

More formally, let us consider a DTSH#& and let us uphold
Assumption 2. By Theorem 2, there exists a positive parami¢te)
and an associated approximation procedure #nthat generates
a MSC [M] : T(JM]) < 1. The steady state intervgp™]
of [M] can be bounded by the diametéx([p>]). A sufficient
condition to achieve the desired precision by the abstadiM] is
thus A([p™]) < ¢. Consider the one-step erre(s(¢),n, L) that
characterizes the abstraction with cardinalik{6(¢)). Theorem 1
guarantees that a sufficient condition for finding a pariparameter

0(¢) that induces an MSC abstraction with the required precigion

is LD < ¢ This bound holds if7 ([M]) < 1, which
is enforced by Theorem 2.

The following algorithm introduces a sequence of partijiwace-
dures characterized by monotonically decreasing paraseig};>o,
until the sufficient condition is satisfied. We defing to be the MC

computed over the partition sets characterizedhy.M;] to be the

associated MSC, and a variabteto represents an upper bound for

T ([M;]), as discussed in Section II.

Algorithm 1 (Compute steady state &Af with precision¢ > 0):
set integeri = 0, real 7; = 0, and §; such thatk(d;)e(ds, n, L) < ¢;
fori>0
computelM; according to the approximation with parametér,
setr; = T (M) + k(d:)e(i, n, L);
if 7, > min{l, 7,1}, then setd;;1 = ad;, for somea < 1;
else if Xunl) > ¢, then setdi st w < ¢
elseexit;
end (if)
sett =1+ 1,
end (for)
compute the steady stap@® of M;.

Theorem 3:1f Assumption 2 holds, Algorithm 1 terminates in a[22]

finite number of steps. a

VI. CONCLUSIONS

This work has introduced an abstraction procedure for eisetime
Stochastic Hybrid Systems (DTSHS). The approximate att#rais
interpreted as a Markov set-Chain (MSC). By raising soméicoity
assumptions on the stochastic kernels that characterz®TUSHS,
we have derived an analytic formula relating the accuracythef
state space partition and the error of the approximate adisin.
Additionally, we have shown a bound in time for the distanegeen
the transition probabilities of the abstract model (the NMS@d
those of the original DTSHS. Under proper assumptions, ther e
bounds are finite over time and there exists a finite-timeréltga
that computes the abstraction.
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APPENDIX
Proposition 1: [17, Theorem 3.1] LefII] be the intervalP, Q]
and A € [II], then: |7 ([I1]) — T (4)| < ||Q — PI. | ?
|z A

The used matrix norm is the induced 1-norpl|| = max.—o
[17, Appendix A.1].

Proposition 2: [17, Theorems 3.4, 3.11] Given a Markov set-Chain
with transition sefIl] = [P, Q], then

A(I®) < 7D + (T~ + ...

lll

+ DA([H]).

Springer Verlag,
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In particular, if 7([IT]) < 1, given any initial distribution sefro], By Corollary 1, if the MSC is ergodic witl ([M]) < 1, then

there exists a unique limit sétr-] that is invariant, i.e. such that K(8)e(8,n, L)
[oo][TT] = [7oo], and such thaﬁmkﬁw[m%nﬁ hm’“ﬂg@}ﬁ[mk — dn(P"(("), [PE((s'N]) < TMDF + W (13)

o). The following holds:A([ro]) < ofs < 40k

The notion of limit of a vector interval hinges on the Haustior The right-hand side is made up of two terms: the first is finitd a

distance [17], which is a distance between sets. decreasing irk, whereas the second is fixed. As a result, the bound
Corollary 1: Given a Markov set-Chain with transition sgf] = IS finite in time. The inequalities in (8) and (9) in the stagemnof
[P, Q] such that7 ([II]) < 1, and any initial interval vectofro), then the theorem follow by considering, respectively, the pdibounds
for any A e [II] such that7(A) + ||Q — P|| < 1 (11)-(12) and (11)-(13). . . =
Proof of Theorem 2: Pick a discretization
Afrad]) < A(U) lQ — Pi| ‘ parameter § > 0 for H. The obtained k(J)-
1=T7(I]) — 1=T(A) - [|Q — PJ| O dimensional MSC [M] is made up of the elements
Lemma 1:Consider a discrete-time homogeneous Markov Chajmax{0, ps({s’)) — €(,n, L)}, min{1, ps({s’)) + €(d,n, L)}] and,
defined by am x n stochastic matrixP? = {p;;} and a legitimate as per (6),¢(6,n,L) < " "'L,n = maxseon(q),L =

initial probability distributionp(0). Letp(k), k > 0, be the associated max{L; + L,,L. + L,}. Select a generic stochastic matrix
probability distribution vector. Given a real const#nt- 0, consider A = (A;;) € [M], where the elementl;; refers to the partition
the Markov set-Chain defined by thex n stochastic interval matrix sets(s;), (s;),i,5 = 1,...,k(d). To claim the ergodicity ofM],
P = {[max{0, p;; — 0}, min{1, p;; +6}]} and the initial probability we are interested in showing that the generic MQxtracted from
distribution p(0) = p(0), and letp(k),k > 0, be the associated [M] is such thatT (A) < 1. To achieve this, it is sufficient to show
probability interval vector. The following holds: that matrix A is irreducible and aperiodic [17].
> & (5(k N < F(0.m k 10 Let us denote withb(e, k(5),m) the bound on the RHS of (8)
vk =0, h(p( ), )) < f(6,n, k), (10) from Theorem 1 at timen > 0. With reference to the partition sets
whered;, is the Hausdorff distance [17], antl6, n, k) is defined in  (si), (sj),%,J = 1,...,k(4), generic points; € (si), we have that
equation (7) withf(6,n,0) = 0. O (A™)i; = max{pJ;((s;)) — b€, k(d),m),0}. At any m > 0 and
Proof: (By induction) Equation (10) is valid fok = 0, since s the discretization paramet@r 0, the termp:?((s;)) - whenever
p(0) = p(0). Let (10) hold fork > 0. Introducing function : R —  Positive - converges to zero as a functionddf (which is due to the

[0,1], u(2) = min{max{z, 0}, 1}, and resorting taP, P: volume of (s;)), whereas(e, k(d), m) converges to zero at least as
a function ofs"*! (cfr. (6), (7), and bound in (8) — the convergence
dn(p(k+1),p(k+1)) < can be made faster if local Lipschitz constants rather thaare

l(pin + @) (pr(k) + B) + -+ considered in (6)). The continuity of the transition keenelf #
i1 nmaX +u(pin + @) (pn(k) + ) —pi(k+1)| [ — allows to select a partition paramet&r > 0 small enough so that
oc [’_9 ;_9’] the following two conditions hold:
Py 1 Choosed™ > 0 so that, if ¢((s;)) > 0, then pZ ({s;)) —
—f(0,n, k 0,n,k J i \S3
B e =16, k), +7(6,n k)] b(e,k(67),m) > 0, for i,j —= 1,....k(6"), where m —
Jmax [pi(k+1) +0nf(0,n,k) + 60+ f(0,7.k) —pik + DI, max;_; ey m((s;)) andm({s;)) is the finite y-irreducibility

77777

o index of H over (s;). This allows to obtain thatA™); ; > 0.

which is (0n +1)f(60,n, k) +6 = f(6,n,k + 1), and shows that 5 consider any;-small setC' € B(S) with 11 (C) > 0, which
(10) holds. The first inequality is set up by expressing thabability is such thatvs e C,p(C) > 11(C) > 0. Chooses* > 0
interval of the MSCP at time k 4 1 according to its structure, g4 that 3; — 1,...,k(6*) : (s) € C Awi((ss)) > 0, and
whereas the second is derived by upper-bounding the niaétmn s, ((51)) —b(e, k(67),1) > 0. (Notice that the partition sdt; ) is re-
of probabilities. Ifdx (p(0), p(0)) # 0, the proof is adapted by taking |ateq to a positive probability of self-logm., ((s:)) > v1((s:)) > 0.)
fo = dn(p(0),p(0)) = [[p(0) = p(0)||, where|[ - || is the 1-norm. B Tnen this yieldsA, ; > 0.

Proof of Theorem 1: The casek = 1 follows from equation Tpjs choice ofs* renders matrixA € [M] irreducible (over the
(6). If, instead of a single point € S, the system is initialized over y-irreducibility classes ofH) in view of condition 1, as well as
a probability distributionr, over S, then bothM and [M] will be  gperiodic thanks to condition 2. Thu(A) < 1. The conclusion that
initialized on a marginalization af, over the partition sets ofS}s. T([M]) < 1 is drawn based on the generic choicedf [M] and
For anyk > 1, one can show by direct calculation on the definitior@’iVen the compactness of the interval matix] and the continuity

of the MSC[M] and by Lemma 1 that the approximation error capf 7-(A) as a function of its entries ir. -
be upper-bounded as Proof of Theorem 3: The updates on the parametér are
dn (" ("), PE((SN]) < f (e, k(8), k), 11) contractive, since the multiplicatiok(z)e(z,-,-) is monotonically

increasing with respect ta. Furthermore, notice that the “else
where f has been introduced in (7) and where we have inheritéld condition cannot be true for two consecutive choices bét
the initialization f (-, -,0) = 0. This bound corresponds to the erroparameter. Therefore we have thatgl d; = 0, which says that
. . . 1—r+ 00

growth that is obtained when the Mg@1] is elevated to the power |;;,, A(JM;]) = 0 (see Section Il) and thatlim 7 ([M]) < 1
of k. Being monotonically increasing, it can become consergads i+ . , irfoo .
. X . . b(){ Theorem 2). The above two considerations imply thah 7, =
time k£ grows. This leads to consider a second bound, to be combinec . o T it
with the first. Observe that the stochastic behavjdi (generated ,lim 7(M:) < 1. Thus, there exists a finite index such that for
by [M]) is conservative with respect tol (generated by\1). This  any; > j* ; Kod<Ginl) < o According to this condition, the
allows to state thatly (ps((s)), [ps((s")]) < A([M]*). Resorting  steady state® of M; is an estimate of the steady state7fwith
to Proposition 2, it is possible to conclude that precisiong. Notice that the condition provided by Assumption 2 is

’ ’ sufficient, but not necessary. [ |

dn (P (), I () < Y

3

T(MD* + (TAMDEF + ...+ Dk(8)e(6,n, L).  (12)



