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Abstract

This work discusses a two-step procedure, based on the use of formal abstractions, to generate a

finite-space stochastic dynamical model as an aggregation of the continuous temperature dynamics of

a homogeneous population of Thermostatically Controlled Loads (TCLs). The temperature of a TCL

is described by a stochastic difference equation and the TCL status (ON, OFF) by a deterministic

switching mechanism. The procedure is deemed to be formal, as it allows the quantification of the

error introduced by the abstraction. As such, it builds and improves on a known, earlier approximation

technique used in the literature. Further, the contribution discusses the extension to the instance of

heterogeneous populations of TCLs by means of two approaches. It moreover investigates the problem

of global (population-level) power reference tracking and load balancing for TCLs that are explicitly

dependent on a control input. The procedure is tested on a case study and benchmarked against the

mentioned existing approach in the literature.

I. INTRODUCTION

Thermostatically Controlled Loads (TCLs) have shown potential to be engaged in power sys-

tem services such as load shifting, peak shaving, and demand response programs. The regulation

of the total power consumption of large populations of TCLs, with the goal of smoothing the

uncertain demand over the grid or of tracking the uncertain power production, while abiding

by strict requirements on users comfort, can lead to economically relevant repercussions for an

energy provider. The modeling of TCLs in view of their application to load control has a rich

history, which can be traced back to the work [12], where the model of a TCL is used to describe

the evolution of the thermostat state. A diffusion approximation framework is introduced in

[23] and a discrete-time simulation model is developed in [27]. Building on these foundations,
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recent studies have focused on the development of practically usable models for aggregated

populations of TCLs. In particular, [10] provides an approximate analytical solution to the

coupled Fokker–Planck equations originally developed in [23] for a population of homogeneous

TCLs (meaning that TCLs are assumed to have the same dynamics and parameters), and puts

forward a Linear Time-Invariant (LTI) population model, where the coefficients of its transfer

function are estimated by means of system identification techniques. The contribution in [5]

develops a bilinear PDE model and designs a Lyapunov stable controller. The work in [22]

proposes a new technique, based on the partitioning of the TCL temperature range, to obtain an

aggregate state-space model for a population of TCLs that is now heterogeneous over its thermal

capacitances. The full information of the state variables of the model is used to synthesize a

control strategy over the model output (namely, the total power consumption), in order to attain

tracking via a (deterministic) Model Predictive Control (MPC) scheme. The contributions in

[24], [26] extend the results in [22] by considering a population of TCLs that are heterogeneous

over all their parameters: this general setup requires the use of the extended Kalman filter to

estimate the states of the model and to identify its characteristic transition matrix. The control

of the population is performed by switching ON/OFF a portion of the TCLs in the population.

Additional recent contributions have targeted the application of the approaches in [22], [24],

[26], towards higher-order dynamics [29], [30] and energy arbitrage [25].

Matrices and parameters of the state-space aggregate model can be computed analytically

or via system identification techniques [5], [10], [22], [24], [26]. The only available analytical

derivation of the state-space aggregate model [22] works in discrete time and is based, under

two rather restrictive assumptions, on the underlying model of the single TCL: first, the TCL

temperature evolution is assumed to be deterministic, thus leading to a deterministic state-space

model; second, after partitioning the temperature range in separate intervals, the temperatures of

the TCLs within each interval are assumed to be uniformly distributed. Moreover, from a practical

standpoint there seems to be no clear connection between the precision of the aggregation and

the performance of the aggregated model: more specifically, an increase in the number of state

bins (that is, a decrease in the width of the introduced temperature intervals) does not necessarily

improve the performance of the aggregated model. The approach based on system identification

[10], [24], [26] on the other hand estimates the parameters of an LTI aggregate model from data.

This article proposes a new, formal two-step abstraction procedure to generate a finite stochas-

tic dynamical model as the aggregation of the dynamics of a population of TCLs. The approach

relaxes the limiting assumptions employed in [22] by providing a model based on the native



probabilistic evolution of the single TCL temperature. The abstraction comprises two separate

parts: (1) translating a continuous-space model of a TCL to a finite state-space model, which

obtains a Markov chain; and over a population of TCLs (2) taking the cross product of the single

Markov chains and lumping the obtained model, by finding its coarsest probabilistically bisimilar

Markov chain [4]. The approach is developed for the case of a homogeneous population of TCLs,

and extended to a heterogeneous population – in the latter case the aggregation (second step)

employs an approximate probabilistic bisimulation relation, which as we shall see introduces

an error. In both the homogeneous and the heterogeneous case, it is possible to quantify the

abstraction error of the first step, and furthermore in the homogeneous instance the error of

the overall abstraction procedure can be quantified – this is unlike the approach based on

approximations in [22] and the approach based on system identification in [10], [24], [26].

This article also describes a dynamical model for the time evolution of the abstraction and

provides asymptotic results as the population size grows. Moreover, it shows that increasing the

number of state bins always improves the accuracy, leading to a convergence of the introduced

abstraction error to zero. This result is aligned with the work in [5], [6] on the aggregation

of continuous-time deterministic thermostatic loads. The explicit relationship between aggregate

model and population parameters enables the development of a set-point control strategy aimed

at reference tracking over the population total power consumption (cf. Figure 2): a conditional

Kalman filter [11] is employed to estimate the state of the model, which is then used to regulate

the power consumption of the population via a simple one-step prediction approach. As such, the

control architecture does not require knowledge of the single TCL states, but directly leverages

the measurement of the total power consumption. Alternatively, a stochastic model predictive

control scheme is proposed. Both procedures are tested on a case study and the abstraction

technique is benchmarked against the analytical approach proposed in [22].

The article is organized as follows. Section II, after introducing the model of the TCL

dynamics, describes its abstraction as a Markov Chain, and further discusses the aggregation of a

homogeneous population of TCLs – the errors introduced by both steps are quantified. Section III

focuses on heterogeneous populations of TCLs and elucidates two techniques to aggregate their

dynamics: one based on averaging, and a second based on clustering the uncertain parameters.

The latter approach allows for a general quantification of the error. Section IV discusses TCL

models endowed with a control input, and the synthesis of global (acting at the population level

– cf. Figure 2) controllers to achieve regulation of the total consumed power – this is achieved by

two alternative schemes. Finally, all the discussed techniques are tested on a case study described



in Section V.

II. FORMAL ABSTRACTION OF A HOMOGENEOUS POPULATION OF TCLS

A. Continuous Model of the Temperature of a TCL

Throughout this article we use the notation N to denote the set of positive integers, N0 =

N ∪ {0}, Nn = {1, 2, 3, . . . , n}, and Zn = Nn ∪ {0}. We denote vectors with bold typeset and

use corresponding indexed letters with normal typeset for their elements.

The evolution of the temperature in a TCL can be characterized by the following stochastic

difference equation [10], [23]:

θ(t + 1) = a θ(t) + (1− a)(θa ±m(t)RPrate) + w(t), (1)

where θa is the ambient temperature, Prate is the energy transfer rate of the TCL, C and R indicate

the thermal capacitance and resistance respectively, and a = e−h/RC with a discretization step

h. The process noise w(t), t ∈ N0, is made up by i.i.d. random variables characterized by a

density function tw(·). We denote with m(t) = 0 a TCL in the OFF mode at time t, and with

m(t) = 1 a TCL in the ON mode. In equation (1) the symbol ± signifies the following: a plus

sign is used for a heating TCL, whereas a minus sign for a cooling TCL. In this work we focus

on a population of cooling TCLs, with the understanding that the case of heating TCLs can be

similarly obtained. The distribution of the initial temperature and mode is denoted by π0(m, θ).

The temperature of the cooling TCL is regulated by a control signal m(t + 1) = f(m(t), θ(t))

based on discrete switching as

f(m, θ) =















0, θ < θs − δ/2
.
= θ−

1, θ > θs + δ/2
.
= θ+

m, else,

(2)

where θs denotes a temperature set-point and δ a dead-band, and together characterize an

operating temperature range. The power consumption of the TCL at time t is equal to 1
η
m(t)Prate,

which is equal to zero in the OFF mode and positive in the ON mode, and where the parameter

η is the coefficient of performance. The constant 1
η
Prate, namely the power consumed by the

TCL when it is in the ON mode, will be shortened as PON in the sequel.

B. Finite Abstraction of a TCL by State-Space Partitioning

The composition of the dynamical equation in (1) with the algebraic relation in (2) allows

one to consider a TCL as a Stochastic Hybrid System [2], namely as a discrete-time Markov



process evolving over a hybrid (that is, discrete/continuous) state space. The hybrid state space

is characterized by a variable s = (m, θ) ∈ Z1 × R with two components, a discrete (m) and

a continuous (θ) one. The one-step transition density function of the stochastic process, ts(·|s),
made up of the dynamical equations in (1), (2), and conditional on point s, can be computed as

ts ((m
′, θ′)|(m, θ)) = δ[m′ − f(m, θ)]tw(θ

′ − a θ − (1− a)(θa −mRPrate)),

where δ[·] denotes the discrete unit impulse function. This interpretation allows leveraging an

abstraction technique, proposed in [1] and extended in [15], [16], [18], aimed at reducing a

discrete-time, uncountable state-space Markov process into a (discrete-time) finite-state Markov

chain. This abstraction is based on a state-space partitioning procedure as follows. Consider

an arbitrary, finite partition of the continuous domain R = ∪n
i=1Θi, and arbitrary representative

points within the partitioning regions denoted by {θ̄i ∈ Θi, i ∈ Nn}. Introduce a finite-state

Markov chain M, characterized by 2n states sim = (m, θ̄i), m ∈ Z1, i ∈ Nn. The transition

probability matrix related to M is made up of the following elements

P(sim, si′m′) =

∫

Θi′

ts
(

(m′, θ′)|m, θ̄i
)

dθ′, ∀m,m′ ∈ Z1, i, i
′ ∈ Nn. (3)

The initial probability mass for M is obtained as p0(sim) =
∫

Θi
π0(m, θ)dθ. For simplicity of

notation we rename the states of M by the bijective map ℓ(sim) = mn+ i,m ∈ Z1, i ∈ Nn, and

accordingly we introduce the new notation

Pij = P(ℓ−1(i), ℓ−1(j)), p0i = p0(ℓ
−1(i)), ∀i, j ∈ N2n.

Notice that the conditional density function of the stochastic system capturing the dynamics

of a TCL is discontinuous, due to the presence of equation (2). This can be emphasized by the

following alternative representation of the discontinuity in the discrete conditional distribution,

for all m,m′ ∈ Z1, θ ∈ R:

δ [m′ − f(m, θ)] = m′
I(θ+,∞)(θ) + (1−m′)I(−∞,θ−)(θ) + (1− |m−m′|)I[θ−,θ+](θ),

where IA(·) denotes the indicator function of a general set A. The selection of the partitioning

sets then requires special attention: a convenient way to obtain that is to select a partition for

the dead-band [θ−, θ+], thereafter extending it to a partition covering the whole real line R (cf.

Figure 1). Let us select two constants l,m ∈ N, l < m, compute the partition size υ = δ/2l and

quantity L = 2mυ. Now construct the boundary points of the partition sets {θi}i=m

i=−m
for the

temperature axis as follows:

θ±l = θs ± δ/2, θ±m = θs ± L/2, θi+1 = θi + υ, R = ∪n
i=1Θi, n = 2m+ 2,

Θ1 = (−∞, θ−m), Θn = [θm,∞), Θi+1 = [θ−m+i−1, θ−m+i), i ∈ Nn−2,
(4)
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Fig. 1. Partitioning of the temperature axis for the abstraction of the dynamics of a TCL.

and let us render the Markov states of the infinite-length intervals Θ1,Θn reflecting. Let us

emphasize that the discontinuity in the discrete transition kernel δ [m′ − f(m, θ)] and the above

partition induce the following structure on the transition probability matrix of the chain M:

P =

[

Q11 0 Q31 0

0 Q22 0 Q42

]T

, (5)

where Q11, Q42 ∈ R
n×(m+l+1), whereas Q22, Q31 ∈ R

n×(m−l+1), which leads to P ∈ R
2n×2n.

Clearly, the abstraction of the dynamics in (1)-(2) over this partition of the state space leads

to a discretization error: in Section II-E we formally derive bounds on this error as a function of

the partition size υ and of the quantity L. This guarantees the convergence (in expected value)

of the power consumption of the abstracted model to that of the entire population [1], [15], [16].

C. Aggregation of a Population of TCLs by Bisimulation Relation

Consider now a population of np homogeneous TCLs, that is a population of TCLs which,

after possible rescaling of (1)-(2), share the same set of parameters θs, δ, θa, C, R, Prate, PON

(and thus η), h, and noise terms tw(·). Each TCL can then be abstracted as a Markov chain

M with the same transition probability matrix P = [Pij ]i,j , where i, j ∈ N2n, which leads to a

population of np homogeneous Markov chains. The initial probability mass vector p0 = [p0i]i

might still vary over the TCL population.

The homogeneous population of TCLs can be represented by a single Markov chain Ξ , built

as the cross product of the np homogeneous Markov chains, and endowed with the state

z = [z1, z2, . . . , znp
]T ∈ Z = N

np

2n,

where zj ∈ N2n represents the state of the j th Markov chain. We denote by PΞ the transition

probability matrix of Ξ .

It is understood that Ξ , having exactly (2n)np states, can in general be quite large, and thus

cumbersome to manipulate computationally. As the second step of the abstraction procedure, we

are interested in aggregating this model and we employ the notion of probabilistic bisimulation



to achieve this [4]. Let us introduce a finite set of atomic propositions1 as a constrained vector

with a dimension corresponding to the number of bins of the TCL M:

AP =

{

x = [x1, x2, . . . , x2n]
T ∈ Z

2n
np

∣

∣

∣

∣

2n
∑

r=1

xr = np

}

.

The labeling function L : Z → AP associates to a configuration z of Ξ a vector x = L(z), the

elements xi ∈ Znp
of which count the number of thermostats in bin i, i ∈ N2n. Notice that the

set AP is finite with cardinality |AP | = (np + 2n − 1)!/(np!(2n − 1)!), which for np ≥ 2 is

(much) less than the cardinality (2n)np of Ξ .

Let us define an equivalence relation R [4] on the state space of Z , such that

(z, z′) ∈ R ⇔ L(z) = L(z′).

A pair of elements of Z (each of them a vector representing a state of Ξ) is in the relation

whenever the corresponding number of TCLs in any of the introduced bins is the same (recall

that the TCL population is assumed to be homogeneous). Such an equivalence relation provides

a partition of the state space of Z into equivalence classes belonging to the quotient set Z/R,

where each class is uniquely specified by the label associated to its elements. We plan to show

that R is an exact probabilistic bisimulation relation on Ξ [4], which requires proving that, for

any set T ∈ Z/R and any pair (z, z′) ∈ R

PΞ(z,T ) = PΞ(z
′,T ), (6)

This is achieved by Corollary 1 in the next Section. We now focus on the stochastic properties

of Ξ , which we study via its quotient Markov chain obtained with R.

D. Properties of the Aggregated Quotient Markov Chain

We study the one-step probability mass function associated to the codomain of the labeling

function (that is, to the labels set), conditional on the state of the chain Ξ .

Lemma 1. The conditional random variable (xi(t + 1)|z(t)), i ∈ N2n, has a Poisson-binomial

distribution over the sample space Znp
, with the following mean and variance:

E[xi(t+ 1)|z(t)] =
np
∑

r=1

Pzr(t)i, var(xi(t+ 1)|z(t)) =
np
∑

r=1

Pzr(t)i(1− Pzr(t)i). (7)

1An atomic proposition is a proposition whose truth or falsity does not depend on that of other propositions. Sets of atomic

propositions are used to assign labels to the states of a Markov chain [4].



Proof. Recall that the states of all the Markov chains at time t are known; Markov chain r jumps

to the state i with probability Pzr(t)i and fails to jump to the state i with probability (1−Pzr(t)i).

The definition of the variable xi implies that the conditional random variable (xi(t+ 1)|z(t)) is

the sum of np independent Bernoulli trials with different success probabilities Pzr(t)i, which is

a Poisson-binomial distribution with the mean and variance as in (7).

Conditional on an observation x = [x1, x2, . . . , x2n]
T at time t over the Markov chain Ξ ,

it is of interest to compute the probability mass function of the conditional random variable

(xi(t+1)|x(t)) as P(xi(t+1) = j|x(t)), for any j ∈ Znp
— notice the difference with the quantity

discussed in (7) where the conditioning is over variable z(t). For any label x = [x1, . . . , x2n]
T

there are exactly np!/(x1!x2! · · ·x2n!) states of Ξ such that L(z) = x. We use the notation z →֒ x

to indicate the states in Ξ associated to label x, that is z : L(z) = x. Based on the law of total

probability for conditional probabilities, we can write

P(xi(t + 1) = j|x(t)) =
∑

z(t)→֒x(t) P(xi(t + 1) = j|z(t))P(z(t))
P(x(t))

= P(xi(t+ 1) = j|z(t))
∑

z(t)→֒x(t) P(z(t))

P(x(t))
= P(xi(t+ 1) = j|z(t)),

(8)

where the sum is over all states z(t) of Ξ such that L(z(t)) = x(t): in these states we have x1(t)

Markov chains in state 1 with probability P1i, x2(t) Markov chains in state 2 with probability

P2i, and so on. The simplification above is legitimate since the probability of having a label

x = (x1, x2, . . . , x2n) is exactly the sum of the probabilities associated to the states z generating

such a label. This further allows expressing the quantities in (7) as

E[xi(t + 1)|z(t)] =
np
∑

r=1

Pzr(t)i =
2n
∑

r=1

xr(t)Pri.

The generalization of the previous results to vector labels leads to the following statement.

Theorem 1. The conditional random variables (xi(t + 1)|x(t)) are characterized by Poisson-

binomial distributions, whereas the conditional random vector (x(t+ 1)|x(t)) by a generalized

multinomial distribution. Mean, variance, and covariance are described, ∀i, j ∈ N2n, i 6= j, by

E[xi(t + 1)|x(t)] =∑2n
r=1 xr(t)Pri,

var(xi(t + 1)|x(t)) =∑2n
r=1 xr(t)Pri(1− Pri),

cov(xi(t + 1), xj(t+ 1)|x(t)) = −∑2n
r=1 xr(t)PriPrj .



Theorem 1 indicates that the distribution of the conditional random variable (x(t + 1)|x(t))
is independent of the underlying state z(t) →֒ x(t) of Ξ . With focus on equation (6), this result

allows us to claim the following.

Corollary 1. The equivalence relation R is an exact probabilistic bisimulation over the Markov

chain Ξ . The resulting quotient Markov chain is the coarsest probabilistic bisimulation of Ξ .

Without loss of generality, let us normalize the values of the labels x by the total population

size np, thus obtaining a new variable X. The conditional variable (X(t+1)|X(t)) is characterized

by the following parameters, for all i, j ∈ N2n, i 6= j:

E[Xi(t + 1)|X(t)] =
∑2n

r=1Xr(t)Pri,

var(Xi(t + 1)|X(t)) = 1
np

∑2n
r=1Xr(t)Pri(1− Pri),

cov(Xi(t + 1), Xj(t+ 1)|X(t)) = − 1
np

∑2n
r=1Xr(t)PriPrj.

(9)

Based on the expression of the first two moments of (X(t + 1)|X(t)), we apply a translation

(shift) on this conditional random vector as W(t) = X(t + 1) − E[X(t + 1)|X(t)], where

W(t) = [ω1(t), . . . , ω2n(t)]
T and ωi(t) are guaranteed to be (dependent) random variables with

zero mean and covariance described by (9) and dependent on the state X(t). Such a translation

allows expressing the following dynamical model for the variable X:

X(t+ 1) = P TX(t) +W(t). (10)

Remark 1. We have modeled the evolution of the TCL population with the abstract aggregated

model (10), characterized by a stochastic difference equation. The dynamics in (10) represent a

direct generalization of the model abstraction provided in [22]. A closer look on the covariance

terms in (9) suggests that they are bounded by the quantity 1/np, and thus decrease to zero as np

grows, regardless of the number of bins n. This result not only relates the model in (10) to that

in [22], but also allows generalizing the results of [8], [9], where convergence to a deterministic

difference equation for large populations of Markov chains is investigated in the context of mean

field limits. Notice further that the state process noise W(t) is obtained because of the use of

a finite population size, which can be seen as a specific form of modeling mismatch, as indeed

qualitatively claimed in [24], [26] and now formally explained in this work.

Above we have characterized the random variable (Xi(t + 1)|X(t)) with a Poisson-binomial

distribution. We employ the Lyapunov central limit theorem [7] to show that this distribution

converges to a Gaussian one.



Theorem 2. The random variable (Xi(t+ 1)|X(t)) can be explicitly expressed as

Xi(t+ 1) =

2n
∑

r=1

Xr(t)Pri + ωi(t), (11)

where the random vector W(t) = [ω1(t), . . . , ω2n(t)]
T has a covariance matrix Σ(X(t)) as in

(9), and converges (in distribution) to a multivariate Gaussian vector N (0, Σ(X(t))), as np ↑ ∞.

Proof. In order to prove that the random vector (X(t + 1)|X(t)) converges to a multivariate

normal random variable, we show that every linear combination of its components converges

to a normal random variable. Consider any arbitrary vector ν = [ν1, ν2, . . . , ν2n]
T ∈ R

2n. The

random variable (νTX(t + 1)|X(t)) can be seen as the sum of np independent (normalized)

categorical random variables yj [20] over the sample space { ν1
np
, ν2
np
, . . . , ν2n

np
}, where x1(t) of

them have success probability p1 = [P11, P12, . . . , P12n], x2(t) have success probability p2 =

[P21, P22 . . . , P22n], and so on. Then

lim
np→∞

1

s3np

np
∑

j=1

E
[

|yj − µj|3
]

= lim
np→∞

n
3/2
p

n2
p

∑2n
r=1

∑2n
i=1Xr(t)|νi − prν|3

(
∑2n

r=1

∑2n
i=1Xr(t)|νi − prν|2

)3/2

since both numerator and denominator of the second fraction are constant and thus independent

of np. On the other hand, the mean and variance can be obtained based on the direct definition

of νTX(t+ 1) and the relation in (9). Based on the Lyapunov central limit theorem [7] we are

able to conclude that (the convergence is in distribution)
(

ν
TX(t+ 1)− ν

TP TX(t)
√

ν
TΣ(X(t))ν

∣

∣

∣

∣

X(t)

)

d−→ N (0, 1).

Defining the variable ωi(t) through equation (11) leads to W(t)
d−→ N (0, Σ(X(t))).

Theorem 2 practically states that the conditional distribution of the random vector W(t) for a

relatively large population size can be effectively replaced by a multivariate Gaussian distribution

with known moments.2 We shall exploit this result in the state estimation step, where we employ

a conditional Kalman filter, as discussed in Section IV. Notice that this conclusion holds for

any population of homogeneous TCLs that are characterized by Markov chains having the same

transition probability matrix, and initial distributions that can instead vary.

2The interested reader may refer to [7] for a discussion on the rate of convergence in the central limit theorem and on the

quality of finite approximations. In practice any choice of a finite population size ought to be with respect to the stochastic

matrix P and to the conditional state vector X(t).



In the previous theorem we have developed a model for the evolution of Xi(t), which in

the limit includes a Gaussian noise ωi(t). As discussed in (9), these Gaussian random variables

depend on X(t). The covariance matrix in (9) is guaranteed to be positive semi-definite for

all Xr(t) ∈ {0, 1
np
, 2
np
, . . . , np−1

np
, 1}, provided that

∑2n
r=1Xr(t) = 1. In order to enable a more

general use in (10), we next show that the covariance matrix remains positive semi-definite when

the model is extended over the variables Xr ∈ [0, 1].

Proposition 1. The covariance matrix Σ(X) is positive semi-definite for all Xr ≥ 0. The

entries of the random vector W are dependent on each other, since
∑2n

r=1 ωr = 0 whenever
∑2n

r=1Xr = 1. Condition
∑2n

r=1Xr(0) = 1 implies that
∑2n

r=1Xr(t) = 1, for all t ∈ N.

Proof. The matrix Σ(X) can be written as 1
np

∑2n
r=1XrΦr, where

Φr =















Pr1(1− Pr1) −Pr1Pr2 · · · −Pr1Pr2n

−Pr2Pr1 Pr2(1− Pr2) · · · −Pr2Pr2n

...
...

...
...

−Pr2nPr1 −Pr2nPr2 · · · Pr2n(1− Pr2n)















.

The above structure of matrix Φr allows us to compute, for all ν ∈ R
2n,

ν
TΦrν =

2n
∑

i=1

Priν
2
i −

(

2n
∑

i=1

Priνi

)2

.

The Cauchy-Schwartz inequality implies that νTΦrν ≥ 0, where the equality holds at least for

the vectors ν = c1T2n with any arbitrary constant c. The positive semi-definiteness of all Φr

implies the positive semi-definiteness of Σ(X), for all Xr ≥ 0.

The random variable ω = 12nW =
2n
∑

r=1

ωr has expected value E[ω] = 12nE[W] = 0 and

variance σ2(ω) = E[ωωT ] = 12nΣ(X)1T2n = 0. Then the random variable ω is deterministic:

ω = 0. The last part of the theorem is proven by taking the sum of all the equations of the

dynamical system and noticing that matrix P is a stochastic matrix:

2n
∑

r=1

Xr(t + 1) =

2n
∑

r=1

Xr(t) +

2n
∑

r=1

ω(t) =

2n
∑

r=1

Xr(t).

E. Explicit Quantification of the Errors of the Abstraction and of the Aggregation Procedures

Let us now quantify the power consumption of the aggregate model, as an extension of the

quantity discussed after equation (2). The total power consumption obtained from the aggregation



of the original models in (1)-(2), with variables (mj, θj)(t), j ∈ Nnp
, is

y(t) =

np
∑

j=1

mj(t)PON . (12)

With focus on the abstract model (with the normalized variable X), the power consumption is

yabs(t) = HX(t), H = npPON [0n, 1n], (13)

where 0n and 1n are row vectors with all the entries equal to zero and one, respectively. For

the quantification of the error we consider a homogeneous population of TCLs with dynamics

affected by Gaussian process noise w(·) ∼ N (0, σ2), and the abstracted model constructed based

on the partition introduced in (4). The main result of this section hinges on two features of the

Gaussian density function, its continuity and its decay at infinity. In order to keep the discussion

focused we continue considering Gaussian distributions, however the results can be extended to

any distribution with these two features. Since the covariance matrix in (9) is small for large

population sizes, the first moment of the random variable y(t) provides sufficient information

on its behavior over a finite time horizon. The total power consumption in (12) is the sum of

np independent Bernoulli trials over the sample space {0, PON}, each with different success

probability. Then for the quantification of the modeling error we study the error produced by

the abstraction over the expected value of the binary TCL mode (ON, OFF).

Consider a TCL, with initial state s0 = (m0, θ0). Also select a desired final time Td and discrete

time horizon N = Td/h, where h is the discretization step. Based on the evolution equation of

the discrete mode (2), the TCL is in the ON mode at time step N , namely m(N) = 1, if and

only if s(N − 1) ∈ A, where A = {1} × [θ−,+∞) ∪ {0} × [θ+,+∞). Then the expected value

of its mode at time N , m(N), can be computed as

E[m(N)|m0, θ0] = P (m(N) = 1|m0, θ0) = P (s(N − 1) ∈ A|m0, θ0) . (14)

This quantity can be characterized via value functions Vk : S → [0, 1], k ∈ NN , which are

computed recursively as follows:

Vk(sk) =

∫

S
Vk+1(sk+1)ts(sk+1|sk)dsk+1, ∀k ∈ NN−1, VN (s) = IA(s). (15)

Knowing these value functions, we have that E[m(N)|m0, θ0] = V1(m0, θ0). Computationally,

the calculation of these quantities can leverage the results in [1], [14], [16], which however

require extensions 1) to conditional density functions of the process that are discontinuous, and

2) to an unbounded state space. The first issue is addressed by the following lemma.



Lemma 2. The density function ts(s
′|·) is piecewise-continuous within the continuity regions

{0} × (−∞, θ+], {0} × (θ+,+∞), {1} × (−∞, θ−), {1} × [θ−,+∞).

The value functions Vk(s) are piecewise-Lipschitz continuous, namely:

|Vk(m, θ)− Vk(m, θ′)| ≤ 2a

σ
√
2π

|θ − θ′|,

where a, σ represent respectively the TCL parameter and the variance of the process noise w(t)

as in equation (1), and where (m, θ), (m, θ′) is any pair of points belonging to one of the four

continuity regions of the function ts(s
′|·).

Proof. The density function of the temperature process noise w(·) is tw(w) = 1
σ
φ(w

σ
), where

φ(·) is the standard Gaussian density function φ(x) = exp(−x
2/2)/

√
2π. We prove the statement

for one of the continuity regions, namely m = 0 and θ, θ′ ∈ (−∞, θ+], the other regions being

treated in the same way, via the following chain of inequalities:

|Vk(m, θ)− Vk(m, θ′)| ≤
∫

R
Vk+1(0, θ̄)

∣

∣tw(θ̄ − aθ − (1− a)θa)− tw(θ̄ − aθ′ − (1− a)θa)
∣

∣ dθ̄

≤
∫

R

∣

∣tw(θ̄ − aθ − (1− a)θa)− tw(θ̄ − aθ′ − (1− a)θa)
∣

∣ dθ̄

= 1
σ

∫

R

∣

∣

∣
φ
(

θ̄−aθ−(1−a)θa
σ

)

− φ
(

θ̄−aθ′−(1−a)θa
σ

)
∣

∣

∣
dθ̄

= 2
∫∞
0

[

φ
(

u− a|θ−θ′|
2σ

)

− φ
(

u+ a|θ−θ′|
2σ

)]

du

= 2
∫ a|θ−θ′|/2σ
−a|θ−θ′|/2σ φ(v)dv ≤ 2a

σ
√
2π
|θ − θ′|.

In order to cope with the second issue, we study the limiting behavior of the value functions at

infinity, apply a truncation over the state space, as proposed in Section II-B, and properly select

the value of the functions outside of this region. Lemma 3 shows that limθ→−∞ Vk(m, θ) = 0,

limθ→+∞ Vk(m, θ) = 1, and provides an upper bound on the distance between Vk(m, θ) and its

limiting values, which hinges on the parameter L. This parameter represents the length of the

truncated part of the temperature range [θ−m, θm], which is then further partitioned to construct

the abstract Markov chain. An upper bound on the error of the value functions produced by

state-space truncation and partitioning is further quantified in Theorem 3.

Lemma 3. For the partitioning procedure in (4) we have that

Vk(m, θ) ≤ (N − k)ǫ ∀θ ≤ θ−m = θs − L/2, m ∈ Z1,

Vk(m, θ) ≥ 1− (N − k)ǫ ∀θ ≥ θm = θs + L/2, m ∈ Z1,
(16)



where ǫ =
e−γ2/2

γ
√
2π

, and where

γ =
1− a

2σ

[

aNL+ δ

1− aN
− λ

]

, λ = RPrate + |2(θs − θa) +RPrate|. (17)

Proof. Define the sequences {βk}Nk=0, {γk}Nk=0 by the linear difference equations

βk = (βk+1 − γσ − (1− a)θa)/a, βN = θ+,

γk = (γk+1 + γσ − (1− a)(θa − RPrate))/a, γN = θ−.
(18)

We prove inductively that the inequalities in (16) hold for θ ≤ βk and θ ≥ γk, respectively.

Because of the similarities in the proof we present the reasoning only for θ ≤ βk and m = 0.

The recursive equation (15) implies that for any θ ≤ βk and m = 0,

Vk(0, θ) =
∫ +∞
−∞ Vk+1(0, θ̄)

1
σ
φ
(

θ̄−aθ−(1−a)θa
σ

)

dθ̄

≤
∫ βk+1

−∞ (N − k − 1)ǫ 1
σ
φ
(

θ̄−aθ−(1−a)θa
σ

)

dθ̄ +
∫ +∞
βk+1

1
σ
φ
(

θ̄−aθ−(1−a)θa
σ

)

dθ̄

≤ (N − k − 1)ǫ+
∫ +∞
γ

φ (u) du ≤ (N − k − 1)ǫ+ ǫ = (N − k)ǫ.

Since the parameter a = e−h/RC ∈ (0, 1) and [θ−, θ+] ⊂ [θa −RPrate, θa], the sequences in (18)

are monotonic. The selected value of γ in (17) ensures that βk ≥ θ−m and γk ≤ θm for k ∈ NN ,

which concludes the proof.

Notice in particular the linear dependence of γ on L, the temperature interval of interest.

Theorem 3. If we abstract a TCL as a Markov chain based on the procedure of Section II-B,

compute the solution of problem (15) over the Markov chain, and construct a piecewise-constant

approximation function W1(m, θ) using the solution of (15) over the Markov chain, then the

approximation error can be upper bounded as follows:

|V1(m, θ)−W1(m, θ)| ≤ (N − 1)

[

N − 2

2
ǫ+

2a

σ
√
2π

υ

]

∀(m, θ) ∈ Z1 × [θ−m, θm].

Notice that the error has two terms: one term accounts for the error of the approximation over

infinite-length intervals ǫ, whereas the second is related to the choice of the partition size υ.

Proof. We define Ek as an upper bound for |Vk(m, θ)−Wk(m, θ)| and compute it recursively.

The proof of Lemma 3 indicates that the same result is valid for the functions W1(m, θ). We

have |Vk(m, θ)−Wk(m, θ)| ≤ (N − k)ǫ, for all (m, θ) belonging to the external infinite-length

intervals. Recall that the value functions Vk satisfy the recursion in (15). We discuss this step

for m = 0, θ+ ≤ θ ≤ θm, the other four possibilities being the same. Suppose that θ ∈ Θi with



representative point θ̄i, then:

|Vk(0, θ)−Wk(0, θ)| ≤ |Vk(0, θ)− Vk(0, θ̄i)|+ |Vk(0, θ̄i)−Wk(0, θ̄i)|
≤ 2a

σ
√
2π
|θ − θ̄i|+ |Vk(0, θ̄i)−Wk(0, θ̄i)|.

The second term is upper bounded as follows

|Vk(0, θ̄i)−Wk(0, θ̄i)| ≤
∫∞
−∞ |Vk+1(1, θ̄)−Wk+1(1, θ̄)|tw(θ̄ − aθ̄i − (1− a)θa)dθ̄

≤ (N − k − 1)ǫ+ Ek+1

∫ θm
θ−m

tw(θ̄ − aθ̄i − (1− a)θa)dθ̄ ≤ (N − k − 1)ǫ+ Ek+1

⇒ Ek =
2a

σ
√
2π
υ + (N − k − 1)ǫ+ Ek+1, EN = 0,

⇒ E1 = (N − 1)(N − 2) ǫ
2
+ (N − 1) 2a

σ
√
2π
υ.

Collecting the results above, the following corollary quantifies an upper bound on the abstrac-

tion error over the total power consumption.

Corollary 2. The difference in the expected value of the total power consumption of the popu-

lation y(N) in (12), and that of the abstracted model yabs(N) in (13), both conditional on the

corresponding initial conditions, is upper bounded by

∣

∣E[y(N)|s0]− E[yabs(N)|X0]
∣

∣ ≤ npPON(N − 1)

[

(N − 2)

2
ǫ+

2a

σ
√
2π

υ

]

, (19)

for all s0 ∈ (Z1× [θ−m, θm])
np . The initial state X0 is obtained as a function of the initial states

in the TCL population s0, as can be evinced from the definition of the state vector X.

Proof. Suppose all the TCLs are initialized at s0j = (m0j , θ0j), j ∈ Nnp
. Recall (12) for the

total power consumption and the equality E[mj(N)|s0j] = V1(s0j) for any TCL. Then we have

E[y(N)|s0] = PON

np
∑

j=1

E[mj(N)|s0j ] = PON

np
∑

j=1

V1(s0j). (20)

Recall (13) for yabs(t) and the difference equation (10),

E[yabs(N)|X0] = H(P T )NX0 = npPON

1
∑

m=0

n
∑

i=1

E[m(N)|sim]X0i,

where sim = (m, θ̄i) is the initial discrete state of the Markov chain. Since Wk(·) is constructed

based on the solution of (15) for the Markov chain, which is a piecewise-constant function over

the selected partition, we have

E[yabs(N)|X0] = PON

1
∑

m=0

n
∑

i=1

W1(sim)npX0i = PON

np
∑

j=1

W1(s0j). (21)



Then we obtain |E[y(N)|s0]−E[yabs(N)|X0]| ≤ PON

∑np

j=1 |V(s0j)−W(s0j)| ≤ PONnpE1.

The result in Corollary 2 allows tuning the error over the total power consumption of the

population made with the abstraction procedure. In practice, it can be reduced to a desired level

by increasing the abstraction precision: this can be achieved by increasing γ and the number

of state bins (by decreasing their size). This results in a larger-dimensional model in (10). To

address this issue post facto, model-order reduction techniques like balanced realization and

truncation or Hankel singular values [3] can be employed to obtain a lower-dimensional model

describing the dynamics of the population power consumption. These known techniques follow

the observation that the dynamics of the model are mostly determined by the largest eigenvalues

of the transition probability matrix. These model reduction techniques are not exclusively appli-

cable to homogeneous populations of TCLs, but can as well be employed for the heterogeneous

populations case discussed in the following section.

III. FORMAL ABSTRACTION OF A HETEROGENEOUS POPULATION OF TCLS

Consider a heterogeneous population of np TCLs, where the heterogeneity resides on a

parameter α that takes np possibly different values as {α1, α2, ..., αnp
}. Each instance of α

specifies a set of model parameters (θs, δ, θa, C, R, σ, Prate, PON) for the dynamics of a single

TCL: notice that all these parameters influence the temperature evolution, except PON , which

affects exclusively the output equation. Each dynamical model for a TCL can be abstracted

as a Markov chain Mα with a transition matrix Pα = [Pij(α)]i,j , according to the procedure

explained in Section II. As expected, the transition probability matrix Pα obtained for a TCL

depends on its own set of parameters α.

With the objective of an aggregated Markov chain model for a population of np TCLs, the

goal is again that of abstracting it as a reduced-order (lumped) model. The apparent difficulty

is that the heterogeneity in the transition probability matrix Pα of the single TCL renders the

quantity P(xi(t+1) = j|z(t)) dependent not only on the label x(t) = L(z(t)), but effectively on

the current state z(t), namely the present distribution of temperatures of each TCL. This leads

to the impossibility of simplifying equation (8), as done in the homogeneous case. Recall that

computations on P(z(t)) require manipulations over the large-dimensional matrix PΞ, which can

become practically infeasible.

In contrast to the homogeneous case, which allows one to quantify the probabilities P(xi(t+

1) = j|x(t)) over a Markov chain obtained as an exact probabilistic bisimulation of the product

chain Ξ , in the heterogeneous case we resort to an approximate probabilistic bisimulation [13]



of the Markov chain Ξ . The approximation enters in equation (8), with the replacement of the

weighted average in the expression of the law of total probability with a normalized (equally

weighted) average, as follows:

P(xi(t + 1) = j|x(t)) =
∑

z(t)→֒x(t) P(xi(t + 1) = j|z(t))
# {z(t) →֒ x(t)} , (22)

where #A indicates the cardinality of a given finite set A. In other words we have assumed

that the probability for the Markov chain Ξ to be in each labeled state is the same. Similarly,

the average of the random variables xi(t + 1), conditioned over x(t), can be obtained from

(22) as E[xi(t+ 1)|x(t)] =
∑

z(t)→֒x(t) E[xi(t+1)|z(t)]
#{z(t)→֒x(t)} . Unlike in the exact bisimulation instance, the

error introduced by the approximate probabilistic bisimulation relation can only be quantified

empirically over matrix PΞ.

Next, we put forward two alternative approaches to characterize the properties of the aggre-

gated TCL population model: by an averaging argument in Section III-A, and by a clustering

assumption in Section III-B. A technique related to the clustering one has also been proposed

in [29], [30], however without formal quantification of the associated error and no indication on

how to select the number of clusters.

A. Abstraction of a Heterogeneous Population of TCLs via Averaging

We characterize quantitatively the population heterogeneity by constructing an interpolated

density function fα(·) from the finite set of values {α1, α2, ..., αnp
} taken by parameter α. This

leads to the characterization of the statistics of the conditional variable (X(t+ 1)|X(t)) (recall

that X is a normalized version of x), as follows.

Theorem 4. Consider a TCL population with heterogeneity that is encompassed by a parameter

α with empirical density function fα(·). Introducing an approximate probabilistic bisimulation

of Ξ as in (22), the conditional random variable (X(t+ 1)|X(t)) has the following statistics:

E[Xi(t+ 1)|X(t)] =
∑2n

r=1Xr(t)Pri,

var(Xi(t+ 1)|X(t)) = 1
np

2n
∑

r=1

XrPri(1− Pri) +
1

np−1

(

2n
∑

r=1

XrPri

)2

− 1
np−1

2n
∑

r=1

XrPri
2
,

cov(Xi(t+ 1), Xj(t+ 1)|X(t)) = 1
np−1

(

2n
∑

r=1

XrPri

)(

2n
∑

s=1

XsPsj

)

− 1
np−1

2n
∑

r=1

XrPriPrj − 1
np

∑2n
r=1XrPriPrj,

where the barred quantities indicate an expected value over the parameters set α, for instance

PriPrj = Eα[Pri(α)Prj(α)] =
∫

Pri(v)Prj(v)fα(v)dv.



Proof. The proof is directly obtained by computing the expected value and the covariance of

(xi(t+ 1)|z(t)), and by taking an average over all the states z(t) that generate label x(t).

Let us remark that the asymptotic properties obtained as the population size grows, as discussed

in Section II-D, still hold as long as the distribution of the parameters set fα(·) is given and

fixed. With focus on the heterogeneity in the output equation, we can similarly replace the

ensemble of instances of parameter PON by its average quantity P̄ON , namely the mean rated

power consumption of TCLs when all of them are in the ON mode, which is computed as the

expected value of PON with respect to the parameter set P̄ON = Eα [PON(α)], and is time-

independent. While (as discussed above) we cannot analytically quantify the error introduced

by the approximate bisimulation used for the abstraction of the temperature evolution in the

population, we can still quantify the error related to the heterogeneity in the output equation:

this will be done shortly, in Theorem 5.

B. Abstraction of a Heterogeneous Population of TCLs via Clustering

We now propose an alternative method to reduce a heterogeneous population of TCLs into a

finite number of homogeneous populations. While more elaborate than the preceding approach,

it allows for the quantification of the error under the following Assumption.

Assumption 1. Assume that the heterogeneity parameter α = (θs, δ, θa, C, R, σ, Prate, PON)

belongs to a bounded set Γa, and that the parametrized transition probability matrix Pα satisfies

the following inequality expressing a condition on its continuity with respect to α:

‖Pα − Pα′‖∞ ≤ ha‖α− α′‖ ∀α, α′ ∈ Γa. (23)

Consider the range for a given parameter: we partition this uncertainty range and “cluster

together” the TCLs in the given population, according to the partition they belong to; we further

consider the TCLs to be homogeneous within their cluster. More precisely, select a finite partition

of the set Γa = ∪iΓi, characterized by a diameter υa, namely ‖α − α′‖ ≤ υa, ∀α, α′ ∈ Γi, ∀i.
Associate arbitrary representative points αi ∈ Γi to the partition sets. Finally, replace the

transition matrix Pα and PON by
∑

i Pαi
IΓi

(α) and
∑

i PON(αi)IΓi
(α), respectively. The error

made by this procedure is quantified in the following statement.

Theorem 5. Given a heterogeneous population of TCLs, suppose we cluster the heterogeneity

parameter α ∈ Γa = ∪iΓi, assume homogeneity within the introduced clusters, and model each

cluster based on the results of Section II with outputs yabs,i(N). Let us define the approximate



power consumption of the heterogeneous population as the sum of outputs of the clusters, as

follows: yabs(N) =
∑

i yabs,i(N). The abstraction error can be upper bounded by

∣

∣E[y(N)|s0]− E[yabs(N)]
∣

∣ ≤ maxα np(N − 1)PON(α)
[

(N−2)
2

ǫ(α) + 2a(α)

σ(α)
√
2π
υ
]

+np

[

P̄ON(N − 1)ha + 1
]

υa,
(24)

for all s0 ∈ (Z1× [θ−m, θm])
np . The parameters ǫ(·), γ(·), and λ(·) are computed as in Corollary

2 and depend on the value of α. Finally, the quantity P̄ON =
∑

i
ni

np
PON(αi) = Eα [PON(α)],

where ni is the population size of the ith cluster, so that
∑

i ni = np.

Proof. The equations in (20), (21) and Theorem 3 indicate that the first part of the error in (24)

is an upper bound for the sum of abstraction error of each TCL.

The second part of the error is proved by studying the sensitivity of the solution of the problem

(14) against parameter α. As we discussed before, the solution of this problem for the Markov

chain over the time horizon N is obtained by the recursion V̄k(α) = P (α)V̄k+1(α), where V̄N(α)

is the indicator vector of the reach set, hence independent of α. Then we have

‖V̄k(α)− V̄k(α
′)‖∞ = ‖P (α)V̄k+1(α)− P (α′)V̄k+1(α

′)‖∞
≤ ‖ (P (α)− P (α′)) V̄k+1(α)‖∞ + ‖P (α′)

(

V̄k+1(α)− V̄k+1(α
′)
)

‖∞
≤ ha‖α− α′‖+ ‖V̄k+1(α)− V̄k+1(α

′)‖∞,

which results in the inequality ‖V̄1(α)− V̄1(α
′)‖∞ ≤ (N − 1)ha‖α− α′‖. Define function ξ(·)

that assigns to each α the representative parameter of its cluster. Then
∣

∣

∣

∣

∑

α∈Γa

PON(α)V̄1(α)−
∑

i niPON(αi)V̄1(αi)

∣

∣

∣

∣

≤∑α∈Γa

∣

∣PON(α)V̄1(α)− PON(ξ(α))V̄1(ξ(α))
∣

∣

≤ ∑

α∈Γa

|PON(α)− PON(ξ(α))| V̄1(α) +
∑

α∈Γa

PON(ξ(α))
∣

∣V̄1(α)− V̄1(ξ(α))
∣

∣

≤ npυa + (N − 1)haυa
∑

α∈Γa

niPON(αi).

Notice that the first part of the error in (24) is due to the abstraction of a single TCL by state-

space partitioning, while the second part is related to the clustering procedure described above.

Further, notice that all terms in the bound above can be reduced by selecting finer temperature

partitions (smaller bins) or smaller clusters diameter for the parameter sets.

The second part of the error in (24) is computed based on the Lipschitz continuity of the

transition probability matrix Pα, as per Assumption 1. This can be evaluated over the transition

probability matrices obtained by abstracting the heterogeneous TCL dynamics (characterized by



the conditional density functions ts) as Markov chains. Alternatively, we could formulate this

error bound based on the Lipschitz continuity of the conditional density function ts(s
′|s) with

respect to the parameters set α by using the explicit relation (3) for the transition probabilities.

Then the constant ha is computable as a function of the Lipschitz constant of the conditional

density function of the process. As an example, the constant ha for the case of a Gaussian

process noise and heterogeneity term residing exclusively in thermal capacitance (that is, in the

parameter a) is computed as follows: ha =
L+ λ

σ
√
2π

.

Remark 2. Notice that we have presented a clustering approach that hinges on the similarity of

the transition probability matrices of the associated Markov chains, measured as ‖Pα − Pα′‖∞.

There is no difference between heterogeneity in one or any other parameter: as long as the

approximated Markov chains are similar, we can assign them to the same cluster. We can perform

an abstraction by partitioning the space of each parameter, as presented in Theorem 5, however

this approach clearly suffers from the curse of dimensionality. The alternative would be to first

compute the transition matrices, then do clustering based on the distance measure ‖Pα−Pα′‖∞,

which is likely to provide a smaller number of clusters.

As a final note, the result in Theorem 5 is applicable to the setup in Section III-A when the

heterogeneity lies in the parameter PON , by considering a single cluster.

IV. ABSTRACTION AND CONTROL OF A POPULATION OF NON-AUTONOMOUS TCLS

One can imagine a number of different strategies for controlling the total power consumption

of a population of TCLs. With focus on the dynamics of a single TCL, one strategy could be to

vary the rate of the energy transfer Prate, for instance by circulating cold/hot water through the

load with higher or lower speed. Another approach could be to act on the thermal resistance R,

for instance opening or closing doors and windows at the load end. Yet another strategy could

be to apply changes to the set-point θs, as suggested in [10].

Let us observe that the first two actions would modify the dynamics of (1), whereas the

third control action would affect the relation in (2). While abstracting the TCL model as a

finite-state Markov chain, a control action results in a modification of the elements of the

transition probability matrix. With reference to (5), the entries of the matrices Q11, Q22, Q31, Q42

are computed based on (1), while the size of these matrices is determined based on (2). Since the

set-point θs affects only equation (2), a set-point alteration affects the structure of the probability

matrix in (5), whereas the other approaches affect the value of its non-zero elements. It follows

that in view of the abstraction procedure the control by set-point variation has the advantage of



requiring a single computation of marginals, while the other discussed methods would require

this computation to be a function of the allowed control inputs.

Based on the discussion above, we consider the case where the control input is taken to be

the set-point θs of the TCL. We intend to apply the control input to all TCLs uniformly (cf.

Figure 2), which does not require differentiating among the states of different TCLs. Moreover,

in order to retain the validity of the definition of state bins X(·) regardless of the applied input

signal, we discretize the domain of allowable set-points by the same parameter υ used for the

partition size.

With reference to existing closed-loop control schemes in the literature, [22] assumes full

knowledge of the state vector X(t) and employs a Model Predictive Control architecture to design

the control signal. Moving forward, [24], [26] consider different scenarios for the configuration

of the control architecture: states are measured completely, or known partially and a Kalman

filter is used for state estimation, or both states and transition matrix are estimated by use of an

Extended Kalman filter. The minimum required infrastructure for the practical implementation of

the strategies in [24], [26] ranges from a TCL temperature sensor and a two-way data connection

for transmitting the state information and control signal, to a one-way data connection for only

sending the control signal to all TCLs without receiving the explicit information on their states.

The presence of a local decision maker is essential in all the scenarios: each TCL receives a

control signal at each time step, determines its current state, and generates a local control action.

In contrast, the set-point control in this work does not require each TCL to know its individual

state, which makes the approach applicable regardless of the thermometer precision [10].

In the following we show that the knowledge of the actual states of the TCL, or of vector X(t)

in the aggregated model, are not necessary for the global control of the total power consumption.

Given the model parameters, all that is needed is an online measurement of the total power

consumption of the TCL population, which allows estimating the states in X(t) by use of a

conditional Kalman filter [11] adapted to the state-dependent covariance of the process noise.

Moreover, we attempt to mitigate the aforementioned limitations by using the set-point θs as the

control input to track a given reference signal. The control action then comprises a simple signal

for the set-point that is applied to all TCLs uniformly: no local decision maker is required.

A. State Estimation and One-Step Regulation

Suppose we consider a homogeneous population of TCLs with known parameters. As dis-

cussed earlier, we assume that the control input is discrete and takes values over a finite set,

θs(t) ∈ {θ−l, θ−l+1, . . . , θl−1, θl}, ∀t ∈ N0: the parameter l is arbitrary and has been chosen to



match the abstraction parameter in Figure 1 and the scheme in (4). Based on (10), we set up

the discrete-time switched stochastic system X(t+ 1) = Fσ(t)X(t) +W(t), where by switched

model we mean that the state matrix Fσ(t) takes values in

{P T (θ−l), P
T (θ−l+1), . . . , P

T (θl−1), P
T (θl)},

for all t ∈ N0, (cf. (10)), and the switching signal σ(·) : N0 → Z2l is a map specifying the

set-point θs, and hence the TCL dynamics, as a function of time. The process noise W(t)

is normal with zero mean and state-dependent covariance matrix Σ(X(t)) in (9). The total

power consumption of the TCL population is measured as ymeas(t) = HX(t) + v(t), where

v(t) ∼ N (0, Rv) is a measurement noise characterized by
√
Rv , the standard deviation of the

real-time measurement in the power meter instrument.

Since the process noise W is state-dependent, the state of the system can be estimated by a

conditional Kalman filter with the following updates:

X̂−(t+ 1) = Fσ(t)X̂(t), P−(t+ 1) = Fσ(t)P(t)F
T
σ(t) +Σ(X̂(t)),

and the following measurement updates:

Kt+1 = P−(t+ 1)HT
[

HP−(t + 1)HT +Rv

]−1
, P(t+ 1) = [I −Kt+1H ]P−(t+ 1),

X̂(t+ 1) = X̂−(t+ 1) +Kt+1[ymeas(t+ 1)−HX̂−(t+ 1)].

When the state estimates X̂ are available, we formulate the following optimization problem

based on a one-step output prediction, in order to synthesize the control input at the next step:

minσ(t+1)∈Z2l
|yest(t + 2)− ydes(t + 2)|, s.t.

X̂(t+ 2) = Fσ(t+1)X̂(t+ 1), yest(t+ 2) = HX̂(t+ 2),

where ydes(·) is a desired reference signal, whereas X̂(t + 1) is provided by the conditional

Kalman filter above. The obtained optimal value for σ(t + 1) provides the set-point θs(t + 1),

which is applied to the entire TCL population at the following (t + 1)th iteration. Figure 2

illustrates the closed-loop configuration for state estimation and one-step regulation of the power

consumption.

B. Regulation via Stochastic Model Predictive Control (SMPC)

We can perform power tracking by formulating and solving the following SMPC problem [19]:

minσ(τ) Jt = E

[

∑T
τ=t+1[yabs(τ)− ydes(τ)]

2 + κTX(T )

∣

∣

∣

∣

X(t)

]

, s.t.

X(τ + 1) = Fσ(τ)X(τ) +W(τ), yabs(τ) = HX(τ),

σ(τ) ∈ Z2l, ∀τ ∈ {t, t+ 1, . . . , T − 1}.

(25)
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Time update:

X̂−(t+ 1) = Fσ(t)X̂(t)

P−(t + 1) = Fσ(t)P(t)F
T
σ(t) +Σ(X̂(t))

Measurement update:

Kt+1 = P−(t+ 1)HT
[

HP−(t + 1)HT +Rv

]−1

P(t+ 1) = [I −Kt+1H ]P−(t + 1)

X̂(t+ 1) = X̂−(t+ 1) +Kt+1[ymeas(t+ 1)−HX̂−(t+ 1)]

minσ(t+1)∈Z2l
|yest(t + 2)− ydes(t + 2)|

subject to:

X̂(t+ 2) = Fσ(t+1)X̂(t+ 1)
yest(t+ 2) = HX̂(t + 2)

Fig. 2. State estimation and one-step regulation for the closed-loop control of the power consumption.

The conditional cost-to-go function Jt comprises a running cost for tracking and a terminal

cost. The terminal cost is assumed to be a linear combination (with weighting vector κ) of

the model states at final time T , and practically accounts for possible penalty weights over the

number of TCLs within the temperature intervals. The expectation is taken over the underlying

probability space for the trajectories of the process over the time interval [t+1, T ]. The dynamics

are nonlinear due to the switching nature of the control signal. The average evolution of the states

and output of the system can be expressed by the following deterministic difference equations:

E[X(τ + 1)] = Fσ(τ)E[X(τ)], E[yabs(τ)] = HE[X(τ)].

The associated state transition matrix Φσ(T, t) = Fσ(T−1)Fσ(T−2) . . . Fσ(t) provides a closed form

for the average evolution over the interval [t, T ]:

E[X(T )] = Φσ(T, t)E[X(t)], E[yabs(T )] = HΦσ(T, t)E[X(t)].

Thanks to the linearly state-dependent covariance matrix, we can establish the following result.

Theorem 6. The cost function of the SMPC problem can be computed explicitly as

Jt =

T
∑

τ=t+1

[HΦσ(τ, t)X(t)− ydes(τ)]
2 +Ψσ(T, t)X(t), (26)

where the matrix

Ψσ(T, t) = κTΦσ(T, t) +
1

np

T
∑

τ1=t

T
∑

τ2=τ1+1

R(HΦσ(τ2, τ1 + 1), Fσ(τ1))Φσ(τ1, t),



and where R : R1×2n × R
2n×2n → R

1×2n is a matrix-valued map with R(C,D) = C◦2D −
(CD)◦2, where the operator ◦2 is the Hadamard square of the matrix (element-wise square).

Proof. The proof is derived by computing the summation of Jt in (25) backwards, condi-

tioning the expected value to the intermediate states, and utilizing the equality ν
TΣ(X)ν =

1
np

R(νT , P T )X, for any ν ∈ R2n.

The obtained explicit cost function is the sum of a quadratic cost for the deterministic average

evolution of the system state and of a linear cost related to the covariance of the process noise.

Remark 3. For both formulations of the power tracking problem, the reference signal ydes(·)
is assumed to be given. This is in practice the case when the TCL population is controlled to

provide ancillary services. Moreover, this holds when a power utility company (or aggregator)

participates in an energy market: it can observe the profile of the energy price, solve an

optimization problem at a higher level minimizing the total energy cost based on an energy

storage model, and thus obtain the power reference signal [25].

Example 1. The SMPC formulation can accommodate problems where the population partic-

ipates in the energy market to minimize the energy costs. In the real-time energy market the

Locational Marginal Pricing algorithms result in the profile of energy price for time intervals of

5-minutes [28]. Given that profile, the population can save money by minimizing the total cost of

its energy usage within the given time frame, i.e. consuming less energy when the price is high and

more energy when the price is low, under some constraints, in the next 24 hours. Suppose the final

time T is selected such that T = 24/h, where h is the length of the sampling time (5 minutes),

and let the sequence {λτ , τ = t+1, t+2, . . . , T} be the profile of the energy price provided by the

energy market. The total energy consumption of the population is then
∑T

τ=t+1 λτyabs(τ)h. The

following optimization problem can be solved, given the model dynamics, in order to minimize

the expected value of the energy consumption:

min
σ(τ)

E

[

T
∑

τ=t+1

λτyabs(τ)h

∣

∣

∣

∣

X(t)

]

= min
σ(τ)

T
∑

τ=t+1

λτhHΦσ(τ, t)X(t).

V. NUMERICAL CASE STUDY AND BENCHMARKS

In this section we compare the performance of the aggregation procedure with that developed

in [22], which as discussed obtains an aggregated model with dynamics that are deterministic,

and has in fact been shown to be a special (limiting) case of the model in this work (cf. Remark

1). We further present the extension to the case of heterogeneous populations (with a comparison



Parameter Interpretation Value

θs temperature set-point 20 [◦C]

δ dead-band width 0.5 [◦C]

θa ambient temperature 32 [◦C]

R thermal resistance 2 [◦C/kW ]

C thermal capacitance 10 [kWh/◦C]

Prate power 14 [kW ]

η coefficient of performance 2.5

h time step 10 [sec]
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Fig. 3. Nominal values of parameters for residential air conditioners as from [10] (left), sample trajectories of the TCL population

for two different values of the standard deviation of the process noise, σ = 0.0032 and σ = 0.032 (right).

of the two proposed approaches), and synthesize global controls over the temperature set-point

to perform tracking of the total power consumption of the population.

For all simulations we consider a population of np = 500 TCLs, however recall that our

abstraction is proved to perform as desired for any value np of the population size. As a

benchmark, we have run 50 Monte Carlo simulations for the TCL population based on the

explicitly-aggregated dynamics in (1)-(2), and empirically computed the average total power

consumption.

A. Aggregation of a Homogeneous Population of TCLs

We consider a population of TCLs comprised by air conditioners of residential kind (which

affects the choice of parameters). Each TCL is characterized by parameters that take value as in

Figure 3 (left). The TCLs are initialized with a temperature at the set-point (θ(0) = θs), half of

them in the OFF mode (m(0) = 0), and the other half in the ON model (m(0) = 1). Unlike the

deterministic dynamics considered in [22], the model in (1) includes a process noise: we select

initially a small value for its standard deviation as σ = 0.001
√
h = 0.0032.

The abstraction in [22] is obtained by partitioning exclusively the dead-band and by “moving

the probability mass” outside of this interval to the nearest bin in the opposite mode. Recall that

in the new approach put forward in this work we need to provide a partition not only for the

dead-band but for a larger range of temperatures (cf. Fig. 1). Sample trajectories of the TCL

population are presented in Figure 3 (right): the second set of trajectories, obtained for a larger

value of noise level, confirms that we need to partition a wider temperature range, rather than
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Fig. 4. Homogeneous population of TCLs. Comparison of the deterministic abstraction from [22] with the formal stochastic

abstraction, for a small process noise σ = 0.0032 (top panel) and a larger value σ = 0.032 (bottom panel).

exclusively the dead-band. The abstraction in [22] depends on a parameter nd, denoting the

number of bins: we select nd = 70, which leads to a total of 140 states. The selection of nd

has been steered by empirical tuning, targeted towards optimal performance; however, in general

there seems to be no clear correspondence between the choice of nd and the overall precision

of the abstraction procedure in [22].

For the formal abstraction proposed in this work, we construct the partition as in (4) with

parameters l = 70,m = 350, which leads to 2n = 1404 abstract states. Notice that the presence of

a small standard deviation σ for the process noise (not included in the dynamics of [22]) requires

a smaller partition size to finely resolve the jumping probability between adjacent bins. Let us

emphasize again that an increase in nd for the method in [22] does not lead to an improvement

of the outcomes.

The results obtained for a small noise level σ = 0.0032 are presented in Figure 4 (top). The

aggregate power consumption has an oscillatory decay, since all thermostats are started in a

single state bin (they share the same initial condition) and are thus “synchronized” at the outset.

This outcome matches that presented in [22]: the deterministic abstraction3 in [22] produces

precise results for the first few (2-3) oscillations, after which the disagreement increases.

Let us now select a larger standard deviation for the process, to take the value σ = 0.01
√
h =

3Let us again remark that by “deterministic abstraction” we mean that the aggregate model X(t+1) = P T
X(t) obtained in

[22] is a deterministic equation. Notice however that the process noise is part of the temperature evolution of the TCLs.



0.032, all other parameters being the same as before. We now employ nd = 5 (obtained by

empirical optimal tuning as per [22]), and l = 7, and m = 35, which leads to 10 and 144

abstract states, respectively. Figure 4 (bottom) presents the results of the experiment. It is clear

that the model abstraction in [22] is not capable to generate a valid trajectory for the aggregate

power, whereas the output of the formal abstraction proposed in this work nicely matches that of

the average aggregated power consumption. Let us again remark that increasing the number of

bins nd does not seem to improve the performance of the deterministic abstraction in [22], but in

this case rather renders the oscillations more evident. On the contrary, our approach allows the

quantification of an explicit bound on the error made: for instance, the error on the normalized

power consumption with parameters N = 2 and l = 70 is equal to 0.226 (absolute quantity).

In order to better elucidate and distinguish the contributions in the literature, notice that the

deterministic abstraction in [22] has been developed for a deterministic model of the TCLs (i.e.

neglecting w(t) in equation (1)), whereas the present approach is novel in that it provides an

analytical derivation of an aggregated model given stochastic TCL dynamics that [22] did not

consider; secondly, the new approach can handle larger noise values than [22]. As a final remark,

let us emphasize that the outputs of both abstract models converge to steady-state values that may

be slightly different from those obtained as the average of the Monte Carlo simulations for the

model aggregated directly. This discrepancy is due to the intrinsic errors introduced by both the

abstraction procedures, which approximate a concrete continuous-space model (discontinuous

stochastic difference equations) with discrete-space abstractions (finite-state Markov chains).

However, whereas the abstraction in [22] does not offer an explicit quantification of the error,

the formal abstraction proposed in this work does, and further allows the tuning (decrease) of

such an error bound, by choice of a larger cardinality for the partitions set. However as a tradeoff,

recall that increasing the number of partitions demands managing a Markov chain abstraction

with a larger size.

B. Aggregation of a Heterogeneous Population of TCLs

In the rest of the simulations, unless otherwise stated we fix the standard deviation for the

process noise to the larger value σ = 0.032. Let us assume that heterogeneity enters the TCL

population over the thermal capacitance C of the TCLs, which is taken to be C ∼ U([8, 12]),
that is described by a uniform distribution over a compact interval.

Monte Carlo simulations are performed with the discretization parameters nd = 6 (determin-

istic abstraction), and l = 10,m = 50 (probabilistic abstraction via averaging). Figure 5 (top)

compares the results of the two abstraction methods: the plots are quite similar to those for
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Fig. 5. Heterogeneous population of TCLs. Comparison of the deterministic abstraction from [22] with the formal probabilistic

abstraction based on averaging, for two different ranges of the thermal capacitance: [8, 12] (top panel) and [2, 18] (bottom panel).

the homogeneous case, since the allowed range for the parameter is small. However, let us

now increase the level of heterogeneity by enlarging the domain of definition of the thermal

capacitance, so that C ∼ U([2, 18]). The (empirically) best possible deterministic abstraction is

obtained by selecting nd = 7, whereas we again select l = 10, m = 50 for the probabilistic

abstraction based on averaging. The outcomes are presented in Figure 5 (bottom).

Figure 5 also compares the performance of the two abstraction approaches described respec-

tively in Section III-A (via averaging) and in Section III-B (via clustering), for the two ranges

of thermal capacitance ([8, 12] and [2, 18] respectively) characterizing the heterogeneity in the

population. For the approach of Section III-B the population is clustered into 5 and 20 clusters,

respectively. Figure 5 indicates that the performance of clustering approach surpasses that of

the averaging approach. In conclusion, while the latter can be suitable for instances of small

heterogeneity, the former is essential for large heterogeneity in the population.

C. Abstraction and Control of a Population of TCLs

With focus on the abstraction proposed in this work for a homogeneous population (again of

np = 500 TCLs), the Kalman state estimation and one-step regulation scheme of Section IV-A

is applied with the objective of tracking a randomly generated piecewise-constant reference

signal. We have used discretization parameters l = 8, m = 40, and the standard deviation of the

measurement (
√
Rv) has been chosen to be 0.5% of the total initial power consumption. Figure
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Fig. 6. Tracking of a piecewise-constant reference signal (top panel) by set-point control (bottom panel) in a homogeneous

population of TCLs abstracted by the formal probabilistic approach.

6 displays the tracking outcome (top), as well as the required set-point signal synthesized by the

above optimization problem (bottom). Notice that the set-point variation is bounded to within

a small interval, which practically means that the temperature values (and as such the users) in

the TCLs are unaffected by that.

A similar performance, as displayed in Figure 7, is obtained in the case of a heterogeneous

population (again of 500 TCLs), where heterogeneity is characterized by the parameter C ∈
U([2, 18]). The averaging approach of Section III-A and clustering approach of Section III-B with

5 clusters are employed for the abstraction of the population. While in general that the clustering

approach can provides a more accurate model, its performance in this reference tracking example

is quite similar to the averaging approach (their relative accumulated error is less than 10%).

The total variation of the set-point signal is also the same for both approaches with the relative

error less than 10%. This is because of the smaller state-space model of the averaging approach

(the dimension is 5 times smaller) and its better performance in state estimation.

Finally, we have employed the SMPC scheme described in Section IV-B, combined with the

Kalman state estimator of Section IV-A, to track a piecewise-constant reference signal over a

homogeneous population of TCLs. A prediction horizon of T − t = 5 steps has been selected.

The discrete nature of the optimization variable in (25) requires us, at each time step, to compute

the cost function Jt for each sequence of σ(·) and to find the optimal one. In order to reduce

computational burden of the optimization we introduce the following constraint on the variation
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Fig. 7. Heterogeneous population of TCLs with C ∈ U([2, 18]): tracking of a piecewise-constant reference signal (top) by

set-point control (bottom), abstracted via clustering (5 clusters) and averaging.

of the set-point:
∣

∣

dθs
dt

∣

∣ ≃
∣

∣

∣

θs(t+1)−θs(t)
h

∣

∣

∣
≤ υ = 0.025. Figure 8 presents the power consumption

of the population (top) and the required set-point variation (bottom). The displayed response

consists of a transient phase and of a steady state. It takes 2 minutes to reach the steady-state

phase because of the limitations on the max rate of set-point changes. This can be seen from the

plot of the set-point control signal, which first decreases and then increases within the transient

phase with a constant rate. In order to obtain a faster transient phase, the upper bound for the

set-point changes may be increased.

VI. CONCLUSIONS AND FUTURE WORK

This work has put forward a formal approach for the abstraction of the dynamics of a TCL

and the aggregation of a population model. The approach starts by partitioning the state space

and constructing Markov chains for each TCL. Given the transition probability matrix of the

Markov chains, it is possible to write down the state-space model of the population and further to

aggregate it. This leads to a simple dynamical model that can be later analyzed. The article has

discussed approaches to deal with models heterogeneity and to perform controller synthesis over

the aggregated model. The article has derived a formal error bound for autonomous populations,

which can be extended to controlled populations.

Looking forward, developing alternative approaches for the heterogeneous case, synthesizing

new control schemes, and improving the error bounds are directions that are research-worthy in

order to render the approach further applicable in practice.
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Fig. 8. Tracking of a piecewise-constant reference signal (top panel) by set-point control (bottom panel) for a homogeneous

population of TCLs using the SMPC scheme.
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