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Abstract

Apart from interacting, prey and predators may also avoathedher by mov-
ing into refuges where they lack food, yet survive by switghtio an energy-saving
physiological state. Lotka-Volterra models of predatmeypnteractions ignore this
option. Therefore, we have modeled this game of ‘joininggpting-out’ by ex-
tending Lotka-Volterra models to include portions of paiidns not in interaction
and with different energy dynamics. Given this setting,dh&y’s decisions to join
or to opt out influence those of the predator and vice versssieg the set of pos-
sible strategies to be complex and large. However, usingegheory, we analyzed
and published two models showing (1) which strategies asefbethe prey pop-
ulation given the predator’s strategy and (2) which are fwgprey and predator
populations simultaneously. The predicted best stragegppear to match empiri-
cal observations on plant-inhabiting predator and pregsnitere, we consider a
plausible third model that does not take energy dynamicsdntount, but appears
to yield contrasting predictions. This supports our asgionpto extend Lotka-
\olterra models with ’interaction-dependent’ energy dyies, but more work is
needed to prove that it is essential and that what is beshépaopulation is also
best for the individual.

Keywords: diapause, mites, fruit orchard, mathematical models, giceeprey
interactions, dynamic noncooperative game theory

1 Introduction

Theory on the ecology of food webs is still founded to a comisblle extent on the as-
sumptions underlying a predator-prey model proposed ie@pntly by Lotka (1925)

and Volterra (1926), [10, 11, 26, 27]. One of these assumgti® that predators and
prey are continuously exposed to each other and therefaeut. In reality, however,

predators and prey also have the option to avoid interaetitigeach other. They may
then move into refuges where there is no prey and where slid@mands a switch to
an energy-saving physiological state, such as diapause.



Diapause has always been thought to emerge solely to overtamwinter season
and to emerge in response to abiotic factors signaling tisetasf the winter season,
but it may also emerge in response to food scarcity and/oriskeof being eaten, as
recently shown for the case of predator mites and fruit-tegespider mitesAcari:
Phytoseiidae, Tetranychidpf1, 3, 24, 25, 23, 7, 8, 9]. Although empirical proof of
these diapause-governing principles is limited, they maly mold generally in ecolog-
ical interactions.

We have extended Lotka-\olterra predator-prey models mways [19, 20]: (1)
by splitting the predator population as well as the prey pajmn in two portions, one
that is joining the interactions and another that is not; @)dy including energy dy-
namics that differs between those joining the interactiamd those opting out of the
interactions. Using this extended Lotka-\Volterra modelsk how predators and prey
should best allocate their time between joining the intivas and avoiding them. This
guestion is not easy because the best solution has to beniietelrfrom a large set of
possible strategies and because the strategies can beamuipex given that the prey’s
decisions to join or opt out influence those of the predatond,vice versa. However,
using game theory we have showed which strategy is best éopadpulation of prey
[20] and which is best for the population of prey and the papah of predators simul-
taneously [19]. In this article, we review these two modtklsir assumptions, and their
predictions, and additionally we present and analyze a thiodel that emerges as a
plausible simplification of the earlier models and thatetiffrom them in that it does
not take energy dynamics into account. Hence, this new nadid@ls us to ask whether
including energy dynamics in the Lotka-Volterra modeldeexied as explained above,
is essential to the predictions from these models. Moreoweican compare the pre-
dictions of either of these models with empirical obseruagion opting-out strategies
in natural predator-prey systems.

By making good use of optimal control theory and game thewsy,are able to
determine what is best for the populations of predator aegl. ptvhether these solu-
tions are also best for the individual predator and prey tsamalyzed in this article
and therefore remains to be determined. In our view, botkegygf solutions are of
scientific interest in their own right as they show how predwting selection levels
determine what is the best strategy. If the predicted bestiesty depends critically on
the selection level taken into account in the models, thig hedp to infer which se-
lection level dominates in natural systems by comparingtiedicted and empirically
observed strategies.

Our article is structured as follows. In Section 2, we brieflyiew what is empiri-
cally known about opting-out (diapause) strategies in d-imeéstigated predator-prey
system involving predator miteé¢ari: Phytoseidagand their prey, fruit-tree red spi-
der mites Acari: Tetranychidag In Section 3, we first discuss the Lotka-Volterra
models extended to include energy dynamics of predatorgssydjoining or opting
out of the interactions. Then, we propose and analyze a rewsible model that lacks
energy dynamics. Finally, in Section 4 (Discussion) we carafhe predictions from
the models presented and discuss whether including engrignucs in the models is
essential to their predictions. Moreover, we compare tlaegjies predicted with those
empirically observed in plant-inhabiting predator andypretes.



2 Observed behavior of the predator mitesand thefruit-
treered spider mites

Our models were inspired by studies on the use of predatesr@itari: Phytoseiidag
for biological pest control of fruit-tree red spider mitesc@ri: Tetranychidagthat
feed on and damage leaves of apple trees [5, 6]. Winters fjogvé-7 months) are
usually harsh and as such endanger the survival of prey fb{@ren more so) that of
predators [4, 5]. Predator and prey densities in the follgwsummer season depend
on their numbers entering a state of physiological rest ¢thealled diapause state)
during the previous year. The decision to enter diapausa@ies the survival of the
individual during winter and emerges from induction by a @mation of sufficiently
long night lengths and low temperatures [24, 24, 25]. Howaysing another similar
spider mite species (more amenable to experimental tredfpiewas shown that the
decision to enter diapause also depends on predator delusit)g summer [7, 8, 9].
From the point of view of the prey mite this behavior makesiiite sense as it faces
a grim future with increasing predator densities and thusareased risk of death:
it may then do better by giving up reproduction, moving awanf leaves to twigs
and branches (a refuge from predation, but without food) lan@ntering diapause
earlier than indicated by the predictors of season lendggfinftength and temperature).
However, if too many prey mites would make the same decidiuis, could create
a negative feedback on the predator mite population, satreime point in time the
prey mites would profit from the decreased predation riskebyinating their diapause
and returning to the leaves. This leads us to conclude tegbriéy’s decision to enter
diapause is part of a game where the predator is the leadehamtey needs to find
an optimal response to the predator.

Another complicating factor is that an early diapause smtbe demands on the
energy storage of the individual prey mite, which needs te@ca longer period before
terminating diapause at the beginning of the next summesosea the energy level
at diapause termination will determine the reproductieacity of the prey mite [8].
Thus, the decision to enter diapause within a year will ddpenthe current internal
energy store of the prey mite, as this will have far-reacliogsequences for winter
survival and reproduction in the summer season of the neat y@iven the negative
feedback between predator and prey and the complexity afgbisions that prey mites
are faced with, itis virtually impossible to intuitivelympoint the most likely strategies
that will emerge from natural selection.

There is less information on the diapause behavior of thegioe mites. However,
the predator mites are much more flexible in entering diagpausctive states, and can
switch among them multiple times during the season. Phygical decision variables
depend on the predator and prey densities during summleerrditan only on reliable
season indicators, such as night/day length and temper&u21].

3 Threemodels of the predator-prey interactions

In the remainder of this article we will focus on optimal-¢ahand game-theoretical
models of interactions between predatory mites and fra#-ted spider mites. Using



these methods, we will seek optimal strategies for the fijmuis. These strategies are
supposed to be a result of evolutionary processes that take pt a larger temporal
and spatial scales (e.g. metapopulation scale) than emesidn our time-bounded
and spatially unstructured models. The results that arenapmay or may not be
comparable to the results observed in reality. Throughmusipaper, if we talk about the
decisions of predatory mites and/or prey mites, we areniafgto the decisions taking
place in the long-term evolutionary process and if we taldloptimal decisions, we
mean the decisions that are the result of this evolutionarggss.

In our previous work, we have developed two models of ingassnal interactions
between predator miteg\¢ari: Phytoseiidagand fruit-tree red spider miteé\¢ari:
Tetranychidag Both models extend the Lotka-\Volterra equations [11,8W] include
energy variables. We compare these two models with a new Inpodjgosed in this
paper, which is also an extension of the Lotka-Volterra &iquna, but does not include
an energy variable.

3.1 Optimal control model with energy

This model was introduced and analyzed in our previouslard]. The predator is
assumed to be active the entire season; the goal is to findotimaal active/diapause
ratio for the prey. The fitness function for the prey modeisiirvival capability, and is
related to the number of the individuals entering diapawséd the summer. There-
fore, the prey mites chooseu&*(t) € [0,1] fort € [0, T], where

u?* = argsup OT(l— uR(0)ER() R(t)dt. (3.1)
uR()

In (3.1) the constant denotes the length of the season. Moreover, with the fumctio
uR we denote the strategy for the prey, namalt),t € [0, T]. The decision variable
uR(t) indicates the portion of the prey population being activeraet: uR(t) € [0,1],
fort € [0,Tn]. R(t) represents the prey population at tilmeAccordingly, the quan-
tity (1— uR(t))R(t) represents the number of the prey individuals in diapausienat
t. Furthermore, the variablER(t) < [0,1] represents the (normalized) energy that is
available to an average individual within the prey popuwiatif ER(t) = 0, then the av-
erage individual is dead, where8(t) = 1 represents maximal energy for the average
individual.

The system dynamics within each summer season is modeletiagd (hereP(t)
denotes the predator population at titie

dE;(t) = —m(1—u¥()ER(t) +duR(t) —d R ER(), (3.2)
dPT(t) = —aP(t)+BywR(H)PH)R(), (3.3)
deT(t) = —aR(t) + yuROEROR(t) — BUR(t) P R(). (3.4)

The quantitiesx, 3,y > 0 andm,d > 0 are given parameters and exceptafan be
instantiated based on the field and laboratory observatitihe mites interactions. As



parameted is difficult to estimate, it is kept free and the results présd in article [20]
are valid for all values ofl, unless stated differently. Both the number of preda®gts
and that of preyR(t) decrease at a rate. In equation (3.3) the number of predators
P(t) increases at a rate that is proportional to the rate of pi@taepresented by the
product of the number of actual active pua(t) R(t) and the number of predatdPst)
with feeding rateBy. Whenever active, the prey population in (3.4) decreasase- d
to predation — proportionally to the number of active preg ammber of predators
(at ratef3), whereas it increases — due to feeding and reproductionpoptionally to
the number of prey and the average internal energy (withyatdhe energy of the
prey in (3.2) varies as follows: whenever active (feeditiigycreases proportionally
to the distance to its maximum (ER(t)) with rated; on the other hand, whenever in
diapause, it decreases proportionally to the actual agexagrgy of the prey (with rate
m), as individuals in diapause slowly utilize their energy.

The optimal strategy of the prey in this model, which we foundusing the
Hamilton-Jacobi-Bellman approach combined with the méthisingular character-
istics [13, 14, 15], follows the following rules (see Figure

1. In the beginning of the summer season the prey can be intai@y(all active, all
in diapause, or anything inbetween), whereas at the endea§ummer season
all prey individuals are in diapause.

2. If all prey individuals are active in early summer, the\pvell start entering
diapause at a certain point in time and the proportion ofaliapng individuals
increases monotonically. Similarly, if only part of the pi@opulation is active
in early summer, then all prey end up being in diapause at omg jm time and
stay in diapause until the next year. Yet, if all prey indivéds are in diapause in
early summer, then they continue to stay in diapause umtih#éxt year.

3. The time (expressed in real time) of diapause onset depamdhe energy of
the prey, on predator population size, and on the rate ofjgneilization, but it
is independent of prey population size (i.e. timing of diag@does not require
guorum sensing).

4. If predators are absent from the environment, all preividdals are in diapause
later than if the predators are present (see Figure 3). Eeapabservations on
diapause of fruit-tree red spider mites on apple trees irfigte (Sabelis and
Overmeer, unpublished data) reveal that virtually allvidlials become active
in early summer and starting from a certain point in time tlopwation en-
ters diapause, gradually. Moreover, experimental maatmr of the predator
population in the field showed that the fruit-tree red spidées enter diapause
earlier in the presence of predator mites and once in digpthey stay in dia-
pause. However, apart from an effect of predator preserscethé density of
fruit-tree red spider mites had an effect on the time at whiigpause was ini-
tiated, suggesting that some form of quorum sensing (plgsgié spider-mite
induced plant volatiles) takes place.

5. If more predators are present in the environment at thanbieg) of the season,
the prey individuals start entering diapause earlier, batgrocess of entering
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Figure 1: Scheme of possible optimal active raffdor the prey (R(t) € [0, 1] for each

t € [0, T]). Based on the proposed dynamics and the optimization @mobive have

shown irreversibility and (largely) monotonicity of theaegy profile. Note that the
optimal strategies do not need to be continuous correspgndithe singular events in
the outcome of the optimization problem. This figure is takkem [20].

diapause is more gradual than if less predators are prekerffectively yields
the previous observation (see Figure 3).
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Figure 2: If the number of predators increases (while alepostate variables and pa-
rameters stay the same), the prey individuals begin to eipause earlier, but more
gradually, balancing between having enough energy togeithie diapause and escap-
ing predation. HereR indicates optimal active ratio for the prayX(t) € [0, 1] for each

t € [0, T]). This figure is taken from our previous article [20].

3.2 Game-theoretical model with energy dynamics

This model was introduced and analyzed in [19]. It extenésrttodel presented in
Section 3.1 as both predators and prey can make decisionaotive or in diapause.
Therefore, the summer interactions between the predatesrand the prey mites can
be formulated as a game played with a finite horig®i ] in which the predator mites
select aiP*(t) € [0,1] fort € [0, T], where

T
uP* =argsup/ (- aP(t)+BSuP(t)EP(t)P(t))dt, (3.5)
uP(-) 0
whereas the prey mites chooseg (t) € [0,1] for t € [0, T], where
T
ur* =argsup/ (1—uR(t))ER(t)R(t)dt, (3.6)
uR(-) /0

subject to the following system dynamics:

d?EP = —ac(1— uP)EP +ell’uRR— auPEP, (3.7)
%R = —dh(1— uR)ER+ f(t)g(R)UR — dUFER, (3.8)
%P = —aP+BouEPP, (3.9)
dER = —¢R+ SURERR— yuPuRPR (3.10)

In (3.7)a > 0 is the energy decrease rate for the predator when aetivéyith
ce[0,1)) is the energy decrease rate for the predator when in diapaissthe energy
increase rate for the predator when feeding (here the eim@gase is proportional to
the number of active fruit-tree red spider mites that argguleipon and to the number
of active predator mites).



In (3.8),d > 0 is the energy decrease rate for the prey when active(with
h € [0,1)) is the energy decrease rate for the prey when in diapdysgis a time-
dependent function characterizing the presence of nasrfenthe fruit-tree red spider
mites in the environment (& f(-) < 1), g(Ra) € [0,1] is a hon-increasing function of
its variable, which represents competition among indigldtuit-tree red spider mites
— hencef (t)g(R,)uR is a term representing the increase of energy in the preyalue t
its active state. The number of predator mites slowly dessgavith ratea > 0 and
increases proportionally to their energy and number ofadtidividuals with rates 9,
wheref3 > 0, 8 > 0. The number of fruit-tree red spider mites decreases vetihd
ratee > 0, increases proportionally to their energy and number oadtidividuals
with rated > 0, and decreases proportionally to the number of active poectaites
and number of active fruit-tree red spider mites with nate 0. As before EP andER
refer to the energy levels of the average predator and pdyidual, respectively.

The fitness function for the predator (3.11) reflects the ttaat all predator indi-
viduals being alive at the end of the summer season (indgmtiydvhether they are
active or in diapause) have a chance to survive the winteiin Alse previous model,
the fitness function for the prey (3.12) reflects the fact tidy the prey individuals
that are in diapause at the end of the summer season haveedbanovive the winter,
while the longer in diapause they are and the more interreabgrihey have, the higher
chance of survival they have.

The problem was solved as a Stackelberg game with the presatbe leader and
the prey as the follower. The optimal behavior for the preda shown in Figure 3.
While it is optimal for the predator to stay active during #etire summer season,
the behavior of the prey is the same as in the optimal contadehintroduced in
Section 3.1.

=1

t=0 t=T

Figure 3: The optimal strategy for the predator is to stajvaaturing the entire sum-
mer season. Here® indicates optimal active ratio for the predataP(t) < [0, 1] for
eacht € [0, T]). This figure is taken from [19].

3.3 New mode: Game-theoretical model without energy dynamics

The similarity in predictions from the two models introddde Sections 3.1 and 3.2
is striking. While we assumed that the energy variable i®sgary in order to model
the system in question realistically enough, we decidedtidlate this by introducing
a game-theoretical model introduced in Section 3.2 singglifn that it does not take



energy dynamics into account. This model is a straightfodvextension of the classi-
cal Lotka-Volterra model, enriched by the decision vamaldbr the predator and prey,
respectively. Moreover, it naturally emerges from the ni@d#roduced in Sections
Sections 3.1 and 3.2. Can such a simpler model yield simglsults as the optimal
control model with energy and the game-theoretical modil emergy?

In this new model, we again assume that the the predator wfi@sseu™ (t) €
[0,1] fort € [0,T], so that

T
uP* =argsup/ (- apu”P+ BpuPuRPR)dt, (3.11)
uP(-) 0
whereas the prey mites choose a portion of individuals tfeatetive (versus those in
diapause)®*(t) € [0,1] fort € [0, T], where
T
* =argsup/ (1—uR(t))R(t)dt. (3.12)
uR(:) 0

uR

The system dynamics appears to be a trivial extension of ttleak\Volterra model:

EP = —apu"P+ BpuPuRPR (3.13)
d_Ri Rp P, R
i =0arU"R—BrUTU"PR (3.14)

Here,ap > 0 is the death rate of the predatoz > O is the death rate of the prey,
Bp > 0 is the population increase rate for the predator basedetirfg, and3r > 0

is the population decrease rate for the prey due to predaiote that if all predator
mites are in diapause, their number does not change. If ttewactive, they need
to feed on active prey mites in order to increase their numBanilarly, if all prey
mites are in diapause, the number of predator mites doeshaoge. If some of the
predator mites are active, the difference between the fidtlze second term in (3.14)
indicates whether their number will decrease or increagea¥gume that@ ap < Bp,

0 < ar < fBr, and 1< P(0),R(0).

Within a summer, the goal of both predator and prey filagerg is to maximize
their chances of survival [2, 28], which translates to thimjzation problems defined
by (3.11) and (3.12), subject to the dynamical constraidt$3)—(3.14). We assume
that the game between the predator mites and the prey miges3tackelberg structure,
i.e., we assume that the predator can impose its decisidmeqoréey.

Remark 3.1. The system of predatory mites and fruit-tree red spider srigenter-
seasonal system, i.e, the summer season lasting for aboahthis followed by the
winter season, lasting for about 7 months. Therefore, aqnaf3.13)(3.14)apply to
a period equal to a summer season, thus there are no longdgnamics.

However, let us analyze the equilibrium dynamics obtaineddrious values ofu
and I*. The equilibrium points ar¢P** = R“* = 0} and {P*? = & R"* = 72},
where the latter point is well defined fogwp # 0. The Jacobian of the systg@.13)-
(3.14)is

—apup+ BpupUrR Bpup URP

—BrUPURR OrRUR — BrRUP URP



Eigenvalues of J at equilibrium poigP** = R*! = 0} are arug and ap up. Eigen-
values of J at equilibrium poinfP*? = “I- R«2 — "—E ur} are /—aRUROpUp and

 Brup
—/—0arUrOpUp. Therefore, if § = 0 and R = 0, both equilibria are marginally sta-
ble (namely, related to periodic trajectories over the tvapplations). Otherwise, both
equilibria are unstable. O

As derived in Appendix A of this article, the optimal straigegyof the predator
and prey follow the pattern depicted in Figure 4. As the nundfeswitches in the
strategies depend on the initial parametassag, Bp, Br, Season lengtfi, and initial
valuesP(0) andR(0), results of the numerical case studies are shown in FiguRss 6-
of Appendix B. Please bear in mind that these results areajystoximations of the
optimal results obtained by grid-based numerical techesquThat is why we have
chosen extremely small which provides a relatively high precision of the outcome.
For details about the numerical computations, see AppeBdix

=1 I

=0
wR=1
uR=0

Figure 4: Optimal behavior for the predator and prey in thengdheoretic model
without energy dynamics, withR anduP denoting the portion of the predator mites
and the prey mites being active, respectively. Behaviohatend of the season (on
the right-hand side of the dashed line): either the swittledaeen being active and in
diapause happen exactly at the same time for both predadqray (see Appendix A
for discussion on this), but predator may also switch betioeeprey does. This would
suggest that the predator reacts to the behavior of the pneywerse time, as opposed
to the reaction in the real time, which we would expect. Bébravefore the end of
the season (before the dashed line): the behavior here waghtis suggested by the
outcomes of numerical case studies. See Appendices A and @fivation of this
result and numerical case studies.
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Contrary to the models introduced in Sections 3.1 and 3&ptitimal strategies
of the predator and prey mites in apple orchards are much weosatile; the predator
and prey clearly react to each other’s decisions. Howewate that the mechanism of
their behavior is much more clear when studying the problemeverse time (either
the predator or the prey switch their behavior at the same tinthe predator reacts to
the behavior of the prey). The possible frequent switchintpe strategies (dependent
on parameterap, AR, Bp, Br, Season lengtf, and initial conditiond?(0) andR(0))
does not match empirical observations on the diapause lmeltd\predator mites and
fruit-tree red spider mites.

Our analytical computations (See Appendix A) yield a préditthat is counterin-
tuitive at first: the predator may opt out of the interactiehdse the prey. However this
is not surprising when it is realised that our analytical pomations yield predictions
for what is optimal for the population (rather than the indiwal). Indeed, the predator
population may profit from opting out because it allows theyppopulation to grow
and hence represent later a richer food source for the mneglapulation. This option
is known as “the milker-killer dilemma” in the literature2, 16, 18].

4 Discussion

In Sections 3.1, 3.2, and 3.3 we have introduced three mugelg to capture diapause
induction and termination behavior of predator and preyemitThe first two models
seem to correspond to the laboratory and field observatienswell: it is expected
that the prey reacts to the presence of the predator by amgttgg manner and speed
of its diapause induction.

In most field observations the predator indeed stays adiwentire season. How-
ever, in rare cases it might also happen that the predaterssand leaves diapause
during the season, while the diapause induction in the grayaversible. This is due
to the fact that the diapause in predator mites is much modbRiethan that in the prey
mites. In other case studies, it was observed that the meaétes enter diapause once
the prey enter diapause; subsequently, the prey might beeactive when the predator
is in diapause, followed by the predator becoming activeels While repeated enter-
ing diapause/active state was an outcome of the game-ti@draodel without energy
introduced in Section 3.3, the way in which the predator amey pites are predicted
to enter the active/non-active (diapause) state is toatiersnd differs from our em-
pirical expectations. We conclude that models includingrgn dynamics match the
field and laboratory observations much better than the meitdebut energy dynamics
[20, 19]. This is a very interesting observation as the madttlout energy is a trivial
extension of the Lotka-Volterra model and the first step tolwgame-theoretical mod-
els from this widely used framework. Moreover, the modehwiit energy is a special
case of both models treated in our previous work (one wouideléhis model from the
previous models by eliminating the energy dynamics). Theslehrepresents a simpler
way of modeling the predator-prey interactions and a natjuastion to ask is whether
extending it by energy variables is really necessary. Theltgin is paper suggest that
one needs to include the energy dynamics to this model irr tarodel the system of
interest with more realism. However, it remains to be seeethédr there are no other
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models without energy dynamics which would be closer to theeoved behavior. If
such a model is found, we would have falsified our hypothésis including energy
dynamics is essential to the predictions from Section 3dl3a2 models.

The system under consideration is multi-seasonal, i.e.h sammer season is
finitely long and it is followed by a winter season. For thigsen, long-term anal-
ysis does not yield much insight into the behaviour of our elodf we, however,
assume the summer season is infinitely long, then stabitifyais shows that prey
diapause stabilizes the predator-prey dynamics. Thidtiessi been reported earlier as
the stabilizing effect of prey refuges on predator-preyaiyics. [12, 17].

For all models we proposed so far it is still to be shown thainoal summer be-
havior of the predator and prey populations, as derivedigtiudy, is resistant against
invasion by mutant strategies and robust against strdatudifications, such as the
inclusion of predator decisions to enter diapause or ndimately, we hope to explain
winter dynamics of predator mites and fruit-tree red spidiées based on optimal tim-
ing of diapause induction in summer. The use of bifurcatioalysis can help deter-
mining for which parameter domains the proposed optimategies are evolutionarily
stable.
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Appendix A: Derivation of the optimal strategies for the
predator and prey in thethird (new) model

Firstly, we formulate the problem of the predator and thebfm of the prey via
Hamilton-Jacobi-Bellman equations [1]. Starting from #rel of the season and pro-
ceeding backwards in time, we will then study the reactiothefprey to the behavior
of the predator and subsequently compute the optimal behaf’both of them. We
assume here that a Stackelberg game is being played in wiagiré¢dator can impose
its decision on the prey. In the analysis this is equivalerdrialyzing what behavior
is optimal for the prey with respect to the behavior of thedater, and consequently
checking what is optimal for the prey. However, most of thadyéor obtained from
this analysis coincides with the outcomes of the Stackglgame with the prey as the
leader and outcomes of the Nash game, i.e., the game in whech is no hierarchy
between the players.

The analysis is carried out in reverse time, i.e., procegéliom the end of the
season towards its beginning, we will study the optimal bihaf the predator mites
and the prey mites.

Characteristic system for the prey

Let us introduce a reverse tinte=T —t (f’ d:Ef% = —f) and a value function for the

prey )
VR(t):/ (1— uR)Rdt.

Tt

With bp d:“%, br 2798 the Hamilton-Jacobi-Bellman equation has the form

= OR>
VR P P R
IR = ot +rrl11Rax(bp(— apu” P+ Bpu u"PR)
+br(arRURR— BrUPURPR) + (1— uF) R). (4.1)
The characteristic system (in reverse time) is:
P' = apu” P— BpuPuRPR, (4.2)
R = —aruRR+ BruPuRPR (4.3)
13 = bp( —ap uP + BPUPUR R) — bRBRuPuR R, (4.4)
b = bp BpuPuR P + br(aru® — BrUPURP) + 1 — uF, (4.5)

with transversal conditionbp(0) = 0, br(0) = O, and additional initial conditions
P(0) > 0, R(0) > 0. Optimal decision can then be derived as [14, 13, 15]

uR = Heav.%%
with

Sr=R(Bpbpu’P+br(ar— Bru"P) —1). (4.6)
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Note that the sign of/r does not depend oR, asR is always positive if the prey is
alive. As.7r(1 = 0) = —R(0) < 0, uR equals to 0 for some intervale [0, If), while
we cannot yet exclude the option thzz{i = T. Note that if the season is very short,
uR = 0 is optimal for the prey for the entire season. While the taatuR(0) = 0 is
independent of the behavior of the predator, the time whensthategy of the prey
should change might be dependentbn

This can be seen from the following characteristic systdstgioed by substituting

= 0 into (4.2)—(4.5) and with initial conditior3(0), R(0) > 1, bp(0) = br(0) =

P = apUPP, (4.7)
R =0, (4.8)
/ =—0ap bpu (4.9)
h=1 (4.10)
The solution of (4.7)—(4.10) is
ap [P (¥)dy
be(T) =0,br(T) =T,P(T)=P(0)e © R(1)=R(0).

Substituting this solution into (4.6) leads to:

JapwP(y)dy
Fr=RO)(tar—TpP (PO —1).

Remark 4.1. (Switching surface starting at(R) = 0) Note that in our system it is
impossible for R to reach valu® If we allowed condition F0) = 0, then there would
be a switching surface starting from(® = 0, as.#r(0) would then equal to zero.
In such a situation, prey would either start in diapause 8rai(0,1). The switching
surface starting at F0) = 0 would then have the following parametrization:
ZRr(0)=0,
Sr= R(prpuPP—l- br(ar— BrUP) — 1) = 0.

(prp(d )P+ ar— PBrUPP— bRBR( )P brBr(UF)?apP) =0

Trivially, these two equations are zero for=R0 (i.e., there exists a switching surface
for R=0). However, they are also zero for

—ar? + 20rBrUP P — Br?(UP)2P? + fr (45) P+ Br (uP)2ap P
Bp P(( )aR+BR(uP)3apP)
~ 4 Pog+ Br(UP)?P

br=— . 4,12
R T ot e (o) Pap (@32

. (411)

bp =

Note that this solution makes sense only"ifA410. Moreover, we know thatgg0) =
br(0) = 0and P follows dynamics i@.2), with P(0) = 0. From the second time deriva-
tive of.7k we can obtain expression foR@long this switching surface. However, we
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need to know the expression fdt (in case that & # 0) in order to be able to get

explicit expression for this intermediate value 8f(as its expression contain§ and

its time derivatives). There is a switching surface presemte dynamics, but only if
P € (0,1]. The expression fortialongside this surface is then

uR = ﬂ,
7}
with
duP? d?uP d’uP
Y =2Pr—g Par—Pr —PZ( )3aP+FUR2 az arBrU"P
d?uP du? duP
T BR( )GPP+5BR(UP)ZGPPW GR—FBRZ(UP)SGPZPZ—FBR( )C{pzp ar

duP?
+ BR (UP)4aP2PaR+ 3BR E ap UP R
duP duP®
Wo = Br(U7)*Bp PR(E ar+Uu” ap ot (uP)2ap aR).

Note thaty, = 0 if uP = 0. Therefore, we can proceed to the analysis of the character-
istic system for the predator and only ff@) < (0,1].

Let us now investigate the optimal behavior of the preddttireend of the season,
taking into account that®* = 0 at the end of the season.

Characteristic system for the predator

Adopting a similar analysis as the one for the prey, we carcqed as follows: We
again consider reverse tine=T —t (f’ def % = —f) and a value function for the
predator

T
Ve(t) :/ (—apUPP+ BeuPURPR) .
Tt

With ap def %\g’, aR def %\{{*, the HJIB equation has the following form:

Hp = aalt +max(ap( —apu” P+ BpuPuRPR)

+ar(arURR— BrUPURPR) — apuPP+ BpuPuRPR). (4.13)

The characteristic system is:

P' = apuP P — BruPuRPR, (4.14)
R = —aruRR+ BruPURPR (4.15)
ap = ap( — apu” + BpuPuRR) — ar BrUURR— apu” + BpuPuRR, (4.16)
ak = ap BpuPuRP + ag (aru® — BrUPURP) + BeuPuRP, (4.17)
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with initial conditionsP(0), R(0) > 1 and transversal conditiorms(0) = ar(0) = 0.
The optimal decision can be expressed as

u® = Heav.%
with
p=ap(— apP+ BpuRPR) — agBrURPR— ap P+ BpuRPR (4.18)

Note that the sign of/p is independent oP, asP has to be positive for the predator
to be alive. From the initial and transversal conditionsoitdws that.#p(1 = 0) =
P(0)(—ap + BpuR(0)R(0)). As uR(0) = 0, .#p(T = 0) = —ap P(0) < 0. Therefore,
uP(0) =0.

Remark 4.2. (Switching surface starting at(B) = 0) Note that in our system it is
impossible for P to reach valu If we allowed condition FO) = 0, then there would
be a switching surface starting from/® = 0. Then depending on the initial value of
R and value of §(0), the predator would either start in diapause dt @ (0,1). If we
allow P(0) = 0, R(0) = 0, and }(0) € (0, 1), then, there might be a switching surface
for the predator starting at F0) = 0, alongside which B (0, 1), while the prey would
act as described in Remark 4.1. In such a casefiEu0,1) at the beginning of
the season, the switching surface for the predator wouldthasatisfy the following
conditions:

yp(o) = 07
p=Apsp =ap(— apP+ BpuRPR) — arBruPR— ap P+ BpuRPR=0,
duR duR d
b= —PR(Bp (WF)°ar — Po—— +arPr - — apPe -U" +apfe (1%) ag) = 0.

From equations#p = 0, .} = 0, one can compute thapa= —1 and & = 0. As with
ap(0) = 0 and dynamicg4.16)ap = —1 cannot be achieved, we can conclude that
the intermediate strategy and switching surface starting & 0 does not exist. This,
however, implies, that also the switching surface disalisseRemark 4.1 does not
exist.

Assuming thatu(t) = uR(1) = 0 on some interval0, ), and given thatr, =
min(ty, 1f), wheret!” andtR are the times in which the predator and prey change the
strategy fromu” = 0 to u” € (0,1] andu® = 0 to uR € (0, 1] at the end of the season,
respectively, we find on this interval that

P =0, (4.19)
R =0, (4.20)
ap=0, (4.21)
ag=0. (4.22)
Therefore, forr € [0, 1x), P(T) = P(0), R(1) = R(0), ap = 0, ar = 0, and (from (4.18))

Ip = —C{pP(O).
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This means that as long a8 = 0, u® = 0 as well. Moreover,#p < 0 also ifu =0,
while uR = 1. Thereforer!” > R, while we cannot exclude the option whehand R
are arbitrarily close to each other.

As long asu® = 0, the solution to the system (4.7)-(4.10) equalsta) = 0,
br(T) =1, P(1) = P(0), R(1) = R(0). Consequentlyyr = T arR(0) — R(0).

This implies that#g = 0 if R(0)(Tag— 1) = 0, i.e., the time whemR = 0 changes
into another strategy is equal t§* = aiR (and is therefore independent BfandP.).
Clearly,P(}) = 0, br(1}) = 1, P(tR) = P(0), R(TR) = R(0).

If uP = 0, while uR € (0,1), the characteristic system for the predator becomes

P —0, (4.23)
R = —aruRR, (4.24)
a—0, (4.25)
ak = araru™. (4.26)

The switching surface of the predator will becorste = P(0) ( — aSRBRuR’SRS —ap+
Be uRSR®), whereR® solves (4.24) and, solves (4.26), given that® = uRs € (0,1).

Finding uRsif P =0

We can use the following relation, witf,-} denoting Jacobi brackets [14]7% =
{ AR, R}, S = {4, hr}, with hg being the Hamiltonian of (4.1). We assunié1) =
0fort € [0,7{]. Then

YR: R(aRbR—l), (4.27)
jﬂé = {YR, h} = aRr R (4.28)

In other words, aRR # 0, 5@% :0=—br+ a—lR is a switching surface for the prey.
Moreover, if there is an intermediate stratedy= uRs € (0,1), #r = 0 implies.7% =
0. [14]. Setting (4.27) and (4.28) to 0 leads to only trivialg@n R = 0. Therefore,
there is no singular strategy for the prey under the assomfiiat oncaiR # 0, when
uP is still equal to zero.

Note that ifuR jumps atrR, also co-statebp andbg might jump, as the Hamilton-
Jacobi-Bellman equation will change. However, as the esgioa for the switching
surface 74 is trivial, such a jump does not happen.

Finding optimal strategy for the predator when uR = 1.

Let us now investigate optimal behavior for the predatorearit= 1, if the predator
playsu® = 0. The characteristic system for the predator (4.14)—(4.&¢pmes

P =0, (4.29)
R = —0orR, (4.30)
ah =0, (4.31)
8k = ORaR, (4.32)



with initial condmonsP( 1R) P(0), R(tR) = R(0), ap(1R) =0, ar(tf) = 0. This im-
plies thatap(1) = 0, ar(T) = 0 also fort > R, P(1) = P(0), R r) = R(0)e~R(1-1),
Then

Fo = —apP(0) + BpP(0) R(0)e R (TTF),

which equals to 0 at time} = (1§ — W) Note that ifR(0) = 1 andap = Sp,
then r'f = Tf, otherwise, depending on values Rf0), ap, and 3, the difference
betweenrf andrlR might be arbitrarily small or very high.

In order to find the strategy for the predatdt® € (0,1), we have to solve the

system of characteristic equations (4.14)—(4.17) witk= 1, uP? = uPS, leading to:

p=(ap+1)(—apP+PpPR) —arfrPR (4.33)
=P((ap+1)(—ap+BrR) —arprR) =0,
Ip={,h} = BpPR(—apar— ar) = 0. (4.34)

These two expressions can be equal to zero onlafor —1, agr = 0 (not that this

outcome coincides with the outcome found in Remark 4.2).a4@?}) = 0, this is

clearly impossible. The conclusion is that at tirrfethe predator switches to strategy
=1 immediately.

With uR = 1, uP = 0, will uR changeto another value?

If R =1andu” =0, i.e., for timet € [t} 1), the system of characteristics for the
prey becomes

P =0, (4.35)
R = —orR, (4.36)
L =0, (4.37)

with initial conditionsP(1f) = P(0), R(1}) = R(0), bp(TR) = 0, br(1l) = . Notice
that withuP = 0 the switching surface can be expressed as

IR= R(GRbR— 1).

As bris increasing ofit?, 1}) andRis positive, the prey does not go into diapause from
=1if uP = 0. Solving (4.35)—(4.38) yieldB() = P(0), bp = 0, r = R(0)e~ (-0

bR( 1) = tRelT- 1R,

If uR =1, uP = 1, will predator and/or prey jump to another value?

Last but not least, the situation to be examined is when tbg igractive and predator
is active as well, i.e., when> rl Behavior of the prey can again be investigated from
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substitutingu® = 1, uP = 1 into the characteristic system (4.2)—(4.5), (4.16)-(%.1

P =(ap —BrPRIP, (4.39)
R = (—ar+ BrP)R (4.40)
ap =ap(—ap + PBprR) —arfrR—ap + R, (4.41)
ar = apPBpP+ar(ar— BrP) + BpP. (4.42)
bp = bp( —ap+LBp R) —brBrR, (4.43)
br =bpBrP+ bR(GR —Br P), (4.44)

R

with P(tP) = P(0), R(TP) = R(0)e (TR bp(1P) = 0, br(1P) = tRelt TR,
ap(1f) = 0, bp(1f) = 0.
Note also that withu” = 1, uR = 1 the switching surfacep, .7k become:

Sp=P(ap(—ap+PrR) —arfrR—ap + BrR), (4.45)
SR= R(prpP-l- bR(C{R— BRP) — 1), (4.46)

and they are both positive. Solving (4.40)—(4.44) anaftyds impossible. One option

is that as long as the prey is active, the predator stayseaasiwell, if the decrease of
SR Is is faster than the decrease.gh. Then, in reverse time, the prey would enter
diapause earlier than the predator and the entire analysid be repeated from the
situationu® = 0, uR = 0. However, if at any moment the decreasedf becomes
slower than the decrease.ob, the predator would enter diapause later than the prey.
Numerical studies in Appendix B suggest that this situatian occurr as well.

The expected behavior of the predator/prey

Once both predator and prey are in diapause, we can repeatahesis shown above.
The typical optimal behavior for the predator and prey isictegl in Figure 5. How-
ever, numerical studies in Appendix B suggest that the hehaeforehand can look
quite different.
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=0
wR=1
wR=0

t=0 t=T
Figure 5: Typical behavior for the predator and prey in thedelaealt with in this
article. Hereu® anduR refer to the portion of the predator and prey population gein
active, respectively. For certain initial values of paréengthe times of the switches in
the strategy fou” anduR are the same, for most initial values of the parameters they
differ. Note that while the behavior at the end of the seasas found analytically (the
behavior on the right-hand side of the dashed line), theofdkis behavior might vary

as suggested by the outcomes of numerical case studiesgjoénilix B).

Appendix B: Numerical computationsof theoptimal strate-
giesfor the predator and prey in the third model

Setting of the numerical computations

The model of the intra-seasonal interaction between poegatites and fruit-tree red
spider mites was implemented in Fortran. In this programtitne intervalO, T] was
discretized intay; subintervals (commonly 5 and 10 T subintervals). Moreover, the
optimal decisionsi® anduR were searched ai, points (highem, increases the pre-
cision of the outcome, whilg; has to be divisible by, — 1), starting from (random)
initial estimates. As we consider a game with Stackelbawggire, the constrained
optimization for the prey (the follower) was embedded itfite tonstrained optimiza-
tion for the predator (the leader). The ordinary differahsiystem (3.13)—(3.14) was
discretized om; subintervals using the 4th order Runge-Kutta method (withstant
stept = T/n) and subsequently the fitness functions for the predatompaeywere
approximated using the trapezoidal rule with the time stepvo cases were consid-
ered:
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(a) The optimali” andu® are continuous, piecewise affine functions.

(b) The optimalu® anduR are piecewise affine functions with possible discontinu-
ities in the internal nodal points. For the calculationsha itth subinterval of
u” anduR, up andu;, are considered to be continuous (i@ (ti_1) = up(t" ;).

Up(ti) = up(t;)).

Note that the results of the numerical computations styodgbend on the number
of discretization points and on the chosen structurafoandu® and that the results
obtained here are just an approximation of the optimalegias.

Results of the numerical computations

In Table 1 we compare different algorithms in termdT ). The maximization cri-
terium of the leader i, (— apu® P+ BpuPURPR) dt = P(T) — P(0) and P(0) is
given, thereforeP(T) indicates the outcome for the leader well. High&iT) with
the same values; andn, indicates a better outcome for the predator. In all tested
cases with the sanmg andn; the discontinuous strategies brought better outcome to
the leader than the continuous ones, which indicates thaeih discontinuous strate-
gies are optimal in this model. For the numerical case ssudie have considered a
very short season in order to improve the precision of theralym. Parameterap,
Bp, ar, andfr were set to M5, 0.2, 0.25, and to 024. The graphs comparing different
outcomes are shown in Figures 6-7.

While the behavior before the last switch (when both predanal prey enter dia-
pause after being active) varies among different numedatdomes, the behavior at
the end of the season corresponds to our analytical results.

strategy type| T | n n; P(T)
continuous | 10 | 100 | 50 | 1.282645
continuous | 10 | 100 | 100 | 1.285299

discontinuous| 10 | 100 | 50 | 1.321685
discontinuous 10 | 100 | 100 | 1.619314

Table 1: Comparison of different algorithms in termggT )

23



p
1 ” Ug
o8}
osf
[ [} | |
Ao g "
0aft b N '
P T ]
PEE vatn '
N ' [ i 1
ogf SRR TR S
i A
HIRERE (N
Vot s
S A y
S B o
time [days]
—]
- - P
u
1] :y—\y_\ R
d
d
08F i
osf
|
¢
of
Sl
o CR)

tidme fd ay;]

5 6 7 8 o 10

ti}ne [days

5 6 7 8 9 10

tidme [days]

Figure 6: Comparison of the numerical outcomes of the gamiaterval [0, 10] with
continuous strategiesy = 100, n; = 50 (top) andy, = 100, n; = 100 (bottom). Here
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