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Abstract— The increasing presence of solar energy
sources has radically transformed the continental electrical
network. Whilst solar panels affect the grid in a distributed
manner and an individual device has negligible weight,
the presence of a large population engaged in energy
production can affect the overall network dynamics. Whilst
this effect might in some scenarios be disruptive, solar
panels can offer potential for frequency regulation, if their
power output is to be controlled. In this work we present
models for the aggregation of a heterogeneous population
of solar panels connected to the electrical grid. The elec-
trical network frequency is modelled centrally: the model
accounts for primary frequency control and its inertia is
a function of the penetration of PV generation. We study
how features of the PV population affect the overall fre-
quency signal. In particular, we investigate scenarios of
power production (infeed) incidents: we simulate sudden
generation losses, and study the corresponding frequency
response at varying levels of renewable penetration. Simu-
lations show good performance of the aggregated models
when compared to the physical system, and quantitatively
indicate that population heterogeneity is a desirable fea-
ture to avoid load shedding. We furthermore put forward
a control architecture to regulate the power generation of
the PV population: this intentionally simple architecture is
aligned with primary control and is tailored to a decen-
tralised implementation. We show that the control scheme
can avoid load shedding, despite increasing penetration of
solar generation, thus contributing to network resilience.

Index Terms— photovoltaic panels, grid frequency dy-
namics, heterogeneity, population models, Markov models,
decentralised control

I. INTRODUCTION

ACADEMIA, industry and markets alike have recently
shown an increased interest on renewable energy sources,

which are seen as a core component towards environmental
conservation and mitigation of rapid climate changes. Bol-
stered by initiatives such as the 2017 Paris Agreement [1]
on climate, penetration of renewables, such as hydroelectric,
wind, and solar energy, has considerably grown [2]–[4] in
every part of the world.
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Conventional power sources (e.g. coal, nuclear) entail size-
able production sites endowed with mechanical inertia due
to the presence of rotating bodies [5]. Their models are well
known, uncertainty on model parameters is limited and their
estimation is by and large reliable. Our context is, instead,
rather novel: we study a heterogeneous, large, distributed
population of power generating devices with no inertia and
high levels of uncertainty and of volatility. Nowadays, these
populations significantly contribute to the electric grid and
their use raises issues of network reliability.

In the field of renewables, much interest is placed on
photovoltaics (we will interchangeably denote photovoltaic
panels as PV- or solar panels) [6], which is now the third
most important renewable energy source, after hydro and wind
power, in terms of global installed capacity [4]. In view of
the coupling between a solar panel and its inverter (namely
the device that converts the continuous output of a solar
panel to alternate current that is fed to the electricity grid),
whenever we refer to solar panels, we implicitly consider the
combination panel-inverter. A significant part of literature on
PV focusses on the electrical features of panels in terms of
photovoltaic cells [7], on the maximisation of power output
(e.g. [8]), and on economic aspects of power production [9].

Despite this interest on PVs, not much works addresses the
connection between populations of solar panels (as aggregation
of individual devices) and the dynamics of the electric grid.
Large PV farms have been modelled and studied aggregatively
in [10], however there is no similar study of distributed
solar power generation. At a household or building level, the
assumption is that the produced power is limited and often
consumed at the source, and hence that the net contribution
to the grid is null. This assumption is evidently not tenable
in view of the growing importance of populations of PV: as
an example, in Germany PV generated power – distributed
over 1.6 million PV setups – has provided for approximately
7.2% of the electricity demand in 2017, with peaks of 60%
during weekends and holidays [3]. The growing relevance
of PV panels justifies the modelling, analysis and control of
this energy source. Another element that distinguishes it from
conventional sources is that power production does not follow
usual demand patterns: the power production of a panel, in a
clear day, follows the irradiance of the sun, with a maximum
at around midday; this produced power is usually injected
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into the grid, due to limited consumption at those times.
This unbalanced flow, compounded with the dependence of
production on weather, if not handled correctly might lead to
network issues (in the worst scenario, to blackouts) [11].

The models in this work (cf. Section III) are based on the
following functional description of a solar panel (Section II).
An panel-inverter device is equipped with a sensor, which
is used to sample the network frequency, and with an in-
ternal counter. Two corresponding quantities are the key to
model a panel-inverter behaviour: If , the working interval of
network frequencies, and τr, the time delay required for a
safe connection to the network (the network frequency needs
to remains inside If before the panel connects back to the
grid). Each device, in principle, can have a different admissible
frequency range and time delay. Based on this setup, this work
amalgamates and extends previous contributions. [12] presents
a framework for modelling and abstraction of a large popula-
tion of photovoltaic panels. Further, [13] addresses the issue
of evaluating the relationship between the panels’ working
interval If and the stability of the electrical network. Finally
[14] adds a simple control scheme, originally developed in
[15], [16] for refrigerating/cooling devices to continuous-time
models of solar panels and thermostatically controlled loads
(TCLs), and exploits their potential to support the network
resilience after a generation loss incident.

In this work, we discuss a new and general analysis of the
dynamics of a population of solar panels that is connected
to the grid, particularly as a function of their heterogeneity
[13]. As mentioned above, the disconnection-reconnection
mechanism of a panel depends on the periodic sampling of
the network frequency signal, which leads to a new discrete-
time modelling framework. Models for the population are
connected to the dynamics of the network frequency, resulting
in an extended coupled model for the whole system [12]. The
study shows that the new models are a closed representation
of the system of interest. We further expand the study of
the decentralised proportional control scheme from [14] to
counterbalance a generation loss incident, within a network
with reduced inertia due to the presence of a large population
of renewables. We in particular investigate load shedding (also
known as load reduction): this is a process that is activated to
mitigate the lack of balance on the network, and to prevent
potential subsequent blackouts. This procedure is essentially
a forced stopping of electricity delivery, in order to avoid a
complete shut-down of the electric grid. We show that this
load shedding procedure can be avoided if the individual solar
devices are equipped with a proportional control.

The remainder of the paper is organised as follows. In
Section II we describe the behaviour of a single PV panel in
frequency. Population models and the frequency dynamics are
explained in Section III. Section IV introduces a grid model
based on ENTSO-E [17], while the control architecture is
designed in Section V. Experiments and case studies are in
Section VI. Conclusions are drawn in Section VII.

II. OPERATION OF A SOLAR PANEL

We illustrate the functioning of a single solar-inverter de-
vice: we focus on how an inverter-panel system reacts as a

TABLE I
BEHAVIOUR OF SINGLE PHOTOVOLTAIC PANEL AT TIME k. KEY

QUANTITIES ARE: PANEL STATE q ∈ {ON,OFF}; NETWORK

FREQUENCY f ; OPERATING FREQUENCY BAND If ; CLOCK/COUNTER τ

AND RE-CONNECTION DELAY τr .

Current state q(k) Frequency Delay Next state q(k + 1)
OFF f(k) ∈ If τ(k) ≥ τr ON
ON f(k) ∈ If − ON
ON f(k) /∈ If − OFF
OFF f(k) ∈ If τ(k) < τr OFF

function of the local electric grid. In this work we consider
household devices, namely PV panels that are installed on
the roof of private houses, as opposed to larger, less diverse
industrial setups. Different manufacturers, weather conditions,
ages, regulations, render this population naturally prone to a
high level of heterogeneity.

A PV panel can be either active or disconnected: accord-
ingly, we define two working states, ON and OFF. At time k,
the switch amongst these two states depends on two values:
the local network frequency f(k) (whose nominal value is
f0 = 50 Hz in Europe) and an internal time delay τr. Whilst
in practice τr is usually given in seconds, in this work we
introduce a discretisation step h, and thus consider τr to be
evaluated as a number of steps. Table I represents the switching
behaviour of a PV panel, considering the contributions of the
frequency signal and of the internal time delay. The device
is connected to the electric grid and samples its frequency
discretely in time. Safety regulations demand the panel to be
active, i.e. in the ON mode, only when the network frequency
lies within a given local frequency interval If . If f(k) /∈ If
it must disconnect from the grid, i.e. switch to the OFF mode.
We assume that the ON-to-OFF transition happens within a
negligible time interval [18], [19], so at time (k + 1) the
device is OFF. On the other hand, the OFF-to-ON switch
cannot happen before an internal delay τr has passed, during
which the frequency f must dwell within If : this rule ensures
the reconnection to a stable electric network, and avoids
possible reconnection/disconnection scenarios (chattering) that
may contribute to overall network instability. To guarantee
that the frequency dynamics is stable, the inverter samples
the grid frequency within the τr-long time interval: if the
frequency is measured outside If , the counter τ is reset. In
practice, a PV panel senses the network frequency via a digital
sensor with a defined sampling rate in the order of 200 ms,
and τr is around 20 s. Notice that the network frequency
sampled by different devices will differ, depending on several
factors, such as natural frequency fluctuations, measurement
noise, and dissimilar component quality. This motivates the
use of a probabilistic model to describe this system. An
alternative approach would require adding a measurement
noise to individual devices: this, however, would incur in
computational complexity associated to the modelling single
devices. Instead, the proposed probabilistic model describes
the aggregation of a population of heterogeneous devices in a
simple and computationally effective manner.

The power output of an aggregation of panels adds un-
certainty to the intrinsic diversity of the devices. In previ-
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ous work [12], [13] we have focussed on a constant power
production. This is a reasonable assumption over small time
scales (seconds) and during a clear sunny day. However, this
assumption might not hold during a cloudy day: as observed in
[20], individual solar plants can significantly vary their outputs
over the course of seconds. Weather should be encompassed
in the model to have a better description a real system: we
plan to add weather behaviour at a later stage, considering a
longer timescale (hours or days). Additionally, in Section V we
devise a decentralised control scheme over the power output
of the panels: we show that solar panels can be equipped
with an algorithm that tunes the output according to frequency
deviations. In this work (Section VI on Case Studies), in order
to model the unpredictability of the many factors (weather
conditions, light occlusions) that influence the electric power
production, we consider an additive Gaussian noise.

III. A MARKOV MODEL OF A POPULATION OF PV
PANELS

In Section II we consider the behaviour of a single panel,
which depends on its sampling of the frequency signal. This
feature suggests using a discrete-time model. We employ a
(discrete-time) Markov chain model to analyse the behaviour
of a population of devices. We start the presentation by illus-
trating a model assuming constant power production as well
as population homogeneity (i.e. all devices are characterised
by the same parameters). We also assume that panels have no
delays in (dis-)connection. We later introduce heterogeneity
in the disconnection and reconnection thresholds of the PV
devices; finally, we equip the models with a delayed-time
structure. The preceding architectures (for delay-free homoge-
neous and heterogeneous populations) are introduced as key
steps for the derivation of the final heterogeneous, delayed
model, which is on of the main contributions of this work.

A. A Homogeneous Markov Model Without Delays

We define the quantity PPV , expressing the weighted power
production, as

PPV =
1

N

N∑

i=1

PPV,i,

where N is the number of panels in the population, and PPV,i
is the i-th panel power output. Consider the normalised power
production R(k), at time k, as

R(k) =
1

NPPV

N∑

i=1

qi(k)PPV,i,

where qi(k) ∈ {0, 1} denotes whether the i-th device at
time k is in the OFF or ON state, respectively. In view
of the population homogeneity, all the devices behave in a
synchronous way and R(k) ∈ {0, 1}, ∀k. We consider R(k)
as a Bernoulli random variable, and introduce a new variable

x(k) = E[R(k)] = P[R(k) = 1],

defined as the expected value of R(k) at time k, and which
additionally denotes the probability of being in the ON state
at that time. By the law of total probability,

x(k + 1) = P[R(k + 1) = 1] =

= P[R(k + 1) = 1|R(k) = 1] · P[R(k) = 1]+

+ P[R(k + 1) = 1|R(k) = 0] · P[R(k) = 0].

Let us introduce a(k) = P[R(k + 1) = 0|R(k) = 1], so
that P[R(k + 1) = 1|R(k) = 1] = (1 − a(k)), and similarly
b(k) = P[R(k+1) = 1|R(k) = 0]. The previous equation can
be rewritten as

x(k + 1) = P[R(k + 1) = 1] = (1)
= (1− a(k))x(k) + b(k)(1− x(k)).

This relation describes how the probability of being ON gets
updated at time k. In the adopted framework, the transition
probability ON-to-OFF (quantity a(k)) and OFF-to-ON (b(k))
are governed by the value of the network frequency f(k),
namely whether or not f(k) ∈ If . Since at the moment we
assume population homogeneity, these values are binary: for
instance, when f(k) ∈ If , a(k) = 0 and b(k) = 1.

Whilst quantities a(k) and b(k) are deterministic in a homo-
geneous population, this assumption is restrictive in the case
of a heterogeneous population. In the latter case, we assume
different panels to be subjected to different disconnection and
reconnection thresholds, in view of different ages, manufac-
turing processes, weather conditions, etc. This results in two
modelling choices. We either make the educated assumption
that the different thresholds in a population are distributed
according to a Gaussian. Alternatively, we consider a χ2

distribution, which has different features: it is asymmetric and
has a semi-infinite support – in contrast with the support of the
Gaussian distribution. Evidently, other choices are possible:
in fact, our study can encapsulate the use of any probability
distribution that might be empirically fit population data. In
conclusion, the extension of the model to a heterogeneous pop-
ulation requires describing its heterogeneity with a probability
distribution over a(k) and b(k).

B. A Heterogeneous Markov Model Without Delays

In this subsection we introduce heterogeneity on the fre-
quency intervals If of different panels. As a consequence,
each panel presents different frequency thresholds, which are
constant in time: each panel reacts to the network frequency
distinctively. Each panel can therefore disconnect or reconnect
at different values of the frequency. We assume that these
thresholds over the population are distributed continuously ac-
cording to known probability distributions. These distributions
model the transition from R(k) = 1 to R(k+1) = 0, and vice
versa, and can in practice be regressed from population data.

We introduce a(k) and b(k) as the ON-to-OFF and OFF-to-
ON transition probability, respectively (cfr. Fig. 2). Notice that
in this case a(·) and b(·) are not binary: we obtain them by
integrating probability distribution functions, as seen shortly.
The current value of network frequency f(k) is used as one
of the extrema of such integral: in this way we obtain the
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f0 ff(k)

pdo(f)
a(k)

f0 ff(k)

pdu(f)
a(k)

1
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pdu(f)
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1

Fig. 1. Pictorial representation of a(k) in over-frequency, i.e. f(k) >
f0 (top) and in under-frequency, i.e. f(k) < f0 (bottom). The value
of f(k) is indicated as a red vertical line, which defines the upper or
lower integration extrema in over- and under-frequency, respectively. In
general the distributions p(·)u and p(·)o are not symmetric with respect to
f0, nor belong to the same distribution family.

portion of panels that are enabled to transition to the other
state. Formally,

a(k) =





∫ f(k)

−∞
pdo(u)du if f(k) > f0

∫ +∞

f(k)

pdu(u)du otherwise,

b(k) =





∫ ∞

f(k)

pro(u)du if f(k) > f0

∫ f(k)

−∞
pru(u)du otherwise,

where pji denote the probability distribution functions men-
tioned above (recall that the superscripts d and r indicate the
disconnection and reconnection, respectively), and where the
subscripts o and u further denote over- and under-frequency,
respectively. Note that intuitively a(k) is computed as the part
of the integral that is closer to f0, whereas b(k) is the part
that is further away from f0. The evaluation of a(k) is shown
in Fig. 1. As an alternative, a(k) and b(k) can be expressed
via corresponding cumulative distributions.

Equation (1) now defines a two-state Markov chain with
time varying transition probabilities, as depicted in Fig. 2. Note
that a(·) and b(·) are function of the current frequency f(k): to
ease notations, we will denote them as a(k) and b(k) instead
of a(f(k)) and b(f(k)).

C. A Heterogeneous Markov Model With Delays

We now introduce a framework to encompass delays in the
population model (cf. Fig. 3): as observed in practice, panels

OFF ON

b(k)

a(k)

1− b(k) 1− a(k)

1

Fig. 2. A time-varying Markov chain for the aggregated dynamics.

cannot reactivate instantaneously but must wait a delay. We
generalise the discussion of Section II by allowing for possibly
random delays. Recall that each device is equipped with an
internal counter for the OFF-to-ON transition. We assume to
know the delay probability distribution function, and introduce
transition values τi: value τi represents the probability of
switching to state ON, given that the panel has been waiting
for i time instants (which means that f(·) ∈ If for i time
instants). We utilise n states, defined as wi, i = 1, . . . , n,
representing the i-th time step in which f(·) ∈ If with the
device still OFF.

In view of the discussions in Section II, we focus on the
case n� 1. In the i-th delay state, three outgoing transitions
are present: one towards the ON state, a second towards state
i+1, and one back to the OFF state (cf. Fig. 4). The probability
associated with the latter transition is 1 − b(k), which is the
f(k) /∈ If probability. The first outgoing probability is τib(k):
τi is the delay probability value to transition from state wi to
state ON, multiplied by b(k).

Recall that, to allow for a reconnection, the condition
f(k) ∈ If must be satisfied at all times k when the counter
τ(k) ≤ τr. Since at those times the frequency must dwell
within If , every transition towards the ON state is multiplied
by b(k). In particular, transitions between waiting states can
be thought of as a Binomial variable where the probability
at each time step is given by b(k). Notice that we have
tacitly assumed that the probability distributions of frequency
thresholds and time delays are independent. In practice, there
can be correlation between these two quantities, however this
does not invalidate our model: such a case requires computing
integrals of joint probability distributions.

We further assume that delays are distributed according to a
geometric distribution: this is often used to characterise arrival
processes or waiting-time random variables. This distribution
has the property that ∀i, τi ≥ τi+1 and

∑
i τi = 1.

The dynamics of the Markov chain in Fig. 3 can be
summarised as



x(k + 1) = (1− a(k))x(k) + b(k)
∑n
i=1 τiwi(k)

w1(k + 1) = b(k) [1− x(k)−∑n
i=1 wi(k)]

wi(k + 1) = b(k)(1− τi−1)wi−1(k)
wn(k + 1) = b(k) [(1− τn−1)wn−1(k) + (1− τn)wn(k)],

(2)
where x(k) represents the probability of being in the ON state
at time k. We alternatively interpret this value as the portion
of panels that are ON at time k: this modified point of view
allows us to translate thinking from a model of a single panel
to an aggregated model for the population. Similarly, wi(k)
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OFF ON

w1 w2 ... wn

b(k) 1− b(k)

τ1b(k)

τnb(k)

(1− τ1)b(k)

a(k)
1− a(k)1− b(k)

(1− ∑
i τi)b(k)

1

Fig. 3. A Markov model for the aggregated dynamics. This represents
the heterogeneous population in presence of a delayed reconnection.

OFF ON

wi−1 wi wi+1

1− b(k)

τi b(k)

(1− τi) b(k)

1

Fig. 4. Outgoing transitions of the single waiting state (refer to Fig. 3):
towards OFF if the frequency trips outside If ; when the frequency is
within If towards ON if the counter expires, or towards the next waiting
state otherwise.

indicates the portion of panels waiting to turn ON for i time
steps at time k and a(k), b(k) are the cdf ’s of the distributions
of frequency thresholds in the population of panels.

Remark 1: In practice the reconnection interval is usually
divided into two sub-intervals: during an early sub-interval
no device is allowed to reconnect, whereas during a follow-
ing sub-interval the reconnection happens stochastically. Our
modelling handles both scenarios. The first one is represented
by setting the τi to zero; the second one setting the values
of τj according to the given probability distribution. As an
example, imagine a minimum deterministic delay of 20 time
steps with no reconnection, and a subsequent interval of 20
time steps when the devices might reconnect. The delay states
needed to encompass this scenario is a total of 40. The vector
T containing τi, i ∈ [1, 40], is split as follows: τi = 0, for
i = 1, . . . 20, whereas τj > 0, for j = 21, . . . 40. In the
following, in order to ease the discussion we only consider
the second condition. �

D. Simplification of the Heterogeneous Model with
Delays

Towards a simplified and more explicit analysis of the
dynamics of the model with delays, we aggregate the n waiting
states into a single location (denoted by WAIT in Fig. 5),
which thus represents the portion of devices that are waiting
to turn ON. We associate the aggregated location to a new
variable y(k) =

∑
i wi(k). To formulate the corresponding

OFF ON

WAIT

b(k)

1− b(k)

b(k)ε(k)

a(k)

1− b(k) 1− a(k)

b(k)(1− ε(k))

1

Fig. 5. Simplification of the Markov model in Fig. 3. States wi are
lumped into state WAIT.

dynamics, we rewrite the term
∑
i τiwi(k) as a function of

y(k), and introduce a new term ε(k) ∈ [0, 1], ∀k, such that
n∑

i=1

τiwi(k) = ε(k)

n∑

i=1

wi(k),

namely

ε(k) :=

∑n
i=1 τiwi(k)∑n
i=1 wi(k)

. (3)

The new model has only three states, as depicted in Fig. 5,
whose transition equations are

{
x(k + 1) = (1− a(k))x(k) + b(k)ε(k)y(k)
y(k + 1) = b(k)(1− x(k))− b(k)ε(k)y(k)

, (4)

in view of the definition of ε(k) from Eq. (3).
The new model is smaller, and prone to explicit analysis.

However, in general we do not know the exact value of ε(k)
and we need to estimate it. Knowing the values τi, we can
estimate ε(k) by estimating the states wi(k). The estimation
of the states wi(k) can be attained knowing the state variable
f(k) at each step k (a model for the frequency dynamics
will be introduced in the next Section). The state estimation
algorithm is detailed in Appendix I.

Remark 2: The observability and estimation analysis are
significant in practice, as they allow a precise monitoring of
the state of the aggregated population of PV panels simply
from a frequency measurement. �

IV. MODEL OF THE ELECTRIC NETWORK

The model for the electric grid is derived from the ENTSO-
E report [17]. It represents a geographically large network
with several energy power sources and load characteristics.
Its parameters represent an average over the whole network.
It consists of a continuous-time model of the electric network
in the form of a second-order transfer function, G(s), which
relates the photovoltaic power deviation, ∆PPV (t) (its input)
to the frequency change ∆f(t) (output). Fig. 6 shows the block
diagram representation of G(s), and which is shaped as:

G(s) =
s+ 1

TLs2 + (ka + TL)s+ (ka + kPU )
,
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where the quantity TL represents the time to launch (related
to the inertia of the system), whereas ka and kPU are gains of
the load and of the primary control unit, respectively. The
transfer function includes the primary control of the grid,
which is designed as an internal feedback loop: this represents
a realistic approximation of the network dynamics over a short
timescale (seconds).

Remark 3: Power generation and consumption need to be
matched in order to secure a high-quality operation of the
electric network: this is attained by a control architecture
known as Load-Frequency Control [17]. Control actions are
performed in successive phases, each with different charac-
teristics and goals: Primary Control stabilises the network
frequency at a stationary value after a disturbance or incident,
and acts within a time-frame of seconds without restoring the
frequency to its nominal value. Secondary Control maintains a
balance between generation and consumption in a time-frame
from 30 seconds up to minutes after an incident. Tertiary
Control replaces Secondary Control by re-scheduling power
generation, and acts after several minutes. �

Note that the continuous-time feature of the grid model is in
contrast with our discrete-time models above: we will perform
a description and the analysis of the network in continuous-
time, and introduce a time discretisation when connecting it
to the aggregated model of the population of PV panels. The
discrete-time version will be employed in the experiments of
Section VI.

1
TL s

fpu(t)

50

f0P0

ka

−kPU
1
s

+

−
Pm(t)

−
+

+ −
∆f(t)

−
PPV (t)
+

∆P (t)

+

1

Fig. 6. Network block diagram representation. Quantities f(t) and
fpu(t) represent the frequency and the frequency per unit, respectively.
Pm(t) denotes the power coming from traditional machines, whereas
PPV (t) is the solar power. The PV model is represented by the orange
block.

Models of the national or European grid [5], [21], [22]
are developed with the presence of synchronous machines
and under inertia. In our context the total moment of iner-
tia associated to synchronous machines is considered to be
constant. This assumption is justified with traditional power
sources connected to the network, however when dealing
with renewable power sources the concept of inertia is more
difficult to handle. For instance, the notion of synthetic inertia
[23] is introduced when wind generation is under study (here
potential energy is stored in their blades). However, evidently
solar panels instead have no moving parts, which implies they
come with no mechanical inertia at all: if solar irradiance
suddenly subsides, a solar device immediately stops generating
electricity. The opposite is also true: whenever the sun shines
onto a PV panel, power is immediately generated.

As a result, when the penetration of solar power sources in
a network is significant, their contribution must be accounted
for. We include this contribution in the transfer function
G(s), which we regard as a function of the amount of the
conventional power generated by synchronous machines.

We assume a linear relation between the time to launch
TL and the amount of conventional power generated in the
network. Intuitively, the more conventional generators in the
network, the more inertia governs the frequency evolution and
the larger the the starting time:

TL =
CP

kT
,

where CP represents the conventional power expressed in GW
and kT is a constant value. Note that whenever CP = 0 we
obtain a time to launch that is equal to 0 seconds. We will
not discuss the CP = 0 scenario, as it is out of the scope
of this work: this situation leads to additional considerations
about safety and management of such a network.

We substitute TL in the expression of G(s), obtaining

G(s, CP ) =
(s+ 1)

CP
kT
s2 +

(
ka + CP

kT

)
s+ (ka + kPU )

. (5)

Notice that S ≥ CP , where the equality represents a network
without any renewable power.

Note that the considered network model does not account
for local changes in frequency, nor for the topology of the
network, aiming instead at modelling a large grid network. It
is in practice considered by TSOs to be a reliable model for the
continental electricity grid, as the frequency can be considered
homogeneous across countries. So rather than being limited in
its global perspective (in that it does not encompass local or
regional variations), the main limitation of our network model
is the homogeneous description of all energy sources in the
network. As an example, in the network model we consider
only one equivalent synchronous generator to represent all the
synchronous power plants: this does not take into account the
difference in dynamics between, say nuclear, coal or hydraulic
power plants, which have different characteristics. Further, we
have modelled a dependence of the inertia from the solar
penetration in the network, whereas other renewables, e.g.
wind power plants, might also have an impact. More detailed
models exist (dynamic tools as Eurostag [24], among others),
however they come with higher computational costs and would
furthermore not improve the present study on the impact of
PV panels dynamics on the network.

A. Influence of Solar Penetration on Network Dynamics:
Root Locus Analysis

We study how the ratio CP/S influences the stability of
the network. This is achieved via root locus analysis [25]. We
assume to utilise a proportional control, as explained in Section
V, under different ratios of CP/S. Fig. 7 shows the root locus
in three different conditions: CP/S = 1, i.e. no renewable
power in the network; CP/S = 0.8; and CP/S = 0.5, with
S = 220 GW. Note that in every configuration, the function
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G(s, CP ) is stable, i.e. its poles are in the negative real half
plane, as shown in Fig. 7.

The effect of renewables on the network dynamics is quite
straightforward: the more renewable power, the more oscil-
latory the system becomes, leading to larger overshoots with
respect to the setting with only traditional power. On the other
hand, we notice that also the real part increases in absolute
value, meaning a faster convergence. Most importantly, wider
oscillations could eventually cause issues in the electric grid
setting: the grid operators should avoid wide variations of the
frequency signal, as this brings the network to its operational
limits and potentially causes load shedding.

Fig. 7. Root locus with just traditional power sources (blue solid line),
20% (red dashed) and 50% (yellow dotted) renewable power.

B. Closed-Loop Dynamics of Solar Devices Connected
to the Grid: Stability Analysis

We now introduce the population of solar panels, and
connect it to the electric network in feedback, as per Fig. 6. As
mentioned in the previous section, we continue the analysis
after discretisation of the network transfer function. Let us
focus on a network with a constant amount of conventional
power, and refer to the transfer function as G(s), rather than
as G(s, CP ). Formally, we have that

∆f(t) = G(s)[PPV (t)− PPV,0].

Here PPV (t) encompasses the power generation of solar at
time t, whereas PPV,0 is the solar power injection to maintain
the frequency f(t) at the equilibrium f0. Recall that G(s)
relates the power deviation to the frequency deviation ∆f(t) =
f(t)− f0.

We now discretise G(s) from Eq. (5) into G(z) via the
step response invariance method [26]. This approach guaran-
tees perfect matching of the continuous-time signal with the
discrete-time signal at sampling times. Formally,

G(z) =
β1z + β2

z2 + α1z + α2
, (6)

where α1, α2, β1, β2 are constants that depend on the chosen
sampling time. In this work we select the same sampling time

as that of the inverters (0.2 s). We can write the discrete-time
equivalent of the previous equation as

∆f(k) = G(z)[PPV (k)− PPV,0], (7)

where ∆f(k) = f(k)−f0, f0 represents the nominal value of
the network frequency, f(k) is the value of the frequency at
time k, while PPV (k) is the power output of the population of
PV panels at time k and (as above) PPV,0 the power produced
when f(k) is at the equilibrium f0. We set

PPV (k) = P̄Nx(k),

where P̄ is assumed to be the constant power output of a single
PV panel, and N is the total number of panels. As such, we
obtain a proportional relation between the total power output
and the portion of panels in the ON mode. This assumption
simplifies the formal analysis on the feedback models in
Equations (8) and (9).

Let us denote ∆x(k) = x(k) − x0, where x0 represents
the portion of active panels when f(k) is at the equilibrium
f0. Transforming the frequency relation in Equation (7) into
state-space form, and embedding it within the dynamics of
the Markov chain with n waiting states, as per Equation (2),
results in



∆f(k + 1) = α1∆f(k) + ∆α2f(k − 1)+
+γ1∆x(k) + γ2∆x(k − 1)

x(k + 1) = (1− a(k))x(k) + b(k)
∑n
i=1 τiwi(k)

w1(k + 1) = b(k) [1− x(k)−∑n
i=1 wi(k)]

wi(k + 1) = b(k)(1− τi−1)wi−1(k)
wn(k + 1) = b(k)[(1− τn−1)wn−1(k)+

+(1− τn)wn(k)],

(8)

whereas the embedding within the Markov chain model with
three states, as per Equation (4), results in





∆f(k + 1) = α1∆f(k) + α2∆f(k − 1)+
+γ1∆x(k) + γ2∆x(k − 1)

x(k + 1) = (1− a(k))x(k) + b(k)ε(k)y(k)
y(k + 1) = b(k)(1− x(k)− ε(k)y(k)).

(9)

Notice that we have introduced constants γi = P̄ · N · βi,
i = 1, 2. The models described by Equations (8) and (9)
are utilised in the case studies in Section VI. The feedback
connection of the Markov chains and the process G(z) can be
shown to be locally asymptotically stable around the nominal
frequency. The proof can be found in Appendix II.

V. DECENTRALISED CONTROL OF SOLAR POWER
PRODUCTION

We have so far considered the power output of connected
solar panels to be constant in time. However, in practice the
operational mode of a solar panel is crucially determined
by the so called Maximum Power Point Tracking (MPPT).
This mechanism is embedded in the panel and employed to
maximise its power output, and therefore its efficiency, which
depends on several factors, such as solar radiation and external
temperature [27], [28]. Within our modelling framework, the
MPPT algorithm acts solely when a panel is active, namely in
state ON, whereas it remains idle when the panel disconnects.
Based on this practical setup, in this work we assume to
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be able to control the power output of each device level by
means of a proportional gain controller, which is introduced in
Equation (10). We argue that in practice this control scheme
can be implemented within the inverter alongside the MPPT
method with little effort. The overall algorithm works as
follows: it first finds the MPP; it then computes the desired
power output via a proportional control (described below);
finally it selects a new working point based on the ratio
between the desired power and the maximum power.

Building on the described control algorithm for the single
panel, we propose a decentralised scheme to control the entire
population of PV panels, which can be interleaved with the
current primary network control. We assume that each device,
during normal operation, injects a power level Peq into the
grid that is strictly less than PMAX , which is defined as the
maximum available power to the panel. The quantity Peq can
be tuned according to specifications and requirements by the
Transmission System Operator [29]. We utilise the following
proportional control law:

PPV (k) = Peq + kp ·∆f(k), (10)

where kp is a constant gain to be determined, and ∆f =
f(k)−f0 represents the frequency deviation from the nominal
value. We compute kp via disturbance rejection at the steady
state fss, representing the value of frequency at steady state,
considering a step disturbance d(t) = A > 0, t ≥ 0, so that

fss = A · G(0)

1 + kpG(0)
, (11)

where G(0) is the steady-state gain of G(s). Considering a
maximum acceptable steady-state disturbance value fmaxss , we
can characterise a working region for the gain as

kp ≥ G(0)−1

(
A ·G(0)

fmaxss

− 1

)
. (12)

This results in a minimum value for kp, which is then
compared to the root locus analysis in Section IV (cf. Fig.
7). The root locus shows the coordinates of the poles of the
interconnected system on the complex plane. The imaginary
component results in oscillations of the response, which are in
general undesirable: with the goal to avoid oscillations of the
frequency response, we can select kp resulting in real poles
for the closed loop.

Lack of power balance between generation and load might
result in an oscillatory frequency signal, which suggests the
introduction of a (small) deadband for the controller design.
Accordingly, regulation aims at maintaining the network fre-
quency within a (small) interval around f0, contrary to perfect
tracking as usual in control theory. As such, a control action is
performed solely when the frequency is outside this predefined
interval, whereas if the frequency is close enough to the
nominal value f0 no control action is needed. In the case
of underfrequency, we denote the interval over which the
control act as [fminu , fmaxu ]; similarly in case of overfrequency,
[fmino , fmaxo ]. Let us remark that these intervals are not related
to the working thresholds of the devices. The control design
in Equation (10) with deadband is depicted in Fig. 8.

0

Peq

PMAX

fmin
u fmax

u fmin
o fmax

of0 f

1

Fig. 8. Power output vs. network system frequency. The power profile
shows a deadband [fmax

u , fmin
o ] around f0 and a proportional gain

in underfrequency interval [fmin
u , fmax

u ] and overfrequency interval
[fmin

o , fmax
o ]. Peq represents the nominal power at f0.

VI. CASE STUDIES

In this section we test the quality of the developed models
for the aggregation of a population of heterogeneous PV
panels. Further, we utilise the control scheme, in order to
illustrate the response of the grid frequency to a sudden
generation or load loss, under several scenarios. Specifically,

1) Section VI-A shows the quality of our aggregated mod-
els, which are simulated and tested against a population
of N individual devices.

2) Section VI-B studies the relationship between the dis-
tribution of frequency thresholds and the event of load
shedding after an incident: we show that as the solar pen-
etration grows, the chance of load shedding increases.
However, heterogeneity can be exploited to enhance the
network reliability and its resilience to incidents, much
as we have argued earlier for stability analysis.

3) In Section VI-C we add a controlled power output to the
previous scenarios: we show that the proposed control
architecture avoids load shedding and provides a better
frequency response.

In line with the ENTSO-E requirements [17], we consider
a network with demands of S = 220 GW and 440 GW,
respectively. This scenario fits the framework of disturbance
rejection considered in Section V and accommodates the study
of the following incidents. The Operation Security Network
Code [30] divides incidents into three categories: normal,
exceptional, and out-of-range. Following normal incidents, the
function of the system must be maintained without violations
of technical limits. Normal incidents are classified as a loss of
up to 2 GW of load, and as a loss of up to 3 GW of power
generation. In this work, we are interested in the consequences
of such normal incidents under varying levels of penetration of
solar energy, and under different distributions of the frequency
intervals If over the population. In our simulations we utilise
the maximum value of the infeed loss incident – 3 GW – and
test the response of the network under different circumstances.
On the contrary, as already noted in [13], [31], the load loss
incident has practically no load shedding risk during normal
operations: therefore, this test is omitted. Further, we are
interested in testing the worst-case setup for the disconnection
of devices: namely, we stress the network and attempt to attain
the lowest value that f(k) can reach in the electricity grid.
To ensure this, the time-frame of power loss tests is set to
20 seconds, which prevents any panel from reconnecting –
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the reconnection of devices can only increase f(k), adding
production to the power imbalance.

In order to simulate a power generation loss, we inject
a negative step in the frequency loop corresponding to the
incident. We utilise the network model with modified inertia
from Section IV. As anticipated in earlier Sections, the unpre-
dictable solar power output of single panels is encompassed
via additive zero-mean Gaussian noise ηPV . Furthermore, the
natural noisy nature of the electric frequency is described
similarly with an additive Gaussian signal ηf . We add ηf to
the dynamics of ∆f(k+1) in (8)-(9), and ηPV to the dynamics
of PPV (k + 1) derived from (8)-(9) and to Equation (10).

As we shall see, the injected noise has a small amplitude
compared to the frequency and power signals, and will be
negligible in the case of the 440 GW network.

The network model parameters are chosen according to
the guidelines in [17]1: the self-regulation of the load ka is
assumed to be 0.01 s, the average network primary control
gain equal to kPU = 15000 MW/Hz, and the system start
time TL = CP/kT , where kT = 15 · 103. Power and
frequency values are normalised relative to S and to 50 Hz.
Power production of a single panel PMAX is set to 3 kW.
The variance of ηPV is set to 1% of PMAX . The variance
of ηf is computed from network frequency data [32] using
a Maximum Likelihood Estimation technique: the obtained
value is equal to 0.025 Hz2. Time delays are modelled in
accordance with [18], [19]: the minimum reconnection delay
is set to 20 seconds, whereas the maximum to 40 seconds.
Whilst these two quantities are handled deterministically, the
population delays within these quantities are modelled via a
geometric distribution, as discussed previously. According to
requirements in [17], we set a frequency limit value of 49.2
Hz: in real setups, if the frequency trips below the limit of 49.2
Hz, an automatic procedure of load shedding is activated. In
our simulations, we check if the frequency trips below this
critical value, and stop the simulation.

Simulations are implemented in MATLAB. The grid fre-
quency is sampled at a rate of 0.2 s, consistently with
requirements introduced in [33]. The discussion is focused
on the consequences of an incident after a few seconds, and
the simulation time is set to 20 s. After this time interval,
we assume the primary and secondary network controls have
kicked in and shall stabilise the signal f(·) around its nominal
value f0 (cf. discussion in Remark 3).

A. Experimental Evaluation of the Aggregated Models

In order to show the precision of the aggregated models,
we set up rounds of simulations comparing the two alternative
models (the n-waiting-state in Fig. 3 and the three-state in Fig.
5) with the ground truth obtained from an explicit simulation
of the entire population of PV panels within the power network
(which we denote as the explicit model).

For the explicit model, each of the N panels has been
given four different frequency thresholds (disconnection and

1G(z) includes a variation of load in response to frequency deviations,
encoded as parameter ka. The system start time is the time that a device
needs to accelerate from zero to the working speed.

reconnection in over- and under-frequency) and a time delay
(as a number of time steps the device needs to wait before
turning to state ON) between 20 and 40 seconds. These
parameters have been generated according to given probability
distributions for the population, which are then used in the
computations for the aggregated models. We have set up the
distributions of frequency thresholds as Gaussian, and that for
the time delay as geometric, and have set N = 106.

In order to validate our modelling framework, let us test the
power response – namely the evolution of x(k) – injecting a
controlled frequency signal into the feedback models in Eq. (8)
and Eq. (9). Fig. 9 shows the power response of the explicit
model, as well as of the (n + 2)-state and 3-state models,
together with the injected frequency signal. The frequency
evaluates to 50 Hz for the first 10 seconds, 49.5 Hz between
11 and 40 seconds (causing a partial disconnection of the
population), 48 Hz between 41 and 100 seconds (resulting in
a total disconnection of the population), and increasing back
to 50 Hz from 101 seconds on. First, we note the perfect
overlapping between the (n+ 2)-state and the 3-state models,
as they are analytically equivalent. We then show the small
discrepancies between the explicit and the two abstract models
in Fig. 10. Specifically, Fig. 10a zooms in on the difference
between the x(k) signals after the first disconnection period,
which evaluates to around 10−4 (dimensionless), whereas Fig.
10b depicts the gap at the end of the reconnection process,
evaluating at around 3.5. Recall that these gaps should be
multiplied by the total power of the aggregation N · PMAX ,
resulting in deviations of 0.3 MW and 100 MW in a 220
GW network, respectively. These modelling gaps derive from
our approximation: disconnection and reconnection thresholds
are defined over a continuous domain, whereas the explicit
model is characterised by a large-but-finite number of devices.
Further, the reconnection of the abstract models shows an
exponential rate – in view of the term (1− τn)wn in the last
waiting state in Eq. (2), whereas the explicit model displays
a less smooth behaviour. In the explicit model all devices
deterministically reconnect after 40 seconds, thus reaching
x(k) = 1 after a finite time horizon (see Fig. 10b where at 141
seconds x(k) becomes 1); the abstract models show instead
an exponential convergence to x(k) = 1, thus resulting in a
continuously decreasing gap between the power signals.

In terms of computational complexity, the explicit model
is much heavier to simulate. At each time step, each device
compares the current value of the network frequency with
its frequency thresholds (and delay counter), and disconnects
(or reconnects) accordingly. The Markov model, on the other
hand, computes a single integral per time step, relieving the
computational effort significantly.

B. Testing Distributions and Load Shedding Relation

Previously the quality of the aggregated models has been
tested on a simulation benchmark, which has shown their
precision. In this section we employ the aggregated models
for the population of PV panels in several scenarios.

Notice that different distributions over If have different out-
comes and bring to different conclusions about heterogeneity.
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Fig. 9. Power response for the explicit model (N individually simulated
devices, in blue), for the (n + 2)-state model (red), and for the 3-state
Markov model (yellow) to the frequency signal (purple, dashed).

TABLE II
TEST RESULTS FOR 3 GW POWER LOSS SCENARIO OVER 220 GW

NETWORK LOAD.

% PV Mean under Mean over Variance Load Shedding

10 49.5 50.5 0.05−0.25 0.15−0.25

20 49.5 50.5 0.05−0.25 0.10−0.25

40 49.5 50.5 0.05−0.25 0.05−0.25

∼ 10% 49.8− 49.0 50.2 1−5 no

We then test two scenarios concerning population thresholds:
a Narrow Interval Scenario, encompassing a limited working
frequency interval and Gaussian distributions, and a Compos-
ite Scenario with several χ2 distributions. As we will see,
Gaussian distributions accurately model inverter measurement
noise, whereas χ2 define a minimum performance setting, in
terms of a minimum working interval.

Tables II and III refer to network load scenarios of 220
and 440 GW, respectively. They show the results of tests as a
function of the percentage of solar penetration in the network,
and of the mean and variance of the considered distributions.
In the simulations the amount of load shedding does not need
to be computed: when the network frequency trips below 49.2
Hz, we assume that the procedure of load shedding is activated
(as discussed in the Introduction) and we report it in the Load
Shedding column of the Tables, along with the value of the
variance. In other words, the Load Shedding column indicates
which values of variance causes the load shedding procedure
to activate. In the following we describe the outcomes of the
two scenarios of thresholds distribution.

1. Narrow Interval Scenario: In the Narrow Interval Sce-

TABLE III
TEST RESULTS FOR 3 GW POWER LOSS SCENARIO OVER 440 GW

NETWORK LOAD. SAME SETUP AS IN TABLE II.

% PV Mean under Mean over Variance Load Shedding

10 49.5 50.5 0.05−0.25 no

20 49.5 50.5 0.05−0.25 0.15−0.25

40 49.5 50.5 0.05−0.25 0.15−0.25

∼ 5% 49.8− 49.0 50.2 1−5 no
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Fig. 10. Zoom at the end of the first frequency drop (Fig. a) and at
the end of the reconnection stage (Fig. b). The difference between the
normalised power of the explicit and the abstract models is 1.3 10−4

(dimensionless) after the first frequency drop, and 3.5 (dimensionless)
at the end of the reconnection process.

nario, we consider three percentages of penetration of solar
energy production in the network: 10%, 20%, 40% (first
three rows of Tables II and III). We assume that the het-
erogeneity over the frequency intervals that model the re-
connection/disconnection thresholds – in terms of ageing,
manufacturing, performance deterioration, sensor noise, etc. –
is well described by Gaussian distributions, which we consider
over different values of mean and variance.

Thresholds average values are set to 49.5 Hz (underfre-
quency) and 50.5 Hz (overfrequency), resulting in a 500 mHz
band around the nominal frequency of 50 Hz. We investigate
five values of variance, with values ranging from 0.05 to 0.25
Hz2 at intervals that are 0.05 apart. Simulations show, both
in the 220 GW and 440 GW scenario, that larger values of
the variance cause a higher number of panels to disconnect,
resulting in load shedding. In the 440 GW network load with
10% solar penetration scenario, no value of variance was
sufficient to trip the frequency below 49.2 Hz (cf. first row
of Table III). Clearly, when the network load is higher, the
reliability of the network itself is enhanced, having a higher
time-to-launch and therefore a larger inertia. Fig. 11 shows the
frequency drop in a 220 GW network load scenario, with 10%
solar penetration (cf. first row of Table II). Different values
of the variance (between 0.15 − 0.25 Hz2) result in different
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TABLE IV
PV POPULATION WITH DISTINCT GROUPS OF PANELS, EACH WITH

SPECIFIC UNDER-/OVER-FREQUENCY THRESHOLDS, AND ASSOCIATED

ENERGY PRODUCTION (IN MEGAWATTS) AND RELATIVE SIZE (%).

Underfrequency threshold 49.8 49.7 49.5 49.0 47.5

Overfrequency threshold 50.2 50.2 50.2 50.2 50.2

Energy production [MW] 1000 2000 4500 4000 8500

Relative size [% of total] 5 10 22.5 20 42.5

numbers of panels to disconnect, potentially resulting in load
shedding. Similar outcomes are shown in Fig. 12, where a
network load of 440 GW and solar penetration of 20% are
considered (cf. second row of Table III).

2. Composite Scenario: We slightly modify the settings
used above to achieve a more faithful description of the
heterogeneity of the grid. We employ data from European
countries [31] as a reference point, as summarised in Table
IV. We assume that the PV population is divided in five
groups, each with different under- and over-frequency limits. A
group characterises the smallest working interval that complies
with regulations, and different groups comply with different
regulations. A given panel must have a working frequency
interval If that is wider than the characteristic interval of
its group: as an example, panels installed with the 49.5
Hz underfrequency limit can have a threshold fuf ≤ 49.5.
Similarly, panels are allowed to have fof ≥ 50.2 in the 50.2
Hz overfrequency case. The probability distribution that best
describes this scenario is the χ2 distribution. Note that, in
contrast with the previous case study, the χ2 distribution is
not symmetric around its mean. The contribution in energy
production [MW] from each group is on the third row of Table
IV, whereas the fourth row shows the partition size in percent
terms. The total amount of energy production from the entire
population accrues to close to 10% of solar penetration in the
220 GW network, and to 5% in the 440 GW network: see the
last row of Tables II and III, respectively.

Similarly to the previous case studies, we test five values of
variance, ranging from 1 to 5 Hz2 (with a step of 1), and
how they possibly result to load shedding (cf. low end of
values of variance for the 220 GW case on bottom row of
Table II). Note that increasing variance leads to distributing
the population thresholds away from the nominal frequency.
Indeed, simulations show that increasing the variance enhances
the reliability of the grid, as depicted in Fig. 13: whilst no
scenario results in load shedding, a higher heterogeneity acts
as a frequency response smoother.

Remark 4: In practical terms, it is interesting to emphasise
that new European Union regulations [33] allow for a broader
interval of frequency values for inverters than in the past:
newly manufactured solar inverters should work within the
interval [47.5, 51.5] Hz. Based on the developed models, as
demonstrated above and further discussed in [13], this larger
frequency interval is likely going to contribute to the reduction
of the risk of load shedding after normal incidents. On the
other hand, old solar inverters do not abide by these new
requirements and low-quality panels are likely to suffer from
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Fig. 11. Simulations for a generation loss of 3 GW on a 220 GW
network load, with Gaussian distributions for the frequency thresholds
under several values of variance. There is a 10% penetration of solar
power generation.
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deteriorated frequency measurements, which might practically
lead to smaller working intervals. �

C. Experiments with a Controlled Power Output

In this part we implement the control architecture discussed
in Section V. In particular, we test the use of the proportional
gain in those scenarios from above where the generation loss
would result in the activation of the load shedding procedure.
We aim at highlighting the potential contribution that common
devices can bring to the resilience of the grid to a generation
incident, namely the mitigation of load shedding scenarios, by
implementing a simple control architecture.

Controllers utilise a frequency deadband of [49.95, 50.05]
Hz. We assume that every panel implements the same pro-
portional control design, with kp = 4. Peq is set to 90%
of the maximum available power output, as per Fig. 8 in
Section V. As an example, in a 220 GW network with
10% solar penetration, the solar power output accounts for
a total of 22 GW. Peq is thus 19.8 GW, whereas the available
control power for frequency regulation amounts to 2.2 GW.
Fig. 14 depicts the frequency response after the infeed loss
without any controlled device (solid lines), and with controlled
PVs (dashed lines). Solar panels contribute to 10% of the
220 GW network. It can be seen that the controlled signals
are able to sustain the network after the incident, and to
prevent panels from disconnecting, which is the cause of load
shedding. Similarly, Fig. 15 considers a 440 GW network
load scenario with the solar penetration set to 20%. Finally,
on a a 220 GW network load scenario Fig. 16 shows the
frequency signals with uncontrolled and controlled power
output, obtained with the highest and lowest values of variance
tested. (The uncontrolled signals correspond to those in Fig.
13.) In both cases, the controlled output keeps the frequency
very close to the nominal value (within tens of mHz). As
evidenced in Fig. 13, no load shedding procedure is activated
even in the absence of the control design. Nevertheless, a
control architecture enhances the electricity grid, providing
an immediate ancillary service and, in this scenario, avoids
the disconnection of a portion of panels – the portion of
the population with disconnection thresholds at 49.8 Hz and
49.7 Hz. Further, a frequency decrease of hundreds of mHz
represents a stressful situation for the grid: with an active
control the frequency decrease remains within tens of mHz,
thus significantly improving the aftermath of an incident.

As our simulations clearly show, the implementation of a
simple proportional control architecture is sufficient to avoid
the activation of the load shedding procedure. Notice that
the frequency signals carry a steady-state error due to the
proportional nature of the control. As discussed in Remark 3, it
is expected that secondary control starts up after the considered
time horizon, thus it is not explicitly modelled in this study.

Remark 5: Our studies underline the relevance and the
vulnerability associated to solar power generation. Solar panels
are a useful resource of clean energy and of control power.
Our initial modelling framework considers panels only as
a ON/OFF devices (from the perspective of their power
production) that might turn off under stress conditions in the
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Fig. 14. Comparison between frequency response after a 3 GW loss of
production incident, with 10% of renewable power on a 220 GW network
load. The response without any control is depicted with continuous lines
while in dashed lines the solar panels are controlled.
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Fig. 15. Comparison between frequency response after a 3 GW loss of
production incident, with 20% of renewable power on a 440 GW network
load. The response without any control is depicted with continuous lines
while in dashed lines the solar panels are controlled.

electricity grid. If they remain unable to actively participate
to the grid regulation, they can have a destabilising impact on
the overall network stability. On the other hand, it is easy to
understand why panels cannot be the only source of regulation:
our control approach is intended to show the potential of
such a resource, however this has clear practical shortcomings.
First, from the economic point of view, the constant 10%
loss of production – by setting Peq to 90% of the available
power – is a non-negligible amount over an extended period
of time. Further, renewables need a storage system to provide
a long-term reliable regulation: weather unpredictability and
occlusions are among the factors that need to be accounted
for. Also, the proposed control strategy works over a short
time interval: the maximum power output of panels changes
during daytime. As such, the discussed control approach is
useful in extreme situations, e.g. after an incident, rather than
in daily regulation scenarios. �

VII. DISCUSSION AND CONCLUSIONS

In this work we have discussed a modelling framework for
the aggregation of a heterogeneous population of solar panels
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Fig. 16. Comparison between control-less (solid lines) and controlled
(dashed) frequency response. The scenario represents a power gener-
ation loss of 3 GW on a 220 GW network load with χ2 distribution for
the thresholds. Solar penetration is around 10%.

connected to the electric grid via two dtMCs. The frequency
dynamics are simulated with a discrete-time equation encom-
passing the primary control with modified inertia (function of
the renewables penetration). Specifically, a linear dependency
between the amount of conventional power and the time to
launch of the network is used. As a result, we show that the
introduction of solar power increases the oscillatory response
of the grid after an incident. Wider overshoots are a dangerous
inconvenience, as they can stress the physical network.

Further, we have tested the stability of the network in two
scenarios of generation loss with different distributions of pop-
ulation thresholds. Experiments show a correlation between
load shedding and the variance of the chosen distributions,
or more precisely, to the number of panels that disconnect at
values of frequency close to the nominal value. A Gaussian
distribution has a symmetric shape around its average value:
when its variance increases, the tails on both sides spread out.
If frequency thresholds are distributed according to a Gaussian,
increasing the variance of the thresholds distribution cause
a higher number of panels (represented by the tails of the
distribution) to have thresholds closer to f0. Consequently, we
observe more panels with a narrow working interval around
the nominal frequency. As a result, the network is more likely
to fail, because it becomes more susceptible to small frequency
deviation: as highlighted by Tables II and III, this issue is more
relevant when a larger population is connected to the grid.
In the case of the (uni-directional) χ2 distribution, increasing
their variance leads to larger thresholds. As expected, the
experiments show that, in this scenario, an increased hetero-
geneity guarantees a more reliable network.

Finally, we have introduced a proportional control scheme to
control the aggregate power coming from solar panels. Panels
individually regulate their power output to restore nominal
frequency conditions after an incident. The control framework
supports a decentralised implementation. The control design
is simple, made to resemble the already existing primary
frequency regulation. However, traditional primary network
regulation does not act as fast as the panels do, being related to
the inertia coefficient. Despite its sheer simplicity, the control

implementation presented in this work clearly increases the
resilience of the network in case of sudden losses for brief
time instants. Simulations have proved that these devices are a
useful resource for frequency regulation in extreme situations.
We have verified that such a simple control could sustain the
network and avoid load shedding.

This regulation approach can be implemented by flexible
loads, such as in the case of cooler devices, as outlined in
[14]–[16]. Extensions of this work might include modelling
storage systems, such as batteries or electric vehicles.

We conclude with a practical recommendation: in order to
guarantee the reliability of the electric network in case of
incidents, it is important to have populations heterogeneous
thresholds and larger working intervals. Household solar de-
vices are widespread in the market and this population rarely
participate in the retrofit programs proposed by the European
Community, and we imagine them less frequently serviced
than industrial installations.
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APPENDIX I
OBSERVABILITY AND OBSERVER DESIGN

Whilst it is in principle possible to have real-time infor-
mation about every photovoltaic panel in the network, this
would be highly impractical. We thus consider a more realistic
scenario, where the only accessible (i.e., observable) output is
the frequency of the network. Note that if the value of f(k)
is known, also a(k) and b(k) can be computed, as we assume
to know the population distributions.

Observability of the Models

Let us show that both the 3-state Markov Chain model and
the n-state one (cf. Equations (8), (9)) are observable when the
only output signal is f(k). This means, in practical terms, that
we can derive the value of the other variables of the system,
reconstructing them solely from the value of f(k).

Let us focus on a simplified version of the three-state
Markov model, namely





f(k + 1) = α1f(k) + β1x(k)
x(k + 1) = (1− a(k))x(k) + b(k)ε(k)y(k)
y(k + 1) = b(k)(1− x(k)− ε(k)y(k))

.

This version, featuring first-order frequency dynamics, is sim-
pler to analyse whilst retaining the significant features of the
model in Equation (9). Observability analysis with the second-
order frequency dynamics can be attained following a similar
procedure. Limiting the access to the frequency, the output
matrix is the constant quantity

C(k) ≡ C = [1 0 0],

and let us define A(k), the Jacobian matrix of the linearised
system at time k

A(k) =



α1 β1 0
0 ā(k) b(k)ε(k)
0 −b(k) −b(k)ε(k)


 ,

where ā(k) = 1− a(k). The observability matrix results in

O(k) =




1 0 0
α1 β1 0
α2

1 α1β1 + β1ā(k + 2) β1b(k + 2)ε(k + 2)


 .

The rank is full as long as b(k)ε(k) 6= 0, namely when
either b(k) 6= 0 and ε(k) 6= 0. Let us now analyse what the
conditions b(k) = 0 and ε(k) = 0 elicit.

1) ε(k) = 0 – In this case the system reduces to




f(k + 1) = α1f(k) + β1x(k)
x(k + 1) = ā(k)x(k)
y(k + 1) = b(k)(1− x(k)).

In this case y(k) is clearly not observable, as x(k + 1) loses
its dependency on y(k) and at the same time y(k) has no
effect on the output. However, if we restrict our attention to
the reduced system composed of the first two equations, this
is observable: the observability matrix becomes

O(k) =

[
1 0
α1 β1

]
,

which is always full rank. Note that y(k) depends only on
x(k): in the next section we will be able to compute its
estimated value ŷ(k) from x̂(k), the estimated value of x(k).

2) b(k) = 0 – Similarly, the system reduces to




f(k + 1) = α1f(k) + β1x(k)
x(k + 1) = ā(k)x(k)
y(k + 1) = 0

,

and analogous conclusions can be drawn.
Regarding the observability of the (n+2)-state model, the

analysis results analogous. Equation (8) suggests a chain-
dependency of wi(k) from wi−1(k − 1), which keeps the
rank of the observability matrix full. This leads to a chain
of substitutions that guarantees the observability in n steps,
under the condition b(k)ε(k) 6= 0. If b(k) ε(k) = 0, then we
can repeat a similar argument. Finally, the analysis is easily
generalisable to the second-order frequency dynamics.

Observer Design

An observer can be built for both models in Equations (8)
and (9). We start with the observer for the smaller model.
Let us define x̂(k) and ŷ(k) as the estimated values of x(k)
and of y(k), respectively. Assume the unique output is the
frequency of the network, namely f̂(k) = f(k). Our aim
is the computation of x̂(k) and ŷ(k). As above, considering
the three-state model, we assume ε(k) known as we carry
on the analysis. Later, for the (n+2)-state model estimator
computation, we build ε̂(k), the estimation of ε(k).
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Let us now focus on the three-state model and show how to
build x̂(k) and ŷ(k). After some algebra, from Equation (9)
we obtain:


f(k − 2)
x̂(k − 2)
ŷ(k − 2)


 =




0 0 1
0 1/β1 −α1/β1

l1 l2 l3


 ·




f(k)
f(k − 1)
f(k − 2)


 ,

where [l1, l2, l3] is equal to
[

1

β1b(k − 2)ε(k − 2)
, − ā(k − 2) + α1

β1
, −α1ā(k − 2)

β1

]
.

Our estimation is two steps behind the current time instant.
We then set up a two-steps predictor following the dynamical
equations of the system, after some algebra, as


f̂(k)
x̂(k)
ŷ(k)


=




1 0 0
obs2,1 obs2,2 obs2,3

obs3,1 obs3,2 obs3,3






f(k)
f(k − 1)
f(k − 2)


+




0
0

b(k − 1)


 ,

where

obs2,1 = ā(k−1)
β1

, obs2,2 = − ā(k−1)α1

β1
, obs2,3 = 0,

obs3,1 = − 1+c1
β1
− c1, obs3,2 = −α1

β1
(1 + 2c1), obs3,3 = 0,

and where

c1 =
ε(k)ā(k − 1)

b(k − 1)ε(k − 1)
.

Regarding the (n+2)-state model, a similar situation is
expected. In fact, for the dynamical equation we need an
(n+2)-step predictor. The value of x̂(k) can be attained using
two temporal values of f(·), as it is easy to note from Equation
(8). The key part is how to connect the estimation of x(k) to
w1(k). We note that, again from Equation (8):

x(k + 1) +
∑

i

wi(k + 1) = ā(k)x(k) + b(k)(1− x(k)),

so that
∑

i

wi(k) = ā(k − 1)x(k − 1)+

+ b(k − 1)(1− x(k − 1))− x(k).

We can substitute this into the estimator of w1(k), giving

ŵ1(k) = b(k−1)[1−b(k−1)(1−x̂(k−1))−ā(k−1)x̂(k−1)].

The observer and predictor can be built as follows:

f̂(k) = f(k),

x̂(k − i) =
f(k − i+ 1)− α1f(k − i)

β1
, i = 1, 2,

x̂(k)|x̂(k − 1) = ā(k − 1)x̂(k − 1) + b(k − 1)
∑

i

τiŵi(k − 1),

ŵ1(k) = b(k)[1− b(k − 2)(1− x̂(k − 2))+

− ā(k − 2)x̂(k − 2)],

ŵi(k) = b(k − 1)(1− τi−1)ŵi−1(k − 1), i = 2, . . . n− 1

ŵn(k) = b(k − 1)[(1− τn−1)ŵn−1(k − 1)+

+ (1− τn)ŵn(k − 1)].

With this technique we prove that we are able to build an
observer for the system, estimate the wi(k) and compute the
ε̂(k) value at each time step as

ε̂(k) =

∑
i τiŵi(k)∑
i ŵi(k)

.

Note that the observer has a transient of (n+ 2) steps, which
is necessary to initially compute ŵi, ∀i. This value is then
used in the estimation and prediction of the three-state model.

APPENDIX II
STABILITY ANALYSIS OF THE CLOSED-LOOP MODEL

We illustrate the stability analysis for the closed-loop mod-
els in Equations (8) and (9). In order to ease the notation and
to make the discussion clearer, we utilise a reduced first-order
transfer function, as done already in Appendix I. The analysis
with the second-order transfer function introduced in the paper
can be carried out similarly.

We start with the closed-loop three-state model: the analysis
of the (n+ 2)-state model is analogous to what we present in
the following. Whilst for simplicity we manipulate quantities
a(k) and b(k), recall that they are functions of the frequency
f(k), namely we have a(f(k)) and b(f(k)). More specifi-
cally, they are cumulative distribution functions of the panels
thresholds, where f(k) enters as an extremum of the integral.

Let us re-write the second equation of Equation (9): we need
the dependency on ∆x(k) to be explicit. Recall from Section
IV that ∆x(k) = x(k)−x0, where x0 is the portion of panels
in state ON when f(·) = f0. In our setting, we assume x0 = 1
(all panels ON), i.e. all panels are active when the frequency
is at its nominal value. Notice that in this case the equilibrium
point of this system is the origin, however if x(0) 6= 0, the
following analysis must be modified to accommodate for this.

Substituting x(k) = ∆x(k)+x(0), we obtain an alternative
formulation for the three-state model as



∆f(k + 1) = α1∆f(k) + β1∆x(k)
∆x(k + 1) = ā(k)∆x(k) + b(k)ε(k)y(k) + a(k)x(0)
y(k + 1) = −b∆x(k)− b(k)ε(k)y(k) + b(k)(1− x(0)).

We compute the Jacobian as in the previous Appendix and
evaluate it at the equilibrium point: this holds an eigenvalue
in 1: the eigenvalue analysis is not sufficient in this case (the
stability depends on the non-linear components of the vector
field), and analysis via Lyapunov function is thus necessary to
assess the stability of the equilibrium.

Recall that at f(·) = f0 the functions ā(k) = 1 b(k) = 1,
a(k) = 0, x(0) = 1. Therefore we have ε(k) = 0, y(k) = 0,
∆x(k) = 0, ∆f(k) = 0.

Let us define the vector ξ(k) = [∆f(k),∆x(k), y(k)].
Notice that, thanks to the stability of the first-order transfer
function, we ensure the stability of f(k) when ∆x(k) → 0.
We then select the following Lyapunov function:

V (ξ(k)) = (∆x(k) + y(k))2,

which is positive everywhere but at the origin. In order to
assess the stability of the interconnection, we compute

V (ξ(k + 1))− V (ξ(k)) = [(ā(k)− b(k))2 − 1]∆x(k)+

+ 2[a(k)(ā(k)− b(k))− y(k)]∆x(k) + a(k)2 − y(k)2.
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From the definitions of a(·) and b(·), we have

a(f0) = 0, ā(f0) = 1, b(f0) = 1. (13)

Substituting these values we obtain:

V (ξ(k + 1))− V (ξ(k)) = −(∆x(k) + y)2 ≤ 0.

The negativity of the Lyapunov function is guaranteed as long
as the conditions in (13) hold. We argue that these conditions
also hold in a non-trivial neighbourhood of f0 (call it If0 ):
in practice, panels disconnect and reconnect at values f0 ± δ,
δ > 0, which means that the network is stable as long as no
panel disconnects (given x0 = 1). As soon as f(·) exits If0 ,
the stability is not guaranteed. The transition from stability
to instability depends on the threshold distributions for the
population of PV panels, and in particular on their averages
and variances. The stability of the interconnection depends
heavily on the interval If0 : the larger is the interval, the more
resilient is the system to oscillations. Let us focus on a(k) for
simplicity. Let us assume a distribution a(k) that is the integral
of truncated normal distribution. Let us focus on the condition
f(k) > f0 (the f(k) ≤ f0 side is handled symmetrically).
Define λo = [λ1, λ2] to be the support of pdt,o(·), and suppose
that λ0 supports a symmetric truncated normal pdt,o (i.e. its
average value is µ = (λ1 + λ2)/2) for any choice of λ1 and
of λ2. By definition of the truncated normal distribution pdt,o,
the quantity a(k) becomes

a(k) =





0 if f0 ≤ f(k) < λ1∫ f(k)

λ1
pdt,o(u)du if λ1 ≤ f(k) ≤ λ2

1 otherwise.

In the case under consideration, the upper limit of If0 is λ1.
As such, the length of If0 increases as the support of pdt,o is
far from f0, namely as λ1 increases. With an increase of If0 ,
the stability of the interconnection is preserved for a larger
set of network frequency values. On the other hand, also λ2

plays an important role in the stability analysis. Increasing λ2

enlarges the support of p(·)
t,o. This reduces the rate of increase

of a(k) when f(k) increases: the distribution p(·)
t,o, over a larger

support, has lower values. Note that the sign of V (ξ(k−1))−
V (ξ(k)) outside If0 depends heavily on the slope of a(k).

Let us define F , a value of frequency so that |F−f0| >> 0.
When f(·) = F , then a(F ) = 1, ā(F ) = 0, b(F ) = 0. Let us
analyse the Lyapunov function under these conditions:

V (ξ(k + 1))− V (ξ(k)) = −(∆x(k) + y(k))2 + a(F )2,

which is positive as long as (∆x(k) + y(k))2 < a(F )2. Note
that ∆x(·), y(·) ∈ [0, 1], and are such that ∆x(k) + y(k) ≤ 1
∀k, by definition. The slope of a(·) here plays a major role:
if the growth rate of a(k) is faster than the one of (∆x(k) +
y(k)), the system becomes unstable.

Let us finally study the system for values of f(k) so that
a(f), ā(f), b(f) ∈ (0, 1). The Lyapunov function becomes

V (ξ(k + 1))− V (ξ(k)) =
= −(∆x(k) + y(k))2 + (a(k) + d(k)∆x(k))2,

where d(k) = ā(k)− b(k). The analysis is similar to the one
above: the Lyapunov function can become positive if a(·) and
d(·) grow faster than ∆x(k) and y(k).

In summary, under all the three conditions analysed, the
increase of a(·) and b(·) is dictated by the variance of the
disconnection and reconnection distributions, respectively. A
small value of the variance renders the system less robust
and more prone to instability. This situation occurrs with
a population having individual If with small variations. A
higher value of variance corresponds to a higher degree of
population heterogeneity, which we have shown to increase
the stability region of the Lyapunov function. Heterogeneity, in
this sense, can be exploited to enhance the network reliability
and resilience against oscillations and incidents. On the other
hand, as the analysis on the first condition suggests, instability
can be mitigated by moving the average value away from f0.

This stability analysis can be generalised to the second-
order frequency dynamics using the same Lyapunov function.
We consider the following for the (n+2)-state model

V (ξ(k)) =

(
∆x(k) +

n∑

i=1

wi(k)

)2

.
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