
1

Multi-Objective Optimal Control
with Safety as a Priority

Kendra Lesser, Member, IEEE, and Alessandro Abate, Member, IEEE

Abstract—This work develops a lexicographic approach to
multi-objective optimal control on models for cyber-physical
systems, encompassing in particular stochasticity, limited access
to model variables (partial observations), and possibly hybrid
(continuous and discrete) dynamics (with the finite state POMDP
framework as a known special instance). The technique is show-
cased in two new case studies in the area of smart buildings. Tech-
nically, the main achievements of this work are: The application
of the lexicographic framework to multi-objective optimization
including quantitative probabilistic safety requirements, thus
leading to a principled and scalable integration of correct-by-
design synthesis for safety and optimal synthesis for performance;
the novel extension of the lexicographic framework to partially-
observed stochastic models with continuous (possibly hybrid)
dynamics; the emphasis on computational aspects, including
the use of compact and approximate representations of value
functions combined with the quantification of error bounds on
model abstractions.

I. INTRODUCTION

Safety-critical systems require stringent guarantees that the
control processes governing their operation do not lead to
unsafe configurations. Smart-energy buildings, infrastructure
networks, and electricity grids are all examples of systems that
integrate control signals with underlying continuous physical
processes, and for which failure to operate safely would be
prohibitively costly. Rather than checking if safety specifi-
cations are met after a controller is designed (known as
validation), one way to achieve safety guarantees is to enforce
safety requirements during the control design process (called
“correct-by-design” control), either by treating safety as a
constraint that must be satisfied or by treating it as the
objective of an optimal control problem.

Often such complex models of physical processes are sub-
ject to uncertainties, either due to inaccuracies in the model
or to environmental influences (weather-related, delays, or
presence of humans in the loop) that cannot be predicted
exactly. Controllers further require information about the sys-
tem, often exchanged through sensors that a) may not be
ubiquitous, and cannot measure all necessary information, and
b) may introduce noise, and hence inaccuracies, into their
measurements. Partially observable stochastic models, such
as finite state partially observable Markov decision processes
(POMDPs) or partially observable stochastic hybrid systems
(POSHS), with both discretely and continuously evolving
states, provide a fitting and realistic modelling framework.

Kendra Lesser is with Verus Research, 6100 Uptown
Blvd NE, Suite 260, Albuquerque, NM 87110 (e-mail
kendra.lesser@verusresearch.net).

Alessandro Abate is with the Department of Computer Science,
University of Oxford, Parks Road, OX1 3QD, Oxford, UK (e-mail
Alessandro.Abate@cs.ox.ac.uk).

The inclusion of stochasticity leads to regarding safety
probabilistically - it is difficult, when not overtly conservative,
to guarantee it with certainty, that is with probability equal to
one. If we want to design a safe controller, we could synthesise
a controller that maximises the probability of safety, as done
in [1] for fully observable stochastic hybrid systems, and in
[2]–[4] for POSHS. The major drawback to this approach
is that safety is rarely the only concern when designing
controllers: stabilisation, tracking, or cost minimisation are
just some other possible objectives of interest. We are thus
led to a heterogeneous multi-objective optimisation setup,
where we not only want to design a controller that maximises
the safety of the system, but also takes into account these
additional performance-related objectives. In order to tackle
this synthesis goal, one option is to synthesise a permissive
controller, which provides a set of control inputs that satisfy
a given requirement (i.e. safety), so that some other objective
can be optimised over the set of available inputs. This is done
for finite state Markov decision processes (MDPs) in [5], and
for partially observable (but otherwise deterministic) discrete
event systems, in [6], [7], although none actually consider a
second control objective. Another possibility is to treat safety
as a constraint to be enforced in the optimisation of a different
objective, as in [8], which specifically considers enforcement
with probability one, and only for finite state MDPs. Multi-
objective optimisation of stochastic games is considered in
[9] for complex objectives, such as safety, although partial
observability is not considered.

None of the above multi-objective approaches are easily
extended to general partially-observable stochastic systems,
which are more generally rarely considered in the context
of verification and formal synthesis (notable exceptions are:
[10] introducing verification of hidden Markov models, [11]
considering synthesis over POMDPs for qualitative (yes/no)
specifications, and [12] discussing decidability results for
POMDPs).

Over partially observable models, we would further like the
possibility to explore the trade-off between safety and other
objectives, which is not possible when we require safety to
be enforced with probability one. We therefore take a lexico-
graphic optimisation approach, and apply it to the formulation
of safety as a unique specification presented for POSHS in
[2], [3]. Lexicographic optimisation utilises multiple objective
functions and assigns a preference (or priority) to each. A set
of control inputs is generated that produces outcomes within
a tolerance from the optimal solution, and that subset is then
used as the set of possible inputs over which the next objective
is optimised, thus taking a hierarchical approach to controller
synthesis. This technique was first introduced in [13], and

2

more recently elaborated upon for MDPs in [14] and for
POMDPs in [15]. In [15], however, results are only presented
for finite state models, and some details are overlooked, so
that the results are not applicable to complex objectives such
as safety.

Our contributions are several. First, we extend the lex-
icographic optimisation framework to multi-objective opti-
misation with safety requirements (i.e. with dissimilar cost
objectives), thus integrating correct-by-design synthesis and
synthesis for optimal performance. Second, we apply the
lexicographic framework to partially observable stochastic
systems with an extension to models with continuous or hybrid
dynamics. Third, we provide an approximate computational
technique to solve the lexicographic optimisation problem
based on point-based value iteration (PBVI) [16], and quantify
error bounds for this approximation, as well as error bounds
on the abstraction necessary to reduce stochastic continuous
or hybrid systems to finite state POMDPs. Finally, throughout
the article we apply our theoretical work on two case studies
in the area of building automation systems.

II. BACKGROUND

A. Notation

First, we provide a brief overview of the notation we
shall use. We denote expected value by E, and a generic
probability measure by P. A probability measure or expected
value induced by a control policy π (to be defined later), is
Pπ or Eπ , respectively. For a space S, sn is an element of
S and typically represents the state of a system at time n.
We use | · | to denote either absolute value for s ∈ R, or
cardinality for a finite set Ω. The vector 1-norm is denoted
‖ · ‖1. The complement of a set K is given by Kc, and the
indicator function over K, 1K(s), evaluates to 1 if s ∈ K,
and 0 otherwise.

B. POMDP Model

We consider systems that can be modelled as partially
observable Markov decision processes (POMDPs). A standard
POMDP has discrete states, actions, and observations, and is
studied over an additive cost function.

Definition 1: A POMDP is a tuple J = (S,U ,Y, T, Y,R),
where

1) S is a finite set of states
2) U is a finite set of possible control inputs
3) Y is a finite set of observations
4) T : S ×S ×U → [0, 1] is a state transition function that

assigns a probability measure to state sn+1 given state
sn and control un for all n: T (sn+1|sn, un)

5) Y : Y × S × U → [0, 1] is an observation function that
assigns a probability measure to observation yn given
state sn and control un−1 for all n: Y (yn|sn, un−1)

6) R : S → [0, 1] is an initial probability measure over the
state space S: R(s)

In this model the state is in general not accessed,
and is therefore not available for control. Instead, a con-
troller has access to all past observations and control in-
puts, which are stored in an information vector in =

(u0, . . . , un−1, y1, . . . , yn) ∈ In = Un × Yn. A control input
is thus selected via a policy π, which maps the available
information to the set of possible controls. More precisely:

Definition 2: A policy π for a POMDP J over a time
horizon N is a sequence of functions, π = (π0, . . . , πN−1),
such that πn : In → U .

We consider only non-randomised policies (each input in
produces a single output un) and the set of all possible non-
randomised policies is denoted by Π. Typically, a control
policy is obtained as the argument that minimises an expected
sum of costs associated with the state and control input:

π∗ = arg min
π∈Π

Eπ
[

N∑
n=0

C(sn, un)

∣∣∣∣∣R
]
. (1)

The execution of a POMDP proceeds as follows. At time
n = 0, state s0 is produced from the initial distribution
R : s0 ∼ R(·). At each subsequent time step n > 0,
the state is sn. An observation yn is produced according to
yn ∼ Y (·|sn, un−1). This observation is added to the list of
past observations and control inputs to produce in = (u0, . . . ,
un−1, y1, . . . , yn). A new control input is chosen according to
un = πn(in) (obtained solving (1)), and cost C(sn, un) is ac-
crued. Then the state evolves according to sn+1 ∼ T (·|sn, un).
At the final time step, when no control input is needed, the
cost function C(sN , uN) is modified to C(sN , 0).

1) Case Study: Optimised Boiler Maintenance: To illustrate
how a POMDP can model a physical system, consider a
simplified maintenance problem for a single boiler that heats a
building1. The boiler operates with a certain level of efficiency
that is captured through a degradation model. The degradation
level slowly increases in time as a result of normal use, which
we model using a stochastic difference equation as

sn+1 = sn + vn, (2)

with sn denoting the degradation level at discrete time step
n, and vn a random variable taking only non-negative values
from the set V(sn), i.e. vn ∈ V(sn) for all n, where the set is
a function of the current state sn. The probability that vn =
v̄ ∈ V(s̄) is defined through the probability mass function Pv ,
so that P(vn = v̄|sn = s̄) = Pv(v̄, s̄). The degradation level
is restricted to the finite set sn ∈ {0, . . . , 100} = S: at sn = 0
the boiler is perfectly clean and operates efficiently, whereas at
sn = 100 the boiler cannot operate (e.g., it is fully clogged).
The dependence of the domain of V on sn ensures that sn+1

does not leave S, e.g. if sn = 99, V(99) = {0, 1}.
The degradation level is determined by a number of factors,

and can be estimated as the ratio of power demanded (as a
function of the desired temperature) to the power output of
the boiler. These quantities are not known exactly, but rather
may be measured by possibly noisy sensors. We model this
uncertainty through an observed degradation level,

yn = sn + wn, (3)

1Optimal predictive maintenance is well motivated. Maintenance costs
contribute between 15 and 60 percent of the cost of goods produced [17],
and an efficient maintenance policy can reduce operational costs by 5 to 40
percent [18]. Although optimal maintenance is often treated as a simple case
study in dynamic control texts [19], [20], there are few publications [21].

3

where the true degradation level sn is corrupted by a noise
term wn ∈ W(sn), where the noise is stochastic and takes
values within the set W(sn), again dependent on the actual
degradation level. The probability that wn = w̄ given sn = s̄
is defined by the probability mass function Pw, namely
P(wn = w̄|sn = s̄) = Pw(w̄, s̄). Because we know that
sn ∈ {0, 100}, the observations are also restricted to the set
Y = {0, . . . , 100}.

The control actions available at each time step are twofold:
either to clean the boiler, which resets its degradation level,
or to do nothing. In the first instance, the difference equation
(2) for a single time step changes to

sn+1 = zn, (4)

with zn a random variable taking values in Z = {0, . . . , 5}
with probabilities given by a distribution Pz .

We can therefore model the dynamical system (2), (3), and
(4) as a POMDP with state space S , observation space Y , and
control space U = {Clean,NoClean}. The transition function
T is derived from (2), (4), Pv , and Pz , so that

T (s′|s, u) =

Pv(s

′ − s, s), if s′ − s ∈ V(s), u = NoClean
Pz(s

′), if s′ ∈ Z , u = Clean
0, otherwise.

(5)
The observation function is derived from (3) and Pw as

Y (y|s) =

{
Pw(y − s, s), if y − s ∈ W(s)

0, otherwise.
(6)

We will assume that the initial distribution R is concentrated at
a single point s0, i.e. R(s0) = P(s0 = s0) = 1, although any
well-defined probability mass function over S is acceptable.

C. Optimal Control of POMDPs

The optimal policy that minimises an expected sum of costs,
as in (1), can be synthesised via dynamic programming, much
like for an MDP, in which the state sn is known completely
[19]. A value function over the fully observed state, which
represents the expected sum of costs accrued from time n
to time N given the state at time n, is set and optimised
backward-recursively for each time step n. The optimal policy
for a POMDP is found by redefining the state space as
something that is fully observable, and thus reformulating the
POMDP as an MDP [19].

One way to redefine the POMDP as an MDP is to treat the
information vector in as the fully observed state of the system.
The information vector, however, increases in size with n,
and can thus be difficult to store. A common alternative is to
instead use a belief state, which is a sufficient statistic for the
information vector, and therefore condenses the information
stored in in without sacrificing the ability to construct optimal
policies. For an additive objective function like (1), the belief
state is a distribution that describes the probability of being in
state s, given all past observations and actions [19], namely
b(sn) = P[sn|u0, . . . , un−1, y1, . . . , yn]. By treating the belief
state as the true state of the system, (1) can be equivalently

solved by generating and recursively solving a value function
over the belief state, namely

V un (b) =
∑
s

C(s, u)b(s) +
∑
y

V ∗n+1 (My,ub)P(y|b, u), (7)

initialised at N as V ∗N (b) =
∑
s C(s, 0)b(s), and taking

V ∗n (b) = minu∈U V
u
n (b). The transition operator My,ub pro-

vides the next belief state bn+1 given the current observation,
action, and belief state according to a Bayesian update

(My,ub) (s′) =
Y (y|s′, u)

∑
s∈S T (s′|s, u)b(s)

P(y|b, u)
, (8)

with the likelihood of the observation given by

P(y|b, u) =
∑
s∈S

b(s)
∑
s′∈S

T (s′|s, u)Y (y|s′, u). (9)

An optimal policy π∗ for the POMDP is then defined in terms
of the belief state, and maps beliefs to actions: π∗ : B →
U (B denotes the space of all beliefs). The optimal policy
π∗ is obtained directly from the value function as π∗n(b) =
arg minu∈U V

u
n (b).

The value function in (7) for a POMDP is often represented
in an alternate form that makes it conceptually easier to solve.
If we pose the problem as a maximization (i.e. maximize the
sum of costs multiplied by −1), then for a finite horizon N <
∞, the value function at each time n is piecewise-linear and
convex in the belief state [22], and thus can be expressed as

V ∗n (b) = max
αn∈Γn

∑
s

αn(s)b(s). (10)

The functions αn ∈ R|S|, or “α-vectors”, represent a bounded
portion of the value function, and characterise the current value
of being in each state s ∈ S, given a specific action u is
taken, plus the expected sum of future rewards assuming that
all subsequent actions are chosen optimally. Because each α-
vector is associated with a specific action, by picking the α-
vector maximising

∑
s αn(s)b(s) we also define the optimal

policy for belief b at time n. The collection of α-vectors
needed to exactly represent the value function Vn at time n is
finite and represented by a set denoted as Γn.

The α-vectors at time n are computed recursively from the
α-vectors known at time n + 1. For each action, we access
one of |Y| observations, and for each observation there is
a subsequent α-vector defined at time n + 1, resulting in
|U||Γn+1||Y| α-vectors at time n. Rather than computing and
storing an exponentially growing set of α-vectors, one option
is to use point-based value iteration (PBVI), a sampling-based
method used to approximate value functions [23].

There are many variants of PBVI around a basic algorithm.
A finite subset B ⊂ B is generated through some form of
sampling, and for each b ∈ B, the value function is estimated
by producing a single α-vector for each sampled belief state
at each iteration. Therefore, if B = {b0, b1, . . . , bm}, then
Γ̃n = {α0

n, α
1
n, . . . , α

m
n } for all n, and the collection of α-

vectors does not increase in size at each iteration. For a finite
horizon problem, we distinguish the belief state at different
times, so that B =

⋃N
n=0Bn, with Bn = {b1n, . . . , bmn

n } and
B0 = {R}, the initial distribution of the POMDP of interest.

4

For an additive objective function, the α-vectors are com-
puted as in [16]. First, for each belief state bk and at each time
step n, a set of intermediate α-vectors αjn,y,u are computed
recursively from Γ̃n+1

αjn,y,u(s) = C(s, u) +
∑
s′

αjn+1(s′)Y (y|s′)T (s′|s, u) (11)

for αjn+1 ∈ Γ̃n+1. Then, for each bk we define j∗(k) =
arg maxj

∑
s α

j
n,y,u(s)bk(s). The final α-vectors associated

with a single control input and belief state are given as

αkn,u(s) =
∑
y

αj
∗(k)
n,y,u(s) (12)

and αkn = αkn,u∗(s), with u∗ = arg maxu∈U
∑
s α

k
n,u(s)bk(s),

is added to Γ̃n.
An α-vector αjn corresponding to bj will likely apply to

all belief points in a region around bj (i.e. for any b in a
neighborhood of bj the same action will likely be optimal).
Hence the value at some b not necessarily in B can be
approximated by V ∗n (b) ≈ maxαi

n∈Γ̃n

∑
s α

i
n(s)b(s) as in

(10) but with the restricted set Γ̃n ⊂ Γn. The PBVI algorithm
then consists of selecting a set of belief points Bn, and
computing αkn for each bkn ∈ Bn.

The convexity of the value function guarantees that by
storing only a subset Γ̃n of α-vectors, the approximation
provides a lower bound to the maximum expected cost at
any belief state (or an upper bound to the minimum), i.e.
maxαi

n∈Γ̃n

∑
s α

i
n(s)b(s) ≤ maxαi

n∈Γn

∑
s α

i
n(s)b(s) for

any b ∈ B.

D. Safety Objectives for POMDPs

Rather than only minimising an expected sum of costs as
in (1), we consider the specific task of generating safety-
preserving controllers (where safety is preserved with maximal
probability), with the additional objective of minimising the
associated costs. This is a multi-objective goal with heteroge-
neous components (safety and performance). The techniques
presented can, however, be extended to more than two separate
objectives, and also to other complex specifications beyond
safety (reach-avoid, reachability, etc.).

Specifically, consider a safe or desired subset of the state
space, denoted K ⊂ S , in which we would like the state sn
to remain over a finite time horizon n = 0, . . . , N . We would
like to design a control policy that maximises the probability
that sn ∈ K for n = 0, . . . , N and to determine the value of
that maximal probability – this task is known as “quantitative
verification.” In other words, we would like to find

pNsafe(π,R;K) = Pπ [s0 ∈ K, . . . , sN ∈ K|R] , (13)

π∗safe = arg max
π∈Π

pNsafe(π,R;K). (14)

We can express (13) using standard stochastic optimal control
notation (i.e. the cost objective is an expected value of a
function of one-step costs) by recalling that for a random
variable s and set K, the probability that s ∈ K is equal

to the expected value of the indicator function over that event,
E[1K(s)] [1]. Hence, (13) is equal to

pNsafe(π,R;K) = Eπ
[

N∏
n=0

1K(sn)

∣∣∣∣∣R
]
.

Maximizing the probability of safety is therefore equiva-
lent to maximizing a multiplicative objective function (rather
than additive, as discussed in Section II-C). The belief state
b(sn) = P[sn | in] is no longer sufficient when the objective is
multiplicative, because the costs accrued at previous time steps
must also be considered, as they affect the current possible
cost (i.e. if any previous state left the safe set, the system
can not in subsequent time steps be considered safe). Two
options to construct an equivalent MDP and value function
over a fully observable state to compute (14) are 1) To derive
a sufficient statistic and to redefine the belief state directly
over the multiplicative objective function, as in [3], or 2) To
reformulate the POMDP so that (13) can be framed as an
additive objective function, as in [24]. While both approaches
are equivalent, we will present the second option, because to
apply the lexicographic approach for multiple objectives, we
need each cost function to have the same format. Since all
other cost objectives we consider in this work are additive
(like minimizing the sum of costs accrued at each times step),
we will pose safety as an additive cost objective.

To express (13) as an expected value over a sum of costs,
an additional binary state variable qn is introduced (which is
not observed),

qn =

n−1∏
i=0

1K(si). (15)

The variable qn keeps track of whether the state of the system
has remained within K up to the previous time step, thus
keeping track of the previous “costs” incurred (where the cost
is simply equal to one or zero, depending on whether the
system has remained safe or not).

The new state of the system is s̄ = (s, q) ∈ S×{0, 1} = S̄,
and the safety objective can be rewritten as

max
π∈Π

Eπ
[

N∏
n=0

1K(sn)

∣∣∣∣∣R
]

= max
π∈Π

Eπ
[
1K×{1}(sN , qN)

∣∣R] .
(16)

The cost function from n = 0, . . . , N − 1 is C(s̄n, un) = 0,
and at time N , C(s̄N , uN) = 1K×{1}(sN , qN), and so (16)
is an additive objective function with zero costs accrued until
the final time step.

The transition probability function T is replaced by T̄ :
S̄ × S̄ × U → [0, 1], with

T̄ (s′, q′|s, q, u) =

T (s′|s, u), if q = q′ = 0

0, if q = 0, q′ = 1

1S\K(s)T (s′|s, u), if q = 1, q′ = 0

1K(s)T (s′|s, u), if q = q′ = 1

.

(17)
We also transform Y (y|s) to Ȳ (y|s̄), such that Ȳ (y|s, q) =
Y (y|s), which is independent of q, and similarly transform
R(s) to R̄(s, q) = R(s).

5

Therefore, the problem of maximizing the probability of
safety for a POMDP J can be posed equivalently as an
additive cost problem over a different POMDP J̄ = (S̄,Y,U ,
T̄ , Ȳ , R̄). The belief state is now the conditional probability
distribution of the current state of the system conditioned on
all past observations and control inputs, only now the current
state is s̄ rather than just s: b̄(s̄n) = P[sn, qn|in].

III. PROBLEM FORMULATION

We would like to consider the problem of maximising the
probability that the state of a POMDP remains safe over
a finite time horizon, while simultaneously minimising an
expected sum of costs. It may be the case that the control
policy π∗ from (14) that produces the highest probability that
the system remains safe is simply not feasible to implement
from a cost perspective. It may also be the case that a small
sacrifice in the optimal safety level (or probability) of the
system leads to a significant reduction in costs. Depending
on the requirements on safety-criticality of the system at
hand, we can define a tolerance η, which indicates how much
we are willing to lower the probability of safety from the
optimal one, in order to attempt to reduce the expected cost
by implementing a (sub-)optimal policy.

We will denote by Π̃ the set of control policies that produce
a probability of safety within the desired tolerance (no more
than η below the maximum), namely

Π̃ = {π : pNsafe(π∗safe, R;K)− pNsafe(π,R;K) ≤ η}. (18)

We would then like to find the policy π̃∗ ∈ Π̃ that minimises
the expected sum of costs:

π̃∗ = arg min
π∈Π̃

Eπ
[

N∑
n=0

C(sn, un)

∣∣∣∣∣R
]
. (19)

We therefore have a multi-objective optimisation problem of
a hierarchical nature, where one objective takes priority over
the other, and whose cost functions are inherently different.

Problem 1: Given a POMDP J , a safe set K ⊂ S, a cost
function C(s, u), a time horizon N < ∞, and a tolerance η,
we would like to synthesize a control policy π̃∗ that

1) Guarantees that the probability that the system state sn
remains in K for all n = 0, . . . , N (13) is no less than
η below the maximum possible safety probability, i.e.

pNsafe(π∗safe, R;K)− pNsafe(π̃∗, R;K) ≤ η, (20)

2) Guarantees that the expected cost using policy π̃∗ is min-
imal over all policies that produce a safety probability
within η of the optimal, i.e. π̃∗ is the solution to (19).

1) Case Study Continued: Returning to the boiler mainte-
nance problem, we have two main objectives. The first is to
ensure that the boiler degradation level does not reach 80, at
which point the boiler is essentially broken and would result
in excessive maintenance costs and possible loss of heat over
an extended period of time. To avoid this unsafe outcome, the
preventive maintenance action “Clean” may be taken, which
incurs a cost but is less costly than if the boiler were to break.

In addition, the higher the degradation level, the less ef-
ficient the boiler is, and the more expensive it is (the more

fuel required) for the boiler to maintain a set temperature. It
is therefore preferable to do preventive maintenance, and to
clean the boiler before the degradation level grows too high
both to avoid a breakdown, and also to reduce fuel costs.

The total cost at each time step, assuming the degradation
level has not reached 80, is given by the function

C(s, u) = 0.05 s+ 1001Clean(u). (21)

The first term captures efficiency costs associated with the
degradation level, and the second gives the cost of cleaning
the boiler (100 Euros) if u = Clean is selected.

Rather than assign a cost to the event that the degradation
level reaches 80, we treat the set Kc = {80, . . . , 100} as
an unsafe set that we would like to avoid, and we wish to
find a cleaning policy (at what point the boiler should be
cleaned) that maximises the probability that the unsafe set is
not reached. We would further like to know this probability,
so that we can provide guarantees on the safety of the boiler
under the policy we propose.

If we were to only consider safety, an intuitive optimally
safe policy would be to clean the boiler all the time, regardless
of the degradation level. From a cost standpoint, however, this
is not practical, and we should also factor in the fuel costs, and
costs associated with cleaning, when designing a safe policy.

IV. LEXICOGRAPHIC OPTIMAL CONTROL

We consider now multiple objective functions to be max-
imised concurrently: we shall employ the same belief state,
which by definition does not depend on the cost function so
long as the costs incurred are additive at each time step, as the
input to multiple value functions, one for each cost objective.
We can then set up a POMDP with lexicographic optimization
criteria, introduced in [15], with k cost functions {C1, . . . , Ck}
and with tolerance parameters {η1, . . . , ηk−1} associated with
the first k − 1 cost functions. The cost functions are ordered
so that C1 is the most important to optimise, and Ck the least
important. Each cost function Ci is optimised using the value
function Vn,i, defined as in (7) with C replaced by Ci.

The idea behind the lexicographic approach is to progres-
sively limit the set of control inputs available to optimise the
value functions Vn,i(b) at each time step n, and for each belief
state, according to the preference ordering. The restricted set
of control inputs available to value function Vn,i+1(b) for a
specific belief state b, denoted Un,i(b), is chosen such that the
value function V un,i(b) (evaluated at a specific u ∈ Un,i−1)
is within η̄i, the one step slack allowance (as opposed to
ηi, which is the total slack allowance over the entire time
horizon), of V ∗n,i(b), and thus ultimately ensures that the
policy π̃∗ generated by selecting the optimal control input
u∗n ∈ Un,k−1(b) for any belief b at any time n, is within
Π̃.

The actual procedure is as follows. Starting at the final
time step N , we construct V uN,i(b) =

∑
s Ci(s, u)b(s) for all

i = 1, . . . , k. For each b ∈ B, we then construct the set of

6

permissible control inputs UN,i(b) for all i = 1, . . . , k − 1,
defined as follows:

UN,i(b) =

{
u ∈ UN,i−1 : max

ū∈UN,i−1

V ūN,i(b)− V uN,i(b) ≤ η̄i
}
.

(22)
How to choose η̄i under various conditions will be described
subsequently. The set UN,0 is simply U .

Once UN,k−1(b) is computed, we find u∗ =
arg maxu∈UN,k−1

V uN,k(b). We then set V ∗N,i(b) =∑
s Ci(s, u

∗)b(s). The process is repeated for all b ∈ B, and
for all time steps n = N − 1, . . . , 0, using the value function
in (7) with each cost function Ci, and with the restricted
control inputs Un,i(b).

The α-vector representation of the value function associated
with a POMDP allows us to alternatively characterise the
lexicographic preferences through sets of α-vectors, rather
than the sets of control inputs Un,i(b). Similar to the sets
Un,i(b), we generate sequential sets Γ̄n,i ⊂ Γn,i, with the
difference being that the sets Γ̄n,i are not generated separately
for each belief state. For time N , we set Γ̄N,1 = ΓN,1, and
for n < N , Γ̄n,1 = Γ̂n,1, where Γ̂n,1 is the full set of α-
vectors (for all possible control inputs) computed recursively
from Γ̄n+1,1. For i = 2, . . . , k,

Γ̄n,i =

{
α ∈ Γ̂n,i : ∃ b ∈ B s.t. max

α′∈Γ̄n,i−1

α′ · b− α′′ · b ≤ η̄i

with α′′ ∈ Γ̄n,i−1, and uα = uα′′

}
. (23)

The notation uα refers to the control input associated with
vector α. In other words, the control inputs allowed when
generating the α-vectors for Γ̄n,i are restricted to those asso-
ciated with α-vectors in Γ̄n,i−1 such that there exists some
b ∈ B for which the inner product between the α-vector and
b is within η̄i of the optimal. We no longer compute and store
all α-vectors for each value function Vn,i, but rather prune
according to whether they meet the tolerance specification for
the previous cost function.
The notation can be quite cumbersome: we have included a
summary of the relevant notation and its meaning in Table I.

Notation Meaning

Ci Cost function i
Vn,i Value function at time n for Ci

V u
n,i Vn,i evaluated at input u
V ∗n,i maxu∈U V

u
n,i

ηi Total slack tolerance
η̄i One step slack tolerance

Un,i(b) Restricted set of control inputs available to Vn,i+1(b)

Γ̂n,i ⊆ Γn,i, subset of all α-vectors that approximate Vn,i

Γ̄n,i ⊆ Γ̂n,i set that satisfy tolerance specification for Vn,i−1

˜̄Γn,i ⊆ Γ̄n,i to approximate Vn,i using PBVI

TABLE I: List of notation used for the lexicographic optimiza-
tion procedure.

A. Application to a Prioritised Safety Objective

The lexicographic optimal control approach can be used
when the priority is a safety objective in (13) by using the
additive objective formulation that relies on including the
binary variable qn as part of the state, as described in Section
II-D. This formulation allows us to use the same belief states
for the value functions associated with both the safety and cost
objectives. The value functions for the safety objective are

V uN,1(b̄) =
∑
s,q

1K×{1}(s, q)b̄(s, q),

V un,1(b̄) =
∑
s,q

V ∗n+1,1(M̄y,ub̄)P(y|b̄, u),
(24)

with M̄ and P(y|b̄, u) defined as in (8) and (9), only with T
replaced by T̄ , Y replaced by Ȳ , and summations over s̄. The
value function for minimizing the cost function C is

V uN,2(b̄) =
∑
s,q

C(s, u)b̄(s, q),

V un,2(b̄) =
∑
s,q

C(s, u)b̄(s, q) +
∑
y

V ∗n+1,2(M̄y,ub̄)P(y|b̄, u).

(25)
Notice that the variable qn is essentially ignored in the value
function Vn,2, and b̄(s̄) is reduced to b(s) by treating b(s) as
the marginal distribution, namely b(s) =

∑
q b̄(s, q).

Problem 1 can then be solved in theory using the above
belief state and value functions, and by applying the lex-
icographic approach described above with k = 2 separate
cost functions, and a single tolerance parameter η (and also
a single one-step tolerance parameter η̄). As seen with a
single objective function, however, (24) and (25) cannot be
solved exactly, but instead approximated using a modification
of PBVI.

B. Approximate Solution using PBVI

In order to use PBVI in a lexicographic setting with both
a safety and a cost objective, we need to compute two
sets of α-vectors, one for the safety objective, and one for
the cost, which we denote αkn,1 and αkn,2, respectively. The
doubly restricted sets of α-vectors, denoted ˜̄Γn,i (restricted
because we compute less α-vectors for the PBVI algorithm,
and because we store different α-vectors depending on the
tolerance parameter η) are generated according to the standard
PBVI algorithm, with two modifications.

The first modification is in computing the index j∗(k). If we
were to compute the exact solution, the α-vectors for all possi-
ble combinations of observations and control inputs would be
generated, independently of the belief state, and therefore the
selection of the optimal index j∗(k) is not necessary. However,
when applying PBVI, we must be careful to ensure that the
index j∗(k) computed for αj

∗(k)
n,y,u,1 and αj

∗(k)
n,y,u,2 is the same, i.e.

the same α-vector αj
∗(k)
n+1 , and hence the same optimal policy

at subsequent time steps, is associated with both αkn,1 and
αkn,2. Otherwise, different optimal policies would be associated
with the safety and cost objectives, implying the selection of
different control inputs for the same belief state at time n+ 1
depending on which objective is considered. Since the idea

7

Algorithm 1 LexicOpt

Input: {αj1}Mj=1, {αj2}Mj=1, b, η̄
Output: j∗∗, optimal index associated with α1, α2

1: j∗∗ ← arg maxj
∑
s∈S α

j
1(s)b(s)

2: maxSafe←
∑
s∈S α

j∗∗

1 (s)b(s)

3: minCost←
∑
s∈S α

j∗∗

2 (s)b(s)
4: for j = 1, . . . ,M do
5: newSafe←

∑
s∈S α

j
1(s)b(s)

6: newCost←
∑
s∈S α

j
2(s)b(s)

7: if maxSafe− newSafe ≤ η̄ then
8: if newCost < minCost then
9: j∗∗ ← j

10: minCost←
∑
s̄∈S α

j̄
2(s)b(s)

11: end if
12: end if
13: end for

is to select a single control input to simultaneously optimize
both objectives, this cannot be allowed.

Further, the term
∑
s′ α

j
n+1(s′)Y (y|s′)T (s′|s, u) in (11) is

proportional to
∑
s′ α

j
n+1(s′)bn+1(s′). Hence when j∗(k) is

selected, we are actually optimizing the value function at time
n+ 1. The bn+1 produced by (11) may not, however, be one
of the elements in Bn+1, and so the exact optimal αjn+1 likely
has not been computed. The implication when performing
the lexicographic optimization is that the (sub)optimal αjn+1

designed to maximize the safety objective to within η̄ of the
optimal, and minimize the cost objective, likely has also not
been computed. Therefore the lexicographic optimization must
be redone for the belief state b̄n+1 generated by αjn,y,u,i,
and the tolerance preference η̄ must once again be enforced.
The modified index, denoted j∗∗(k), is computed according to
Algorithm 1, with inputs {αjn,y,u,1}j , {α

j
n,y,u,2}j , b̄k, and S̄.

Although PBVI is mentioned as an approximation algorithm
for the lexicographic optimization of POMDPs in [15], they
fail to mention this subtle difference from the standard, single
objective PBVI algorithm.

The α-vectors αkn,u,1 and αkn,u,2 (defined for a specific
control input u and for each b̄k ∈ B̄n, n = 0, . . . , N) are
given by

αkN,u,1(s̄) = 1K×{1}(s̄),

αkn,u,1(s̄) =
∑
y∈Y

∑
s̄′∈S̄

α
j∗∗(k)
n+1,1 (s̄′)Ȳ (y|s̄′)T̄ (s̄′|s̄, u). (26)

αkN,u,2(s̄) = C(s, u),

αkn,u,2(s̄) = C(s, u) +
∑
y∈Y

∑
s̄′∈S̄

α
j∗∗(k)
n+1,2 (s̄′)Ȳ (y|s̄′)T̄ (s̄′|s̄, u).

(27)

Note that αkn,u,1 and αkn,u,2 are functions of αjn+1,1 and
αjn+1,2, respectively, such that the index u at time n + 1 is
dropped. This is because the dependence on u is captured

within the index j, according to the next modification to the
PBVI algorithm.

The second modification is the same as for the exact
lexicographic solution described in Section II-C. Once the
complete sets of α-vectors αkn,u,i are computed according to
(26) and (27), the sets ˜̄Γn,i are generated by first constructing
the set Un(b̄k), which can be expressed in terms of the α-
vectors as

Un(b̄k) =

{
u ∈ U : max

ū∈U

∑
s̄

αkn,ū,1(s̄)b̄k(s̄)

−
∑
s̄

αkn,u,1(s̄)b̄k(s̄) ≤ η̄

}
. (28)

The optimal control input u∗ is chosen as

u∗ = arg min
u∈Un(b̄k)

∑
s̄

αkn,u,2(s̄)b̄k(s̄), (29)

and αkn,1 = αkn,u∗,1 and αkn,2 = αkn,u∗,2 are added to ˜̄Γn,1 and
˜̄Γn,2, respectively. Algorithm 2 summarizes the entire proce-
dure for solving Problem 1 using PBVI and a lexicographic
approach.

Note that Algorithm 2 returns the sets {˜̄Γn,1}Nn=0 and
{˜̄Γn,2}Nn=0, which in turn provide the multi-objective policy
π̃∗. The optimal control input at time n, for any belief state
b̄ ∈ B̄, is found again according to Algorithm 1, with inputs
˜̄Γn,1, ˜̄Γn,2, and b̄. Using the returned index i∗, u∗ is equal to
the control input associated with both αi

∗

n,1 and αi
∗

n,2, which
is guaranteed to be the same based on Algorithm 2.

The probability that the system remains safe, if policy π̃∗ is
implemented, and the expected cost associated with the policy,
are bounded by

pNsafe(π̃∗, R;K) ≥
∑
s̄

α1
0,1(s̄)R̄(s̄)

Eπ̃
∗

[
N∑
n=0

C(sn, π̃
∗
n(b̄n))

∣∣∣∣∣R
]
≤
∑
s̄

α1
0,2(s̄)R̄(s̄),

(30)

since b̄1 = R̄.

C. Bound on the One-Step Tolerance

We next discuss how to select the one step tolerance η̄
to ensure that the approximate safety probability returned
by PBVI is within tolerance η of the exact optimal safety
probability, pNsafe(π∗safe, R;K). The proof is similar to that in
[15], although without the modifications to the PBVI algorithm
discussed in the previous section, the claims in [15] are
incorrect. We first derive the one-step tolerance needed to
guarantee an overall tolerance η, if we were able to solve
the lexicographic optimization exactly (without PBVI).

Proposition 1: For time horizon N , initial distribution R,
and total desired tolerance η, setting the one step tolerance
η̄ to η̄ = η

N ensures that the safety probability found by ex-
actly solving the lexicographic POMDP optimization, denoted
V η0,1(R) satisfies pNsafe(π∗, R;K)− V η0,1(R) ≤ η.

As an extension, in order to ensure that the selected tol-
erance is not exceeded when using PBVI, we must also take

8

Algorithm 2 LexicoPBVI

Input: {Bn}Nn=0, K, C(·, ·), N , J , η̄
Output: {˜̄Γn,1}Nn=0, {˜̄Γn,2}Nn=0

1: ˜̄ΓN,1 = ∅, ˜̄ΓN,2 = ∅
2: αN,1(·) = 1K(·), ˜̄ΓN,1 = ˜̄ΓN,1

⋃
{αN,1}

3: for all b ∈ BN do
4: u∗ = arg minu∈U

∑
s∈S C(s, u)b(s)

5: αN,2(·) = C(·, u∗), ˜̄ΓN,2 = ˜̄ΓN,2
⋃
{αN,2}

6: end for
7: for n = N − 1, . . . , 0 do
8: ˜̄Γn,1 = ∅, ˜̄Γn,2 = ∅
9: for all bk ∈ Bn do

10: for all u ∈ U do
11: αkn,u,1 = 0, αkn,u,2 = 0
12: for all y ∈ Y do
13: for j = 1, . . . , |˜̄Γn+1,1| do
14: Compute αjn,y,u,1, αjn,y,u,2 according to (26)

and (27), respectively
15: end for
16: j∗∗(k) = LexicOpt({αjn,y,u,1}, {α

j
n,y,u,2}, bk, η̄)

17: αkn,u,1 = αkn,u,1 + α
j∗∗(k)
n,y,u,1

18: αkn,u,2 = αkn,u,2 + α
j∗∗(k)
n,y,u,2

19: end for
20: end for
21: u∗ = LexicOpt({αkn,u,1}u, {αkn,u,2}u, bk, η̄)

22: ˜̄Γn,1 = ˜̄Γn,1
⋃
{αkn,u∗,1}, ˜̄Γn,2 = ˜̄Γn,2

⋃
{αkn,u∗,2}

23: end for
24: end for

into account the error introduced in the PBVI algorithm when
maximising the safety objective. This error is given in [25]
and is a straightforward extension of the standard PBVI error
presented in [16]. First, we employ parameter δB to denote
how densely the belief space B has been sampled to produce
B, defined as the maximum Hausdorff distance with respect
to n between Bn and Bn:

δB = max
n

{
max{ sup

b̃n∈Bn

inf
bn∈Bn

‖b̃n − b̄n‖1,

sup
bn∈Bn

inf
b̃n∈Bn

‖b̃n − bn‖1}
}
. (31)

Denoting V Bn as the optimal value function for a single
objective at time n computed using PBVI, and V ∗n as the exact
optimal value function, then

V ∗n (b)− V Bn (b) ≤ (N − n)δB (32)

for all b ∈ B, and for all n = 0, . . . , N . We obtain:
Proposition 2: For time horizon N , initial distribution

R, and total desired tolerance η, if η
N − δB ≥ 0, setting

the one step tolerance η̄ to η̄ = η
N − δB ensures that

the safety probability found by solving the lexicographic
POMDP optimisation using PBVI, denoted V η,B0,1 (R) satisfies
pNsafe(π∗,K;R)− V η,B0,1 (R) ≤ η.

Proposition 2 guarantees that the safety probability returned
using Algorithm 2 will be within η of pNsafe(π∗,K;R), as
long as the error NδB incurred as a result solely from the
PBVI algorithm is not too large (i.e. does not exceed η).
Fortunately, the PBVI error is tunable, and δB decreases to
zero as the sampled set B approaches B. Unfortunately, the
more points b ∈ B that are generated, the more computation
time is required for Algorithm 2, so there is an inherent trade-
off between the accuracy of the PBVI algorithm and hence our
ability to satisfy the tolerance specification η, and the amount
of time required to compute the optimal policy for both the
safety and cost objectives.

V. EXTENSION TO HYBRID SYSTEMS

By definition, cyber-physical systems typically comprise
processes evolving in a continuous space (the physical sys-
tem), in combination with processes evolving in a discrete
fashion (the “cyber,” or computational component embedded
in the physical process). They are therefore often modeled
within a hybrid system framework, with a state space S =
X × Q, X ⊆ Rn, and Q = {q1, . . . , ql} a finite set of
modes. A partially observable hybrid system may also have a
combination of continuous and discrete observations, so that
Y = Yx × Yq , Yx ⊂ Rm and Yq = {yq1, . . . , yqp}.

1) Case Study: Parsimonious Temperature Regulation: As
an example of a CPS, consider the task of controlling a boiler
to switch on or off to heat a single room in a building. The safe
temperature range is between 17.5 and 22 degrees Celsius, and
the safety objective is to construct a control policy to maximize
the probability that the temperature in the room does not leave
this range. Simultaneously we would like to limit the amount
of time that the heater is on, to reduce operational costs, i.e.
we want to minimize the cost function

∑N
n=0 C(un), with

C(0) = 0 and C(1) = 1.
The temperature evolution is approximated by an affine

stochastic difference equation, as presented in [1]:

xn+1 = (1− a)xn + bun + axa + vn, (33)

where xn is the temperature at time step n, xa is the am-
bient temperature (assumed constant), a and b are constants
representing the heat loss rate to the external environment and
the rate of heat supplied by the heater respectively, and {vn}
is a sequence of i.i.d. Gaussian random variables with zero
mean and variance ν2 representing stochastic disturbances to
the temperature.

While the temperature evolution is a continuous process,
and the state takes values in X = R, the control input is a
discrete signal u ∈ U = {0, 1} telling the boiler to switch on
or off; 0 indicates the boiler is off, and 1 that it is on. The
control input effectively renders the temperature evolution as a
hybrid process that switches between two modes, one when the
heater is on, and the other when it is off. So we can alternately
think of the hybrid state space S = R× {0, 1}.

Additionally, the temperature is measured and communi-
cated to the controller by a sensor that is subject to noise,
represented by yn = xn + wn, with {wn} an i.i.d. sequence
of Gaussian random variables with zero mean and variance

9

ω2. The control input is assumed known, and hence we only
consider the continuous observation process, Y = Yx = R.

A. Abstraction to POMDP

The discussed PBVI algorithm requires as input a POMDP
with a finite set of states, observations, and control inputs. In
order to apply Algorithm 2 to a partially observable hybrid
system, we must first create a finite state abstraction of the
original hybrid system, to approximately represent it as a
POMDP as in Definition 1. We are interested in the use of
abstractions with guaranteed behaviours, since the abstraction
introduces an additional error into the evaluation of safety
probabilities using the PBVI algorithm, because we are now
evaluating safety probabilities over a different system. Formal
abstractions are discussed in [26] and, for models with partial
observations, in [4].

For safety critical systems, quantifying the probability that
the system remains safe is crucial. When approximations are
introduced, we must quantify the effect of the approximation
on the safety probabilities being computed. We have already
done this in Section IV-C, where the one step tolerance bound
η̄ is adjusted as a function of the error introduced by the PBVI
algorithm, to ensure that the safety probability returned by
Algorithm 2 is no more than a pre-specified distance η from
the maximum. We can repeat this process to get a new one
step tolerance η̄ that also takes into account the error from the
abstraction as in [4].

To create an abstraction of a partially observable stochastic
hybrid system, the continuous spaces X and Yx are partitioned
into cells, and a representative point is assigned to each cell.
For a certain class of stochastic hybrid systems, the error
introduced by this partitioning, in combination with a PBVI
algorithm, has been shown to be a linear function of the size
of the partitions, and hence decreases to zero as the partitions
are made smaller. A detailed description of the abstraction
process, as well as the error it incurs, is provided in [4].

Here we will simply assume that the error introduced by
the abstraction is known, and equal to δa, i.e. we know that
|V B0 (R̄) - V B0,δ(R̄δ)| ≤ δa. The subscript δ indicates that the
abstraction is being used (both when computing the value
functions, and also because the probability densities for the
original system must be mapped to probability mass functions,
hence R̄→ R̄δ).

Proposition 3: For time horizon N , a POMDP abstrac-
tion Jδ of a partially observable stochastic hybrid system
H with abstraction error δa, and total desired tolerance η,
if η

N −
2δa

N − δB ≥ 0, setting the one step tolerance to
η̄ = η−2δa

N − δB ensures that the safety probability found
by solving the lexicographic POMDP optimization using
PBVI and the abstraction Jδ , denoted V η,B0,1,δ(R̄δ) satisfies
pNsafe(π∗,K;R)− V η,B0,1,δ(R̄) ≤ η.

VI. APPLICATIONS TO SMART BUILDINGS

We now consider two case studies. The first is the finite
state boiler maintenance problem introduced in II-B1, and
the second is the hybrid state temperature regulation prob-
lem introduced in V-1. In each case we must utilize sensor

measurements to design safe, cost-efficient control policies for
building operation.

A. Optimised Boiler Maintenance

We apply the lexicographic approach in combination with
PBVI to the boiler maintenance problem described in Sections
II-B1 and III-1. We would like to maximise the probability
that the boiler does not reach a degradation level of 80 or
above, while simultaneously minimising the costs associated
with maintaining and operating the boiler. To use Algorithm 2,
we use inputs K = {0, . . . , 79}, the cost function C given in
(21), and the POMDP J presented in Section II-B1 extended
to include binary variable q discussed in Section II-D. We
consider a time horizon N = 30.

A set of 50 belief states Bn is generated sequentially for
each time step. At initial time 0, the 50 belief states are
initialised by randomly selecting the state in which the system
starts with probability one, i.e. bi0(s) = 1si(s) with si selected
uniformly at random from {0, . . . , 79} (we are not interested
in starting from the unsafe set). The action ui0 is also chosen
at random, and an observation yi is sampled from P(y|bi0, ui0)
(9). The next belief state bi1 is generated according to My,ub
in (8). This is done repeatedly for all i = 1, . . . , 50 and
n = 1, . . . , 30.

Next, the one step tolerance must be computed in order
to guarantee that the overall tolerance is η = 0.1, i.e. that
the probability that the boiler does not break down while
minimising costs is not more than 0.1 below the maximum
probability, obtained when costs are disregarded. To provide
an exact bound on the tolerance requires incorporating the
error δB from PBVI, which is difficult to compute and can be
quite conservative. We therefore disregard the error δB , for two
reasons. First, PBVI guarantees a lower bound to the actual
value function when we use the lexicographic approach, and
therefore although we do not have an exact guarantee on the
distance from the optimal safety probability, we know that the
safety probability is at least as high as the estimate we produce.
Second, for this example PBVI returns safety probabilities that
are equal to one, and therefore the PBVI solution is exact,
since the probabilities are both lower and upper bounded by
one, thus δB = 0. Hence, we set η̄ = η

N = 1
30 .

The probability that the degradation level sn does not reach
80 or above over the considered time horizon, given varying
starting degradation levels s0, is presented in Fig. 1a, using the
lexicographic PBVI algorithm (Alg. 2) with a total tolerance
η = 0.1. For comparison, the lexicographic PBVI algorithm is
also solved using a tolerance η = 0, so that the safety objective
is maximized. However, if the situation arises where either
cleaning or not cleaning the boiler leads to the same safety
probability (i.e. both are maximal) then the control input is
selected to minimize costs (so u = NoClean is chosen over
u = Clean). This highlights that the optimal control input
is not necessarily unique – multiple control inputs may be
optimal, and in that case we can set which to choose.

Similarly, Fig. 1b shows the expected costs over 30 days
when safety is maximized without allowing for a trade-off
to minimize costs (η = 0) versus allowing slack to also

10

(a) (b)

Fig. 1: Comparison of safety probabilities (a) and expected total operational plus cleaning costs (b), over varying initial degradation levels s0
and for N = 30 days, without considering the cost of fuel/cleaning (black, dashed line) and using Algorithm 2 to also minimize costs (red,
solid line). The policy produced by maximizing safety alone leads to cleaning the boiler many times, whereas the lexicographic algorithm
returns a policy that cleans the boiler at most once, with minimal effect on the probability of safety.

minimize costs (η = 0.1). Fig. 1b shows that the policy
returned by Algorithm 2 with η = 0.1 is a threshold policy,
since the expected cost increases by 100 (the cost of cleaning)
for s0 > 26, meaning that over 30 time steps, if the initial
degradation level is below 26, we should not clean the boiler,
and if it is greater than 26, the boiler should be cleaned only
once. In a region below the threshold level of 26, there is a
small sacrifice in the probability of safety (as seen in Fig. 1a)
that does not exceed the tolerance η = 0.1, and is therefore
deemed acceptable. If we were to shrink the tolerance level,
the threshold degradation level at which cleaning should be
performed would be lower (s0 < 26). In contrast, when η = 0,
although we select the control input that minimizes costs so
long as the safety probability remains maximal, the expected
cost is over 1000 regardless of the starting degradation level,
hence the boiler is cleaned much more frequently.

We also test each policy (for η = 0 and η = 0.1) by
simulating 1000 trajectories of the degradation level under
each policy. Fig. 2 shows the control input (clean or do not
clean) selected most frequently at each time step over the 1000
trajectories under each policy, starting from s0 = 30. Under
the safety maximizing policy, the boiler is cleaned at least
every other day (which clearly does not make sense from a
practical standpoint) whereas the lexicographic policy cleans
the boiler once, on the first day, and does not clean it again.

B. Parsimonious Temperature Regulation

Switching from boiler maintenance, consider now the par-
simonious temperature regulation problem of Section V-1.

To use Algorithm 2, we first abstract the system to a finite
state POMDP by discretizing X and Yx (for details see [4]).
We only need to discretize the set K rather than all of R,
because once the temperature leaves K, we are not interested
in its actual value. For the observations, we discretize K̄ =
[16, 23.5], because the probability of observing y outside of K̄
given x ∈ K is ε� 1 (specifically, ε = .0027 for ω2 = 0.25).
We use a grid spacing of δx = 0.01 to create the finite set
of states S = {17.5, 17.51, . . . , 21.99}, and a grid spacing

Fig. 2: Simulated policy averaged over 1000 trials, starting from
s0 = 30, generated using Algorithm 2 (blue, solid line) and PBVI
with a single safety objective (turquoise, dashed line). When costs
are not considered, the boiler is cleaned more than half of the time,
versus a single cleaning using the lexicographic policy.

of δy = 0.25 to create the finite set of observations Y =
{16, 16.25, . . . , 23.25}.

The probability distributions T and Y are constructed as
for the boiler maintenance example, only now T (s′|s, u) is
derived from a Gaussian density function with mean (1 −
a)s+ bu+asa and variance ν2, and Y (y|s) is derived from a
Gaussian density with mean s and variance ω2. For instance,
T (s′|s, u) =

∫ s′+δs
s′

φ(x; (1 − a)s + bu + asa, ν
2) dx and

similarly for Y (here φ(x;µ, σ2) is the Gaussian density with
mean µ and variance σ2 evaluated at x).

We compute the error bound δa on the abstraction using
formulas derived in [25]. For δx = 0.01, δy = .25, and setting
ν2 = 0.2, ω2 = 0.25, we obtain a total abstraction error over
N = 5 time steps of δa = 0.135. For a desired tolerance
η = 0.3, the one step tolerance is η̄ = 0.006. We generate a set
of 50 belief states in the same manner as the previous example,
and apply Algorithm 2. Fig. 3a compares the maximal prob-
ability of safety (as underestimated by PBVI using tolerance
η = 0) to the under-estimated safety probability when using

11

(a) (b)

Fig. 3: Comparison of safety probabilities (a) and expected number of time steps the heater is turned on (b), over varying initial temperatures
s0 and for N = 5 time steps, without considering the cost of turning the heater on (black, solid line) and using Algorithm 2 to also minimize
the number of time steps the heater is on (blue, dashed line). Allowing the probability of remaining within the desired temperature range to
drop slightly can lead to using the heater almost half as often.

the lexicographic approach with η = 0.3, as a function of
the initial temperature. Although the desired tolerance was
made large in order to guarantee a non-zero one-step tolerance,
Fig. 3a shows the actual distance from the maximal safety
probability never exceeds 0.1 (because the error estimate δa is
conservative). In fact, the safety probabilities produced by the
lexicographic approach are quite close to the optimal, and even
equal when the initial temperature is greater than 21, while the
number of time steps the heater is on is lowered (cf. Fig. 3b).
For an initial temperature between 17.5 and 18.5, the drop in
likelihood of safety is around 0.1, while the number of time
steps the heater is likely to be on drops by more than one. The
approximate equality of the safety probabilities for s0 > 21 is
due to the short time horizon considered: in both cases there
is no benefit to turning the heater on, because the probability
of dropping below 17.5 is negligible over 5 time steps. The
non-constant nature and the related adjacent discontinuities of
the the expected cost around s0 = 20 in Fig. 3b are likely
because it is less straightforward to decide whether to turn the
heater on or off, and because of the conflicting nature of the
two objectives becomes more apparent.

C. Discussion on Computational Aspects

Constructing optimal policies for POMDPs is not easy [27],
and even approximate algorithms such as point-based value
iteration are time consuming. Further, the computation time
increases with the number of states, observations, and control
inputs that define the POMDP of interest. For a discussion
on the complexity of PBVI, see [16]. A continuous or hybrid
state system that is abstracted to a POMDP (as described in
Section V) requires a large number of discretized states and
observations in order for the abstraction error to be small, and
as the dimension of the continuous state increases, the number
of discretized states required can quickly become prohibitive.

The first case study we considered on optimal boiler
maintenance had 101 states, 101 observations, and 2 control
inputs. The computation time to produce the policy, safety
probabilities, and expected cost presented in Fig. 1 for 30

time steps and 50 belief states was 128.34 seconds for the
lexicographic approach with η = 0.1, run on a 2.7 GHz Intel
Core i5 Macbook Pro with 8 GB of RAM. The temperature
regulation case study, which had to be abstracted to a POMDP,
had 550 states, 30 observations, and 2 control inputs. The
computation time to produce the same results in Fig. 3 over
5 time steps and using 50 belief states was 541.77 seconds.
The fivefold increase in the number of states had a far more
significant impact on computation time than the reduction in
the number of time steps between the two case studies.

In comparison, however, the overall computation time to
maximize safety without allowing any slack to minimize costs
was significantly greater in both cases. To generate the optimal
policy, maximal safety probability, and expected cost for the
boiler maintenance problem with η = 0 took 1646.25 seconds,
and for the temperature regulation problem took 1344.43
seconds.

In both cases, the number of α-vectors stored in Γn for
all n was greater than with a tolerance η > 0, indicating
that the number of redundant α-vectors that corresponded to
the same optimal policy tree for different belief states was
fewer for η = 0. Fewer α-vectors leads to less computation at
each time step. As such, the computation time was longer for
the boiler maintenance problem, due to the additional number
of α-vectors stored and computed over a higher number of
time steps. The increased number of states in the temperature
regulation problem no longer outweighed the increase in the
time horizon of interest with the greater number of α-vectors.

Hence when slack is introduced to simultaneously minimize
costs, the total number of control inputs to choose from is
restricted, and the likelihood of having redundant α-vectors
at each time step increases. While we cannot claim that the
lexicographic approach will lead to faster computation time
in all cases, we did find in both of the examples presented
that the computation time increased as η decreased. It seems
reasonable to expect that in general, not only does the lexico-
graphic algorithm allow a precise trade-off between opposing
optimization criteria, but it also can decrease computation time

12

required for the PBVI algorithm.

VII. CONCLUSIONS AND FUTURE WORK

With focus on partially observable stochastic models, pos-
sibly with continuous and hybrid dynamics, this work has
discussed the application of a lexicographic framework for
multi-objective optimisation to problems with safety require-
ments, thus integrating correct-by-design synthesis for safety
and optimal synthesis for performance. Computationally, the
work has leveraged the use of compact representation of belief
states, of sampling-based techniques (PBVI), and of formal
abstractions, and showcased the results on two case studies in
the area of smart buildings.

Methodologically, we are interested in exploring further
connections with algorithms for approximate dynamic pro-
gramming, and in furthering the usability of error bounds for
formal abstractions [25], [26]. In the area of modeling and
control for smart buildings, we are interested in extensions to
hybrid models of boiler degradation, and in developing and
employing realistic models derived from real data.

REFERENCES

[1] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic reacha-
bility and safety for controlled discrete time stochastic hybrid systems,”
Automatica, vol. 44, no. 11, pp. 2724–2734, 2008.

[2] J. Ding and C. Tomlin, “Robust reach-avoid controller synthesis for
switched nonlinear systems,” in IEEE Conference on Decision and
Control, 2010, pp. 6481–6486.

[3] K. Lesser and M. Oishi, “Reachability for partially observable discrete
time stochastic hybrid systems,” Automatica, vol. 50, no. 8, pp. 1989–
1998, 2014.

[4] ——, “Approximate ssfety verification and control of partially ob-
servable stochastic hybrid systems,” IEEE Transactions on Automatic
Control, vol. 62, no. 1, pp. 81 – 96, 2017.

[5] K. Dräger, V. Forejt, M. Z. Kwiatkowska, D. Parker, and M. Ujma,
“Permissive controller synthesis for probabilistic systems,” in Tools
and Algorithms for the Construction and Analysis of Systems - 20th
International Conference, TACAS 2014, 2014, pp. 531–546.

[6] W. Kuijper and J. van de Pol, “Compositional control synthesis for
partially observable systems,” in CONCUR 2009 - Concurrency Theory,
ser. Lecture Notes in Computer Science, M. Bravetti and G. Zavattaro,
Eds. Springer Berlin Heidelberg, 2009, vol. 5710, pp. 431–447.

[7] X. Yin and S. Lafortune, “Synthesis of maximally permissive non-
blocking supervisors for partially observed discrete event systems,” in
IEEE Conference on Decision and Control, 2014, pp. 5156–5162.

[8] M. Svorenova, I. Cerna, and C. Belta, “Optimal control of MDPs with
temporal logic constraints,” in Proceedings of the 52nd IEEE Conference
on Decision and Control, CDC 2013, December 10-13, 2013, Firenze,
Italy, 2013, pp. 3938–3943.

[9] T. Chen, V. Forejt, M. Z. Kwiatkowska, A. Simaitis, and C. Wiltsche,
“On stochastic games with multiple objectives,” in Mathematical Foun-
dations of Computer Science 2013 - 38th International Symposium,
MFCS 2013, Klosterneuburg, Austria, August 26-30, 2013, 2013, pp.
266–277.

[10] L. Zhang, H. Hermanns, and D. N. Jansen, “Logic and model checking
for hidden Markov models,” in Proc. on Formal Techniques for Net-
worked and Distributed Systems. Springer, 2005, pp. 98–112.

[11] S. Giro and M. N. Rabe, “Verification of partial-information probabilistic
systems using counterexample-guided refinements,” in Proc. on Auto-
mated Technology for Verification and Analysis, ser. LNCS. Springer,
2012, pp. 333–348.

[12] K. Chatterjee, M. Chmelik, and M. Tracol, “What is decidable about
partially observable Markov decision processes with omega-regular
objectives,” in Computer Science Logic 2013 (CSL 2013), CSL 2013,
September 2-5, 2013, Torino, Italy, 2013, pp. 165–180.

[13] L. G. Mitten, “Preference order dynamic programming,” Management
Science, vol. 21, no. 1, pp. 43–46, 1974.

[14] K. H. Wray, S. Zilberstein, and A.-I. Mouaddib, “Multi-objective MDPs
with conditional lexicographic reward preferences,” in International
Conference on Artificial Intelligence, 2015, pp. 3418–3424.

[15] K. H. Wray and S. Zilberstein, “Multi-objective POMDPs with lex-
icographic reward preferences,” in International Joint Conference on
Artificial Intelligence, 2015, to Appear.

[16] J. Pineau, G. Gordon, and S. Thrun, “Anytime point-based approxima-
tions for large POMDPs,” Journal of Artificial Intelligence Research,
vol. 27, pp. 335–380, 2006.

[17] R. Mobley, An Introduction to Predictive Maintenance, ser. Plant Engi-
neering. Elsevier Science, 2002.

[18] (2012) Studies show: Hvac system maintenance saves energy. Institute
for Building Efficiency, An Initiative of Johnson Controls. 444 North
Capitol St., NW Suite 729, Washington DC 20001.

[19] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 2005, vol. 1.

[20] J. Dupačová and K. Sladký, “Comparison of multistage stochastic
programs with recourse and stochastic dynamic programs with discrete
time,” ZAMM - Journal of Applied Mathematics and Mechanics /
Zeitschrift für Angewandte Mathematik und Mechanik, vol. 82, no. 11-
12, pp. 753–765, 2002.

[21] J. Berka and K. Macek, “Effective maintenance of stochastic systems
via dynamic programming,” in Proceedings of 19th Technical Computing
Prague Conference, Prague, Czech Republic, 2011.

[22] E. Sondik, “The optimal control of partially observable Markov pro-
cesses,” Ph.D. dissertation, Stanford University, 1971.

[23] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP
solvers,” Autonomous Agents and Multi-Agent Systems, vol. 27, no. 1,
pp. 1–51, 2013.

[24] J. Ding, A. Abate, and C. Tomlin, “Optimal control of partially observ-
able discrete time stochastic hybrid systems for safety specifications,”
in American Control Conference, 2013, pp. 6231–6236.

[25] K. Lesser and M. Oishi, “Finite state approximation for verification
of partially observable stochastic hybrid systems,” in Hybrid Systems:
Computation and Control, 2015.

[26] S. Soudjani and A. Abate, “Adaptive and sequential gridding procedures
for the abstraction and verification of stochastic processes,” SIAM
Journal on Applied Dynamical Systems, vol. 12, no. 2, pp. 921–956,
2013.

[27] C. Lusena, J. Goldsmith, and M. Mundhenk, “Nonapproximability
results for partially observable Markov decision processes,” Journal of
Artificial Intelligence Research, vol. 14, pp. 83–103, 2001.

13

APPENDIX

Proof of Proposition 1: We first show by induction that
V ∗n (b̄) − V ηn,1(b̄) ≤ (N − n)η̄ for any b̄ ∈ B̄, with V ∗n the
value function that returns the true maximal safety proba-
bility, i.e. V ∗0 (R̄) = pNsafe(π∗,K;R). At time N , V ∗N (b̄) =∑
s̄ 1K×{1}(s̄)b̄(s̄), which does not depend on the control

input, and so V ∗N (b̄) = V ηN,1(b̄) for all b̄, and the result is
satisfied. Next assume V ∗n+1(b̄)− V ηn+1,1(b̄) ≤ (N − n− 1)η̄.
At time n,

V ∗n (b̄)− V ηn,1(b̄) = V ∗n (b̄)− V u
∗

n,1(b̄) + V u
∗

n,1(b̄)− V ηn,1(b̄)

with V u
∗

n,1 the value function that uses the same optimal control
input u∗ at time n as V ∗n , but is defined recursively through
the lexicographic value function V ηn,1 (this is the same notation
as used in the definition of UN,i(b) (22)). Then,

V ∗n (b̄)− V ηn+1(b̄) ≤ V ∗n (b̄)− V u
∗

n,1(b̄) + η̄

≤
∑
y

V ∗n+1(M̄y,u∗ b̄)P(y|b̄, u∗)

−
∑
y

V ηn+1,1(M̄y,u∗ b̄)P(y|b̄, u∗) + η̄

≤ (N − n− 1)η̄
∑
y

P(y|b̄, u∗) + η̄

≤ (N − n)η̄.

The first line follows from the definition of the one step
tolerance (see (22)), the second to last line by the induction
hypothesis, and the last line because

∑
y P(y|b̄, u) = 1.

Since V ∗0 (b̄) − V η0,1(b̄) ≤ Nη̄ for all b̄, we can achieve
V ∗0 (b̄)− V η0,1(b̄) ≤ η by setting η̄ ≤ η

N .

Proof of Proposition 2: First, because the PBVI algo-
rithm is designed to produce a value function that is a lower
bound on the actual value function, V η,B0,1 ≤ V

η
0,1. Further, by

(32), we know that V ∗0 (b̄) ≤ NδB + V B0 (b̄). Then,

V ∗0 (R̄)− V η0,1(R̄) ≤ V ∗0 (R̄)− V η,B0,1

≤ V B0 (R̄) +NδB − V η,B0,1 (R̄).

Next, because we are enforcing the one step tolerance η̄
between maxu∈U V

η,B
n,1 (b̄) and V η,Bn,1 (b̄), we can use the same

argument as in the proof of Prop. 1 to show that V B0 (R̄) −
V η,B0,1 (R̄) ≤ Nη̄. Therefore

V ∗0 (R̄)− V η,B0,1 (R̄) ≤ NδB +Nη̄

and we can guarantee that V ∗0 (R̄)− V η,B0,1 (R̄) ≤ η by setting
η̄ ≤ η

N − δ
B . Intuitively, as the error from PBVI decreases

to zero, the one step tolerance approaches that required in the
case of having an exact solution.

Proof of Proposition 3: As in the proof of Proposition 2,
recall that V η,B0,1 ≤ V

η
0,1 and V ∗0 (b̄) ≤ NδB+V B0 (b̄). Also note

that when we enforce the one step tolerance, we are enforcing
it between maxu∈U V

η,B
n,1,δ and V η,Bn,1,δ , and therefore by the

same argument as for Proposition 1, V B0,δ(R̄) − V η,B0,1,δ(R̄) ≤
Nη̄. Then,

V ∗0 (R̄)− V η0,1(R̄) ≤ V B0 (R̄) +NδB − V η,B0,1 (R̄)

≤ V B0 (R̄) +NδB − V B0,δ(R̄) + V B0,δ(R̄)

− V η,B0,1,δ(R̄) + V η,B0,1,δ(R̄)− V η,B0,1 (R̄)

≤
∣∣V B0 (R̄)− V B0,δ(R̄)

∣∣+ V B0,δ(R̄)− V η,B0,1,δ(R̄)

+
∣∣∣V η,B0,1,δ(R̄)− V η,B0,1 (R̄)

∣∣∣+NδB

≤ δa +Nη̄ + δa +NδB

Hence V ∗0 (R̄)− V η0,1(R̄) ≤ η if we can enforce η̄ ≤ η−2δa

N −
δB , which is true if η−2δa

N − δB ≥ 0.

Kendra Lesser received her Ph.D. in Electrical
Engineering in 2014, and an M.S. in Mathematics
in 2010 from the University of New Mexico.
She received her B.Sc. in Mathematics from
McGill University in 2007. She is currently a
Senior Controls Engineer at Verus Research in
Albuquerque, NM, and prior to that was a
Marie Curie Research Fellow in the Computer
Science Department at the University of Oxford.
Her main research interests include stochastic
optimization, planning under uncertainty, veri-

fication, and learning algorithms, with a focus on safe, provably correct
planning and estimation. Applications include optimised maintenance and
control of building heating systems, motion planning algorithms, and
guidance and control of spacecraft.

Alessandro Abate (S’02–M’08) is an Associate
Professor in the Department of Computer Science
at the University of Oxford (UK), and is addition-
ally affiliated with the Alan Turing Institute in
London (UK). He received a Laurea in Electrical
Engineering in October 2002 from the University
of Padova (IT), an MS in May 2004 and a PhD
in December 2007, both in Electrical Engineering
and Computer Sciences, at UC Berkeley (USA).
He has been an International Fellow in the CS
Lab at SRI International in Menlo Park (USA),

and a PostDoctoral Researcher at Stanford University (USA), in the
Department of Aeronautics and Astronautics. From June 2009 to mid
2013 he has been an Assistant Professor at the Delft Centre for Systems
and Control, TU Delft - Delft University of Technology (NL).
His research interests are in the analysis, verification, and control of
probabilistic and hybrid models, and in their general application over a
number of domains, particularly in energy and in systems biology.

