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Abstract This work presents a technique to generate finite abstractions of autonomous
Max-Plus-Linear (MPL) systems, a class of discrete-event systems employed to char-
acterize the dynamics of the timing related to the synchronization of successive events.
Abstractions of MPL systems are derived as finite-state transition systems. A transi-
tion system is obtained first by partitioning the state space of the MPL system into
finitely many regions and then by associating a unique state of the transition system
to each partitioning region. Relations among the states of the transition system are
then set up based on the underlying dynamical transitions between the corresponding
partitioning regions of the MPL state space. In order to establish formal equivalences,
the obtained finite abstractions are proven either to simulate or to bisimulate the origi-
nal MPL system. The approach enables the study of general properties of the original
MPL system formalised as logical specifications, by verifying them over the finite
abstraction via model checking. The article presents a new, extended and improved
implementation of a software tool (available online) for the discussed formal abstrac-
tion of MPL systems, and is tested on a numerical benchmark against a previous
version.
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1 Introduction

The seminal work in [7, p. ix] characterizes discrete-event dynamic systems as man-
made systems consisting of a finite number of resources (processors or memories,
communication channels, machines) shared by several users (jobs, packets, manu-
factured objects), which contribute to the achievement of a common goal (a parallel
computation, the end-to-end transmission of a set of packets, the assembly of a prod-
uct in an automated manufacturing line). The dynamics of such systems have to deal
with issues of synchronization and concurrency. Synchronization requires the avail-
ability of several resources or users at the same time, whereas concurrency appears
when some user must choose among several resources at a particular time instant.

Max-Plus-Linear (MPL) systems are a class of discrete-event dynamic systems
[7,15] with a continuous state space characterizing the time of occurrence of the
underlying sequential discrete events. MPL systems are naturally predisposed to de-
scribe the evolution of timed event graphs in the events domain, under the assump-
tion that timing events are linearly dependent (within the max-plus algebra) on pre-
vious event occurrences and possibly (for non-autonomous systems encompassing
non-determinism) on external schedules. MPL systems have a wide range of appli-
cations: they have been employed in the analysis and scheduling of infrastructure
networks, such as communication and railway systems [23], production and manu-
facturing lines [31,20], as well as of biological systems [12].

Traditionally the dynamical analysis of MPL systems is grounded upon their alge-
braic features [7]. It allows investigating global system properties such as its transient
or asymptotic behaviors, its periodic regimes, or its ultimate dynamical behavior [16].
Those system properties can be studied by using the spectral theory of system ma-
trices in the max-plus algebra. A number of results have appeared on the geometric
theory of MPL systems as introduced in [14], such as the computation of different
control on invariant sets [18,25] and the feedback controller design [28]. The appli-
cation of model predictive control in MPL systems has been studied in [17] and in a
subsequent line of work.

In this work, we consider the following verification problem: given an autonomous
MPL system with a predefined set of initial states and given a specification expressing
a property of interest, we determine whether the MPL system satisfies the specifica-
tion. Specifications are expressed as either a Linear Temporal Logic (LTL) formula
or a large fragment of Computation Tree Logic (CTL) formulae [8], and permit much
finer description of properties than the classical results in the literature. Further, the
approach allows zooming in on properties of (possibly single) traces of the system at
hand, rather than on global analysis. In this work we develop an approach based on
finite-state abstractions to tackle this problem. With regards to the abstraction pro-
cedure (cf. Sections 3 and 4), we put forward a technique that generates, in a finite
number of steps, a finite-state transition system. The abstract states are obtained by
finite partitioning the state space of the original MPL system: this partitioning is au-
tomatic and is based on the underlying dynamics and on the property of interest,
and associates a unique abstract state to each partitioning region. The relations be-
tween pairs of abstract states are established by checking whether a trajectory of the
original MPL system is allowed to transition between the corresponding partitioning
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regions. Computationally, this characterization is performed by forward-reachability
analysis over a Piece-wise Affine (PWA) representation of the MPL dynamics [33],
as discussed in [2]. The abstract transition system may contain behaviors that cannot
be mimicked by the original MPL system [29]. In order to establish formal relation-
ships between the concrete model and its abstraction, we argue that in general the
abstract transition system simulates the original MPL system [30], and derive suffi-
cient conditions on its bisimilarity. The overall approach leverages a representation of
the spatial regions and of the dynamics based on Difference-Bound Matrices (DBM)
[19]. This representation allows for compact and computationally fast operations on
regions of the state space, and thus for fast computation of the quantities of interest.
In the literature, finite abstractions have been applied to models such as hybrid [6,26,
30] and PWA systems [35,36], however with tolling computational costs. While we
leverage a PWA representation of the given MPL dynamics [22] – a particular case of
the PWA system used in [35,36] – to build the abstract transition system, techniques
for abstractions of PWA systems developed in [36] do not appear to be applicable in
the context of the models derived from MPL systems, since the abstraction depends
on a specific LTL formula. Furthermore, the new approach in this work, hinging on
DBM manipulations and on a partitioning that is tailored to the underlying dynamics,
appears to be drastically more scalable.

Theoretical contributions This manuscript represents an extension of the results in
[2]. The abstraction procedure in [2] assumes that the partition associated with atomic
propositions is coarser than the partition associated with the affine dynamics: this
work relaxes this assumption. A numerical study in [2] shows that the bottleneck of
the abstraction procedure resides in the generation of transitions: in this paper, we
attempt overcoming this bottleneck by using a tree structure for representing the par-
tition of the state space (cf. Section 4): this significantly decreases the time to generate
the transition relation (cf. Section 5.2). On the other hand, in the new implementation
the drawback related to the use of the tree structure is the need for a higher amount
of memory. Finally in Section 2.3.2, we discuss a new procedure to determine the
complement of a DBM, which improves on [2].

Computational contributions The abstraction technique developed in this work has
been implemented as a JAVA software tool, VeriSiMPL 2, which is freely available for
download at http://sourceforge.net/projects/verisimpl/. According to the numerical
benchmark in Section 5.1, a great improvement on the runtime is shown in the JAVA
implementation compared with the original MATLAB implementation [1]. Further-
more VeriSiMPL [1] employs the SPIN model checker [24], whereas in VeriSiMPL
2 we use the NuSMV model checker [13]. SPIN is a full LTL model checking tool,
whereas NuSMV is a software tool to verify both LTL and CTL formulae. Further-
more NuSMV embeds Binary Decision Diagram (BDD) [34] structures, geared to-
wards time and space efficiency.

Outline The article is structured as follows. Section 2 introduces models and prelim-
inary notions. The abstraction procedure for autonomous MPL systems is discussed
in Section 3. Section 4 discusses the use of a tree as a key data structure for the
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abstraction procedure. Section 5 tests the developed approach over a computational
benchmark, whereas a running case study is discussed throughout the manuscript.
Furthermore for each procedure described in this paper, we elaborate on the data
structure employed in the JAVA implementation. Finally, Section 6 concludes the
work.

2 Models and Preliminaries

2.1 Max-Plus-Linear Systems

Define N, R, Rε , and ε respectively as the set of natural numbers {1,2, . . .}, the set
of real numbers, R∪{ε}, and −∞. For α,β ∈ Rε , introduce the two operations

α⊕β = max{α,β} and α⊗β = α +β ,

where the element ε is considered to be absorbing w.r.t. ⊗ [7, Def. 3.4], i.e. α⊗ ε =
ε for all α ∈ Rε . Given β ∈ R, the max-algebraic power of α ∈ R is denoted by
α⊗β and corresponds to α×β in the conventional algebra. The usual multiplication
symbol × is usually omitted, whereas the max-algebraic multiplication symbol ⊗ is
always written explicitly. The rules for the order of evaluation of the max-algebraic
operators correspond to those of conventional algebra: max-algebraic power has the
highest priority, and max-algebraic multiplication has a higher precedence than max-
algebraic addition [7, Sec. 3.1]. The basic max-algebraic operations are extended to
matrices as discussed next. Consider matrices A,B ∈ Rm×n

ε , C ∈ Rm×p
ε , D ∈ Rp×n

ε ,
and scalar α ∈ Rε ; we have that

[α⊕A](i, j) = α⊕A(i, j) = max{α,A(i, j)},
[A⊕B](i, j) = A(i, j)⊕B(i, j) = max{A(i, j),B(i, j)},

[C⊗D](i, j) =
p⊕

k=1

C(i,k)⊗D(k, j) = max
k∈{1,...,p}

{C(i,k)+D(k, j)},

for all i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}. The notation A(i, j) represents the scalar
entry of matrix A corresponding to the i-th row and j-th column. Notice the analogy
between⊕,⊗ and +,× for matrix and vector operations in the conventional algebra.
Given m ∈ N, the m-th max-algebraic power of A ∈ Rn×n

ε is denoted by A⊗m and
corresponds to A⊗·· ·⊗A (m times). Notice that A⊗0 is an n-dimensional max-plus
identity matrix, i.e. the diagonal and non-diagonal elements are 0 and ε , respectively.
The following notation is adopted for reasons of convenience: a vector with all the
components equal to 0 (resp. −∞) is also denoted by 0 (resp. ε).

An (autonomous) Max-Plus-Linear (MPL) system [7, Rem. 2.75] is defined as:

x(k) = A⊗x(k−1), (1)

where A ∈ Rn×n
ε , x(k− 1) = [x1(k− 1) . . .xn(k− 1)]T ∈ Rn for k ∈ N. Furthermore

the state space is taken to be Rn (rather than Rn
ε ), which also implies that the state

matrix A has to be row-finite (cf. Definition 1). We use the bold typeset for vectors and
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tuples, whereas the entries are denoted by the normal typeset with the same name and
index. The independent variable k denotes an increasing occurrence index, whereas
the state variable x(k) defines the (continuous) time of k-th occurrence of all events. In
particular, the state component xi(k) denotes the (continuous) time of k-th occurrence
of i-th event. MPL systems are characterized by deterministic dynamics, namely they
are unaffected by exogenous inputs in the form of control signals or of environmental
non-determinism. Since this article is based exclusively on autonomous (that is, not
non-deterministic) MPL systems, the adjective will be dropped for simplicity. Finite
abstractions of nonautonomous MPL systems [7, Cor. 2.82] are not discussed in this
paper. The interested reader is referred to [2, Sec. III].

Definition 1 (Regular (Row-Finite) Matrix [23, Sec. 1.2]) A matrix A ∈ Rn×n
ε is

called regular (or row-finite) if A contains at least one element different from ε in
each row. ut

Example 1 Consider the following two-dimensional MPL system that models a sim-
ple railway network between two cities [23, Sec. 0.1]. Here xi(k) denotes the time of
the k-th departure at station i for i ∈ {1,2}, and is updated as:

x(k) =
[

2 5
3 3

]
⊗x(k−1), or equivalently,[

x1(k)
x2(k)

]
=

[
max{2+ x1(k−1),5+ x2(k−1)}
max{3+ x1(k−1),3+ x2(k−1)}

]
.

(2)

Notice that in this example A is a row-finite matrix. ut

2.2 Piecewise Affine Systems

Piece-wise Affine (PWA) dynamical systems are characterized by a cover (possibly
a partition) of the state space and by affine (linear, plus a constant) dynamics that
are active within each set of the cover [27,33]. PWA systems are well-posed if the
next state is unique once the current state is specified. PWA systems are sufficiently
expressive to model a large number of physical processes, and they can approximate
nonlinear dynamics with arbitrary accuracy via local linearizations at different oper-
ating points [10, p. 1864]. PWA systems have been studied by several authors.

This section discusses PWA systems generated by MPL systems. The obtained
PWA systems are well-posed since MPL systems are also well-posed. The construc-
tion of a PWA system from an MPL one has combinatorial complexity: in order to
improve the performance, we propose to use a backtracking approach.

An MPL system characterized by a row-finite state matrix A ∈ Rn×n
ε can be ex-

pressed as a PWA system in the event domain [22, Sec. 3]. The affine dynamics,
along with the corresponding region on the state space, can be constructed from co-
efficients g = (g1, . . . ,gn) ∈ {1, . . . ,n}n. For each i, the coefficient gi characterizes
the maximal term in the i-th state equation xi(k) = max{A(i,1)+x1, . . . ,A(i,n)+xn},
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that is A(i, j)+x j ≤ A(i,gi)+xgi , for all j ∈ {1, . . . ,n}. It follows that the set of states
corresponding to g, denoted by Rg, is

Rg =
n⋂

i=1

n⋂
j=1

{x ∈ Rn : A(i, j)+ x j ≤ A(i,gi)+ xgi}. (3)

Alternatively, a point or a state x∈Rn is in Rg if max j∈{1,...,n}{A(i, j)+x j}=A(i,gi)+
xgi , for all i ∈ {1, . . . ,n}.

The affine dynamics that are active in Rg follow directly from the definition of g
(see previous paragraph) as

xi(k) = xgi(k−1)+A(i,gi), i ∈ {1, . . . ,n}. (4)

Given a row-finite state matrix A, Algorithm 1 describes a general procedure to
construct a PWA system corresponding to an MPL system. On the side, notice that
the affine dynamics associated with a dynamical system generated by Algorithm 1
are a special case of the general PWA dynamics as defined in [33, Sec. 1].

Algorithm 1 (Generation of a PWA system from an MPL system)
Input: A ∈ Rn×n

ε , a row-finite state matrix
Output: R,A,B, a PWA system over Rn,

where R is a set of regions and A,B represent a set of affine dynamics

initialize R,A,B with empty sets
for all g ∈ {1, . . . ,n}n do

generate region Rg according to (3)
if Rg is not empty then

generate matrices Ag,Bg s.t. x(k) = Agx(k−1)+Bg, corresponding to (4)
save the outcomes, R := R∪{Rg}, A := A∪{Ag}, B := B∪{Bg}

end if

end for ut
The crucial observation leading to an improvement of the complexity is that it is

not necessary to iterate over all possible coefficients in g, as suggested in Algorithm
1. Instead, we can apply a backtracking technique: with this approach, we introduce
partial coefficients (g1, . . . ,gk) for k ∈ {1, . . . ,n} and the corresponding region

R(g1,...,gk) =
k⋂

i=1

n⋂
j=1

{x ∈ Rn : A(i,gi)+ xgi ≥ A(i, j)+ x j}. (5)

Notice that if the region associated with some partial coefficient (g1, . . . ,gk) is empty,
then the regions corresponding to the coefficients (g1, . . . ,gn) are also empty, for all
gk+1, . . . ,gn. The set of all coefficients can be represented as a potential search tree.
For a 2-dimensional MPL system, the potential search tree is given in Fig. 1 (left).
The backtracking algorithm traverses the tree recursively, starting from the root, in
a depth-first order. At each node, the algorithm checks whether the corresponding
region is empty. If a region is empty, the computations over the whole sub-tree rooted
at the node are skipped (pruning step).



VeriSiMPL 2: An Open-Source Software for the Verification of Max-Plus-Linear Systems 7

R2

R(2)

R(2,2)R(2,1)

R(1)

R(1,2)R(1,1)

x1

x2

R(2,1)

R(2,2)

3

R(1,1)

Fig. 1 (Left plot) Potential search tree for a 2-dimensional MPL system. (Right plot) Regions associated
with the PWA system generated by the MPL system in (2).

Example 2 With reference to the MPL system in (2), the obtained PWA system is

x(k) =



[
1 0
1 0

]
x(k−1)+

[
2
3

]
, if x(k−1) ∈ R(1,1),[

0 1
1 0

]
x(k−1)+

[
5
3

]
, if x(k−1) ∈ R(2,1),[

0 1
0 1

]
x(k−1)+

[
5
3

]
, if x(k−1) ∈ R(2,2),

where R(1,1) = {x ∈ R2 : x1 − x2 ≥ 3}, R(2,1) = {x ∈ R2 : 0 ≤ x1 − x2 ≤ 3}, and
R(2,2) = {x ∈ R2 : x1− x2 ≤ 0}, as depicted in Fig. 1 (right). Region R(1,2) does not
appear since it corresponds to an empty set. As explained above, the affine dynamics
corresponding to a region are characterized by set g: for example, the affine dynamics
of R(2,1) are given by x1(k) = x2(k−1)+5, x2(k) = x1(k−1)+3. ut

Implementation In VeriSiMPL 2, the procedure to construct a PWA system from an
MPL system is implemented in the JAVA class Maxpl2pwa. This class has three pub-
lic members A, B and D. For initialization, this class requires a row-finite state matrix
(Ampl) as parameter, then generates a PWA system characterized by a set of affine
dynamics (in public members A,B) and a collection of regions (in the public member
D). The affine dynamics that are active in the j-th region are characterized by the j-th
column of both A and B. Each column of A and the corresponding column of B contain
respectively the coefficients [g1, . . . ,gn]

T and the constants [A(1,g1), . . . ,A(n,gn)]
T .

The data structure for D will be discussed in Section 2.3. ut
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2.3 Difference Bound Matrices

This section introduces the definition of a Difference-Bound Matrix (DBM) [19, Sec.
4.1] and some of the essential operations on DBM of use in this work. More precisely,
we discuss: the intersection of two DBM, the complement of a DBM, the canonical-
form representation of a DBM, the orthogonal projection of a DBM, the emptiness
checking on a DBM, the image of a DBM w.r.t. affine dynamics, and the inverse im-
age of a DBM w.r.t. affine dynamics. DBM will be used extensively in the abstraction
procedure of MPL systems (cf. Sections 3 and 4).

Definition 2 (Difference-Bound Matrix) A DBM in Rn is the intersection of finitely
many sets defined as x j−xi ./i, j αi, j, where ./i, j∈ {<,≤} denotes an inequality sign,
the specified number αi, j ∈R∪{+∞} represents the upper bound, for i, j∈{0, . . . ,n},
and the value of the special variable x0 is always equal to 0. The sets are subsets of
Rn that are characterized by the values of variables x1, . . . ,xn. ut

Implementation Inspired by VeriSiMPL in [2], VeriSiMPL 2 represents a DBM in
Rn as a two-element array of matrices: the first element of the array is an (n+ 1)-
dimensional1 real-valued matrix representing the upper bound α , and the second el-
ement is an (n+ 1)-dimensional 0-1 matrix representing the value of ./. More pre-
cisely, the (i+ 1, j+ 1)-th element of the first and second matrix represents respec-
tively the upper bound and the strictness of the sign of x j− xi

2, for i ∈ {0, . . . ,n} and
j ∈ {0, . . . ,n} (the nonstrict sign≤ corresponds to 1 and the strict sign < corresponds
to 0). Furthermore, a collection of DBM is represented as a list of two-element arrays.
As we discussed in Section 2.2, the implementation of the procedure to construct a
PWA system from an MPL system, JAVA class Maxpl2pwa, has a public member D.
The variable D corresponds to a collection of DBM, which means, in VeriSiMPL 2,
that D is implemented as an arraylist of DBM. ut

Next, we discuss the implementation of a number of operations over DBM that
are key for the abstraction procedure.

2.3.1 Intersection of DBM

We describe a procedure to compute the intersection of two DBM, which is again
a DBM. We denote the two DBM that are going to be intersected as D and E. The
intersection is denoted by F , i.e. F = D∩E. The set associated with x j− xi in F is
the intersection of the set associated with x j− xi in D and in E, for every i, j. Recall
that each set is characterized by the upper bound and the strictness of the sign (cf.
Definition 2). The bound used for F is simply the minimum of the bounds in D and
E. In the case of strictness of the inequality signs in F, we need to consider all possible
combinations of bounds and strictness in D and E. More precisely, if the upper bound
of D and E is different, the strictness of F equals the strictness of the one with smaller
bound. If the upper bound (of D and E) is the same and the sign of D and E is not

1 The matrices are (n+1)-dimensional rather than n-dimensional because we need to store x0 as well.
2 Notice that, the (i+1, j+1)-th element corresponds to x j− xi (not xi− x j).
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strict, then the sign of F is not strict. Finally if the upper bound (of D and E) is the
same and either D or E has a strict sign, then the sign of F is strict. In order to derive
an expression for the maximum number of operations, let us assume that both D and
E are DBM in Rn. Then the maximum number of operations is O(n2), where the
notation O describes an upper bound on the limiting behaviour of a function when its
argument tends towards infinity [32, Sec. 3.4.1].

Example 3 Consider D = {x ∈ R3 : x1 − x2 ≤ 5,x2 − x3 < 3} and E = {x ∈ R3 :
x1− x3 < 7,x2− x3 ≤ 3}. The intersection of D and E is given by F = {x ∈ R3 :
x1− x2 ≤ 5,x1− x3 < 7,x2− x3 < 3}. ut

Implementation In VeriSiMPL 2, the procedure to compute the intersection of two
DBM is implemented in the JAVA class Dbm and. This class has one public member
myF corresponding to the intersection of the two DBM. For initialization, this class
requires two DBM as parameters and then computes the intersection of the given two
DBM. ut

2.3.2 Complement of a DBM

We describe a procedure to compute the complement of a DBM w.r.t. the state space
Rn. The complement of a DBM is obtained as a union of finitely many DBM, which
we want to be pairwise disjoint. The general procedure is presented after an example.

Example 4 Let us determine the complement of D = {x ∈R4 : x1−x2 ≤ 5,x2−x3 <
3,x3− x4 < 1}. The DBM D is an intersection of 3 sets, i.e. set1 = {x ∈ R4 : x1−
x2 ≤ 5}, set2 = {x ∈ R4 : x2− x3 < 3}, set3 = {x ∈ R4 : x3− x4 < 1}. The first step
is the computation of the complement of each set w.r.t. R4, i.e. setc

1 = {x ∈ R4 :
x2− x1 <−5}, setc

2 = {x ∈ R4 : x3− x2 ≤−3}, setc
3 = {x ∈ R4 : x4− x3 ≤−1}. The

complement of D is obtained as setc
1∪ (set1∩ setc

2)∪ (set1∩ set2∩ setc
3), i.e. {x ∈R4 :

x2−x1 <−5}∪{x∈R4 : x1−x2 ≤ 5,x3−x2 ≤−3}∪{x∈R4 : x1−x2 ≤ 5,x2−x3 <
3,x4− x3 ≤−1}. ut

The general procedure to determine the complement of a DBM D in Rn is as fol-
lows. Suppose that the DBM D is an intersection of m sets, denoted by set1, . . . ,setm.
First we compute the complement of each set w.r.t. Rn. We denote the complement
of seti as setc

i for i ∈ {1, . . . ,m}. The complement of D is given by ∪m
i=1((∩i−1

j=1set j)∩
setc

i ), where ∩0
j=1set j is set to Rn. The maximum number of operations is in the order

of O(n3).

Implementation In VeriSiMPL 2, the procedure to determine the complement of a
DBM is implemented in the JAVA class Dbm complement. This class has one public
member D comp corresponding to the complement of the DBM. The initialization of
this class requires a DBM as the parameter, and then it computes the complement of
the given DBM. ut
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2.3.3 Canonical-Form Representation and Orthogonal Projection of a DBM

Each DBM admits an equivalent and unique canonical-form representation, which is
a DBM with the tightest possible bounds [19, Sec. 4.1]. Since obtaining the canonical-
form representation of a DBM is equivalent to the all-pairs shortest path problem over
the corresponding potential graph [19, Sec. 4.1], the Floyd-Warshall algorithm [21]
can be used over the graph, with a complexity that is cubic w.r.t. its dimension.

One advantage of the canonical-form representation is that it is straightforward
to compute orthogonal projections w.r.t. a subset of its variables: this is simply per-
formed by deleting rows and columns corresponding to the complementary variables
[19, Sec. 4.1]. The orthogonal projection of a DBM in canonical form is again in
canonical form [19, Obs. 1].

Example 5 Let us consider the following DBM: {x ∈ R4 : x1− x4 ≤ −3,x2− x1 ≤
−3,x2− x4 ≤−3,x3− x1 ≤ 2}. In the description of this set we have omitted the in-
equalities that are unbounded, say e.g. x3−x4 <+∞. One can show that the canonical-
form representation is given by {x ∈ R4 : x1 − x4 ≤ −3,x2 − x1 ≤ −3,x2 − x4 ≤
−6,x3− x1 ≤ 2,x3− x4 ≤−1}. Notice that the upper bound of x2− x4 and x3− x4 is
tighter. Moreover, the orthogonal projection of the DBM w.r.t. {x1,x2} is {x ∈ R2 :
x2− x1 ≤−3}. ut

Implementation In VeriSiMPL 2, the Floyd-Warshall algorithm [21] has been im-
plemented in the JAVA class Floyd warshall. This class has one public member myD
corresponding to the DBM in the canonical form. For initialization, this class re-
quires a DBM as parameter and then generates the canonical-form representation of
the given DBM. ut

2.3.4 Checking Emptiness of a DBM

We describe a procedure to check whether a DBM is empty. By using the potential
graph representation [19, Sec. 4.1], the unfeasible sets of constraints are only those
which form a circuit with a strictly negative weight in the graph. In other words, this
circuit corresponds to a constraint xi− xi ./i,i αi,i, with ./i,i∈ {<,≤} and αi,i < 0,
which is not feasible. As a consequence, in order to test whether a DBM is empty or
not, we simply have to check for the existence of such a circuit: this can be achieved
by the Bellman-Ford algorithm [9, Sec. 5], which is cubic w.r.t. the dimension of its
input. Whenever a DBM is in canonical form, testing for strictly negative cycles can
be reduced to checking whether there is an i such that ./i,i is < or αi,i < 0. In this
instance, the complexity of emptiness checking is linear w.r.t. dimension of the DBM.

Example 6 Let us consider the following DBM {x ∈ R4 : x1− x4 ≤ −3,x2− x1 ≤
−3,x2− x4 ≤−3,x3− x1 ≤ 2,x0− x0 = 0,x1− x1 = 0,x2− x2 = 0,x3− x3 = 0,x4−
x4 = 0}. Using the procedure discussed in Section 2.3.3, one can show that the
canonical-form representation is given by {x ∈R4 : x1−x4 ≤−3,x2−x1 ≤−3,x2−
x4 ≤ −6,x3− x1 ≤ 2,x3− x4 ≤ −1,x0− x0 = 0,x1− x1 = 0,x2− x2 = 0,x3− x3 =
0,x4− x4 = 0}. Since the upper bounds of xi− xi for i ∈ {0,1,2,3,4} are 0 and the
corresponding signs are not strict, the DBM is not empty. ut
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Implementation In VeriSiMPL 2, the procedure to check emptiness of a DBM has
been implemented in the JAVA class Dbm isempty. The procedure consists of two
steps: first we generate the canonical-form representation and then check whether
the DBM is empty. For initialization, this class requires a DBM as the parameter.
This class stores the canonical-form representation of the DBM in the public member
myD. The public member b equals true if the DBM is empty and equals false if the
DBM is not empty. ut

2.3.5 Image and Inverse Image of a DBM

We discuss procedures to compute the image and the inverse image of a DBM w.r.t.
affine dynamics. In the case of a union of finitely many DBM, the image and the
inverse image w.r.t. affine dynamics can be obtained by applying the preceding pro-
cedures to each DBM.

Each region and the corresponding affine dynamics of the PWA system generated
by an MPL system (cf. Algorithm 1) can be characterized by DBM. From (3), each
region of the PWA system generated by a row-finite max-plus matrix is a DBM in
Rn. Each affine dynamics (4) can generate a DBM in R2n, which comprises points
(x(k− 1),x(k)) ∈ Rn×Rn such that x(k) is the image of x(k− 1), i.e. x(k) = A⊗
x(k− 1). More precisely, the DBM is obtained by rewriting the expression of the
affine dynamics as

⋂n
i=1{(x(k−1),x(k)) : xi(k)−xgi(k−1)≤A(i,gi)}∩

⋂n
i=1{(x(k−

1),x(k)) : xi(k)− xgi(k−1)≥ A(i,gi)}.

Proposition 1 ([2, Th. 1]) The image and the inverse image of a DBM with respect
to affine dynamics (in particular the PWA expressions in (3)-(4) generated by an MPL
system) is a DBM.

The general procedure to compute the image of a DBM in Rn w.r.t. affine dynam-
ics mapping Rn→ Rn involves: 1) computing the cross product of the DBM and Rn;
then 2) intersecting the cross product with the DBM generated by the expression of
the affine dynamics; 3) calculating the canonical form of the obtained intersection;
and finally 4) projecting the canonical-form representation over {x1(k), . . . ,xn(k)}.
The maximum number of operations for the procedure depends critically on the third
step and is O(n3) [2, p. 3043]. The illustration of the procedure to compute the image
for n = 1 is depicted in Fig. 2 (left).

Example 7 Let us compute the image of {x∈R2 : 0≤ x1≤ 1,0≤ x2≤ 1,x1−x2≤ 0}
w.r.t. x′1 = x2 +5, x′2 = x2 +3 by using the above procedure. The cross product of the
DBM and R2 is {(x,x′) ∈ R4 : 0≤ x1 ≤ 1,0≤ x2 ≤ 1,x1− x2 ≤ 0}. The intersection
of the cross product and the DBM generated by the expression of the affine dynamics
is {(x,x′) ∈ R4 : 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 1,x1− x2 ≤ 0,x′1− x2 = 5,x′2− x2 = 3}. The
canonical form of the obtained intersection is {(x,x′) ∈ R4 : 0 ≤ x1 ≤ 1,0 ≤ x2 ≤
1,5≤ x′1 ≤ 6,3≤ x′2 ≤ 4,0≤ x2− x1 ≤ 1,5≤ x′1− x1 ≤ 6,3≤ x′2− x1 ≤ 4,x′1− x2 =
5,x′2−x2 = 3,x′2−x′1 =−2}. The projection w.r.t. {x′1,x′2} is computed by removing
all inequalities containing x1 or x2, which yields {x′ ∈ R2 : 5 ≤ x′1 ≤ 6,3 ≤ x′2 ≤
4,x′2− x′1 =−2}. ut
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D

D
′

D

D
′

Fig. 2 The left and right plots illustrate the algorithms to determine the image and inverse image of a
DBM w.r.t. affine dynamics, respectively. In the left plot D′ is the image of D, whereas in the right plot D
is the inverse image of D′.

Implementation In VeriSiMPL 2, the procedure to determine the image of a DBM
w.r.t. affine dynamics has been implemented in the JAVA class Dbm image. This class
has one public member Dy corresponding to the image of the given DBM w.r.t. the
given affine dynamics. Furthermore this class requires affine dynamics and a DBM
as inputs for initialization. The affine dynamics are characterized by two column
vectors, representing the indices of state variables and the constants (cf. Section 2.2).

ut
The procedure to compute the inverse image of a DBM in Rn w.r.t. affine dynam-

ics mapping Rn → Rn is similar with the procedure for computing the image. The
difference lies in the last step: the canonical-form representation is projected over
{x1(k− 1), . . . ,xn(k− 1)}. The maximum number of operations for computing the
inverse image is the same as that for computing the image [2, p. 3043].

Implementation In VeriSiMPL 2, the procedure to determine the inverse image of a
DBM w.r.t. affine dynamics has been implemented in the JAVA class Dbm invimage.
This class has one public member Dx corresponding to the inverse image of the given
DBM w.r.t. the given affine dynamics. The initialization of this class requires affine
dynamics (as before), a DBM, and the dimension of the state space. ut

Let us mention that the procedure discussed in this section has been extended to
the forward and backward reachability analysis of MPL systems [4,3,5]. Next, we
discuss the modeling framework that is going to be used in the abstraction procedure
(cf. Sections 3 and 4).

2.4 Transition Systems

This section introduces the notion of transition systems, a standard class of models to
represent hardware and software systems [8, Sec. 2.1].

Definition 3 (Transition System [8, Def. 2.1]) A transition system TS is character-
ized by a quintuple (S,−−→, I,AP,L) where
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– S is a set of states,
– −−→ ⊆ S×S is a transition relation,
– I ⊆ S is a set of initial states,
– AP3 is a set of atomic propositions, and
– L : S→ 2AP is a labeling function.

TS is called finite if the cardinality of S and AP is finite. ut
For convenience, we write s −−→ s′ instead of (s,s′) ∈−−→. The behavior of a

transition system can be described as follows. The transition system starts in some
initial state s0 ∈ I and evolves according to the transition relation −−→. If a state
has more than one outgoing transition, the “next” transition is chosen in a purely
nondeterministic fashion. Recall that 2AP denotes the power set of AP. The labeling
function relates each state to set of atomic propositions that are satisfied over the
state.

Definition 4 (Direct Predecessors and Direct Successors [8, Def. 2.3]) Let TS =
(S,−−→, I,AP,L) be a transition system. For s ∈ S, the set of direct successors and
direct predecessors of s are defined respectively as

Post(s) =
{

s′ ∈ S : s−−→ s′
}

and Pre(s) =
{

s′ ∈ S : s′ −−→ s
}
. ut

The notations for the sets of direct successors and direct predecessors are expanded
to subsets of S in the obvious way (i.e. pointwise extension): for C ⊆ S, let

Post(C) =
⋃
s∈C

Post(s) and Pre(C) =
⋃
s∈C

Pre(s).

A transition system TS = (S,−−→, I,AP,L) is called deterministic if |I| ≤ 1 and
|Post(s)| ≤ 1 for all states s (this is called action deterministic in [8, Def. 2.5]). A
path of a transition system T S is a sequence of states starting from some initial state;
it evolves according to the transition relation; and it cannot be prolonged, i.e. either
the path is infinite or the path is finite and ends in a terminal state [8, Defs. 2.4 and
3.6]. A trace of a path is defined as the finite or infinite word over the alphabet 2AP

obtained by applying the labeling function to all the states in the path. The set of
traces of a transition system T S is defined as set of traces associated to all paths in
T S [8, p. 98].

Example 8 Consider the example of a transition system in Fig. 3. The set of states is
S = {s0,s1,s2,s3}. The set of initial states is I = {s0,s2}. The set of atomic proposi-
tions is AP = {a,b}, with the labeling function: L(s0) = /0, L(s1) = /0, L(s2) = {a},
L(s3) = {b}. ut

2.5 Specifications (or Formal Properties)

This section introduces (propositional) Linear Temporal Logic (LTL) and Compu-
tation Tree Logic (CTL), which are logical formalisms that are suited for specifying
properties [8, Chs. 5 and 6]. The syntax and semantics of LTL and CTL are discussed.

3 The notation AP does not represent the multiplication of matrix A by matrix P.
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s0 s1 s3

b

s2

a

Fig. 3 Graphical representation of the transition system described in Example 8.

2.5.1 Linear Temporal Logic

LTL formulae are recursively defined over a set of atomic propositions, by Boolean
and temporal operators. More formally, the syntax of LTL formulae is defined as
follows:

Definition 5 (Syntax of Linear Temporal Logic [8, Def. 5.1]) LTL formulae over
the set AP of atomic propositions are formed according to the following grammar:

ϕ ::= true | a | ϕ1∧ϕ2 | ¬ϕ | ©ϕ | ϕ1Uϕ2

where a ∈ AP. ut

Boolean operators are¬ (negation),∧ (conjunction), and∨ (disjunction), whereas
temporal operators are© (next), U (until), � (always), and ♦ (eventually). The un-
til operator allows to derive the temporal modalities ♦ and � [8, p. 232]. The ©-
modality is a unary prefix operator and requires a single LTL formula as its argu-
ment. Formula©ϕ holds at the current moment, if ϕ holds in the next “step”. The U-
modality is a binary infix operator and requires two LTL formulae as argument. For-
mula ϕ1Uϕ2 holds at the current moment, if there is some future moment for which
ϕ2 holds and ϕ1 holds at all moments until that future moment. The ♦-modality and
�-modality are unary prefix operators and require a single LTL formula as argument:
formula ♦ϕ is satisfied if ϕ will be true eventually in the future, whereas formula �ϕ

is satisfied if ϕ holds from now on forever.
LTL formulae stand for properties of paths (in fact, the associated trace). This

means that a path can either fulfill an LTL-formula or not. An infinite path satisfies
an LTL formula ϕ if the trace of the path satisfies ϕ [8, p. 236]. Notice that the trace of
an infinite path is an infinite word over the alphabet 2AP. A transition system satisfies
an LTL formula if all paths of the transition system satisfy the LTL formula [8, p.
237].

2.5.2 Computation Tree Logic

CTL formulae are classified as state and path formulae. State formulae are assertions
about atomic propositions over the states. Path formulae express temporal properties
of paths. Path formulae in CTL are built by the next-step and until operators, however
no nesting of temporal modalities is allowed.
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Definition 6 (Syntax of Computation Tree Logic [8, Def. 6.1]) CTL state formu-
lae over the set AP of atomic propositions are formed according to the following
grammar:

Φ ::= true | a |Φ1∧Φ2 | ¬Φ | ∃ϕ | ∀ϕ
where a ∈ AP and ϕ is a path formula. CTL path formulae are formed according to
the following grammar:

ϕ ::=©Φ |Φ1UΦ2

where Φ , Φ1 and Φ2 are state formulae. ut
CTL distinguishes between state formulae and path formulae. State formulae ex-

press a property of a state, while path formulae express a property of a path, i.e. a
sequence of states. The temporal operators © and U have the same meaning as in
LTL and are path operators. Path formulae can be turned into state formulae by pre-
fixing them with either the path quantifier ∃ (pronounced “for some path”) or the path
quantifier ∀ (pronounced “for all paths”). Formula ∃ϕ holds in a state if there exists
some path satisfying ϕ that starts in that state. Dually, ∀ϕ holds in a state if all paths
that start in that state satisfy ϕ .

The universal (resp. existential) fragment of CTL is a CTL formula where the
state formulae are required to be in positive normal form, (negations may only occur
adjacent to atomic propositions) and do not contain existential (resp. universal) path
quantifiers.

Definition 7 (Universal Fragment of CTL [8, Def. 7.74]) The universal fragment
of CTL, denoted ∀CTL, consists of the state formulae Φ and path formulae ϕ given,
for a ∈ AP, by

Φ ::= true | false | a | ¬a |Φ1∧Φ2 |Φ1∨Φ2 | ∀ϕ
ϕ ::=©Φ |Φ1UΦ2 |Φ1RΦ2 ut

Definition 8 (Existential Fragment of CTL [8, Def. 7.78]) The existential fragment
of CTL, denoted ∃CTL, consists of the state formulae Φ and path formulae ϕ given,
for a ∈ AP, by

Φ ::= true | false | a | ¬a |Φ1∧Φ2 |Φ1∨Φ2 | ∃ϕ
ϕ ::=©Φ |Φ1UΦ2 |Φ1RΦ2 ut

The positive normal forms require the use of the release operator R as a basic
operator in the logic. The release operator is dual to the until operator: formula ϕ1Rϕ2
holds for a word if ϕ2 always holds, a requirement that is released as soon as ϕ1
becomes valid.

2.6 Equivalences and Abstractions

Abstraction is a fundamental concept that enables the analysis of large [8, Ex. 7.53]
or even infinite [8, Ex. 7.54] transition systems. An abstraction is identified by a set
of abstract states Ŝ; an abstraction function f , that associates to each (concrete) state
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s of the transition system TS the abstract state f (s) that represents it; and a set AP of
atomic propositions labeling the concrete and abstract states. Abstractions differ in
the choice of the set Ŝ of abstract states, the abstraction function f , and the relevant
propositions AP.

Typically an abstract transition system simulates the corresponding concrete tran-
sition system. Simulation relations are used as a basis for abstraction techniques,
where the idea is to replace the model to be verified by a smaller abstract model and
to verify the latter instead of the original one. Simulation relations are preorders on
the state space requiring that whenever s′ simulates s, state s′ can mimic all step-
wise behavior of s, but the reverse is not guaranteed. The formal definition of the
simulation order is given below.

Definition 9 (Simulation Order [8, Def. 7.47]) Let TSi = (Si,−−→i, Ii,AP,Li), i ∈
{1,2}, be transition systems over AP. A simulation for (TS1,TS2) is a binary relation
R ⊆ S1×S2 such that

1. for each s1 ∈ I1 there exists s2 ∈ I2 such that (s1,s2) ∈R
2. for all (s1,s2) ∈R it holds:

(a) L1(s1) = L2(s2)
(b) if s′1 ∈ Post(s1) then there exists s′2 ∈ Post(s2) with (s′1,s

′
2) ∈R.

A transition system TS1 is simulated by TS2 (or equivalently, TS2 simulates TS1) if
there exists a simulation R for (TS1,TS2). ut

We briefly outline the essential ideas of abstractions that are obtained by aggre-
gating disjoint sets of concrete states into single abstract states. Abstraction functions
map concrete states onto abstract ones, such that abstract states are associated to
equally labeled concrete states [8, Def. 7.50].

The procedure to construct an abstract transition system is as follows [8, Def.
7.51]. The abstract transition system TS f originates from TS by identifying all states
that are represented by the same abstract state under abstraction function f . An ab-
stract state is initial whenever it represents an initial concrete state. Similarly, there is
a transition from abstract state f (s) to state f (s′) if there is a transition from s to s′.

Proposition 2 ([8, Lem. 7.52]) Let TS = (S,−−→, I,AP,L) be a (concrete) transition
system, Ŝ a set of (abstract) states, and f : S→ Ŝ an abstraction function. Then TS f
simulates TS.

Proposition 3 ([8, Cor. 7.68 and Th. 7.70]) Let TS2 simulates TS1, assume TS1 does
not have terminal states, let ϕ be a linear-time property. If TS2 satisfies ϕ , then TS1
also satisfies ϕ .

State s in transition system TS is called terminal if and only if Post(s) = /0 [8, Def.
2.4]. The result also applies to LTL formulae, since any LTL formula is a linear-time
property [8, Defs. 3.10 and 5.6]. In general the reverse of the preceding proposition
is not true. More precisely, if TS2 does not satisfy ϕ , we cannot deduce that TS1 does
not satisfy ϕ since the trace of paths that violate ϕ might be behaviors that TS1 cannot
perform at all. A similar result holds for a (large) fragment of CTL, as shown in the
following proposition:
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Proposition 4 ([8, Ths. 7.76 and 7.79]) Let TS2 simulates TS1, assume both TS1 and
TS2 do not have terminal states, let ϕ be a universal fragment of CTL or an existential
fragment of CTL. If TS2 satisfies ϕ , then TS1 also satisfies ϕ .

Bisimulation equivalence aims to identify transition systems with the same branch-
ing structure, and which thus can simulate each other in a stepwise manner [8, p. 451].

Definition 10 (Bisimulation Equivalence [8, Def. 7.1]) For i∈{1,2} let TSi be tran-
sition systems over AP, i.e. TSi = (Si,−−→i, Ii,AP,Li). A bisimulation for (TS1,TS2)
is a binary relation R ⊆ S1×S2 such that

1. for each s1 ∈ I1 there exists s2 ∈ I2 such that (s1,s2)∈R and for each s2 ∈ I2 there
exists s1 ∈ I1 such that (s1,s2) ∈R

2. for all (s1,s2) ∈R it holds that
(a) L1(s1) = L2(s2)
(b) if s′1 ∈ Post(s1) then there exists s′2 ∈ Post(s2) with (s′1,s

′
2) ∈R

(c) if s′2 ∈ Post(s2) then there exists s′1 ∈ Post(s1) with (s′1,s
′
2) ∈R.

Transition systems TS1 and TS2 are bisimulation-equivalent (bisimilar, for short) if
there exists a bisimulation R for (TS1,TS2). ut

Bisimulation equivalence denotes the possibility of mutual, stepwise simulation.
Bisimulation equivalence preserves all formulae that can be expressed in both LTL
and CTL [8, p. 469]. This result allows performing model checking on the bisimu-
lation quotient transition system while preserving both affirmative and negative out-
comes of the model checking.

3 Finite Abstractions of Max-Plus-Linear Systems

We now develop a framework for the formal verification of MPL systems. Specif-
ically, we check whether an MPL system with a predefined set of initial states X0
satisfies a specification over a fixed set of finitely many atomic propositions AP. The
specification is expressed as an LTL formula or as a universal/existential fragment of
CTL formulae.

The abstraction procedure consists of partitioning the state space (cf. Section 3.1)
and of computing the transition relation (cf. Section 3.2). As discussed, in general
the abstraction is an over-approximation of the original MPL system (cf. Section
2.6): in order to obtain a more precise abstraction, a partition-refinement technique
is discussed in Section 3.3. In Section 3.4 we describe a procedure to determine the
initial states of the abstract transition system. Finally, the interface with NuSMV
model checker is discussed in Section 3.5.

Recall that the idea of abstraction is to replace a model to be verified by a smaller
abstract model, and to verify the latter instead of the original one. Let us introduce a
characterization of the MPL system as an (infinite-space) transition system.

Definition 11 (Transition System Associated with an MPL System) Consider an
MPL system as in (1), with X0 as the set of its initial conditions, and a set of atomic
propositions AP together with the corresponding labeling function L. The associated
transition system TS is a tuple (S,−−→, I,AP,L) where
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– set of states S is Rn,
– there exists a transition relation x−−→ x′ if x′ = A⊗x, and
– set of initial states I is X0. ut

In this work, we assume the set of states satisfying each atomic proposition is a
DBM, i.e. for each a ∈ AP, the set of states {x : a ∈ L(x)} is a DBM. Furthermore,
we assume that the set of initial states X0 is a union of finitely many DBM. These as-
sumptions allow easily manipulating this structure throughout the whole abstraction
procedure.

Next, we introduce the abstraction procedure by discussing how to obtain abstract
states and transitions.

3.1 States: Partitioning Procedure

We partition the state space S into finitely many sets, assumed to be non-overlapping
and non-empty subsets, which are also called “blocks” [8, Def. 7.29]. An abstraction
function f is constructed based on the obtained partition: the abstraction function f
maps each state in the same block to a unique abstract state. The partition is denoted
by Π0 that has the following properties: Π0 is an AP partition, each block is a DBM,
and the dynamics within each block are affine. A partition is called an AP partition
if the labeling function L maps all states in the same block to the same set of atomic
propositions [8, Def. 7.31].

The approach to determine Π0 is as follows. We first determine an AP partition of
S, denoted by ΠAP, where each block is a DBM. We then determine a partition ΠAD
of S (AD stands for “affine dynamics”), where each block is a DBM and the dynamics
within each block are affine. Finally, the partition Π0 is defined as the refinement of
ΠAP and ΠAD, i.e. RΠ0 = RΠAP ∩RΠAD [8, Rem. 7.30].

3.1.1 AP Partition

Standard algorithms (cf. [8, Alg. 29]) cannot be used since they require finite car-
dinality of S. We discuss a procedure to generate an AP partition of S, where each
block is a DBM. First we compute the coarsest AP partition, obtained by defining a
block for each a ∈ 2AP, as the inverse image of a w.r.t. the labeling function L, i.e.
L−1(a) = {x : L(x) = a}=∩a∈a{x : a∈ L(x)}\∪a∈AP\a{x : a∈ L(x)}. Notice that in
general each block is a union of finitely many DBM, since the set difference between
two DBM is a union of finitely many DBM. Finally the coarsest AP partition is re-
fined such that each block is a DBM. The maximum number of operations depends
on the number of atomic propositions and dimension of the state space. If the number
of atomic propositions increases, the maximum number of operations rises exponen-
tially. If dimension of the state space increases, the maximum number of operations
has a polynomial growth rate.

Example 9 Suppose that AP = {a} and the set of states satisfying a is the following
stripe {x ∈ R2 : 0 ≤ x1− x2 < 3}. The coarsest AP partition contains two blocks,
i.e. {x : 0 ≤ x1− x2 < 3} and {x : x1− x2 < 0}∪{x : x1− x2 ≥ 3}. Since the latter
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Table 1 Data structure for storing the states that satisfy and that do not satisfy each atomic proposition in
the JAVA class PartAgainstAP.

a [0] ¬a [1] b [2] ¬b [3] c [4] ¬c [5] . . .

DBM (DBM, . . . , DBM) DBM (DBM, . . . , DBM) DBM (DBM, . . . , DBM) . . .

block is a union of two DBM, it is refined into two blocks, i.e. {x : x1− x2 < 0} and
{x : x1−x2 ≥ 3}. The resulting AP partition contains three blocks, i.e. B1 = {x∈R2 :
x1− x2 < 0}, B2 = {x ∈ R2 : 0 ≤ x1− x2 < 3}, and B3 = {x ∈ R2 : x1− x2 ≥ 3} as
shown in Fig. 4. ut
Implementation The procedure to generate an AP partition is implemented in the
JAVA class PartAgainstAP in VeriSiMPL 2. This class has one public member par-
tAP corresponding to the AP partition. The initialization of PartAgainstAP requires a
list of DBM, where each DBM corresponds to the set of states satisfying an atomic
proposition. The procedure to compute an AP partition consists of two steps. In the
first step, for each atomic proposition we compute the states that do not satisfy the
atomic proposition. In the second step, we determine the coarsest AP partition.

With focus on the first step, for each atomic proposition we compute the states that
do not satisfy the atomic proposition. This can be obtained by determining the com-
plement of the states that satisfy each atomic proposition. Since the set of states satis-
fying an atomic proposition is a DBM, we can use the JAVA class DBM complement
(cf. Section 2.3.2). An array is used to store the states that satisfy and do not satisfy
each atomic proposition. Each element in the array is a list of DBM. The number of
DBM in each list is either zero or one or more than one. The array looks as in Table
1 (notice that, in JAVA, all indices start from 0, instead of 1).

In the second step, PartAgainstAP computes the states for all possible combina-
tions consisting of atomic propositions in AP or of their negations. For instance, if
there are 3 atomic propositions a, b, c, then we calculate all 8 possible combinations:
abc, ab¬c, a¬bc, a¬b¬c, ¬abc, ¬ab¬c, ¬a¬bc, ¬a¬b¬c. This can be encoded as a
binary number: 0 if the atomic proposition is satisfied and 1 if the atomic proposition
is not satisfied. By using this encoding, the previous combinations can be interpreted
as 000, 001, 010, 011, 100, 101, 110, 111. This encoding helps us to keep track of
the atomic propositions that are satisfied based on the binary number expressing the
location index in the array. PartAgainstAP stores the above-explained combinations
in an array. Each element in the array is either an empty list or a list of DBM. Each
DBM represents a block and this array represents the final AP partition of the state
space. The array looks as in Table 2. ut

Table 2 Data structure of the final AP Partition in the JAVA class PartAgainstAP.

abc [0] ab¬c [1] a¬bc [2] . . . ¬a¬b¬c [7]

DBM (DBM, . . . , DBM) (DBM, . . . , DBM) . . . (DBM, . . . , DBM)
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Fig. 4 AP partition of R2 where all blocks are DBM.

3.1.2 AD Partition

We now discuss an approach to construct a partition of S, where each block is a DBM
and the dynamics in each block are affine. This approach is first proposed in [2]. The
idea is to refine the regions of the PWA system generated by the state matrix.

Definition 12 (Adjacent Regions [2, Def. 9]) Let Rg and Rg′ be regions generated
by an n-dimensional state-space matrix. We say that they are adjacent (Rg > Rg′ ) if
there exists a single i ∈ {1, . . . ,n} such that gi > g′i and g j = g′j for each j 6= i. ut

Given a collection of regions generated by the state-space matrix using Algorithm
1, the procedure works as follows (cf. Algorithm 2). For each pair of adjacent regions,
their intersection is assigned to the region with higher index. The maximum number
of operations is O(n2n+1) [2, p. 3045], where n denotes dimension of the state space.

Algorithm 2 (Generation of a partition from regions of the PWA system)
Input: A ∈ Rn×n

ε , a row-finite max-plus matrix
Output: ΠAD, a partition of S

initialize ΠAD with the regions of the PWA system (cf. Algorithm 1)
for all Rg,Rg′ ∈ΠAD do

if Rg > Rg′ then
the intersection is removed from the region with lower index,
i.e. Rg′ := Rg′ \Rg

end if

end for ut

Example 10 Consider the MPL system as in (2). The regions of the PWA system
associated with the MPL system are described in Example 2. The AD partition gen-
erated by Algorithm 2 has the following three blocks R′(1,1) = {x ∈R2 : x1−x2 > 3},
R′(2,1) = {x ∈ R2 : 0 < x1− x2 ≤ 3}, and R′(2,2) = {x ∈ R2 : x1− x2 ≤ 0}. Notice that
R′(2,2) = R(2,2). The regions are shown in Fig. 5 (left). ut
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Fig. 5 The left and right plots are AD and Π0 partitions of the MPL system in (2), respectively.

Implementation In VeriSiMPL 2, the approach to generate an AD partition is im-
plemented in two JAVA classes Maxpl2pwa and Maxpl2pwa refine. Recall that the
JAVA class Maxpl2pwa generates a PWA system from an MPL system (cf. Section
2.2). Then the JAVA class Maxpl2pwa refine refines the PWA regions to obtain an
AD partition. This class has three public members myA, myB and myD. The members
myA and myB correspond to the set of affine dynamics, whereas the member myD
corresponds to the collection of regions. As it will be clear in Section 3.2, the set
of affine dynamics is needed for the computation of transitions. The initialization of
Maxpl2pwa refine requires a state matrix Ampl and an instance of class Maxpl2pwa,
which is the PWA system generated by the state matrix Ampl. ut

3.1.3 Π0 Partition: Refinement of AP and AD Partitions

Let us determine the partition Π0 of the state space S. As we discussed at the begin-
ning of Section 3.1, the partition Π0 is the refinement of ΠAP and ΠAD. The procedure
consists of intersecting every block of ΠAP with every block of ΠAD. The maximum
number of operations is O(n2|ΠAP||ΠAD|), where n is the dimension of the state
space, |ΠAP| represents the number of blocks in the AP partition, and |ΠAD| denotes
the number of blocks in the AD partition.

Example 11 Let us determine the partition Π0 of the MPL system (2) by refining ΠAP
and ΠAD. Suppose that AP = {a} and the set of states satisfying a is the following
stripe {x ∈R2 : 0≤ x1−x2 < 3}. The AP and AD partitions of the MPL system have
been obtained in Examples 9 and 10, respectively. One can show that Π0 partition has
5 blocks, i.e. B′1 = {x ∈ R2 : x1− x2 < 0}, B′2 = {x ∈ R2 : x1− x2 = 0}, B′3 = {x ∈
R2 : x1−x2 > 3}, B′4 = {x ∈R2 : x1−x2 = 3}, B′5 = {x ∈R2 : 0 < x1−x2 < 3}. The
Π0 partition is shown in Fig. 5 (right).

Finally we define the set of abstract states Ŝ, the abstraction function f , and the
labeling function of the abstract transition system L f : Ŝ→ 2AP. Since Π0 contains 5
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Table 3 Data structure used in JAVA class Maxpl2ts part for computing the Π0 partition of an MPL
system.

[0] ab [1] a¬b [2] ¬ab [3] ¬a¬b

R(1,1) [0] (DBM,. . . ,DBM) (DBM,. . . ,DBM) (DBM,. . . ,DBM) (DBM,. . . ,DBM)
R(2,1) [1] (DBM,. . . ,DBM) (DBM,. . . ,DBM) (DBM,. . . ,DBM) (DBM,. . . ,DBM)
R(2,2) [2] (DBM,. . . ,DBM) (DBM,. . . ,DBM) (DBM,. . . ,DBM) (DBM,. . . ,DBM)

blocks, then Ŝ = {ŝ1, ŝ2, ŝ3, ŝ4, ŝ5}. The abstraction function f and the labeling func-
tion L f are defined as follows

f (x) =


ŝ1, if x1− x2 < 0,
ŝ2, if x1− x2 = 0,
ŝ3, if x1− x2 > 3,
ŝ4, if x1− x2 = 3,
ŝ5, if 0 < x1− x2 < 3,

L f (ŝi) =

{
{a}, if i ∈ {2,5},

/0, if i ∈ {1,3,4}.

Let us consider X0 = {x ∈ R2 : x1− x2 = 1} as the set of initial conditions. The set
of initial abstract states is I f = {ŝ5} [8, Def. 7.51]. ut

Implementation In VeriSiMPL 2, the procedure to compute Π0 is implemented in
the JAVA class Maxpl2ts part. This class has 5 public members: partADsize, par-
tAPsize, finalpart, state labels, AD labels. The member state labels is used to store
the set of atomic propositions satisfied by each block. The affine dynamics that are
active in each region are stored in the member variable AD labels. The members par-
tAPsize and partADsize characterize the number of blocks in AP and AD partitions,
respectively. The member finalpart stores the Π0 partition as a list of DBM. In order
to construct finalpart, we combine the AP and AD partitions as a 2-dimensional array,
where each element of the array is a list of DBM (cf. Table 3). With this representa-
tion, we can keep track of the atomic propositions satisfied by each block and of the
corresponding active affine dynamics. The set of atomic propositions satisfied within
each block is determined by the binary encoding of the column index (cf. Section
3.1.1). The row index of a block characterizes the affine dynamics that are active in
the block. Finally the initialization of Maxpl2ts part requires the collection of regions
in the AP partition and the collection of regions in the AD partition. ut

3.2 Transitions: One-Step Reachability

We develop an optimized technique to determine the transition relation of the ab-
stract transition system, which relates pairs of blocks of the partition induced by the
abstraction function. Recall that the set of (concrete) states associated with an ab-
stract state ŝ is obtained as the inverse image of ŝ w.r.t. the abstraction function f ,
i.e. f−1(ŝ) = {s : f (s) = ŝ} – f−1(ŝ) is a block (expressed as a DBM) and that the
dynamics within it are affine.
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The transition relation of the abstract transition system is defined as follows. If
there exists a transition from an outgoing state s to an incoming state s′ in the con-
crete transition system, i.e. s −−→ s′, then there is a transition from f (s) to f (s′) in
the abstract transition system, i.e. f (s) −−→ f f (s′) [8, Def. 7.51]. The existence of
such a transition can be determined by a forward- or backward-reachability approach.
According to the former, we calculate f−1(ŝ′)∩Post( f−1(ŝ)), whereas if we use the
backward approach we compute f−1(ŝ)∩ Pre( f−1(ŝ′)): The non-emptiness of the
resulting set characterizes the presence of a transition from ŝ to ŝ′.

Remark 1 The equivalent terms “image” and “direct successors” are used when the
transitions in a dynamical system are represented via a function and via a transition
relation, respectively. A similar argument holds for “inverse image” and “direct pre-
decessors”. ut

In this work we focus on the forward-reachability approach, since it is computa-
tionally more attractive than the backward one, as argued in [2, p. 3046]. With focus
on the forward-reachability approach, given an abstract state ŝ we employ the affine
dynamics that are active in f−1(ŝ) to compute the direct successors as

Post( f−1(ŝ)) = {A⊗x : x ∈ f−1(ŝ)}.

Since f−1(ŝ) is a DBM and the dynamics within f−1(ŝ) are affine, then Post( f−1(ŝ))
is a DBM (cf. Proposition 1). The overall approach to determine the transition relation
of the abstract transition system is shown in Algorithm 3. The maximum number of
operations is O(n3|Ŝ|2) [2, p. 3046] where n is the dimension of the state space and
|Ŝ| represents the number of abstract states.

Algorithm 3 (Computations of the transitions of the abstract transition system
via forward-reachability analysis)
Input: Ŝ, a set of abstract states

f : S→ Ŝ, an abstraction function
Output: −−→ f⊆ Ŝ× Ŝ, a transition relation

initialize −−→ f with the empty set
for all ŝ ∈ Ŝ do

compute the direct successors of ŝ, i.e. Post( f−1(ŝ))
for all ŝ′ ∈ Ŝ do

if f−1(ŝ′)∩Post( f−1(ŝ)) is not empty then

define a transition from ŝ to ŝ′, i.e. ŝ−−→ f ŝ′

end if

end for

end for ut

Example 12 Consider the MPL system in (2) and the outcomes from Example 11.
Using Algorithm 3, one can construct the transition relation in the abstract transition
system. Skipping the details associated to the computations, the obtained abstract
transition system is displayed in Fig. 6. ut
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ŝ4 ŝ3 ŝ1 ŝ5

a

ŝ2

a

Fig. 6 The abstract transition system generated by the MPL system in (2). The initial state is ŝ5 indicated
by an incoming arrow from below. The states ŝ2 and ŝ5 satisfy the atomic proposition a, whereas the states
ŝ1, ŝ3, and ŝ4 are not associated with any specific atomic proposition.

Table 4 Data structure of the public member trans in JAVA class Maxpl2ts trans for storing transitions.

ŝ1 [0] ŝ2 [1] ŝ3 [2] ŝ4 [3] ŝ5 [4]

(4) (4) (0) (0) (0,1,4)

Implementation In VeriSiMPL 2, the procedure to determine the transitions of the
abstract transition system is implemented in the JAVA class Maxpl2ts trans. The ini-
tialization of Maxpl2ts trans requires a PWA system (A,B,D) where D is the Π0
partition of the state space of MPL system, and also requires the set of affine dynam-
ics (A,B) that are active in each block of Π0. The resulting transition relation is stored
in two public members of Maxpl2ts trans, called adj and trans. This class also has
public members refA and refB to store the affine dynamics.

The public member adj is a 0-1 matrix. Its (i, j) element is 1 if there is a transition
from j to i, otherwise the (i, j) element is equal to 0. This representation is used in
the bisimulation-quotienting procedure (cf. Section 3.3). For example, the 0-1 matrix
associated with the abstract transition system in Fig. 6 is given by

0 0 1 1 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
1 1 0 0 1


The public member trans stores transitions in an array of nonnegative integers. In

this representation, each list contains indices of the direct successors of a state. This
representation is used to generate a NuSMV file (cf. Section 3.5). For instance, the
transitions of the abstract transition system in Fig. 6 are represented in Table 4. ut

3.3 Bisimulation-Quotienting Procedure (Refinement Procedure)

In general the abstract transition system generated by the procedure in Sections 3.1
and 3.2 simulates the concrete transition system associated with the original MPL
system [2, p. 3046]. It makes sense attempting to generate an abstract transition
system that bisimulates the concrete transition system. The following Proposition
5 claims that the abstract transition system bisimulates the concrete transition system
if and only if there is one outgoing transition from each abstract state. Notice that a
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transition system with one outgoing transition from each state is not necessarily de-
terministic (cf. Section 2.4): the transition system is deterministic if there is at most
one initial state.

Proposition 5 ([2, Th. 4]) Let T S be the concrete transition system generated by an
MPL system and T S f be the abstract transition system induced by an abstraction
function f : S→ Ŝ. The binary relation R = {(s, f (s)) : s ∈ S} is a bisimulation for
(T S,T S f ) if and only if |Post(ŝ)|= 1 for all ŝ ∈ Ŝ.

The procedure to generate an abstract transition system that bisimulates the con-
crete transition system works as follows. For each abstract state ŝ with more than one
outgoing transition, the corresponding block is refined according to the states f−1(ŝ′),
where ŝ′ is any of the direct successors of ŝ. The incoming and outgoing transitions
are updated accordingly. These steps are repeated until all abstract states have one
outgoing transition.

Let us focus on the refinement step of the procedure. Suppose that an abstract
state ŝ has more than one outgoing transition, i.e. |Post(ŝ)|> 1. For each ŝ′ ∈ Post(ŝ),
we define a block consisting of the set of states such that the direct successor is in
f−1(ŝ′), i.e. {s∈ f−1(ŝ) : f (Post(s)) = ŝ′}= f−1(ŝ)∩Pre( f−1(ŝ′)). Computationally
we determine the inverse image of f−1(ŝ′) w.r.t. the affine dynamics that are active
in f−1(ŝ), then we intersect the obtained inverse image with f−1(ŝ). Notice that each
block in the partition of f−1(ŝ) is a DBM since f−1(ŝ′) is a DBM, the inverse image
of a DBM w.r.t. affine dynamics is a DBM, and the intersection of two DBM is a
DBM (cf. Section 2.3).

Let us elaborate on the completeness of this procedure: unfortunately, in general
such a procedure does not necessarily terminate in a finite number of steps. This
in particular may happen in the presence of cycles in the abstract transition system
containing abstract states with multiple outgoing transitions. An upper bound on the
number of generated abstract states can be used as a stopping criterion. Sufficient
conditions for the existence of a finite-state abstract transition system that bisimulates
the concrete transition system have been discussed in [2, pp. 3046-3047]: these entail
the completeness of the discussed refinement procedure.

Example 13 Let us apply the bisimulation-quotienting procedure to the abstract tran-
sition system in Fig. 6. Observe that from state ŝ5 there are three outgoing transitions.
The destinations of the outgoing transitions are ŝ1, ŝ5, and ŝ2. Thus the set of states
ŝ5 is partitioned into three blocks: the blocks associated with outgoing transitions to
ŝ1, ŝ5, and ŝ2 are respectively {x ∈R2 : 2 < x1−x2 < 3}, {x ∈R2 : 0 < x1−x2 < 2},
and {x ∈ R2 : x1− x2 = 2}. After the refinement step, the partition Π1 is a set of 7
blocks.

Next we characterize the abstract transition system associated with the refined
partition Π1. Since Π1 contains 7 blocks, the set of abstract states becomes Ŝ′ =
{ŝ′1, . . . , ŝ′7}. The abstraction function f ′ and the labeling function L f ′ are defined as
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ŝ
′
6

a

ŝ
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Fig. 7 The abstract transition system obtained after applying the bisimulation-quotienting procedure. The
states ŝ2, ŝ5, ŝ6 and ŝ7 satisfy the atomic proposition a, whereas the states ŝ1, ŝ3 and ŝ4 do not satisfy any
atomic proposition.

follows:

f ′(x) =



ŝ′1, if x1− x2 < 0,
ŝ′2, if x1− x2 = 0,
ŝ′3, if x1− x2 > 3,
ŝ′4, if x1− x2 = 3,
ŝ′5, if 2 < x1− x2 < 3,
ŝ′6, if 0 < x1− x2 < 2,
ŝ′7, if x1− x2 = 2,

L f ′(ŝ
′
i) =

{
{a}, if i ∈ {2,5,6,7},

/0, if i ∈ {1,3,4}.

Recall that the set of initial states is X0 = {x ∈ R2 : x1− x2 = 1}. Thus the set of
initial abstract states is I f ′ = {ŝ′6}. The abstract transition system is depicted in Fig.
7 and it bisimulates the concrete transition system since all abstract states have one
outgoing transition (cf. Proposition 5). ut

Implementation In VeriSiMPL 2, the determinization procedure is implemented in
the JAVA class Maxpl2ts trans refine. This class has three public members called
trans, D, and state labels. The public member trans is used to store the transition
relation of the abstract transition system obtained after determinization. The pub-
lic member D represents the partition of the state space obtained after determiniza-
tion. The public member state labels stores the atomic propositions satisfied by each
block. The initialization of this class requires a transition relation that is represented
as a 0-1 matrix, the PWA system (A,B,D) where D is a partition of the state space, the
state labels for tracking the atomic propositions that are satisfied within each block,
and an upper bound on the number of generated abstract states. ut

3.4 Initial Abstract States

An abstract state is initial whenever the labeling function maps an initial concrete
state to the abstract state [8, Def. 7.51]. We describe a procedure to determine the
set of initial states in the abstract transition system. For each abstract state ŝ, check
whether the concrete states represented by ŝ are intersected with the initial concrete
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states, i.e. check whether f−1(ŝ)∩X0 is empty for all ŝ ∈ Ŝ. If f−1(ŝ)∩X0 is empty,
ŝ is not an initial abstract state, otherwise ŝ is an initial abstract state. In order to
derive an expression for the maximum number of operations, we assume that X0 is a
union of q0 DBM. The maximum number of operations is O(n3|Ŝ|q0) where n is the
dimension of the state space and |Ŝ| denotes the number of abstract states.

Example 14 For some examples of obtaining the initial abstract states, we refer the
reader to Examples 11 and 13. ut

Implementation In VeriSiMPL 2, the procedure to determine the set of initial ab-
stract states is implemented in the JAVA class CalInitStates. This class has one public
member called initStates that stores the index of initial abstract states. The initializa-
tion of this class requires two parameters: the initial concrete states and the partition
associated with the abstraction function. Both parameters are represented as a union
of finitely many DBM. ut

3.5 Interface with the NuSMV model checker

Using the abstraction procedure described in the preceding subsections, in general we
can construct an abstract transition system that simulates the original MPL system. In
order to verify an LTL specification or a universal/existential fragment of CTL prop-
erties over the abstract transition system in an automated way, we feed the abstract
transition system and the property of interest to an existing model checking tool. Here
we employ the symbolic model checker NuSMV, which embeds BDD structures and
symbolic computations geared towards time and space efficiency.

NuSMV [13] is a model checker originated from the extension of the CMU SMV,
a BDD-based model checker. It allows to check finite-state systems against specifica-
tions described in both LTL and CTL. Furthermore, it can also perform bounded
model checking [11]. In order to run NuSMV, it needs to be configured so that
NuSMV model checking files can be run through an interactive shell.

Example 15 Let us check whether the abstract transition system in Fig. 6 satisfies
the LTL formula �a. One can visually check that the abstract transition system does
not satisfy the given LTL formula. A run of the query on NuSMV outputs the path
ŝ5ŝ1ŝ5ŝ5ŝ5 . . . as a counterexample, which is indeed associated to an output trace that
invalidates the given LTL specification. Since the abstract transition system simulates
the original MPL system (2), this does not imply that the MPL system does not satisfy
the LTL formula �a.

In order to reach conclusive statements for the LTL formula �a over the MPL
system, we examine whether the abstract transition system in Fig. 7, a bisimulation
of the concrete MPL system, satisfies the formula. One can see that the abstract tran-
sition system satisfies the LTL formula, as confirmed by a NuSMV call. We conclude
that the original MPL system (2) satisfies the LTL formula �a. ut

Implementation In VeriSiMPL 2, a JAVA class Ts2nusmv is implemented to trans-
late and write the abstract transition system as a NuSMV file. This class has no public
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member. The initialization of the class requires a list of the transitions between states,
the state labels, the initial abstract states, and the properties to be verified, expressed
as LTL or CTL formulae. The initial abstract states are computed by the JAVA class
CalInitStates (cf. Section 3.4). After writing the data into a NuSMV file, Ts2nusmv
feeds this file into NuSMV and retrieves the verification results. Next, it displays the
results directly in the JAVA runtime terminal. ut

4 Tree-Based Finite Abstractions of Max-Plus-Linear Systems

As it will be clear in Section 5, the runtime bottleneck of the abstraction procedure
discussed in Section 3 lies in the calculation of transitions. We mitigate this limitation
by updating the main data structure (and related algorithms) from an array list to a
tree. Sections 4.1 and 4.2 discuss the usage of the tree data structure for partitioning
the state space and for computing the transitions, respectively. Since the determiniza-
tion procedure does not benefit in general from the tree structure, it is left to be the
same as in Section 3.3. Furthermore the procedure for generating a NuSMV file (cf.
Section 3.5) can still be used when the main data structure is a tree.

4.1 States: Partitioning Procedure

We discuss a partitioning procedure that leverages a tree structure. The procedure
constructs a tree representing a partition of the state space: the tree is called space-
partitioning tree.

The partitioning procedure consists of two steps. In the first step, we generate
a space-partitioning tree that represents the AP partition (cf. Section 4.1.1). In the
second step, we refine the obtained AP partition w.r.t. the AD partition (cf. Section
4.1.2) by increasing the height of the space-partitioning tree. The resulting space-
partitioning tree represents the Π0 partition.

4.1.1 AP Partition

Let us describe a procedure to generate a space-partitioning tree that represents an
AP partition. The procedure is a modification of the procedure described in Section
3.1.1: where in this section the AP partition is newly represented as a tree. The space-
partitioning tree associated with the AP partition has two levels: in the first level, a
root node represents the entire state space, i.e. Rn. Each block of the AP partition is
represented by a node in the second level, as a child of the root node.

Example 16 Let us revisit Example 9. Suppose that we have one atomic proposition
a, i.e. AP = {a}, where the set of states satisfying a is {x ∈ R2 : 0 ≤ x1− x2 < 3}.
The AP partition has three blocks B1 = {x ∈ R2 : x1− x2 < 0}, B2 = {x ∈ R2 : 0 ≤
x1−x2 < 3}, and B3 = {x∈R2 : x1−x2≥ 3}. The space-partitioning tree representing
the obtained AP partition is depicted in Fig. 8, where the nodes Ra, R¬a1, and R¬a2

represent B2, B1, and B3, respectively. ut
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Fig. 8 The space-partitioning tree representing the AP partition obtained in Example 16.

Implementation In VeriSiMPL 2, the procedure to generate a space-partitioning tree
representing an AP partition is implemented in the JAVA class PartAgainstAP tree.
This class has one public member tree corresponding to the space-partitioning tree
representing the AP partition. The initialization of the class requires a list of DBM,
where each DBM corresponds to the set of states satisfying an atomic proposition.
The implementation is similar with PartAgainstAP (cf. Section 3.1.1). In PartAgain-
stAP the AP partition is represented as an array list, whereas in PartAgainstAP tree
the AP partition is represented as a two-level tree. ut

4.1.2 Π0 Partition: Refinement of AP and AD Partitions

In this section we describe a procedure to refine the AP partition obtained in Section
4.1.1 w.r.t. an AD partition by increasing the height of the space-partitioning tree.
The procedure consists of two steps. In the first step, under each of the nodes in the
second level of the space-partitioning tree, we build a tree that corresponds to the
regions of the PWA system generated by an MPL system. Recall that the collection
of PWA regions is a cover of the state space and in general not a partition. Thus in a
second step, by leveraging the tree structure, we refine the PWA regions in order to
obtain a partition of the state space.

Let us focus on building a tree that corresponds to the PWA regions under each
node in the second level of the space-partitioning tree. We modify the backtracking
procedure to determine the PWA regions (cf. Section 2.2). In Section 2.2, every node
in the potential search tree (cf. Fig. 1) is associated with the PWA region (5). In
this section, every node in the potential search tree (cf. Fig. 1) is associated with the
intersection of PWA region (5) and the set of states represented by the considered
node in the second level of the space-partitioning tree. Every time we find a node
other than the root node in the potential search tree that represents a nonempty set of
states, we create a node in the space-partitioning tree representing the same states.

Example 17 We consider the MPL system (2) and a single atomic proposition a, i.e.
AP = {a}. The set of states satisfying a is {x ∈ R2 : 0 ≤ x1− x2 < 3}. The space-
partitioning tree associated with the AP partition is shown in Fig. 8. Let us construct
a tree under every node in the second level of the space-partitioning tree. First let
us consider the node Ra. The set of states represented by this node is {x ∈ R2 : 0 ≤
x1− x2 < 3} (cf. Example 16). Next we traverse the potential search tree (cf. Fig. 1)
in a depth-first manner:
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1. Root node in the potential search tree represents Rn ∩{x ∈ R2 : 0 ≤ x1− x2 <
3} = {x ∈ R2 : 0 ≤ x1− x2 < 3}. Although this node represents a nonempty set
of states, we do not create a node in the space-partitioning tree because this is a
root node in the potential search tree. We continue to the leftmost child of the root
node in the potential search tree.

2. Node R(1) in the potential search tree represents {x ∈ R2 : x1− x2 ≥ 3}∩ {x ∈
R2 : 0 ≤ x1− x2 < 3} = /0. Since R(1) represents the empty set, according to the
backtracking procedure (cf. Section 2.2), there is no need to consider R(1,1) and
R(1,2). We continue to the next child of the root node in the potential search tree.

3. Node R(2) in the potential search tree represents {x∈R2 : x1−x2 ≤ 3}∩{x∈R2 :
0≤ x1−x2 < 3}= {x ∈R2 : 0≤ x1−x2 < 3}. Since R(2) represents a nonempty
set of states, we create a node Ra

(2) in the space-partitioning tree (cf. Fig. 9). Node
Ra
(2) is a child of Ra. Node Ra

(2) represents {x ∈ R2 : 0 ≤ x1− x2 < 3}. Then we
continue to the leftmost child of the node R(2) in the potential search tree.

4. Node R(2,1) in the potential search tree represents {x ∈ R2 : 0 ≤ x1− x2 ≤ 3}∩
{x ∈ R2 : 0≤ x1− x2 < 3}= {x ∈ R2 : 0≤ x1− x2 < 3}. Since R(2,1) represents
a nonempty set of states, we create a node Ra

(2,1) in the space-partitioning tree
(cf. Fig. 9). Node Ra

(2,1) is a child of Ra
(2). Node Ra

(2,1) represents {x ∈ R2 : 0 ≤
x1− x2 < 3}. Then we continue to the next child of the node R(2) in the potential
search tree.

5. Node R(2,2) in the potential search tree represents {x ∈ R2 : x1− x2 ≤ 0}∩{x ∈
R2 : 0≤ x1−x2 < 3}= {x∈R2 : x1−x2 = 0}. Since R(2,2) represents a nonempty
set of states, we create a node Ra

(2,2) in the space-partitioning tree (cf. Fig. 9). Node
Ra
(2,2) is a child of Ra

(2). Node Ra
(2,2) represents {x ∈ R2 : x1− x2 = 0}.

A similar procedure can be applied to other nodes in the second level of the space-
partitioning tree. Skipping the computational details, after applying the procedure to
all nodes in the second level of the space-partitioning tree, we obtain the tree shown
in Fig. 9. The set of states represented by R¬a1

(2) , R¬a1
(2,2), R¬a2

(1) , R¬a2
(1,1), R¬a2

(2) , and R¬a2
(2,1)

is {x ∈ R2 : x1− x2 < 0}, {x ∈ R2 : x1− x2 < 0}, {x ∈ R2 : x1− x2 ≥ 3}, {x ∈ R2 :
x1−x2 ≥ 3}, {x∈R2 : x1−x2 = 3}, and {x∈R2 : x1−x2 = 3}, respectively. Observe
that the tree in Fig. 9 is not a space-partitioning tree because the sets represented by
R¬a2
(1) and R¬a2

(2) overlap. ut

The next step is to refine the PWA regions by using the generated tree structure.
The refinement procedure traverses the tree obtained in the first step in a breadth-
first manner. For each internal node, we check whether the states represented by the
children of the internal node form a partition of the states represented by the internal
node. If the states represented by the children are overlapping, we remove the over-
lapped region from the states represented by the nodes with lower index and their
descendant (cf. Algorithm 2).

Example 18 Let us refine the PWA regions associated with the tree constructed in
Example 17 (cf. Fig. 9). The refinement procedure traverses the internal nodes of the
tree in a breadth-first way:
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R2

R
¬a2

R
¬a2

(2)

R
¬a2

(2,1)

R
¬a2

(1)
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(1,1)

R
¬a1

R
¬a1

(2)

R
¬a1

(2,2)

R
a

R
a

(2)

R
a

(2,2)R
a

(2,1)

Fig. 9 The tree obtained in Examples 17 and 18. The tree obtained in Example 17 is not a space-
partitioning tree, whereas the tree obtained in Example 18 is a space-partitioning tree.

1. Root node: since the states represented by Ra, R¬a1, and R¬a2 are a partition of
R2, we do not do anything.

2. Nodes Ra and R¬a1: since these nodes have one child, the states represented by
their child cannot overlap. We continue to the next node.

3. Node R¬a2: the states represented by R¬a2, R¬a2
(1) , and R¬a2

(2) are {x∈R2 : x1−x2 ≥
3}, {x ∈ R2 : x1− x2 ≥ 3}, and {x ∈ R2 : x1− x2 = 3}, respectively. Notice that
the states represented by R¬a2

(1) overlap with the states represented by R¬a2
(2) . We

remove the overlapping region {x ∈ R2 : x1− x2 = 3} from states represented by
R¬a2
(1) and R¬a2

(1,1). The states represented by both R¬a2
(1) and R¬a2

(1,1) become {x ∈ R2 :
x1− x2 > 3}.

4. Node Ra
(2): the states represented by Ra

(2), Ra
(2,1), and Ra

(2,2) are {x ∈ R2 : 0 ≤
x1−x2 < 3}, {x ∈R2 : 0≤ x1−x2 < 3}, and {x ∈R2 : x1−x2 = 0}, respectively.
Notice that the states represented by Ra

(2,1) overlap with the states represented
by Ra

(2,2). We remove the overlapping region {x ∈ R2 : x1− x2 = 0} from states
represented by Ra

(2,1). The states represented by Ra
(2,1) become {x ∈R2 : 0 < x1−

x2 < 3}.
5. Nodes R¬a1

(2) , R¬a2
(1) , and R¬a2

(2) : these nodes have one child, thus their children can-
not overlap.

The states represented by each node in the space-partitioning tree (cf. Fig. 9) after the
refinement procedure are summarized in Table 5. ut

Implementation In VeriSiMPL 2, the procedure to determine the Π0 partition by us-
ing a tree structure is implemented in the JAVA class Maxpl2ts part tree. This class
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Table 5 The set of states represented by each node in the space-partitioning tree (cf. Fig. 9) after the
refinement (first and second columns). The third column represents the abstract state associated with the
concrete states represented by leaf nodes, according to Example 11.

Root node R2

Node Ra {x ∈ R2 : 0≤ x1− x2 < 3}
Node R¬a1 {x ∈ R2 : x1− x2 < 0}
Node R¬a2 {x ∈ R2 : x1− x2 ≥ 3}
Node Ra

(2) {x ∈ R2 : 0≤ x1− x2 < 3}
Node R¬a1

(2) {x ∈ R2 : x1− x2 < 0}
Node R¬a2

(1) {x ∈ R2 : x1− x2 > 3}
Node R¬a2

(2) {x ∈ R2 : x1− x2 = 3}
Node Ra

(2,1) {x ∈ R2 : 0 < x1− x2 < 3} ŝ5

Node Ra
(2,2) {x ∈ R2 : x1− x2 = 0} ŝ2

Node R¬a1
(2,2) {x ∈ R2 : x1− x2 < 0} ŝ1

Node R¬a2
(1,1) {x ∈ R2 : x1− x2 > 3} ŝ3

Node R¬a2
(2,1) {x ∈ R2 : x1− x2 = 3} ŝ4

has 7 public members A, B, ds, flag, Nr, total, tree. The space-partitioning tree is
stored in the public member tree. The other public members are needed to construct
the space-partitioning tree. This class requires a state matrix and a space-partitioning
tree associated with the AP partition (cf. Section 4.1.1) for initialization. The pro-
cedure to construct a tree that corresponds to PWA regions under each node in the
second level of the space-partitioning tree is implemented as two recursive func-
tions loop and recursive using the depth-first approach. The tree-based refinement
procedure is implemented as a recursive function refineTree using the breadth-first
approach. ut

4.2 Transitions: One-Step Reachability

The advantage of using a tree structure, compared to a list, is the significant improve-
ment on the calculation time to generate the transitions in the abstract model. Using
a list as the data structure, to compute the transitions the procedure considers all the
pairs of blocks (cf. Algorithm 3), whereas applying a backtracking technique to the
space-partitioning tree, the procedure to compute the transitions skips many pairs of
blocks.

Let us discuss the procedure. For every leaf node of the space-partitioning tree,
the following steps are taken. First, we compute the image of the states represented by
the leaf node. Then the backtracking algorithm traverses the space-partitioning tree
recursively, starting from the root, in a depth-first order. At each node, the algorithm
checks whether the states represented by the node intersect with the image. If the
intersection is empty, the whole sub-tree rooted at the node is skipped (pruned).

Example 19 Consider the partition Π0 obtained in Example 18 and the abstraction
function in Table 5. Let us determine the outgoing transitions from the abstract state
ŝ1. The abstract state ŝ1 represents concrete states {x ∈ R2 : x1− x2 < 0}. The affine
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dynamics are x1(k) = x2(k−1)+5, x2(k) = x2(k−1)+3. Using the procedure dis-
cussed in Section 2.3.5, the image of the concrete states w.r.t. its affine dynamics is
{x ∈R2 : x1−x2 = 2}. Next we visit the space-partitioning tree in Fig. 9 by using the
depth-first order:

1. Root node: since the image has non-empty intersection with R2, we continue to
the leftmost child of the root node.

2. Node Ra: the image has non-empty intersection with the states represented by Ra.
The states represented by Ra are {x ∈R2 : 0≤ x1−x2 < 3}. Then we continue to
the child of node Ra.

3. Node Ra
(2): the image has non-empty intersection with the states represented by

Ra
(2). The states represented by Ra

(2) are {x ∈ R2 : 0 ≤ x1 − x2 < 3}. Then we
continue to the leftmost child of node Ra

(2).
4. Node Ra

(2,1): the image has non-empty intersection with the states represented by
Ra
(2,1). The states represented by Ra

(2,1) are {x ∈R2 : 0 < x1−x2 < 3}. Thus there
is a transition from ŝ1 to ŝ5 (cf. Table 5). Then we continue to the next child of
Ra
(2).

5. Node Ra
(2,2): the image has empty intersection with the states represented by

Ra
(2,2). The states represented by Ra

(2,2) are {x ∈ R2 : x1− x2 = 0}. Since Ra
(2,2)

is a leaf node, nothing is pruned. According to the depth-first order, we continue
with the middle child of the root node.

6. Node R¬a1: the image has empty intersection with the states represented by R¬a1.
The states represented by R¬a1 are {x ∈ R2 : x1− x2 < 0}. Thus we prune the
whole sub-tree rooted at R¬a1, i.e. we skip R¬a1

(2) and R¬a1
(2,2). Then we continue to

the rightmost child of the root node.
7. Node R¬a2: the image has empty intersection with the states represented by R¬a2.

The states represented by R¬a2 are {x ∈ R2 : x1− x2 ≥ 3}. Thus we prune the
whole sub-tree rooted at R¬a2, i.e. we skip R¬a2

(1) , R¬a2
(1,1), R¬a2

(2) , and R¬a2
(2,1).

In summary, there is one outgoing transition from ŝ1, which ends up in ŝ5. ut

Implementation In VeriSiMPL 2, the JAVA class Maxpl2ts trans tree is used to cal-
culate the transition relation between abstract states. Before computing transitions,
Maxpl2ts trans tree uses a depth-first function addNumber to add a unique number
no to each leaf node for identification. The function addNumber also generates dslist
that stores a list of the leaf nodes. Notice that dslist also represents the Π0 partition.
Next, the procedure to compute transitions is implemented as a recursive function
DepthFirstTree which is based on depth-first search. The function DepthFirstTree
takes one leaf node and the space-partitioning tree as parameters, and generates vari-
able list that represents leaf nodes that can be reached from the given leaf node in
one step. The variable list is a list containing the identity number of the leaf nodes.
Thus if the space-partitioning tree has m leaf nodes, DepthFirstTree will be run for m
times.

In order to determinize the abstract transition system, the generated partition dslist
and transition relation list can be fed to the JAVA class Maxpl2ts trans refine (cf.
Section 3.3). ut
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Table 6 Numerical benchmark for the list-based implementation in VeriSiMPL 2, versus the earlier
VeriSiMPL software, over the abstraction procedure on MPL systems. Each entry represents mean and
maximal values over 10 independently generated experiments.

VeriSiMPL list implementation in VeriSiMPL 2

size of time for time for time for time for
MPL generation of generation of generation of generation of

system states transitions states transitions

3 {0.12;0.13}[sec] {0.05;0.06}[sec] {0.01;0.05}[sec] {0.00;0.01}[sec]
4 {0.24;0.26}[sec] {0.10;0.12}[sec] {0.01;0.06}[sec] {0.01;0.02}[sec]
5 {0.51;0.59}[sec] {0.23;0.29}[sec] {0.01;0.09}[sec] {0.01;0.04}[sec]
6 {1.12;1.42}[sec] {0.58;0.85}[sec] {0.02;0.10}[sec] {0.06;0.08}[sec]
7 {2.30;3.07}[sec] {1.55;2.61}[sec] {0.04;0.14}[sec] {0.30;0.48}[sec]
8 {6.07;6.86}[sec] {8.69;11.93}[sec] {0.15;0.22}[sec] {1.76;2.12}[sec]
9 {12.35;16.07}[sec] {26.39;44.75}[sec] {0.57;0.86}[sec] {8.86;13.37}[sec]

10 {42.49;61.30}[sec] {3.39;5.81}[min] {1.48;1.98}[sec] {27.75;40.87}[sec]
11 {1.64;3.48}[min] {9.89; 28.74}[min] {7.83;12.95}[sec] {3.11;5.29}[min]
12 — — {28.24;48.07}[sec] {13.55;24.55}[min]
13 — — {2.26;3.32}[min] {1.26;2.82}[hr]

5 Computational Benchmark

In order to showcase how the new implementation in VeriSiMPL 2 is more efficient
than the earlier one in VeriSiMPL, we compare the performance of both software in
a fair manner. We start comparing the list implementation in both VeriSiMPL 2 with
VeriSiMPL (cf. Section 5.1). Then we compare the list and tree implementations in
VeriSiMPL 2 (cf. Section 5.2).

In this benchmark, we compute the runtime required to obtain the abstraction
of an MPL system as a finite-state transition system, for increasing dimensions n of
the given MPL system (which is the number of the continuous variables). For each
given dimension n, we independently generate 10 row-finite matrices A, with 2 finite
elements placed at random in each row. The finite elements are integers generated at
random, and taking values between 1 and 100. In each dimension, we always use the
same 10 random matrices for all the implementations, namely VeriSiMPL, the list
implementation in VeriSiMPL 2, and the tree implementation in VeriSiMPL 2. The
experiments are run on an Intel R© CoreTM i5-3427U 1.80 GHz laptop with 4.00 GB
(2.17 GB available) of memory.

5.1 Comparison of VeriSiMPL with the List Implementation in VeriSiMPL 2

For dimension n ∈ {3, . . . ,13}, Table 6 reports the (mean and maximal values for
the) time needed to construct the abstract transition system within both VeriSiMPL
and VeriSiMPL 2. The abstraction procedure is divided into two successive steps:
generation of the abstract states and of the transitions.

As we can see from Table 6, for the generation time of states, VeriSiMPL 2 is
about 2 to 57 times faster than VeriSiMPL, depending on the dimension. As for the
generation time of transitions (representing the bottleneck of the overall procedure),
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Table 7 Numerical benchmark for list implementation against tree implementation in VeriSiMPL 2 for
abstraction procedure of MPL systems. Each entry represents mean and maximal values over 10 indepen-
dent experiments.

list implementation tree implementation

size of time for time for time for time for
MPL generation of generation of generation of generation of

system states transitions states transitions

3 {0.01;0.05}[sec] {0.00;0.01}[sec] {0.01;0.06}[sec] {0.01;0.02}[sec]
4 {0.01;0.06}[sec] {0.01;0.02}[sec] {0.01;0.08}[sec] {0.01;0.02}[sec]
5 {0.01;0.09}[sec] {0.01;0.04}[sec] {0.04;0.15}[sec] {0.04;0.13}[sec]
6 {0.02;0.10}[sec] {0.06;0.08}[sec] {0.06;0.11}[sec] {0.06;0.12}[sec]
7 {0.04;0.14}[sec] {0.30;0.48}[sec] {0.16;0.40}[sec] {0.09;0.15}[sec]
8 {0.15;0.22}[sec] {1.76;2.12}[sec] {0.51;0.67}[sec] {0.22;0.35}[sec]
9 {0.57;0.86}[sec] {8.86;13.37}[sec] {1.29;1.82}[sec] {0.98;1.06}[sec]

VeriSiMPL 2 is about 3 to 23 times faster than VeriSiMPL, depending on the dimen-
sion.

From dimension 12, we stop experimenting on VeriSiMPL because for dimen-
sion 11, the abstraction procedure already takes several minutes to calculate states
and about half an hour to calculate transitions. Also, the time difference will become
even more conspicuous as dimensionality increases. On the other hand, with an 11-
dimensional state matrix, VeriSiMPL 2 only takes an average of 7.83 seconds to gen-
erate the states and an average of 3.11 minutes to generate the transitions. Even with
a 13-dimensional state matrix, VeriSiMPL 2 only takes an average of 2.26 minutes to
generate the states and an average of 1.26 hours to generate the transitions.

Through the comparison with VeriSiMPL, VeriSiMPL 2 shows its remarkable im-
provement in speeding up the abstraction procedure of MPL systems. We can easily
notice that the generation time of transitions is still the bottleneck of the whole proce-
dure. For a 13-dimensional state matrix, while the generation of states only takes an
average of 2.26 minutes, the generation of transitions takes an average of 1.26 hours,
with a maximal value of 2.82 hours. In order to further speed up the calculation of
transitions, we have implemented the tree structure within the abstraction procedure.
The comparison between the list and tree implementations in VeriSiMPL 2 will be
discussed in the next section.

5.2 Comparison of List and Tree Implementations in VeriSiMPL 2

For dimension n ∈ {3, . . . ,9}, Table 7 reports the (mean and maximal values for the)
time needed to construct the abstract transition system using list and tree implemen-
tations in VeriSiMPL 2. The abstraction procedure comprises of two successive steps:
the generation of states and of transitions.

From Table 7, for the generation of states, the tree implementation is about 1
to 4 times slower than the list implementation. The reason for this outcome is that
we need to build a space-partitioning tree instead of a one-dimensional array list for
storing the partition sets of the state space. However, since the generation of states is



36 D. Adzkiya, Y. Zhang, A. Abate

not the bottleneck of the abstraction procedure, this outcome is not a decisive factor
for measuring the overall efficiency.

For the generation of transitions, when the dimension is less than or equal to 6,
the tree implementation is slightly slower than the list implementation. On the other
hand, when the dimension is greater than or equal to 7, the tree implementation is
about 3 to 13 times faster than the list implementation. For example in 9-dimensional
state matrices, the list implementation takes an average of 8.86 seconds to generate
transitions, whereas the tree implementation only takes an average of 0.98 seconds.
Furthermore the increase of runtime in the tree implementation is not noticeable when
the dimension increases. For instance the list implementation jumps from 0.08 sec-
onds (6-dimensional) to 0.48 seconds (7-dimensional), whereas the tree implementa-
tion only increases from 0.12 seconds to 0.15 seconds.

6 Conclusions and Future Work

This work has described a technique to generate abstractions of Max-Plus-Linear
(MPL) systems, characterized as finite-state transition systems. The procedure is
based on partitioning the state space and on the one-step dynamics to relate parti-
tioning regions. The resulting finite-state transition system has been shown to either
simulate or bisimulate the original MPL system.

The list-based and tree-based abstraction procedure have been implemented in
VeriSiMPL 2 and its performance has been tested on a numerical benchmark. By us-
ing a tree structure, the generation time of transitions reduces significantly compared
with the implementation using a list. However the tree-based procedure requires a
higher amount of memory because many operations (over the tree) are implemented
as recursive functions. Along this line, the authors are interested in rewriting the rel-
evant recursive functions as non-recursive ones. In order to further improve perfor-
mance of the abstraction procedure, the authors are also interested in 1) generating an
AD partition without refinement; 2) constructing a space-partitioning tree associated
with an AP partition such that each level of the tree corresponds to an atomic proposi-
tion; 3) directly incorporating binary decision diagrams in the abstraction procedure;
and 4) leveraging other techniques such as predicate abstractions and satisfiability
modulo theories.
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