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Abstract

Apart from interacting, prey and predators may also avoid each other by mov-
ing into refuges where they lack food, yet survive by switching to an energy-saving
physiological state. Lotka-Volterra models of predator-prey interactions ignore this
option. Therefore, we have modeled this game of ‘joining-vs-opting-out’ by ex-
tending Lotka-Volterra models to include portions of populations not in interaction
and with different energy dynamics. Given this setting, theprey’s decisions to join
or to opt out influence those of the predator and vice versa, causing the set of pos-
sible strategies to be complex and large. However, using game theory, we analyzed
and published two models showing (1) which strategies are best for the prey pop-
ulation given the predator’s strategy and (2) which are bestfor prey and predator
populations simultaneously. The predicted best strategies appear to match empiri-
cal observations on plant-inhabiting predator and prey mites. Here, we consider a
plausible third model that does not take energy dynamics into account, but appears
to yield contrasting predictions. This supports our assumption to extend Lotka-
Volterra models with ’interaction-dependent’ energy dynamics, but more work is
needed to prove that it is essential and that what is best for the population is also
best for the individual.
Keywords: diapause, mites, fruit orchard, mathematical models, predator-prey
interactions, dynamic noncooperative game theory

1 Introduction

Theory on the ecology of food webs is still founded to a considerable extent on the as-
sumptions underlying a predator-prey model proposed independently by Lotka (1925)
and Volterra (1926), [10, 11, 26, 27]. One of these assumptions is that predators and
prey are continuously exposed to each other and therefore interact. In reality, however,
predators and prey also have the option to avoid interactingwith each other. They may
then move into refuges where there is no prey and where survival demands a switch to
an energy-saving physiological state, such as diapause.
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Diapause has always been thought to emerge solely to overcome the winter season
and to emerge in response to abiotic factors signaling the onset of the winter season,
but it may also emerge in response to food scarcity and/or therisk of being eaten, as
recently shown for the case of predator mites and fruit-treered spider mites (Acari:
Phytoseiidae, Tetranychidae) [21, 3, 24, 25, 23, 7, 8, 9]. Although empirical proof of
these diapause-governing principles is limited, they may well hold generally in ecolog-
ical interactions.

We have extended Lotka-Volterra predator-prey models in two ways [19, 20]: (1)
by splitting the predator population as well as the prey population in two portions, one
that is joining the interactions and another that is not; and(2) by including energy dy-
namics that differs between those joining the interactionsand those opting out of the
interactions. Using this extended Lotka-Volterra model weask how predators and prey
should best allocate their time between joining the interactions and avoiding them. This
question is not easy because the best solution has to be determined from a large set of
possible strategies and because the strategies can be quitecomplex given that the prey’s
decisions to join or opt out influence those of the predators,and vice versa. However,
using game theory we have showed which strategy is best for the population of prey
[20] and which is best for the population of prey and the population of predators simul-
taneously [19]. In this article, we review these two models,their assumptions, and their
predictions, and additionally we present and analyze a third model that emerges as a
plausible simplification of the earlier models and that differs from them in that it does
not take energy dynamics into account. Hence, this new modelallows us to ask whether
including energy dynamics in the Lotka-Volterra models, extended as explained above,
is essential to the predictions from these models. Moreover, we can compare the pre-
dictions of either of these models with empirical observations on opting-out strategies
in natural predator-prey systems.

By making good use of optimal control theory and game theory,we are able to
determine what is best for the populations of predator and prey. Whether these solu-
tions are also best for the individual predator and prey is not analyzed in this article
and therefore remains to be determined. In our view, both types of solutions are of
scientific interest in their own right as they show how predominating selection levels
determine what is the best strategy. If the predicted best strategy depends critically on
the selection level taken into account in the models, this may help to infer which se-
lection level dominates in natural systems by comparing thepredicted and empirically
observed strategies.

Our article is structured as follows. In Section 2, we brieflyreview what is empiri-
cally known about opting-out (diapause) strategies in a well-investigated predator-prey
system involving predator mites (Acari: Phytoseidae) and their prey, fruit-tree red spi-
der mites (Acari: Tetranychidae). In Section 3, we first discuss the Lotka-Volterra
models extended to include energy dynamics of predators andprey joining or opting
out of the interactions. Then, we propose and analyze a new plausible model that lacks
energy dynamics. Finally, in Section 4 (Discussion) we compare the predictions from
the models presented and discuss whether including energy dynamics in the models is
essential to their predictions. Moreover, we compare the strategies predicted with those
empirically observed in plant-inhabiting predator and prey mites.
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2 Observed behavior of the predator mites and the fruit-
tree red spider mites

Our models were inspired by studies on the use of predator mites (Acari: Phytoseiidae)
for biological pest control of fruit-tree red spider mites (Acari: Tetranychidae) that
feed on and damage leaves of apple trees [5, 6]. Winters (covering 6-7 months) are
usually harsh and as such endanger the survival of prey [5] and (even more so) that of
predators [4, 5]. Predator and prey densities in the following summer season depend
on their numbers entering a state of physiological rest (theso-called diapause state)
during the previous year. The decision to enter diapause promotes the survival of the
individual during winter and emerges from induction by a combination of sufficiently
long night lengths and low temperatures [24, 24, 25]. However, using another similar
spider mite species (more amenable to experimental treatment), it was shown that the
decision to enter diapause also depends on predator densityduring summer [7, 8, 9].
From the point of view of the prey mite this behavior makes intuitive sense as it faces
a grim future with increasing predator densities and thus anincreased risk of death:
it may then do better by giving up reproduction, moving away from leaves to twigs
and branches (a refuge from predation, but without food) andby entering diapause
earlier than indicated by the predictors of season length (night length and temperature).
However, if too many prey mites would make the same decision,this could create
a negative feedback on the predator mite population, so thatat some point in time the
prey mites would profit from the decreased predation risk by terminating their diapause
and returning to the leaves. This leads us to conclude that the prey’s decision to enter
diapause is part of a game where the predator is the leader andthe prey needs to find
an optimal response to the predator.

Another complicating factor is that an early diapause raises the demands on the
energy storage of the individual prey mite, which needs to cover a longer period before
terminating diapause at the beginning of the next summer season – the energy level
at diapause termination will determine the reproductive capacity of the prey mite [8].
Thus, the decision to enter diapause within a year will depend on the current internal
energy store of the prey mite, as this will have far-reachingconsequences for winter
survival and reproduction in the summer season of the next year. Given the negative
feedback between predator and prey and the complexity of thedecisions that prey mites
are faced with, it is virtually impossible to intuitively pinpoint the most likely strategies
that will emerge from natural selection.

There is less information on the diapause behavior of the predator mites. However,
the predator mites are much more flexible in entering diapause or active states, and can
switch among them multiple times during the season. Physiological decision variables
depend on the predator and prey densities during summer, rather than only on reliable
season indicators, such as night/day length and temperature [3, 21].

3 Three models of the predator-prey interactions

In the remainder of this article we will focus on optimal-control and game-theoretical
models of interactions between predatory mites and fruit-tree red spider mites. Using
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these methods, we will seek optimal strategies for the populations. These strategies are
supposed to be a result of evolutionary processes that take place at a larger temporal
and spatial scales (e.g. metapopulation scale) than considered in our time-bounded
and spatially unstructured models. The results that are optimal may or may not be
comparable to the results observed in reality. Throughout this paper, if we talk about the
decisions of predatory mites and/or prey mites, we are referring to the decisions taking
place in the long-term evolutionary process and if we talk about optimal decisions, we
mean the decisions that are the result of this evolutionary process.

In our previous work, we have developed two models of intra-seasonal interactions
between predator mites (Acari: Phytoseiidae) and fruit-tree red spider mites (Acari:
Tetranychidae). Both models extend the Lotka-Volterra equations [11, 27]and include
energy variables. We compare these two models with a new model proposed in this
paper, which is also an extension of the Lotka-Volterra equations, but does not include
an energy variable.

3.1 Optimal control model with energy

This model was introduced and analyzed in our previous article [20]. The predator is
assumed to be active the entire season; the goal is to find the optimal active/diapause
ratio for the prey. The fitness function for the prey models its survival capability, and is
related to the number of the individuals entering diapause during the summer. There-
fore, the prey mites choose auR,∗(t) ∈ [0,1] for t ∈ [0,T], where

uR,∗ = argsup
uR(·)

∫ T

0
(1−uR(t))ER(t)R(t)dt. (3.1)

In (3.1) the constantT denotes the length of the season. Moreover, with the function
uR we denote the strategy for the prey, namelyuR(t), t ∈ [0,T]. The decision variable
uR(t) indicates the portion of the prey population being active attime t: uR(t) ∈ [0,1],
for t ∈ [0,Tn]. R(t) represents the prey population at timet. Accordingly, the quan-
tity (1−uR(t))R(t) represents the number of the prey individuals in diapause attime
t. Furthermore, the variableER(t) ∈ [0,1] represents the (normalized) energy that is
available to an average individual within the prey population: if ER(t) = 0, then the av-
erage individual is dead, whereasER(t) = 1 represents maximal energy for the average
individual.

The system dynamics within each summer season is modeled as follows (hereP(t)
denotes the predator population at timet):

dER(t)
dt

=−m(1−uR(t))ER(t)+d uR(t)−d uR(t)ER(t), (3.2)

dP(t)
dt

=−α P(t)+β γ uR(t)P(t)R(t), (3.3)

dR(t)
dt

=−α R(t)+ γ uR(t)ER(t)R(t)−β uR(t)P(t)R(t). (3.4)

The quantitiesα,β ,γ > 0 andm,d > 0 are given parameters and except ofd can be
instantiated based on the field and laboratory observationsof the mites interactions. As
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parameterd is difficult to estimate, it is kept free and the results presented in article [20]
are valid for all values ofd, unless stated differently. Both the number of predatorsP(t)
and that of preyR(t) decrease at a rateα. In equation (3.3) the number of predators
P(t) increases at a rate that is proportional to the rate of predation, represented by the
product of the number of actual active preyuR(t)R(t) and the number of predatorsP(t)
with feeding rateβ γ. Whenever active, the prey population in (3.4) decreases – due
to predation – proportionally to the number of active prey and number of predators
(at rateβ ), whereas it increases – due to feeding and reproduction – proportionally to
the number of prey and the average internal energy (with rateγ). The energy of the
prey in (3.2) varies as follows: whenever active (feeding),it increases proportionally
to the distance to its maximum (1−ER(t)) with rated; on the other hand, whenever in
diapause, it decreases proportionally to the actual average energy of the prey (with rate
m), as individuals in diapause slowly utilize their energy.

The optimal strategy of the prey in this model, which we foundby using the
Hamilton-Jacobi-Bellman approach combined with the method of singular character-
istics [13, 14, 15], follows the following rules (see Figure1):

1. In the beginning of the summer season the prey can be in any state (all active, all
in diapause, or anything inbetween), whereas at the end of the summer season
all prey individuals are in diapause.

2. If all prey individuals are active in early summer, the prey will start entering
diapause at a certain point in time and the proportion of diapausing individuals
increases monotonically. Similarly, if only part of the prey population is active
in early summer, then all prey end up being in diapause at one point in time and
stay in diapause until the next year. Yet, if all prey individuals are in diapause in
early summer, then they continue to stay in diapause until the next year.

3. The time (expressed in real time) of diapause onset depends on the energy of
the prey, on predator population size, and on the rate of energy utilization, but it
is independent of prey population size (i.e. timing of diapause does not require
quorum sensing).

4. If predators are absent from the environment, all prey individuals are in diapause
later than if the predators are present (see Figure 3). Empirical observations on
diapause of fruit-tree red spider mites on apple trees in thefield (Sabelis and
Overmeer, unpublished data) reveal that virtually all individuals become active
in early summer and starting from a certain point in time the population en-
ters diapause, gradually. Moreover, experimental manipulation of the predator
population in the field showed that the fruit-tree red spidermites enter diapause
earlier in the presence of predator mites and once in diapause they stay in dia-
pause. However, apart from an effect of predator presence also the density of
fruit-tree red spider mites had an effect on the time at whichdiapause was ini-
tiated, suggesting that some form of quorum sensing (possibly via spider-mite
induced plant volatiles) takes place.

5. If more predators are present in the environment at the beginning of the season,
the prey individuals start entering diapause earlier, but the process of entering
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t = Tt = t2t = 0

uR = 1

uR = 0

t = Tt = t2t = t1t = 0

uR = 1

uR = 0

t = Tt = t2t = 0

uR = 1

uR = 0

t = Tt = 0

uR = 1

uR = 0

Figure 1: Scheme of possible optimal active ratiouR for the prey (uR(t)∈ [0,1] for each
t ∈ [0,T]). Based on the proposed dynamics and the optimization problem, we have
shown irreversibility and (largely) monotonicity of the strategy profile. Note that the
optimal strategies do not need to be continuous corresponding to the singular events in
the outcome of the optimization problem. This figure is takenfrom [20].

diapause is more gradual than if less predators are present;this effectively yields
the previous observation (see Figure 3).
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more predators

less predators

t = Tt = 0
uR = 0

uR = 1

Figure 2: If the number of predators increases (while all other state variables and pa-
rameters stay the same), the prey individuals begin to enterdiapause earlier, but more
gradually, balancing between having enough energy to survive the diapause and escap-
ing predation. HereuR indicates optimal active ratio for the prey (uR(t)∈ [0,1] for each
t ∈ [0,T]). This figure is taken from our previous article [20].

3.2 Game-theoretical model with energy dynamics

This model was introduced and analyzed in [19]. It extends the model presented in
Section 3.1 as both predators and prey can make decision to beactive or in diapause.
Therefore, the summer interactions between the predator mites and the prey mites can
be formulated as a game played with a finite horizon[0,T] in which the predator mites
select auP,∗(t) ∈ [0,1] for t ∈ [0,T], where

uP,∗ = argsup
uP(·)

∫ T

0

(

−αP(t)+β δuP(t)EP(t)P(t)
)

dt, (3.5)

whereas the prey mites choose auR,∗(t) ∈ [0,1] for t ∈ [0,T], where

uR,∗ = argsup
uR(·)

∫ T

0
(1−uR(t))ER(t)R(t)dt, (3.6)

subject to the following system dynamics:

dEP

dt
=−ac(1−uP)EP+euPuRR−auPEP, (3.7)

dER

dt
=−dh(1−uR)ER+ f (t)g(R)uR−duRER, (3.8)

dP
dt

=−αP+β δuPEPP, (3.9)

dR
dt

=−εR+ δuRERR− γuPuRPR. (3.10)

In (3.7) a > 0 is the energy decrease rate for the predator when active,ac (with
c∈ [0,1)) is the energy decrease rate for the predator when in diapause,e is the energy
increase rate for the predator when feeding (here the energyincrease is proportional to
the number of active fruit-tree red spider mites that are preyed upon and to the number
of active predator mites).
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In (3.8), d > 0 is the energy decrease rate for the prey when active,d h (with
h ∈ [0,1)) is the energy decrease rate for the prey when in diapause,f (t) is a time-
dependent function characterizing the presence of nutrients for the fruit-tree red spider
mites in the environment (0< f (·)≪ 1), g(Rn) ∈ [0,1] is a non-increasing function of
its variable, which represents competition among individual fruit-tree red spider mites
– hencef (t)g(Rn)uR is a term representing the increase of energy in the prey due to
its active state. The number of predator mites slowly decreases with rateα > 0 and
increases proportionally to their energy and number of active individuals with rateβ δ ,
whereβ > 0, δ > 0. The number of fruit-tree red spider mites decreases with death
rateε > 0, increases proportionally to their energy and number of active individuals
with rateδ > 0, and decreases proportionally to the number of active predator mites
and number of active fruit-tree red spider mites with rateγ > 0. As before,EP andER

refer to the energy levels of the average predator and prey individual, respectively.
The fitness function for the predator (3.11) reflects the factthat all predator indi-

viduals being alive at the end of the summer season (independently whether they are
active or in diapause) have a chance to survive the winter. Asin the previous model,
the fitness function for the prey (3.12) reflects the fact thatonly the prey individuals
that are in diapause at the end of the summer season have chance to survive the winter,
while the longer in diapause they are and the more internal energy they have, the higher
chance of survival they have.

The problem was solved as a Stackelberg game with the predator as the leader and
the prey as the follower. The optimal behavior for the predator is shown in Figure 3.
While it is optimal for the predator to stay active during theentire summer season,
the behavior of the prey is the same as in the optimal control model introduced in
Section 3.1.

t = Tt = 0
uP = 0

uP = 1

Figure 3: The optimal strategy for the predator is to stay active during the entire sum-
mer season. HereuP indicates optimal active ratio for the predator (uP(t) ∈ [0,1] for
eacht ∈ [0,T]). This figure is taken from [19].

3.3 New model: Game-theoretical model without energy dynamics

The similarity in predictions from the two models introduced in Sections 3.1 and 3.2
is striking. While we assumed that the energy variable is necessary in order to model
the system in question realistically enough, we decided to validate this by introducing
a game-theoretical model introduced in Section 3.2 simplified in that it does not take
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energy dynamics into account. This model is a straightforward extension of the classi-
cal Lotka-Volterra model, enriched by the decision variables for the predator and prey,
respectively. Moreover, it naturally emerges from the models introduced in Sections
Sections 3.1 and 3.2. Can such a simpler model yield similar results as the optimal
control model with energy and the game-theoretical model with energy?

In this new model, we again assume that the the predator miteschooseuP,∗(t) ∈
[0,1] for t ∈ [0,T], so that

uP,∗ = argsup
uP(·)

∫ T

0

(

−αPuPP+βPuPuRPR
)

dt, (3.11)

whereas the prey mites choose a portion of individuals that are active (versus those in
diapause)uR,∗(t) ∈ [0,1] for t ∈ [0,T], where

uR,∗ = argsup
uR(·)

∫ T

0
(1−uR(t))R(t)dt. (3.12)

The system dynamics appears to be a trivial extension of the Lotka-Volterra model:

dP
dt

=−αPuPP+βPuPuRPR, (3.13)

dR
dt

= αRuRR−βRuPuRPR, (3.14)

Here,αP > 0 is the death rate of the predator,αR > 0 is the death rate of the prey,
βP > 0 is the population increase rate for the predator based on feeding, andβR > 0
is the population decrease rate for the prey due to predation. Note that if all predator
mites are in diapause, their number does not change. If they are active, they need
to feed on active prey mites in order to increase their number. Similarly, if all prey
mites are in diapause, the number of predator mites does not change. If some of the
predator mites are active, the difference between the first and the second term in (3.14)
indicates whether their number will decrease or increase. We assume that 0< αP ≤ βP,
0< αR ≤ βR, and 1≤ P(0),R(0).

Within a summer, the goal of both predator and prey (theplayers) is to maximize
their chances of survival [2, 28], which translates to the optimization problems defined
by (3.11) and (3.12), subject to the dynamical constraints (3.13)–(3.14). We assume
that the game between the predator mites and the prey mites has a Stackelberg structure,
i.e., we assume that the predator can impose its decision on the prey.

Remark 3.1. The system of predatory mites and fruit-tree red spider mites is inter-
seasonal system, i.e, the summer season lasting for about 5 months is followed by the
winter season, lasting for about 7 months. Therefore, equations(3.13)–(3.14)apply to
a period equal to a summer season, thus there are no long-termdynamics.

However, let us analyze the equilibrium dynamics obtained for various values of uP

and uR. The equilibrium points are{P∗,1 = R∗,1 = 0} and{P∗,2 = αR
βRuP

,R∗,2 = αP
βP uR

},
where the latter point is well defined for uR, uP 6= 0. The Jacobian of the system(3.13)–
(3.14)is

J =

[

−αPuP+βPuPuRR βPuPuRP

−βRuPuRR αRuR−βRuPuRP

]

.
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Eigenvalues of J at equilibrium point{P∗,1 = R∗,1 = 0} are αRuR andαP uP. Eigen-
values of J at equilibrium point{P∗,2 = αR

βRuP
,R∗,2 = αP

βP
uR} are

√−αRuRαPuP and

−√−αRuRαPuP. Therefore, if uP ≡ 0 and uR≡ 0, both equilibria are marginally sta-
ble (namely, related to periodic trajectories over the two populations). Otherwise, both
equilibria are unstable.

As derived in Appendix A of this article, the optimal strategies of the predator
and prey follow the pattern depicted in Figure 4. As the number of switches in the
strategies depend on the initial parametersαP, αR, βP, βR, season lengthT, and initial
valuesP(0) andR(0), results of the numerical case studies are shown in Figures 6-??
of Appendix B. Please bear in mind that these results are justapproximations of the
optimal results obtained by grid-based numerical techniques. That is why we have
chosen extremely smallT which provides a relatively high precision of the outcome.
For details about the numerical computations, see AppendixB.

uP = 1

uP = 0

uR= 1

uR= 0
t = 0 t = T

Figure 4: Optimal behavior for the predator and prey in the game-theoretic model
without energy dynamics, withuR anduP denoting the portion of the predator mites
and the prey mites being active, respectively. Behavior at the end of the season (on
the right-hand side of the dashed line): either the switchesbetween being active and in
diapause happen exactly at the same time for both predator and prey (see Appendix A
for discussion on this), but predator may also switch beforethe prey does. This would
suggest that the predator reacts to the behavior of the prey in reverse time, as opposed
to the reaction in the real time, which we would expect. Behavior before the end of
the season (before the dashed line): the behavior here mightvary as suggested by the
outcomes of numerical case studies. See Appendices A and B for derivation of this
result and numerical case studies.
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Contrary to the models introduced in Sections 3.1 and 3.2, the optimal strategies
of the predator and prey mites in apple orchards are much moreversatile; the predator
and prey clearly react to each other’s decisions. However, note that the mechanism of
their behavior is much more clear when studying the problem in reverse time (either
the predator or the prey switch their behavior at the same time or the predator reacts to
the behavior of the prey). The possible frequent switching in the strategies (dependent
on parametersαP, αR, βP, βR, season lengthT, and initial conditionsP(0) andR(0))
does not match empirical observations on the diapause behavior of predator mites and
fruit-tree red spider mites.

Our analytical computations (See Appendix A) yield a prediction that is counterin-
tuitive at first: the predator may opt out of the interaction before the prey. However this
is not surprising when it is realised that our analytical computations yield predictions
for what is optimal for the population (rather than the individual). Indeed, the predator
population may profit from opting out because it allows the prey population to grow
and hence represent later a richer food source for the predator population. This option
is known as “the milker-killer dilemma” in the literature. [22, 16, 18].

4 Discussion

In Sections 3.1, 3.2, and 3.3 we have introduced three modelstrying to capture diapause
induction and termination behavior of predator and prey mites. The first two models
seem to correspond to the laboratory and field observations very well: it is expected
that the prey reacts to the presence of the predator by changing the manner and speed
of its diapause induction.

In most field observations the predator indeed stays active the entire season. How-
ever, in rare cases it might also happen that the predator enters and leaves diapause
during the season, while the diapause induction in the prey is irreversible. This is due
to the fact that the diapause in predator mites is much more flexible than that in the prey
mites. In other case studies, it was observed that the predator mites enter diapause once
the prey enter diapause; subsequently, the prey might become active when the predator
is in diapause, followed by the predator becoming active as well. While repeated enter-
ing diapause/active state was an outcome of the game-theoretical model without energy
introduced in Section 3.3, the way in which the predator and prey mites are predicted
to enter the active/non-active (diapause) state is too versatile and differs from our em-
pirical expectations. We conclude that models including energy dynamics match the
field and laboratory observations much better than the modelwithout energy dynamics
[20, 19]. This is a very interesting observation as the modelwithout energy is a trivial
extension of the Lotka-Volterra model and the first step towards game-theoretical mod-
els from this widely used framework. Moreover, the model without energy is a special
case of both models treated in our previous work (one would derive this model from the
previous models by eliminating the energy dynamics). This model represents a simpler
way of modeling the predator-prey interactions and a natural question to ask is whether
extending it by energy variables is really necessary. The results in is paper suggest that
one needs to include the energy dynamics to this model in order to model the system of
interest with more realism. However, it remains to be seen whether there are no other
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models without energy dynamics which would be closer to the observed behavior. If
such a model is found, we would have falsified our hypothesis that including energy
dynamics is essential to the predictions from Section 3.1 and 3.2 models.

The system under consideration is multi-seasonal, i.e. each summer season is
finitely long and it is followed by a winter season. For this reason, long-term anal-
ysis does not yield much insight into the behaviour of our model. If we, however,
assume the summer season is infinitely long, then stability analysis shows that prey
diapause stabilizes the predator-prey dynamics. This result has been reported earlier as
the stabilizing effect of prey refuges on predator-prey dynamics. [12, 17].

For all models we proposed so far it is still to be shown that optimal summer be-
havior of the predator and prey populations, as derived in this study, is resistant against
invasion by mutant strategies and robust against structural modifications, such as the
inclusion of predator decisions to enter diapause or not. Ultimately, we hope to explain
winter dynamics of predator mites and fruit-tree red spidermites based on optimal tim-
ing of diapause induction in summer. The use of bifurcation analysis can help deter-
mining for which parameter domains the proposed optimal strategies are evolutionarily
stable.
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Appendix A: Derivation of the optimal strategies for the
predator and prey in the third (new) model

Firstly, we formulate the problem of the predator and the problem of the prey via
Hamilton-Jacobi-Bellman equations [1]. Starting from theend of the season and pro-
ceeding backwards in time, we will then study the reaction ofthe prey to the behavior
of the predator and subsequently compute the optimal behavior of both of them. We
assume here that a Stackelberg game is being played in which the predator can impose
its decision on the prey. In the analysis this is equivalent to analyzing what behavior
is optimal for the prey with respect to the behavior of the predator, and consequently
checking what is optimal for the prey. However, most of the behavior obtained from
this analysis coincides with the outcomes of the Stackelberg game with the prey as the
leader and outcomes of the Nash game, i.e., the game in which there is no hierarchy
between the players.

The analysis is carried out in reverse time, i.e., proceeding from the end of the
season towards its beginning, we will study the optimal behavior of the predator mites
and the prey mites.

Characteristic system for the prey

Let us introduce a reverse timeτ = T − t ( f ′
def
= d f

dτ =− ḟ ) and a value function for the
prey

VR(t) =
∫ T

T−t
(1−uR)Rdt′.

With bP
def
= ∂VR

∂P , bR
def
= ∂VR

∂R , the Hamilton-Jacobi-Bellman equation has the form

HR =
∂VR

∂ t
+max

uR

(

bP
(

−αPuPP+βPuPuRPR
)

+bR
(

αRuRR−βRuPuRPR
)

+(1−uR)R
)

. (4.1)

The characteristic system (in reverse time) is:

P′ = αPuPP−βPuPuRPR, (4.2)

R′ =−αRuRR+βRuPuRPR, (4.3)

b′P = bP
(

−αPuP+βPuPuRR
)

−bRβRuPuRR, (4.4)

b′R = bP βPuPuRP+bR
(

αRuR−βRuPuRP
)

+1−uR, (4.5)

with transversal conditionsbP(0) = 0, bR(0) = 0, and additional initial conditions
P(0)> 0, R(0)> 0. Optimal decision can then be derived as [14, 13, 15]

uR = HeavSR

with

SR = R
(

βPbPuPP+bR
(

αR−βRuPP
)

−1
)

. (4.6)
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Note that the sign ofSR does not depend onR, asR is always positive if the prey is
alive. AsSR(τ = 0) = −R(0)< 0, uR equals to 0 for some intervalτ ∈ [0,τR

1 ), while
we cannot yet exclude the option thatτR

1 = T. Note that if the season is very short,
uR = 0 is optimal for the prey for the entire season. While the factthatuR(0) = 0 is
independent of the behavior of the predator, the time when the strategy of the prey
should change might be dependent onuP.

This can be seen from the following characteristic system, obtained by substituting
uR= 0 into (4.2)–(4.5) and with initial conditionsP(0),R(0)≥ 1, bP(0) = bR(0) = 0 :

P′ = αPuPP, (4.7)

R′ = 0, (4.8)

b′P =−αPbPuP, (4.9)

b′R = 1. (4.10)

The solution of (4.7)–(4.10) is

bP(τ) = 0, bR(τ) = τ, P(τ) = P(0)e
αP

τ
∫

0
uP(ψ)dψ

, R(τ) = R(0).

Substituting this solution into (4.6) leads to:

SR = R(0)
(

τ αR− τ βRuP(τ)P(0)e

τ
∫

0
αP uP(ψ)dψ

−1
)

.

Remark 4.1. (Switching surface starting at R(0) = 0) Note that in our system it is
impossible for R to reach value0. If we allowed condition R(0) = 0, then there would
be a switching surface starting from R(0) = 0, as SR(0) would then equal to zero.
In such a situation, prey would either start in diapause or uR ∈ (0,1). The switching
surface starting at R(0) = 0 would then have the following parametrization:

SR(0) = 0,

SR = R
(

βPbPuPP+bR
(

αR−βRuPP
)

−1
)

= 0.

S
′
R = R

(

βPbP
(duP

dτ
)

P+αR−βRuPP−bRβR
(duP

dτ
)

P−bRβR(u
P)2αPP

)

= 0

Trivially, these two equations are zero for R= 0 (i.e., there exists a switching surface
for R= 0). However, they are also zero for

bP =
−αR

2+2αRβRuPP−βR
2(uP)2P2+βR

(duP

dτ
)

P+βR(uP)2αPP

βPP
((duP

dτ
)

αR+βR(uP)3αPP
)

, (4.11)

bR =−− duP

dτ −uPαR+βR(uP)2P
(duP

dτ
)

αR+βR
(

uP
)3

PαP

. (4.12)

Note that this solution makes sense only if uP 6= 0. Moreover, we know that bP(0) =
bR(0) = 0 and P follows dynamics in(4.2), with P(0)= 0. From the second time deriva-
tive ofSR we can obtain expression for uR along this switching surface. However, we
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need to know the expression for uP (in case that uP 6= 0) in order to be able to get
explicit expression for this intermediate value of uR (as its expression contains uP and
its time derivatives). There is a switching surface presentin the dynamics, but only if
uP ∈ (0,1]. The expression for uR alongside this surface is then

uR =
ψ1

ψ2
,

with

ψ1 = 2βR
duP

dτ

2

PαR−βR
2 duP

dτ
P2(uP)3αP+

d2uP

dτ2 αR
2− d2uP

dτ2 αRβRuPP

− d2uP

dτ2 βR(u
P)2αPP+5βR(u

P)2αPP
duP

dτ
αR+βR

2(uP)5αP
2P2+βR(u

P)3αP
2P

duP

dτ

+βR(u
P)4αP

2PαR+3βR
duP

dτ

2

αPuPP,

ψ2 = βR(u
P)2βPPR

(duP

dτ
αR+uPαP

duP

dτ
+(uP)2αP αR

)

.

Note thatψ2 = 0 if uP = 0. Therefore, we can proceed to the analysis of the character-
istic system for the predator and only if uP(0) ∈ (0,1].

Let us now investigate the optimal behavior of the predator at the end of the season,
taking into account thatuR,∗ = 0 at the end of the season.

Characteristic system for the predator

Adopting a similar analysis as the one for the prey, we can proceed as follows: We

again consider reverse timeτ = T − t ( f ′
def
= d f

dτ = − ḟ ) and a value function for the
predator

VP(t) =
∫ T

T−t
(−αPuPP+βPuPuRPR)dt ′.

With aP
def
= ∂VP

∂P , aR
def
= ∂VR

∂R , the HJB equation has the following form:

HP =
∂VP

∂ t
+max

uP

(

aP
(

−αPuPP+βPuPuRPR
)

+aR
(

αRuRR−βRuPuRPR
)

−αPuPP+βPuPuRPR
)

. (4.13)

The characteristic system is:

P′ = αPuPP−βPuPuRPR, (4.14)

R′ =−αRuRR+βRuPuRPR, (4.15)

a′P = aP
(

−αPuP+βPuPuRR
)

−aRβRuPuRR−αPuP+βPuPuRR, (4.16)

a′R = aPβPuPuRP+aR
(

αRuR−βRuPuRP
)

+βPuPuRP, (4.17)
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with initial conditionsP(0), R(0) ≥ 1 and transversal conditionsaP(0) = aR(0) = 0.
The optimal decision can be expressed as

uP = HeavSP

with

SP = aP
(

−αPP+βPuRPR
)

−aRβRuRPR−αP P+βPuRPR. (4.18)

Note that the sign ofSP is independent ofP, asP has to be positive for the predator
to be alive. From the initial and transversal conditions it follows thatSP(τ = 0) =
P(0)(−αP + βPuR(0)R(0)). As uR(0) = 0, SP(τ = 0) = −αP P(0) < 0. Therefore,
uP(0) = 0.

Remark 4.2. (Switching surface starting at P(0) = 0) Note that in our system it is
impossible for P to reach value0. If we allowed condition P(0) = 0, then there would
be a switching surface starting from P(0) = 0. Then depending on the initial value of
R and value of uR(0), the predator would either start in diapause or uP ∈ (0,1). If we
allow P(0) = 0, R(0) = 0, and uR(0) ∈ (0,1), then, there might be a switching surface
for the predator starting at P(0) = 0, alongside which uP ∈ (0,1), while the prey would
act as described in Remark 4.1. In such a case, if uP ∈ (0,1) at the beginning of
the season, the switching surface for the predator would have to satisfy the following
conditions:

SP(0) = 0,

SP = ApSP = aP
(

−αPP+βPuRPR
)

−aRβRuRPR−αP P+βPuRPR= 0,

S
′
P =−PR

(

βP
(

uR)2αR−βP
duR

dτ
+aRβR

duR

dτ
−aPβP

d
dτ

uR+aPβP
(

uR)2αR
)

= 0.

From equationsSP = 0, S ′
P = 0, one can compute that aP =−1 and aR = 0. As with

aP(0) = 0 and dynamics(4.16)aP = −1 cannot be achieved, we can conclude that
the intermediate strategy and switching surface starting at τ = 0 does not exist. This,
however, implies, that also the switching surface discussed in Remark 4.1 does not
exist.

Assuming thatuP(τ) = uR(τ) = 0 on some interval[0,τx), and given thatτx =
min(τP

1 ,τR
1 ), whereτP

1 andτR
1 are the times in which the predator and prey change the

strategy fromuP = 0 to uP ∈ (0,1] anduR = 0 to uR ∈ (0,1] at the end of the season,
respectively, we find on this interval that

P′ = 0, (4.19)

R′ = 0, (4.20)

a′P = 0, (4.21)

a′R = 0. (4.22)

Therefore, forτ ∈ [0,τx), P(τ) = P(0), R(τ) = R(0), aP = 0, aR= 0, and (from (4.18))

SP =−αPP(0).
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This means that as long asuR = 0, uP = 0 as well. Moreover,SP < 0 also ifuP = 0,
while uR= 1. Therefore,τP

1 > τR
1 , while we cannot exclude the option whenτP

1 andτR
1

are arbitrarily close to each other.
As long asuP = 0, the solution to the system (4.7)–(4.10) equals toP(τ) = 0,

bR(τ) = 1, P(τ) = P(0), R(τ) = R(0). Consequently,SR = τ αRR(0)−R(0).
This implies thatSR= 0 if R(0)(τ αR−1) = 0, i.e., the time whenuR= 0 changes

into another strategy is equal toτR
1 = 1

αR
(and is therefore independent ofR andP.).

Clearly,P(τR
1 ) = 0, bR(τR

1 ) = 1, P(τR
1 ) = P(0), R(τR

1 ) = R(0).
If uP = 0, while uR ∈ (0,1), the characteristic system for the predator becomes

P′ = 0, (4.23)

R′ =−αRuRR, (4.24)

a′P = 0, (4.25)

a′R = aRαRuR. (4.26)

The switching surface of the predator will becomeSP = P(0)
(

−as
RβRuR,sRs−αP+

βPuR,sRs
)

, whereRs solves (4.24) andas
R solves (4.26), given thatuR= uR,s ∈ (0,1).

Finding uR,s if uP = 0

We can use the following relation, with{·, ·} denoting Jacobi brackets [14]:S ′
R =

{SR,hR},S ′′
R = {S ′

R,hR},with hR being the Hamiltonian of (4.1). We assumeuP(τ)=
0 for τ ∈ [0,τP

1 ]. Then

SR = R(αRbR−1), (4.27)

S
′
R = {SR,h}= αRR. (4.28)

In other words, asR 6= 0, S 1
R : 0 = −bR+ 1

αR
is a switching surface for the prey.

Moreover, if there is an intermediate strategyuR= uR,s∈ (0,1), SR = 0 impliesS ′
R=

0. [14]. Setting (4.27) and (4.28) to 0 leads to only trivial solution R= 0. Therefore,
there is no singular strategy for the prey under the assumption that onceuR 6= 0, when
uP is still equal to zero.

Note that ifuR jumps atτR
1 , also co-statesbP andbR might jump, as the Hamilton-

Jacobi-Bellman equation will change. However, as the expression for the switching
surfaceS 1

R is trivial, such a jump does not happen.

Finding optimal strategy for the predator when uR= 1.

Let us now investigate optimal behavior for the predator once uR = 1, if the predator
playsuP = 0. The characteristic system for the predator (4.14)–(4.17) becomes

P′ = 0, (4.29)

R′ =−αRR, (4.30)

a′P = 0, (4.31)

a′R= αRaR, (4.32)
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with initial conditionsP(τR
1 ) = P(0), R(τR

1 ) = R(0), aP(τR
1 ) = 0, aR(τR

1 ) = 0. This im-

plies thataP(τ) = 0, aR(τ) = 0 also forτ > τR
1 , P(τ) = P(0), R(τ) = R(0)e−αR(τ−τR

1 ).
Then

SP =−αPP(0)+βPP(0)R(0)e−αR

(

τ−τR
1

)

,

which equals to 0 at timeτP
1 =

(

τR
1 −

ln
(

αP
βP R(0)

)

αR

)

. Note that ifR(0) = 1 andαP = βP,

then τP
1 = τR

1 , otherwise, depending on values ofR(0), αP, and βP, the difference
betweenτP

1 andτR
1 might be arbitrarily small or very high.

In order to find the strategy for the predatoruP,s ∈ (0,1), we have to solve the
system of characteristic equations (4.14)–(4.17) withuR = 1, uP = uP,s, leading to:

SP = (aP+1)
(

−αPP+βPPR
)

−aRβRPR (4.33)

= P
(

(aP+1)
(

−αP+βPR
)

−aRβRR
)

= 0,

S
′
P = {SP,h}= βPPR(−aPαR− αR) = 0. (4.34)

These two expressions can be equal to zero only foraP = −1, aR = 0 (not that this
outcome coincides with the outcome found in Remark 4.2). AsaP(τP

1 ) = 0, this is
clearly impossible. The conclusion is that at timeτP

1 the predator switches to strategy
uP = 1 immediately.

With uR = 1, uP = 0, will uR change to another value?

If uR = 1 anduP = 0, i.e., for timeτ ∈ [τR
1 ,τP

1 ), the system of characteristics for the
prey becomes

P′ = 0, (4.35)

R′ =−αRR, (4.36)

b′P = 0, (4.37)

b′R= αRbR, (4.38)

with initial conditionsP(τR
1 ) = P(0), R(τR

1 ) = R(0), bP(τR
1 ) = 0, bR(τR

1 ) = τR
1 . Notice

that withuP = 0 the switching surface can be expressed as

SR = R(αRbR−1).

AsbR is increasing on[τR
1 ,τP

1 ) andR is positive, the prey does not go into diapause from

uR= 1 if uP= 0. Solving (4.35)–(4.38) yieldsP(τ)=P(0), bP= 0, r =R(0)e−(τ−τR
1 )αR,

bR(τ) = τR
1 e(τ−τR

1 )αR.

If uR = 1, uP = 1, will predator and/or prey jump to another value?

Last but not least, the situation to be examined is when the prey is active and predator
is active as well, i.e., whenτ > τP

1 . Behavior of the prey can again be investigated from
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substitutinguR = 1, uP = 1 into the characteristic system (4.2)–(4.5), (4.16)–(4.17):

P′ = (αP −βPR)P, (4.39)

R′ = (−αR+βRP)R, (4.40)

a′P = aP
(

−αP +βPR
)

−aRβRR−αP +βPR, , (4.41)

a′R = aPβPP+aR
(

αR−βRP
)

+βPP, (4.42)

b′P = bP
(

−αP+βPR
)

−bRβRR, (4.43)

b′R = bPβPP+bR
(

αR−βRP
)

, (4.44)

with P(τP
1 ) = P(0), R(τP

1 ) = R(0)e−(τP
1 −τR

1 )αR, bP(τP
1 ) = 0, bR(τP

1 ) = τR
1 e(τ

P
1 −τR

1 )αR,
aP(τP

1 ) = 0, bP(τP
1 ) = 0.

Note also that withuP = 1, uR = 1 the switching surfacesSP, SR become:

SP = P
(

aP
(

−αP+βPR
)

−aRβRR−αP +βPR
)

, (4.45)

SR = R
(

bP βPP+bR
(

αR−βRP
)

−1
)

, (4.46)

and they are both positive. Solving (4.40)–(4.44) analytically is impossible. One option
is that as long as the prey is active, the predator stays active as well, if the decrease of
SR is is faster than the decrease ofSP. Then, in reverse time, the prey would enter
diapause earlier than the predator and the entire analysis could be repeated from the
situationuP = 0, uR = 0. However, if at any moment the decrease ofSR becomes
slower than the decrease ofSP, the predator would enter diapause later than the prey.
Numerical studies in Appendix B suggest that this situationcan occurr as well.

The expected behavior of the predator/prey

Once both predator and prey are in diapause, we can repeat theanalysis shown above.
The typical optimal behavior for the predator and prey is depicted in Figure 5. How-
ever, numerical studies in Appendix B suggest that the behavior beforehand can look
quite different.
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uP = 1

uP = 0

uR= 1

uR= 0
t = 0 t = T

Figure 5: Typical behavior for the predator and prey in the model dealt with in this
article. HereuP anduR refer to the portion of the predator and prey population being
active, respectively. For certain initial values of parameters the times of the switches in
the strategy foruP anduR are the same, for most initial values of the parameters they
differ. Note that while the behavior at the end of the season was found analytically (the
behavior on the right-hand side of the dashed line), the restof this behavior might vary
as suggested by the outcomes of numerical case studies (cf. Appendix B).

Appendix B: Numerical computations of the optimal strate-
gies for the predator and prey in the third model

Setting of the numerical computations

The model of the intra-seasonal interaction between predatory mites and fruit-tree red
spider mites was implemented in Fortran. In this program, the time interval[0,T] was
discretized intont subintervals (commonly 5·T and 10·T subintervals). Moreover, the
optimal decisionsuP anduR were searched atnu points (highernu increases the pre-
cision of the outcome, whilent has to be divisible bynu−1), starting from (random)
initial estimates. As we consider a game with Stackelberg structure, the constrained
optimization for the prey (the follower) was embedded into the constrained optimiza-
tion for the predator (the leader). The ordinary differential system (3.13)–(3.14) was
discretized onnt subintervals using the 4th order Runge-Kutta method (with constant
stepτ = T/nt) and subsequently the fitness functions for the predator andprey were
approximated using the trapezoidal rule with the time stepτ. Two cases were consid-
ered:
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(a) The optimaluP anduR are continuous, piecewise affine functions.

(b) The optimaluP anduR are piecewise affine functions with possible discontinu-
ities in the internal nodal points. For the calculations of the i-th subinterval of
uP anduR, up andur are considered to be continuous (i.e.,up(ti−1) = up(t+i−1),

up(ti) = up(t
−
i )).

Note that the results of the numerical computations strongly depend on the number
of discretization points and on the chosen structure foruP anduR and that the results
obtained here are just an approximation of the optimal strategies.

Results of the numerical computations

In Table 1 we compare different algorithms in terms ofP(T). The maximization cri-
terium of the leader is

∫ T
0

(

− αPuPP+ βPuPuRPR
)

dt = P(T)− P(0) and P(0) is
given, thereforeP(T) indicates the outcome for the leader well. HigherP(T) with
the same valuesnt andnu indicates a better outcome for the predator. In all tested
cases with the sament andni the discontinuous strategies brought better outcome to
the leader than the continuous ones, which indicates that indeed discontinuous strate-
gies are optimal in this model. For the numerical case studies we have considered a
very short season in order to improve the precision of the algorithm. ParametersαP,
βP, αR, andβR were set to 0.05, 0.2, 0.25, and to 0.24. The graphs comparing different
outcomes are shown in Figures 6–7.

While the behavior before the last switch (when both predator and prey enter dia-
pause after being active) varies among different numericaloutcomes, the behavior at
the end of the season corresponds to our analytical results.

strategy type T nt ni P(T)
continuous 10 100 50 1.282645
continuous 10 100 100 1.285299

discontinuous 10 100 50 1.321685
discontinuous 10 100 100 1.619314

Table 1: Comparison of different algorithms in terms ofP(T)
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Figure 6: Comparison of the numerical outcomes of the game oninterval [0,10] with
continuous strategies:nt = 100, ni = 50 (top) andnt = 100, ni = 100 (bottom). Here
P(0) = R(0) = 1.
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Figure 7: Comparison of the numerical outcomes of the game oninterval [0,10] with
discontinuous strategies:nt = 100, ni = 50 (top) andnt = 100, ni = 100 (bottom). Here
P(0) = R(0) = 1.
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