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Abstract

A method for approximate model checking of stochastic hybrid systems with provable approximation
guarantees is proposed. We focus on the probabilistic invariance problem for discrete time stochastic hybrid
systems and propose a two-step scheme. The stochastic hybrid system is first approximated by a finite state
Markov chain. The approximating chain is then model checked for probabilistic invariance. Under certain
regularity conditions on the transition and reset kernels governing the dynamics of the stochastic hybrid
system, the invariance probability computed using the approximating Markov chain is shown to converge
to the invariance probability of the original stochastic hybrid system, as the grid used in the approximation
gets finer. A bound on the convergence rate is also provided. The performance of the two-step approximate
model checking procedure is assessed on a case study of a multi-room heating system.

1 Introduction

Stochastic hybrid systems are a broad and widely applicable class of dynamical systems that involve the
interaction of discrete, continuous, and probabilistic dynamics. Because of their generality, stochastic hybrid
systems have found applications in many areas, including telecommunication networks, manufacturing systems,
transportation, and biological systems (see, for example, [10, 13] for an overview). The importance of stochastic
hybrid systems in applications has motivated a significant research effort into the foundations, analysis and
control methods for this class of systems. Among the different problems addressed in this effort, of particular
interest for the present paper are the problems of reachability and invariance, i.e., the characterization of the
probability that the state of a stochastic hybrid system will reach (or, respectively, remain) in a specific region
of the state space (see, for example, [2, 11, 12, 23, 31, 32]).

The development of computational tools is a crucial step in the application to practical problems of the new
theoretical results that have emerged in the study of stochastic hybrid systems. Ideally such tools should
be based on solid theoretical foundations, to quantify for instance the level of approximation introduced
during the computation process. The tools should, however, also be versatile and efficient enough to be
used on realistic applications. Many of the methods proposed in the area of stochastic hybrid systems for
achieving this objective are based on numerical computations. These involve either imposing a grid on the state
space, thus turning an infinite state problem into an approximate finite state one (see, for example, [1, 32]
for reachability problems of the type considered here), or carrying out Monte-Carlo simulations to obtain
empirical estimates of quantities such as expected values of reach probabilities (see [27] for an application of
such methods). An alternative approach to the problem of verification of stochastic hybrid systems is based
on satisfiability modulo theory, [19]. In [31], certain functions of the state are used to determine upper bounds
on the invariance probability.

Even though computational tools based on numerical methods typically come with explicit approximation
guarantees, their versatility and their computational requirements often limit their applicability to practical
problems. To address a wider range of problems one would ideally like to combine numerical approximation
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with symbolic computation techniques that can be used to test a wider range of properties and that have
been optimized for computational efficiency. Model checking is an interesting class of methods in this context.
Model checking methods [6, 14] provide the means to algorithmically check whether a system satisfies a wide
range of properties related to its evolution in time. In the context of reachability, model checking typically
involves constructing forward/backward reachable sets based on a model of the system. More generally, model
checkers can be employed to verify whether a model of the system satisfies various properties expressed in an
appropriate temporal logic [29, 30].

A key difficulty in deploying model checking methods to hybrid systems is our ability to “compute” with sets,
i.e., to represent sets of states and propagate them through the system dynamics. For finite state systems this
is not an issue, at least conceptually. Storing and manipulating sets of states can be done either naively by
enumeration, or in a more sophisticated way by using efficient representations such as binary decision diagrams;
as a consequence, model checking tools for deterministic, discrete time, finite state systems have been available
for many years [24] and have been successfully used in numerous applications. For systems whose state involves
infinite or uncountable components it is sometimes possible to obtain an equivalent finite state representation
on which finite state model checking methods can be applied. Even though several such classes of systems are
known to exist in the deterministic setting [3, 4, 5, 21], very little is known in the stochastic context. Here
model checking is typically limited to finite state Markov chains or decision processes, either in continuous or
in discrete time [7, 15, 17, 20, 26].

The aim of the present paper is to take a first step toward combining numerical methods for approximate
computation in stochastic hybrid systems with model checking methods developed to test temporal logic
properties for finite state Markov chains. For the time being we concentrate on discrete time stochastic hybrid
systems and finite time invariance specifications; current work focuses on extending the results to a wider
range of properties of interest coded in the Probabilistic Computational Tree Logic (PCTL) [20]. The main
idea is simple: given a stochastic hybrid system, we use numerical tools to generate a finite state Markov
chain, together with guarantees on the level of approximation introduced in the process. The properties of
the Markov chain (in our case the probability of remaining in a certain region of the state space) are then
analyzed using a model checker. The result is combined with the approximation guarantees to provide an
overall guarantee about the probability of satisfying the original property of interest for the stochastic hybrid
system.

The material is organized in six sections. After this brief introduction, in Section 2 we describe the class of
stochastic hybrid systems that we will consider, formally define the invariance problem of interest, and present
some basic results on the characterization of its solution using a multiplicative cost function. Section 3 con-
centrates on numerical methods that can be used to approximately solve the invariance problem, with special
emphasis on quantifying the error introduced in the process. Section 4 illustrates the model checking method
and shows how it can be applied to (approximately) solve the original invariance problem. The approxi-
mate model checking approach is then applied to a benchmark problem in Section 5, and its computational
complexity is quantitatively assessed. Finally, Section 6 outlines some further directions of investigation.

2 Probabilistic invariance for stochastic hybrid systems

2.1 Discrete time stochastic hybrid system modelling framework

We consider a discrete time stochastic hybrid system (DTSHS) model, inspired by [2]. The main difference
with the model introduced in [2] is that here we consider autonomous systems, without control inputs. The
state of a DTSHS comprises a discrete and a continuous component. The discrete component takes values in
a finite set Q; the elements of Q will be referred to as “modes.” The continuous component of the state in
each mode q ∈ Q lies in an Euclidean space Rn(q), whose dimension n(q) is determined by a bounded map
n : Q → N. The hybrid state space is then given by the disjoint union of the Euclidean spaces associated to
each mode, that is

S :=
⋃
q∈Q
{q} × Rn(q).
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Let B(S) denote the σ-algebra generated by the subsets of S of the form ∪q∈Q{q}×Aq, where Aq ∈ B(Rn(q))
is a Borel set in Rn(q). One can show [16] that S can be endowed with a metric that is equivalent to the usual
Euclidean metric when restricted to each component Rn(q), making (S,B(S)) a Borel space (i.e. homeomorphic
to a Borel subset of a complete separable metric space).

The continuous state of a DTSHS evolves according to a probabilistic law specific to the current mode.
A discrete transition from one mode to a different one may occur according to another probabilistic law;
such a transition will cause a modification of the probabilistic law governing the continuous state dynamics.
Furthermore, such a mode transition induces a probabilistic reset of the continuous state to a value in the
Euclidean space associated with the new mode. The following definition formalizes this description.

Definition 1 (DTSHS) A discrete time stochastic hybrid system is a collection H = (Q, n, Init, Tx, Tq, R),
where

• Q := {q1, q2, . . . , qm} with m ∈ N, represents the discrete state space;

• n : Q → N assigns to each discrete state q ∈ Q the dimension of the continuous state space Rn(q);

• Init : B(S)→ [0, 1] is a probability measure on S for the initialization of the solution process;

• Tx : B(Rn(·)) × S → [0, 1] is a conditional stochastic kernel on Rn(·) given S. It assigns to each s =
(q, x) ∈ S a probability measure, Tx(·|s), on the Borel space (Rn(q),B(Rn(q))). The function Tx(A|(q, ·))
is assumed to be Borel measurable, for all q ∈ Q and all A ∈ B(Rn(q));

• Tq : Q×S → [0, 1] is a conditional discrete stochastic kernel on Q given S, which assigns to each s ∈ S
a probability distribution, Tq(·|s), over Q;

• R : B(Rn(·))×S×Q → [0, 1] is a conditional stochastic kernel on Rn(·) given S ×Q, that assigns to each
s ∈ S and q′ ∈ Q, a probability measure, R(·|s, q′), on the Borel space (Rn(q′),B(Rn(q′))). The function
R(A|(q, ·), q′) is assumed to be Borel measurable for all q, q′ ∈ Q and all A ∈ B(Rn(q′)).

We consider the evolution of this model over a finite time horizon [0, N ] and define the semantics of the DTSHS
algorithmically. In the sequel, we shall use boldface to denote random variables and normal typeset to denote
sample values.

Definition 2 (Execution of a DTSHS) Consider a DTSHS H = (Q, n, Init, Tx, Tq, R) and a time horizon
[0, N ]. A stochastic process {s(k) = (q(k),x(k)), k ∈ [0, N ]} with values in S = ∪q∈Q{q} × Rn(q) is an
execution of H if its sample paths are obtained according to the following algorithm:

set k = 0;
extract a value (qk, xk) ∈ S for (q(k),x(k)) according to Init(·);
while k < N do

extract a value qk+1 ∈ Q for q(k + 1) according to Tq(· |(qk, xk));
if qk+1 = qk, then

extract a value xk+1 ∈ Rn(qk+1) for x(k + 1) according to Tx(· |(qk, xk));
else

extract a value xk+1 ∈ Rn(qk+1) for x(k + 1) according to R(· |(qk, xk), qk+1);
k → k + 1;

end.

By appropriately defining the discrete transition kernel Tq, it is possible to model situations such as “spon-
taneous jumps” (which are events that may occur during the continuous state evolution), as well as “forced
jumps” (which are events that must occur, for instance when the continuous state exits some prescribed
domain). For the spontaneous transitions, the fact that a discrete transition from q to q′ 6= q is enabled at
(q, x) ∈ S can be encoded by the condition Tq(q

′|(q, x)) > 0. For the forced transitions, one typically associates
an “invariant set” Inv(q) ⊆ Rn(q) with mode q ∈ Q. The interpretation is that the discrete state can keep the
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value q as long as the continuous state lies in the set Inv(q); when this condition is violated the discrete state
will have to switch to a different value. This requirement can be expressed by setting Tq(q|(q, x)) = 0 for all
x 6∈ Inv(q).

To simplify the notation, let us introduce a conditional stochastic kernel Ts : B(S)×S → [0, 1] on S, given S,
defined by

Ts({q′} ×Aq′ |(q, x)) =

{
Tx(Aq′ |(q, x))Tq(q

′|(q, x)), if q′ = q
R(Aq′ |(q, x), q′)Tq(q

′|(q, x)), if q′ 6= q,
(1)

for all Aq′ ∈ B(Rn(q′)), q′ ∈ Q, and (q, x) ∈ S. One can verify that the kernel Ts assigns to each s = (q, x) ∈ S
a probability measure on the Borel space (S,B(S)); moreover, under the conditions of Definition 1 the function
Ts(A|(q, ·)) is Borel measurable for all A ∈ B(S) and all q ∈ Q. The algorithm in Definition 2 now simplifies
to:

set k = 0;
extract a value sk ∈ S for s(k) according to Init(·);
while k < N do

extract a value sk+1 ∈ S for s(k + 1) according to Ts(· |sk);
k → k + 1;

end.

It follows that a DTSHS H = (Q, n, Init, Tx, Tq, R) defines a Markov process with state space S = ∪q∈Q{q} ×
Rn(q) and transition probability kernel Ts : B(S)×S → [0, 1]. The execution {s(k), k ∈ [0, N ]} is a stochastic
process defined on the canonical sample space Ω = SN+1, endowed with the σ−algebra, B(Ω), generated by
the product topology, and with a probability measure P uniquely defined by the transition kernel Ts and
the initial measure Init [9, Proposition 7.45]. In particular, we will use the notation Ps0 for the probability
measure associated with the deterministic initial condition s0 ∈ S, i.e., Init(·) = δs0(·).

2.2 Formulation of the probabilistic invariance problem

We consider the following invariance problem: determine the probability that the state of a DTSHS H will
remain within a certain “safe” set during the time horizon [0, N ], starting from an arbitrarily selected initial
condition s0 ∈ S. The probabilistic invariance problem of interest can actually be referred to as a probabilistic
safety problem. An invariance problem can be regarded as the dual of a reachability problem; this duality is
formally discussed in [2].

Consider a compact Borel set A ∈ B(S), representing a safe set. Our goal is setting up an invariance compu-
tation procedure to determine the probability that the execution associated with the initial condition s0 ∈ S
will remain within A during the time horizon [0, N ]:

ps0(A) := Ps0{s(k) ∈ A for all k ∈ [0, N ]}. (2)

If ps0(A) ≥ ε, ε ∈ (0, 1], we say that the system initialized at s0 is safe with an ε probabilistic guarantee.
Notice that the value of the probability ps0(A) depends on the initial condition. For a given ε ∈ (0, 1], we can
define as the probabilistic safe set with safety level ε the set

S(ε) = {s0 ∈ S : ps0(A) ≥ ε} (3)

of those initial conditions s0 that are safe with an ε probabilistic guarantee. We show that the problem
of computing ps0(A) can be solved through a backward iterative procedure by representing ps0(A) as a
multiplicative function.

Let 1IC : S → {0, 1} denote the indicator function of set C ⊆ S: 1IC(s) = 1, if s ∈ C, and 1IC(s) = 0, if s 6∈ C.
Observe that

N∏
k=0

1IA(sk) =

{
1, if sk ∈ A for all k ∈ [0, N ]

0, otherwise,
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where sk ∈ S, k ∈ [0, N ]. Then, the quantity ps0(A) in (2) can be expressed as the expectation with respect

to the probability measure Ps0 of the Bernoulli random variable
∏N
k=0 1IA(s(k)):

ps0(A) = Es0

[
N∏
k=0

1IA(s(k))

]
. (4)

Consider the sequence of functions Vk : S → [0, 1], k = 0, 1, . . . , N , defined by:

Vk(s) = 1IA(s)

∫
SN−k

N∏
l=k+1

1IA(sl)

N−1∏
l=k+1

Ts(dsl+1|sl)Ts(dsk+1|s), s ∈ S, k = 0, 1, . . . , N − 1, (5)

VN (s) = 1IA(s), s ∈ S.

It is easily seen that for any k ∈ {0, 1, . . . , N}, Vk(s) represents the probability that an execution of the DTSHS
remains within the safe set A over the residual time horizon [k,N ], starting from s at time k. Following
the dynamic programming terminology, we call Vk(s) the value function at time k. In particular, V0(s) =

Es[
∏N
l=0 1IA(s(l))], s ∈ S, evaluated at s = s0 returns the quantity of interest ps0(A), and the probabilistic

safe set with safety level ε defined in (3) can be expressed as S(ε) = {s0 ∈ S : V0(s0) ≥ ε}.

The following result states that the value functions can be determined through a backward recursive procedure.

Proposition 1 ([2], Lemma 1) The value functions Vk : S → [0, 1], k = 0, 1 . . . , N − 1, defined in (5) can
be computed through the following backward recursion:

Vk(s) = 1IA(s)

∫
S
Vk+1(sk+1)Ts(dsk+1|s), s ∈ S, (6)

initialized with VN (s) = 1IA(s), s ∈ S.

Since an explicit analytic solution to the recursion in equation (6) is generally impossible to find, the com-
putational aspects to the problem are of key importance to its implementation. In Section 3 we design an
approximation scheme for the numerical solution of the stochastic invariance problem. To this purpose, it is
important to note that the value function Vk : S → [0, 1] satisfies Vk(s) = 0, if s ∈ S \ A, for any k ∈ [0, N ].
As a consequence, the recursive equation (6) in Proposition 1 can be restricted to the compact set A:

Vk(s) =

∫
A

Vk+1(sk+1)Ts(dsk+1|s), s ∈ A, k = 0, 1, . . . , N − 1,

(7)
VN (s) = 1, s ∈ A.

The advantage of confining computations to the compact set A is that we can adopt a finite discretization of
the continuous state component in the numerical scheme that approximates the quantity of interest. Moreover,
under suitable regularity conditions on the transition kernels, the Vk functions can be shown to be Lipschitz
continuous over A. This property (valid only within A, given the discontinuity when passing from a safe state
within A to an unsafe state outside A) is used for determining bounds on the approximated numerical solution.

3 Estimation of invariance probability by finite state Markov chain
approximation

We introduce a numerical scheme for estimating the invariance probability ps0(A) defined in (2). The scheme
is based on a Discrete Time Markov Chain (DTMC) approximation of the original DTSHS. The proof that
the estimated invariance probability converges to ps0(A) is inspired by [1, 8].
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3.1 Approximating Markov chain

Let the safe set A ∈ B(S) be given by A = ∪q∈Q{q} × Aq with Aq ∈ B(Rn(q)). Recall that A is assumed
to be compact. The size of the continuous state space within A is measured by λ := maxq∈Q L(Aq), where
L(Aq) <∞ denotes the finite Lebesgue measure of the set Aq ⊂ Rn(q). Assume for simplicity that Aq 6= ∅ for
all q ∈ Q. Since A is compact, we can introduce a finite partition of each compact set Aq ⊂ Rn(q), q ∈ Q,
by taking Aq = ∪mqi=1Aq,i, where Aq,i, i = 1, . . . ,mq, are pairwise disjoint Borel sets Aq,i ∈ B(Rn(q)), with
Aq,i∩Aq,j = ∅, ∀i 6= j. Denote with δq,i the diameter of the set Aq,i, that is δq,i = sup{‖x−x′‖ : x, x′ ∈ Aq,i},
and define the grid size parameter by δ := maxi=1,...,mq,q∈Q δq,i.

The collection of sets G := {Gq,i := {q} × Aq,i, i = 1, . . . ,mq, q ∈ Q} represents a partition of the safe
set A. For each element Gq,i of the partition, we select a representative point (q, vq,i) ∈ Gq,i. The set
Aδ := {(q, vq,i), i = 1, . . . ,mq, q ∈ Q} is the discretized version of the safe set A. We denote with ξ : A→ Aδ
the map that associates to s ∈ Gq,i ⊂ A the corresponding discrete state (q, vq,i) ∈ Aδ, and with Ξ : Aδ → G
the set-valued map that associates to (q, vq,i) ∈ Aδ the set Gq,i to which (q, vq,i) belongs.

We next introduce the state space Zδ and the transition probability function Tδ : Zδ×Zδ → [0, 1] of a stochastic
automaton that approximates the original DTSHS for the purpose of probabilistic invariance computation.
The state space of the stochastic automaton is defined as Zδ := Aδ∪{φ}, where φ is a discrete state representing
the set of all states in the hybrid state space S that are outside the safe set A. Notice that the compactness
assumption on A ensures that the set Zδ is finite.

The transition probability function Tδ : Zδ ×Zδ → [0, 1] is defined as follows:

Tδ(z
′|z) =


Ts(Ξ(z′)|z), if z′ ∈ Aδ and z ∈ Aδ
1−

∑
z̄∈Aδ Ts(Ξ(z̄)|z), if z′ = φ and z ∈ Aδ

1, if z′ = z = φ

0, if z′ ∈ Aδ and z = φ,

(8)

and satisfies
∑
z′∈Zδ Tδ(z

′|z) = 1, for all z ∈ Zδ. Note that φ is an absorbing state and the probability that
the stochastic automaton evolves from a safe state z ∈ Aδ to a safe state z′ ∈ Aδ is defined as the probability
that the original DTSHS will enter the safe set Ξ(z′) ⊂ A in one time step starting from z.

The execution during the time horizon [0, N ] of the stochastic finite automaton associated with the initial
condition z0 ∈ Zδ is a Markov chain {z(k), k ∈ [0, N ]} defined on the probability space (ZN+1

δ , σ(ZN+1
δ ), Pδ,z0),

where σ(ZN+1
δ ) is the σ-algebra associated to ZN+1

δ , and the probability measure Pδ,z0 is uniquely defined by
the initial condition z0 and the transition probability function Tδ.

3.2 Convergence result

Consider an initial condition s0 ∈ A for the DTSHS. Let z0 = ξ(s0) ∈ Aδ be the discrete state corresponding
to s0. We show that, under certain regularity conditions on the DTSHS, the probability

pδ,z0(Aδ) := Pδ,z0{z(k) ∈ Aδ for all k ∈ [0, N ]} (9)

computed on the approximating Markov chain initialized at z0 = ξ(s0) converges to the invariance probability
of interest ps0(A) of the DTSHS initialized at s0 ∈ A, as the grid size parameter δ tends to zero. We also
provide an expression for the rate of convergence.

Suppose that the stochastic kernels Tx and R on the continuous component of the hybrid state admit density
tx and r, and that tx and r, as well as the stochastic kernel Tq, satisfy the following Lipschitz condition.

Assumption 1

1. |Tq(q̄|(q, x))− Tq(q̄|(q, x′))| ≤ h1‖x− x′‖, for all (q, x), (q, x′) ∈ A, and q̄ ∈ Q,

2. |tx(x̄|(q, x))− tx(x̄|(q, x′))| ≤ h2‖x− x′‖, for all (q, x), (q, x′), (q, x̄) ∈ A,
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3. |r(x̄|(q, x), q̄)− r(x̄|(q, x′), q̄)| ≤ h3‖x− x′‖, for all (q, x), (q, x′), (q̄, x̄) ∈ A, and q̄ 6= q ∈ Q,

where h1, h2, and h3 are suitable finite Lipschitz constants.

Based on Assumption 1, we can prove that the value functions Vk of the original probabilistic invariance
problem for the DTSHS satisfy a Lipschitz condition over the set A. An analogous result for a DTSHS with
inputs is stated without proof in [1, Theorem 2].

Theorem 1 Under Assumption 1, the value functions Vk : S → [0, 1] of the probabilistic invariance problem
for the DTSHS satisfy the following Lipschitz condition over A:

|Vk((q, x))− Vk((q, x′))| ≤ K‖x− x′‖, ∀ (q, x), (q, x′) ∈ A, (10)

for any k ∈ [0, N ]. The constant K is given by K = mh1 + λ
(
h2 + (m − 1)h3

)
, where m is the cardinality of

Q and λ is the Lebesgue measure of the continuous state space within A.

Proof: Since VN (s) = VN (s′) = 1, for all s, s′ ∈ A, then, the inequality in (10) is trivially satisfied for k = N .
For any k ∈ [0, N − 1], (q, x), (q, x′) ∈ A, from the backward recursion (7), the definition (1) of Ts, and the
fact that Vk+1(s) = 0 for all s ∈ S\A, we have:

|Vk((q, x))− Vk((q, x′))| =
∣∣∣ ∫
A

Vk+1(s)Ts(ds|(q, x))−
∫
A

Vk+1(s)Ts(ds|(q, x′))
∣∣∣

=
∣∣∣Tq(q|(q, x))

∫
Aq

Vk+1(q, x̄)Tx(dx̄|(q, x)) +
∑
q̄ 6=q

Tq(q̄|(q, x))

∫
Aq̄

Vk+1(q̄, x̄)R(dx̄|(q, x), q̄)

− Tq(q|(q, x′))
∫
Aq

Vk+1(q, x̄)Tx(dx̄|(q, x′))−
∑
q̄ 6=q

Tq(q̄|(q, x′))
∫
Aq̄

Vk+1(q̄, x̄)R(dx̄|(q, x′), q̄)
∣∣∣

≤
∣∣∣Tq(q|(q, x))

∫
Aq

Vk+1(q, x̄)Tx(dx̄|(q, x))− Tq(q|(q, x′))
∫
Aq

Vk+1(q, x̄)Tx(dx̄|(q, x′))
∣∣∣

+
∑
q̄ 6=q

∣∣∣Tq(q̄|(x, q)) ∫
Aq̄

Vk+1(q̄, x̄)R(dx̄|(q, x), q̄)− Tq(q̄|(q, x′))
∫
Aq̄

Vk+1(q̄, x̄)R(dx̄|(q, x′), q̄)
∣∣∣. (11)

We next show two intermediate results that will be useful for proving the Lipschitz property for Vk. The
following chain of inequalities can be easily proven using the fact that |Vk+1(·)| ≤ 1 and Assumption 1:∣∣∣ ∫

Aq

Vk+1(q, x̄)Tx(dx̄|(q, x))−
∫
Aq

Vk+1(q, x̄)Tx(dx̄|(q, x′))
∣∣∣ ≤ ∫

Aq

|Vk+1(q, x̄)|
∣∣Tx(dx̄|(q, x))− Tx(dx̄|(q, x′))

∣∣
≤
∫
Aq

∣∣Tx(dx̄|(q, x))− Tx(dx̄|(q, x′))
∣∣ ≤ λh2‖x− x′‖.

Similarly, we have that∣∣∣ ∫
Aq̄

Vk+1(q̄, x̄)R(dx̄|(q, x), q̄)−
∫
Aq̄

Vk+1(q̄, x̄)R(dx̄|(q, x′), q̄)
∣∣∣ ≤ λh3‖x− x′‖.

Recall now that the product of two functions α, β : E → R that are Lipschitz continuous over a compact set
E of an Euclidean space, with Lipschitz constants respectively hα and hβ , satisfies:

|α(w1)β(w1)− α(w2)β(w2)| ≤
{
hα sup

w∈E
|β(w)|+ hβ sup

w∈E
|α(w)|

}
‖w1 − w2‖.

Applying this inequality to the two terms in the right-hand side of equation (11) with α(w) = Tq(q|(q, w)),
and with either β(w) =

∫
Aq
Vk+1(q, x̄)Tx(dx̄|(q, w)) or β(w) =

∫
Aq̄
Vk+1(q, x̄)R(dx̄|(q̄, w), q̄), it follows that

|Vk((q, x))− Vk((q, x′))| ≤
[
mh1 + λ

(
h2 + (m− 1)h3

)]
‖x− x′‖,
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which concludes the proof.

Based on Theorem 1, we can finally prove the main convergence result.

Theorem 2 Under Assumption 1, the invariance probability ps0(A) for the DTSHS initialized at s0 ∈ A
satisfies ∣∣ps0(A)− pδ,z0(Aδ)

∣∣ ≤ γδ,
where pδ,z0(Aδ) is the invariance probability for the approximating Markov chain with grid size δ initialized at
the discrete state z0 = ξ(s0) ∈ Aδ, and γ = NK.

Proof: Fix δ > 0 and consider the MC on Zδ = Aδ ∪ {φ} with transition probability Tδ : Zδ × Zδ →
[0, 1] defined in (8). Given that φ is an absorbing state, the invariance probability pδ,z0(Aδ) in (9) of the
approximating Markov chain can be computed as

pδ,z0(Aδ) = Pδ,z0{z(N) ∈ Aδ}.

Let Vδ,k : Zδ → [0, 1], for all k ∈ [0, N ], represent the conditional probability that a Markov chain execution of
the automaton that takes the value z at time k will be within the safe set Aδ at time N . Clearly, the invariance
probability of interest can be computed as pδ,z0(Aδ) = Vδ,0(z0). Moreover, Vδ,N (z) = 1Aδ(z), z ∈ Zδ, and, for
k ∈ [0, N − 1], Vδ,k : Zδ → [0, 1] satisfies the following recursive equation

Vδ,k(z) =
∑
z′∈Zδ

Tδ(z
′|z)Vδ,k+1(z′).

Given that Vδ,k(φ) = 0, k ∈ [0, N ], we have that

Vδ,k(z) =
∑
z′∈Aδ

Tδ(z
′|z)Vδ,k+1(z′), z ∈ Aδ, k = 0, 1, . . . , N − 1,

(12)
Vδ,N (z) = 1, z ∈ Aδ,

which is the discretized version of the backward iteration (7).

Let us introduce the piecewise constant function V̂k(s) = Vδ,k(ξ(s)), s ∈ A. We next prove by induction on k
that

|Vk(s)− V̂k(s)| ≤ (N − k)Kδ, (13)

holds for any k = 0, 1, . . . , N . The claim then follows by setting k = 0 in equation (13) and recalling that
ps0(A) = V0(s0) and pδ,z0(Aδ) = Vδ,0(ξ(s0)).

Since VN (s) = V̂N (s) = 1, s ∈ A, then, equation (13) trivially holds for k = N . Let us suppose by induction
hypothesis that

∣∣Vk+1(s)− V̂k+1(s)
∣∣ ≤ (N − k − 1)Kδ, s ∈ A, for k + 1 < N . Observe that

|Vk(s)− V̂k(s)| = |Vk(s)− V̂k(ξ(s))| ≤ |Vk(s)− Vk(ξ(s))|+ |Vk(ξ(s))− V̂k(ξ(s))|, s ∈ A. (14)

By Theorem 1, it is easily seen that the first term in the right hand-side of this equation is bounded by

|Vk(s)− Vk(ξ(s))| ≤ Kδ, s ∈ A.

For the second term, by the backward recursions (7) and (12), and the definition of the approximating Markov
chain transition probability function (8), we get

|Vk(ξ(s))− V̂k(ξ(s))| =
∣∣∣ ∫
A

Vk+1(w)Ts(dw|ξ(s))−
∑
z∈Aδ

Tδ(z|ξ(s))V̂k+1(z)
∣∣∣

=
∣∣∣ ∫
A

Vk+1(w)Ts(dw|ξ(s))−
∫
A

V̂k+1(w)Ts(dw|ξ(s))
∣∣∣

≤
∫
A

∣∣Vk+1(w)− V̂k+1(w)
∣∣Ts(dw|ξ(s))

≤ (N − k − 1)Kδ, s ∈ A,
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where the last inequality follows from the induction hypothesis. By plugging these two bounds into equation
(14), the proof of (13) is completed.

Notice that the quality of the approximation by the numerical procedure improves as the grid size parameter
δ decreases. The rate of convergence is linear in δ and depends on the Lipschitz constants h1, h2, and h3 in
Assumption 1 through the K constant defined in Theorem 1. This is not surprising because the value function
V0 over the set A is approximated by a piecewise constant function through the discretization process, and we
expect such a piecewise constant approximation to be more accurate for a smoother V0 function. As the time
horizon grows, the approximation error propagates. This is taken into account by the constant γ in Theorem
2, which grows linearly with the time-horizon length N .

Though the bound in Theorem 2 is conservative, it holds uniformly over A, which allows one to approximate
the probabilistic safe set S(ε), ε ∈ (0, 1], defined in (3) by model checking the invariance property of the
approximating finite state Markov chain. This is detailed in Section 4.3.

4 Finite state Markov chain model checking

4.1 Logical specification of probabilistic invariance

A powerful and efficient analysis technique for assessing a large variety of properties, including probabilistic
invariance, on discrete time and finite state stochastic automata generating Markov chains is model checking [6,
14]. Let us consider a stochastic automaton with state space Z and transition probability function T : Z×Z →
[0, 1]. The execution of the automaton associated with some initial condition z̄ ∈ Z is a DTMC whose
sample paths z0, z1, z2, . . . , satisfy z0 = z̄ and T (zi+1|zi) > 0, i = 0, 1, . . . . The model checking approach to
probabilistic verification consists in specifying the property of interest in terms of a probabilistic temporal logic
formula, and in computing the set of initial conditions of the stochastic automaton such that the corresponding
DTMC executions satisfy that formula.

According to the Probabilistic Computation Tree Logic (PCTL) [20], the probabilistic invariance property for
a DTMC with safe set D ⊂ Z can be expressed by the formula

P≥ε
(
2≤NΦD

)
, (15)

which holds in the state z̄ whenever the DTMC execution associated with the initial condition z̄ satisfies the
sub-formula 2≤N ΦD with probability at least equal to ε ∈ [0, 1]. The state formula ΦD characterizes the safe
set D, i.e., ΦD holds in state z if and only if z ∈ D. A sample path of the DTMC satisfies the path formula
2≤NΦD if its first N states all belong to D, i.e. they are all safe. The symbol 2 should be read as “always”.

The validity of a formula in a state is formally defined by means of a satisfaction relation, denoted by |=. For
instance,

z̄ |= P≥ε
(
2≤NΦD

)
denotes that state z̄ satisfies formula (15).

Similarly, the path formula 3Φ asserts that at some point a state satisfying formula Φ is reached. Let D̄ be
the complement of D in Z, i.e., the set of unsafe states. Then, ΦD̄ = ¬ΦD with ¬ denoting logical negation. A
path z0, z1, . . . satisfies 3ΦD̄ if some of its states are unsafe. 3ΦD̄ thus expresses a reachability specification
over the unsafe set D̄. The duality between probabilistic invariance and probabilistic reachability [2] can be
expressed in PCTL as:

P≥ε
(
2≤NΦD

)
≡ P≤1−ε

(
3≤NΦD̄

)
. (16)

More complex properties can be stated in a similar manner via logical specifications. For instance, assume
that we are interested in the reachability of a desired set C via some set B of admissible states within the
bounded time horizon [0, N ], with probability at least ε. This is expressed by the formula:

P≥ε
(
ΦB U≤NΦC

)
,
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involving the so-called bounded-until operator (U≤N ). Intuitively, a path satisfies ΦB U≤NΦC if it reaches a
desired state (in C) within [0, N ] while all states prior to this state are admissible (in B). If N =∞, then the
unbounded-until operator (U) poses no finite time restriction on reaching set C, as long as it is reached via
an admissible path.

In general, the syntax of PCTL is as follows. Let N be a natural number or ∞, ∼ a binary comparison
operator such as <, ≤, or, dually, > ≥, and ε ∈ [0, 1]. A formula Φ in PCTL is built up from the basic
state formula true and from the generic atomic proposition a, and can be obtained by combining two PCTL-
formulae by conjunction (∧), by prefixing a PCTL-formula with negation (¬), or by considering a path formula
characterized by the operator U≤N and contained in a P-context parameterized by a probability (ε) and a
binary comparison operator (∼):

Φ ::= true
∣∣∣ a ∣∣∣ Φ ∧ Φ

∣∣∣ ¬Φ
∣∣∣ P∼ε

(
ΦU≤N Φ

)
.

Note that 2≤N is the dual operator to 3≤N , and that 3≤NΦ can be defined as trueU≤NΦ. Based on (16),
the probabilistic invariance property can then be expressed in terms of the bounded-until operator as

P≥ε
(
2≤NΦD

)
≡ P≤1−ε

(
trueU≤N¬ΦD

)
. (17)

Given that the other usual boolean connectives such as disjunction, implication, and equivalence can be derived
in the usual way, e.g., Φ ∨ Ψ = ¬(¬Φ ∧ ¬Ψ), this completes the logic. The formal semantics of the logic falls
outside the scope of this paper and can be found in [6, 20].

4.2 Model-checking algorithm

In this section, we summarize the model-checking algorithm for PCTL over DTMCs, which is based on [15, 20].
The inputs to the algorithm are a MC with finite state space Z and transition probability function T :
Z × Z → [0, 1], and a PCTL formula Φ. The states of the DTMC are assumed to be labeled with sets
of atomic propositions. The output is the set of states satisfying formula Φ: Sat(Φ) = {z ∈ Z | z |= Φ}.
PCTL model checking is carried out by recursively computing the set Sat(Φ), in the same way as verifying
the non-probabilistic temporal logic CTL [6, 14] from which PCTL originates. This is done by means of a
bottom-up recursive algorithm over the parse tree of Φ. Each node of this tree is labeled with a sub-formula of
Φ, the root node is labeled with Φ, and the leaves are either labeled with true or some atomic proposition a.
Starting from the leaves of the tree, the set of states satisfying each sub-formula is computed recursively moving
upwards towards the root. For most of the operators in the logic, such as negation and conjunction, this step
is straightforward. The main difficulty is represented by the sub-formulas involving the P∼ε(·) operator. For
the sake of this paper, we concentrate on bounded-until formulas since we are interested in model-checking
the probabilistic invariance property (17).

Consider the problem of checking the formula P∼ε
(
ΦU≤N Ψ

)
with N <∞. Let πk(z) denote the probability

that the DTMC execution of the stochastic automaton starting from z at time k reaches a Ψ-state within
the residual time horizon [k,N ] via paths of all Φ-states. The set of states Sat

(
P∼ε

(
ΦU≤N Ψ

) )
can then be

expressed in terms of π0(·) as: Sat
(
P∼ε

(
ΦU≤N Ψ

) )
= {z ∈ Z : π0(z) ∼ ε}. In turn, it is easily seen that

πk(z) =


1, if z |= Ψ

0, if (k=N and z |= ¬Ψ) or z |= ¬Φ ∧ ¬Ψ∑
z′∈Z T (z′|z)πk+1(z′), otherwise,

so that π0(·) can be recursively computed backwards, starting from πN (·) = 1ISat(Ψ)(·).

The following alternative approach shows how the probability π0(z), z ∈ Z, can be expressed and computed
in terms of the transient probabilities of a suitably defined DTMC. Given a PCTL formula Υ, consider the
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transition probability function T [Υ] : Z × Z → [0, 1] defined as:

T [Υ](z′|z) =


T (z′|z), if z |= ¬Υ

1, if z |= Υ and z′ = z

0, otherwise.

Clearly, this modified transition probability function makes all the states satisfying Υ absorbing. For the
purpose of model-checking the formula P∼ε

(
ΦU≤N Ψ

)
, one can then make all ¬(Φ∨Ψ)-states and all Ψ-states

absorbing by considering T [Υ](·|·) with Υ = ¬Φ ∨Ψ, since ¬Φ ∨Ψ = ¬(Φ ∨Ψ) ∨Ψ. The ¬(Φ ∨Ψ)-states are
defined as absorbing since Φ U≤N Ψ is violated as soon as some state is visited that neither satisfies Φ nor Ψ;
whereas the Ψ-states are defined as absorbing since, once a Ψ-state is reached (along a Φ-path) in at most N
steps, then Φ U≤N Ψ holds, regardless of which states will be visited later on.

As a result of this construction, for any z ∈ Z, the probability π0(z) can be computed as the probability that
the DTMC with transition probability function T [¬Φ∨Ψ](·|·) starting from z at time 0 will be within Sat(Ψ)
at time N . The probability distribution at time k of this DTMC can be expressed as

Πk
z := ez · P[¬Φ ∨Ψ]k,

where ez is a row probability vector whose elements are all equal to 0 except for a single one corresponding
to state z, and P[¬Φ∨Ψ] is the one-step transition probability matrix obtained by appropriately arranging in
different columns the sequences {T [¬Φ ∨ Ψ](z′|z), z ∈ Z} corresponding to the different z′ ∈ Z. Finally, the
probability of interest π0(z) can be computed as

π0(z) = ΠN
z · eΨ = ez · P[¬Φ ∨Ψ]N ·eΨ,

where eΨ is a column vector that characterizes Sat(Ψ), i.e., each element of eΨ takes values in {0, 1} and is
equal to 1 if it corresponds to z |= Ψ, and 0 otherwise.

The complexity of model checking the PCTL formula P∼ε
(
ΦU≤N Ψ

)
then mainly depends on the size of the

one-step transition probability matrix P[¬Φ ∨ Ψ]. Determining the set of states that satisfy P∼ε
(
ΦU≤N Ψ

)
in fact amounts to computing P[¬Φ ∨Ψ]N ·eΨ. In order to exploit the possible sparsity of P[¬Φ ∨Ψ], i.e. the
presence of many zero elements in such a matrix, the product P[¬Φ ∨ Ψ]N ·eΨ is typically computed in an
iterative fashion: P[¬Φ ∨Ψ]·(. . . (P[¬Φ ∨Ψ]·eΨ)).

4.3 Approximation of the probabilistic safe set

We next describe a computational procedure to determine a conservative approximation of the safe set S(ε) =
{s0 ∈ S : ps0(A) ≥ ε}, ε ∈ (0, 1), of a DTSHS by model checking the invariance property of the approximating
finite state Markov chain.

Algorithm 1 (probabilistic safe set approximation)

select η > 0 such that η
2 ∈ (0, 1− ε);

select δ > 0 such that γδ ≤ η
2 (cf. Theorem 2 for the definition of γ);

construct the approximating Markov chain with grid size δ according to the procedure in Section 3.1;

use the model checker to compute Zδ(ε+ η
2 ) =

{
z0 ∈ Zδ : z0 |= P≤1−(ε+ η

2 )

(
true U≤N ¬ΦAδ

)}
;

define the approximating safe set as Ŝη(ε) =
{
s0 ∈ S : ξ(s0) ∈ Zδ(ε+ η

2 )
}

.

Theorem 3 Under Assumption 1, for any ε ∈ (0, 1), the safe set approximation Ŝη(ε) obtained through

Algorithm 1 satisfies S(ε+ η) ⊆ Ŝη(ε) ⊆ S(ε).

Proof: By Theorem 2 and the condition γδ ≤ η
2 in the second step of Algorithm 1, we have that

|ps0(A)− pδ,z0(Aδ)| ≤ γδ ≤
η

2
, z0 = ξ(s0), s0 ∈ A. (18)

11



Let s0 ∈ Ŝη(ε). Then, by construction, z0 = ξ(s0) ∈ Zδ(ε+ η
2 ) and, hence, z0 |= P≤1−(ε+ η

2 )

(
true U≤N ¬ΦAδ

)
.

Since, according to the PCTL syntax, P≤1−(ε+ η
2 )

(
true U≤N ¬ΦAδ

)
is equivalent to the probabilistic invariance

formula P≥ε+ η
2

(
2≤NΦAδ

)
, this implies that

pδ,z0(Aδ) ≥ ε+
η

2
. (19)

Bound (19) combined with (18) leads to ps0(A) ≥ ε; hence, Ŝη(ε) ⊆ S(ε).

Suppose now that s0 ∈ S(ε+ η). Then, ps0(A) ≥ ε+ η and, by (18), pδ,z0(Aδ) ≥ ε+ η
2 with z0 = ξ(s0). This

in turn implies that z0 = ξ(s0) ∈ Zδ(ε + η
2 ), and, by the last step in Algorithm 1, that s0 ∈ Ŝη(ε). Hence,

S(ε+ η) ⊆ Ŝη(ε).

Theorem 3 is easy to interpret based on the approximation result in Theorem 2. It simply states that, in order
to guarantee a certain safety level ε ∈ (0, 1) for the original DTSHS, we have to require a higher safety level
ε + η

2 for the approximating Markov chain so as to compensate for the approximation error η
2 introduced by

the gridding procedure.

Note that η can be made arbitrarily small at the cost of decreasing the grid size parameter δ. However, the
gap between the two sets S(ε+η) and S(ε) (measured e.g. by maxq∈Q L(∆Xq) with ∆Xq = {x ∈ Aq : (q, x) ∈
S(ε) \ S(ε+ η)}) may still be arbitrarily large if ps0(A) defining S(ε) happens to be flat around those values
of s0 mapping into ε.

Remark 1 In the case when ε = 1, one can obtain an over-approximation Ŝη(ε) of S(ε) satisfying S(ε) ⊆
Ŝη(ε) ⊆ S(ε− γδ) by choosing δ > 0 and following the last three steps of Algorithm 1 with η = 0.

5 Case study: The multi-room heating problem

We present the results of a computational study for a multi-room heating benchmark introduced in [18], based
on a model proposed by [28]. The objective is to assess the performance of approximate model checking for
the verification of probabilistic invariance of DTSHSs.

5.1 Description of the multi-room heating system

We study a DTSHS model for the temperature evolution in a building with h rooms. Each room is equipped
with a heater and each heater switches between the ON and OFF conditions depending on the temperature in
the room. The state of the system is hybrid, with the discrete state component representing the status of the
h heaters and the continuous state component representing the average temperatures in the h rooms. The
discrete state space is given by Q = {ON, OFF}h. The continuous state space is Rh, irrespectively of the discrete
state value (that is, n(q) = h for all q ∈ Q). Thus, the hybrid state space is S = Q× Rh.

We suppose that the average temperature of each room, say room i, evolves according to the following stochastic
difference equation during the finite time horizon [0, N ]:

xi(k + 1) = xi(k) + bi(xa − xi(k)) +
∑
i 6=j

aij(xj(k)− xi(k)) + ci1IQi(q(k)) + wi(k), (20)

where xa represents the ambient temperature (assumed to be constant and equal for the whole building) and
1IQi(·) is the indicator function of set Qi = {(q1, . . . , qh) ∈ Q : qi = ON}. Equation (20) is the discrete time
version of the stochastic differential equation in [28] with sample time interval ∆t. The quantities bi, aij , and
ci are non-negative constants representing the average heat transfer rate from room i to the ambient (bi) and
to room j 6= i (aij), and the heat rate supplied to room i by the heater in room i (ci), all rescaled by ∆t and
normalized with respect to the thermal capacity of room i. The values taken by the aij constants reflect the
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room layout, for instance aij = 0 if rooms i and j are not adjacent. The disturbance {wi(k), k = 0, . . . , N}
affecting the temperature evolution in room i is assumed to be a sequence of independent identically distributed
Gaussian random variables with zero mean and variance ν2 proportional to ∆t. Furthermore, with no loss of
generality we suppose that the disturbances wi and wj affecting the temperature of different rooms (i 6= j)
are independent.

It is worth noticing that while a state-dependent disturbance could be easily modeled through the DTSHS in
Definition 1, modeling a disturbance with time-varying characteristics would require to extend the DTSHS
model and consider time-varying transition kernels. Though conceptually simple, this extension is not included
in this paper to keep the notations simple while explaining the approximate model checking approach.

The continuous transition kernel Tx describing the evolution of the continuous state x = (x1,x2, . . . ,xh) can
be easily derived from (20). To this purpose, let N (·;µ, V ) denote the Gaussian measure over (Rh,B(Rh)),
with mean µ ∈ Rh and covariance matrix V ∈ Rh×h. Then, Tx : B(Rh)× S → [0, 1] can be expressed as

Tx(· |(q, x)) = N (·;x+ Σx+ Γ(q), ν2I), (21)

where Σ ∈ Rh×h, Γ(q) ∈ Rh, and I ∈ Rh×h is the identity matrix. For i = 1, . . . , h, the element in row i
and column j of matrix Σ is given by [Σ]ij = aij , if j 6= i, and [Σ]ij = −(bi +

∑
k 6=i,k∈Q aik), if j = i. For

i = 1, . . . , h, the ith element of vector Γ(q), q = (q1, q2, . . . , qh) ∈ Q, is given by [Γ(q)]i = bixa + ci, if qi = ON,
and [Γ(q)]i = bixa, if qi = OFF. The reset kernel is set to coincide with the transition kernel in the current
mode, irrespectively of the status to which the heaters possibly switch: R(· |(q, x), q′) = Tx(· |(q, x)), for any
q, q′ ∈ Q, and any x ∈ Rh.

As for the discrete state evolution, we suppose that each heater switches status based on the temperature of the
room where it is located, and independently of the other heaters. This is modeled taking the discrete transition
kernel Tq : Q×S → [0, 1] as the product of h conditional stochastic kernels Tq,i : {ON, OFF}×({ON, OFF}×R)→
[0, 1] governing the switching of each single heater. More precisely, we set

Tq(q
′|(q, x)) =

h∏
i=1

Tq,i(q
′
i|(qi, xi)), (22)

q = (q1, q2, . . . , qh), q′ = (q′1, q
′
2, . . . , q

′
h) ∈ Q, x = (x1, x2, . . . , xh) ∈ Rh, where

Tq,i(q
′
i|(qi, xi)) =

{
σi(xi), q′i = OFF,

1− σi(xi), q′i = ON
(23)

with σi : R→ [0, 1] a sigmoidal function given by

σi(y) =
ydi

αdii + ydi
, y ∈ R. (24)

Function σi(y), y ∈ R, is parameterized by a “threshold” parameter αi and a “steepness” parameter di > 0.
αi is the value of y at which the probability of the heater changing status becomes equal to 0.5, whereas di is
related to the slope of the sigmoidal function at y = αi (which amounts to di/(4αi)).
Three possible sets of values for αi and di are reported in Table 1. We shall refer to the three possible values
for the steepness parameter di respectively as flat, gradual, and steep, in increasing order, and, similarly, to
those for the threshold αi respectively as low, medium, and high, again in increasing order. The values for the
threshold αi are determined as a convex combination of the temperatures xli and xui , xli < xui , defining the
desired temperature range [xli, x

u
i ] in room i. In the examples to follow, temperature is measured in degrees

Celsius and ∆t = 0.25 minutes.

Figure 1 represents a sample path of the Markov process generated by the DTSHS model of a 2-room heating
system, when q(0) and x(0) are extracted uniformly from Q and [xl1, x

u
1 ]× [xl2, x

u
2 ] = [17, 22]× [16, 23] ⊆ R2,

respectively. The sample paths over the time horizon [0, N ] of length N = 100 of both the discrete and the
continuous components of the hybrid execution are plotted: the blue/darker color is associated with room 1,
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di 1 (flat) 10 (gradual) 100 (steep)

αi
3
4x

l
i + 1

4x
u
i (low) 1

2 (xli + xui ) (medium) 1
4x

l
i + 3

4x
u
i (high)

Table 1: Possible choices for the steepness and threshold parameters di and αi.

Figure 1: A sample path of the DTSHS modeling the 2-room heating system during the time horizon [0, 100]
min. The blue/darker color is associated with the dynamics of room 1, whereas the red/lighter color with
those of room 2. The evolution of both the discrete and the continuous components is plotted.

whereas the red/lighter color with room 2. The adopted functions σ1(·) and σ2(·) are reported in Figure 2,
and correspond to steep d1 and medium α1 parameters for the first room (d1 = 100, α1 = 19.5), and to steep
d2 and high α2 parameters for the second room (d2 = 100, α2 = 21.25).
The parameters involved in the definition (21) of the continuous transition kernel Tx (and, hence, the reset
kernel R) are set equal to a12 = a21 = 0.0625, b1 = 0.0375, b2 = 0.025, c1 = 0.65, c2 = 0.6, and xa = 6, and
the noise standard deviation is set equal to ν = 0.25.

5.2 Model checking probabilistic invariance

In this section, we analyze the probabilistic invariance property of the h-room heating system by applying
model checking to an approximation of the DTSHS in the form of a Markov chain.

We consider a safe set A ⊂ S as A = Q × [xl1, x
u
1 ] × · · · × [xlh, x

u
h], where [xli, x

u
i ] is the desired temperature

range in room i. The approximating Markov chain has state space Zδ = Aδ ∪{φ}, where Aδ is the discretized
version of set A with grid size δ and state φ represents the set of all states outside A. Set Aδ is determined
by partitioning [xl1, x

u
1 ]× · · · × [xlh, x

u
h] into rectangular regions, uniformly dividing each interval [xl1, x

u
1 ] into
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Figure 2: Plots of the sigmoidal functions σ1(·) (top) and σ2(·) (bottom) with d1 = 100, α1 = 19.5, and
d2 = 100, α2 = 21.25.

l equal parts. The cardinality of the resulting state space Zδ = Aδ ∪ {φ} is then 2hlh + 1. The transition
probability function Tδ : Zδ × Zδ → [0, 1] of the approximating Markov chain is defined in (8) based on the
transition kernels of the DTSHS modeling the multi-room heating system.

The PCTL formula for the approximating Markov chain that has to be verified is given by

P≤1−(ε+ η
2 )

(
true U≤N ¬ΦAδ

)
. (25)

where ΦAδ characterizes the safe set Aδ. This probabilistic specification can be model-checked by computing
pz0(Aδ) for all z0 ∈ Aδ. As pointed out at the end of Section 4.2, the complexity involved in model checking
formula (25) is then mainly determined by the size and sparsity of the one-step transition probability matrix
Pδ[¬true∨¬ΦAδ ] = Pδ[¬ΦAδ ] built from the modified transition probability function Tδ[¬ΦAδ ] of the approx-
imating Markov chain. Since ¬ΦAδ = Φ{φ} and φ is an absorbing state for the approximating Markov chain,
then Tδ[¬ΦAδ ] coincides with Tδ and, in turn, Pδ[¬ΦAδ ] is equal to the one-step transition probability matrix
of the approximating Markov chain. The size of this square matrix is given by the cardinality 2hlh + 1 of Zδ,
whereas its sparsity depends on the kernels Tx (through the noise variance ν2) and Tq (through the parameters
αi, di). The sparsity can also be tuned according to the choice of a tolerance parameter, henceforth denoted
with tol, by setting equal to zero all the transition probabilities smaller than tol (and re-normalizing the
resulting probability matrix).

The results reported in this section refer to computations performed on a 3.4 GHz Intel Pentium 4 with a
1GB RAM. The Markov chain approximation scheme is implemented in MATLAB and the one-step transition
probability matrix is passed to the MRMC software [22] for model checking. For performance assessment, we
consider pz0(Aδ), z0 ∈ Aδ, as output of the MRMC software, and plot an interpolated version of it, namely
the corresponding estimate of ps0(A), s0 ∈ A, for illustrative purposes.

We start considering the case of h = 2 rooms with the parameters listed at the end of Section 5.1. By
choosing a discretization level l = 10, we obtain an approximating Markov chain with 22 · 102 + 1 = 401 states
and a one-step transition probability matrix with 4012 = 160801 elements. Table 2 reports the number of
non-zero one-step transition probabilities for different combinations of the steepness and threshold parameters
with d1 = d2 and α1 = α2, and tol = 10−5. Note that the sparsity of the one-step transition matrix is
particularly sensitive to the value taken by di. In particular, the matrix sparsity increases with di. However,
the computational benefits of increased sparsity may be offset by the requirements for finer gridding in this
case, since the Lipschitz constant of Tq is directly proportional to di (see equation (26)).
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αi\di flat gradual steep
low 21285 20696 10602

medium 21303 20975 11475
high 21306 20704 11112

Table 2: Number of non-zero one-step transition probabilities out of 160801 (h = 2, l = 10), when the tolerance
parameter is tol = 10−5.

Figures 3 and 4 represent the estimate of the invariance probability ps0(A) with s0 = (q0, x0). In Figure 3, the
steepness and threshold parameters are chosen as gradual and medium for both rooms. The plots represent
the invariance probability as a function of x0 over [17, 22]× [16, 23], for the four possible values of the initial
mode q0. The running time of the overall approximate model checking procedure was 1.534 seconds, which
includes both the time spent for building the approximating Markov chain and that for running the model
checking algorithm. Figure 4 represents the average of p(q0,x0)(A) with respect to q0, as a function of x0 over
[17, 22]× [16, 23], for the 9 possible combinations of αi and di reported in Table 1. Visual inspection suggests
that the invariance probability is maximized when αi is medium and di is steep (second line, right-most
plot): this configuration corresponds to sigmoidal functions defining the discrete transition kernel that rapidly
saturate (to zero or to one) as soon as the temperature differs from the middle ones.

Figure 3: Invariance probability in the time horizon [0, 50] for a 2-room heating system with medium threshold
and gradual steepness parameters, discretization level l = 10, and tol = 10−5. The plots represent the estimate
of p(q0,x0)(A) as a function of x0 over [17, 22]× [16, 23], for mode q0 = (OFF, OFF) (top-left plot), q0 = (OFF, ON)
(top-right plot), q0 = (ON, OFF) (bottom-left plot), and q0 = (ON, ON) (bottom-right plot).

We next evaluate the scalability of the two-stage approximate model checking procedure in terms of both
computational time and memory usage as determined by three fundamental parameters: the time horizon
length N , the number of rooms h, and the discretization level l. More specifically, we fix two parameters and
examine how computing time scales with the other one. Note that if we fix h and l and let N grow, only the
computing time involved in the model checking stage increases, since the size of the Markov chain is fixed.
The value taken by h and l instead affects the computing times of both the Markov chain approximation and
the model checking stages. The computing time heavily depends on the size of the approximating Markov
chain, but also on the tolerance parameter tol and on the steepness and threshold parameters. The results
are reported for tol=10−5, and for steepness and threshold parameters respectively set equal to gradual and
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low αi, flat di low αi, gradual di low αi, steep di
medium αi, flat di medium αi, gradual di medium αi, steep di
high αi, flat di high αi, gradual di high αi, steep di

Figure 4: Invariance probability in the time horizon [0, 50] for a 2-room heating system with discretization
level l = 10 and tol = 10−5. The plots represent the average of p(q0,x0)(A) with respect to q0 as a function of
x0 over [17, 22]× [16, 23], for different values of αi and di (the pairs are chosen to be the same in both rooms),
as reported in the corresponding position of the table below.

medium in all rooms.

Table 3 reports the computing time for the two-stage approximate model checking procedure as a function of
the time horizon length N in the case of h = 2 rooms and a discretization level l = 10. Given that, for fixed l
and h, N affects only the computing time of the model checking stage, it appears that the bottleneck of the
overall approach resides in the Markov chain approximation stage.

Table 4 reports computing time and memory usage as a function of the discretization level l (N = 50 and
h = 2). Memory usage is evaluated in terms of multiples of 8 Bytes since MATLAB uses 8 Bytes to store
a double type associated to each element of the transition probability matrix. The results show how the
computing time deteriorates as the discretization level l increases.

Table 5 reports computing time and memory usage as a function of the number of rooms h (N = 50 and l = 5).
The parameters defining the transition kernels for the additional rooms have the same values of those used in
the 2-room case. The results show a stronger dependence of the computing time on the number of room h
than on the discretization level l. This is due to the fact that the size 2hlh + 1 of the approximating Markov
chain scales exponentially with h and only polynomially with l. Interestingly, if one considers combinations of
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l and h mapping into the same size of the Markov chain, then, the computing time is larger for larger values of
l. This is for instance the case for l = 50, h = 2 and l = 5, h = 4, respectively corresponding to a computing
time of 54.3 min (see Table 4) and 32 min (see Table 5). The reason for this behavior can be found in the
different sparsity of the one-step transition probability matrices.

Time horizon length N 10 50 100 500 1000 5000
Computing time 1.532 [sec] 1.534 [sec] 1.535 [sec] 1.544 [sec] 1.554 [sec] 1.656 [sec]

Table 3: Computing time versus time horizon length N (h = 2, l = 10).

Discretization level l 5 10 20 50
Computing time 0.21[sec] 1.534 [sec] 39.87 [sec] 54.3 [min]
Memory usage (×8 Bytes) 1012 4012 16012 100012

Table 4: Computing time and memory usage versus discretization level l (h = 2, N = 50).

Number of rooms h 1 2 3 4 5
Computing time 0.08 [sec] 0.21 [sec] 12.6 [sec] 32 [min] 10.8 [hr]
Memory usage (×8 Bytes) 112 1012 10012 100012 1000012

Table 5: Computing time and memory usage versus number of rooms h (N = 50, l = 5).

5.3 Computational complexity

In this section, we determine the size of the approximating Markov chain needed to approximate the prob-
abilistic safety set S(ε) of the multi-room heating system up to some given tolerance η. The size of the
approximating Markov chain determines the memory usage requirements posed on the approximate model
checking procedure. It represents also a good indicator of the computational effort involved in such a pro-
cedure, though the computing time depends not only on the size but also on the sparsity of the one-step
transition matrix of the approximating Markov chain. Computations are performed with reference to the case
when the temperature limits xli and xui , and the steepness and threshold parameters di and αi are the same
for all rooms i = 1, 2, . . . , h. We shall denote these common values as xl, xu, d, and α, respectively, and set
∆ := xu − xl.

The size of the approximating Markov chain for the multi-room heating system is given by 2hlh + 1 where h
is the number of rooms and l is the number of intervals in which the temperature range [xl, xu] is uniformly
divided. We shall now express l as a function of η and of the parameters characterizing the DTSHS model of
the multi-room heating system.

Fix η > 0. Then, according to the second step of Algorithm 1 the grid size parameter δ should satisfy
δ ≤ η

2γ with γ given by Theorem 2. Each region Aq of the safe set A is given by the hypercube [xl, xu]h

and is discretized uniformly in lh hypercubes. Then δ is the diameter of an h-dimensional hypercube of size
∆
l and satisfies δ ≤

√
h∆
l , which leads to l ≥

√
h∆
δ = 2

√
h∆γ
η . The parameter γ in Theorem 2 is given by

γ = NK = N
[
mh1 + λ

(
h2 + (m− 1)h3

)]
, where m = 2h is the cardinality of Q and λ = ∆h is the Lebesgue

measure of the hypercube [xl, xu]h. As for the Lipschitz constants h1, h2 and h3 in Assumption 1, h2 and
h3 take the same value since tx(x′|(q, x)) = r(x′|(q, x), q′), and they satisfy the following bounds, which are
proven in Appendix A:

h1 ≤
√
h

d

4α
, (26)

h2 = h3 ≤
1

(2π)h/2e1/2νh+1
‖I + Σ‖2 . (27)
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We then get that

γ ≤ 2hN

[√
h
d

4α
+ ∆h ‖I + Σ‖2

(2π)h/2e1/2νh+1

]
,

which leads to the following conservative bound on l:

l ≥ 2h+1
√
hN∆

η

[√
h
d

4α
+ ∆h ‖I + Σ‖2

(2π)h/2e1/2νh+1

]
.

As a consequence, the memory usage is of the order of w 2h
2
hh/2Nh∆h

ηh

[√
h d

4α + ∆h ‖I+Σ‖2
(2π)h/2e1/2νh+1

]h
.

From this expression, it is evident that the proposed approach suffers from the curse of dimensionality. In
particular, the dependency of the memory requirements on the number of room h is super-exponential. This
is not surprising, given that the approximating Markov chain is obtained by gridding the safe set A = 2h ×
[xl, xu]h.

6 Concluding remarks

In this paper, we take an initial step toward the development of a fully automatic procedure for the approximate
verification of stochastic hybrid systems. We showed how the probabilistic invariance of discrete time stochastic
hybrid systems can be studied by building an approximating discrete time Markov chain which can be analyzed
using model checking methods. Under certain regularity conditions on the transition and reset kernels of the
stochastic hybrid system, the proposed procedure for approximate model checking provides an estimate of the
invariance probability together with a certificate of guaranteed accuracy.

The results proposed here are a first step in the desired direction. Several problems need to be overcome to
make the method applicable in practice. Some of these problems are practical. In our current implementation,
the construction of the approximating Markov chain is done using rather crude, custom-made approximation
methods. An efficient implementation of this process which works seamlessly with the highly optimized model
checking tools would definitely improve the applicability of the method. On the theoretical front, several
challenges have to be addressed, among them developing similar procedures that work with a wider range of
properties (beyond reachability and invariance) and methods for dealing with continuous time stochastic hybrid
systems. The former will most likely require an appropriate characterization of the properties of interest as
the expected value of appropriate cost functions. For the latter, a numerical scheme based on a Markov chain
approximation [25] has been recently introduced in [32] for the purpose of reachability analysis of continuous
time stochastic hybrid systems; however, these results are confined to a particular class of stochastic hybrid
systems and are only asymptotic.
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037180, and by the Swiss National Science Foundation under grant 200021-122072.
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A Appendix

A.1 Proof of equation (26)

The Lipschitz constant h1 in Assumption 1 is bounded by the maximum of the gradient norm of the stochastic
kernel Tq(q

′|(q, x)) in (22) as a function of x ∈ Rh. The gradient of Tq(q
′|(q, x)) with respect to x is given by

∂Tq(q
′|(q, x))

∂x
=



∂Tq,1(q′1|(q1, x1))

∂x1

h∏
i=2

Tq,i(q
′
i|(qi, xi))

∂Tq,2(q′2|(q2, x2))

∂x2

h∏
i=1,i6=2

Tq,i(q
′
i|(qi, xi))

...

∂Tq,h(q′h|(qh, xh))

∂xh

h−1∏
i=1

Tq,i(q
′
i|(qi, xi))


,

q = (q1, q2, . . . , qh), q′ = (q′1, q
′
2, . . . , q

′
h) ∈ Q, x = (x1, x2, . . . , xh) ∈ Rh.

From the definition of Tq,i(q
′
i|(qi, xi)) in equation (23) we get∣∣∣∣∂Tq,i(q′i|(qi, xi))∂xi

∣∣∣∣ ≤ max
y∈R

{
d

dy

(
yd

αd + yd

)}
=

d

4α
.

Since
∣∣∏h

i=1,i6=j Tq,i(q
′
i|(qi, xi))

∣∣ ≤ 1, then

∥∥∥∥∂Tq(q′|(q, x))

∂x

∥∥∥∥ ≤
√√√√ h∑

i=1

(
∂Tq,i(q′i|(qi, xi))

∂xi

)2

≤
√
h
d

4α
,

which concludes the proof of equation (26).

A.2 Proof of equation (27)

The Lipschitz constants h2 = h3 are bounded by the maximum of the gradient norm of the density tx(x′|(q, x))
as a function of x ∈ Rh. From (21) we have that

tx(x′|(q, x)) =
1

(2π)h/2νh
e−
‖x′−(x+Σx+Γ(q))‖2

2ν2 .

Then,

∂tx(x′|(q, x))

∂x
=

1

(2π)h/2νh+2
(I + Σ)

(
x′ − (x+ Σx+ Γ(q))

)
e−
‖x′−(x+Σx+Γ(q))‖2

2ν2 .

and, hence, ∥∥∥∥∂tx(x′|(q, x))

∂x

∥∥∥∥ ≤ 1

(2π)h/2νh+2
‖I + Σ‖2 ‖w‖e

− ‖w‖
2

2ν2 ,

where we have set w := x′ − (x+ Σx+ Γ(q)). Based on the observation that

max
β∈R

{
βe−

β2

2ν2
}

=

[
βe−

β2

2ν2

]
β=ν

= νe−
1
2 ,

we can conclude that

h2 = h3 ≤ max
x′,x∈Rh,q∈Q

∂tx(x′|(q, x))

∂x
≤ 1

(2π)h/2e1/2νh+1
‖I + Σ‖2 .
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