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Abstract

This work presents a new methodology for quantifying the discomfort caused by non-optimal tempera-
ture regulation, in a building automation system, as a result of degraded biomass boiler operation. This
discomfort is incorporated in a model-based dynamic programming algorithm that computes the optimal
maintenance action for cleaning or replacing the boiler. A non-linear cleaning model is used to represent
the different cleaning strategies under taken by contractors. The maintenance strategy minimizes the total
operational costs of the boiler, the cleaning costs and the newly defined discomfort costs, over a long-term
prediction horizon that captures the short-term daily thermal comfort within the heating zone. The ap-
proach has been developed based on real data obtained from a biomass boiler at a Spanish school and
the resulting optimal maintenance strategies are shown to have the potential of significant energy and cost
savings.

Keywords: Predictive maintenance, Biomass boiler modelling, Temperature regulation, Thermal comfort,
Dynamic programming, Energy savings

1. Background & motivation1

The European Union aims to increase the contribution of renewable energy sources by up to 20% by 20202

[1] and it is stipulated that biomass fuels will account for 56% of renewable energy generation [2]. Many3

research initiatives are being carried out to take advantage of biomass potential as a renewable energy source4

[3]. Biomass boilers provide a cleaner alternative to conventional gas boiler. However, this comes at a cost5

of being more subject to soot accumulation due to fouling. Heat transfer surface fouling is a continuous6

issue that negatively impacts heat exchanger operation by reducing the boiler efficiency and increasing the7

cost of operation [4]. Thus, optimal cleaning strategies are required to minimise the effect of fouling. This8

can be achieved by employing predictive maintenance strategies.9

Predictive maintenance is defined as maintenance strategy that is able to forecast the trend of perfor-10

mance degradation [5]. The work in [6] addressed this issue by applying mathematical modelling to deduce11

the optimal maintenance policy that incorporates periodic inspection and replacements. A reliability-centred12

predictive maintenance policy for a continuously monitored system subject to degradation due to imperfect13

maintenance is proposed in [7]. In the context of heating devices for building automation systems (BAS),14

[8] devised an algorithm that optimises the frequency of the cleaning process, in order to improve boiler15

performance. Similarly, the work in [9] has applied more accurate first-principle modelling and optimised16

the duration and timing of the cleaning process. [10] suggested the synthesis of predictive maintenance17

strategies based on dynamic programming: this technique is further expanded by including a combination18

of forecasting and optimisation methods in [11]. Predictive maintenance of devices has been widely studied19

towards potential energy saving goals in BAS, however the effect of discomfort on occupants and its related20

costs has been broadly ignored [12, 13, 14]. Numerous contributions highlighting the effect of discomfort21

[15, 16] have stressed the importance of accounting for the cost of indoor thermal comfort.22

This contribution studies the problem of quantifying discomfort due to non-optimal temperature regula-23

tion, in BAS, as a consequence of degraded boiler operation, and that of using this cost within a predictive24
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maintenance optimisation problem. Predictive maintenance strategies are computed based on a total costs25

including contributions due to operation, maintenance, and (new in this work) discomfort. Optimal strate-26

gies are computed using Dynamic Programming (DP) and comprise three alternative maintenance actions27

(No Action, Clean, and Replace). Unlike related studies in literature [11] focusing on long-term horizons28

(and weekly time steps), in order to account for discomfort this study needs to consider also daily horizons29

and intra-day temperature dynamics: we put forward a daily discomfort metric that can be embedded in the30

overall longer-term contributions to the cost function. A daily time step further allows for capturing trends31

that represent the output power consumed by the building. This leads to devising predictive maintenance32

strategies over larger horizons (for instance over 5 years) that newly account also for discomfort costs.33

This article has the following structure: Section 2 introduces an approach for quantifying discomfort,34

which is followed by the synthesis of optimal maintenance policies in Section 3. This includes the embedding35

of discomfort metric within the policy synthesis architecture. The framework is applied to a Spanish school36

case study which is presented in Section 4. The resulting algorithms are demonstrated under different37

scenarios in Section 5, which also discusses the total energy and discomfort savings obtained by the scheme.38

2. Discomfort as a consequence of degraded temperature control39

In this study, we consider a correctly sized biomass boiler with a hopper, supplying thermal energy to40

a zone. The boiler has a fixed schedule and is turned on during the start of the working day and switched41

off at the end. When in operation, the boiler combusts biomass fuel in order to generate heat in the heat42

exchanger and consequently supply heat to the building. This combustion process causes soot accumulation43

in the heat exchange chamber, a process known as fouling, which degrades the boiler efficiency with time.44

During the transient when the boiler is switched on, a lag in the time taken to reach the building set point is45

witnessed with degradation of boiler efficiency. Discomfort can thus be seen as a function of the additional46

time taken to reach a temperature set point due to the degradation of the boiler efficiency, which otherwise47

operates properly. [17] has also made use of this notion to quantify occupant comfort.48

Consider Figure 1, where Tz is the zone temperature (namely the temperature in the building). When49

the boiler efficiency η is lower than ηmax, the zone temperature takes a longer time to reach the lower bound50

of the comfort region δ. This introduces discomfort during the switching ON phase of the boiler. This51

discomfort is captured in the form of a time delay expressed as the difference between the time taken for52

the zone temperature to reach the comfort region with the current η level and the time taken to reach the53

comfort level when the boiler operates using the maximum efficiency ηmax (tη − tηmax). Thus, to properly
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Figure 1: The effect of boiler degradation on the zone temperature and the introduced discomfort, during the transient operation
of a boiler as it transitions from the OFF to the ON state. Here Tz(t0) is the initial temperature, TSP is the zone temperature
set-point, δ represents the acceptable comfort region and the discomfort region is tη − tηmax .
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54

capture the effect of discomfort due to boiler degradation the following rule is applied:55

Account for discomfort only when:

Tz < TSP −
δ

2
and bon = 1, (1)

where Tz represents the zone temperature, TSP is the required temperature set point, δ represents the
width of the considered comfort region, and bon = 1 represents the boiler in the ON state.

In order to capture the total time taken to reach the temperature set point within the zone and to apply56

the defined rule to compute the associated discomfort, we consider a thermal model representing the zone57

dynamics. Whilst this model accounts for the intra-day temperature dynamics, the discomfort metric is58

a daily value that can be employed in the cost function alongside operational and maintenance costs (as59

discussed later). In this work, the thermal model being used is a first-order model that is given by60

Cr
d(Tz)

dt
=
Tout − Tz
Row

+ ηbonPin + Pocc + Prad. (2)

Here Tz is the zone temperature, Tout is the outside air temperature, Pin is the biomass boiler input power61

with bon representing the when the boiler is on, Prad is the heat gained from solar radiation, Pocc is the heat62

gained due to occupants, Cr is the zone capacitance, Row is the thermal resistance of the zone envelope,63

and η ∈ [0, 1] is the daily boiler efficiency, which is the dual of the boiler degradation (1− η). The values of64

the parameters Cr and Row are estimated from data using maximum likelihood [18, 19] or Kalman filtering65

[20].66

To compute the total time to reach the temperature set point (TSP ) following an OFF/ON boiler67

transition, (2) is solved analytically, considering the initial time to be t0 and bon = 1, (as per (1)):68

Tz(tη) = exp

(
−tη

CrRow

)(
Tz(t0) + ηPinRow

[
exp

(
tη

CrRow

)
− exp

(
t0

CrRow

)]
+

∫ tη

t0

exp

(
τ

CrRow

)
Tout(τ)

CrRow
dτ

+

∫ tη

t0

exp

(
τ

CrRow

)
Pocc(τ)

Cr
dτ

+

∫ tη

t0

exp

(
τ

CrRow

)
Prad(τ)

Cr
dτ

)
,

(3)

where tη is the final time step and indicates the time at which the lower comfort temperature value is69

reached (Tz(tη) = TSP − δ
2 ) and where we assume next for simplicity that t0 = 0. In order to reason about70

longer-term device degradation and the corresponding maintenance actions, we intend to map the continuous71

temperature dynamics into daily discrete discomfort values that quantify the effect of boiler degradation on72

thermal comfort. To perform such a mapping, the following choices and observations are made:73

1. Define the daily time steps as n = {1, . . . , N}, with N being the final time step.74

2. (TSP − δ
2 ) represents the required minimal temperature for comfort (cf. (1)).75

3. Cr, Row are fixed and given parameters based on the characteristics of the zone heated by the boiler.76

4. We represent the term Pin by a new variable Pmn, which is fixed during a day. Pmn represents the77

mean of the total input power Pin supplied to the boiler over the course of the day and captures the78

switching on and off of the biomass boiler during the day as a simple daily variable.79

5. Tz(t0) = Tout[n] and Pocc = Prad = 0, which captures a worst-case discomfort due to the boiler80

degradation during the heating season. Here Tout[n] represents the worst case equilibrium temperature81

in the zone reached during the interval when the boiler is switched off.82
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6. We have access to the daily demanded output power Qout[n] and input power Qin[n] from which η[n]83

is computed as,84

η[n] =
Qout[n]

Qin[n]
. (4)

7. As the efficiency, η → 0 (degradation level is too high) and Tout = Tz,
dTz
dt → 0, hence the boiler will be85

supplying negligible heat gain to the room and Tz will not reach the required minimal temperature for86

comfort (TSP − δ
2 ). This leads to a maximum discomfort, which is denoted with value discT imemax.87

Solving (3) for tη[n] (for each daily time step n), the resulting total time required to reach comfort zone is88

then given by89

tη[n] = CrRow ln

[
−η[n]PmnRow

(TSP − δ
2 )− (η[n]PmnRow + Tout[n])

]
. (5)

2.1. Computation of discomfort time90

In order to capture the daily discomfort (for day n), the continuous-time thermal model described above91

is employed to predict the daily temperature evolution, and the total discomfort time (discT ime) is set92

as the difference between the time taken to the reach set point comfort zone when operating at maximum93

efficiency (tη[n] = tηmax) and the time taken to reach the set point with the efficiency level at day n (tη[n]).94

More precisely, the value of tηmax is computed by using (5) with η[n] = ηmax, while the value of tη[n] is95

computed by again applying (5) with the current η[n]. The quantity discT ime is then:96

discT ime[n] =

{
min{tη[n] − tηmax), discT imemax} η[n] >

(TSP− δ2 )−Tout
PmnRow

discT imemax, Otherwise.
(6)

The condition η[n] >
(TSP− δ2 )−Tout

PmnRow
is introduced to capture discomfort both when the boiler is able to reach97

the required comfort level and when it is not. When the comfort level is never reached, this condition is not98

met and the maximum possible discomfort time, discT imemax, which is set to 12 hours, is assigned.99

Remark 1. Note that when the zone temperature exhibits oscillatory dynamics due to either sufficiently100

high degradation levels in the boiler (equivalently, sufficiently low boiler efficiency) or when the boiler has101

been improperly sized and does not supply enough heat to the zone, the zone dynamics do not converge to102

the set-point as shown in Figure 1. Consequently, the discomfort computation reasoning would need to be103

further elaborated using the same line of reasoning. In this case, the boiler is assumed to be properly sized104

and the constant discT imemax is used to give an adequate discomfort penalty when the comfort region is105

never reached.106

3. Synthesis of the optimal maintenance strategy107

We first formalize the fouling process as a dynamic system and select a daily time step such that (i) the108

transient discomfort metric can be captured and (ii) the overall longer-term contributions of the heating109

demand can be embedded. We will represent the daily time steps as n = {1, . . . , N}, with N representing110

the final time horizon. We have access to the daily demanded output power Qout[n] and input power Qin[n]111

from which we also gain access to the aggregated daily biomass boiler efficiency level η[n] (cf. (4)).112

The possible states are (Qout, η) ⊂ R2, and we succinctly represent states as x. The set of all maintenance113

actions is u[n] ∈ U,U = {0, 1, 2}, where:114

U =


0 No Action,

1 Clean,

2 Replace.

(7)
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As suggested in [11], the following dynamics for Qout,115

Qout[n+ 1] = γQout[n] + (1− γ)h[n]r[n], (8)

where h[n] is a boolean function representing the heating season,

h[n] =

{
1 Heating season,

0 Otherwise,

and r[n] captures the long-term trend of Qout,116

r[n] = β0 + β1 cos

(
2πn

365

)
+ β2 sin

(
2πn

365

)
+ β3 cos

(
4πn

365

)
+ β4 sin

(
4πn

365

)
, (9)

where βi, i = {0, . . . , 4} are parameters: this will be further discussed in Subsection 4.1.117

The efficiency model η is set up as118

η[n+ 1] =


η[n] + αQout[n] u[n] = 0,

g(η[n]) u[n] = 1,

ηmax u[n] = 2.

(10)

The model depends on the control action performed (u[n]). When no cleaning is performed (u[n] = 0),119

the efficiency degrades based on the value of Qout[n] and on the previous η[n]. In this case, the parameter120

(α < 0), related to boiler fouling, is estimated from sampled boiler data, representing Qout and η, by121

applying the standard lscov Matlab function. If on the other hand cleaning (u[n] = 1) is performed, η[n]122

is updated based on a given function g(η[n]), which represents the chosen cleaning model. Computation of123

g(η[n]) will be further discussed in Subsection 4.1. Finally, when a replacement occurs (u[n] = 2), the124

efficiency level is restored to ηmax.125

During each period n, the associated costs are a function of the dynamical system and action performed126

and is expressed as127

C(x[n], u[n]) = Cop(x[n]) + Cmaint(u[n]) + Cdisc(x[n])

= pin
Qout[n]

η[n]
+ pmaintu[n] + pdiscdiscT ime[n].

(11)

The function is composed of three separate costs, as follows:128

1. Operational costs. This is the cost associated with the working of the boiler, with pin representing129

the monetary fuel costs. The higher the demanded output power and fuel costs, and the lower the130

efficiency, the higher the operational costs.131

2. Maintenance costs. This is due to either the cleaning or to the replacement of the boiler with132

pmaint =


pclean u[n] = 1,

preplace u[n] = 2,

0 Otherwise.

(12)

Here, pclean and preplace represent the constant monetary costs of cleaning and replacement, respec-133

tively.134

3. Discomfort costs. This cost is due to degraded thermal regulation due to boiler degradation. It is135

a function of the monetary discomfort cost, pdisc, and of discT ime[n], which is computed using (6).136

We are interested in the optimal maintenance strategy that minimizes the total costs over a time
interval, n = {1, . . . , N}. The optimal maintenance policy is obtained by computing the decision rule
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π[n] : (Qout, η)→ U for all n = {1, . . . N − 1}, such that the total cost

N∑
n=1

C(x[n], u[n]) (13)

is minimised, subject to the state evolution model (representing the dynamics of the system) x[n + 1] =137

f(x[n], u[n]), and to the control action u[n] = π[n](x[n]), where π[n] is the policy. This can be solved by138

applying Dynamic Programming (DP) [21, 22]. The DP algorithm starts from the final time horizon N and139

backward recursively computes value functions V , which are minimized during each time step,140

V [n](x[n]) = min
u[n]∈U

C(x[n], u[n]) + V [n+ 1](x[n+ 1]), (14)

The optimal policy π[n] is obtained as a look-up table (LUT) expressing the optimal input action to perform141

for a given Qout and η pair. The employed algorithms are further elaborated in Subsection 4.3.142

4. Case Study143

We consider data from a real building, involving the heating of a school in Spain by a properly-sized144

biomass boiler [23]. The school is only operated on weekdays and the heating system is switched on from145

08:00 to 15:00, between the first week of November and the last week of February (a total of 14 weeks), with146

the exception of the last week in December and the first week in January when the building is closed. The147

biomass boiler input (Pin,d)
1 and output power (Pout,d) have been logged for one year, with a 15-minute148

sampling time. The daily trend of power demand by the boiler, the daily supplied power, and the the mean149

daily boiler input power are computed using the quantities150

Qout,d[n] =

nq∑
k=(n−1)q+1

Pout,d[k], Qin,d[n] =

nq∑
k=(n−1)q+1

Pin,d[k], Pmn,d[n] =

nq∑
k=(n−1)q+1

Pin,d[k]

q
. (15)

Here n = {1, . . . , 365} represents the daily time steps, k is an index representing the aggregation of the151

15-minute sampled data per day, and q = 4× 24 represents the total number of records per day. The boiler152

efficiency is defined as the ratio between the output power demand and the input power, and it can be153

derived from Qout,d and Qin,d as154

ηd[n] =
Qout,d[n]

Qin,d[n]
. (16)

Daily weather measurements of the outside air temperature Tout,d[n] have also been recorded. The zone155

capacitance Cr and Row are given having a value of 54.56J/K and 0.023K/W , while the required set-point156

TSP and comfort region δ are given as 21oC and ±1oC, respectively.157

We are interested in optimally scheduling the maintenance of the biomass boiler using the framework158

presented in Section 3, so that maximal cost savings are attained. Costs relate to energy usage in regular159

(possibly degraded) daily operation of the boiler, to device maintenance actions, and to occupant discomfort160

due to boiler degradation within the heating zone. We have selected a prediction horizon of N = 5 × 365161

(5 years) and considered daily contributions to the overall costs. The case study and all algorithms are162

implemented in Matlab R2016b.163

4.1. Model of boiler degradation164

The dynamics for the underlying degradation model are based on two variables representing the evolution165

of demanded output power Qout and efficiency η respectively (cf. Sec 3). The models assume that the zones166

are not used during the weekends, and are built based on one year of training data obtained from the Spanish167

school data set.168

1Throughout this paper we denote data with variables of the form xd, while models variables as x.
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Model for output power demand. We make use of (8) and create a classifier h[n] that for a given n, a value169

of one is assigned during the heating season and zero otherwise. Next, we construct the long-term trend r[n]170

by regressing Spanish school data of Qout,d corresponding to when the heating demand is positive, by means171

of use of frequency-domain linear regression [24]. This results in (9) with βi, i = {0, . . . , 4} correspond to172

the values in Table 1 and are obtained by fitting the model using the lscov Matlab function. The resulting173

parameters are in the order of 105 due to the magnitude of Qout,d values (104) which the function is trying174

to model. The resulting fit has a standard deviation equivalent to 17.01% of the mean.175

Table 1: Values of regressed parameters βi

Parameter β0 β1 β2 β3 β4

Value (×105) -1.079 -0.581 1.664 0.392 0.291

The parameter γ ∈ [0, 1] is estimated by minimizing the following objective function, namely176

γ = arg min
ι

365∑
d=2

(Qout,d[n]− ιQout,d[n− 1]− (1− ι)h[n]r[n])
2
, (17)

over the whole training data set (365 days). The resulting value is γ = 3.125 × 10−10, which is due to177

the overall mean difference between Qout,d and r[n] and leads to a small contribution of the auto-regressive178

term.179

Model for efficiency. The efficiency model η is set up using (10). In our case when u[n] = 0, using ηd and180

Qout,d we get α = −1.074× 10−7 kWh−1. The small order of magnitude of α (10−7) is a direct consequence181

of the large magnitude of Qout which is in the order of 104. This model corresponds to a 13% efficiency drop182

over one heating season.183

If cleaning u[n] = 1 is performed, η[n] is updated based on a given function g(η[n]) as in Figure 2. The
trend is computed by fitting the curve,

g(η[n]) =

a1 exp

(
−
(
η[n]−b1
c1

)2)
+ a2 exp

(
−
(
η[n]−b2
c2

)2)
η[n] < ηmax

ηmax Otherwise,
(18)

to training data obtained from the rule that the effect of cleaning varies between 7 and 15% depending on184

the current efficiency level and up to the maximum efficiency level (ηmax) [25]. Here, a1 = 0.654, b1 =185

0.681, c1 = 0.428, a2 = 1.402, b2 = 1.723 and c2 = 0.661. Figure 2 shows that for an initial η[n] >=186

0.5, cleaning results in an approximate improvement of 15% (η[n + 1] ≈ 1.15η[n]), whilst for an initial187

0.1 < η[n] < 0.5, cleaning results in an approximate 7% of overall improvement (η[n + 1] ≈ 1.07η[n]). For188

η[n] < 0.1, the cleaning effect saturates to 0.08.189

When a total replacement occurs (u[n] = 2), the efficiency level is restored to ηmax = 0.8.190

4.2. Regression functions for prediction of the time spent in discomfort191

We are interested in optimally scheduling maintenance based on the dynamic fouling model, composed192

using the states (Qout, η), and the total costs (operational, maintenance and discomfort costs). Using the193

state-space models we obtain the operational and maintenance costs directly (cf. (11)). However, to compute194

the discomfort costs, we need to predict discT ime over the required time horizon using (6). discT ime is195

a function of the dynamic variables η, Tout and Pmn and the fixed variables Cr, Row, δ and TSP (these are196

given). Consequently, to predict discT ime using the fouling model, we need to construct models which relate197

the Qout to Tout and Qout to Pmn. The Spanish data set contains the following variables, Qout,d, Qin,d, Tout,d198

and Pmn,d, which allows us to construct the required regression functions to relate Qout to Tout and Qout199

to Pmn.200
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Figure 2: The imperfect cleaning model g(η[n]), incorporating the effect that for high initial values of η the effect of cleaning
is large, while for low initial values of η the effect of cleaning is low. The value of η following cleaning saturates at a maximum
value of η = 0.8 and at a minimum value of ηmin = 0.08.

Regression models relating Qout and Tout. Two candidate regression models that relate Qout and Tout are201

found by considering the recorded Spanish weather data.202

• Candidate 1: The linear model203

Tout[n] = β
Qout[n]− µ

σ
+ ζ, (19)

• Candidate 2: - The exponential model204

Tout[n] =
eγ

Qout[n]−µ
σ − α
ψ

. (20)

Here, µ and σ are the mean and standard deviation of Qout,d. The exponential model is considered205

in this section due to the exponential relationship between Qout and Tout obtained by considering the206

linear relationship between Qout and Pout and then the exponential relationship between Pout and Tout207

as can be seen from (3). For both models, the unknown parameters can be estimated by solving,208

min
θ

L∑
l=1

(v[n]− w[n, θ])2. (21)

Here θ are the parameters to be estimated, l is an index representing the training data having a total209

length L = 365 and v[n] = Tout,d[n]. For the case of the linear model w[n, θ] = βQout[n]−µσ + ζ with210

θ = [β, ζ]T , while for the case of the exponential model w[n, θ] = eγ
Qout,d[n]−µ

σ −α
ψ with θ = [γ, α, ψ]T211

and with µ = 9.84 × 103, σ = 5.78 × 103 representing the mean and standard deviation of Qout,d212

respectively. The resulting parameter values from this minimisation are β = −0.3743 and ζ = 1.847213

for the linear model, γ = −0.4932, α = 0, ψ = 0.4840 for the exponential model. The resulting fit for214

both candidates is shown in Figure 3.215

The exponential model is chosen as the best model to compute the value of Tout from Qout as it achieved216

the lowest RMSE (the linear model achieved an RMSE value of 2.378, whereas the exponential model has217

an RMSE value of 2.278).218

Regression models relating Qout and Pmn. A similar approach is carried out to regress the relationship219

between Qout and Pmn such that predictions of the total time in discomfort can be made. In this case, as220

8



intuitive only a linear model is considered, and the recorded data for the mean input power during a day,221

Pmn,d is used (cf. (15)). The resulting model is given by222

Pmn[n] = β1Qout[n] + ζ1 (22)

where β1 = 4.262 × 10−2 and ζ1 = 210. The parameters are estimated once again using (21) with θ =223

(β1, ζ1)T , v[n] = Pmn,d[n] and w[n, θ] = β1Qout,d[n] + ζ1. The resulting fit is shown in Figure 4. The model224

fitness has a RMSE value of 99.6.225

4.3. Solution of the dynamic programming problem226

Using the defined state evolution models and cost functions the optimal maintenance problem is solved227

by employing the DP framework. We consider two modalities for performing the soot cleaning actions:228

on-load and off-load [26, 27]. The biomass boilers can be cleaned while it is running by being fitted with229

retractable soot blowers which perform cleaning (on-load). Alternatively and conventionally, soot cleaning230

can be performed when the boiler is disconnected (off-load).231

Two algorithms are proposed each representing a different type of cleaning modality (on-load and off-load232

cleaning). Algorithm 1 considers the off-load scenario incorporating a total of one time delay to perform a233

cleaning action, while Algorithm 2 assumes that the maintenance actions are carried out instantaneously,234

which is the case when on-load cleaning is carried out.

Algorithm 1: Dynamic Programming Algorithm for off-load cleaning

input : model (Qout, η)
output: V function for given parameters, π(x[n]) decision rule for each given state

1 Start at final time step N
2 V [N ](x[N ])←∞
3 forall n = N − 1 : 1 do
4 if u = 0 then
5 V [n](x[n]) = {Cop(x[n]) + Cdiscc(x[n]) + Vn+1(f(x[n], 0))}
6 else
7 V [n](x[n]) = minu[n]∈{1,2}{C(x[n], u[n]) + C((0, 0), u[n]) + Vn+1(f(x[n], u[n]))}
8 π[n](x[n]) = arg minu[n]∈U{C(x[n], u[n]) + Vn+1(f(x[n], u[n]))}

235

For both algorithms, one must discretise the state space over the selected minimum and maximum bounds236

([ηmin = 0.03, ηmax = 0.8] and [Qout
max = 2.5 × 104, Qout

min = 0]). The value function for each of the237
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Figure 3: Resulting model fit between Qout and Tout. The exponential function is seen to have a better fit to the data.

9



0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

·104

500

1,000

Output power consumption, Qout

M
ea

n
p

ow
er

,
P
m
n

Qout vs Pmn

Linear fit

Figure 4: Resulting model fit between Qout and Pmn.

Algorithm 2: Dynamic Programming Algorithm for on-load cleaning

input : model (Qout, η)
output: V function for given parameters, π(x[n]) decision rule for each given state

1 Start at final time step N
2 V [N ](x[N ])←∞
3 forall n = N − 1 : 1 do
4 V [n](x[n]) = minu[n]∈U{C(x[n], u[n]) + Vn+1(f(x[n], u[n]))}
5 π[n](x[n]) = arg minu[n]∈U{C(x[n], u[n]) + Vn+1(f(x[n], u[n]))}

discretised states is then computed at each time step, recursively (cf. (14)). In the case of off-load cleaning238

one needs to incorporate the effect that maintenance actions take up to one day to be carried out. This is239

introduced as an additional cost penalty into the value function computation step corresponding to a day240

where Qout = 0 since the boiler is not running (cf Algorithm 1 Line 7).241

5. Case study: results242

We synthetise optimal maintenance strategies, using the developed algorithm for both on-load and off-243

load cleaning, with a prediction time horizon considered set to N = 5 years. First, we consider two244

experiments to show the effect of discomfort monetisation on the resulting policy. For each experiment, we245

use the following prices (i) pin = e0.27/kg 2 (ii) pclean = e108.90, preplace = e5000 3 and (iii) pdisc =246

e100/day [23]. In all cases, we encode the resulting control actions as follows - Dark Blue: Replace boiler;247

Light Blue: Clean Boiler; White: No Action.248

249

Experiment 1: Presence vs absence of discomfort.250

Figure 5 shows the resulting look-up tables (LUT) for the optimal control actions as a function of η values.251

The LUT are generated using Algorithm 1.252

Remark 2. The resulting optimal maintenance strategy can be seen to be qualitatively periodic within each253

heating season due to the periodic trend of the demanded output power (cf. (9)). However, this periodicity254

is only approximate, due to the differences in the initial η and Qout at the beginning of each heating season.255

In order to further clarify the effect of incorporating discomfort monetisation zoomed up versions of256

Figure 5 showing the resulting LUT for the heating season in 2014 and 2015 is presented. From Figure 6(a),257

2http://www.avebiom.org/es/noticias/News/show/precios-del-pellet-en-espana-653
3http://www.tucalderabarata.es/reparacion-de-calderas/
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(a) The resulting decision strategy when pdisc =e100/day
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(b) The resulting decision strategy when pdisc = e0/day.

Figure 5: The resulting LUT for the optimal control actions when (a) discomfort costs are included and (b) not included. The
control actions are colour coded using - Dark Blue: Replace boiler; Light Blue: Clean Boiler; White: No Action.

it can be seen that when we consider discomfort in the optimal policy computation, cleaning actions are258

only performed on weekends when it is expected that the boiler is operated throughout the rest of the259

week. This minimises the effect of discomfort experiencedhad boiler maintenance been performed when the260

building is in use. For weeks 2 to 7 and weeks 14 and 15, when 0.11 < η < 0.18 replacement is carried out261

during weekends. For weeks 10 to 13, this replacement is performed when 0.13 < η < 0.19. This is due262

to the higher expected Qout. When η ≤ 0.13 for weeks 10 to 13 and η ≤ 0.11 for the rest of the weeks263

excluding week 8, the cost of operation is much larger then the cost of discomfort and thus maintenance264

actions are performed on weekdays. On the other hand, from Figure 6(b) we deduce that when discomfort265

is not considered, cleaning actions are performed both on weekdays and weekends for all weeks excluding266

week 8. No maintenance actions are performed on Saturday due to the one step ahead prediction of a no267

power demand Qout since the boiler is switched off on Sunday. No maintenance actions are performed in268

week 8 for both scenarios as the boiler is switched off throughout the whole week.
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(a) Optimal Maintenance strategy that incorporates discom-
fort costs. All cleaning actions are carried out during week-
ends.
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(b) Optimal Maintenance strategy that does not incorporate
discomfort costs. All cleaning actions can be performed both
during weekdays or weekends.

Figure 6: Optimal Maintenance strategy that (a) presence vs (b) absence of discomfort costs over one heating season (from
Monday of the first week of November 2014 up to Sunday of the last week of February 2015). The control actions are colour
coded using - Dark Blue: Replace boiler; Light Blue: Clean Boiler; White: No Action.

269

For these two scenarios, we perform a set of 103 simulation runs where we obtain an initial efficiency270
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level by sampling a uniform distribution between the range [0.03, 0.8] and with Qout fixed to 1.183 ×104271

(corresponds to initial value found in Spanish school data set), are performed. For each run ((i) using LUT272

generated using pdisc = e100/day; (ii) using LUT generated using pdisc =e0/day), we further compute the273

total discomfort cost incurred when the optimal maintenance strategy is employed and the total reduction274

in discomfort cost achieved by the DP that considers the discomfort costs. The resulting total reduction in275

discomfort is shown in Figure 7. It can be seen that the total reduction in discomfort is a function of the276

initial efficiency level, η. For 0.11 < η < 0.14, we achieve higher discomfort savings , due to extra discomfort277

penalty associated with not replacing the boiler. We obtain no discomfort savings for the ranges η < 0.09278

and 0.76 < η, as the same control actions are performed in both scenarios (cf. Figure 6). An overall average279

savings of 15.76% is also deduced.280
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Figure 7: The resulting reduction in total discomfort costs for different initial η values. When 0.11 < η < 0.14, we achieve
higher discomfort savings are achieved due to extra discomfort penalty associated with not replacing the boiler. For η < 0.09
and 0.76 < η, the same control actions are performed in both scenarios resulting in no discomfort savings.

281

Experiment 2: On-load cleaning (instantaneous) vs Off-load cleaning (1 day delay).282

A comparison is made between the two algorithms (Algorithm 2 and 1). Figure 8(a) and 8(b) depict zoomed283

up versions of the resulting LUT for 2015-2016 heating season when using Algorithm 1 and 2 respectively.284

From Figure 8(a), we deduce that when employing on-load cleaning , all cleaning actions are carried out285

during weekdays. An extra cleaning action is introduced for η ≤ 0.14 and is performed on Saturdays. In286

this case, the cost of discomfort has minimal effect on when to perform maintenance actions. On the other287

hand, from Figure 8(b) it is clear that the cost of discomfort directly limits when maintenance actions are288

performed. All cleaning actions are performed during weekends. This is desirable as performing cleaning289

during weekdays would result in discomfort as the heating zone is in use and would need to be taken off-load.290

5.1. Energy savings291

We perform a comparison between the developed algorithm and standard cleaning policies carried out in292

the industrial practice, in order to estimate the total energy savings gained by the proposed algorithms, using293

a set of 103 simulations. In all instances, we obtain the initial degradation level from sampling a uniform294

distribution between the range [0.03, 0.8] and Qout is fixed to 1.183 ×104 (corresponds to initial value found295

in Spanish school data set). We use a time horizon of N = 5 years and do not include the discomfort296

and the control action equivalent to a boiler replacement in order to be able to make a direct comparison297

with standard practices where replacement actions are only performed after a longer time horizon (typically298

N = 15 years). A condition-based function is extracted from the generated optimal policies299

u[n] =

{
Clean 0.76 ≤ η[n],

No Action Otherwise.
(23)

12



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617

0.8

0.69

0.59

0.49

0.38

0.28

0.18

0.08
0.03

Time (Weeks)

η

(a) Resulting decision strategy when the instantaneous clean-
ing action is employed. For η ≤ 0.14 an extra cleaning action
is performed on every Saturday during the heating season.
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(b) Resulting decision strategy when the delayed cleaning ac-
tion is employed. Cleaning actions carried out during weekends
due extra discomfort penalty introduced by Algorithm 2 (Line
7).

Figure 8: The optimal maintenance strategies obtained when employing (a) Algorithm 1 and (b) Algorithm 2. In both figures,
the control actions are colour coded using - Dark Blue: Replace boiler; Light Blue: Clean Boiler; White: No Action.

Here, η[n] = 0.76 is chosen as it is the maximum value beyond which no maintenance actions are performed300

as deduced from the resulting LUTs (Figure 6).301

Table 2: Energy Savings Comparison

Strategy Total Costs Maintenance Ac-
tions

Savings compared to
Off-load Cleaning DP

Off-load cleaning DP 2.175 ×106 16 0%
On-load cleaning DP 2.171 ×106 15 0.15%
Condition based 2.191 ×106 14 0.75 %
Weekly cleaning during
heating season

3.105 ×106 70 42.79%

Six Month cleaning 2.455 ×106 9 12.89 %
Annual cleaning 3.474 ×106 5 59.73%

We tabulate the results obtained from this analysis in Table 2. From the outcomes, we confirm that the302

most effective energy policy is obtained when the DP algorithm is employed, with comparable energy savings303

between the on-load and off-load cleaning algorithms. The off-load strategy (introduces an additional cost304

during the off-load period which is only due to discomfort and the maintenance action being performed305

as the boiler is not operational) compared to the on-load strategy requires that an additional maintenance306

action is performed. This additional maintenance strategy keeps the boiler operating at higher efficiency307

levels and since the cost of maintenance and discomfort are much lower then the cost of degraded boiler308

operation, there is a slight reduction in the overall costs due to operation (Cop(x[n])) which leads to more309

energy savings being gained by the off-load strategy.310

6. Conclusions311

The paper presents a methodology for quantifying discomfort due to boiler degradation, and a corre-312

sponding optimisation algorithm based on dynamic programming algorithm that schedules a strategy for313

optimal boiler maintenance. The work encompasses dynamics at two different time scales: (i) daily dynamics314
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for the prediction of discomfort, and (ii) long-term dynamics that are key for maintenance strategies. The315

resulting strategy allows for different actions based on the cleaning technique employed by contractors (par-316

tial cleaning vs replacement). This results in more realistic predictive maintenance strategies, with effective317

cost and energy savings. The presented framework can be further enhanced with a dynamic discomfort318

monetisation function, and by incorporating predictive models representing solar heat gain and building319

occupancy. The dynamic programming algorithm may also be enriched by incorporating time delays in the320

state evolution models to represent different time delays introduced by different cleaning and replacement321

maintenance methods.322
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