
1

Formal Control Synthesis via Simulation Relations
and Behavioural Theory for Discrete-time

Descriptor Systems
Sofie Haesaert, Member, IEEE, Fei Chen, Alessandro Abate, Senior Member, IEEE, and Siep Weiland

Abstract—The control and verification of industrial processes,
modelled as discrete-time descriptor systems, is often computa-
tionally hard due to the presence of both algebraic couplings
and difference equations. In this paper, we introduce a new
control synthesis method for descriptor systems that is based
on formal abstractions and enables control design over re-
lated reduced-order models. We leverage notions of exact and
approximate similarity relations, which hold for the algebraic
couplings that are inherent to descriptor systems. Using the
behavioural framework, we extend a control refinement scheme
for classical dynamical systems and develop a corresponding
notion for descriptor systems: we show that any given well-posed
controller of the abstract (reduced-order) descriptor system can
be refined to a controller for the original descriptor system. The
resulting controlled system preserves the same controlled output
behaviour in the case of exact similarity, whereas in the case
of approximate similarity the output behaviour of the controlled
descriptor system is shown to have a bounded deviation from
that of the abstract model where the controller is designed.

Index Terms—Descriptor systems, behavioural theory, approx-
imate simulation relations, formal verification.

I. INTRODUCTION

COMPLEX industrial processes can generally encompass
algebraic couplings in addition to differential (or differ-

ence) equations of high order. Models for these processes,
which are referred to as descriptor systems [9], [19], are
commonly used to describe mechanical systems. These alge-
braic equations and couplings, together with large state space
dimensions, render numerical simulation and controller design
challenging. In particular, the presence of algebraic equations
hinders the verification and synthesis of controllers with re-
spect to formal specifications, such as linear temporal logic
properties [4], [20], [23]. For systems solely comprised of
difference or differential equations, the use of formal abstrac-
tions enables their automated verification [23] and formal con-
troller synthesis, namely the automated proof of pre-specified
requirements or specifications, and the algorithmic design of
certifiable correct-by-design controllers [18], [23]. With focus
on control design tasks, methods based on formal abstractions
first reduce the original (concrete) system to an abstract system
with a finite or smaller-dimensional state space, over which

Sofie Haesaert (s.haesaert@tue.nl) and Siep Weiland (s.weiland@tue.nl)
are with the Department of Electrical Engineering, Eindhoven University of
Technology, the Netherlands.

Fei Chen (fchen@kth.se) is with the Division of Decision and Control
Systems, KTH Royal Institute of Technology, Sweden.

Alessandro Abate (aabate@cs.ox.ac.uk) is with the Department of Com-
puter Science, University of Oxford, United Kingdom.

a controller can be synthesised. The controller obtained for
the abstract system is then refined over the concrete system
by leveraging the existence of an (approximate) simulation
relation between the two systems [14], [23]. This step is
referred to as control refinement.

Model order reduction techniques can be used together
with formal abstractions in a control refinement framework,
as presented in [13] for models described by ordinary differ-
ential or difference equations. Model reduction methods [1]
are used to replace concrete systems with simpler, reduced-
order models: even though most reduction methods have been
developed for standard dynamical models, recent research has
also targeted descriptor systems [6]. However, the connection
between model order reduction techniques and formal abstrac-
tions presents a fundamental challenge for descriptor systems:
the presence of anti-causality in the algebraic equations of
discrete-time descriptor systems [9] makes the standard control
refinement via simulation relations impossible.

In this paper, we specifically consider the control refinement
problem for discrete-time descriptor systems via simulation
relations within a behavioural framework, such that properties
verified over the future behaviour of the abstract system are
also verified over the concrete controlled system. Within the
behavioural theory [25], [27], [29], [30], a formal distinction is
made between a system (its behaviour) and its representations,
enabling us to investigate descriptor systems and control
refinement problems without having to deal with their in-
herent anti-causality (mentioned earlier) directly. Additionally
within this framework, control designs are not limited to
causal memory-dependent mappings from observed state to
input, but can include more general nonlinear and algebraic
equations. We leverage (approximate) simulation relations [23]
to construct refined controllers that satisfy both general well-
posedness notions and regularity conditions on their control
interconnection.

Literature review: The development of simulation rela-
tions between descriptor systems has been recently investi-
gated in [22]: this work deals with continuous-time descriptor
systems and focuses on conditions for bisimilarity and on the
construction of exact similarity relations. Limited to verifica-
tion applications, [22] does not consider control refinement.
Additionally, the relations used in [22] are subspaces, there-
fore it cannot easily be extended to the approximate case
nor to nonlinear algebraic differential equations. The results
presented in this paper for discrete-time systems carry over to
continuous-time systems and are therefore complementary to

2

results in [22].
In [7], preliminary results on the exact simulation relations

have been presented. This paper extends those results with
the unpublished proofs, and it fully develops the results for
the approximate notion with specific examples. Additionally,
it refines the analysis and construction of controllers to those
that are regular [28].

Structure: The structure of this paper is as follows. We
close this section with some mathematical notations used
throughout this work. In the next section, we define the no-
tion of discrete-time dynamical systems within a behavioural
framework and use it to formalise the control refinement
problem. Subsequently, Section III and Section IV discuss,
respectively, exact/approximate simulation relations and a sys-
tem transformation. Section V uses these notions to develop
the exact control refinement scheme. In a similar way, the
approximate control refinement is developed in Section VI.
Section VII provides more details on the automated computa-
tions of controllers, and develops an illustrative case study.

Notations: The Euclidean norm is denoted by ‖ · ‖ and
satisfies the triangle inequality ‖x + y‖ ≤ ‖x‖ + ‖y‖. The
metric over the Euclidean space induced by ‖ · ‖ is denoted
by d(x1, x2) = ‖x1 − x2‖. A discrete-time signal u, that is
u : T→ Rm with T := {0, 1, 2, 3, . . .}, has a supremum norm
denoted by umax and defined as umax = supt∈T ‖u(t)‖. Given
an Euclidean space X, the ε-ball Bε(x) of radius ε > 0 with
centre x ∈ X is defined as Bε(x) = {y ∈ X | ‖x − y‖ ≤ ε}.
For a set A ⊂ X, Cε(A) = {x ∈ X | Bε(x) ⊆ A} is called the
ε-contraction of A and Eε(A) = {x ∈ X | Bε(x) ∩A 6= ∅} is
called the ε-expansion of A. We say that a discrete-time signal
y : T→ Y is an element of YT. Over this product space YT,
we trivially extend the ε-expansion as Eε(y) = {ỹ ∈ YT |
∀t ∈ T : ỹ(t) ∈ Eε(y(t))}.

For two sets X1 and X2, the Cartesian product is defined as
X1 × X2 = {(x1, x2) | x1 ∈ X1, x2 ∈ X2}. A binary relation
R ⊆ X1×X2 is a subset of this Cartesian product that defines
a relation among the elements x1 ∈ X1 and x2 ∈ X2.

II. SYSTEMS IN A BEHAVIOURAL FRAMEWORK

As introduced in [30], we define discrete-time dynamical
systems as follows. A dynamical system Σ is defined as a
triple

Σ = (T,W,B)

with T a subset of Z, called the time axis, W a set called
the signal space, and B a subset of WT called the behaviour.
Here WT is the notation for the collection of all maps from T
to W. The behaviour B of a system is a set of trajectories or
time-dependent functions that collect the trajectories that are
compatible with the system [30]. This definition encapsulates
both formal languages and descriptor systems, as defined next.
(See [26]).

A. Discrete-time descriptor systems (DS)

For discrete-time systems, the time axis is defined as T :=
N = {0, 1, 2, . . .} and initialised at t = 0. Consider a discrete-

time linear descriptor system (DS) Σ whose dynamics are
defined by the tuple (E,A,B,C) as

Ex(t+ 1) = Ax(t) +Bu(t);

y(t) = Cx(t), x(0) ∈ X0,
(1)

with state x(t) ∈ X ⊆ Rn, input u(t) ∈ U ⊆ Rp, output
y(t) ∈ Y ⊆ Rk and initial state x(0) restricted to X0 ⊆ X.
Further, E,A ∈ Rn×n, B ∈ Rn×p and C ∈ Rk×n are constant
matrices and we presume that rank(B) = p and rank (C) = k.
If E is non-singular, we refer to the corresponding dynamical
system as a non-singular DS. In that case, we can transform
(1) into standard state space equations, with Ẽ = I , Ã =
E−1A, B̃ = E−1B, and C̃ = C.

We say that a trajectory w = (u, x, y), with w : N →
(U × X × Y), satisfies (1) if for all t ∈ N the equations in
(1) evaluated at u(t), x(t), x(t+ 1), y(t) hold. The collection
of all trajectories w defines the full behaviour, or equivalently
the input-state-output behaviour associated with (1) as

Bi/s/o :={(u, x, y)∈(U× X× Y)N|(1) is satisfied}. (2)

The manifest behaviour or the input/output behaviour is given
by

Bi/o :={(u, y) ∈ (U× Y)N | ∃x ∈ XN

s.t. (u, x, y) ∈ Bi/s/o}.
(3)

We say that a trajectory w : N→ (U×X×Y) is initialised
with X0 if (1) holds and x(0) = x0 ∈ X0. These trajectories
are also called the continuations of x0. The collection of
continuations with x0 ∈ X0 is referred to as the initialised
behaviour Binit

i/s/o. Let us formally define a discrete-time linear
descriptor system as follows.

Definition 1. A (discrete-time) descriptor system is defined
as a dynamical system Σ initialised with X0, whose behaviour
can be represented by the combination of algebraic equations
and difference equations (1), i.e.

Σ := (T,W,B) = (N,U× X× Y,Binit
i/s/o) (4)

with the time axis T := N = {0, 1, 2, . . .}, the full signal
space W := U× X× Y, and the initialised behaviour

Binit
i/s/o = {w ∈WN|w = (u, x, y) s.t. (1)

and s.t. x(0) = x0 ∈ X0}.

In the sequel, the indices init and i/s/o of Binit
i/s/o will be

dropped where it is not ambiguous.
Within this work, we will focus on descriptor systems that

are controllable. As in [9, Theorem 8-1.2 and Theorem 2-2.1],
we say that a DS Σ = (E,A,B,C) is controllable if

rank(
[
E −B

]
) = n and rank(

[
σE −A B

]
) = n∀σ ∈ C.

Assumption 1 (Controllable DS). The DS Σ is controllable.

Remark 1. The notion of controllability that is used here is
stronger than the ‘behavioural’ notion of controllability given
in [30]. The results in the sequel can be extended to the case
where the condition rank(

[
E −B

]
) = n does not hold by

using the more general transformation to a driving variable
representation given in [26].

3

B. Interconnections, control, and controller properties

Controller synthesis amounts to synthesising a system Σc,
called a controller, which, after interconnection with a given
system Σ, restricts the behaviour B of Σ to a set of desirable
(or controlled) trajectories. In the behavioural framework, con-
trol is defined through interconnections via variable sharing,
similarly to the notion of parallel composition in [3], [23].

Definition 2. Let Σ1 = (T,C1×W,B1) and Σ2 = (T,C2×
W,B2) be two dynamical systems. Then the interconnection
of Σ1 and Σ2 over W, denoted by Σ = Σ1 ×w Σ2 with the
shared variable w ∈ W, yields the dynamical system Σ =
(T,C1×C2×W,B) with B = {(c1, c2, w) : T→ C1×C2×
W | (c1, w) ∈ B1, (c2, w) ∈ B2}.

Σ1 Σ2

c1 w c2

(a) The interconnected system Σ
obtained via the shared variables w
in W between dynamical systems
Σ1 and Σ2 with signal spaces
C1 ×W and C2 ×W.

WT

BΣ
BΣc

BΣ×Σc

(b) The controlled behaviour
BΣ×Σc = BΣ∩BΣc is given
as the intersection of the be-
haviours of the dynamical sys-
tem Σ and its controller Σc.

Fig. 1: The left figure (a) portrays the general interconnection
of two dynamical systems. Figure (b) depicts the specific case
of behavioural intersection between a system and its controller.

This partial interconnection is also shown in Fig 1a. If
both C1 and C2 are empty, we call Σ = Σ1 ×w Σ2 a full
interconnection and BΣ1×Σ2

= BΣ1
∩BΣ2

as portrayed in
Fig. 1b.

Control design therefore amounts to synthesizing a dynami-
cal system Σc that can be interconnected with the given system
[29], [30]. This framework of control design is more general
than the common setting in which controllers are viewed as
causal operators. Obviously, of specific interests are controllers
that lend themselves to a physical implementation. Firstly, we
define a well-posed controller Σc for Σ as follows.

Definition 3 (Well-posed controller). Consider a dynamical
system Σ = (T,W,B), with initialised behaviour as defined
in (4). We say that a system Σc = (T,W,Bc) is a well-posed
controller for Σ if for every initial state x0 ∈ X0 of Σ, there
exists a unique continuation in BΣ×Σc . Denote by C(Σ) the
collection of all well-posed controllers for Σ.

As formalised by the second condition, a well-posed con-
troller is required to accept any initial state of the system. That
is, for any initial state of Σ, there should exist a continuation
in BΣ×Σc

. This restricts the choice of controllers to those
for which BΣ×Σc

:= BΣ ∩BΣc
6= {∅}, i.e., the composed

system is non-blocking as in [23].

Lemma 1 (Well-posed controller). For a system Σ as in (1),
consider a controller Σc, which is a DS, and has dynamics
given as

Ecx(t+ 1) = Acx(t) +Bcu(t), (5)

with Ec, Ac ∈ Rnc×n and Bc ∈ Rnc×p. Let the controller be
initialised with x(0) and, moreover, suppose that the controller
shares the variables u and x with the system Σ. That is, w =
(u, x). Then the interconnected system Σ×w Σc has the state
evolution described by[

E
Ec

]
x(t+ 1) =

[
A
Ac

]
x(t) +

[
B
Bc

]
u(t), (6)

and can be rewritten as[
E −B
Ec −Bc

] [
x(t+ 1)
u(t)

]
=

[
A
Ac

]
x(t). (7)

If for any x(t) ∈ X, there exists a unique pair (x(t+ 1), u(t))
such that (7) holds, then for any initial state x0 ∈ X0 of Σ
there exists a unique continuation in the controlled behaviour
and Σc ∈ C(Σ). Specifically, the controller is well-posed, i.e.,
Σc ∈ C(Σ) if and only if

rank

([
E B
Ec Bc

])
= rank

([
E B A
Ec Bc Ac

])
= n+p. (8)

Proof. Starting from a well-posed controller Σc, we know that
the augmented matrix on the left of (7) has full column rank,
thus it has a left inverse. Multiplying this left inverse by the
left on both sides of (7), shows that the controlled system
can be represented by an autonomous system in standard state
space form. Therefore it has a unique continuation.

More stringent specific controller properties are related
to how the controller can be implemented on the system.
There are several types of these compatibility conditions both
for general nonlinear dynamical systems [16] and conditions
specifically for linear dynamical systems [28]. Within this
work, we will use the notion of regular interconnections
defined specifically for linear dynamical systems. The class of
linear time-invariant dynamical systems that we consider here
admit difference equation representations of the generic form
R(q)w(t) = 0 for polynomial operators R in the shift q [30].
For any such representation, the signal space can be written
as W = U + Y where U denotes the input space of free (un-
constrained) variables and Y the output space of constrained
variables. It is shown in [28] that such a decomposition is not
unique but the dimension p(Σ) := dim(Y) of the output space
is. Precisely, p(Σ) = rank(R) whenever B = kerR(q). A la
[28], we define a regular interconnection as

Definition 4 (Regular interconnection [28]). Let Σ,Σ′ be
linear dynamical systems. We call Σ × Σ′ a regular inter-
connection if p(Σ×Σ′) = p(Σ) + p(Σ′).

This notion of regularity also implies weak uniform compli-
ance [16], which is a notion applicable to the more general set
of nonlinear systems. Physically, weakly uniformly compliant
systems can be interconnected to each other by first preparing
them [16]. Based on Assumption 1, we can use the following
proposition of [28].

Proposition 2. Assume that the linear dynamical system Σ
is controllable. Let the linear dynamical system Σ′′ be a
subsystem of Σ, i.e., BΣ′′ ⊂ BΣ. Then there exists a system
Σ′ such that Σ×Σ′ = Σ′′ and such that this interconnection
is regular.

4

Based on this proposition, we can connect the notion of
well-posed controllers to the existence of controllers that yield
a regular interconnection.

Corollary. If Assumption 1 holds, then Σ is a linear control-
lable system and the existence of a linear well-posed controller
Σc implies the existence of a controller Σ̃c that yields a
regular interconnection such that Σ×Σc = Σ× Σ̃c.

Proof. The interconnection of the linear well-posed controller
Σc ∈ C(Σ) with the linear DS system Σ is given as Σc×Σ.
This interconnection is a subsystem of BΣ, that is, it has the
property that BΣc×Σ ⊂ BΣ.

This corollary indicates that it is sufficient to focus on
the design of a behavioural subset as this implies already
the existence of a controller that can be implemented on the
system via a regular interconnection.

Of interest is the design of well-posed controllers subject
to specifications over the future output behaviour of the
closed-loop controlled system. We thus consider specifications
defined over the output space. To analyse the output behaviour,
we introduce a projection map: for B ⊂ (W1 ×W2)T, we
denote by ΠW2 the projection given as

ΠW2 (B) := {w2 ∈WT
2 | ∃w1 ∈WT

1 s.t. (w1, w2) ∈ B}.

This is depicted in Figure 2 for control synthesis; we focus on
finding a controller Σc for a given dynamical system Σ such
that the output behaviour ΠY(BΣ×Σc

) of the interconnected
system satisfies some given specification.

WT

BΣ
BΣc

ΠY

YTBΣ×Σc

Output
specification

Fig. 2: Depiction of a controller designed to satisfy re-
quirement on the output behaviour: the set with the output
specifications is given on the right.

Remark 2. For transition systems that are classically em-
ployed in formal methods [3], [4], [23] discuss the notions
input words, trajectories (or runs, paths), and output words
or traces: these notions can be connected to the notions of
input sequences, state trajectories and output trajectories of
dynamical and control systems. From this perspective, the
behaviour of a dynamical systems combines these notions, that
is the set WT of a dynamical system Σ with W := U×X×Y
can also regarded as the collection of input words, runs and
output words. The projection map ΠY discussed in Fig. 2,
defining the output behaviour of a dynamical system, performs
a mapping that is similar to the derivation of the language [4]
of a transition system T. More precisely, the set of all output
words generated by all runs starting at x0 ∈ X0 is called the
language of T originating at x0, and is denoted by LT(x0).
The language of T originating from the initial set X0 is
then LT(X0) = ∪x0∈X0LT(x0). As per Fig. 2, it is required
that the controlled output behaviour satisfies a given output

specification: this is a requirement that is similar to that
of language inclusion in formal methods, which focuses on
specifications expressed in temporal logic [8], e.g. LTL [4]
formulae. We further elucidate the connection between output
specification satisfaction in Fig. 2 and language inclusion for
LTL with the following simple example.

Example 3. Consider the dynamical system Σ = (T,W,B)
over the time axis T := N = {0, 1, 2, . . .}, endowed with a full
signal space W := U× X× Y, and the initialised behaviour

Binit
i/s/o = {w ∈WN | w = (u, x, y) s.t. (9)

and s.t. x(0) = x0 ∈ X0},

where X0 = [−1, 1] and

x(t+ 1) = 2x(t) + u(t);

y(t) = x(t), x(0) ∈ X0.
(9)

We are interested in designing a feedback controller Σc : u =
kx, such that the controlled output behaviour ΠY(BΣ×Σc

)
satisfies the following specification: “the output behaviour y(t)
remains in the region X0 at any time in the future.” This
specification can be expressed as finding the control policy
such that LT(X0) ⊆ Lφ, where Lφ denotes the set of words
associated to the LTL formula φ := �X0 (the “always”
operator � denotes satisfaction at all future times). This goal
is achieved by Σc := {u = kx | −3 ≤ k ≤ −1}.

C. Problem statement: Control refinement for DS

Let us refer to the original DS that represents the real
physical system as the concrete DS. It is for this system that
we would like to develop a well-posed controller (c.f. Def. 3)
such that the set of allowed output behaviours (derived, say,
from a given specification) includes the output behaviour of
this system.

Let DS Σa be an abstraction of Σ, that is, Σa is a descriptor
system that shares the same output space Y as Σ, and in
general Σa is a simpler version of Σ in which some part
of the dynamics is abstracted away. More precisely, Σa has
dynamics given as (Ea, Aa, Ba, Ca) and initialised with Xa0:

Eaxa(t+ 1) = Aaxa(t) +Baua(t);

ya(t) = Caxa(t), xa(0) ∈ Xa0,
(10)

where xa(t) ∈ Xa ⊆ Rm, ua(t) ∈ Ua ⊆ Rq, ya(t) ∈ Ya ⊆
Rk with Ya = Y. We assume that the synthesis of a well-
posed controller Σca for Σa is easier than for Σ, because it
is of the same or of a lower dimension than the concrete DS
system Σ, i.e., m ≤ n. We refer to this simpler system Σa as
the abstract DS. Similarly, the input/output behaviour of the
abstract DS Σa is derived as

BΣa
:= {(ua, ya) ∈ (Ua × Ya)N | ∃xa ∈ XN

a

s.t. (ua, xa, ya) satisfies (10)}.

The controlled abstract system Σa ×wa
Σca is the intercon-

nected system with the shared variables wa = (ua, xa).
Given a well-posed controller Σca for the abstract DS Σa,

we are interested in the existence and construction of a well-
posed controller Σc for Σ such that the output behaviour

5

of the two controlled systems is exactly the same for exact
refinement, or the distance between the outputs is bounded by
ε for approximate refinement. This setup leads to the notion of
control refinement, which is depicted in Fig. 3 and formalised
next.

Definition 5 (Control refinement). Let Σa and Σ be the
abstract and concrete DS, respectively. We say that controller
Σc ∈ C(Σ) refines the controller Σca ∈ C(Σa) exactly if

ΠY(BΣ×Σc) ⊆ ΠY(BΣa×Σca
),

and ε-approximately if

ΠY(BΣ×Σc
) ⊆ Eε(ΠY(BΣa×Σca

)).

Exact

YT

ε-Approximate

YT

ΠY(BΣ×Σc) ΠY(BΣa×Σca
) Eε(ΠY(BΣa×Σca

))

Fig. 3: Depiction of the two types of control refinements. The
dashed lines encircle the behavioural sets of the abstract DS
and its controller. The solid lines define the respective original
behavioural sets. When interconnected, the sets BΣa×Σca

and
BΣ×Σc are obtained. The left depicts the exact relation of
these behavioural sets in the output signal space. The right
illustration gives the ε-approximate version.

Recall that Eε is the point-wise ε expansion of the signals.
Next, the exact control refinement problem is formalised.

Problem 1 (Exact control refinement). Under what conditions
on DS systems Σa and Σ does there exist a well-posed or
regular controller Σc for every Σca ∈ C(Σa) that results in
an exact control refinement, as per Definition 5?

In a similar fashion, we are also interested in the approxi-
mate notion, as it is expected that it allows for more freedom
in the abstraction and the controller design.

Problem 2 (Approximate control refinement). Under what
conditions on DS systems Σa and Σ does there exist a well-
posed or a regular controller Σc for every Σca ∈ C(Σa) that
results in an ε-approximate control refinement, as defined
in Def.5?

Problems 1 and 2 are very similar to standard (approximate)
control refinement problems [13], [23] with the exception that
the compatibility conditions have been added.

We approach these problems by introducing notions of
(approximate) similarity between descriptor systems and show
that they allow us to prove the existence of solutions to
Problem 1 and Problem 2.

III. SIMILARITY RELATIONS BETWEEN DS

To quantify whether two systems are similar to each other
we can use either the exact or the approximate notions of
simulation and bi-simulation [2]. Originally defined in formal
verification for finite-state transition systems [3] and later
employed for control systems [23], we will recall these notions
and taylor them to descriptor systems, also thanks to the use
of behavioural theory. For pairs of DS Σ1 and Σ2 (cf. Def. 1)
with equal output space Y1 = Y2 = Y, a simulation relation
is defined as follows.

Definition 6 (Exact simulation). Let Σ1 and Σ2 be
two DS with corresponding dynamics (E1, A1, B1, C1) and
(E2, A2, B2, C2) over state spaces X1 and X2. A relation
R ⊆ X1 × X2 is called a simulation relation from Σ1 to
Σ2, if ∀(x1, x2) ∈ R,

1) for all pairs of control input and next states (u1, x
+
1) ∈

U1 × X1 subject to

E1x
+
1 = A1x1 +B1u1 (11)

there exists a control input and next state pair (u2, x
+
2) ∈

U2 × X2 subject to

E2x
+
2 = A2x2 +B2u2 (12)

such that (x+1 , x
+
2) ∈ R, and

2) it holds that C1x1 = C2x2.

We say that Σ1 is simulated by Σ2, denoted by Σ1 � Σ2, if
there exists a simulation relation R from Σ1 to Σ2 and if in
addition ∀x10 ∈ X10,∃x20 ∈ X20 such that (x10, x20) ∈ R.

We call R ⊆ X1 × X2 a bisimulation relation between Σ1

and Σ2 if R is a simulation relation from Σ1 to Σ2 and its
inverseR−1 ⊆ X2×X1 is a simulation relation from Σ2 to Σ1.
We say that Σ1 and Σ2 are bisimilar, denoted by Σ1

∼= Σ2,
if Σ1 � Σ2 w.r.t. R and Σ2 � Σ1 w.r.t. R−1.

The notion of approximate simulation relation is obtained
by relaxing the equality of the output behaviour. Instead of
identical behaviours, for an approximate simulation relation
we require that the distance between these output behaviours
remains bounded.

Definition 7 (Approximate simulation). Let Σ1 and Σ2 be
two DS with corresponding dynamics (E1, A1, B1, C1) and
(E2, A2, B2, C2) over state spaces X1 and X2. A relation
Rε ⊆ X1 × X2 is called an approximate simulation relation
from Σ1 to Σ2, if ∀(x1, x2) ∈ Rε,

1) for all (u1, x
+
1) ∈ U1 × X1 subject to Eq. (11) there

exists (u2, x
+
2) ∈ U2 × X2 subject to Eq. (12) such that

(x+1 , x
+
2) ∈ Rε, and

2) we have d(C1x1, C2x2) ≤ ε.

We say that Σ2 approximately simulates Σ1, denoted by
Σ1 �ε Σ2, if there exists an approximate simulation relation
Rε from Σ1 to Σ2 and if in addition ∀x10 ∈ X10,∃x20 ∈ X20

such that (x10, x20) ∈ Rε.

We now consider the following example to get more insights
of the simulation relations between DS and their behaviours.

6

Example 4. Consider a concrete DS Σ with dynamics
(E,A,B,C), defined as

E =
[
1 0 0
0 0 1
0 0 0

]
, A =

[−1 0 0
0 1 0
0 0 1

]
, B =

[
1
2
0

]
, C =

[
0.2
0.5
1

]T
with X0 ⊆ X and X,U,Y are respectively subsets of R3,R,R.
The DS Σ is not a minimal realisation because it is observable
but not reachable, see [6], [9] for details on observability and
reachability. Based on the Silverman-Ho algorithm [9], we
choose an abstract DS Σa with dynamics (Ea, Aa, Ba, Ca)
that is the minimal realization of Σ and

Ea = [1 0
0 0], Aa =

[−1 0
0 1

]
, Ba = [11], Ca = [0.21]

T
.

Similarly, Xa0 ⊆ Xa and Xa,Ua,Y are respectively subsets
of R2,R,R. Subsequently,

R := {(xa, x) | x = Hxa, xa ∈ Xa, x ∈ X}

is a bisimulation relation between Σa and Σ, where

H =
[
1 0
0 2
0 0

]
.

Then, we consider the two requirements of bisimulation re-
lations. For any (xa, x) ∈ R, we have Cx = CHxa =
Caxa. For any (xa, x) ∈ R with xa = (xa1, xa2)T and
x = (x1, x2, 0)T subject to x1 = xa1, x2 = 2xa2, it holds that
for the state evolution xa

ua−→ax
+
a in Σa the input is such that

ua = −xa2. Still the next state x+a = (−xa1 − xa2, x+a2) has
a free variable x+a2. For the original system Σ, the next state
x+ = (−x1 − 0.5x2, x

+
2) can be chosen as x+2 = 2x+a2, such

that (x+a , x
+) ∈ R. Thereby the relation R is a simulation

relation, by proving that the reverse also holds, we can show
that the relation R is a bisimulation.
In addition, if all x0 ∈ X0 can be mapped to
(x10, x20, 0)T , then there always exists xa0 = (xa10, xa20)T =
(x10, 0.5x20)T ∈ Xa0 s.t. (xa0, x0) ∈ R. Conversely, for any
xa0 ∈ Xa0, there exists x0 = Hxa0 ∈ Xa0 s.t. (xa0, x0) ∈ R.
Therefore, we can conclude that Σa

∼= Σ.

The given notions of (bi)simulation relations and approxi-
mate simulation relations are a specific case of those defined
for metric transition systems [3], [23]. As such, key properties
are preserved. This includes the transitivity of these relations,
as given next, that are key for the results in this work.

Proposition 3 (Transitivity). Let Rε1 be an approximate
simulation relation from Σ1 to Σ2 and Rε2 be an ap-
proximate simulation relation from Σ2 to Σ3. In addition,
∀x10 ∈ X10,∃x20 ∈ X20 s.t. (x10, x20) ∈ Rε1 and ∀x20 ∈
X20,∃x30 ∈ X30 s.t. (x20, x30) ∈ Rε2 . Then, we can conclude
that
Rε1+ε2 := Rε1 ◦ Rε2 = {(x1, x3) | ∃x2

s.t. (x1, x2) ∈ Rε1 ∧ (x2, x3) ∈ Rε2}
is an approximate simulation relation from Σ1 to Σ3, and in
addition ∀x10 ∈ X10,∃x30 ∈ X30 s.t. (x10, x30) ∈ Rε1+ε2 .

By setting ε1 and ε2 to 0, we also get that transitivity holds
for exact simulation relations.

Simulation relations imply properties of the output be-
haviours of the two systems: this follows from [3], [23] and
is formalised next.

Proposition 4. Let Σ1 and Σ2 be two DS with similarity
relations as defined in Definitions 6 and 7. Then, the following
implications hold:

Σ1 � Σ2 =⇒ ΠY(BΣ1
) ⊆ ΠY(BΣ2

),

Σ1
∼= Σ2 =⇒ ΠY(BΣ1

) = ΠY(BΣ2
),

Σ1 �ε Σ2 =⇒ ΠY(BΣ1
) ⊆ Eε(ΠY(BΣ2

)).

Proof. Based on [3], [23], we can infer the first two implica-
tions. The last implication follows from the definition of ap-
proximate simulation relation. For every signal y ∈ ΠY(BΣ2),
there exists a state signal and input signal x, u such that
(x1, u1) ∈ Binit

i/s/o,1. Since Σ1 �ε Σ2, we know that for
x1(0) ∈ X10 there exists x2(0) ∈ X20 with (x1(0), x2(0)) ∈
R. Moreover for the state-input signal (x1, u1) there exists an
input signal u2 such that (x1(t), x2(t)) ∈ R for all t ≥ 0. The
corresponding output signal y2 satisfies d(y1(t), y2(t)) ≤ ε
for all t ≥ 0. Therefore, it also holds that y1(t) ∈ Eε(y2). By
extension this also proves the third implication.

Remark 5. The implications in Proposition 4 are uni-
directional, that is ΠY(BΣ1

) ⊆ ΠY(BΣ2
) does not imply that

Σ1 � Σ2. Indeed, consider the two non-singular DS’s

Σa :

{
xa(t+ 1) = ua(t)
ya(t) = xa(t)

Σb :

{
xb(t+ 1) = [0 1

0 0]xb(t) + [01]ub(t)
yb(t) = [1 0]xb(t)

with ua(t), ub(t) ∈ R and xb(t) =
[
xb1(t) xb2(t)

]T
. Σa is

initialised with xa(0) ∈ R while Σb is initialised with xb(0) ∈
R2. For any initial state xa(0) of Σa and the input sequence
ua(t), we can produce the same trajectory in Σb by choosing
xb1(0) = xa(0), xb2(0) = ua(0) and ub(t) = ua(t + 1).
Therefore, we have that ΠY(BΣa

) ⊆ ΠY(BΣb
) since for every

output trajectory in Σa, there exists the same output trajectory
in Σb. But it does not hold that Σa � Σb. This is because
the pairs of control input and next states (ua(t), xa(t+ 1)) in
Σa cannot be matched by the pairs of control input and next
states (ub(t), xb(t + 1)) in Σb since neither the initialisation
xb2(0) = ua(0) nor the anticipating input ub(t) = ua(t + 1)
in Σb is guaranteed.

Simulation relations are key concepts for controller design
over deterministic systems [10], [13]:1 in this work, we
apply them to discrete-time linear DS and show under what
conditions they solve the control refinement problems 1 and
2.

IV. DESCRIPTOR AND DRIVING VARIABLE SYSTEMS

Since it is difficult to control and analyse a DS directly,
we develop a transformation to a system representation that
is in the non-singular DS form and is driven by an auxiliary
input. We refer to this non-singular DS as the driving variable
(DV) system [24]. We investigate whether the DS and the
obtained DV system are bisimilar and therefore behaviourally

1A system is called deterministic if for any state x ∈ X and any input
u ∈ U, x u−→ x+ and x

u−→ x+′ implies x+ = x+′. A system is called
nondeterministic if it is not deterministic.

7

equivalent. Let us first introduce by a simple example the
apparent non-determinism or anti-causality in the DS. Later
we show the connections between a DS and its corresponding
DV system.

Example 6. Consider the DS with dynamics (E,A,B,C)
defined as

E =
[
1 0 0
0 0 1
0 0 0

]
, A =

[−1 0 0
0 1 0
0 0 1

]
, B =

[
1
1
1

]
, C =

[
0
0.2
0.5

]T
, (13)

and x(t) =
[
x1(t) x2(t) x3(t)

]T
. In this case, we have

that u(t) +x3(t) = 0 holds. The state trajectories of (13) can
be found as follows:
• for a given input sequence u : T→ U, x2(t) = −u(t)−
u(t+ 1), and thus we can use this anti-causal relation of
the DS to find the corresponding state trajectories;

• alternatively we can allow the next state x2(t+ 1) to be
freely chosen, for arbitrary state x2(t), Equations (13)
impose a relation between the input sequence u(t) and
the state x3(t), that is u(t) + x3(t) = 0. The input u(t)
here is actually free.

We embrace the latter, non-deterministic interpretation.

This non-determinism can be characterised by introducing
an auxiliary driving input of a so-called DV system. As in
Equation (7) of Example 1, we reorganise the state evolution
of (1). For simplicity, we omit the time index in x(t) and u(t)
and denote x(t+ 1) as x+, so that

M

[
x+

u

]
= Ax, (14)

where M =
[
E −B

]
∈ Rn×(n+p). If there exists a solution

for x, then the solution pairs (u, x+) are non-unique, due
to the non-determinism related to x+. Based on Assumption
1, M has full row rank, therefore it has a right inverse.
This assumption always holds when the DS is reachable
(Definition 2-1.1 [9]). In that case we can characterise the
non-determinism as follows. Let M−1right be a right inverse of
M such that MM−1right = I and N be a matrix such that
imN = kerM and NTN = I . Then all pairs (u, x+) that are
compatible with state x in (14) are parametrised as[

x+

u

]
= M−1rightAx+Ns, (15)

where s is a free variable. We now claim that all transitions
(x, u, x+) that satisfy (15) for some variable s satisfy (14). To
see this, multiply M on both sides of (15) to obtain (14). Now
assume that there exists a tuple (x, u, x+) satisfying (14) that
does not satisfy (15). Then there exists an s and a vector z 6= 0
that is not an element of the kernel of M and such that the right
side of (15) becomes M−1rightAx+Ns+ z. Multiplying again
with M , we infer that there is an additional non-zero term
Mz and that (14) cannot hold. In conclusion, any transition
of (14) is also a transition of (15) and vice versa.

Example 7. [Example 6, continued] For the DS of Example
6, the related DV system is

x(t+ 1) =
[−1 0 −1

0 0 0
0 1 −1

]
x(t) +

[
0
−1
0

]
s(t),

u(t) = [0 0 −1]x(t),

y(t) = [0 0.2 0.5]x(t).

(16)

As indicated by (16), the input u(t) is a function of the state
trajectory. The non-determinism of x2(t+ 1) is characterised
by −s(t), for which the auxiliary input s can be freely selected.

Let us now formalise the notion of a driving variable
system, which is denoted as ΣDV. We associate a driving
variable representation to any given DS (1) by defining a tuple
(Ad, Bd, Cu, Du, C), with[

Ad
Cu

]
:= M−1rightA,

[
Bd
Du

]
:= N. (17)

For any given DS, this tuple defines the driving variable
system ΣDV = (T,W,BΣDV), which maintains the same set
of initial states X0 and has dynamics

x(t+ 1) = Adx(t) +Bds(t),

u(t) = Cux(t) +Dus(t),

y(t) = Cx(t), x(0) ∈ X0,

(18)

with x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rp, y(t) ∈ Y ⊆ Rk,X0 ⊆
X. The new variable s(t) is referred to as the driving variable
which assumes values in S ⊆ Rp. This yields the initialised
behaviour

BΣDV := {w ∈WT | w =(u, x, y),∃s ∈ ST s.t. (18)}.
Any concrete DS (1) that is reachable can be rewritten as the
corresponding concrete DV system (18).

Conversely, we can develop an algorithm to rewrite the
DV system (18) back into a DS Σ. In addition, the driving
variable s can be expressed by x, x+ and u. The algorithm is
developed based on the singular value decomposition (SVD)
of
[
BTd DT

u

]T
.

It is easy to see that Σ and ΣDV are behaviourally equiva-
lent. Since, as shown in Section 3, bisimilarity always implies
output behavioural equivalence, the following proposition pro-
poses the stronger relationship of bisimilarity between a DS
and its related DV system.

Theorem 5. Let the DS Σ be given as in (1) and let
ΣDV = (T,W,BΣDV) be defined as in (18). Then:
(a) Σ and ΣDV are bisimilar, that is, Σ ∼= ΣDV,
(b) Σ and ΣDV have equal behaviour, that is, BΣDV = BΣ,
(c) Σ and ΣDV have equal output behaviour, that is,

ΠY(BΣ) = ΠY(BΣDV).

Proof. For the first statement (a), we define the diagonal
relation as I := {(x, x) | x ∈ X}. Then I is a bisimulation
relation between Σ and ΣDV, because by construction their
state evolutions can be matched, hence stay in I; and they
share the same output map. In addition, since they have the
same set of initial states it follows that Σ ∼= ΣDV. The
matching of the state evolutions can be found in the paragraph
following Equation (15).
The second part (b) follows immediately from the derivation
of ΣDV, because by construction all the transitions in Σ can
be matched by those of ΣDV and vice versa, in addition, they
have the same output map. Hence, they share the same signal
space (U×X×Y) and we can conclude that Σ and ΣDV have
equal behaviour.
Additionally, we have that (b) implies (c) and via Proposition
4, also that (a) implies (c).

8

V. EXACT CONTROL REFINEMENT FOR DESCRIPTOR
SYSTEMS

Based on the previous section, we now derive the solution
to the exact control refinement goal in Problem 1. For this
we exploit the existence of a simulation relation R from the
abstract to the concrete system. More precisely, subject to the
assumption that there exists a simulation relation R from Σa

to Σ, for which in addition it holds that2 ∀x0 ∈ X0,∃xa0 ∈
Xa0 s.t. (xa0, x0) ∈ R, we show that for any Σca ∈ C(Σa),
there exists a controller Σc for Σ that refines Σca such that
Σc ∈ C(Σ) and ΠY(BΣ×Σc) ⊆ ΠY(BΣa×Σca

). Thus, note
that we directly use the simulation relation R over the state
spaces and not the induced preorder notion �.

Under Assumption 1, we construct DV systems ΣDV
and ΣDVa

for the respective DS systems Σ and Σa as a
first step. ΣDVa

is the abstract DV system with dynamics
(Ada, Bda, Cua , Dua , Ca) defined as

xa(t+ 1) = Adaxa(t) +Bdasa(t);

ua(t) = Cuaxa(t) +Duasa(t);

ya(t) = Caxa(t), xa(0) ∈ Xa0,
(19)

where ua(t) = Cua
xa(t) + Dua

sa(t) and xa(t) ∈ Xa ⊆
Rm, sa(t) ∈ Sa ⊆ Rq, ua(t) ∈ Ua ⊆ Rq, ya(t) ∈ Y ⊆
Rk,Xa0 ⊆ Xa. Again, sa(t) is a driving variable. The be-
haviour of the abstract DV system (19) is denoted by BΣDVa

.
For DS Σ, Σa and their related DV systems ΣDV, ΣDVa

, we
develop the following results on exact control refinement:

(I) The exact control refinement for the DV systems:

∀Σc
DVa
∈ C(ΣDVa),∃Σc

DV ∈ C(ΣDV), s.t.

ΠY
(
BΣDV×Σc

DV

)
⊆ ΠY

(
BΣDVa

×Σc
DVa

)
; (20)

(II) The exact control refinement from Σa to ΣDVa
:

∀Σca ∈ C(Σa),∃Σc
DVa
∈ C(ΣDVa

), s.t.

ΠY
(
BΣa×Σca

)
= ΠY

(
BΣDVa

×Σc
DVa

)
; (21)

(III) The exact control refinement from ΣDV to Σ:

∀Σc
DV ∈ C(ΣDV),∃Σc ∈ C(Σ), s.t.

ΠY
(
BΣDV×Σc

DV

)
= ΠY

(
BΣ×Σc

)
. (22)

It will be shown that the combination of the elements (I)-(III)
also implies the construction of the exact control refinement
for the concrete Σ and abstract Σa systems.

A. Exact control refinement for the DV systems

From Theorem 5, we know that Σ ∼= ΣDV and Σa
∼= ΣDVa

with respective diagonal relations I := {(x, x)|x ∈ X} and
Ia := {(xa, xa)|xa ∈ Xa}. Hence as depicted in Fig. 4 and
based on the transitivity of simulation relations, we also derive
that R is a simulation relation from ΣDVa to ΣDV.

Since the DV systems ΣDV and ΣDVa share the same initial
states as the respective DS Σ and Σa, it also holds that ∀x0 ∈
X0,∃xa0 ∈ Xa0 s.t. (xa0, x0) ∈ R.

2Notice that the requirement on the initial conditions is in “reverse order”
from that needed for Σa � Σ .

Σ

Σa

ΣDV

ΣDVa
Σa
∼= ΣDVa

w.r.t. Ia

Σ ∼= ΣDV w.r.t. I

R = Ia ◦ R ◦ I
∀x0,∃xa0 :

(xa0, x0) ∈ R

(xa, x) ∈ R
∀x0,∃xa0 :

(xa0, x0) ∈ R

Fig. 4: Connection between DS and DV systems for control
refinement. As in the definition of the interface (Def. 8), the
connection builds on the existence of a relation and an order
in the initialisation of the systems.

Since both systems have standard non-singular dynamics,
we can follow the procedure in [13] to refine a controller for
ΣDVa

to ΣDV. We now extend this result to the behavioural
framework. Consider the definition of an interface function
used for the refinement as illustrated in Fig. 5.

Definition 8. (Interface3). Let Σ1 and Σ2 be two non-
singular DS with respective dynamics (I1, A1, B1, C1) and
(I2, A2, B2, C2) over state spaces X1 and X2. Then F :
U1 × X1 × X2 7→ U2 is an interface function with respect to
a given relation R, if the following conditions are satisfied:

1) for every (x1, x2) ∈ Rε it holds that for all u1 for Σ1

there exists an input u2 for Σ2 such that (x+1 , x
+
2) ∈ Rε,

and
2) ∀x20 ∈ X20,∃x10 ∈ X10 s.t. (x10, x20) ∈ Rε.

C̃

C

Σ̃

u = F(ũ, x̃, x)

Σ

x

x̃

u

ũ

x̃

y

Fig. 5: Control refinement for dynamical models. A controller
C̃ for the abstract model Σ̃ is refined to the original model Σ.

The definition of an interface function holds for both exact
and approximate simulation relations. The existence of an
interface function that satisfies the first condition of Definition
8 already follows from the definition of a simulation relation.
However, the condition requires a construction of this inter-
face in general. The second condition is instead needed to
implement the interface for control refinement.

Proposition 6. Let Σ1 and Σ2 be two non-singular DS defined
over the same output space Y with dynamics (I1, A1, B1, C1)
and (I2, A2, B2, C2), which are initialised with X10 and X20,
respectively. If there exists a relation R ⊆ X1 ×X2 such that

3F is an interface related to a simulation relation R by setting ε = 0.

9

1) R is a simulation relation from Σ1 to Σ2 as in Def. 6,
and

2) ∀x20 ∈ X20,∃x10 ∈ X10 s.t. (x10, x20) ∈ R,
then for any controller Σc1 ∈ C(Σ1), there exists a controller
Σc2 ∈ C(Σ2) that is an exact control refinement for Σc1 as
defined in Def. 5, i.e,

ΠY(BΣ2×Σc2
) ⊆ ΠY(BΣ1×Σc1

).

The proof is actually constructive in the design of the
controller Σc2 , as it gives a controller that achieves exact or
approximate control refinement for Σc1 .

Proof. Since R is a simulation relation from Σ1 to Σ2, there
exists an interface function F : U1 × X1 × X2 → U2 related
to R as given in condition (1) of Definition 8, cf [13], [23].
Additionally, due to (2) there exists a map, F0 : X20 → X10

such that for all x20 ∈ X20 it holds that (F0(x20), x20) ∈ R.
Next, we construct the controller Σc2 that achieves exact
control refinement for Σc1 as

Σc2 := (Σ1 ×w1 Σc1)×w1 ΣF ,

where w1 = (u1, x1) and where ΣF := (N,W,BF) is a
dynamical system taking values in the combined signal space
with

BF := {(x1, u1, x2, u2) ∈WT|x1(0) = F0(x2(0)) and
u2(t) = F(x1(t), u1(t), x2(t))}.

The dynamical system Σc2 is a well-posed controller for
Σ2 with Σ2 ×w2

Σc2 sharing w2 = (u2, x2). Denote
with BΣ2×Σc2

the behaviour of the controlled system, then
due to the construction of ΣF it follows that BΣ2×Σc2

is non-empty and ∀x20 ∈ X20, ∃x10 ∈ X10 such that
(x10, x20) has a unique continuation in BΣ2×Σc2

, which
is such that (x1(t), x2(t)) ∈ R ∀t. Furthermore it holds
that ΠY(BΣ2×Σc2

) ⊆ ΠY(BΣ1×Σc1
). This holds since

(x1(t), x2(t)) ∈ R holds ∀t, which also implies that the output
of both systems are the same. Remark that ΠY(BΣ2×Σc2

) is
only a subset of ΠY(BΣ1×Σc1

), since there could be states
x10 for which there does not exist x20 ∈ X20.

Thus based on Proposition 6, we know that we can do
exact control refinement (20) for non-singular driving variable
systems.

B. Exact control refinement from Σa to ΣDVa

We first derive the static function Sa mapping transitions
of Σa to the auxiliary input sa of ΣDVa . From the definition
of DV systems, we can also derive the transitions of ΣDVa

indexed with a, which is similar to the derivation of (15).[
x+a
ua

]
= Ma

−1
rightAaxa +Nasa. (23)

Multiplying NT
a on both sides of (23), Sa is derived as

Sa : sa = Sa(x+a , ua, xa) = NT
a

[
x+a
ua

]
−NT

a Ma
−1
rightAaxa.

(24)

Sa maps the state evolutions of Σa ×wa
Σca to the auxiliary

input sa for ΣDVa , where wa = (ua, xa). Now, we consider
the exact control refinement from the abstract DS to the
abstract DV system.

Theorem 7. Let Σa be the abstract DS with dynamics
(Ea, Aa, Ba, Ca) satisfying the condition of Assumption 1
and let ΣDVa

be its related DV system with dynamics
(Ada, Bda, Cua

, Dua
, Ca) such that both systems are ini-

tialised with Xa0. Then, for any Σca ∈ C(Σa) and based
on the static map Sa (24), there exists a controller Σc

DVa
∈

C(ΣDVa) that is an exact control refinement for Σca as defined
in Definition 5 with

ΠY
(
BΣa×Σca

)
= ΠY

(
BΣDVa

×Σc
DVa

)
.

The proof builds on the construction of a controller Σc
DVa

.

Proof. Denote with xa and xda the state variables of Σa and
ΣDVa

, respectively. Next, we construct the controller Σc
DVa

that achieves exact control refinement for Σca as

Σc
DVa

:= (Σa ×wa
Σca)×wa

ΣSa ,

where wa = (ua, xa) and where ΣSa := (N,W,BSa) is a
dynamical system with

BSa := {(xa, ua, xda, sa) ∈WT|xa(0) = xda(0) and
sa(t) = Sa(xa(t+ 1), ua(t), xa(t))} as in (24).

The dynamical system Σc
DVa

is a well-posed controller for
ΣDVa

with ΣDVa
×wd

a
Σc

DVa
sharing wda = (sa, x

d
a). Denote

with BΣDVa
×Σc

DVa
the behaviour of the controlled system. By

construction, we know that the set of the behaviour is non-
empty and there is a unique continuation for any xda0 ∈ Xa0.
Further based on the construction of ΣSa , the behaviour is
such that xda(t) = xa(t),∀t ∈ N. Additionally, since Σa and
ΣDVa

share the same set of initial states Xa0, it holds that
ΠY
(
BΣa×Σca

)
= ΠY

(
BΣDVa

×Σc
DVa

)
.

C. Exact control refinement from ΣDV to Σ

We consider the exact control refinement from ΣDV to Σ.
Suppose we are given a well-posed controller Σc

DV for ΣDV,
which shares the free variable s and the state variable x with
ΣDV. Now we want to design a well-posed controller for Σ
over w = (u, x), for which we consider the dynamical system
ΣC = (N,W,B) over the signal space W = U × X × S, the
behaviour of which can be defined by

BTd x(t+ 1) = BTd Adx(t) +BTd Bds(t)

u(t) = Cux(t) +Dus(t).
(25)

Then the dynamics of the interconnected system Σ×w ΣC as
a function of x and s is derived as[

E
BTd

]
x(t+ 1) =

[
A+BCu
BTd Ad

]
x(t) +

[
BDu

BTd Bd

]
s(t). (26)

Note that A+BCu = EAd and BDu = EBd by multiplying
M =

[
E −B

]
on the left-hand side of the two equations in

(17). Therefore, (26) is simplified to[
E
BTd

]
x(t+ 1) =

[
E
BTd

]
Adx(t) +

[
E
BTd

]
Bds(t). (27)

10

Furthermore
[
ET Bd

]T
has full column rank because the

matrix
[
MT N

]T
is square and has full rank. Recall the

requirements for well posedness of a controller as given in
Definition 3. Hence

[
ET Bd

]T
has a left inverse and the

dynamics of Σ×w ΣC in (27) can be simplified as

x(t+ 1) = Adx(t) +Bds(t),

which is exactly the same as the state evolutions of ΣDV as
shown in (18). Next we construct Σc := ΣC ×wd Σc

DV with
wd = (s, xd), which is a well-posed controller for Σ. Then
the following theorem regarding the control refinement from
ΣDV to Σ is developed.

Theorem 8. Let Σ be the concrete DS with dynamics
(E,A,B,C) satisfying Assumption 1 and let ΣDV be its
related DV system with dynamics (Ad, Bd, Cu, Du, C) such
that both systems are initialised with X0. Then, for any
Σc

DV ∈ C(ΣDV), there exists a controller Σc ∈ C(Σ) that
is an exact control refinement for Σc

DV with

ΠY
(
BΣDV×Σc

DV

)
= ΠY (BΣ×Σc) .

Proof. Denote with x and xd the state variables of the Σ and
ΣDV, respectively. Next, we construct the controller Σc that
achieves exact control refinement for Σc

DV as

Σc := ΣC ×wd Σc
DV,

where wd = (s, xd) and the dynamics of ΣC is defined as
(25). Then, we can show that the dynamical system Σc is a
well-posed controller for Σ. Based on the analysis of (27), it
is shown that Σ×w ΣC = ΣDV with w = (u, x), then we can
derive Σ×wΣc = ΣDV×wd Σc

DV. Therefore, we can conclude
Σc ∈ C(Σ) with ΠY

(
BΣDV×Σc

DV

)
= ΠY

(
BΣ×Σc

)
follows

from Σc
DV ∈ C(ΣDV).

1) Exact control refinement for descriptor systems: We can
now argue that there exists exact control refinement from Σa

to Σ, as stated in the following result.

Theorem 9. Consider two DS Σa (abstract, initialised with
Xa0) and Σ (concrete, initialised with X0) satisfying Assump-
tion 1 and let R be a simulation relation from Σa to Σ,
for which in addition holds that ∀x0 ∈ X0,∃xa0 ∈ Xa0 s.t.
(xa0, x0) ∈ R. Then, for any Σca ∈ C(Σa), there exists a
controller Σc ∈ C(Σ) such that

ΠY (BΣ×Σc) ⊆ ΠY
(
BΣa×Σca

)
.

Proof. Based on Assumption 1, we first construct ΣDV and
ΣDVa

. Then to prove exact control refinement, we need to
construct it. This can be done based on the subsequent control
refinements given in Theorem 7, Proposition 6 and Theorem
8.

Theorem 9 claims the existence of such controller Σc that
achieves exact control refinement for Σca . More precisely,
we will show in the proof that the refined controller Σc is
constructive, which provides the solution to Problem 1. Note
that assumption 1 on controllability can be relaxed, since the
condition rank(

[
σE −A B

]
) = n is not required in the

proofs.

Example 8. [Examples 6,7 - continued] Consider the DS of
Example 6 and the related DV system in Example 7, and sup-
pose that both systems are initialised within X0 = {x0 | x0 ∈
[−1, 1]3 ⊂ R3}. According to the Silverman-Ho algorithm [9],
we can select an abstract DS Σa = (Ea, Aa, Ba, Ca) that is
the minimal realisation of Σ, is initialised with Xa0 = R2,
and where

Ea = [0 0
1 0], Aa = [1 0

0 1], Ba = [10], Ca = [0.70.2]
T
.

Similarly, the DV system ΣDVa
for Σa is given as

xa(t+ 1) = [0 1
0 0]xa(t) +

[
0
−1
]
sa(t),

ua(t) = [−1 0]xa(t), ya(t) = [0.7 0.2]xa(t).
(28)

Further, R := {(xa, x) | xa = Hx, xa ∈ Xa, x ∈ X} is a
simulation relation from Σa to Σ with

H =
[
0 0 1
0 1 −1

]
.

This can be derived via the two properties in Definition 6.
In addition, the following condition holds: ∀x0 ∈ X0,∃xa0 ∈
Xa0 s.t. (xa0, x0) ∈ R. According to Theorem 9, we can refine
any Σca ∈ C(Σa) to attain a well-posed controller Σc for
Σ that solves Problem 1, as follows: suppose we are given
Σca ∈ C(Σa) with dynamics as

[1 1]xa(t+ 1) = [0.5 0.5]xa(t) + ua(t).

The controlled system Σa ×wa
Σca is directly derived as

xa(t+ 1) =
[

0 1
−0.5 −0.5

]
xa(t)

ya(t) = [0.7 0.2]xa(t),

with wa = (ua, xa) and ua(t) = [−1 0]xa(t). Then Σa ×wa

Σca is stable. According to Theorem 7, we derive the map Sa
for ΣDVa

as

sa(t) = [0 −1]xa(t+ 1) = [0.5 0.5]xa(t).

Next, the interface from ΣDVa to ΣDV is developed as s(t) =
sa(t) − [0 1 −1]x(t). According to Theorem 8, we derive the
well-posed controller Σc as

[0 −1 0]x(t+ 1) = [0 −1 1]x(t) + [0.5 0.5]xa(t)

u(t) = [0 0 −1]x(t).
(29)

Thus, Σc ∈ C(Σ) and ΠY (BΣ×Σc) ⊆ ΠY
(
BΣa×Σca

)
. The

interconnected system Σ ×w Σc with w = (u, x), is derived
as

x(t+ 1) =
[
1 0 1
0 1 −1
0 1 −1

]
x(t) +

[
0 0
−0.5 −0.5
0 0

]
xa(t)

y(t) = [0 0.2 0.5]x(t).

Since (xa, x) ∈ R, that is xa = Hx, the interconnection
Σ×w Σc can be simplified by replacing xa(t) as follows:

x(t+ 1) =
[
1 0 1
0 0.5 −1
0 1 −1

]
x(t)

y(t) = [0 0.2 0.5]x(t).

Corollary (of Theorem 9). Consider two DS Σa (abstract, ini-
tialised with Xa0) and Σ (concrete, initialised with X0) satis-
fying Assumption 1 and letR be a simulation relation from Σa

to Σ, for which in addition holds that ∀x0 ∈ X0,∃xa0 ∈ Xa0
s.t. (xa0, x0) ∈ R. Then, for any Σca ∈ C(Σa), there exists a

11

controller Σc such that Σ × Σc is a regular interconnection
and

ΠY (BΣ×Σc
) ⊆ ΠY

(
BΣa×Σca

)
.

Proof. Based on Theorem 9, we have that there exists a well
posed controller Σ′c ∈ C(Σ) such that

ΠY
(
BΣ×Σ′

c

)
⊆ ΠY

(
BΣa×Σca

)
.

Based on Theorem 7, Proposition 6 and Theorem 8 know that
Σ′c is constructed as

Σ′c := Σca ×ua,xa Σa ×ua,xa ΣSa ×sa,xa ΣF ×s,x ΣC

Moreover, since Σca is a well-posed controller, it holds that
Σca ×ua,xa

Σa is an autonomous system. Furthermore, ΣSa
is a mapping from xa, ua to sa based on (24). Therefore, it
is sufficient to prove that the systems ΣF ×s,x ΣC can be
replaced by a regular interface denoted as ΣFreg

that yields
a regular connection with Σ.

Consider the signal space W := Sa × Xa × S × X × U
and let Σ be trivially extended to this signal space, then the
interconnection of the systems

ΣF ×s,x ΣC ×Σ

yields a linear dynamical system that defines the behaviour
B ⊂WT and for which B ⊂ BΣ ⊂WT. Based on Proposi-
tion 2 and its corollary there exists a linear dynamical system
ΣFreg

for which ΣFreg
×Σ is a regular interconnection, and

for which BΣFreg×Σ = B. Therefore, we have that

Σc := Σca ×ua,xa
Σa ×ua,xa

ΣSa ×sa,xa
ΣFreg

is such that Σc ×Σ is a regular interconnection and

ΠY (BΣ×Σc) ⊆ ΠY
(
BΣa×Σca

)
.

Remark 9 (Discussion on constructiveness of the controller
synthesis). Given Theorem 9, and its Corollary, we know
that a controller refinement exists. We also know that this
is constructive as the corresponding proof is constructive.
Furthermore, based on [28], we can use this controller to
construct a new controller that yields a regular interconnection
with the original descriptor system.

While for Theorem 9 controllability is not key, it is needed
to achieve a regular controller.

Remark 10 (Comparison to results for standard LTI systems).
In comparison to results on control refinement for standard
LTI systems the existence of a simulation relation is not
sufficient to achieve a well-posed or regular controller. Instead
additional controllability conditions are needed that indicated
the implementability of the achieved controller.

VI. APPROXIMATE CONTROL REFINEMENT FOR
DESCRIPTOR SYSTEMS

In this section we use approximate simulation relations for
control refinement. We show that this solves the approximate
control refinement as given in Problem 2.

Approximate relationships that do allow for the possibility
of error, will certainly provide more freedom in control refine-
ment and in the selection of the abstract model. As a contrast
to the exact control refinement, we will focus on Problem
2: approximate control refinement for descriptor systems via
the approximate simulation relations in this section. For the
solution of Problem 2, we still consider the concrete and
abstract DS Σ and Σa defined as (1) and (10), respectively.
We show that if there exists an approximate simulation relation
Rε from Σa to Σ, and in addition, ∀x0 ∈ X0,∃xa0 ∈
Xa0 s.t. (xa0, x0) ∈ Rε, then for any Σca ∈ C(Σa), we can
always refine Σca to attain a controller Σc for Σ such that
Σc ∈ C(Σ) and ΠY(BΣ×Σc

) ⊆ Eε(ΠY(BΣa×Σca
)).

To show this, we can use a lot of the reasoning for exact
control refinement. More precisely, we also need the related
DV systems ΣDV and ΣDVa as (18) and (19) satisfying ΣDV ∼=
Σ and ΣDVa

∼= Σa, respectively. For DS Σ, Σa and their
related DV systems ΣDV, ΣDVa

, we combine the following
results:

(I) The approximate control refinement for the DV systems:

∀Σc
DVa
∈ C(ΣDVa

),∃Σc
DV ∈ C(ΣDV), s.t.

ΠY
(
BΣDV×Σc

DV

)
⊆ Eε

(
ΠY
(
BΣDVa

×Σc
DVa

))
; (30)

(II) The exact control refinement from Σa to ΣDVa
as given

in Equation (21);
(III) The exact control refinement from ΣDV to Σ as given in

Equation (22).
When compared to the elements presented for the exact case,
only the first condition is new and needs to be proven. Again,
it will be shown that the combination of the elements (I)-
(III) also implies the construction of the approximate control
refinement for the concrete and abstract DS.

Let us prove element (I) next.

Σ

Σa

ΣDV

ΣDVa
Σa
∼= ΣDVa

w.r.t. Ia

Σ ∼= ΣDV w.r.t. I

Rε = Ia ◦ Rε ◦ I
∀x0,∃xa0 :

(xa0, x0) ∈ Rε

(xa, x) ∈ Rε
∀x0,∃xa0 :

(xa0, x0) ∈ Rε

Fig. 6: Connection between DS and DV systems for ap-
proximate control refinement. The schematic connection for
approximate control refinement is very similar to that of exact
control refinement given in Fig. 4.

A. Approximate control refinement for the DV systems

Similar to the exact control refinement case, we can again
infer the relation between the DV systems next, as depicted

12

in Fig. 6. We can thus derive that Rε is an approximate
simulation relation from ΣDVa to ΣDV.

Proposition 10. Let Σ1 and Σ2 be two non-singular
DS defined over the same output space Y with dynamics
(I1, A1, B1, C1) and (I2, A2, B2, C2), which are initialised
with X10 and X20, respectively. If there exists an approximate
relation Rε ⊆ X1 × X2 such that

1) Rε is an approximate simulation relation from Σ1 to Σ2

as in Def. 7, and
2) ∀x20 ∈ X20,∃x10 ∈ X10 s.t. (x10, x20) ∈ Rε,

then for any controller Σc1 ∈ C(Σ1), there exists a controller
Σc2 ∈ C(Σ2) that is an approximate control refinement for
Σc1 , as defined in Def. 5, i.e.,

ΠY(BΣ2×Σc2
) ⊆ Eε(ΠY(BΣ1×Σc1

)).

Proof. Consider an approximate simulation relation Rε from
Σ1 to Σ2. Then there also exists an interface function F :
U1×X1×X2 → U2 related to Rε that satisfies condition (1)
of Def. 8. In addition, due to the initial states in condition (2),
there exists a map Fε0 : X20 → X10 such that for all x20 ∈ X20

it holds that (Fε0 (x20), x20) ∈ Rε.
Next, we construct the controller Σc2 that achieves approxi-
mate control refinement for Σc1 as

Σc2 := (Σ1 ×w1
Σc1)×w1

Σε
F ,

where w1 = (u1, x1) and where Σε
F := (N,W,Bε

F) is a
dynamical system taking values in the combined signal space
with

Bε
F := {(x1, u1, x2, u2) ∈WT|x1(0) = Fε0 (x2(0)) and

u2(t) = F(x1(t), u1(t), x2(t))}.

Similarly, the dynamical system Σc2 is a well-posed controller
for Σ2 that achieves approximate control refinement. Due
to the construction of Σε

F it follows that BΣ2×Σc2
is non-

empty and ∀x20 ∈ X20, ∃x10 ∈ X10 such that (x10, x20)
has a unique continuation in BΣ2×Σc2

for which it holds
that (x1(t), x2(t)) ∈ Rε, ∀t. Furthermore it holds that
ΠY(BΣ2×Σc2

) ⊆ Eε(ΠY(BΣ1×Σc1
)), because for all x20

there exists continuations in both BΣ2×Σc2
and BΣ1×Σc1

such that the output difference is bounded as d(y1, y2) ≤ ε
over time.

Since the DV systems ΣDV and ΣDVa
share the same initial

states as the respective DS Σ and Σa, it also holds that ∀x0 ∈
X0,∃xa0 ∈ Xa0 s.t. (xa0, x0) ∈ Rε. According to Proposition
10, we know that we can do approximate control refinement,
as shown in (30).

B. Approximate control refinement for descriptor systems

We can now again combine the different theorems to prove
the control refinement in the approximate setting. Based on
Proposition 10 for condition (I) of the approximate control re-
finement, Theorem 7 for condition (II) and based on Theorem
8 for condition (III), we develop the following theorem as a
solution for Problem 2.

Theorem 11. Consider two DS Σa (abstract, initialised
with Xa0) and Σ (concrete, initialised with X0) satisfying
Assumption 1 and let Rε be an approximate simulation
relation from Σa to Σ, for which in addition holds that
∀x0 ∈ X0,∃xa0 ∈ Xa0 s.t. (xa0, x0) ∈ Rε. Then, for any
Σca ∈ C(Σa), there exists a controller Σc ∈ C(Σ) such that

ΠY(BΣ×Σc) ⊆ Eε(ΠY(BΣa×Σca
)).

Proof. Based on Assumption 1, we first construct ΣDV and
ΣDVa

. Then to prove this we need to construct the approximate
control refinement. Similar to Theorem 9, this can also be done
based on the subsequent control refinements given in Theorem
7, Proposition 10 and Theorem 8.

Theorem 11 claims the existence of such controller Σc that
achieves approximate control refinement for Σca . As before,
since each of the theorems and propositions are constructive
for the control refinement, it follows that the combined con-
troller can be constructed.

Corollary (of Theorem 11). Consider two DS Σa (abstract,
initialised with Xa0) and Σ (concrete, initialised with X0)
satisfying Assumption 1 and let Rε be an approximate sim-
ulation relation from Σa to Σ, for which in addition holds
that ∀x0 ∈ X0,∃xa0 ∈ Xa0 s.t. (xa0, x0) ∈ Rε. Then, for any
Σca ∈ C(Σa), there exists a controller Σc such that Σ×Σc

is a regular interconnection and

ΠY(BΣ×Σc
) ⊆ Eε(ΠY(BΣa×Σca

)).

The proof follows the same reasoning as the proof of the
corollary of Theorem 9. Again, similarly to Remark 9, we can
also construct this controller based on [28].

VII. COMPUTATIONAL ASPECTS AND CASE STUDY

In this section, we show how simulation functions and
Lyapunov-like functions can be used to find an approximate
simulation relation and to construct a refined controller. In
order to clarify the discussion we also consider an illustrative
example.

A. An interface for driving variable systems

Let two driving variable systems be given, the concrete
(original) ΣDV and an abstraction ΣDVa . Recall that these
driving variable systems are essentially standard difference
equations, for which there exist methods to compute interface
functions [11], [12].

Consider next the definition of simulation function [11],
[12]: these functions will define corresponding approximate
simulation relations between two systems. A simulation func-
tion is a positive function that bounds the distance between
output behaviours and that is non-increasing under the parallel
evolution of the two systems.

Definition 9 (Simulation function [14]). Let Σa and Σ be
two non-singular DS defined over the same output space Y
with dynamics (Ia, Aa, Ba, Ca) and (I, A,B,C). A function
S : Xa×X→ R+ ∪ {+∞} is called a simulation function of

13

Σa by Σ if its sub-level sets are closed, and for all (xa, x) ∈
Xa × X:

S(xa, x) ≥ max

{
d(C1xa, C2x), supx+

a
infx+ S(x+a , x

+)

}
,

where d(·) denotes the Euclidean distance.

We recall the following proposition [12, Theorem 22].

Proposition 12. Let S be a simulation function of Σa by Σ,
then, for all ε ≥ 0,

Rε = {(xa, x) ∈ Xa × X | S(xa, x) ≤ ε} (31)

is an approximate simulation relation of Σa by Σ of precision
ε.

Suppose that a potential interface function is given by

F(ua, xa, x) = Rua +Qxa +K(x− Pxa), (32)

such that there exists a positive semi-definite matrix M

M � CTC, (A+BK)TM(A+BK) � λ2M (33)

with λ ∈ (0, 1). The right inequality implies that K is a stabil-
ising state feedback for the original system Σ. Furthermore,
matrices Q and P are such that

PAa = AP +BQ, Ca = CP. (34)

This constrained Sylvester equations (34) can be solved via
either the Kronecker product [21] or an RQ factorisation,
respectively.

We are now ready to quantify a simulation relation for
these discrete-time systems similar to [11] for continuous-
time systems, based on the notion of Lyapunov functions for
discrete-time systems.

Proposition 13. The function F(ua, xa, x) in (32) subject to
(33) and (34) is an interface function for the ε-approximate
simulation relation Rε, computed as in Equation (31) from the
simulation function

S(xa, x) = max(V(xa, x), γ(umax)), (35)

with Lyapunov-like auxiliary function

V(xa, x) =
√

(x− Pxa)TM(x− Pxa) (36)

and with a γ function defined as

γ(r) = r
∥∥∥√M(BR− PBa)

∥∥∥
2
/(1− λ),

for umax = maxua∈Ua
‖ua‖.

The proof of this proposition can be found in the Appendix.
The construction here is different to the hierarchical control
given in [11], [13], which specifically deals with continuous-
time and non-singular systems, and with the notion of exact
bisimulation. The function V is used as a Lyapunov-like
auxiliary function, much like those used for the theory of
input-to-state stability [15], [17] for discrete-time systems.

Next, we employ model reduction methods to attain the
abstract system first, and then solve the matrix equation in

(34) to derive the projection matrix P , so as to establish
connections between concrete and abstract systems.

Consider the concrete DS Σ with dynamics (E,A,B,C)
defined as

E =
[
1 0 0
0 0 1
0 0 0

]
, A =

[−1 0 0
0 1 0
0 0 1

]
, B =

[
1
1
1

]
, C =

[
0.1
0.2
0.5

]T
.

The corresponding concrete DV system ΣDV with dynamics
characterised by (Ad, Bd, Cu, Du, C), is

Ad =
[−1 0 −1

0 0 0
0 1 −1

]
, Bd =

[
0
−1
0

]
, Cu =

[
0
0
−1

]T
, Du = 0.

Selecting a stabilizing K =
[
0.1262 −0.8327 0.9843

]
, this

results in a stable matrix Ad +BdK. Afterwards, based on a
simple model order reduction step, we obtain the abstract DS
Σa = (Ea, Aa, Ba, Ca) and its related abstract DV system
ΣDVa

= (Ada, Bda, Cua
, Dua

, Ca), where

Ea =
[−0.705 0.709

0 0

]
, Aa =

[−0.051 −0.29
−1.429 1.499

]
, Ba =

[
0
−1
]
.

Ca =
[

0.889
−0.747

]T
, Ada =

[−0.051 0.123
−0.123 −0.287

]
, Bda =

[−1.683
−1.675

]
.

Cua =
[−1.429

1.499

]T
, Dua = 0.

According to Proposition 13, we can design a Lyapunov-
like auxiliary function V(xa, x) together with the simulation
function S(xa, x). Afterwards, based on the transitivity of rela-
tions and initialisation conditions, the approximate simulation
relation from Σa to Σ is immediately defined as

Rε = {(xa, x) ∈ Xa × X | S(xa, x) ≤ ε},

with ε = S(xa0, x0), and where in addition ∀x0 ∈ X0,∃xa0 ∈
Xa0 s.t. (xa0, x0) ∈ Rε. The related interface in (32) for the
DV framework depends on matrices P,Q and R, whose values
are sought to obtain a small simulation function and hence a
large approximate simulation relation, as in Propositions 13
and 12. This gives

P =
[−1.1597 2.4387

1.5254 −0.9658
1.4005 −1.5960

]
, Q =

[−0.0410
−0.4645

]T
, R = 0.955 .

Now, let us consider a controller Σca ∈ C(Σa) defined as

[1 1]xa(t+ 1) = [1 1]xa(t) + ua(t),

for which the interconnected system Σa ×Σca is

xa(t+ 1) =
[−0.179 1.458
−0.25 1.04

]
xa(t);

ya(t) = [0.1 0.2 0.5]xa(t),

with ua(t) = Cuaxa(t) = [−1.429 1.499]xa(t). Note that Σa×
Σca is stable. Then according to Theorem 7, we derive the
map Sa for ΣDVa as

sa(t) = Sa(xa(t+ 1), ua(t), xa(t)) = [0.076 −0.793]xa(t).

The controlled abstract DV system is the same as Σa ×Σca .
Finally, according to Theorem 11, we derive the refined well-
posed controller Σc for Σ as

[0 −1 0]x(t+ 1) = Kx(t) + [0.07 −0.763]xa(t);

u(t) = [0 0 −1]x(t).

The controller Σc is a regular controller for Σ, this can be
check be verifying that the combined systems has full row
rank [28].

14

Remark 11. The abstract system can be computed either via
model order reduction techniques for descriptor systems [5]
or by applying well-known model order techniques for the
equivalent driving variable system such as balanced truncation,
proper orthogonal decomposition (POD) and Hankel norm
model reduction. Further research is needed to investigate
tailored, optimal model reduction methods to compute these
abstractions.

For the ensuing experiments, we select initial states xa0 =[
0.3 0.3

]T
and x0 =

[
0.4 0.2 −0.04

]T
such that

(xa0, x0) ∈ Rε, with ε = 0.0667. The simulations of
the closed loop system are shown in Fig. 7. Since the two
controlled systems converge fast, we only show closed-loop
trajectories until t = 15. As we can see from Fig. 7, the
distance between the two controlled DS is within the error
bound

ε = max(V(xa0, x0), γ(samax)) = 0.0667.

0 5 10 15
0

0.05

0.1

0.15

0.2
Output of the abstract system.

t

M
a

g
n

it
u

d
e

abstract system

0 5 10 15
0

0.05

0.1

0.15

0.2
Output of the concrete system.

t

M
a

g
n

it
u

d
e

concrete system

0 5 10 15
0

0.05

0.1

0.15

0.2
Output of the abstract and concrete systems.

t

M
a

g
n

it
u

d
e

abstract system

concrete system

0 5 10 15
0

0.02

0.04

0.06

0.08
Difference of the trajectories.

t

M
a

g
n

it
u

d
e

error

error bound

Fig. 7: Closed loop simulation results.

On the other hand, we consider the open loop simulation
result by choosing a random signal sa to ΣDVa satisfying
samax ≤ 0.3. The simulation result is shown in Fig. 8 with
ε = 0.093. It can be seen from Fig. 8 that the distance
between the output behaviour of the abstract and concrete DS
is bounded within ε = 0.093. Finally, we can conclude that
Σc ∈ C(Σ) and ΠY(BΣ×Σc) ⊆ Eε(ΠY(BΣa×Σca

)).

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have dealt with the formal control design
problems over complex descriptor systems by developing and
analysing a control refinement approach.

The behavioural approach has been used to formulate the
notion of well-posed regular controllers for descriptor sys-
tems. In order to design controllers on simpler systems, we
have leveraged the notion of control refinement. Both exact
and approximate simulation relations have been used for,
respectively, exact and approximate control refinement over
descriptor systems. We have proven that for any well-posed
controller of the abstract descriptor system, it can be refined

0 20 40 60
−0.4

−0.2

0

0.2

0.4
Output of the abstract system.

t

M
a

g
n

it
u

d
e

abstract system

0 20 40 60
−0.4

−0.2

0

0.2

0.4
Output of the concrete system.

t

M
a

g
n

it
u

d
e

concrete system

0 20 40 60
−0.4

−0.2

0

0.2

0.4
Output of the abstract and concrete systems.

t

M
a

g
n

it
u

d
e

abstract system

concrete system

0 20 40 60
0

0.02

0.04

0.06

0.08

0.1
Difference of the trajectories.

t

M
a

g
n

it
u

d
e

error

error bound

Fig. 8: Open loop simulation results.

to a well-posed controller for the concrete descriptor system.
Furthermore, requiring controllability of the system, we can
also show that a regular controller can be constructed.

Future research will target extensions to nonlinear descriptor
systems, and connections to classical results in perturbation
theory. For nonlinear systems and control methods further
research is needed on compatibility conditions of controllers.

PROOF OF PROPOSITION 13
In the following, let us detail the notions of simulation

function and interface for discrete-time non-singular system
based on a Lyapunov-like auxiliary function and a level set.

First we iterate some general conditions from input-to-state
stability, to which Σa, Σ and V in (36) conform, and use it
to prove some properties. Let two systems be given

Σ1 : z+ = h(z, v), y1 = k(z) (37)

Σ2 : x+ = f(x, u), y2 = g(x) (38)

with the shared output space Y and states x, z and with the
respective inputs u, v. Let a Lyapunov-like auxiliary function
V : Z×X→ R+ together with a function uV : V×Z×X 7→ U
be given such that for all (z, x) ∈ Z× X,

V(z, x) ≥ ‖k(z)− g(x)‖ (39)

and for all (v, z, x) ∈ V× Z× X,

V(h(z, v), f(x,F(v, z,x)))− V(z, x) ≤
− α(V(z, x)) + σ(‖v‖).

(40)

In (40), α is a K∞ function and σ is a K function. These
functions belong to the special class of comparison functions,
known as class K functions [17], and as defined next.

Definition 10. A continuous function α : [0, a) → [0,∞)
is said to belong to class K if it is strictly increasing and
α(0) = 0. It is said to belong to class K∞ if a = ∞ and
α(r)→∞ as r →∞.

One property of K∞ function that will be used later is α ∈
K∞ ⇒ α−1 ∈ K∞, where α−1 denotes the inverse function
of α.

15

Lemma 14. [15] For any K∞ function α there is a K∞
function α̂ satisfying
1. α̂(s) ≤ α(s),∀s ≥ 0;
2. η − α̂ ∈ K
where η denotes the identity function or identity map, i.e.,
η(x) = x.

Proposition 15. Let V be a Lyapunov-like auxiliary function
and uV be a function such that (39) and (40) hold. Then, for
bounded inputs ‖v‖ ≤ vmax, it follows that

S(z, x) = max{V(z, x), γ(vmax)} (41)

is a simulation function of Σ1 by Σ2, and F is an interface
from Σ1 to Σ2. The constructed γ function is given as

γ(r) = α̂−1
(
σ(r)

c

)
with c ∈ (0, 1]. α̂ is the K∞ function chosen according to
Lemma 14.

Proof. (of Proposition 15): Consider the Lyapunov-like aux-
iliary function V(z, x) satisfying (39) and (40). First, we de-
note V(h(z, v), f(x,F(v, z, x))) by V+(z, x) for convenience.
Since α̂ is the K∞ function chosen as Lemma 14, we have
α̂(s) ≤ α(s),∀s ≥ 0. Therefore,

V+(z, x)− V(z, x) ≤ −α̂(V(z, x)) + σ(‖v‖). (42)

For any input sequence v, consider the level set

D = ((z, x)|V(z, x) ≤ b)

where b = α̂−1
(
σ(vmax)

c

)
= γ(vmax). First we prove that

when (z(t0), x(t0)) ∈ D, (z(t), x(t)) ∈ D,∀t ≥ t0.
Assume that (z(t0), x(t0)) ∈ D, V(z(t0), x(t0)) ≤ b. With

the inequality σ(‖v‖) ≤ σ(vmax), we transform (42) into the
following form:

V+(z(t0), x(t0)) ≤ −(1− c)α̂(V(z(t0), x(t0)))+

α̃(V(z(t0), x(t0))) + σ(vmax)

where α̃ = η−cα̂. Since η− α̂ ∈ K as Lemma 14. In addition
α̂ ∈ K, we have (1 − c)α̂ ∈ K. Therefore, we can conclude
that α̃ = η − cα̂ = η − α̂+ (1− c)α̂ ∈ K.

Since cα̂(V(z(t0), x(t0))) ≤ cα̂(b) = σ(vmax) and
cα̃(V(z(t0), x(t0))) ≤ cα̃(b), we have

α̃(V(z(t0), x(t0))) + σ(vmax) ≤α̃(b) + σ(vmax) =

b− cα̂(b) + σ(vmax) = b.

Therefore,

V+(z(t0), x(t0)) ≤ −(1− c)α̂(V(z(t0), x(t0))) + b ≤ b.

By induction, we can show that (z(t0+j), x(t0+j)) ∈ D,∀j ∈
N, that is,(z(t), x(t)) ∈ D,∀t ≥ t0.
Now let t0 = min{t ∈ N0|(z(t), x(t)) ∈ D} <∞. Then

V(z(t), x(t)) ≤ γ(vmax),∀t ≥ t0.

For 0 ≤ t < t0, we have cα̂(V(z(t), x(t))) > cα̂(b) =
σ(vmax). Therefore, ∀0 ≤ t < t0, we have

V+(z(t), x(t))−V(z(t), x(t)) ≤ −(1−c)α̂(V(z(t), x(t))) ≤ 0.

We have proven that if (z(0), x(0)) ∈ D, it will always
remain in the level set and (z(t), x(t)) ∈ D,∀t ∈ N. And if
(z(0), x(0)) /∈ D, V(z(t), x(t)) will decrease until (z(t), x(t))
gets in the level set and remains there.

Thus, by truncating the Lyapunov-like auxiliary function
V(z, x) by the level set γ(vmax), we construct the simulation
function (cf. Definition 9) as

S(z, x) = max(V(z, x), γ(vmax)).

We can now leverage Proposition 15, to prove that Propo-
sition 13 holds. According to equation (33) and (34), we have

V(xa, x) ≥
√

(x− Pxa)TCTC(x− Pxa) = ‖Cx− Caxa‖.

Thus, inequality (39) holds. To prove that inequality (40)
holds, we have

x+ − Px+a = Ax+B[Rua +Qxa +K(x− Pxa)]

− P (Aaxa +Baua)

= (A+BK)(x− Pxa) + (BR− PBa)ua

where x+ and z+a denote the next states of x and xa respec-
tively. Therefore,

V+(xa, x)− V(xa, x) =√
(x+ − Px+a)TM(x+ − Px+a)

−
√

(x− Pxa)TM(x− Pxa)

=
∥∥∥√M [(A+BK)(x− Pxa) + (BR− PBa)ua]

∥∥∥−√
(x− Pxa)TM(x− Pxa).

From the triangle inequality of norms, we know that

V+(xa, x)− V(xa, x)

≤
√

[(A+BK)(x− Pxa)]TM [(A+BK)(x− Pxa)]

−
√

(x− Pz)TM(x− Pxa) +
∥∥∥√M(BR− PBa)ua

∥∥∥
≤ (λ− 1)V(xa, x) +

∥∥∥√M(BR− PBa)ua

∥∥∥ .
The second inequality follows from inequality (33).
Hence, V(xa, x) satisfies the two conditions (39) and (40) and
thus it is a Lyapunov-like auxiliary function. Consequently,
according to Proposition 15, γ is the K function defined as

γ(r) =

∥∥∥√M(BR− PBa)
∥∥∥
2

1− λ
r. (43)

and the function

S(xa, x) = max(V(xa, x), γ(umax))

is a simulation function for the associated interface (32).

16

REFERENCES

[1] A. C. Antoulas. Approximation of large-scale dynamical systems. SIAM,
2005.

[2] A. Arnold and J. Plaice. Finite transition systems: semantics of
communicating systems. Prentice Hall International (UK) Ltd., 1994.

[3] C. Baier and J.-P. Katoen. Principles of model checking. MIT press,
2008.

[4] C. Belta, B. Yordanov, and E. A. Gol. Formal Methods for Discrete-Time
Dynamical Systems, volume 89. Springer, 2017.

[5] X. Cao. Hankel norm model reduction for discrete-time descriptor
systems. Master’s thesis, Eindhoven University of Technology.

[6] X. Cao, M. Saltik, and S. Weiland. Hankel model reduction for
descriptor systems. In 2015 54th IEEE CDC, pages 4668–4673, 2015.

[7] F. Chen, S. Haesaert, A. Abate, and S. Weiland. Control refinement for
discrete-time descriptor systems: a behavioural approach via simulation
relations. IFAC 20th IFAC World Congress, 50(1):15822–15827, 2017.

[8] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press,
1999.

[9] L. Dai. Singular control systems. Springer-Verlag New York, Inc., 1989.
[10] G. E. Fainekos, A. Girard, and G. J. Pappas. Hierarchical synthesis of

hybrid controllers from temporal logic specifications. In International
Workshop on HSCC, pages 203–216, 2007.

[11] A. Girard and G. J. Pappas. Approximate bisimulations for constrained
linear systems. In Decision and Control, 2005 and 2005 European
Control Conference. CDC-ECC’05. 44th IEEE Conference on, pages
4700–4705. IEEE, 2005.

[12] A. Girard and G. J. Pappas. Approximation metrics for discrete
and continuous systems. Automatic Control, IEEE Transactions on,
52(5):782–798, 2007.

[13] A. Girard and G. J. Pappas. Hierarchical control system design using
approximate simulation. Automatica, 45(2):566–571, 2009.

[14] A. Girard and G. J. Pappas. Approximate bisimulation: A bridge
between computer science and control theory. European Journal of
Control, 17(5):568–578, 2011.

[15] Z.-P. Jiang and Y. Wang. Input-to-state stability for discrete-time
nonlinear systems. Automatica, 37(6):857–869, 2001.

[16] A. A. Julius and A. J. v. d. Schaft. Compatibility of behavior
interconnections. In 2003 European Control Conference (ECC), pages
2607–2612, Sept. 2003.

[17] H. K. Khalil and J. Grizzle. Nonlinear systems. Prentice hall New
Jersey, 1996.

[18] M. Kloetzer and C. Belta. A fully automated framework for control of
linear systems from temporal logic specifications. IEEE Transactions
on Automatic Control, 53(1):287–297, 2008.

[19] P. Kunkel and V. L. Mehrmann. Differential-algebraic equations:
analysis and numerical solution. European Mathematical Society, 2006.

[20] O. Kupferman and M. Y. Vardi. Model checking of safety properties.
Formal Methods in System Design, 19(3):291–314, 2001.

[21] A. J. Laub. Matrix analysis for scientists and engineers. SIAM, 2005.
[22] N. Y. Megawati and A. v. d. Schaft. Bisimulation equivalence of

differential-algebraic systems. International Journal of Control, pages
1–11, 2017.

[23] P. Tabuada. Verification and control of hybrid systems: a symbolic
approach. Springer Science & Business Media, 2009.

[24] S. Weiland. Theory of Approximation and Disturbnace Attenuation for
Linear Systems. University of Groningen, 1991.

[25] J. Willems and H. Trentelman. On quadratic differential forms. SIAM
Journal on Control and Optimization, 36(5):1703–1749, 1998.

[26] J. C. Willems. Models for Dynamics. In U. Kirchgraber and
H. O. Walther, editors, Dynamics Reported: A Series in Dynamical
Systems and Their Applications, Dynamics Reported, pages 171–269.
Vieweg+Teubner Verlag, Wiesbaden, 1989.

[27] J. C. Willems. Paradigms and puzzles in the theory of dynamical
systems. Automatic Control, IEEE Transactions on, 36(3):259–294,
1991.

[28] J. C. Willems. On interconnections, control, and feedback. IEEE
Transactions on Automatic control, 42(3):326–339, 1997.

[29] J. C. Willems. The behavioral approach to open and interconnected
systems. Control Systems, IEEE, 27(6):46–99, 2007.

[30] J. C. Willems and J. W. Polderman. Introduction to mathematical
systems theory: a behavioral approach. Springer Science & Business
Media, 2013.

Sofie Haesaert is an Assistant Professor at the
Control Systems group, Department of Electrical
Engineering, Eindhoven University of Technology.
From 2017 to 2018, she was a postdoctoral scholar
at the Computing and Mathematical Sciences depart-
ment of the California Institute of Technology. She
received her Ph.D. from the Systems and Control
group in the Electrical Engineering department at the
Eindhoven University of Technology in the Nether-
lands in 2017. She received her B.Sc. degree cum
laude in Mechanical Engineering in 2010 at the Delft

University of Technology. In 2012, she received her M.Sc. degree cum laude in
Systems & Control at the Delft University of Technology, The Netherlands.
Her research interests are in the identification, verification, and control of
cyber-physical systems for temporal logic specifications and performance
objectives.

Fei Chen is currently a Ph.D. student in the Division
of Decision and Control Systems at KTH Royal
Institute of Technology (Sweden). He received his
M.Sc. degree from the Systems and Control group in
the Electrical Engineering Department at Eindhoven
University of Technology (Netherlands) in 2016.
He received his B.Sc. degree in the Department
of Control Science and Engineering at Zhejiang
University (China) in 2014. His research interests
are situated on the edge between control theory and
formal methods in computer science, with particular

interests in formal verification and control synthesis for multi-agent systems
under temporal logic specifications.

Alessandro Abate (S’02–M’08–SM’19) is Profes-
sor of Verification and Control in the Department
of Computer Science at the University of Oxford
(UK), and is a fellow of the Alan Turing Institute
in London (UK). He received a Laurea in Electrical
Engineering in October 2002 from the University
of Padova (IT), an MS in May 2004 and a PhD
in December 2007, both in Electrical Engineering
and Computer Sciences, at UC Berkeley (USA). He
has been an International Fellow in the CS Lab
at SRI International in Menlo Park (USA), and a

PostDoctoral Researcher at Stanford University (USA), in the Department of
Aeronautics and Astronautics. From June 2009 to mid 2013 he has been an
Assistant Professor at the Delft Centre for Systems and Control, TU Delft -
Delft University of Technology (NL).

Siep Weiland is Full Professor at the Control Sys-
tems Group, Dept. of Electrical Engineering, Eind-
hoven University of Technology. He received both
his MSc. (1986) and PhD degrees in mathematics
from the University of Groningen in the Netherlands.
He was a postdoctoral research associate at the Dept.
of Electrical Engineering and Computer Engineer-
ing, Rice University, Houston, USA from 1991 to
1992. Since 1992 he has been affiliated to Eindhoven
University of Technology. His research interests are
the general theory of systems and control, robust

control, model approximation, modeling and control of hybrid systems,
identification, and model predictive control.

