
On Infinite Horizon Switched LQR Problems With

State and Control Constraints

Maximilian Balandata, Wei Zhanga, Alessandro Abateb

aDepartment of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA, USA
bDelft Center for Systems and Control

Technische Universiteit Delft, Delft, The Netherlands

Abstract

This paper studies the Discrete-Time Switched LQR problem over an infinite
time horizon, subject to polyhedral constraints on state and control inputs.
Specifically, we aim to find an infinite-horizon hybrid-control sequence, i.e., a
sequence of continuous and discrete (switching) control inputs, that minimizes
an infinite-horizon quadratic cost function, subject to polyhedral constraints on
state and (continuous) control input. The overall constrained, infinite-horizon
problem is split into two subproblems: (i) an unconstrained, infinite-horizon
problem and (ii) a constrained, finite-horizon one. We derive a stationary sub-
optimal policy for problem (i) with analytical bounds on its optimality, and de-
velop a novel formulation of problem (ii) as a Mixed-Integer Quadratic Program.
By introducing the concept of a safe set, the solutions of the two subproblems
are combined to achieve the overall control objective. Through the connection
between (i) and (ii) it is shown that, by proper choice of the design parameters,
the error of the overall suboptimal solution can be made arbitrarily small. The
approach is tested on a numerical example.

Keywords: LQR, Discrete-Time Switched and Hybrid Systems, Infinite
Horizon Constrained Optimal Control, Suboptimality

1. Introduction

Among the template problems in optimal control, the Linear Quadratic Reg-
ulator (LQR) is a fundamental one. The study of this problem in a discrete-
time framework has an established and well known history, which in the recent
past has witnessed enticing extensions to models subject to hard constraints
on the states and control inputs [4, 9, 13, 18, 19, 20, 23, 25]. In addition, due
to the recent popularity of switched and hybrid systems, an extension of the
LQR problem to Discrete-Time Switched Linear Systems (DSLS), referred to as
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the Discrete-Time Switched LQR (DSLQR) problem, has also been thoroughly
studied [16, 28, 29]. In particular, a numerical relaxation framework has been
introduced in [28], which allows to efficiently solve a DSLQR problem with guar-
anteed suboptimal performance. However, one of the main restrictions of this
line of work is that it deals exclusively with unconstrained DSLS.

The focus of this paper is on the Discrete-Time Constrained Switched LQR
(DCSLQR) problem over an infinite horizon. Specifically, we aim to find an
infinite-horizon hybrid-control sequence, i.e., a sequence of continuous and dis-
crete (switching) control inputs, that minimizes an infinite-horizon quadratic
cost function, subject to polyhedral constraints on state and (continuous) con-
trol input. The challenges to solve this problem include the discrete nature of
the switching control sequence, the non-trivial control and state constraints,
the infinite horizon length and the nonlinear performance index. To the au-
thors’ knowledge, previous studies have only considered problems exhibiting
some of these challenges, but not all of them combined. The unconstrained
Switched LQR problem has been studied in [27]. The constrained LQR prob-
lem for non-switched linear system has been addressed in [4, 9, 23, 25]. Un-
der linear performance index, an algorithm has been developed in [2] to solve
the constrained optimal control problem for Piecewise Affine (PWA) Systems;
however, its extension to a quadratic performance index does not appear to
be straightforward. Quadratic optimal control of PWA systems has also been
studied extensively [3, 7, 24]; however most existing algorithms can only handle
finite-horizon problems.

The main contribution of this work is the development of a framework to
provide bounds on the suboptimal solution of the infinite-horizon DCSLQR
problem. Motivated by the solution of the classical (non-hybrid) constrained
LQR problem [23] and closely related Model Predictive Control (MPC) ap-
proaches [18, 19, 20], we decompose the overall problem into the following two
related subproblems:

(i) The first subproblem is an unconstrained, infinite-horizon DSLQR prob-
lem, whose solution can be computed efficiently using the numerical relax-
ation framework in [28]. The obtained suboptimal solution is a stationary
hybrid-control law, characterized by a set of positive semidefinite matrices.

(ii) The second subproblem corresponds to the solution of a Constrained,
Finite-Time, Optimal Hybrid Control (CFTOHC) problem, which can
be formulated as a Mixed Integer Quadratic Program (MIQP) and solved
with reasonable efficiency using available optimization algorithms.

The above two subproblems are connected through a so-called safe set, that
is a set of states for which the solution to the unconstrained DSLQR problem
is guaranteed to be always feasible (with regards to the state and control con-
straints). We show that if the unconstrained DSLS model is stabilizable, then
for reasonable constraints a non-trivial safe set always exists. Moreover, we
show that in case the constrained system is stabilizable from the given initial
condition, then with a sufficiently large horizon, the solution of the CFTOHC
problem (ii) can always drive the state trajectory into the safe set, from where
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the solution of the (unconstrained) DSLQR problem (i) is feasible and optimal.
Thus, by concatenating the solutions of the first and of the second subprob-
lems, we obtain the solution to the overall infinite-horizon DCSLQR problem.
Though the idea underlying this method has previously appeared in [9, 25], the
authors are not aware of its application to Switched Linear Systems.

We argue that it is generally very hard to determine the minimal length of the
time horizon of the CFTOHC problem a priori, and instead present a decidable
heuristic procedure to find a suitable horizon. This approach is similar in nature
to the one presented in [20, 23, 25] and is based on the choice of a terminal
cost function in combination with an iterative procedure for finding a suitable
horizon length for the finite-horizon problem. In doing so, it distinguishes itself
from MPC-like approaches that impose terminal state constraints on the finite-
horizon problem [18, 21].

Based on the above ideas, an algorithm is developed to solve the infinite-
horizon DCSLQR problem with guaranteed suboptimal performance. We will
show that the suboptimality error can be made arbitrarily small through proper
choice of the design parameters. The performance of the algorithm is also tested
and discussed with a numerical example.

This paper is structured as follows. The infinite-horizon DCSLQR problem
is stated in section 2. Section 3 deals with the (unconstrained) DSLQR problem
(i). The notion of a safe set is introduced in section 4, and two approaches to
compute such a set are discussed. Section 5 completes the solution of the overall
problem by computing the optimal finite-horizon hybrid-control sequence that
drives the system state into the safe set, starting from the given initial condi-
tion. Based on an MIQP formulation, an algorithm is developed to solve the
associated CFTOHC problem (ii), which is tested on a case study in Section 6.

Notation: In this paper, n, p and M are some arbitrary finite positive
integers; Z+ denotes the set of nonnegative integers, M, {1, . . . ,M} is the set
of subsystem indices, In is the n×n identity matrix, 0 denotes both scalar zero
and the zero matrix of appropriate dimension; ‖ · ‖ represents the standard
Euclidean norm in R

n, and the induced norm over n-dim. matrices; | · | denotes
the cardinality of a given set; A denotes the set of positive semidefinite (p.s.d.)
matrices; 2A is the power set of A; λmin(·) and λmax(·) characterize the smallest
and the largest eigenvalues, respectively, of a given positive semidefinite (p.s.d.)
matrix. The variable z denotes a generic initial state of system (1).

2. Problem Formulation

Consider the Discrete-Time Switched Linear System (DSLS) described by:

xt+1 = Avt
xt +Bvt

ut (1)

subject to the constraints

xt ∈ X , ut ∈ U , ∀ t ∈ Z
+, (2)
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where xt ∈ R
n is the continuous state, ut ∈ R

p is the continuous control input
and vt ∈ M is the discrete control input that determines the discrete mode at
time t. The sets X and U are polyhedra that contain the origin in their interiors.
The sequence of pairs ψ∞ = {(ut, vt)}

∞
t=0 is called the hybrid-control sequence.

For each i ∈ M, Ai and Bi are constant matrices of appropriate dimensions and
the pair (Ai, Bi) denotes a subsystem. The switched system is time invariant

in the sense that the set of available subsystems {(Ai, Bi)}
M
i=1 is independent of

time. We assume no constraints on the switchings, i.e. at any time instant the
system can switch to any mode.

For each t ∈ Z
+, denote by ξt , (µt, νt) : R

n 7→ R
p ×M the (state-feedback)

hybrid-control law of system (1), where µt : R
n 7→R

p is called the (state-feedback)
continuous-control law and νt : R

n 7→M is called the (state-feedback) switching-
control law. A sequence of hybrid-control laws constitutes an infinite horizon
hybrid-control policy π∞ = {ξ0, ξ1, ξ2, . . . }. A policy is called stationary if it
consists of the same control law at all time, i.e., ξt = ξ for all t ∈ Z

+. When a
policy π∞ is applied to system (1), the closed-loop dynamics of the controlled
system are given by:

xt+1 = Aνt(xt)xt +Bνt(xt)µt (xt) . (3)

Denote by π∞(z) the hybrid-control sequence generated by the policy π∞ with
initial condition x0 = z, i.e., π∞(z) = {(µt(xt), νt(xt))}t∈Z+ where xt is the
solution of (3) driven by π∞ with x0 = z. Define the running cost function as:

L(x, u, v) = xTQvx+ uTRvu, ∀x ∈ X , u ∈ U , v ∈ M,

where Qv =Qv
T ≻ 0 and Rv =Rv

T ≻ 0 be the weighting matrices for the state
and the continuous-control input in subsystem v ∈ M. Each hybrid-control
sequence ψ∞={(ut, vt)}

∞
t=0 is associated with a quadratic cost function:

J∞ (z, ψ∞) =

∞∑

t=0

L(xt, ut, vt),

where xt is the closed-loop trajectory controlled by ψ∞, with initial condition
x0 = z ∈ R

n. Our objective is to find the optimal hybrid-control sequence that
solves the following constrained optimal control problem:

J∗
∞ (z) =







inf
ut∈U,vt∈M

t≥0

J∞ (z, ψ∞)

s.t. (1) and (2) with x0 = z.

(4)

The above problem is an extension of the classical discrete-time LQR controller
synthesis to Switched Linear Systems (SLS) subject to polyhedral input and
state constraints, and will thus be referred to as the Discrete-Time Constrained
Switched LQR problem (DCSLQR). Because of the complexity of the problem
at hand, we do not require to find the optimal policy π∗

∞ for all initial states
z ∈ X , but rather the control sequence ψ∗

∞ for a given initial condition.
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Clearly, if the unconstrained system (1) is not stabilizable, J∞(x0, ψ∞) might
be infinite for all possible control sequences ψ∞. Therefore, stabilizability of (1)
is a minimal requirement for the well-posedness of Problem (4).

Definition 1 (Exponential stabilizability). The unconstrained system (1)
is called exponentially stabilizable if there exists a policy π∞ and constants
a ≥ 1 and 0 < c < 1 such that the closed-loop trajectory under the policy π∞
starting from any initial state x0=z satisfies ‖xt‖

2 ≤ act‖z‖2, ∀t ∈ Z
+.

The following assumption is made throughout the paper:

(A1) The unconstrained SLS (1) is exponentially stabilizable.

Remark 1. The above assumption trivially holds true if one of the uncon-
strained subsystems is stabilizable. Furthermore, even in case none of the sub-
systems is stabilizable, it is still possible for the overall unconstrained SLS to be
exponentially stabilizable (see Section 6 and [28]). In such cases, the assumption
can be efficiently verified using the approach developed in [28].

3. The Unconstrained Hybrid Control Problem

In this section, we recall some recent results on the Discrete-Time Switched
LQR (DSLQR) problem [29], which can be viewed as a special case of the
DCSLQR problem with the trivial constraints X = R

n, U = R
p. For each

k ∈ Z+, the k-horizon value function of the DSLQR problem is defined as:

J∗
k,uc(z) =







inf
ut∈R

p,vt∈M

0≤t≤k−1

∑k−1
t=0 L(xt, ut, vt)

s.t. (1) with x0 = z.

(5)

An important feature of the DSLQR problem is that its finite-horizon value
function can be characterized analytically. For each i ∈ M, define the Riccati

Mapping ρi : A 7→ A as: ρi(P ) = Qi+A
T
i PAi−A

T
i PBi

(
Ri +BT

i PBi

)−1
BT

i PAi.
The mapping ρM : 2A 7→ 2A defined by: ρM(H) = {ρi(P ), i ∈ M, P ∈ H} is
called the Switched Riccati Mapping (SRM), and the sequence of sets {Hk}
generated iteratively according to: Hk+1 = ρM(Hk) with H0 = {0}, is called
the Switched Riccati Sets (SRS). It was shown in [29] that the k-horizon value
function J∗

k,uc can be characterized exactly by the SRS Hk:

J∗
k,uc(z) = min

P∈Hk

zTPz, ∀ z ∈ R
n. (6)

The goal of the DSLQR problem is to find an infinite-horizon policy whose
closed-loop performance achieves the infinite-horizon optimal cost J∗

∞,uc, which
is the limit of J∗

k,uc as k → ∞. To deal with the exponential growth of |Hk|, we
recall a numerical relaxation scheme developed in [27]. A subset Hǫ

k ⊆ Hk is
called ǫ-equivalent toHk if minP∈Hǫ

k
ziPz ≤ minP∈Hk

zTPz+ǫ‖z‖2. A sufficient
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condition for this to hold is that for any G ∈ Hk \H
ǫ
k, there exists nonnegative

constants {αP }P∈Hǫ
k
, such that

∑

P∈Hǫ
k
αP = 1 and

∑

P∈Hǫ
k
αPP ≤ G + ǫIn.

For given Hk, H
ǫ
k and G ∈ Hk \H

ǫ
k, the above condition can be verified through

convex optimization. This leads to an efficient way to compute an ǫ-equivalent
subset of Hk by starting from Hǫ

k = ∅ and gradually adding matrices from
Hk until the convex condition is verified. We denote by ESǫ(·) an algorithm
implementing this procedure. The algorithm can be applied on the output of
each SRM, resulting in the so-called ǫ-relaxed SRS:

Hǫ
k+1 = ESǫ (ρM(H

ǫ
k)) , with Hǫ

0 = H0. (7)

As in (6), one can define the approximate value function based on the SRS as

Jǫ
k,uc(z) = min

P∈Hǫ
k

zTPz, ∀z ∈ R
n. (8)

The relaxed SRS Hǫ
k defines a hybrid-control law ξǫk,uc given by:

ξǫk,uc(z) ,
(
µǫ
k,uc(z), ν

ǫ
k,uc(z)

)
=

(

−Kiǫ
k
(z) (P

ǫ
k(z)) z , i

ǫ
k(z)

)

,

with (P ǫ
k(z), i

ǫ
k(z)) = argmin

P∈Hǫ
k
,i∈M

zT ρi(P )z,
(9)

where K·(·) is the Kalman gain defined by:

Ki(P ) , (Ri +BT
i PBi)

−1BT
i PAi, i ∈ M, P ∈ A. (10)

Applying ξǫk,uc at each time step yields a stationary control policy:

πǫ,k
∞,uc :=

{
ξǫk,uc, ξ

ǫ
k,uc, . . .

}
. (11)

A sufficient condition for the closed-loop stability under πk,ǫ
∞,uc is that: ∀P ∈ Hǫ

k,
there exists nonnegative constants {αG}G∈ρM(Hǫ

k
), such that

∑

G

αG = 1, and P ≻
∑

G∈ρM(Hǫ
k
)

αG (G+ (κ1 − κ∗)In) , (12)

where κ∗ = mini∈M,P∈Hǫ
k
λmin

(
Ki(P )

TRiKi(P ) +Qi

)
. Checking condition (12)

can be formulated as a LMI feasibility problem [8]. It was proved in [27] that
under Assumption (A1), there always exist constants k < ∞ and ǫ > 0 such
that πk,ǫ

∞,uc is exponentially stabilizing. In that case, the cost associated with

πk,ǫ
∞,uc is also bounded. These results allow us to construct a suboptimal policy

in a systematic way as described in Algorithm 1. The constants ǫmin and kmax

in the algorithm are used to provide a finite upper bound on the time dedicated
to the computation of such a policy. Algorithm 1 returns a relaxed SRS that
characterizes a suboptimal policy independent of the initial state z of the sys-
tem. Both the relaxation algorithm ESǫ(·) and the algorithm for checking the
condition in (12) involve only simple convex optimization programs. Experience
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Algorithm 1 (Unconstrained Suboptimal Policy)

Input: ǫ, ǫmin and kmax

1: set Hǫ
0 = {0}.

2: while ǫ > ǫmin do
3: for k = 1 to kmax do
4: Hǫ

k = ESǫ(ρM(H
ǫ
k))

5: if Hǫ
k satisfies the condition in (12) then

6: stop and return the set Hǫ
k which characterizes the policy πǫ,k

∞,uc

7: end if
8: end for
9: reduce ǫ

10: end while

shows that, although the size of the exact SRS grows exponentially fast, the size
of the relaxed SRS Hǫ

k usually grows slowly and saturates at a small number,
even in high-dimensional state spaces [29]. Therefore, Algorithm 1 can often be
carried out efficiently.

For the remainder of this paper, we shall denote by Hǫ
k the relaxed SRS

returned by Algorithm 1, whose corresponding policy πǫ,k
∞,uc is exponentially

stabilizing with a performance upper bound given in Theorem 1.

Theorem 1 ([27]). Let Hǫ
k be the relaxed SRS returned by Algorithm 1, and let

πǫ,k
∞,uc be the corresponding control policy. Then the closed-loop system driven

by πǫ,k
∞,uc is exponentially stable and there exist constants η1 < ∞, η2 < ∞

and γ < 1 such that Jǫ
k,uc(z) ≤ J∗

∞,uc(z) + η1γ
kǫ‖z‖2, and J∞(z, πǫ,k

∞,uc(z)) ≤

J∗
∞,uc(z) + η2γ

kǫ‖z‖2, ∀z ∈ R
n.

4. Safe Sets and Their Computation

To handle non-trivial constraints, we will in this section introduce and study
the concept of safe sets. Sets of this kind play a crucial role in solving the
DCSLQR problem, as will be further discussed in Section 5.2.

4.1. Safe Sets

We define a safe set of an unconstrained, infinite-horizon, hybrid-control
policy as a set of initial states for which the closed-loop system driven by this
policy satisfies the constraints (2) for all t ≥ 0. The largest of these safe sets is
the maximal invariant set of the closed-loop system.

Definition 2 (Maximal Invariant Set). For an arbitrary infinite-horizon pol-
icy π∞ = {(µt, νt)}, t ∈ Z

+, the associated maximal invariant set X (π∞) is:

X (π∞) =
{

x0 ∈ R
n
∣
∣ xt ∈ X , µt (xt) ∈ U ,

xt+1 = Aνt(xt)xt +Bνt(xt)µt (xt) , ∀ t ∈ Z
+
}

.
(13)
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With the above definition, given a policy π, if xt0 ∈ X (π) for some t0 ∈ Z
+, then

xt ∈ X (π) for all t ≥ t0. Other authors have referred to (13) as the maximal
output admissible set [11]. In the following, denote X∞,uc = X (πǫ,k

∞,uc). Note
that any arbitrarily shaped subset X∞,uc ⊂ X∞,uc is a safe set, i.e. the closed-
loop trajectory starting from any point in X∞,uc will stay inside X∞,uc for all
time and thus never violate the constraints. Consequently, while safe sets must
be “strongly returnable” [10], they need not be invariant.

Since an exact characterization of X∞,uc is generally much harder to obtain
than in the non-switched case, the rest of this subsection is devoted to the
computation of a subset X∞,uc ⊂ X∞,uc. As will be shown in Section 5.2, this
subset will allow to solve a general DCSLQR problem by concatenating the
solution of a finite-horizon constrained optimization problem and the infinite-
horizon unconstrained suboptimal policy πǫ,k

∞,uc.

4.2. Analytical Characterization of a Safe Set

Proposition 1. Under Assumption (A1), there exists a constant r∗ > 0 such
that the set

X∞,uc = {z ∈ R
n | ||z|| ≤ r∗} (14)

is a subset of X∞,uc.

proof. Proposition 1 can be viewed as an application of the more general result
proved in [10]. We still give a proof here, since it directly leads to a possible
way of determining r∗ of a safe ball B(r∗). To this end, let r0 be the radius of
the largest Euclidean ball B(r0) centered at the origin that is contained in X ,
i.e. r0 = max{r : ‖z‖ ≤ r ⇒ z ∈ X}. Since we assume 0 ∈ int(X ), we have
r0 > 0. By Theorem 1, πǫ,k

∞,uc is exponentially stabilizing, thus the associated
closed-loop trajectory satisfies ||xt|| ≤ c1 ||x0|| , ∀ t ≥ 0, for some finite positive
constant c1. From (9), we know ||ut|| = ||Ki(P )xt|| ≤ c2 ||xt|| , ∀ t ∈ Z

+, where
c2 = maxi∈M,P∈Hǫ

k
{‖(Ki(P ))‖}. Let X∞,uc be the Euclidean ball B(r∗), with

r∗ = min
{

r0
c1
, r0
c1c2

}
, centered at the origin. The values of r0, c1 and c2 are all

finite and thus is r∗. It can be easily seen that for any initial state in X∞,uc, the
closed-loop trajectory and the corresponding continuous-control sequence will
always satisfy constraints (2). �

Following the above proof, the characterization of the safe subset X∞,uc requires
estimating three constants r0, c1 and c2. Estimating r0 given the set X is trivial.
The estimation of c1 and c2 can be carried out after obtaining the relaxed
SRS Hǫ

k using Algorithm 1. Therefore, the safe subset X∞,uc in (14) can be
computed in a state space of arbitrary dimension. However, this approach may
be overly conservative, resulting in a set X∞,uc that is much smaller than the
maximal invariant set X∞,uc. We next discuss a computational approach which
can be used to under-approximate X∞,uc in lower-dimensional state spaces.
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4.3. Computational Approach

The most straightforward way to obtain a safe set X∞,uc is to approximately
compute a positive invariant set as in Definition 2. The computation of invariant
sets can be reframed as the dual of a reachability problem and is reminiscent
of the seminal work in [5, 12]. Different approaches have been developed in the
literature to compute reachable sets for dynamical systems, such as polytopic
or zonotopic methods, ellipsoidal methods, level-set methods and others [15].
In [22], a technique is proposed to characterize and compute positively invariant
and control invariant sets of PWA models through a terminating algorithm. In
our case, there are two main issues preventing the direct use of the mentioned
approaches. The first one is the implicit form of the control law (9), while most
algorithms assume the closed-loop dynamics to be available in an explicit form.
Furthermore, it turns out that the decision regions associated with the control
law (9), i.e. the regions in the state space that yield the same pair (P ǫ

k , i
ǫ
k),

are possibly non-convex second-order cones that can not be approximated by
polyhedra or ellipsoids [29].

One immediate approach for computing a safe set is by approximation via
gridding of the state space, as implemented in Algorithm 2 (for the proposed
algorithm, X is assumed to be bounded). Let GX be the set of all points that
constitute a uniform grid with step size δgrid over the smallest hyperrectangle
X in the state space that contains the constraint polyhedron X . Let G describe
the region in the state space covered by the gridpoints gi in GX . A mapped
state z is regarded as contained in G if ming∈G

X
‖z − g‖∞ ≤ δgrid/2.

Algorithm 2 (Grid-based computation of X∞,uc)

Input: ξǫk,uc = {(µǫ
k,uc, ν

ǫ
k,uc)}, X , U , GX

1: set G0 =
{

gi ∈ GX | gi ∈ X , µǫ
k,uc(gi) ∈ U

}

2: Gk+1 =
{

gi ∈ Gk | Aνǫ
k,uc

(gi)gi +Bνǫ
k,uc

(gi)µ
ǫ
k,uc(gi) ∈ Gk

}

3: if Gk+1 = Gk then
4: return GX∞,uc

= Gk+1

5: else
6: go to 2
7: end if

Algorithm 2 was implemented in MATLAB and tested for state dimensions
n≤4. In principle, it also works in higher dimensions. However, the computa-
tional complexity grows exponentially with the state dimension. This “curse of
dimensionality” prohibits dense gridding for higher dimensional problems.

Remark 2. We do not necessarily have to use the obtained (possibly com-
plex) approximation of X∞,uc. The gridded approximation GX∞,uc

can again
be under-approximated by a safe set of simpler shape, e.g. a set of polytopes or
ellipsoids. This minimizes the effort of checking whether a given state z is con-
tained in X∞,uc. Also, it would allow to explicitly invoke a terminal constraint
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(see Remark 3 for more on this). However, a smaller safe set X∞,uc will at
the same time negatively impact the minimal finite time horizon of the optimal
control problem introduced in Section 5.2.

5. Solution to a General DCSLQR Problem

In this section, we propose a solution procedure for the general DCSLQR
problem with nontrivial constraints. The goal is to find an infinite-horizon
hybrid-control sequence for a given initial state z to achieve at least suboptimal
performance with respect to the cost function J∗

∞(z).

5.1. Stabilizable Set

The DCSLQR problem is meaningful only when the given initial state z
results in a finite cost J∗

∞(z). To characterize the set of such initial states, we
introduce the following:

Definition 3 (Stabilizable Set). The set defined by

S∞ =
{
z ∈ R

n
∣
∣ ∃ ψ∞ = {(ut, vt)}t∈Z+ such that

xt ∈ X , ut ∈ U and xt → 0 exponentially fast
}

is called the stabilizable set of system (1) subject to constraints (2), where xt is
the closed-loop trajectory driven by ψ∞ with initial state x0 = z.

As proved in [14], asymptotic stability is equivalent to exponential stability
for switched linear systems. Therefore, the stabilizable set defined in terms of
exponential stability actually characterizes all initial states that yield bounded
infinite-horizon costs.

For constrained LQR of linear systems (M=1), it is possible to compute the
stabilizable set S∞ for compact sets X and U [13]. This is achieved by combin-
ing multiparametric quadratic programming [4] with reachability analysis. The
obtained set S∞ is then given as a convex polyhedron. In principle, the same
idea also applies to SLS (M>1). However, if we wanted to generalize the algo-
rithmic approach from [13], in each step we would have to solve multiparametric
mixed-integer quadratic programs, for which the resulting state-space partitions
are no longer polyhedral partitions. See [6] for further details on this problem.

Despite the challenge mentioned above, an under-approximation of S∞ can
still be obtained using the algorithm presented in [13]. For each i ∈ M, let Si

∞ be
the stabilizable set associated with subsystem (Ai, Bi) subject to constraints (2).
Since one can stay in one mode throughout the entire horizon, the following
proposition holds true.

Proposition 2. The set S∞,
⋃

i∈M
Si
∞ is a subset of S∞.

For each mode i ∈ M, the set Si
∞ is nontrivial (Si

∞ 6= {0}) if and only if the
unconstrained subsystem (Ai, Bi) is stabilizable. Thus, S∞ is nontrivial if at
least one unconstrained subsystem is stabilizable.
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5.2. DCSLQR Formulation as an Mixed-Integer Quadratic Program

Following [9, 23], our strategy in solving the DCSLQR problem is to first
drive the system state into a safe set X∞,uc, and then use the stationary sub-

optimal infinite-horizon policy πǫ,k
∞,uc to further regulate the state towards the

origin. To this end, we introduce the following constrained finite-time optimal
hybrid control (CFTOHC) problem:

J∗
N (z;φ) =







min
(ut,vt)

{

φ(xN )+
∑N−1

t=0 L(xt, ut, vt)
}

,

s.t (1) and (2) with x0 = z ∈ S∞,
(15)

with the terminal cost function φ : X → R
+. Denote by xN |0 the state at

time t=N when system (1) is controlled by the solution of (15). The reason
for introducing the above optimization problem is that with a properly chosen
terminal cost function φ(·), the optimal cost J∗

N will coincide with the value
function J∗

∞ of the DCSLQR problem.

Theorem 2. If φ(·) = J∗
∞,uc(·) and xN |0 ∈ X∞,uc, then J

∗
N (z;φ) = J∗

∞(z).

proof. For each z ∈ X , define Γ(z) = {(u, v) ∈ U × M : Avz + Bvu ∈ X}.
By a standard result of dynamic programming, J∗

∞ must satisfy the Bellman
equation, namely, J∗

∞(z) = min(u,v)∈Γ(z) {L(z, u, v) + J∗
∞(Avz +Bvu)}. The

result of Theorem 2 follows from applying the iteration N times and noticing
that J∗

∞,uc(xN |0) = J∗
∞(xN |0) for all xN |0 ∈ X∞,uc. �

The value of the setup of Problem (15), which is based on a terminal cost
function, is that by Theorem 1, the function J∗

∞,uc can be accurately approx-
imated by Jǫ

k,uc for large k and small ǫ. Thus, Jǫ
k,uc serves us as a local CLF

inside a safe subset X∞,uc. With φ(z) = Jǫ
k,uc(z) = minP∈Hǫ

k
zTPz, Prob-

lem (15) becomes:

J∗
N (z; Jǫ

k,uc) =







min
P∈Hǫ

k

{

min
(ut,vt)

[

xTNPxN+
∑N−1

t=0 L(xt, ut, vt)
]}

s.t (1) and (2) with x0 = z ∈ S∞.

(16)

The above formulation is obtained by first substituting φ(z) = minP∈Hǫ
k
zTPz

into (15) and then changing the order of the two minimizations. The change
on the order of the minimizations will not affect the solution because there are
only finitely many matrices in Hǫ

k. By Theorem 2, J∗
N (z; Jǫ

k,uc) will be close
to J∗

∞(z) if the controlled terminal state xN |0 is in X∞,uc. This can be always
guaranteed if N is chosen sufficiently large.

Theorem 3 (Existence of a finite time horizon). For every initial condi-
tion x0 = z ∈ S∞, there exists a finite N̂(z) such that for all N ≥ N̂(z), the
terminal state xN |0 of the closed-loop system controlled by the solution of (16)
resides inside X∞,uc.
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proof. By Definition 3, there exists a hybrid-control sequence that exponen-
tially stabilizes system (1) subject to constraints (2). This implies that the
optimal cost of Problem (16) satisfies J∗

N (z; Jǫ
k,uc) < C for all N ∈ Z

+ and
some C < ∞. Since Qi ≻ 0 for all i ∈ M, the controlled terminal state xN |0

must converge to zero and hence stay inside X∞,uc for all large N . �

For the case of linear systems (M=1) and compact sets X and U , it is possible
to compute N̂ for all z ∈ S∞ beforehand [13]. However, the issues mentioned
in Section 5.1 for the computation of a stabilizable set for SLS again limit the
application here. In [9], a method to estimate N̂ given an initial condition
x0 = z ∈ S∞ is developed. Unfortunately, this approach relies on convexity of
the stabilizable set, which is generally not given in the case of SLS.

In the following section, we therefore employ a straightforward approach
inspired by [23, 25]. Notice that the size of the safe set X∞,uc can have a

significant impact on the value of N̂ : the smaller X∞,uc, the longer it will take
to drive the trajectory xt inside this set. Hence, it is desirable to compute
an X∞,uc as large as possible. One contribution of this work is that we are able

to characterize the control policy πǫ,k
∞,uc by the set of p.s.d. matrices Hǫ

k. This
allows us to cast Problem (16) as a single augmented Mixed-Integer Quadratic
Program (MIQP) for a given initial state z and prediction horizon N . The
obtained MIQP can then be solved with reasonable efficiency using state-of-
the-art optimization software. We introduce the following short-hand notation:

X = {x0, x1, . . . , xN} X̄ = {x̄0, x̄1, . . . , x̄N} V = {v0, v1, . . . , vN−1}

U = {u0, u1, . . . , uN−1} Ū = {ū0, ū1, . . . , ūN−1}

Here, vt ∈ {0, 1}M are binary vectors for the mode selection input, xt ∈ R
n

and ut ∈ R
p are the state vectors and continuous input vectors with associated

slack variables x̄t ∈ R
n and ūt ∈ R

p, respectively. In addition, the binary vector

v(w) ∈ {0, 1}|H
ǫ
k| selects the p.s.d. matrices P (j), j = 1, . . . , |Hǫ

k|, for the |Hǫ
k|

different terminal weights and the slack variable w ∈ R
n represents the terminal

cost. With this notation, Problem (16) is equivalent to the following MIQP:

J∗
N (z; Jǫ

k,uc) = min
V, v(w),X, X̄,w,U, Ū

wTw +
N−1∑

t=0

(
x̄Tt x̄t + ūTt ūt

)

s.t. xt ∈ X , ut ∈ U , x0 = z

vt(i) = 1 ⇒







xt+1 = Aixt +Biut

x̄t = (Qi)
1
2 xt

ūt = (Ri)
1
2 ut

v(w)(j) = 1 ⇒ w = (P (j))
1
2 xN

vTt vt = 1, vTwvw = 1

(17)

In addition to the primary polyhedral constraints (2) on state and input,
in (17) we are also optimizing subject to logical constraints (indicated by “⇒”).
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One possibility to represent those logical constraints is the so-called “big M” for-
mulation [26]. For numerical stability, the slack variables x̄0, . . . , x̄N , ū0, . . . , ūN−1

and w have to be bounded explicitly. The polyhedral constraint xt ∈ X can
be expressed as Hxxt ≤ kx. Since we assume positive definiteness of all Qi,

the matrix (Qi)
1
2 is invertible and the computation of a constraint polytope

X̄ : Hx̄x̄t ≤ kx̄ is straightforward:

Hx(Qi)
− 1

2

︸ ︷︷ ︸

Hx̄

x̄t ≤ kx
︸︷︷︸

kx̄

.

For the bounds on the other slack variables ūt and w, the procedure is the same.

5.3. Overall Algorithm for DCSLQR

Theorem 3 guarantees that as N increases, the controlled terminal state
xN |0 associated with (16) eventually enters the safe subset X∞,uc. Then, a
suboptimal infinite-horizon control sequence for Problem (4) is given by

ψ∞ =
{
(û0, v̂0), . . . , (ûN−1, v̂N−1), π

ǫ,k
∞,uc(xN |0)

}
, (18)

where {(ût, v̂t)}0≤t<N denotes the solution to the optimization problem (16)
and πǫ,k

∞,uc(xN |0) denotes the infinite-horizon hybrid-control sequence generated

by the policy πǫ,k
∞,uc with initial state xN |0.

A general procedure for solving the DCSLQR problem (4) with initial condi-
tion x0 = z ∈ S∞ is summarized in Algorithm 3. The control sequence returned
by Algorithm 3 is guaranteed to be suboptimal in the sense that by choosing k
sufficiently large and ǫ sufficiently small, its performance can be made arbitrarily
close to the optimal one.

Algorithm 3 (Solution of DCSLQR Problem (4))

Input: x0 = z ∈ S∞, method for solving (17)
1: compute πǫ,k

∞,uc and the corresponding relaxed SRS Hǫ
k using Algorithm 1

2: compute X∞,uc using Theorem (1) or Algorithm 2
3: set N = 1
4: solve problem (16) with time horizon N
5: if xN |0 ∈ X∞,uc then
6: stop and return the control sequence as defined in (18)
7: else
8: set N = N + 1 and go to step 4
9: end if

Theorem 4. For any δ>0 and z ∈ S∞, there exists a k<∞ and an ǫ>0 such
that the control sequence ψ∞ returned by Algorithm 3 satisfies

J∞(z, ψ∞) ≤ J∗
∞(z) + δ.
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proof. Due to compactness of X∞,uc and by Theorem 1, there exist constants
ǫ>0 and k<∞ such that |Jǫ

k,uc(xN |0)− J∗
∞,uc(xN |0)| < δ for all xN |0 ∈ X∞,uc.

For this choice of k and ǫ, since Algorithm 3 guarantees that the predicted state
xN |0 ∈ X∞,uc under the returned control sequence ψ∞, we have that

J∞(z, ψ∞) = J∗
N (z; Jǫ

∞,uc) ≤ J∗
N (z; J∗

∞,uc) + δ ≤ J∗
∞(z) + δ.

where the last step follows from Theorem 2. �

Theorem 4 suggests that by increasing k and decreasing ǫ, an arbitrarily
small error in J∞(z, ψ∞) can be achieved. This often increases the number of
matrices contained in Hǫ

k and hence the complexity of Problem (16). Thus, in
practical implementation, a tradeoff between performance and speed of compu-
tation needs to be found.

Remark 3. It is possible to extend the presented result to a hybrid MPC for-
mulation by explicitly invoking the terminal constraint xN ∈ X∞,uc and using
a fixed prediction horizon N in (17). The computation of the hybrid-control
law ξǫk,uc and the computationally challenging task of obtaining an approximated
safe set may be performed off-line, possibly allowing an online-implementation
when using fast MIQP solvers. This is a practical way of posing the problem,
but would complicate proving the degree of sub-optimality of the overall solution,
which is more of a concern to this paper.

6. A Numerical Example

A simple example with two subsystems in 2-dimensional state space has been
presented in [1]. We here consider a more complex example with M = 3 modes,
state dimension n = 3 and input dimension p = 2 defined by the following
matrices:

A1 =





−1.5 0.75 0
1 0.25 −0.5

−0.25 −0.5 0.75



, A2 =





−1 1.5 0.5
0.5 −0.5 −0.75
0.5 −1 −0.25



, A3 =





−0.75 1 −0.5
−0.5 0.75 0
−1 0 1.25



,

B1 =





0.4 −0.4
−0.5 0.75
0.25 −0.5



, B2 =





0.5 0.3
0.75 −0.75
−0.1 0.5



, B3 =





−0.75 0.5
−0.75 0
0.75 −0.25



,

Q1 =





1.5 0.45 0.45
0.45 1 0.3
0.45 0.3 1.25



, Q2 =





1.75 0.35 0.25
0.35 1 0.25
0.25 0.25 1.25



, Q3 =





1.25 0.25 0.3
0.25 1.25 0.3
0.3 0.3 1.5



,

R1 =

[

1.2 0.25
0.25 1.1

]

, R2 =

[

1 0.3
0.3 1

]

, R3 =

[

0.9 0.3
0.3 1.1

]

.

The constraint polytopes X and U are characterized by the sets of vertices VX
and VU , respectively:

VX =











3
2
2



 ,





2
1
−2



 ,





2
−3
−2



 ,





3
−2
2



 ,





−1
3
2



 ,





−2
2
−2



 ,





−1
−1
2



 ,





−2
−2
−2











,

VU =

{[

0.8
0.8

]

,

[

0.5
−0.8

]

,

[

−0.5
0.8

]

,

[

−0.8
−0.8

]}

.
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The computation of the set Hε
k was performed for a horizon of k = 25 and

a numerical relaxation parameter of ε = 10−3. The evolution of the cardinality
of Hε

l , l=0, 1, . . . , k leads to a final number of |Hε
k| = 28 matrices, as opposed

to 325≈1012 matrices in the unrelaxed SRS Hk. Clearly, computing Hk without
numerical relaxation is computationally prohibitive even for simple systems.

For the initial state
[
−0.9 1.75 1.0

]T
, the optimal discrete control inputs

(unconstrained and constrained) for 0 ≤ t ≤ 5 are given in Table 1. The compu-

Table 1: Optimal discrete switching modes

t 0 1 2 3 4 5
vopt,uc 1 2 1 2 1 2
vopt 1 3 3 3 3 3

tation time for the CFTOHC problem (17) was 1.11s using the CPLEX solver
on a 3 GHz Intel Core2 CPU, where we employed YALMIP [17] to conveniently
parse the optimization problem.

An approximation of the maximal positive invariant set X∞,uc for a gridpoint
distance of δgrid = 0.075 is shown in Figure 1. From the shape of X∞,uc, it is
easy to see that a ball-shaped under-approximation of X∞,uc would be rather
conservative in this case.

The optimal state trajectories are depicted in Figure 2, the associated opti-
mal continuous control actions are shown in Figure 3. As expected, both state
trajectory and control inputs converge to the origin and satisfy the constraints
in this example. It is a coincidence for this specific example that at t = 2, the
continuous control input of constrained and unconstrained controller are almost
identical, and that at t = 3, the unconstrained controller produces a continu-
ous control input that lies on the boundary of the feasible polyhedron in the
input space. Note that although the unconstrained controller produces a state
trajectory that is feasible, the associated sequence of control inputs is not.

7. Conclusion

In this paper, we presented an approach for approximately solving a discrete-
time, constrained infinite horizon optimal hybrid-control problem for Switched
Linear Systems with guaranteed suboptimal performance. Building on previous
results, we formulated a stationary suboptimal policy for the unconstrained
problem with analytical bounds on its optimality. For such a policy we showed
how to obtain a conservative analytical as well as a non-conservative gridding-
based characterization of a safe set. A safe set is a set of initial conditions from
which the unconstrained policy is persistently feasible. We further showed how
to obtain an overall, suboptimal solution by repeatedly solving a finite-horizon
optimal hybrid-control problem until the terminal state is contained within the
safe set.

15



Figure 1: Feasible region X and gridding-based approximation of the safe set X∞,uc

The main contributions are the computation of a gridding-based safe set,
the formulation of the finite-horizon optimal hybrid-control problem with ap-
propriate terminal cost function as an MIQP. We have also showed that, if the
system is stabilizable from a given set of initial states, our approach is able to
achieve arbitrarily good suboptimal performance by proper choice of the design
parameters.
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