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VERIFICATION OF GENERAL MARKOV DECISION PROCESSES
BY APPROXIMATE SIMILARITY RELATIONS AND POLICY
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Abstract. In this work we introduce new approximate similarity relations that are shown to be
key for policy (or control) synthesis over general Markov decision processes. The models of interest
are discrete-time Markov decision processes, endowed with uncountably infinite state spaces and
metric output (or observation) spaces. The new relations, underpinned by the use of metrics, allow,
in particular, for a useful trade-off between deviations over probability distributions on states, and
distances between model outputs. We show that the new probabilistic similarity relations, inspired
by a notion of simulation developed for finite-state models, can be effectively employed over general
Markov decision processes for verification purposes, and specifically for control refinement from
abstract models.
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Notation.

R Relation over R ⊆ X1 × X2
R̄ Relation over R̄ ⊆ P(X1,B(X1)) × P(X2,B(X2) obtained via lifting

from R, as per Definition 5
R̄δ Relation over R̄ ⊆ P(X1,B(X1)) × P(X2,B(X2) obtained via the

approximate lifting with a deviation in probability bounded with δ
obtained from R, as per Definition 8

≡Req Relation between two probability spaces (X1,B(X1)) and (X2,B(X2))
based on the equivalence relation Req ⊆ (X1 � X2) × (X1 � X2), à la
[15], as reviewed in Appendix B

≡δ
Req

Approximate relation between two probability spaces (X1,B(X1))
and (X2,B(X2)) based on the equivalence relation Req ⊆ (X1 �X2)×
(X1 � X2), à la [1], as reviewed in Appendix B

� Probabilistic simulation relation; see Definition 6
≈ Probabilistic bisimulation relation; see Definition 7
�δ

ε ε, δ-approximate probabilistic simulation relation; see Definition 9

1. Introduction. The formal verification of computer systems allows for the
quantification of their properties and for their correct functioning. While verifica-
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tion has classically focused on finite-state models, with the ever more ubiquitous
embedding of digital components into physical systems, richer models are needed and
correct functioning can only be expressed over the combined behavior of both the
digital computer and the surrounding physical system. It is, in particular, of interest
to synthesize the part of the computer software that controls or interacts with the
physical system automatically, with low likelihood of malfunctioning. Furthermore,
when computers interact with physical systems such as biological processes, power
networks, and smart grids, stochastic models are key. Consider, as an example, a
power network for which we would like to quantify the likelihood of blackouts and to
synthesize strategies to minimize this.

Systems with uncertainty and nondeterminism can be naturally modeled as
Markov decision processes (MDPs). In this work, we focus on general Markov de-
cision processes (gMDPs) that have uncountable state spaces as well as metric output
spaces. The characterization of properties over such processes cannot in general be
attained analytically [3], so an alternative is to approximate these models by simpler
processes that are prone to be mathematically analyzed or algorithmically verified
[20, 21], such as finite-state MDPs [22]. Clearly, it is then key to provide formal guar-
antees on this approximation step, such that solutions of the verification or synthesis
problem for a property on the simpler process can be extended to the original model.
Our verification problems include the synthesis of a policy (or a control strategy) that
maximizes the likelihood of the specification of interest.

In this work we develop a new notion of approximate similarity relation, aimed at
attaining a computationally efficient controller synthesis over MDPs with metric out-
put spaces. We show that it is possible to obtain a control strategy for a gMDP as a
refinement of a strategy synthesized for an abstract model, at the expense of accuracy
defined on a similarity relation between them, which quantifies bounded deviations in
transition probabilities and output distances. In summary, we provide results allowing
us to quantitatively relate the outcome of verification problems performed over the
simpler (abstract) model to the original (concrete) model, and further to refine control
strategies synthesized over the abstract model to strategies for the original model.

The use of similarity relations on finite-state probabilistic models has been broadly
investigated, either via exact notions of probabilistic simulation and bisimulation rela-
tions [31, 36, 37, 29], or (more recently) via approximate notions [17, 18]. On the other
hand, similar notions over general, uncountable state spaces have only recently been
studied: available relations either hinge on stability requirements on model outputs
[30, 44] (established via martingale theory or contractivity analysis) or, alternatively,
enforce structural abstractions of a model [16] by exploiting continuity conditions on
its probability laws [1, 2].

In this work, we want to quantify properties with a certified precision both in
the deviation of the probability laws for finite-time events (as in the classical notion
of probabilistic bisimulation) and of the output trajectories (as studied for dynami-
cal models). Additionally, we impose no strict requirements on the dynamics of the
given gMDP and its abstraction. To these ends, we first extend the exact probabilis-
tic simulation and bisimulation relations based on lifting for finite-state probabilistic
automata and stochastic games [29, 36, 37, 45] to gMDPs (section 3). We then
generalize these notions to allow for errors on the probability laws and deviations
over the output space (section 4). Two case studies in the area of smart buildings
(section 5) are used to evaluate these new approximate probabilistic simulation re-
lations. We start this paper with a comparison to existing simulation relations in
literature.
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Related literature. Unlike cognate work [1, 30] which recently appeared, we
are interested in similarity relations that allow refining over the concrete model a
control strategy synthesized on the abstract one. We zoom in on relations that,
quite like the alternating notions in [5, 42] for nonprobabilistic models and in [45] for
stochastic ones, quantitatively bound the difference in the controllable behavior of
pairs of models (namely, a gMDP and its abstraction).

To attain this, we extend the simulation relations defined in [29, 36], which are
connected to the preceding work in [31]. The latter has also inspired the notions
of probabilistic (bi)simulation of labeled Markov processes (LMPs) in [14, 15] and
their approximate versions [16, 17, 18]. In Appendix B we show how over a class
of Markov processes (without controls), the proposed approximate similarity relation
practically generalizes notions of probabilistic (bi)simulations of LMPs [14] based on
zigzag morphisms, [15] based on equivalence relations, and their approximate versions
[16, 17, 18] based on binary relations.

Since the seminal work in [31], extensions of exact (bi)simulation notions have
been developed for specific model classes: these include [12, 40, 41, 35], which all
provide exact similarity relations tailored to models classes different from LMPs.

2. Verification of gMDPs: Problem setup.

2.1. Preliminaries and notations. Given two sets A and B, the Cartesian
product of A and B is given as A × B = {(a, b) : a ∈ A and b ∈ B}. The disjoint
union of A and B is denoted as A�B and consists of the combination of the members
of A and B, where the original set membership is the distinguishing characteristic
that forces the union to be disjoint, i.e., A�B = (A×{0})

⋃
(B×{1}). As is usual for

C ⊂ A �B we denote C ∩A = {a ∈ A : (a, 0) ∈ C}. For the sets A and B a relation
R ⊂ A × B is a subset of their Cartesian product that relates elements x ∈ A with
elements y ∈ B, denoted as xRy. We use the following notation for the mappings:
R(Ã) := {y : xRy, x ∈ Ã} and R−1(B̃) := {x : xRy, y ∈ B̃} for Ã ⊆ A and B̃ ⊆ B.
A relation over a set defines a preorder if it is reflexive, for all x ∈ A : xRx; and
transitive, for all x, y, z ∈ A : if xRy and yRz then xRz. A relation R ⊆ A × A is
an equivalence relation if it is reflexive, transitive, and symmetric, for all x, y ∈ A : if
xRy then yRx.

A measurable space is a pair (X,F) with sample space X and σ-algebra F defined
over X, which is equipped with a topology. As a specific instance of F consider the
Borel measurable space (X,B(X)). In this work, we restrict our attention to Polish
spaces and generally consider the Borel σ-field [9]. Recall that a Polish space is a
separable completely metrizable topological space. In other words, the space admits
a topological isomorphism to a complete metric space which is dense with respect to
a countable subset. A simple example of such a space is the real line.

A probability measure P (·) for (X,F) is a nonnegative map, P (·) : F → [0, 1]
such that P (X) = 1 and such that for all countable collections {Ai}∞

i=1 of pairwise
disjoint sets in F , it holds that P (

⋃
i Ai) =

∑
i P (Ai). Together with the measurable

space, such a probability measure P defines the probability space, which is denoted as
(X,F ,P) and has realizations x ∼ P. Let us further denote the set of all probability
measures for a given measurable pair (X,F) as P(X,F). For a probability space1

(X,FX,P) and a measurable space (Y,FY), a (Y,FY)-valued random variable is a
function y : X → Y that is (FX,FY)-measurable, and which induces the probability

1The index X in FX distinguishes the given σ-algebra on X from that on Y, which is denoted as
FY. Whenever possible this index will be dropped.
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measure y∗P in P(Y,FY). For a given set Y a metric or distance function dY is a
function dY : Y × Y → R

+
0 satisfying the following conditions: for all y1, y2, y3 ∈ Y:

dY(y1, y2) = 0 iff y1 = y2; dY(y1, y2) = dY(y2, y1); and dY(y1, y3) ≤ dY(y1, y2) +
dY(y2, y3).

2.2. gMDP models—syntax and semantics. gMDPs are related to control
Markov processes [1] and MDPs [7, 34, 27], and formalized as follows.

Definition 1 (MDP). The tuple M = (X, π,T,U) defines a discrete-time MDP
over an uncountable state space X, and is characterized by T, a conditional stochastic
kernel that assigns to each point x ∈ X and control u ∈ U a probability measure
T(· | x, u) over (X,B(X)). For any set A ∈ B(X), Px,u(x(t + 1) ∈ A) =

∫
A

T(dy |
x(t) = x, u), where Px,u denotes the conditional probability P(· | x, u). The initial
probability distribution is π : B(X) → [0, 1].

At every state the state transition depends nondeterministically on the choice
of u ∈ U. When chosen according to a distribution μu : B(U) → [0, 1], we re-
fer to the stochastic control input as μu. Moreover the transition kernel is de-
noted as T(·|x, μu) =

∫
U

T(·|x, u)μu(du) ∈ P(X,B(X)). Given a string of inputs
u(0), u(1), . . . , u(N) over a finite time horizon {0, 1, . . . , N}, and an initial condi-
tion x0 (sampled from distribution π), the state at the (t + 1)st time instant, x(t +
1), is obtained as a realization of the controlled Borel-measurable stochastic kernel
T (· | x(t), u(t))—these semantics induce paths (or executions) of the MDP.

Definition 2 (gMDP). M = (X,π,T,U,h,Y) is a discrete-time gMDP consisting
of an MDP combined with output space Y and a measurable output mapping h : X →
Y. A metric dY decorates the output space Y.

The gMDP semantics are directly inherited from those of the MDP. Further,
output traces of gMDP are obtained as mappings of MDP paths, namely, {y(t)}0:N :=
y(0), y(1), . . . , y(N), where y(t) = h

(
x(t)

)
. Denote the class of all gMDP with the

metric output space Y as MY. Note that gMDP can be regarded as a superclass of
the known LMPs [16] as elucidated in [2].

Example 1. Consider the stochastic process

M : x(t+ 1) = f(x(t), u(t)) + e(t), y(t) = h(x(t)) ∈ Y

with variables x(t), u(t), e(t), taking values in R
n, representing the state, control in-

put,2 and noise terms, respectively. The process is initialized as x(0) ∼ π, and driven
by e(t), a white noise sequence with zero-mean normal distributions and covariance
matrix Σe. This stochastic process, defined as a dynamical model, is a gMDP char-
acterized by a tuple (Rn, π,T,Rn, h,Y), where the conditional transition kernel is
defined as T(· | x, u) = N (f(x(t), u(t)),Σe), a normal probability distribution with
mean f(x(t), u(t)) and covariance matrix Σe.

A policy is a selection of control inputs based on the past history of states and
controls. We allow controls to be selected via universally measurable maps [7] from
the state to the control space, so that time-bounded properties such as safety can be
maximized [3]. When the selected controls are only dependent on the current states,
and thus conditionally independent of history (or memoryless), the policy is referred
to as Markov.

2In other domains one also refers to the control variables as actions (machine learning, stochastic
games) or as external nondeterminism (computer science).
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Definition 3 (Markov policy). For a gMDP M = (X, π,T,U, h,Y), a Markov
policy μ is a sequence μ = (μ1, μ2, μ3, . . .) of universally measurable maps μt = X →
P(U,B(U)) t = 0, 1, 2, . . . , from the state space X to the set of controls.

Recall that a function f : Z1 → Z2 is universally measurable if the inverse image
of every Borel set is measurable with respect to every complete probability measure
on Z1 that measures all Borel subsets of Z1.

The execution {x(t), t ∈ [0, N ]} initialized by x0 ∈ X and controlled with Markov
policy μ is a stochastic process defined on the canonical sample space Ω := XN+1

endowed with its product topology B(Ω). This stochastic process has a probability
measure P uniquely defined by the transition kernel T, policy μ, and initial distribution
π [7, Prop. 7.45].

Of interest are time-dependent properties such as those expressed as specifica-
tions in a temporal logic of choice. This leads to problems where one maximizes the
probability that a sequence of labeled sets is reached within a time limit and in the
right order. One can intuitively realize that, in general, the optimal policy leading
to the maximal probability is not a Markov (memoryless) policy, as introduced in
Definition 3. We introduce the notion of a control strategy, and define it as a broader,
memory-dependent version of the Markov policy above. This strategy is formulated
as a Markov process that takes as an input the state of the to-be-controlled gMDP.

Definition 4 (control strategy). A control strategy C = (XC, xC0,X,T
t
C, h

t
C)

for a gMDP M with state space X and control space U over the time horizon t =
0, 1, 2, . . . , N is an inhomogeneous Markov process with state space XC; an initial
state xC0; inputs x ∈ X; time-dependent, universally measurable kernels Tt

C, t =
0, 1, . . . , N ; and with universally measurable output maps ht

C : XC → P(U,B(U)),
t = 1, . . . , N , with elements μ ∈ P(U,B(U)).

Unlike a Markov policy, the control strategy is, in general, dependent on the
history, as it has an internal state that can be used to remember relevant past events.
As elucidated in Algorithm 1, note that the first control u(0) is selected by drawing
xC(1) according to T0

C( · |xC(0), x(0)), where xC(0) = xC0, and selecting u(0) from
measure μ0

C = h0
C(xC(1)).3 The control strategy applied to M can be both stochastic

(as a realization of T0
C(· |xC(0), x(0))), a function of the initial state x(0), and of time.

The execution {(x(t), xC(t)), t ∈ [0, N ]} of a gMDP M controlled with strategy
C is defined on the canonical sample space Ω := (X × XC)N+1 endowed with its
product topology B(Ω). This stochastic process is associated with a unique probability
measure PC×M, since the stochastic kernels Tt

C for t ∈ [0, N ] and T are Borel measurable
and composed via universally measurable policies [7, Prop. 7.45].

2.3. gMDP verification and strategy refinement: Problem statement.
We qualitatively introduce the main problem that we want to solve in this work:
how can one provide a general framework to synthesize control policies over a formal
abstraction M̃ of a concrete complex model M with the understanding that M̃ is
much simpler to be manipulated (analytically or computationally) than M is? We
approach this problem by defining a simulation relation under which a control strategy
C̃ for the abstract Markov process M̃ implies the existence of a control strategy C
for M, so that we can quantify differences in the stochastic transition kernels and in
the output trajectories for the two controlled models. This allows us to derive bounds

3Note that the stochastic transitions for the control strategy and the gMDP are selected in an
alternating fashion. The output map of the strategy is indexed based on the time instant at which
the resulting policy will be applied to the gMDP.
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Algorithm 1 Execution of the controlled model C × M.
set t := 0 and xC(0) := xC0
draw x(0) ∼ π {from M}
while t < N do

draw xC(t+ 1) ∼ Tt
C( · |xC(t), x(t)) {from C}

set μt := ht
C(xC(t+ 1)), draw u(t) from μt

draw x(t+ 1) ∼ T( · |x(t), u(t))) {from M}
set t := t+ 1

end while

on the probability of satisfaction of a specification for M × C from the satisfaction
probability of modified specifications for M̃ × C̃. We will show that with this setup
we can deal with finite-horizon temporal properties, including safety verification as a
relevant instance.

The results in this paper are to be used in parallel with optimization, both for
selecting the control refinement and for synthesizing a policy on the abstract model.
It has been shown in [7] that stochastic optimal control even for a system on a “basic”
space can lead to measurability issues: in order to avoid these issues we follow [7, 17]
and the developed theory for Polish spaces and Borel (or universally) measurable
notions. Throughout the paper we will give as clarifying examples Markov processes
evolving, as in Example 1, over Euclidean spaces which are a special instances of
Polish spaces. This allows us to elucidate the theory.

3. Exact (bi)simulation relations based on lifting.

3.1. Introduction. In this section, we define probabilistic simulation and bisim-
ulation relations that are, respectively, a preorder and an equivalence relation on
MY. Before introducing these relations, we first extend Segala’s [36] and Segala and
Lynch’s [37] notion of lifting to uncountable state spaces, which allows us to equate
the transition kernels of two given gMDPs. Thereafter, we leverage liftings to define
(bi)simulation relations over MY, which characterize the similarity in the controllable
behaviors of the two gMDPs. Subsequently we show that these similarity relations
also imply controller refinement, i.e., within the similarity relation a control strat-
egy for a given gMDP can be refined to a controller for another gMDP. In the next
section, we show that this exact notion of similarity allows a more general notion of
approximate probabilistic simulation. The new notions of similarity relations extend
the known exact notions in [31], and the approximate notions of [17, 18]. Additionally,
we will show that these results can be naturally extended to allow for both differences
in probability and deviations in the outputs of the two gMDPs.

We work with pairs of gMDPs put in a relationship, denoting them with numerical
indices (M1,M2), with the intention to apply the developed notions to an abstraction
M̃ of a concrete model M, respectively.

3.2. Lifting for gMDPs. Consider two gMDPs M1,M2 ∈ MY mapping to a
common output space Y with metric dY. For M1 = (X1, π1,T1,U1, h1,Y) and M2 =
(X2, π2,T2,U2, h2,Y) at given state-action pairs x1 ∈ X1, u1 ∈ U1 and x2 ∈ X2, u2 ∈
U2, respectively, we want to relate the corresponding transition kernels, namely, the
probability measures T1(· | x1, u1) ∈ P(X1,B(X1)) and T2(· | x2, u2) ∈ P(X2,B(X2)).

Similarly to the coupling of measures in P(X,F) [4, 32], consider the coupling
of two arbitrary probability spaces (X1,F1,P1) and (X2,F2,P2) (cf. [38, 39]). A



POLICY REFINEMENT VIA SIMILARITY RELATIONS 2339

{b}

{a}

{b}

{c}

q3

q4
q2

1

2

1

3

1

6

1

1

1 M1

{a}

{b}

{c}

x1

x4

x2

5

6 1

6

1

M2

q1

1

q1 x1

1

2

1

3

1

6

q2

q3

x2

x2

q4 x4

Fig. 1. Finite-state Markov processes M1 and M2 (left and middle) with S = {q1, q2, q3, q4}
and T = {x1, x2, x4} the respective state spaces. The states are labeled with three different colors.
Lifting probabilities of the transition kernels for (q1, x1) are given on the edges of the rightmost
figure.

probability measure Pc defined on (X1×X2,F) couples the two spaces if the projections
p1, p2 with x1 = p1(x1, x2) and x2 = p2(x1, x2), define respectively, an (X1,F1)- and
an (X2,F2)-valued random variable, such that P1 = p1∗Pc and P2 = p2∗Pc. For finite-
or countable-state stochastic processes a related concept has been introduced in [29]
and has been referred to as lifting in [36, 37]: the transition probabilities are coupled
using a weight function in a way that respects a given relation over the combined
state spaces. In this work, rather than using weight functions over a countable or
finite domain [36], we introduce lifting as a coupling of measures over Polish spaces
and their corresponding Borel measurable σ-fields.

Since we assume that the state spaces are Polish and have a corresponding Borel
σ-field for the given probability spaces (X1,B(X1),P1) and (X2,B(X2),P2) with P1 :=
T1(· | x1, u1) and P2 := T2(· | x2, u2), the natural choice for the σ-algebra becomes
B(X1 × X2) = B(X1) ⊗ B(X2)4 and the question of finding a coupling can be reduced
to finding a probability measure in P(X1 × X2,B(X1 × X2)).

Definition 5 (lifting for general state spaces). Let X1,X2 be two sets with
associated measurable spaces (X1,B(X1)) and (X2,B(X2)) and let the Borel measurable
set R ⊆ X1 × X2 be a relation. We denote by R̄ ⊆ P(X1,B(X1)) × P(X2,B(X2)) the
corresponding lifted relation, so that ΔR̄Θ holds if there exists a probability space
(X1 × X2,B(X1 × X2),W) (equivalently, a lifting W) satisfying

1. for all X1 ∈ B(X1): W(X1 × X2) = Δ(X1);
2. for all X2 ∈ B(X2): W(X1 ×X2) = Θ(X2);
3. for the probability space (X1 × X2,B(X1 × X2),W) it holds that x1Rx2 with

probability 1 or, equivalently, that W (R) = 1.

With reference to the connection with the notion of coupling, an equivalent defini-
tion of lifting is obtained be replacing 1 and 2 by the condition that for
(X1 × X2,B(X1 × X2),W), the projections p1, p2 with x1 = p1(x1, x2) and x2 =
p2(x1, x2), we can define (X1,B(X1))- and (X2,B(X2))-valued random variables Δ =
p1∗W and Θ = p2∗W. An example is portrayed in Figure 1 containing two models
M1,M2 and a relation (denoted by equally labeled/colored pairs of states), where the
transition kernels for a pair of states is lifted with respect to the relation.

Remark 2. Notice that the extension of the notion of lifting to general spaces has
required the use of measures, rather than weight functions over a countable or finite
domain, as in [36, 29]. We have required that the σ-algebra B(X1 × X2) contains

4B(X1)⊗ B(X2) denotes the product σ-algebra of B(X1) and B(X2).
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not only sets of the form X1 × X2 and X1 × X2, but also specifically the sets that
characterize the relation R. Since the spaces X1 and X2 have been assumed to be
Polish, it holds that every open (closed) set in X1 × X2 belongs to B(X1) ⊗ B(X2) =
B(X1 × X2) [9, Lemma 6.4.2]. As an instance consider the diagonal relation Rdiag :=
{(x, x) : x ∈ X} over X × X, of importance for examples introduced later. This is a
Borel measurable set [9, Theorem 6.5.7].

3.3. Exact probabilistic (bi)simulation relations via lifting. Similarly to
the alternating notions for probabilistic game structures in [45], we provide a simula-
tion that relates any input chosen for the first process with one for the second process.
As such, we allow for more elaborate handling of the inputs than in the probabilistic
simulation relations discussed in [17, 18], and further pave the way towards the in-
clusion of output maps. We extend the notions in [29, 36, 45] by allowing for more
general Polish spaces. Further, we introduce the notion of interface function in order
to connect the controllable behavior of two gMDPs:

Uv : U1 × X1 × X2 → P(U2,B(U2)),

where we require that Uv is a Borel measurable function. This means that Uv in-
duces a Borel measurable stochastic kernel, again denoted by Uv, over U2 given
(u1, x1, x2) ∈ U1 × X1 × X2. The notion of interface function is known in the con-
text of correct-by-design controller synthesis and of hierarchical controller refinement
[23, 42]. For the objective of hierarchical controller refinement, an interface function
implements (or refines) any control action synthesized over the abstract model to an
action for the concrete model. In order to establish an exact simulation relation be-
tween abstract and concrete models, we can attempt to refine the control actions from
one model to the other by choosing an interface function that matches their stochastic
behaviors. On the other hand in the next section, the interface function will be used
to establish approximate simulation relations: for this goal, the optimal selection of
the interface function is the one that optimizes the accuracy of the relation. This is
a topic of ongoing research.

In this work we extend standard interface functions for deterministic systems by
allowing randomized actions μ2 ∈ P(U2,B(U2)). The lifting of the transition kernels
for the chosen interface generates a stochastic kernel WT conditional on the values
of signals in U1 and in X1 × X2. Let us trivially extend the interface function to
Uv(μ1, x1, x2) :=

∫
U1

Uv(u1, x1, x2)μ1(du1).

Definition 6 (probabilistic simulation). Consider two gMDPs Mi, i = 1, 2,
Mi = (Xi, πi,Ti,Ui, hi,Y). The gMDP M1 is stochastically simulated by M2 if there
exists an interface function Uv and a relation R ⊆ X1 × X2 ∈ B(X1 × X2) for which
there exists a Borel measurable stochastic kernel WT( · |u1, x1, x2) on X1 × X2 given
U1 × X1 × X2, such that

1. for all (x1, x2) ∈ R, h1(x1) = h2(x2);
2. for all (x1, x2) ∈ R, for all u1 ∈ U1, T1(·|x1, u1) R̄ T2(·|x2,Uv(u1, x1, x2))

with lifted probability measure WT( · |u1, x1, x2);
3. π1R̄π2.

The relationship between the two models is denoted as M1 � M2.

The Borel measurability for both Uv (see above) and WT (as in this definition),
which is technically needed for the well-posedness of the controller refinement, can be
relaxed to universal measurability, as will be discussed in the appendix.
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Definition 7 (probabilistic bisimulation). Under the same conditions as above,
M1 is a probabilistic bisimulation of M2 if there exists a relation R ⊆ X1 × X2 such
that M1 � M2 w.r.t. R and M2 � M1 w.r.t. the inverse relation R−1 ⊆ X2 × X1.
M1 and M2 are said to be probabilistically bisimilar, which is denoted M1 ≈ M2.

For every gMDP M: M � M and M ≈ M. This can be seen by considering the
diagonal relation Rdiag = {(x1, x2) ∈ X × X | x1 = x2} and selecting equal inputs for
the associated interfaces. The resulting equal transition kernels T(·|x, u)R̄diagT(·|x, u)
are lifted by the measure WT(dx′

1 × dx′
2|u, x1, x2) = δx′

1
(dx′

2)T(dx′
1|x1, u), where δx′

1

denotes the Dirac distribution located at x′
1.

Example 3 (lifting for diagonal relations).
(a) Consider the gMDP (M1) introduced in Example 1 and a slight variation of

it (M2), given as stochastic dynamic processes,

M1 : x(t+ 1) = f(x(t), u(t)) + e(t), y(t) = h(x(t)),
M2 : x(t+ 1) = f(x(t), u(t)) + ẽ(t) + ũ(t), y(t) = h(x(t))

with variables x(t), x(t+1), u(t), ũ(t), e(t), ẽ(t) taking values in Rn, and with dynamics
initialized with the same probability distribution at t = 0 and driven by white noise
sequences e(t), ẽ(t), both with zero-mean normal distributions and with variances
Σe,Σẽ, respectively. Notice that if Σe −Σẽ is positive definite then M1 � M2. To see
this, select the control input pair (u2, ũ2) ∈ U2 as u2 = u1, and ũ2 according to the
zero-mean normal distribution with variance Σe − Σẽ, then the associated interface
is Uv( · |u1, x1, x2) = δu1(du2)N (dũ2|0,Σe − Σẽ). For this interface the stochastic
dynamics of the two processes are equal, and can be lifted with Rdiag.

(b) Similarly as above, consider two gMDPs modeled as Gaussian processes

M1 : x(t+ 1) = (A+BK)x(t) +Bu(t) + e(t), y(t) = h(x(t)),
M2 : x(t+ 1) = Ax(t) +Bu(t) + e(t), y(t) = h(x(t))

with variables x(t), x(t + 1), e(t) taking values in Rn and u(t) ∈ Rm, matrices A ∈
Rn×n, B ∈ Rn×m, K ∈ Rm×n. Then M1 � M2, since in Rdiag for every action u1
chosen for M1, the choice of interface u2 = u1 + Kx2 for M2 results in the same
transition kernel for the second model.

Remark 4. Over MY, the class of gMDPs with a shared output space, the rela-
tion � is a preorder, since it is reflexive (see Example 3) and transitive (see, later,
Corollary 1). Moreover the relation ≈ is an equivalence relation as it is also symmetric
(as argued below in Definition 7).

3.4. Controller refinement via probabilistic simulation relations. The
ideas underlying the controller refinement are first discussed, after which it is shown
that the refined controller induces a strategy as per Definition 4. Finally the equiva-
lence of properties defined over the controlled gMDPs is shown.

Consider two gMDPs Mi = (Xi, πi,Ti,Ui, hi,Y), i = 1, 2, with M1 � M2. Given
the entities Uv and WT associated with M1 � M2, the distribution of the next state
x′

2 of M2 is given as T2(· | x2,Uv(u1, x1, x2)), and is equivalently defined via the lifted
measure as the marginal of WT(·|u1, x1, x2) on X2. Therefore, the distribution of the
combined next state (x′

1, x
′
2), defined as WT( · |u1, x1, x2), can be expressed as

WT(dx′
1 × dx′

2|u1, x1, x2) = WT(dx′
1|x′

2, u1, x1, x2)T2(dx′
2|x2,Uv(u1, x1, x2)),
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where WT(dx′
1|x′

2, u1, x1, x2) is referred to as the conditional probability given x′
2 (c.f.

[10, Corollary 3.1.2]).5 Similarly, the conditional measure for the initialization Wπ is
denoted as Wπ(dx1(0) × dx2(0)) = Wπ(dx1(0)|x2(0))π2(dx2(0)).

Now suppose that we have a control strategy for M1, referred to as C1, and we
want to construct the refined control strategy C2 for M2, which is such that events
defined over the output space have equal probability. This refinement procedure
follows directly from the interface and the conditional probability distributions, and
is described in Algorithm 2. This execution algorithm is separated into the refined
control strategy C2 and its gMDP M2. C2 is composed of C1, the stochastic kernel
WT, and the interface Uv, and it remembers the previous state of M2 (cf. line 8 in
Algorithm 2).

Theorem 1 (refined control strategy). Let gMDPs M1 and M2 be related as
M1 � M2, and consider the control strategy C1 = (XC1 , xC10,X1,T

t
C1
, ht

C1
) for M1

as given. Then there exists at least one refined control strategy

C2 = (XC2 , xC20,X2,T
t
C2
, ht

C2
),

as defined in Definition 4, with
• state space XC2 := XC1 × X1 × X2 with elements xC2 = (xC1 , x1, x2);
• initial state xC20 := (xC10, 0, 0);
• input variable x2 ∈ X2, namely, the state variable of M2;
• time-dependent stochastic kernels Tt

C2
, defined as

T
0
C2

(dxC2 |xC20, x2(0)) := T
0
C1

(dxC1 |xC10, x1)Wπ(dx1|x2)δx2(0)(dx2) and

T
t
C2

(dx′
C2

|xC2 (t), x2(t))

:= T
t
C1

(dx′
C1

|xC1 , x
′
1)WT(dx′

1|x′
2, h

t
C1

(xC1), x2, x1)δx2(t)(dx′
2) for t ∈ [1, N ];

• measurable output maps ht
C2

(xC1 , x̃1, x2) := Uv(ht
C1

(xC1), x1, x2).

Algorithm 2 Refinement of control strategy C1 as C2.
1: set t := 0
2: draw x2(0) from π2,
3: draw x1(0) from Wπ(· | x2(0)).
4: loop
5: given x1(t), select u1(t) according C1,
6: set μ2t := Uv(u1(t), x1(t), x2(t)),
7: draw x2(t+ 1) from T2( · | x2(t), μ2t),
8: draw x1(t+ 1) from WT( · |x2(t+ 1), u1(t), x1(t), x2(t)),
9: set t := t+ 1.

10: end loop

Both the time-dependent stochastic kernels Tt
C2

and the output maps ht
C2

for
t ∈ [0, N ], are universally measurable, since Borel measurable maps are universally
measurable and the latter are closed under composition [7, Chap. 7].

Since, by the above construction of C2, the output spaces of the controlled systems
C1 ×M1 and C2 ×M2 have equal distribution, it follows that measurable events have
equal probability, as stated next and proved in the appendix.

5Beyond Borel measurability, this also holds when the kernels are universally measurable, as
corresponding universally measurable regular conditional probability measures are obtained [19].
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Theorem 2. If M1 � M2 then for all control strategies C1 there exists a control
strategy C2 such that, for all measurable events A ∈ B (

YN+1
)
,

PC1×M1 ({y1(t)}0:N ∈ A) = PC2×M2 ({y2(t)}0:N ∈ A) .

The above theorem shows that probabilities of events are preserved over the con-
trolled systems C1 × M1 and C2 × M2. This result can be used to infer the preser-
vation of stochastic properties, as has been done for the similarity relation given by
[16, 17, 18] and to which we make a comparison in the appendix.

4. New ε, δ-approximate (bi)simulation relations via lifting.

4.1. Motivation and δ-lifting. The requirement on an exact simulation re-
lation between two models is evidently restrictive. Consider the following example,
where two Markov processes have a bounded output deviation.

Example 5 (models with a shared noise source). Consider an output space
Y := Rd with a metric dY(x, y) := ‖x − y‖ (the Euclidean norm), and two gMDPs
expressed as noisy dynamic processes:

M1 : x1(t+ 1) = f(x1(t), u1(t)) + e1(t), y1(t) = h(x1(t)),
M2 : x2(t+ 1) = f(x2(t), u2(t)) + e2(t), y2(t) = h(x2(t)),

where f and h are both globally Lipschitz, satisfying ‖f(x1, u)−f(x2, u)‖ ≤ L‖x1−x2‖
for 0 < L < 1, and, in addition, ‖h(x1) − h(x2)‖ ≤ H‖x1 − x2‖ for a 0 < H valid
for all x1, x2 ∈ Rn and for all u. Suppose that the probability distributions of the
random variable e1 and of e2 depend on a shared noise source ω, with ω ∈ Ω and
distribution Pω, and are such that e1(t) = g1(ω(t)) and e2(t) = g2(ω(t)). Assume
now that there exists a value c ∈ R, such that Pω [‖g1(ω) − g2(ω)‖ < c ] = 1. Then
for every pair of states x1(t) and x2(t) of M1 and M2, respectively, the difference
between state transitions is bounded as ‖x1(t+1)−x2(t+1)‖ ≤ L‖x1(t)−x2(t)‖+ c
with probability 1. By induction it can be shown that if ‖x1(0) − x2(0)‖ ≤ c

1−L then
for all t ≥ 0, ‖x1(t) − x2(t)‖ ≤ c

1−L and ‖y1(t) − y2(t)‖ ≤ cH
1−L .

Even though the difference in the output of the two models is bounded by the
quantity cH

1−L with probability 1, it is impossible to provide an approximation error
using either the method in [30] (hinging on stochastic stability assumptions), nor
using (approximate) relations as in [17, 18]: with the former approach, for the same
input sequence u(t) the output trajectories of M1 and M2 have bounded difference,
but do not converge to each other; with the latter approach, the relation defined via
a normed difference cannot satisfy the required notion of transitivity.

As mentioned before and highlighted in the previous Example 5, we are interested
in introducing a new approximate version of the notion of probabilistic simulation re-
lation, which allows for both δ-differences in the stochastic transition kernels, and
ε-differences in the output trajectories. For the former prerequisite, we relax the
requirements on the lifting in Definition 5; subsequently, we define the resulting ap-
proximate (bi)simulation relation according to the latter prerequisite on the outputs.

Definition 8 (δ-lifting for general state spaces). Let X1,X2 be two sets with
associated measurable spaces (X1,B(X1)), (X2,B(X2)), and let R ⊆ X1 × X2 be a
relation for which R ∈ B(X1 ×X2). We denote by R̄δ ⊆ P(X1,B(X1))×P(X2,B(X2))
the corresponding lifted relation (acting on ΔR̄δΘ), if there exists a probability space
(X1 × X2,B(X1 × X2),W) satisfying
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1. for all X1 ∈ B(X1): W(X1 × X2) = Δ(X1);
2. for all X2 ∈ B(X2): W(X1 ×X2) = Θ(X2);
3. for the probability space (X1 × X2,B(X1 × X2),W) it holds that x1Rx2 with

probability at least 1 − δ or, equivalently, that W (R) ≥ 1 − δ.

We leverage Definition 8 to introduce a new approximate similarity relation that
encompasses both approximation requirements, obtaining the following ε, δ-approxi-
mate probabilistic simulation.

Definition 9 (ε, δ-approximate probabilistic simulation). Consider two gMDPs
Mi = (Xi, πi,Ti,Ui, hi,Y), i = 1, 2, over a shared metric output space (Y,dY). M1
is ε, δ-stochastically simulated by M2 if there exists an interface function Uv and a
relation R ⊆ X1 × X2 for which there exists a Borel measurable stochastic kernel
WT( · |u1, x1, x2) on X1 × X2 given U1 × X1 × X2, such that

1. for all (x1, x2) ∈ R, dY (h1(x1), h2(x2)) ≤ ε;
2. for all (x1, x2) ∈ R, for all u1 ∈ U1: T1(·|x1, u1) R̄δ T2(·|x2,Uv(u1, x1, x2)),

with lifted probability measure WT( · |u1, x1, x2);
3. π1R̄δπ2.

The simulation relation is denoted as M1 �δ
ε M2.

Definition 10 (ε, δ-approximate probabilistic bisimulation). Under the same
conditions as before M1 is an ε, δ-probabilistic bisimulation of M2 if there exists a
relation R ⊆ X1 × X2 such that M1 �δ

ε M2 w.r.t. R and M2 �δ
ε M1 w.r.t. R−1 ⊂

X2 × X1. M1 and M2 are said to be ε, δ-probabilistically bisimilar, denoted as M1 ≈δ
ε

M2.

In this section we have provided similarity relations quantifying the difference
between two Markov processes. The end use of the introduced similarity relations
is to quantify the probability of events of a gMDP via its abstraction and to refine
controllers; this is achieved in the next section.

4.2. Controller refinement via approximate simulation relations. Con-
sider two gMDPs M1 and M2, for which M1 is the abstraction of the concrete model
M2. The following result is an approximate version of Theorem 2 and presents the
main result of this paper, namely, the approximate equivalence of properties defined
over the gMDPs M1 and M2.

Theorem 3. If M1 �δ
ε M2 then for all control strategies C1 there exists a control

strategy C2 such that, for all measurable events A ⊂ YN+1,

PC1×M1

({y1(t)}0:N∈A−ε
) − γ ≤ PC2×M2

({y2(t)}0:N∈A) ≤ PC1×M1
({y1(t)}0:N∈Aε) + γ

with constant 1 − γ := (1 − δ)N+1 and with the ε-expansion of A defined as

Aε :=
{{yε(t)}0:N |∃{y(t)}0:N ∈ A : max

t∈[0,N ]
dY(yε(t), y(t)) ≤ ε

}
and similarly the ε-contraction defined as A−ε := {{y(t)}0:N |{{y(t)}0:N}ε ⊂ A}, where
{{y(t)}0:N}ε is the pointwise ε-expansion of {y(t)}0:N .

The above theorem allows us to reason about probabilistic properties, such as
bounded safety and reachability. The extension beyond this set of properties has
been left to future work. Of special interest is the computation of properties via set
containment, as introduced in [29] for finite-state stochastic systems.

While the details of the proof can be found in the appendix, its key aspect is
the existence of a refined control strategy C2, which we detail next. Given a control
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strategy C1 over the time horizon t ∈ {0, . . . , N}, there is a control strategy C2 that
refines C1 over M2. The control strategy is conceptually given in Algorithm 3. While
the state (x1, x2) of C2 is in R, the control refinement from C1 follows in the same
way (cf. Algorithm 3, lines 4–9) as for the exact case of section 3.4. Hence, similarly to
the control refinement for exact probabilistic simulations, the basic ingredients of C2
are the states x1 and x2, whose stochastic transition to the pair (x′

1, x
′
2) is governed,

first, by a point distribution δx2(t)(dx
′
2) based on the measured state x2(t) of M2; and,

subsequently, by the lifted probability measure WT(dx′
1 | x′

2, u1, x2, x1), conditioned
on x′

2.
On the other hand, whenever the state (x1, x2) leaves R the control chosen by

strategy C1 cannot be refined to M2; instead, an alternative control strategy Crec has
to be used to control the residual trajectory of M2. The choice is of no importance
to the result in Theorem 3. This stage of the execution (cf. Algorithm 3, lines 11–15)
referred to as recovery makes the choice of the overall control strategy C2 nonunique.
In practice we will only synthesize the control strategy over a finite time.

By splitting the execution in Algorithm 3 into a control strategy and a gMDP
M2, we can again obtain the refined control strategy.

Theorem 4 (refined control strategy). Let gMDPs M1 and M2 with M1 �δ
ε

M2 and control strategy C1 = (XC1 , xC10,X1,T
t
C1
, ht

C1
) for M1 be given. Then for

any given recovery control strategy Crec, a refined control strategy, denoted C2 =
(XC2 , xC20,X2,T

t
C2
, ht

C2
), can be obtained as an inhomogenous Markov process with

two discrete modes of operation, {refinement} and {recovery}, based on Algorithm 3.

Algorithm 3 Refinement of C1 as C2.
1: set t := 0 {Start}
2: draw x2(0) from π2
3: draw x1(0) from Wπ(· | x2(0))
4: while (x1(t), x2(t)) ∈ R do {Refine}
5: given x1(t), select u1(t) from C1,
6: set input μ2t := Uv(u1(t), x1(t), x2(t)),
7: draw x2(t+ 1) from T2( · | x2(t), μ2t),
8: draw x1(t+ 1) from WT( · |x2(t+ 1), u1(t), x1(t), x2(t)),
9: set t := t+ 1

10: end while
11: loop {Recover}
12: given x2(t), select μt (from Crec),
13: draw x2(t+ 1) from T2( · | x2(t), μt),
14: set t := t+ 1
15: end loop

The details of the tuple (XC2 , xC20,X2,T
t
C2
, ht

C2
) are given in the appendix, to-

gether with the proof of the theorem. They follow from Algorithm 3, in a similar way
as Theorem 1 follows from Algorithm 2.

4.3. Examples and properties.

Example 6 (models with a shared noise source—continued from above). Based
on the relation R := {(x1, x2) : ‖x1 − x2‖ ≤ c

1−L} it can be shown that M1 ≈0
ε M2

with ε = Hc
1−L , since, first, it holds that dY(h(x1) − h(x2)) ≤ ε for all (x1, x2) ∈ R

with dY = ‖ · ‖. Additionally, for all (x1, x2) ∈ R and for any input u1 the selec-
tion u2 = u1 is such that T1(·|x1, u1)R̄0T2(·|x2, u1); note that R̄0 is equal to R̄ (the
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lifted relation from R). The lifted stochastic kernel is WT(dx′
1 × dx′

2|u1, x1, x2) :=∫
ω δf(x1,u1)+g1(ω)(dx′

1)δf(x2,u)+g2(ω)(dx′
2)Pω(dω); this stochastic kernel is Borel mea-

surable if f(x1, u1)+ g1(ω) and f(x2, u)+ g2(ω) are assumed Borel measurable maps.
Note that the employed identity interface is also Borel measurable.

Example 7 (relationship to model with truncated noise). Consider the stochastic
dynamical process M1 : x(t + 1) = f(x(t), u(t)) + e(t) with output mapping y(t) =
h(x(t)), operating over the Euclidean state space Rn, and driven by a white noise
sequence e(t) ∈ R

n with distribution Pe. The output space y ∈ Y ⊆ R
d is endowed

with the Euclidean norm dY = ‖ · ‖. Select a domain D ⊂ Rn so that, at any given
time instant t, e(t) ∈ D with probability 1 − δ. Then define a truncated white noise
sequence ẽ(t) with distribution Pe (· | D). The resulting model M2 driven by ẽ(t) is
M2 : x(t+1) = f(x(t), u(t))+ ẽ(t), with the same output mapping y(t) = h(x(t)). We
show that M2 is a 0, δ-approximate probabilistic bisimulation of M1, i.e., M1 ≈δ

0 M2.
Select R := {(x1, x2) for x1, x2 ∈ Rn|x1 = x2}, and choose as interface the identity
one, i.e., Uv(u1, x1, x2) = u1. A viable lifting measure is

WT(dx′
1 × dx′

2|u1, x1, x2) :=
∫

e∈D

δx′
1
(dx′

2)δt1(e)(dx′
1)Pe(de)(1)

+
∫

e∈Rn\D

δt1(e)(dx′
1)Pe(de)

∫
ẽ

δt2(ẽ)(dx
′
2)Pe(dẽ|D)

with t1(e) = f(x1, u1) + e and t2(ẽ) = f(x2, u1) + ẽ.

Example 8 (relationship between noiseless and truncated-noise models). Consider
the model with truncated noise M2 as defined in Example 7. In what sense is M2
approximated by its noiseless version M3, namely, M3 : x(t+1) = f(x(t), u(t)), y(t) =
h(x(t))? Under requirements on the Lipschitz continuity ‖f(x1, u) − f(x2, y)‖ ≤
L‖x1 − x2‖ 0 < L < 1, ‖h(x1) − h(x2)‖ ≤ H‖x1 − x2‖, and on the boundedness of D
and of c = maxd∈D ‖d‖, Example 5 can be leveraged by concluding that M2 ≈0

ε M3
with ε = Hc

1−L .6

In Examples 7 and 8 we have that M1 is approximated by M2, which is subse-
quently approximated by M3. The following theorem and corollary attain a quanti-
tative answer on the question whether M1 is approximated by M3.

Theorem 5 (transitivity of �δ
ε). Consider three gMDPs Mi, i = 1, 2, 3, defined

by tuples (Xi, πi,Ti,Ui, hi,Y). If
• M1 is εa, δa-stochastically simulated by M2, and
• M2 is εb, δb-stochastically simulated by M3,

then M1 is (εa + εb), (δa + δb)-stochastically simulated by M3. Equivalently, if

M1 �δa
εa

M2 and M2 �δb
εb

M3, then M1 �δa+δb
εa+εb

M3.

Next, as a corollary of this theorem, we derive properties of the notion of approx-
imate bisimulation, and discuss the transitivity of the (exact) notions of simulation
and of bisimulation relations. The latter implies that the simulation relation (cf. Def-
inition 6 ) is a preorder, and that the bisimulation relation (cf. Definition 7 ) is an
equivalence relation over the category of gMDP MY.

6Alternatively, if M2 with nondeterministic input ẽ ∈ D is an εa-alternating bisimulation [42] of
M3 then M2 ≈0

εa
M3.
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Corollary 1 (transitivity properties). Following Theorem 5,
• if M1 ≈δa

εa
M2 and M2 ≈δb

εb
M3 then M1 ≈δa+δb

εa+εb
M3, and

• if M1 � M2 and M2 � M3 then M1 � M3, and
• if M1 ≈ M2 and M2 ≈ M3 then M1 ≈ M3.

Here notice that for R13 := {(x1, x3)|∃x2 ∈ X2 : (x1, x2) ∈ R12, (x2, x3) ∈ R23}
we show that if Δ1R̄12δaΔ2 and Δ2R̄23δb

Δ3 then Δ1R̄13(δa+δb)Δ3, where the used
lifting measure WT is a function of the respective liftings WT12 and WT23, i.e., for all
x1, x3 ∈ R13 ∃x2 ∈ X2 : (x1, x2) ∈ R12, (x2, x3) ∈ R23, WT is given as

WT(dx′
1 × dx′

3|u1, x1, x2) =∫
X2

W23(dx′
3|x′

2,Uv12(u1, x1, x2), x2, x3)W12(dx′
1 × dx′

2|u1, x1, x2).

Furthermore, the interface Uv13 is the composition of Uv12 and Uv23. The proof of
Theorem 5 and Corollary 1 can be found in the appendix.

Example 9 (combination of Examples 7 and 8 via Corollary 1). For the models
in Examples 7 and 8 we can conclude that M1 ≈δ

ε M3. This means that a stochastic
system as in M1 in Example 7 can be approximated via its deterministic counterpart,
and that the approximation error can be expressed via the probability (i.e., amount
of truncation; cf. Example 7) and the output error (i.e., Example 8). This allows for
explicit trading off between output deviation and deviation in probability.

5. Case studies.

5.1. Introduction: Energy management in smart buildings. We are inter-
ested in developing advanced solutions for the energy management of smart buildings.
In this work we first describe a simple example with a 3-dimensional model of the
thermal dynamics in an office building: we consider a simple building that is divided
into two connected zones, each with a radiator affecting the heat exchange in that
zone by controlling the water temperature in a boiler. With this case study we aim
at elucidating the theory of the previous sections. In the third subsection we work
with a more realistic model of an office building: this 5-dimensional model shows how
the given approximate similarity relations can be used for the design of controllers
that verifiably satisfy properties expressed as quantitative specifications. In the final
subsection, we discuss how to use the approximate simulation relations for gMDPs
that cannot be described by linear Gaussian processes dynamics.

5.2. First case study. A model of the temperature dynamics in an office build-
ing with two zones to heat [25, 28] assumes that the temperature fluctuations in
the two zones, as well as the ambient temperature dynamics, can be modeled as a
Gaussian process

M : x(t+ 1) = Ax(t) +Bu(t) + Fe(t), y(t) = [ 1 0 0
0 1 0 ]x(t)(2)

with stable dynamics characterized by matrices

A =
[

0.8725 0.0625 0.0375
0.0625 0.8775 0.0250

0 0 0.9900

]
, B =

[
0.0650 0
0 0.60
0 0

]
, F =

[ 0.05 −0.02 0
−0.02 0.05 0

0 0 0.1

]
,

where x1,2(t) are the temperatures in zone 1 and 2, respectively; x3(t) is the deviation
of the ambient temperature from its mean; and u(t) ∈ R2 is the control input. The
disturbance e(t) is a white noise sequence with standard Gaussian distributions for all
t ∈ R+. The state variables are initiated as x(0) = [16 14 -5]T . This stochastic process
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Fig. 2. Trade-off between the output error ε and the probability error δ for the δ,ε-approximate
probabilistic simulation M̃ �δ

ε M. We have selected the pair (ε, δ) = (0.16, 0.073) as an ideal trade-
off.

can be written as a gMDP, as detailed in Example 1. As the model abstraction, we
select the controllable and deterministic dynamics of the mean of the state variables,
and consequently omit the ambient temperature and the additive noise term:

M̃ :
{
x̃(t+ 1) = Ãx̃(t) + B̃ũ(t) ∈ R2 with Ã := [ 0.8725 0.0625

0.0625 0.8775 ],
ỹ(t) = [ 1 0

0 1 ]x̃(t), B̃ := [ 0.0650 0
0 0.60 ].

(3)

We then obtain that, as intuitive, M̃ �δ
ε M. In order to compute specific values of

ε and δ, we select the relation R := {(x̃, x) ∈ R2×R3 | √
(x̃1 − x1)2 + (x̃2 − x2)2 ≤ ε}

and the interface function Uv(ũ, x̃, x)= ũ+B̃−1(Ãx̃−Āx), with ĀV =[ 0.8725 0.0625 0.0375
0.0625 0.8775 0.0250 ].

The structure of the interface is arbitrary: in the specific instance the interface is se-
lected to optimally correct the difference in room temperatures at the next time step.

A stochastic kernel WT for the lifting is WT(dx̃′ × dx′ | ũ, x̃, x) =
∫

e
δf̃(dx̃′)

δf(e)(dx′)N (de | 0, I) with f̃ = Ãx̃ + B̃ũ and f(e) = Ax + BUv(ũ, x̃, x) + Fe. The
lower bound on WT(R | ũ, x̃, x) ≤ 1− δ has been computed and traded off against the
output deviation, as in Figure 2.

We are interested in the goal, expressed for the model M, of increasing the like-
lihood of trajectories reaching the target set T = [20.5, 21]2 and staying there there-
after. For the abstract model we have developed a strategy, as in[25], satisfying by
construction the property expressed in linear-time temporal logic-like notation with
the formula ϕ = ♦�T and shrunken to ϕ−ε (as per Theorem 3). This strategy is
synthesized as a correct-by-construction controller using PESSOA [33], where the
discrete-time dynamics in (3) are further discretized over state and action spaces: we
have selected a state quantization of 0.05 over the range [15, 25]2 for the two state
variables, and an input quantization of 0.05 over the set [10, 30]2. It can be observed
that the controller regulates the abstract model M̃ to eventually remain within the
target region, as shown in Figure 3. We now want to verify that, indeed, when refined
to the concrete stochastic model, this strategy implies the reaching and staying in
the safe set up to some probabilistic error. The refined strategy is obtained from this
control strategy as discussed in section 4.2, and recovers from exits out of the relation
R by resetting the abstract states in the relation.

In a simulation study reported in Figure 3, we have executed the refined control
strategy over a time horizon of 200 steps. Observe that for the execution displayed
in the top/left plot the behavior of the controlled concrete model M remains close
to that of M̃. Only at 4 incidences (circled) does the output error exceed the level
ε = 0.16. This reflects our expectations, since at any point in time the probability
that the output error exceeds the level ε = 0.16 over the following X time steps is
provably less than 1 − (1 − δ)X ≈ Xδ = 0.073X , as per Theorem 3, which leads to
an upper bound of 15 occurrences. Within this case study, whenever the state of the
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Fig. 3. Refined control for deterministic model applied to M. The figure (top left) evaluates
the accuracy of the approximation, and gives, with red circles, the instances in which the relation
is left. The plot (bottom left) shows the ambient temperature. The plots on the right display the
temperature inside the two rooms. The small blue crosses give the actual temperature in the rooms
(x1, x2) whereas the deterministic simulation of (x̃1, x̃2) is drawn in black and mostly covered by
the crosses.

abstract and concrete models leave the relation R, then the recovery strategy consists
of resetting the state of the abstract model and continuing with the refined control
strategy. Thanks to the use of the ε-contraction ϕ−ε of the concrete specification ϕ,
model M will still abide by ϕ with a high confidence.

5.3. Second case study. We consider a realistic model for an office building,
with the dynamics obtained from [6]. With a time sampling of 5 minutes, the following
model describes stochastic temperature fluctuations around a known mean value:

Moffice :
{
xb(t+ 1) = Ξxb(t) + Γq(t) +Bpwp(t) +BsΦs(t) +BaTa(t),
y(t) = [ 0 1 0 0 ]xb(t),

[ Ξ|Γ|Bp|Bs|Ba ] =
[

0.4487 0.216 0.2164 0.1186
0.216 0.1778 0.3719 0.2334

0.09639 0.1657 0.6569 0.08082
0.005234 0.0103 0.008007 0.9708

∣∣∣∣ 2.65e-5
7.45e-5
2.06e-4
0.07e-5

∣∣∣∣ 1.0939e-4
2.16e-4
7.45e-5
3.92e-6

∣∣∣∣ 6.60e-4
1.31e-3
4.49e-4
2.36e-5

∣∣∣∣ 2.96e-4
8.79e-4
1.93e-4
5.67e-3

]
.

The output y(t) models the temperature deviation of the internal air. The 4-dimen-
sional state of the model, obtained from a frequency-based identification procedure,
represents the fluctuation of internal temperatures in the building, including the build-
ing envelope and the interior [6, TiTeThTs model], where the influence of mean value
dynamics have been eliminated from the model. The objective of this model is to
capture the influence of stochastic effects acting upon the system and control them
via the heater with input q(t). The model represents the stochastic disturbances on
the building temperature. We foresee three major sources of stochastic disturbance
to the system, as explained next.

The first, wp(t), is the randomness of the heat generated by people in the building.
An average person generates 100 Watt [W] under normal circumstances. We presume
that the occupancy of the office adds a random element to this average number,
which we capture as an independently and identically distributed random signal with
Gaussian distribution and a standard deviation equal to 20% per person: when there
are np := 10 people in the office this standard deviation becomes √

np × 20 [W].
The second source of stochastic disturbance is the ambient temperature, for which

we model the stochastic deviation Ta(t) from accurate weather forecasts. As this
deviation is correlated over time, this is modeled as a first-order colored noise, with
a time constant of 20 minutes. The choice of the time constant gives a measure of
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correlation in time [43], so we use it to choose the time over which there is a significant
correlation between successive values of Ta(t). Additionally, we choose it such that
the stationary variance is equal to 1, i.e., E

[
Ta(t)2

]
= 1. The resulting weather

model is a first-order (1-dimensional) model Ta(t + 1) = 0.7788Ta + 0.6273ww(t),
which is driven by a white noise source with standard Gaussian distribution, namely,
ww(t) ∼ N (0, I).

The third and final source of disturbance Φs(t) is the energy flow from solar
radiation. Though measurable, this disturbance cannot be predicted exactly and
has a high impact on the temperature inside the office. The impact depends on the
effective window area of the building, which has been estimated as 6.03 [m2] in [6].
Based on the measured solar radiation in [6], we model this disturbance as a white
noise source with standard deviation of 0.1 [kW/m2].

Including the weather model for Ta, which requires encompassing the noise signal
ww(t), leads to the following 5-dimensional model for the temperature fluctuations in
the office building:

M = (A,B,Bw , C) :
{
x(t+ 1) = Ax(t) +Bww(t) +Bu(t),
y(t) = [ 0 1 0 0 0 ]x(t),

[
A |B |Bw

]
=

[
0.4487 0.216 0.2164 0.1186 2.96e-4
0.216 0.1778 0.3719 0.2334 8.789e-4
0.09639 0.1657 0.6569 0.08082 1.928e-4
0.005234 0.0103 8.007e-3 0.9708 0.005667
0 0 0 0 0.7788

∣∣∣∣∣
0.1326
0.3725
1.029
4.309e-3
0

∣∣∣∣∣
0.006918 0.06596 0
0.01372 0.1308 0
0.004712 0.04492 0
2.485e-4 0.002369 0
0 0 0.6273

]
.

In order to avoid numerical ill-conditioning issues, both the heat input q(t) (expressed
in kW) and the corresponding matrix Γ have been replaced by scaled versions, namely,
the input signal u(t) and the input matrix B. At full throttle the heating input
q(t) = 5[kW] corresponds to the scaled input u(t) = 1. Similarly, the three noise
sources discussed above have been normalized together with the respective system
matrices, so that w(t) is the new driving noise, as a white noise sequence with a
standard Gaussian distribution, encompassing the unpredicted heat caused by people,
solar radiation, and weather fluctuations.

We are interested in controlling the obtained stochastic system M to verify a
quantitative property over its output signal, which is the inner air temperature. More
precisely, we want to maximize the probability that the deviation of the inner air
temperature stays within a 0.5 degrees difference from the nominal temperature,
over an horizon of 30 minutes. This property can be encoded as a probabilistic
computation tree logic (PCTL) specification for the discrete time model as follows:
P≥p

(
�6[|y| < 0.5]

)
, where p is a parameter to be optimized over.

In order to solve this type of probabilistic safety problems we would normally
employ formal abstractions, as implemented in the software tool FAUST2 [22]. How-
ever, a straightforward use of the tool on the nonautonomous 5-dimensional model
does not yield tight guarantees. Hence, we first obtain several reduced-order models;
then, over the input range of interest, we quantify the corresponding ε, δ-approximate
probabilistic bisimulation relations; finally, we design a controller over the obtained
formal abstractions with FAUST2, and refine it to the original 5-dimensional model
of the office building. In the refinement step we tune the trade-off between the con-
servativeness with respect to heating inputs and the accuracy of the approximation.

Model abstraction. We use model order reduction via balanced truncations,
as implemented in MATLAB, to obtain lower-order approximations preserving the
dynamics of interest. We seek to obtain either first- or second-order models, from two
types of concrete dynamics: first, the native dynamics of model M = (A,B,Bw, C),
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and second, the dynamics of model M′ = (A+BF,B,Bw , C). In the latter case, the
state-feedback gain F is chosen7 so that it reduces the importance of the controllable
modes of the system: F =

[
0.48456 0.39865 0.85352 0.56387 0.0024252

]
.

As a result, we obtain four reduced-order models Mi = (Ai, Bi, Bwi, Ci)
(i = 1, 2, 3, 4) of M via balanced truncation:8

Mi :
{
xs(t+ 1) = Aixs(t) +Bwiw(t) +Bius(t),
ys(t) = Cixs(t),

(4)

where the resulting matrices are given in the appendix.
Models M1 and M3 are obtained based on M = (A,B,Bw, C), whereas M2 and

M4 are based on the dynamics of M′ = (A+BF,B,Bw, C). As expected the quality
of the reduced models depends on the choice of M′ or M: in the former case, the part
of the dynamics that we cannot compensate for with a control is approximated best,
whereas for M the most prominent dynamics are approximated best, notwithstanding
how well they can be controlled.

Approximate probabilistic simulation relations. The reduced models M1,
M2, M3,M4 are approximations of M and it is expected that, even when using an
interface function, the error between these reduced models and M will increase with
the input us. Therefore we quantify the performance of Mi for i = 1, 2, 3, 4 only over
a bounded input set Us := {us ∈ R | u2

s ≤ c1}. To choose a relevant c1, suppose
we would take constant c1 of 0.25 = 0.52, then this would be equal to an allowed
deviation of 50 percent of the maximal input for the nominal heat input, which is
5[kW] for the original system. As we only want to correct the heating with respect
to stochastic fluctuations we take the more realistic value for c1 of 0.22 = 0.04.

Let us now compute the parameters pair (ε, δ) establishing the relationship Mi �δ
ε

M between reduced-order and concrete models. Similarly to the work [23] on hierar-
chical control based on model reduction we consider a putative relation between the
two state spaces as

R :=
{
(x, xs) | (x− Pxs)TM(x− Pxs) ≤ ε2

}
with properly-sized matrices M and P , satisfying the Sylvester equation PAi = AP +
BQ for a choice of Q, and Ci = CP , and so that M − CTC is positive semidefinite,
namely, M − CTC � 0. Introduce the interface Uv : Us × Xs × X → U as

u = Rus +Qxs +K(x− Pxs),

and notice that Uv is a function of both P and Q above, alongside the additional
design variables R and K (to be further discussed shortly). The interface function
is chosen to reduce the differences in the observed stochastic behaviors of the two
systems. It refines any choice of us to a control input u; as such, it implements
any control strategy for Mi to the original model M. In this case study we have
considered a concrete model that is controllable, linear, time-invariant, and driven by
an additive stochastic noise. The chosen interface Uv, with design variables Q, K, and
R, fully parameterizes the set of possible interfaces that refine controls synthesized
over a reduced model that is deterministic, linear, and time-invariant, as suggested in
[23].

7The gain term is obtained with the dare(A, B, CT C, 0.02) command in MATLAB.
8This results from the application of the balred function in MATLAB.
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Table 1

ε, δ-simulation relation trade-off for the reduced-order models. The table gives for each model
and δ the computed ε.

δ 1 10− 1
3 10− 2

3 10−1 10− 4
3 10− 5

3 10−2 10− 7
3 10− 8

3 10−3

M1 0.1233 0.4803 0.6247 0.7347 0.827 0.9082 0.9816 1.049 1.112 1.171
M2 0.01445 0.1037 0.132 0.1534 0.1714 0.1871 0.2014 0.2145 0.2267 0.2381
M3 0.05206 0.7612 0.997 1.175 1.325 1.456 1.575 1.684 1.785 1.881
M4 0.1839 0.3029 0.3358 0.3604 0.3809 0.3988 0.415 0.4298 0.4435 0.4564

Let us next focus on the characterization of the relation Mi �δ
ε M. Condition 1

in Definition 9, namely, for all (x, xs) ∈ R : dY(y(t), ys(t)) ≤ ε, holds since ‖y−ys‖2 =
‖Cx − CPxs‖2 and (x − Pxs)TCTC(x − Pxs) ≤ (x − Pxs)TM(x − Pxs), and the
latter is bounded by ε2 for (x, xs) ∈ R.

For condition 2, i.e., for all(x, xs) and

∀us ∈ Us : Ts (· | xs, us) R̄δT (· | x,Uv(us, xs, x)) ,

we construct a lifted probability measure WT(· | us, xs, x) based on the shared in-
put noise w(t). From this lifting measure, the original transition kernels can eas-
ily be recovered by marginalizing over Xs and over X, respectively, as T (· | x, u) =
N (·|Ax+BUv(us, xs, x), BwB

T
w), and Ts (· | xs, us) = N (·|Asxs+Bsus, BwiB

T
wi). The

last condition requires that, with probability at least 1 − δ, the pair (x′, x′
s) ∈ R is

distributed as (x′, x′
s) ∼ WT (· | us, xs, x). This condition can be encoded as for all

wTw ≤ cw, for all (x, xs) ∈ R, for all us ∈ Us it holds that (x′ − x′
s) ∈ R. Note that

the latter can be written as (x′ − Px′
s)

TM(x′ − Px′
s) ≤ ε2, where

x′ − Px′
s = (A+BK)(x− Pxs) + (Bw − PBwi)w + (BR− PBs)us.(5)

The conditions above can be expressed as a single matrix inequality via the S-
procedure [11]. We know that w ∼ N (0, I), wTw has a chi-square distribution with 2
degrees of freedom. Thus for a required level of 1− δ, we select cw as cw = χ−1

2 (1− δ)
and solve the resulting constraints with respect to ε for given values of K,P,Q, and
R, for each of the reduced models Mi using the convex optimization toolbox CVX
[24]. Note that χ−1

2 is the chi-square inverse cumulative distribution function with 2
degrees of freedom. The gains K and R are selected together with M by alternately
optimizing their choice. The chosen P and Q follow from the Sylvester equation, for
which additional freedom is used to minimize the influence of w and us in (5).

Table 1 provides a number of ε, δ values, derived from the approximate probabilis-
tic simulation relation, for each of the models Mi. Notice that for increasing values
of δ, ε decreases to a positive lower bound: this lower bound is a function of the size
of the set Us. Based on these outcomes, we have decided to proceed with M2.

Control synthesis over abstract model M2: use of FAUST2. For a given
choice of ε, δ we follow Theorem 3 and modify the given PCTL property ψ :=
P≥p

(
�6[|y| < 0.5]

)
to obtain ψε,δ := P≥p+γ

(
�6[|y| < 0.5 − ε]

)
. Here γ gives the ac-

cumulation of the error in the probability over the time horizon of interest: for this
case we have 1 − γ := (1 − δ)6, which is γ ≈ 6δ. We then apply FAUST2 to obtain
a grid-based approximation of the safety probability over the six time steps of the
formula (which adds up to 30 minutes in the model), with an accuracy of 0.1. More
precisely, we first quantize the input space (this, on its own, generates an exact simu-
lation), then we apply FAUST2 [22] over the obtained continuous space, finite action
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model. For this work we have optimized the algorithms in FAUST2 to use less memory
for models with Gaussian noise: by first decoupling the noise by means of a simple
state transform, the storage of the discretized probability transitions can be done in
a structured and more efficient manner. This leads us to perform the computations
with 2.6×107 grid points to attain the desired accuracy of 0.1 (more precisely, 0.0983)
with a 2.6 GHz Intel Core i5 with 16 GB memory within less then 20 minutes. We
finally obtain that the modified safety property is satisfied with probability of at least
0.8412 − 0.0983 = 0.7429 for the reduced-order model M2 initialized at zero.

Control refinement: simulation results. We refine the policy obtained from
FAUST2 for the reduced-order model M2 to the original model M. Recall that we
expect this refined policy to have a quantifiable safety, expressed via the property
ψ, which is a requirement that the inner air temperature remains within the bound
ys ∈ [−0.5, 0.5] of the nominal temperature during the next 30 minutes. The safety
probability for the concrete model M initialized at the origin is lower bounded by the
computed probability p = (0.7429−γ) = (0.7429−0.0585) = 0.6844 (this is according
to Theorem 3).

We empirically validate this result as follows. We first initialize the system and
the state of the reduced-order model (in the controller) at the origin. Then we perform
105 Monte Carlo simulations and observe that executions of the reduced-order model
remain in the modified safe set 85.81 percent of the time, whereas they exit it 14.19
percent of the time. For the same noise sequences, the controlled 5-dimensional model,
where the control is refined based on the interface introduced before, stays in the
original safe set 99.9 percent of the time, and exits it in 0.10 percent of the time. The
concrete model is further seen to stay within the modified safe set 86.05 percent of the
time, which is much closer to the computed probability for the reduced-order model.
Notice that these empirical outcomes are expected to be higher than indicated in
the error bounds, as these bounds are conservative especially when considering states
starting in the middle of the relation.

Similarly, starting at the edge of the modified safe set ys ∈ [0.2986,−0.2986] of
the reduced-order model, we have considered the initialization as follows: xs(0) =
[−0.4229 −0.2987]T and x(0) = Pxs(0), where P has been discussed above. For this
initial state 0.7289 is the lower bound on the safety probability for the reduced-order
model, and p = 0.6704 for the full-order model. With 105 empirical Monte Carlo runs,
we obtain that the reduced-order model stays in the modified safe set 84.30 percent
of the time, whereas the concrete model with the refined control policy stays in the
safe set in 99.87 percent of the runs. Similar results were obtained upon initializing
at other points on the edges of the (modified) safe set, or on the edge of the relation.

5.4. Discussion: Computing similarity relations beyond linear Gaus-
sian dynamics. The use of interface functions and approximate similarity relations
for the refinement of control strategies has been studied, amongst others, by [23] for de-
terministic models and by [42] for nonlinear models. In the case studies above, we have
extended these results to gMDPs with Gaussian linear dynamics. Similarly, the study
of approximate relations for gMDPs with more general dynamics can be tackled by di-
rect extension of methods for approximate similarity relations on deterministic models
[42]. It is likewise expected that tailored methods for the approximate stochastic sim-
ulation relations will yield less conservative and more computationally efficient results.

6. Conclusions. In this work we have discussed new and general approximate
similarity relations for gMDPs, and shown that they can be effectively employed for
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abstraction-based verification goals as well as for controller synthesis and refinement
over quantitative specifications. The new relations, in particular, allow for a useful
trade-off between the deviations in probability distribution on states and the devia-
tions between model outputs. We have extended results on control refinement for de-
terministic LTI systems to construct interface functions effectively. For this and other
model classes within the set of gMDPs the algorithmic construction of appropriate
interface functions together with the optimal quantification of the ε, δ-approximate
similarity relation is a topic of further research. Alongside practical applications of
the developed notions, current efforts focus on further generalization of Theorem 3 to
specific quantitative properties expressed via temporal logics.

Appendix A. Details on case study and use of FAUST2. The model
reduction procedure via balanced truncation9 yields four reduced-order models Mi =
(Ai, Bi, Bwi, Ci) i = 1, 2, 3, 4:

Mi :
{
xs(t+ 1) = Aixs(t) +Bwiw(t) +Bius(t),
ys(t) = Cixs(t),

which are characterized by the following constant matrices

M1 : A1 =
[

0 −0.8572
1 1.857

]
, B1 =

[ −0.5343
0.5523

]
, Bw1 =

[ −5.916e-3 −0.0564 8.62e-3
6.138e-3 0.05852 −6.739e-3

]
, C1 = [ 0 1 ],

M2 : A2 =
[ 0 −0.05267

0.125 −0.1081

]
, B2 = [ 0.8917

0.3725 ], Bw2 = [ 0.01925 0.1835 0.002356
0.01372 0.1308 3.229e-5 ], C2 = [ 0 1 ],

M3 : A3 = [ 0.9951 ], B3 = [ 0.1194 ], Bw3 = [ 0.001497 0.01427 0.01467 ], C3 = [ 1 ],
M4 : A4 = [ 0.1203 ], B4 = [ 0.3829 ], Bw4 = [ 0.01257 0.1198 0.0002907 ], C4 = [ 1 ].

Models M1 and M3 are obtained from M = (A,B,Bw, C), whereas M2 and
M4 are based on the dynamics of M′ = (A + BF,B,Bw, C). We have synthesized
F to be [ 0.4846 0.3986 0.8535 0.5639 0.002425 ]. As expected, the reduced models depend
on the choice of M′ or M: in the former case, the part of the dynamics that we
cannot compensate for with a control is approximated best, whereas for M the most
prominent dynamics are approximated best.

Approximate probabilistic simulation relation. We quantify the perfor-
mance of Mi for i = 1, 2, 3, 4 only over a bounded input set Us := {us ∈ R | u2

s ≤ c1}.
Subsequently solving the Sylvester equations for Q,P , and R, tuning a stabilizing

interface gain K, and then using the S-procedure as described in [11] to compute ε, δ
(cf. Table 2), and M , we finally obtain the following matrices for the reduced-order
models. For M1 we take R := 1.403, and we obtain

Q := [ −0.08954 −0.07712 ], K := [ −0.5717 −0.4705 −0.9859 −0.6213 −0.002364 ],

P :=

[ −1.061 0.09045
0 1−2.295 −0.9696

9.064 8.775
0 0

]
, M :=

[ 0.4797 0.1476 0.3298 0.1397 −0.001306
0.1476 1.104 0.1592 0.06704 −0.00359
0.3298 0.1592 0.2862 0.1207 −0.001327
0.1397 0.06704 0.1207 0.1744 0.003174−0.001306 −0.00359 −0.001327 0.003174 0.003676

]
.

Note that the latter is optimized for δ = 10−2.
For M2 we take R := 1.004, and obtain

Q := [ −1.857 1.406 ], K := [ −0.3553 −0.2931 −0.65 −0.4739 −0.002547 ],

P :=

[ −0.6186 0.2348
0 1

2.562 −2.314
−0.009378 0.001329

0 0

]
, M :=

[
0.2416 0.06342 0.3159 0.1299 0.00106
0.06342 1.772 0.07267 0.02663 0.0007664
0.3159 0.07267 0.4191 0.1728 0.001395
0.1299 0.02663 0.1728 0.08168 0.000351
0.00106 0.0007664 0.001395 0.000351 0.0001456

]
.

9This is obtained from the application of the balred function in MATLAB.
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Table 2

Trade-off for parameters ε, δ in the simulation relation.

δ 1 10− 1
3 10− 2

3 10−1 10− 4
3 10− 5

3 10−2 10− 7
3 10− 8

3 10−3

M1 0.1233 0.4803 0.6247 0.7347 0.827 0.9082 0.9816 1.049 1.112 1.171
M2 0.01445 0.1037 0.132 0.1534 0.1714 0.1871 0.2014 0.2145 0.2267 0.2381
M3 0.05206 0.7612 0.997 1.175 1.325 1.456 1.575 1.684 1.785 1.881
M4 0.1839 0.3029 0.3358 0.3604 0.3809 0.3988 0.415 0.4298 0.4435 0.4564

Again M is chosen based on the S procedure to optimize ε for δ = 10−2. For M3,
take R := 0.3074 and obtain

Q := −0.0008755, K := [ −0.5796 −0.477 −0.9978 −0.6265 −0.00236 ],

P :=

[
1.004

1
1.006
0.9713

0

]
, M :=

[ 8.584 −4.974 4.929 2.078 0.1158
−4.974 3.944 −3.106 −1.31 −0.05919
4.929 −3.106 3.917 1.653 0.06135
2.078 −1.31 1.653 0.7024 0.02595
0.1158 −0.05919 0.06135 0.02595 0.01179

]
.

Note that M is chosen based on the S-procedure to optimize ε for δ = 10−2.
For M4, we take R := 0.8996 and

Q := −0.6961, K := [ −0.5307 −0.4366 −0.9241 −0.5946 −0.002391 ],

P :=

[ −1.191
1

1.242−0.01296
0

]
, M :=

[ 0.03949 −0.01465 0.06076 0.02542 1.999e−05
−0.01465 1.788 0.1162 0.05143 −0.0005164
0.06076 0.1162 0.128 0.05469 −2.765e−05
0.02542 0.05143 0.05469 0.04108 −0.0004062

1.999e−05 −0.0005164 −2.765e−05 −0.0004062 0.0003725

]
.

A.1. FAUST2 computations on a 2-dimensional model. For a given x, u
pair the probability distribution of the next state is distributed with the following
stochastic density kernel tx(x̄ | x, u) ∼ N (·;Aix+Biu,Σ), where Σ := Bw2B

T
w2

.
We resort to the algorithms implemented in [22] to maximize the probability of

a stochastic event. We set up a stochastic dynamic programming scheme, leading to
a final value function providing the probability of the property as

V0(x) = P
[
�6(|y(t)| ≤ 0.5 − ε)

]
.

Define the safe set A := R × [−0.5 + ε, 0.5 − ε] ⊂ X = R2, then the property to be
maximized can be written as V0(x) = P

[
�6A]

.

A.1.1. The error computation. Assume there are constantsH1, H2, such that∫
R2

|tx(x̄ | x, u) − tx(x̄ | x′, u)|dx̄ ≤ H1|x′
1 − x1| +H2|x′

2 − x2|.(6)

This gives a linearly increasing error N(H1Δ1 +H2Δ2), where Δi is the grid size in
the ith coordinate direction of the state space. Let us compute the two constants
next. Starting from

tx(x̄ | x, u) =
1√

(2π)2 det(σ)
exp

[
−1

2
(x̄−Aix−Biu)T Σ−1 (x̄−Aix−Biu)

]
,

define m =
[
m1
m2

]
= Aix+Biu and Σ−1 =

[
d11 d12
d21 d22

]
= LTL. Then

tx(x̄ | x, u) =
1√

(2π)2 det(σ)
exp

[−‖Lx̄− Lm‖2] .
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Define a change of variables with v = Lx̄ → dv = | det(L)|dx̄. Then the error
computation follows from the maximal difference between the probability density
distributions [22] as given in (6) and can be rewritten as follows:

∫
R2

∣∣∣∣∣ 1√
(2π)2 det(Σ)

(
exp

[
−1

2
‖v − Lm‖2

]
− exp

[
−1

2
‖v − Lm′‖2

])∣∣∣∣∣ dv

det(L)
.

Note that Σ−1 = LTL, hence, | det(L)| = 1√
det(Σ)

and, consequently,

=
∫

R2

1
2π

∣∣∣∣
(

exp
[
−1

2
‖v − Lm‖2

]
− exp

[
−1

2
‖v − Lm′‖2

])∣∣∣∣ dv.
Now we can transform a 2-dimensional integral into two 1-dimensional integrals:

≤
∫

R

1√
2π

∣∣∣∣
(

exp
[
−1

2
‖v1 − L1m1‖2

]
− exp

[
−1

2
‖v1 − L1m

′
1‖2

])∣∣∣∣ dv1
+

∫
R

1√
2π

∣∣∣∣
(

exp
[
−1

2
‖v2 − L2m2‖2

]
− exp

[
−1

2
‖v2 − L2m

′
2‖2

])∣∣∣∣ dv2
≤ 2|L1m− L1m

′|√
2π

+
2|L2m− L2m

′|√
2π

≤ 2√
2π

(|L1Ai(x − x′)| + |L2Ai(x− x′)|) .

Define
[

ā11 ā12
ā21 ā22

]
= LAi. Then for (6) we have H1 = 2√

2π
(|ā11| + |ā21|), H2 =

2√
2π

(|ā12| + |ā22|).

Appendix B. Connections to literature and measurability issues. In this
section we establish quantitative connections between the notion of approximate sim-
ilarity that we have introduced for gMDPs and known and established concepts that
have been discussed in the literature for processes that are special cases of gMDPs.

As measurability issues are key in this discussion we would like to first point
out that the results in this paper can be extended to analytical spaces with uni-
versally measurable kernels. When we allow the gMDPs to have universally mea-
surable kernels, we need to show the existence of a conditional probability measure
WT(dx′

1|x′
2, u1, x1, x2): for this we refer to [19] which discusses the existence of uni-

versally measurable regular conditional probabilities.

B.1. Early results for Markov chains with finite-state spaces. From the
perspective of testing, the concept of probabilistic bisimulation has been first intro-
duced in [31], based on a relational notion, and later used to define equivalence between
LMPs [14]. LMPs are different from gMDPs in that transitions are not governed by
actions but by observable labels, and the acceptance of a label (and the consequent
transition) defines the behavior of such a process. LMPs are defined over a finite-state
space S, a set of labels L, and stochastic transition kernels Tl : S × S → [0, 1] that are
finitely indexed by l ∈ L. There is a strong relationship between LMPs and standard
MDPs with labels [2], despite their different semantics.

Definition 11 (probabilistic bisimulation (relational notion)). Let T =(S,Pl∈L, L)
be a labeled Markov chain, with L the finite set of labels. Then a probabilistic bisim-
ulation ≡p is an equivalence on S such that, whenever s ≡p t, the following holds:

∀l ∈ L : ∀A ∈ S/ ≡p,
∑
s′∈A

Tl(s|s′) =
∑
s′∈A

Tl(t|s′).
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Two states s and t are said to be probabilistically bisimilar (s ∼SL t) if the pair (s, t)
is contained in a probabilistic bisimulation relation.

An extension of this definition is used to compare two separate processes by com-
bining their state spaces (as a disjoint union) and defining the probabilistic bisimu-
lation on the obtained extended state space [14]. (More details on this operation is
given in the following subsection for continuous state-space models.)

For countable-state probabilistic processes combining probability and nondeter-
minism, [36, 37] has discussed probabilistic simulations based on a lifting notion—this
has inspired the extension (over more general models) that is elaborated in this work.
Over finite- or countable-state sets, [36, Lemma 8.2.2] has shown that lifting coincides
with Req-equivalence of the corresponding probability distributions.

B.2. Exact bisimulation relations for models with continuous state
spaces. The early notion of bisimulation between labeled Markov chains [31] has been
extended to processes (again denoted as LMPs) defined over analytical state spaces in
[14], by employing zigzag morphisms. This work combines and extends earlier results
on zigzag-based bisimulations [8, 13, 19], provides the fundamental measure theoret-
ical results to support bisimulations over continuous spaces, and shows their logical
characterization and their transitivity property. Alternatively, but equivalent to the
zigzag definition, the follow-up work in [15] discusses an extension of the relational
notion in [31], based on the concept of measurable Req-closed sets.

Suppose that we have an LMP S = (X,B(X),Tl, L) with a finite label set l ∈ L
and with X being a Polish space. Note that, unlike the discrete-space case, this process
is defined together with a Borel σ-algebra B(X). Then based on [15], an equivalence
relation, denoted Req, defines a bisimulation if for any x1Reqx2 and for any measur-
able Req-closed set B (or equivalently for every measurable set B ⊂ X/Req) it holds
that

Tl(B|x1) = Tl(B|x2) ∀l ∈ L.

As an extension, a bisimulation between two different LMPs Si =(Xi,B(Xi),Tl,i, L),
i = 1, 2, can be constructed by working on the disjoint union of their state spaces.
More precisely, an equivalence relation Req over X1 � X2 defines a bisimulation if for
every x1Reqx2 (where x1 ∈ X1 and x2 ∈ X2) and for every Req-closed set B, it holds
that

Tl,1(B ∩ X1|x1) = Tl,2(B ∩ X2|x2) ∀l ∈ L.

An example of an equivalence relation over the disjoint union between two hetero-
geneous spaces, along with the induced quotient space, is given in Figure 4(a). The
discussed notion of equivalence between LMPs crucially depends on the equivalence
of the probability spaces (Xi,B(Xi),Pi) with probability measures Pi := Tl,i(· | xi),
given for a fixed l and state xi. For an equivalence relation Req over X1 � X2, the
probability spaces are equivalent if for every measurable Req-closed set B it holds
that

P1(B ∩ X1) = P2(B ∩ X2),

which is denoted as P1 ≡Req P2.
This type of equivalence between probability spaces has also been used for bisimu-

lation relations between control Markov processes [1], a simpler instance of the gMDP
framework discussed in this work. As such, it is a natural extension of the notion in
[14, 15] from LMPs to control Markov processes.
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×{1} ×{2}
X2

∪
q1

q3
q2

X1

(a) An equivalence relationReq over the dis-
joint union X1�X2, where two elements from
each set are in the relation if they share the
same color.

X1 × q1

X1 × q2

X1 × q3

(b) Relation R over the Cartesian product of
X1 ⊂ R2 and X2 = {q1, q2, q3}, induced by
the equivalence relation Req . Elements of the
relation are colored.

Fig. 4. Example of an equivalence relation over the disjoint union of two heterogeneous spaces,
and the corresponding relation over their Cartesian product.

An equivalence relation defined over the disjoint union of X1 and X2, i.e., Req ⊂
(X1 �X2)×(X1 �X2), can also be expressed as a relation over their Cartesian product,
namely, R := {(x1, x2) ∈ X1 × X2 : (x1, x2) ∈ Req}. As an example, we provide in
Figure 4(b) the relation over the Cartesian product of two spaces, corresponding to the
equivalence relation defined in Figure 4(a) over their disjoint union. This connection
raises the question of whether probability spaces related via Req are also in a lifted
relation. When working with finite or countable sets, we know that this connection
holds [36]. On the other hand, for continuous or uncountable spaces this depends
on the absence of measure-theoretical issues, and will be studied in depth to answer
when the following claim holds.

Claim B.1. Consider two measure spaces (X1,B(X1)) and (X2,B(X2)) and
an equivalence relation Req that induces a relation over X1 × X2 as R :=
{(x1, x2) ∈ X1 × X2 : (x1, x2) ∈ Req}. Then,

• for any two probability measures Δ ∈ P(X1,B(X1)) and Θ ∈ P(X2,B(X2)),
we have

ΔR̄Θ if and only if Δ ≡Req Θ;

• for any two universally measurable transition kernels T1 and T2, there exists
a universally measurable kernel WT that lifts the transition kernels for R as
required in Definition 6.

In order to prove this claim and to construct the lifted measure based on an
equivalence relation, we exploit the notion of zigzag morphism [14, 19] and its prop-
erties. More precisely, consider a tuple (X,B(X),T), with X a Polish space and
T : X × B(X) → [0, 1] a transition probability function.

Definition 12 (morphism). A function f : (X,B(X),T) → (X′,B(X′),T′) is a
morphism if it is a continuous surjective map f : X → X′, such that for all s ∈ X and
for all B ∈ B(X),

T(f−1(B)|s) = T
′(B|f(s)),

i.e., it is preserving transition probabilities.

Consider two LMPs Si = (Xi,B(Xi), {kl,i|l ∈ L}) with a shared finite set of labels
L, then a morphism f is a zigzag morphism if it preserves the two transition probability
functions for all l ∈ L. Two LMPs S1 and S2 are probabilistically bisimilar if there
is a generalized span of zigzag morphisms between them [14]; namely, if there exists
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S1

T

S2

f g

(a) Generalized span
of zigzag morphisms

S1

T12

S2

T23

T∗

S3

f1 f2 f3 f4

g1 g2

(b) Construct T∗ as a semi-pullback of
co-span T12 → S2 ← T22.b

S1

T∗

S3

f1◦g1 f4◦g3

(c) Transitive bisimulation
based on semi-pullback

Fig. 5. Probabilistic bisimulation between S1 and S2 established by zigzag morphism. Transi-
tivity of probabilistic bisimulations S1 and S2 and S2 and S3 follows as a semi-pullback.

an LMP T (with universally measurable transition kernels) and zigzag morphisms f
and g from T to S1 and S2, respectively (see Figure 5(a)). In order to prove that this
notion of probabilistic bisimulation is transitive, [19] has shown that

• the category of Markov processes with universally measurable transition prob-
ability functions T on Polish spaces and with surjective and continuous tran-
sition probability preserving maps has semipullbacks [19, Corollary 5.3];

• the category of probability measures P on Polish spaces and measure-preserving
surjective maps has semipullbacks [19, Corollary 5.4].

By adding a labeling to the transition probability function T, one can trivially show
the existence of semipullbacks on an LMP. Moreover, the transitivity of probabilistic
bisimulations follows based on semipullbacks: if S1 is probabilistically bisimilar to S2,
which is also bisimilar to S3, then S1 and S3 are bisimilar, as in Figure 5(b).

Let us go back to Claim B.1. First, recall that, as depicted in Figure 4(a), an
equivalence relation Req over X1 � X2 induces a quotient space, denoted by Q :=
(X1 � X2)/Req , and partitions the unionized state space by disjoint sets, namely,⋃

q∈Q q = X1 � X2 and q1 ∩ q2 = ∅ for q1 �= q2, q1, q2 ∈ Q. Thus starting from the
Markov processes S1 = (X1,B(X1),T1) and S2 = (X2,B(X2),T2), we show that the
claim holds under either of the following two conditions.

Condition 1 (Polish quotient space). The equivalence relation of interest Req

induces a quotient space (Q,F) that is Polish and the maps from X1 and X2 to the
quotient space f1 : X1 → Q and f2 : X2 → Q are measurable and surjective.

Condition 2 (analytic Borel quotient space). The equivalence relation of inter-
est Req induces a quotient space that is analytical as in [14, 19] and the maps from
X1 and X2 to the quotient space f1 : X1 → Q and f2 : X2 → Q are measurable and
surjective.

Notice that Condition 1 implies Condition 2, and further note that f1 and f2
are constructed based on the injection ι1 and ι2, i.e., ιi : Xi → X1 � X2 for i = 1, 2,
composed with q : X1 � X2 → Q.

Then we can construct the quotient Markov process as the tuple S := (Q,F ,T)
such that (Q,F) is a Borel measurable space with Q = (S1 � S2)/Req, and F is
defined as F := {E ⊂ Q : q−1(E) ∈ B(S1 � S2)}. The stochastic transition kernel T

is constructed as in [14, Proof of Proposition 9.4]. For any B ∈ F it holds that

T(B|t) = T1(f−1
1 (B)|s) with s ∈ f−1

1 (t)(7)

and T(B|·) is Borel measurable.
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Then f1 and f2 are zigzag morphisms from, respectively, S1 and S2 to S, and
they form a cospan. Based on [19] we now know that there exists a Markov process
W := ((X1 × X2),B(X1 × X2),W), which is a semipullback, and where W lifts the
relation over X1 × X2 and defines a universally measurable stochastic kernel. If S1,
S2, and S have analytical Borel spaces (this includes Polish spaces) and universally
measurable transition kernels then W : R × B(×) is defined as

W (dx′
1 × dx′

2 | (x1, x2)) =
∫

q′∈Q

T1(dx′
1 | x1, q

′)T2(dx′
2 | x2, q

′)T(dq′ | f1(x1)),(8)

where Ti(dx′
i | xi, q

′) for i = 1, 2 are universally measurable regular conditional prob-
ability distributions, such that for measurable subsets Xi ⊂ Xi and Q ⊂ Q it holds
that

Ti(Xi ∩ f−1
1 (Q) | xi) =

∫
Q

Ti(dx′
i | xi, q

′)T(dq′ | f1(x1)).

The details of this reasoning follow from [19] together with the existence proof for the
regular conditional probability distributions.

Remark 10 (measurability assumptions). The measurability assumption above is
a nontrivial but natural assumption, since, as proven for LMPs, any equivalence
relation on X1 � X2 based on logics induces a quotient LMP that has an analytical
Borel space and measurable canonical maps [14, Proposition 9.4].

B.3. Approximate probabilistic bisimulation relations. A relaxation of
exact equivalence relations in a probabilistic context has been introduced first for
(finite-state) labeled Markov chains in [16], and later employed in [18].

Definition 13. A relation R ⊆ S×S is a (probabilistic) ε-simulation if whenever
sRt then for all labels l ∈ L, and sets in the event space X ∈ Σ, it holds that

Tl(R(X)|t) ≥ Tl(X |s) − ε.

Note that the relation is not required to be an equivalence relation, hence, it
does not induce a partitioning of the state space. For continuous-space systems,
[1] has discussed an approximate (bi)simulation notion derived from the finite-state
definition. This definition relates to an approximate equivalence of the probability
spaces (Xi,B(Xi),Pi), i = 1, 2, as follows. For an equivalence relation Req over X1�X2
the probability spaces are approximately equivalent if for every measurable Req-closed
set B it holds that

|P1(B ∩ X1) − P2(B ∩ X2)| ≤ δ,

which is denoted as P1 ≡δ
Req

P2.

Theorem 6. Consider two measure spaces (X1,B(X1)) and (X2,B(X2)) and an
equivalence relation Req satisfying Condition 1. Then for any two probability measures
Δ ∈ P(X1,B(X1)) and Θ ∈ P(X2,B(X2)) we have that

Δ ≡δ
Req

Θ if and only if ΔR̄δΘ

with, as standard, R := {(x1, x2) ∈ X1 × X2 : (x1, x2) ∈ Req}.
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Proof.
1. ΔR̄δΘ =⇒ Δ ≡δ

Req
Θ.

If ΔR̄δΘ then for each C ⊂ (X1 � X2)/Req with subsets S̃ = X1 ∩ C ∈ B(X1)
and T̃ = X2 ∩ C ∈ B(X2), |Δ(S̃) − Θ(T̃ )| ≤ δ because W(S̃ × (X2 \ T̃ )) ≤ δ and
W((X1 \ S̃) × T̃ ) ≤ δ. This can be shown as follows:

Δ(S̃) ≤ Δ(S̃) + W((X1 \ S̃) × T̃ ) = Θ(T̃ ) + W(S̃ × (X2 \ T̃ )) ≤ Θ(T̃ ) + δ

and, repeating the reasoning starting from Θ(T̃ ), we get Θ(T̃ ) ≤ Δ(S̃) + δ and
|Δ(S̃) − Θ(T̃ )| ≤ δ.

2. Δ ≡δ
Req

Θ =⇒ ΔR̄δΘ.
Under Condition 1 we have that the quotient space has the Borel measure space
(Q,F), where Q is Polish. Additionally we have measurable mappings fi : X1 → Q.
We denote the induced probability measures f1∗Δ ∈ P(Q,F) and f2∗Θ ∈ P(Q,F).
Denote a measure that lifts these over the diagonal relation as WQ ∈ P(Q2,F2). This
is equivalent to maximal coupling of f1∗Δ and f2∗Θ. Specifically for Polish spaces
we take the γ-coupling given as WQ := γ(f1∗Δ, f2∗Θ) ∈ P(Q2,F2) [4] based on [32,
section 1.5] and given as follows.

Definition B.2. Let Z be a Borel space and let ν, ν̃ ∈ (Z) be two probability
measures on it. The γ-coupling of (ν, ν̃) is a measure γ ∈ (Z2) given by

γ(ν, ν̃) := ΨZ(ν ∧ ν̃) + 1[0,1)(‖ν ∧ ν̃‖).
(ν − ν̃)+ ⊗ (ν − ν̃)−

1 − ‖ν − ν̃‖ ,

where ΨZ : Z → Z2 is the diagonal map on Z given by ΨZ : z �→ (z, z).

The lifted measure over W ∈ P(X1 × X2,B(X1 × X2)) is given as

W :=
∫

Q×Q

Δ(dx1 | q1)Θ(dx2 | q2)WQ(dq1 × dq2).

Appendix C. Proofs of theorems and corollaries.

C.1. Control refinement proofs, Theorems 1–4. Let us consider the con-
troller refinement for exact simulation relations first. The execution

{(x2(t), xC2 (t))|t ∈ [0, N ]}

is defined on the canonical space Ω = (X2 × XC2)N+1, and has a unique probability
measure PC2×M2 . Therefore in Algorithm 1, in order to write the execution of the
refined control C2 and of the gMDP M2, we have included the state of M2 for one
transition in the state of the refined control strategy. Therefore, while the execution
of Algorithm 1 ranges over XC1 × X1 × X2, the execution of the controlled system
with C2 ranges over XC2 × X2 = (XC1 × X1 × X2) × X2. The marginal of PC2×M2 on
XC1 × X1 × X2 defines the measure for the execution in Algorithm 1.

Since, by the above construction of C2, the output spaces of the closed loop
systems C1 × M1 and C2 × M2 have equal distributions, it follows that measurable
events have equal probability, as stated next.

Proof of Theorem 2. If {h1(x1(t))|t ∈ [0, N ]} ∈ A and (x1(t), x2(t)) ∈ R for all
t ∈ [0, N ] then {h2(x2(t))|t ∈ [0, N ]} ∈ A.
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Let us rewrite the stochastic kernel of the combined transition of C2 and M2 for
t = 0 as10

T
0
C2×M2

(dxC2 × dx2) = T
0
C1

(dxC1 |xC10, x1)Wπ(dx1|x2)δx2(0)(dx2)π(dx2(0)).

Marginalized on XC1 × X1 × X2, this becomes (by definition of Wπ)

T
0
C2×M2

(dxC1 × dx1 × dx2) = T
0
C1

(dxC1 |xC10, x1)Wπ(dx1|x2)π(dx2)

= T
0
C1

(dxC1 |xC10, x1)Wπ(dx2|x1)π(dx1).

Further marginalized on XC1 × X1, this becomes

T
0
C2×M2

(dxC1 × dx1) = T
0
C1

(dxC1 |xC10, x1)π(dx1) = T
0
C1×M1

(dxC1 × dx1).

For t ∈ [1, N ], the stochastic kernel marginalized on XC1 × X1 × X2 is

T
t
C2×M2

(dx′
C1

× dx′
1 × dx′

2)
= T

t
C2

(dx′
C1

|xC1 , x
′
1)WT(dx′

1|x′
2, h

t
C1

(xC1), x2, x1)T2(dx′
2|x2, h

t
C2

(xC2))
= T

t
C1

(dx′
C1

|xC1 , x
′
1)WT(dx′

1 × dx′
2|ht

C1
(xC1), x2, x1)

and can be further marginalized on XC1 × X1 to obtain T
t
C1×M1

. Note that since
WT(R|ht

C1
(xC1 ), x2, x1) = 1 for (x1, x2) ∈ R it holds with probability 1 that

(x1(t), x2(t)) ∈ R for t ∈ [0, N ]. Therefore we can deduce that

PC1×M1 ({y1(t)}0:N ∈ A) = PC2×M2 ({y2(t)}0:N ∈ A) .

To prove Theorems 4 and 3 we leverage their exact versions (Theorems 1 and 2).
We first show the existence of a refined control strategy in the case of an approximate
simulation relation; c.f. Theorem 4. Then we leverage these results to prove Theorem
3.

Theorem 4 states the following. Let gMDPs M1 and M2 with M1 �δ
ε M2 and con-

trol strategy C1 = (XC1 , xC10,X1,T
t
C1
, ht

C1
) for M1 be given. Then for every given re-

covery control strategy Crec, a refined control strategy C2 =(XC2 , xC20,X2,T
t
C2
, ht

C2
)

can be obtained as an inhomogenous Markov process with two discrete modes of op-
eration, {refinement} and {recovery}, based on Algorithm 2. More specifically, a
possible choice of a refined control strategy is built up as follows:

• state space XC2 := {XC1 × X1 × X2 × {refine}} ∪ XCrec × {recover} with
elements xC2 = (xC1 , x1, x2, refine) and xC2 = (xCrec , recover);

• initial state xC20 := (xC10, 0, 0, refinement);
• control inputs x2 ∈ X2 accepted;
• time dependent stochastic kernel Tt

C2
, defined for t = 0 as

T
0
C2

(dxrefine
C2

|xC20, x2(0)) :=T
0
C1

(dxC1 |xC10, x1)1R (x1, x2)
× Wπ(dx1|x2)δx2(0)(dx2),

T
0
C2

(dxrecover
C2

|xC20, x2(0)) :=T
0
init,rec(dxCrec |x2)1(X1×X2)\R (x1, x2)

× Wπ(dx1|x2)δx2(0)(dx2),

10For brevity, a part of the argument of the stochastic kernel has been omitted.
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and for t ∈ [1, N ] over the {refine} operating mode

T
t
C2

(dxrefine′
C2

|xrefine
C2

(t), x2(t)) := T
t
C1

(dx′
C1

|xC1 , x
′
1)1R(x′

1, x
′
2)

× WT(dx′
1|x′

2, h
t
C1

(xC1 ), x2, x1)δx2(t)(dx
′
2),

T
t
C2

(dxrecover′
C2

|xrefine
C2

(t), x2(t)) := T
t
init,rec(dx

′
Crec

|x′
2)1(X1×X2)\R(x′

1, x
′
2)

× WT(dx′
1|x′

2, h
t
C1

(xC1 ), x2, x1)δx2(t)(dx
′
2),

defined based on a stochastic kernel Tt
init,rec t ∈ [0, N ] initiates the recovery

strategy on the fly and is contained in the choice of recovery strategy; and
for t ∈ [1, N ] for the recover operating mode

T
t
C2

(dxrecover′
C2

|xrecover
C2

(t), x2(t)) := T
t
Crec

(dx′
Crec

|xCrec(t), x2(t));

• universally measurable output map

ht
C2

(xC2) :=
{ Uv(ht

C1
(xC1 ), x1, x2) for refine ,

ht
Crec

(xCrec) for recover .

The refined control strategy is composed of the control strategy C1, the recovery strat-
egy Crec, the stochastic kernel WT, and the interface Uv. Both the time-dependent
stochastic kernels Tt

C2
and the output maps ht

C2
for t ∈ [0, N ], can be shown to be

universally measurable, since Borel measurable maps (and kernels) are universally
measurable and the latter are closed under composition [7, Chap. 7].

Now we need to use this control strategy to prove Theorem 3.

Proof of Theorem 3. Given Crec consider an auxiliary recover strategy C∗
rec such

that it has stochastic kernels over XCrec × X1 × XC1 :

T
t
C∗

rec
(dx′

C∗
rec

|xC∗
rec

(t), x2(t))

= T
t
Crec

(dx′
Crec

|xCrec(t), x2(t))Tt
C1×M1

(dx′
C1×M1

|xC1×M1(t))

where Tt
C1×M1

(dx′
C1×M1

|xC1×M1(t)) is the stochastic kernel over XC1×M1 := X1 ×
XC1 . Due to the independence of this kernel the probability distribution PC∗

2×M2 of
M2 controlled by C∗

2 is, when marginalized on the canonical sample space
(XC2 × XM2)N+1, equal to PC2×M2 .

Now using the same arguments as in the proof of Theorem 2 we know that for all
measurable sets L ⊂ YN+1

PC1×M1({h1(x1(t))}0:N ∈ L) = PC∗
2×M2({h1(x1(t))}0:N ∈ L).

The probability

PC∗
2×M2 ((x1(t), x2(t)) ∈ R for t ∈ [0, N ]) ≥ (1 − δ)N+1.

This can be shown by induction starting from t = 0, and by showing that at every
time step and for every pair of states the probability of staying in R is at least
1 − δ. Now note that if {h1(x1(t))} ∈ A−ε and (x1(t), x2(t)) ∈ R for t ∈ [0, N ] then
{y(t)}0:N ∈ A. As a consequence

PC∗
2×M2({h1(x1(t))}0:N ∈ A−ε ∧ (x1(t), x(t)) ∈ R for t ∈ [0, N ])

≤ PC∗
2×M2({h2(x2(t))}0:N ∈ A) = PC2×M2({h2(x2(t))}0:N ∈ A).
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Now using the union bounding argument we also have that

PC∗
2×M2({h1(x1(t))}0:N ∈ A−ε) − (1 − δ)N+1

≤ PC∗
2×M2({h1(x1(t))}0:N ∈ A−ε ∧ (x1(t), x(t)) ∈ R for t ∈ [0, N ]),

1 − PC∗
2×M2({h1(x1(t))}0:N ∈ A−ε ∧ (x1(t), x(t)) ∈ R for t ∈ [0, N ])

≤ (1 − PC∗
2×M2({h1(x1(t))}0:N ∈ A−ε))

+ (1 − PC∗
2×M2 (((x1(t), x(t)) ∈ R for t ∈ [0, N ]))

≤ (1 − PC∗
2×M2({h1(x1(t))}0:N ∈ A−ε)) + (1 − (1 − δ)N+1).

We have deduced that

PC1×M1({h1(x1(t))}0:N ∈ A−ε) − (1 − (1 − δ)N+1) ≤ PC2×M2({h2(x2(t))}0:N ∈ A).

If {h2(x2(t))}0:N ∈ A and (x̃(t), x(t)) ∈ R then {h1(x1(t))}0:N ∈ Aε. Thus via similar
arguments it can be deduced that

PC2×M2({h2(x2(t))}0:N ∈ A) ≤ PC1×M1({h1(x1(t))}0:N ∈ Aε) + (1 − (1 − δ)N+1).

C.2. Proof of transitivity statements.

Proof of Theorem 5 and Corollary 1. Since M1 �δa
εa

M2 and M2 �δb
εb

M3 there
exist

• relations R12 ⊂ X1 × X2 and R23 ⊂ X2 × X3 that satisfy the required condi-
tions in Definition 9;

• interface Uv12 : U1 × X1 × X2 → P(U2,B(U2)) and Uv23 : U2 × X2 × X3 →
P(U3,B(U3));

• corresponding stochastic kernels WT12 and WT23.
Define the relation R13 ⊂ X1 × X3 as

R13 := {(x1, x3) ∈ X1 × X3 | ∃x2 ∈ X2 : (x1, x2) ∈ R12, (x2, x3) ∈ R23}.

Then for all (x1, x3) ∈ R13 there exists an x2 ∈ X2 : (x1, x2) ∈ R12, (x2, x3) ∈
R23. More specifically, define a Borel-measurable function F : X1 × X3 → X2 such
that for all(x1, x3) ∈ R13 for the mapping x2 = F (x1, x3) it holds that (x1, x2) ∈
R12, (x2, x3) ∈ R23.

We have for all (x1, x3) ∈ R13 and x2 = F (x1, x3)
1. d (h1(x1(t)), h3(x3)) ≤ d (h1(x1(t)), h2(x2(t))) + d (h2(x2(t)), h3(x3)) ≤εa+εb;
2. for all u1 ∈ U1 : T1(·|x1, u1) R̄12,δa T2(·|x2,Uv12(u1, x1, x2)) and for all u2 ∈

U2 : T2(·|x2, u2) R̄23,δb
T3(·|x3,Uv23(u2, x2, x3)) and WT23 ∈ P(X2×X3,B(X2×

X3)) lifted with WT12(·|u1, x1, x2) and WT23(·|u2, x2, x3).
Let us derive the stochastic kernel WT13 by combining WT12 and WT23 and

marginalizing over X2,

WT13(dx
′
1 × dx′

3|u1, x1, x2, x3) =
∫

X2

WT23(dx
′
3 | x′

2,Uv(u1, x1, x2), x2, x3)

× WT12(dx
′
1 × dx′

2|u1, x1, x2).

Composed with the mapping F we get a Borel-measurable stochastic kernel
WT13(dx′

1 × dx′
3|u1, x1, x3) := WT13(dx′

1 × dx′
3|x1, F (x1, x3), x3). In the following, we
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drop the argument of the stochastic kernel. Note that T2(dx2|x2, μu,2) = WT12(X1 ×
dx2) = WT23(dx2 × X3). For lifting we have to proof that WT13(R13) ≥ 1 − δa − δb
or, equivalently, that WT13(X1 × X3 \ R13) ≤ δa + δb, namely,

WT13(X1 × X3 \ R13) =
∫

X1

∫
X2

∫
X3\R13(x1)

WT23(dx3 | x2)WT12(dx1 × dx2)

=
∫

R12

∫
X3\R13(x1)

WT23(dx3 | x2)WT12(dx1 × dx2)

+
∫

X1

∫
X2\R12(x1)

∫
X3\R13(x1)

WT23(dx3 | x2)WT12(dx1 × dx2)

for all (x1, x2) ∈ R12 : R23(x2) ⊆ R13(x1)

≤
∫

X2

∫
X3\R23(x2)

∫
R−1

12 (x2)
WT12(dx1 | x2)WT23(dx2 × dx3)

+
∫

X1

∫
X2\R12(x1)

∫
X3\R13(x1)

WT23(dx3 | x2)WT12(dx1 × dx2)

≤
∫

X2

∫
X3\R23(x2)

∫
X1

WT12(dx1 | x2)WT23(dx2 × dx3)

+
∫

X1

∫
X2\R12(x1)

∫
X3

WT23(dx3 | x2)WT12(dx1 × dx2)

=
∫

X2

∫
X3\R23(x2)

WT23(dx2 × dx3) +
∫

X1

∫
X2\R12(x1)

WT12(dx1 × dx2)

≤ δa + δb.

In addition it has to hold that WT13(X1 × X3) = T1(·|x1, μu,1), namely,

WT13(X1 × X3) =
∫

X1

∫
X3

∫
X2

WT23(dx3 | x2)WT12(dx1 × dx2)

=
∫

X1

∫
X2

∫
X3

WT23(dx3 | x2)WT12(dx1 × dx2)

= WT12(X1 × X2) = T1(·|x1, μu,1).

The condition WT13(X1 ×X3) = T3(·|x3, μu,3) can be proven via similar arguments.
In conclusion T1(·|x1, μu,1)R̄13,δa+δb

T3(·|x3, μu,3). To complete the proof we can
show, using the same arguments as before, that if π1R̄12,δaπ2 and if π2R̄23,δb

π3 then
π1R̄13,δa+δb

π3.
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