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Abstract

This paper focuses on optimizing probabilities of events of interest defined over
general controlled discrete-time Markov processes. It is shown that the optimiza-
tion over a wide class of ω-regular properties can be reduced to the solution of
one of two fundamental problems: reachability and repeated reachability. We pro-
vide a comprehensive study of the former problem and an initial characterisation
of the (much more involved) latter problem. A case study elucidates concepts and
techniques.

1. Introduction

Stochastic control models have been widely investigated and employed in nu-
merous applications in different areas such as finance, biology, power networks,
etc. – see [HLL96, Chapter 1] or [Mey08] for examples. Under discrete time se-
mantics, a natural way to model probabilistic behavior allowing for the presence of
control inputs is to employ the framework of controlled discrete-time Markov pro-
cesses (cdt-MP), also known as general Markov Decision Processes (MDP) [FS02].
In this modeling formalism, given the current state of a system and the control ac-
tion provided by an external agent, the distribution of the next state is uniquely
(deterministically) determined, which also entails the Markovian structure of the
model. In turn, the choice of the control action itself may depend on the complete
history of state and control observations, and can be randomized. The decision rule
of the agent, which assigns to the history observation a choice of the next action,
is called the policy. Unlike known results over finite-state models [BK08], in this
work we deal with general models evolving over uncountable spaces.
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A generic optimization problem over a cdt-MP is the following: given a per-
formance criterion whose value is uniquely determined by a chosen policy [Fei83],
optimize (maximize or minimize) the value of this criterion over the given class of
policies, and determine (if possible) the policy (or set of equivalent policies) corre-
sponding to the optimal value. In the literature a wide range of performance criteria
have been studied – see e.g. [ABFG+93, Section 3] for remarks on the historical de-
velopment of the topic – among them the discounted cost (DC), the total cost (TC),
and the average cost (AC). All these criteria present an additive structure, which
allows for the solution by means of dynamic programming (DP) [Bel54], namely a
backward-recursive procedure that computes the optimal control action by balanc-
ing the present value of the cost and the expected future cost caused by the choice
of such an action. The DP approach has led to a rich theory for such criteria – see
[BS78] for an overview on the DC and TC, and [ABFG+93] for a survey on AC.
Unfortunately similar results for other sorts of criteria are much less comprehen-
sive, the focus in the literature being more on qualitative analysis, e.g. determining
which policy classes are sufficient to focus on, and no general solution techniques
have been developed to the best of our knowledge. This in particular is the case
when one wants to optimize the probability of a given event, examples of the lat-
ter being “the state trajectory never leaves the safe set S” or “the state trajectory
eventually reaches the goal set G without leaving the safe set S beforehand”. In-
stances of these problems have been studied in isolation [MPS91, MS96b], however
no comprehensive treatment for this general class of problems has been given.

In this work we apply methods grounded on modal logic and on automata theory
for the following two purposes: first, we develop a framework to quantitatively de-
fine a class of performance criteria of interest, encompassing the instances discussed
above; second, we solve optimization problems over such criteria in a unified way.
More specifically, we propose to express events as formulae within a linear temporal
logic (LTL) [BK08, Chapter 5], encompassing intuitive specifications on the model
that are related to sentences in natural languages. We further show that such for-
mulae can be recast as automata: simple dynamical systems endowed with a logical
structure given by their acceptance conditions [BK08, Chapter 4]. We prove that
the optimization of any given event expressed as an automaton over the original
cdt-MP model can be reduced to one of two fundamental problems, namely reach-
ability or repeated reachability: the former requires visiting a goal set at least once,
whereas the latter requires infinitely many visits to the goal set.

The reachability problem over cdt-MP has been recently studied e.g. in [APLS08,
SL10, CCL11], however the results have either required restrictive conditions the
on model or focused on special cases of the problem, for instance when only Markov
(history-independent) policies are allowed. In contrast, here we consider the most
general setting for the reachability problem, and we provide a complete treatment
of the problem under conditions on the model being as mild as possible: this is
considered to be the core of our contribution. For example, up to our knowledge
we are the first to give a comprehensive study of the unbounded-horizon reacha-
bility over cdt-MP, providing Lyapunov-like techniques for its solution. In order
to obtain these results, we show that the reachability performance criterion can be
expressed as a TC one over a modified cdt-MP, which allows us extending the rich
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theory for the latter criterion to the reachability case. Unfortunately, we are not
able to give a comparable study of the repeated reachability problem, however we
extend results from gambling theory [MS96b] to characterize the DP formulation
for this problem, and propose a solution using Lyapunov-like excessive functions in
the special case when the system possesses certain stability properties. Gambling
theory is an area interested in optimising probabilistic decision models that closely
remind MDPs, however with the main goal of optimizing gambler’s behaviour. For
this goal, the performance criteria studied in gambling theory (final value of the
capital) are a bit different from classical problems for MDPs (discounted additive
payoff), which we exploit when focusing on the repeated reachability problem.

An approach to the optimal control of cdt-MP based on LTL and automata has
been developed for finite-state and finite-action models in the model-checking liter-
ature [BK08, Section 10.6]: however that setup does not deal with technical issues
(e.g. measurability) that appear in our context. Due to this reason, our contribution
can be considered from two perspectives. For readers familiar with formal meth-
ods in control [Tab09] and model-checking [BK08], we extend the model-checking
techniques from finite cdt-MP to a general class of models, whereas for readers
experienced in classical stochastic optimal control we propose a novel formulation
and solution of the problem of optimization of probabilities of classes of events of
interest.

The rest of the paper is organized as follows. The model description and the
problem formulation are given in Section 2, which also puts forward the result on
reduction of the general problem to either of two fundamental ones: reachability
or repeated reachability. Section 3 is devoted to the former case, whereas Section
4 is focused on the latter instance. We give an elucidating numerical case study in
Section 5, and the paper is concluded in Section 6. The notation and the background
in analysis and measure theory are provided in the Appendix.

2. Models and problem formulation

2.1. Model syntax and semantics
The models considered in this work are known as controlled discrete-time Markov

processes (cdt-MP), formalised next. A cdt-MP is a discrete-time stochastic model
with a specific transition structure: the distribution of the next state of the process
is completely determined by the current state and the current choice of the control
action. These models are alternatively known in the literature as controlled Markov
models [HLL96], general Markov Decision Processes (MDP) [Put94] or gambling
houses [MS96a]. There are often slight variations in the their definition: the one
we give here is inspired by the Borel model introduced in [BS78, Chapters 8, 9].
Details on notation can be found in the Appendix.

Definition 1 (Controlled discrete-time Markov process). A cdt-MP is a tuple D =
(X , U ,K,T), where X and U are non-empty Borel spaces, K is an analytic subset of
X × U, and T ∈B(X |X × U) is a stochastic kernel.

The cdt-MP D is called continuous if U is a compact Borel space, K is a closed
subset of X × U and the restriction T|K is a continuous kernel.
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Given a cdt-MP D= (X , U ,K,T) we say that X is its state space, U is the action
space, Kx are the actions that are feasible at state x ∈ X , and T is the transition
kernel. The latter induces several operators that act on functions defined over the
state space. For any µ ∈ U (U |X ) and any function f ∈ bU (X ) we define

Tµ f (x) :=

∫

X×U

f (x ′)T(dx ′|x , u)µ(du|x).

In particular, when µ = δu is a constant kernel, where u is some element of U , we
simply write Tu rather than Tδu . Clearly, it holds that Tu1A(x) = T(A|x , u) for all
x ∈ X , u ∈ U and any A ∈ B(X ). Furthermore, [BS78, Proposition 7.46] implies
that Tµ maps bU (X ) to itself. We also consider the following operators:

T∗ f (x) := sup
u∈U

Tu f (x), T∗ f (x) := inf
u∈U

Tu f (x).

If f ∈ bA∗(X ), then Tu f ∈ bA∗(X ) thanks to [BS78, Proposition 7.48]. Further-
more, it follows from [BS78, Proposition 7.47] that T∗ f (x) ∈ bA∗(X ) as well and,
as a result, the operator T∗ maps the space bA∗(X ) into itself. Similar arguments
show that the operator T∗ maps the space bA ∗(X ) into itself.

The semantics of the cdt-MP D is given as follows: at any time instant k ∈ N0,
if the state of D is xk ∈ X and the action uk ∈ Kxk

is chosen, then the new state xk+1
is a random variable distributed according to the following law:

xk+1 ∼ T(·|xk, uk). (2.1)

As a known example, every stochastic difference equation of the form

xk+1 = F(xk, uk,ξk), (2.2)

where (ξk)k∈N0
is a sequence of iid random variables and the map F : X×U×R→ X

is Borel measurable, can be represented as in (2.1). In this case the kernel T can
be expressed via the map F as

T(B|x , u) = ν({ξ ∈ R : F(x , u,ξ) ∈ B}),

for any B ∈B(X ), where ν is the distribution of ξ0. On the other hand, the converse
statement also holds true, though there is in general no constructive method to
derive an F from a given T [HLL96, Section 2.3]. Although (2.2) may be more
intuitive or familiar, the representation of the dynamics as in (2.1) is preferred
in this work. Note also that if F as in (2.2) is such that F(·,ξ) : X × U → X is
a continuous map, then the corresponding kernel is continuous as well [HLL96,
Example C.7].

A formal definition of the evolution of a cdt-MP is given by its paths and by the
corresponding probability measures on the path space. More precisely:

Definition 2 (Semantics of cdt-MP). Given a cdt-MP D, its infinite path is an
infinite sequence

h= (x0, u0, x1, u1, . . . ), (2.3)
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where xk ∈ X are the state coordinates and uk ∈ U are the action coordinates of the
path, k ∈ N0. The space of all infinite paths is denoted by H := (X×U)N0 (cf. notations
in Appendix) and is called the canonical sample space of the cdt-MP D.

For n ∈ N0, a finite n-path hn is a finite prefix of an infinite path ending in a state:

hn = (x0, u0, . . . , xn−1, un−1, xn), (2.4)

where xk ∈ X and uk ∈ U. The space of all n-paths is denoted by Hn = (X × U)n × X .

Infinite paths of cdt-MP are mostly used to introduce certain performance cri-
teria over the model, whereas finite n-paths naturally serve as the history of obser-
vation (the past information) available up to instant n. Due to this reason, we use
notation H and Hn for the spaces of paths, and below we often refer to finite paths
as histories.

Similarly to [ABFG+93], we define the state, action, and information processes
on a sample space H. They are denoted respectively by (xn)n∈N0

, (un)n∈N0
and

(hn)n∈N0
, and are defined by the following projections on spaces X , U and Hn:

xn(h) := xn, un(h) := un, hn(h) := (x0, u0, . . . , xn−1, un−1, xn), n ∈ N0,

for any h ∈ H as per (2.3). Notice that it may happen that uk(h) /∈ Kxk(h), which
reflects action coordinates that are not feasible: this is allowed for technical reasons
and later we show that the corresponding paths are of measure zero.

When dealing with stochastic processes, questions of measurability are crucial
to render objects well-defined. This in particular applies to the choice of action un
at time n, given the history hn, and is formalized using the notion of policy.1

Definition 3 (Policy for cdt-MP). Given a cdt-MP D, a policy is a sequence π =
(πn)n∈N0

of universally measurable kernels πn ∈ U (U |Hn), which is such that for any
hn as in (2.4) it holds that

πn(Kxn
|hn) = 1. (2.5)

The class of all policies of D is denoted by Π.

Notice that (2.5) implies that policies are only allowed to select actions among
the currently feasible ones. Once a policy π ∈ Π and an initial distribution α ∈
P (X ) are fixed, the behavior of a cdt-MP D is completely characterized by the
probability measure Pπα ∈ P (H) over the path space H. This measure is uniquely
defined by

∫

H

f dPπα =

∫

X

∫

U

∫

X

. . .

∫

X

∫

U

f (x0, u0, x1, . . . , xn−1, un−1, xn, . . . )

×T(dxn|xn−1, un−1)πn−1(dun−1|x0, u0, . . . , xn−1)

×T(dxn−1|xn−2, un−2) · · ·T(dx1|x0, u0)π0(du0|x0)α(dx0),

(2.6)

1 Policies are also known as strategies or feedback controls [MS96a], or alternatively as schedulers
or adversaries [BK08]. Whilst the earlier ones are usually employed to optimise given criteria, in the
latter case they are used to resolve non-determinism in non-deterministic stochastic models, such as
probabilistic automata [SL95].
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for any bounded hn-measurable function f : H → R [BS78, Sections 8.1, 9.1]. In
particular, Pπα(K

N0) = 1 so that (as we anticipated) the probability of paths contain-
ing non-feasible actions is equal to zero. Moreover, by taking f to be an appropriate
indicator function, for any sets B ∈ B(X ) and C ∈ B(U) we obtain the following
equalities that hold Pπα-a.s.:

Pπα(x0 ∈ B) = α(B), (2.7)

Pπα(un ∈ C |hn) = πn(C |hn), (2.8)

Pπα(xn+1 ∈ B|hn,un) = T(B|xn,un). (2.9)

As a result, the probability measure Pπα captures all the intuitive features about
the behavior of the cdt-MP D under the selected policy π and given the initial
distribution α. In particular, (2.9) implies that the distribution of xn+1 only depends
on xn and un, rather than on the whole history hn. Note, however, that the chosen
control action un itself can depend on the history rather than only on the current
state xn. We say that

�

H,B(H), (Pπα)
π∈Π
α∈P (X )

�

is the canonical probability space for

the cdt-MP D.2 Finally, as a shorthand, the notation Pπx is used in place of Pπ
δx

.
We conclude the discussion by highlighting the following important classes of

policies over the cdt-MP D.

• ΠM – the class of Markov policies. A policy π ∈ Π is called Markov if for any
n ∈ N0 the measure πn(hn) depends only on xn for any finite path hn ∈ Hn as
per (2.4). More precisely: for all n ∈ N0 and xn ∈ X

πn(h
′, xn) = πn(h

′′, xn), ∀h′, h′′ ∈ Hn−1 × U .

This means that a Markov policy selects an action solely based on the infor-
mation about the current state, rather than on the whole available history.

• ΠS ⊆ ΠM – the class of stationary policies. A Markov policy π is called sta-
tionary if πn(x) = πn+1(x) for all n ∈ N0 and x ∈ X . Thus, stationary policies
are time-independent.

• ΠD – the class of deterministic policies. A policy π ∈ Π is called deterministic
if πn = δ f for some universally measurable map f : Hn→ U .

• ΠD
S ⊆ Π

D
M ⊆ Π

D – classes of deterministic Markov and deterministic stationary
policies. Such classes are defined by ΠD

M = Π
D ∩ΠM and ΠD

S = Π
D ∩ΠS .

We refer to any map f : X → U satisfying Gr[ f ] ⊆ K as a selector (from K),
whereas a stochastic kernel µ ∈ U (U |X ) satisfying µ(Kx |x) = 1 for all x ∈ X is
called a randomized selector. Clearly, the existence of the former (of the latter) is
equivalent to the statement that the policy class ΠD

S (ΠS) is not empty. Notice that
ΠD

S is the smallest among the classes of policies introduced above, and since K is

2 We slightly abuse the notation here since in fact this is a family of probability spaces parameterized
by α ∈ P (X ) and π ∈ Π, rather than a single probability space.
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analytic, it admits an analytically measurable selector, namely it contains the graph
of an analytically measurable map k : X → U [BS78, Proposition 7.49]. As a result,
ΠD

S is not empty, hence neither are all other classes.

2.2. Example: a small power network
In order to elucidate the concepts introduced above, let us discuss the following

example, modified from the one in [TMKA13]. Figure 2.2 schematically depicts the
setup.

Nuclear Power Plant

Wind farm #1 Wind Farm #2

Town #1
Town #2

Energy storage #1 Energy storage #2

Disitribution

point

v

u1

r1

u2

r2

d1

d2

Figure 1: Case study: a power network consisting of two sub-networks.

Consider a simple, abstract power network consisting of two aggregated con-
sumers (e.g. small towns), each of which benefits from a separate generator of
renewable energy (e.g. a wind farm) and a separate energy storage. Suppose that
in addition there is a shared polluting power generator, such as a nuclear power
plant. The energy flow is assumed to be stochastic, in particular due to the produc-
tion deriving from the wind farms. The energy output of the nuclear power plant
is less volatile and larger. Within this setup one requires that the energy supply is
greater than the energy demand, or imposes additional requirements on the energy
levels. The available control is the total load on the nuclear power plant, as well
as its distribution over the two consumers. More precisely, the model is given as
follows:

xi
k+1 = c ·

�

xi
k + ui

k · vk · pk + r i
k − d i

k

�

∧M ∨ 0, (2.10)

where xi
k ∈ [0, M] is the energy level in the subnetwork i ∈ {1,2} at the discrete

time instance k ∈ N0 (encompassing daily updates), and M > 0 is the maximal
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storage capacity. The constant c ∈ (0,1] is the reserve rate of the stored energy,
vk ∈ [vmin, 1] is the load on the nuclear power plant and ui

k ∈ [0,1] is the share
of energy produced by the nuclear power plant that is supplied to the subnetwork
i, so that u1

k + u2
k ≡ 1. As we assume that it is not possible to switch the nuclear

power plant off, vmin is the minimal load on the plant. The noise is represented by a
sequence of iid random variables accounting for uncertainty on the nuclear power
plant actual production pk, the wind farm production rk = (r1

k , r2
k ), and the total

local demand dk = (d1
k , d2

k ). Note that r1
k and r2

k are not necessarily independent
(coupling can be due to weather), and neither are the demand variables for the
subnetworks d1

k and d2
k .

A cdt-MP model for the dynamics above is given considering a state space
X = [0, M]2 with xk = (x1

k,x2
k), control space U = [0, 1]2 with uk = (vk,u1

k), and
control actions that are always feasible (namelyK= X ×U), and a transition kernel
induced by the stochastic difference equation (2.10). Goals for control synthesis are
discussed shortly, whereas the analysis of the model and the synthesis problem are
presented in Section 5.

2.3. Problem formulation

The framework of cdt-MP is often used in an optimization context. In particular,
one of the most prominent questions to answer is the following: what is the maximal
achievable value of a given performance measure, and can a control policy that
achieves such a value be derived? Clearly, the answer crucially depends on the
chosen optimisation goal: since this choice is quite broad in the literature on cdt-
MP, let us discuss some important cases.3

We do not consider multi-objective optimization where the performance crite-
rion has a partial order on its co-domain (see e.g. [Bor91]), and instead focus on
numerical criteria, namely measures taking values on R. Arguably one of the most
general approaches to the definition of numerical performance criteria over cdt-
MP has been considered in [Fei83]. There, the focus is on the space of strategic
measures given by S := {Pπα |π ∈ Π,α ∈ P (X )}, and the criterion is simply any
function f : S→ R. A slightly more specific class of criteria is related to the concept
of the expected utility [Kre77a, Kre77b, Kre78]. A utility is any history-dependent
random variable J : H → R and the corresponding performance is defined to be its
expected value Mπ(α; J) := Pπα[J], where Pπα is a probability measure over paths
that depends on a policy and an initial distribution. Clearly, the expected utility
criterion is a special case of the former, since to any utility J one can assign a func-
tion fJ : S→ R̄ by defining fJ (p) := p[J] for any p ∈ S. Research on these criteria
has led to strong theoretical results, e.g. on the characterization of classes of opti-
mal policies. On the other hand, the generality of the problems did not allow for
specific results related to the computability of the optimal solutions. Due to this
reason, more specific performance criteria have attracted a significant interest, in
particular the discounted cost (DC) and the average cost (AC) criteria [ABFG+93].

3 A comprehensive survey on different performance criteria, as well as on the general development
of the theory of cdt-MP, is given in [ABFG+93, Section 3].
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Consider some universally measurable cost function c :K→ R̄ and define

DCπn,γ(x) := Pπx

�

n
∑

k=0

γkc(xk,uk)

�

,

ACπ(x) := lim sup
n→∞

1
n
Pπx

�

n
∑

k=0

c(xk,uk)

�

where γ ∈ (0,1] is the discounting factor and n ∈ N̄0 is the time horizon. The
DC is clearly a special case of the expected utility criterion. In general it is not
possible to express AC as an expected utility, but clearly it is still a function of
strategic measures and thus belongs to the class of criteria considered in [Fei83].
Furthermore, with focus on the DC, the case γ = 1 is often referred to as the total
cost (TC) criterion or, alternatively, the additive cost. These problems are extensively
studied in the literature: see e.g. [BS78, HLL96] for the DC, and [ABFG+93] for
the AC.

The focus of this paper is on the probabilities associated to certain events de-
fined over the paths of the cdt-MP. More precisely, let A ∈ B(H) be some set of
desired path behaviors of the cdt-MP, and consider a performance criterion to be
Pπα(A). Clearly, this is still a special case of the expected utility criterion, with the
utility given by 1A, and thus general results apply. However, if we focus on a cer-
tain class of events, rather than considering all possible elements of B(H), it is
possible to obtain much stronger results in terms of characterization and of com-
putability. More specifically, we exploit the known approach in formal methods
[BK08] to treat any event as a property (or a specification) over paths of a cdt-MP.
Such a property is further expressed as a simple dynamical model satisfying it. This
technique has been widely employed to study cdt-MP models over finite state and
action spaces [CY98], leading to analytical solutions for that setup. However, the
developed methods appear to be crucially dependent on the discrete structure of
finite cdt-MP and thus are not fully applicable to the general case. The aim of this
work is to develop new techniques to tackle this problem over general cdt-MP.

Before we describe the class of events of interest, let us introduce some notation
for the expected utility criterion. Given an initial distribution α ∈ P (X ), a policy
π ∈ Π and a random variable f ∈ bB(H), we denote Mπ(α; f ) := Pπα[ f ]. In
the particular case when f = 1A for some A ∈ B(H) or α = δx , we simply write
Mπ(α; A) or Mπ(x; A). The optimal expected utility functions are defined as

M∗(α; f ) := sup
π∈Π

Mπ(α; f ), M∗(α; f ) := inf
π∈Π

Mπ(α; f ).

In order to formulate the problem, we need to specify the class of events we focus
on. Recall the power network model from Section 2.2, and consider the following
tasks:

• keep the energy levels always within specified target levels;

• test the network as follows: reach an energy level above the target value over
the first subnetwork, and while keeping it there, reach the same energy level
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over the second network, or attain dual goal. In addition, avoid blackouts,
that is never allow an energy level of either of the subnetworks to reach the
zero level.

The first task corresponds to a safety problem, which can be easily characterized
using canonical probabilistic tools or the concept of the first hitting time. On the
other hand, the second task is more complicated, even in its qualitative description.
For this purpose we introduce a modal logic called Linear Temporal Logic (LTL),
which is useful in the following two aspects. First of all, it provides “a very intuitive
but mathematically precise notation” [BK08, Section 5.1] to deal with a large class
of complex and interesting events. Secondly, LTL allows reducing the optimization
problems for any of such events to one of the following two fundamental problems:
reachability, requiring visiting a specified target set at least once; or constrained
repeated reachability, requiring visiting a target set infinitely often and visiting an
unsafe set only finitely often.

LTL is introduced using its grammar, namely the set of rules determining the
construction of LTL formulae. The meaning of each formula (that is, the event
corresponding to the formula) is formalized by the LTL semantics. It is canonical to
introduce the latter not directly over the state space, but rather using the concept of
labels, namely discrete observations of states that range over some finite set called
the alphabet. Alternatively, one can think of assigning some distinguishable sets to
the state space. Intuitively, when one says that x ∈ A it may be considered as an
implicit assignment of an abstract label “A” to point x .

Consider a finite set of atomic propositions and its power set Σ, which is re-
ferred to as the alphabet. Elements of Σ are called letters, whereas finite or infinite
sequences of letters are called words. Let us denote by Σω the space of infinite
words; by infinite language over Σ we mean any collection of infinite words over
the alphabet Σ. All the languages we consider in this paper are assumed to be infi-
nite, i.e. we say that φ is a language to mean φ ⊆ Σω. If φ ∈ B(Σω) we say that
φ is a measurable language. In particular, it follows from [Var85, Proposition 2.3]
that any ω-regular language4 is measurable. On the other hand, not every measur-
able language is ω-regular: clearly any singleton {w} generated by a word w ∈ Σω
is measurable, but the language {w} may not be ω-regular if w is not a periodic
word. It is also easy to construct an example of a non-measurable language: since
Σω is an uncountable Borel space, there is a Borel isomorphism f : Σω→ [0, 1], so
for any non-Borel set A ⊆ [0, 1] the language f −1(A) ⊆ Σω is not measurable. We
first show how we interpret languages as events in the canonical sample space H,
and then introduce specific languages characterized by LTL formulae.

Consider a Borel measurable map L : X → Σ, henceforth called a labelling map.
We call a triple (D,Σ,L) a labelled cdt-MP (lcdt-MP for short): in a lcdt-MP
each state x ∈ X is assigned to a letter L(x) ∈ Σ. As a result, to each path h ∈ H
there corresponds a unique trace word w ∈ Σω, also known as a trace of h, which is

4 The definition ofω-regular languages is lengthy and is omitted from this paper for the sake of clarity
in presentation. For a formal definition see e.g. [BK08, Section 4.3.1]
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given by
Lω(x0, u0, x1, u1, . . . ) := (L(x0),L(x1), . . . ). (2.11)

We consider (2.11) as the definition of the trace map Lω : H → Σω.

Proposition 1. The map Lω is Borel measurable.

Proof. Recall thatB(Σω) = σ(C ), where the class C of cylinder sets is given by

C =

¨

n
∏

k=0

Ck ×
∞
∏

k=n+1

Σ

�

�

�

�

�

Ck ∈B(Σ), n ∈ N0

«

. (2.12)

Next, for any cylinder set C ∈ C , it holds that

L−1
ω (C) = L−1

ω

�

n
∏

k=0

Ck ×
∞
∏

k=n+1

Σ

�

=
n
∏

k=0

�

L−1(Ck)× U
�

×
∞
∏

k=n+1

(X × U) ∈B(H).

From [Fol99, Proposition 2.1] it follows that Lω is Borel measurable.

It follows from Proposition 1 that given a lcdt-MP (D,Σ,L), for each measur-
able language φ ∈ B(Σω) there corresponds a unique event L−1

ω (φ) ∈ B(H) that
is the set of all paths of D whose traces are elements of φ. In order to construct
languages of interest in a natural way, we use LTL formulae. The grammar of LTL
over the alphabet Σ is given by

Φ ::= σ ∈ Σ | ¬Φ | Φ1 ∧Φ2 | XΦ | Φ1U
∞Φ2. (2.13)

The definition (2.13) shall be understood as follows: if Φ1 and Φ2 are LTL formulae,
so are the expressions Φ1 ∧ Φ2, Φ1U

∞Φ2, ¬Φ1 etc. Here ∧ is the standard logical
conjunction and ¬ is the logical negation, which allows us defining disjunction as
Φ1 ∨ Φ2 := ¬(¬Φ1 ∧ ¬Φ2). Furthermore, X and U∞ are the neXt and unbounded
Until temporal modalities whose meaning is clarified below.

The semantics of LTL formulae is defined using the notion of accepted language,
that is L(Φ) ⊆ Σω is the collection of all infinite words over Σ that are accepted by
the formula Φ. Firstly, we define the shift (or tail) on infinite words θ : Σω → Σω
by

θ (w0, w1, w2, . . . ) = (w1, w2, . . . ).

The semantics of LTL formulae is defined recursively as:

w ∈ L(σ) ⇐⇒ w0 = σ
w ∈ L(¬Φ) ⇐⇒ w /∈ L(Φ)

w ∈ L(Φ1 ∧Φ2) ⇐⇒ w ∈ L(Φ1)∩L(Φ2)
w ∈ L(XΦ) ⇐⇒ θ (w) ∈ L(Φ),

11



and in addition the semantics of the U∞ modality is as follows:

w ∈ L(Φ1U
∞Φ2) ⇐⇒ θ i(w) ∈ L(Φ2) for some i ∈ N0 and

θ j(w) ∈ L(Φ1) for all 0≤ j < i.
(2.14)

It is useful to consider formulae describing bounded time horizon properties. We
first introduce powers of X inductively as X0Φ := Φ and XnΦ := X(Xn−1Φ) for n≥ 1.
Using the latter notation, it is now possible for any n ∈ N0 to define the formula

Φ1U
nΦ2 :=

n
∨

i=0

�

i−1
∧

j=0

X jΦ1 ∧ XiΦ2

�

, (2.15)

whose semantics is a finite-horizon equivalent of (2.14), that is

w ∈ L(Φ1U
nΦ2) ⇐⇒ θ i(w) ∈ L(Φ2) for some 0≤ i ≤ n and

θ j(w) ∈ L(Φ1) for all 0≤ j < i.

Note that U∞ could be also expressed using (2.15), but the countably infinite num-
ber of operations of conjunction needed are not explicitly allowed in the syntax
of LTL. We further denote true :=

∨

σ∈Σσ, and introduce new temporal modal-
ities: eventually, ♦nΦ := trueUnΦ, and always, �nΦ := ¬♦n¬Φ, for all n ∈ N̄0.
We further simplify the notation as U := U∞, ♦ := ♦∞ and � := �∞. Note that
an accepted language of any LTL formula is ω-regular5 [Wol81], and hence it is
measurable, so that a formula in LTL is a valid way to describe events.

Let us provide some examples of how LTL formulae can be used to describe
events of interest. We start with some basic formulae: let us consider a cdt-MP
D = (X , U ,K,T) and let A, B ∈ B(X ) be two disjoint sets. We label them as A and
B respectively, that is we introduce a labeling map L : X → Σ where Σ = {A, B,⊥}
and

L(x) =







A, if x ∈ A,

B, if x ∈ B,

⊥, otherwise.

Then the event {xk ∈ A, k ≥ 0} can be expressed as �A, {∃k ≤ n : xk ∈ B} as ♦nB,
{xk ∈ B infinitely often } as �♦B, {∃k : x j ∈ A, j ≥ k} as ♦�A, and finally the event
{∃k ≤ n : xk ∈ B and x j ∈ A, j < k} can be expressed as AUnB.

As an additional example, recall the power network model from Section 2.2 and
let S be the safe set, and G1, G2 be the preliminary target sets for each subnetwork,
and G be the final target set. Define the alphabet Σ = {S, G1, G2, G,⊥}, where ⊥
corresponds to the unsafe (failure) set, and let L be the obvious labeling map, e.g.
L(x) = S if and only if x ∈ S. The first task of being within the safe energy levels
can be characterized by the formula �S, whereas

S ∧ (SU (G1 ∧ (G1 UG))) ∨ S ∧ (SU (G2 ∧ (G2 UG)))

5On the other hand, notice that there exist ω-regular languages that are not expressible by any LTL
formula [Wol81].
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is the desired formula for the second task. Indeed, in the first case only the word
SSSSS . . . is accepted, which is produced exactly by those paths h that stay in S
forever. Similarly, the second formula only accepts those words that eventually
have the letter G following G1 or G2, and never contain letter ⊥, so that the path
representing energy levels never visits unsafe states and reaches the high energy
level over the first subnetwork and then over the second, while still keeping the
first level high, or vice-versa. Notice that in this second formula, which is to be
interpreted within linear-time semantics, we are forcing trajectories to visit either
of the Gi , i = 1, 2 before reaching G, whereas the similar requirement on S is set
to prevent ever entering the unsafe set, but does not bound trajectories to first visit
exclusively S: this will be clarified in the expression of the formula as an automaton,
and in the choice of the sets (where Gi ∩ G = ;, and (Gi ∪ G) ⊆ S) within the
numerical case study.

For a given a lcdt-MP (D,Σ,L) we shall consider the expected utility crite-
rion Mπ

�

x;L−1
ω (L(Φ))

�

abbreviated by Mπ(x;Φ). The main problem can be now
formulated as follows:

Problem 1. Given a lcdt-MP (D,Σ,L), an LTL formula Φ and a precision ε > 0
characterize M∗(x;Φ) and compute its value with a given precision level ε.

Note that if one is able to solve Problem 1, then one can also compute M∗(x;Φ)
for any LTL formula Φ thanks to the duality M∗(x;Φ) = 1−M∗(x;¬Φ) – and likewise
for ε-level computations.

2.4. Automata specifications

Above we have formulated the main problem we are focusing on in this paper,
which requires computing extremal probabilities of events expressed as LTL formu-
lae over infinite paths of a cdt-MP. Although LTL provides a succinct way to express
events, for algorithmic purposes an equivalent automata-based perspective turns
out to be more effective. Automata are transition systems with inputs over a finite
alphabet and simple acceptance conditions [BK08, Chapter 4]. An input word is
accepted by the automaton if a corresponding run of the automaton satisfies the
acceptance condition. Before we introduce these concepts formally, let us men-
tion that we follow the literature and only consider deterministic automata (those
for which the current input and state uniquely determine the next state – cf. next
definition), as they can be easily composed with lcdt-MP models.

Definition 4 (Transition system). Given an alphabet Σ, a deterministic transition
system over Σ is a tuple T = (Q, qs,Σ, t) where Q is a finite set, qs ∈ Q, and t :
Q × Σ → Q is some map. In our work all the transition systems are assumed to be
deterministic6.

6 A non-deterministic transition system is one where t : Q×Σ→ 2Q , that is given a current state of the
system q ∈Q and an input letter σ ∈ Σ, the successor state q′ ∈ t(q,σ) is not uniquely defined. As such,
non-determinism here can be understood as set-valued dynamics, rather than as stochastic dynamics.
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Given a transition system T = (Q, qs,Σ, t) we say that Q is its state space, qs

is the initial condition, Σ is the input alphabet and t is the transition map. Any
word w ∈ Σω induces a run r ∈ Qω of T which is defined as follows: r0 = qs and
rk+1 = t(rk, wk) for any k ∈ N0. We can then introduce a map tω : Σω → Qω that
assigns to any input word the corresponding run. An ω-automaton is defined as
follows:

Definition 5 (Automaton). A deterministicω-automaton is a pair A= (T ,Acc) con-
sisting of a transition system T = (Q, qs,Σ, t) together with an acceptance condition
Acc ∈B(Qω). We only consider automata on infinite words, so from now on we omit
ω in “ω-automaton”.

An acceptance condition of an automaton indicates which runs are accepted by
the automaton (r ∈ Acc) and which are not (r /∈ Acc). Similarly, we can say that
a word is accepted by a deterministic automaton if the corresponding run is ac-
cepted. The literature has considered several versions of acceptance conditions for
ω-automata. In the context of this work the following three are the most important:

(DRA) a deterministic Rabin automaton is a tuple A = (Q, qs,Σ, t, (F ′i , F ′′i )i∈I ) where
(Q, qs,Σ, t) is a transition system, I is some finite index set, and F ′i , F ′′i ⊆Q for
any i ∈ I . A DRA accepts a run r ∈ Qω if there exists i ∈ I such that r visits
F ′i an infinite number of times and F ′′i a finite number of times.

(DBA) a deterministic Büchi automaton is a special case of a DRA with I being a
singleton and F ′′ = ;, that is: a DBA is a tuple A = (Q, qs,Σ, t, F) where
(Q, qs,Σ, t) is a transition system and F ⊆ Q is a set of final states. A DBA
accepts a run r ∈Qω if r visits F an infinite number of times.

(DFA) a deterministic finite automaton is a special case of a DBA7 with all final states
having self-loops (t(q,σ) = q for any q ∈ F , σ ∈ Σ), that is: a DFA is a tuple
A = (Q, qs,Σ, t, F) where (Q, qs,Σ, t) is a transition system and F ⊆ Q is a set
of final states. A DFA accepts a run r ∈Qω if it visits F at least once8.

For an automaton A = (T ,Acc) we define the accepted language of A as the
set of all infinite words that are accepted by A; we further denote this language by
L(A), that is L(A) := t−1

ω (Acc). Similarly to Proposition 1, we can show that tω ∈
B(Σω)/B(Qω), so that L(A) is a measurable language as Acc ∈B(Qω). Thus, for
any lcdt-MP (D,Σ,L) with D= (X , U ,K,T) the utility function Mπ(α;L−1

ω (L(A)))
is well-defined. We further simplify the notation and write Mπ(α;A).

7 While it is canonical to introduce a DFA on finite words [BK08, Definition 4.9], we introduce it here
on infinite words for the sake of consistency: in that way we do not have to consider both spaces of
finite (Σ∗) and infinite (Σω) words over the alphabet Σ, and can just focus on the latter. It shall be clear
that our definition is also consistent with the canonical one in [BK08, Definition 4.9]: an infinite word
w ∈ Σω is accepted by a DFA if and only if there exists a finite prefix w′ ∈ Σ∗ that is accepted by a DFA.

8 An important version of the DFA has an n-horizon acceptance condition [TMKA13, Section 2.4],
which requires the run to visit F in at most n steps. This is useful when one needs to express formulae
in bounded LTL (BLTL) – a fragment of LTL (for details see Section 2.5).
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Accepted languages of DRA are exactly ω-regular languages [BK08, Theorem
10.55], so in particular for any LTL formula Φ there exists a DRA AΦ such that
L(Φ) = L(AΦ). Furthermore, DBA (DFA) are strictly less expressive than DRA (DBA)
– for details see [BK08, Chapter 4]. As further argued in the next section, rather than
focusing on the most expressive DRA we consider all three kinds of automata. We
will show that for any automaton A the optimal utility M∗(x;A) can be computed
via a new optimal function M̂∗((x , qs); H ‖ Acc) over a newly defined cdt-MP D̂,
which is a composition of D and A. Unfortunately, characterizing M̂∗((x , qs), H ‖
Acc) for DRA is rather difficult and we only provide partial results for the DBA case
(Section 4), whereas the acceptance condition of the DFA allows for a much more
complete characterization (Section 3).

Before we proceed, let us provide examples of automata for the tasks discussed
over the power network model in Section 2.2. The DBA for the first task is given in
Figure 2(a): here if we do not label the transition (as the loop at q1) it means that
the transition happens for any label. The final state is q0 as indicated by a double
circle. As we have mentioned above, the analysis of the DBA acceptance condition
is more complicated than that of the DFA, hence even if the original LTL formula
does not allow for the DFA expression, it is worth checking whether its negation
does allow for one. For example, the DFA for the negation of the first task is given
in Figure 2(b).

q0start q1

S

¬S

(a) DBA for the first task

q0start q1

S

¬S

(b) DFA for the negation of the first task

Figure 2: Automata representation of the first task of the case study in Section 2.2

The second task has a direct DFA expression, which is given in Figure 3. For an
overview of available methods to construct an automaton given an LTL formula, see
[VW94].

2.5. Important fragments of LTL

Although any LTL formula can be expressed as a DRA, such generality is not
very useful in practice. Even when dealing with finite cdt-MP D, expressing a
given formula as a DFA A = (T , D) (if possible) may reduce the complexity of the
automaton, compared to some DRA expressions of the formula, as well as allows
applying simpler solution methods, which altogether leads to a smaller state space
of the composition D ‖ T and hence to a lower computational time. In the case
when the cdt-MP D is not finite, in addition the solution methods are much more
involved and as Sections 3 and 4 will suggest, solution of a bounded-horizon reach-
ability problem simpler than the one of an unbounded horizon reachability, which
in turn is easier than the repeated reachability problem. As a result, e.g. although
any LTL formula that encodes some bounded-horizon property can be expressed as

15



q0start q−1

q1

q2

q3

S
G 1

G
2

G,⊥

G1

G2, S,⊥
G

G2

G1, S,⊥
G

Figure 3: The DFA for the second task of the case study

a DRA, it is worth analyzing the formula to check whether it allows for an automa-
ton expression with a simpler acceptance condition. In this section we describe how
to perform such analysis, and what are the useful fragments of LTL that allow for
an expression via an automaton that is simpler than a DRA.

The syntactically safe LTL (sLTL) [KV99] expresses safety languages. The lan-
guage φ ⊆ Σω is called a safety property if and only if any word w /∈ φ has a finite
“bad” prefix:

w /∈ φ ⇐⇒ ∃n ∈ N0 : proj−1
Σn

�

projΣn(w)
�

∩φ = ;.

The syntactically co-safe LTL (scLTL) [KV99] expresses co-safety languages, where
a co-safety language φ is the one for which any word w ∈ φ has a good prefix, that
is

w ∈ φ ⇐⇒ ∃n ∈ N0 : proj−1
Σn

�

projΣn(w)
�

⊆ φ.

Clearly φ is a safety language if and only if Σω \φ is a co-safety one. This comes
as no surprise as safety languages are exactly closed subsets of Σω in the product
topology, whereas co-safety languages are open [AS85]. It follows that any co-safety
language can be expressed as a DFA, and hence DFA can be used for negations of
safety languages. Here we only provide a grammar for sLTL9. For this purpose, in

9 The grammar of scLTL can be easily deduced from the one of sLTL; see also [AGLB12, Definition
2.1].
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the LTL setting let us define a temporal modality Weak until W∞ by

Φ1W
∞Φ2 := Φ1UΦ2 ∨�Φ1.

The grammar of sLTL is given as follows:

Φ ::= σ ∈ Σ | ¬σ | Φ1 ∧Φ2 | Φ1 ∨Φ2 | XΦ | Φ1W
∞Φ2.

Note that in sLTL the negation can be only applied on the level of letters, so that ∨
could not be expressed through ∧ in general in sLTL in contrast to the LTL setting.
Moreover, in general it is not possible to express Φ1UΦ2 using the sLTL grammar.
An example of an sLTL formula is �nσ, and that of an scLTL formula are ♦nσ and
σ1U

nσ2where n ∈ N∞0 in all three cases. One immediate way to see whether a
given LTL formula belongs to sLTL is to write it in a negation normal form (NNF),
where the negation is presented on the level of atomic propositions by means of
the following identities: ¬XΦ = X(¬Φ), ¬(Φ1UΦ2) = ¬Φ1W

∞¬Φ2 etc. However,
even a LTL formula corresponding to a safety language may lead to a NNF which
does not belong to sLTL, so for more elaborate methods see [KV99]. Recent exam-
ples of applications of sLTL and of scLTL can be found in [RMT13] and [AGLB12]
respectively.

Although sLTL and scLTL are related to the expression of formulae via DFA rather
than DRA, they still lead to the unbounded-horizon reachability problem over D ‖
T , even in case when the original formula encodes a bounded-horizon specification.
A useful framework to deal with the latter is given by the bounded LTL (BLTL)
[TA13] which expresses bounded languages: a language φ ⊆ Σω is called bounded
if there exists n ∈ N0 such that

w ∈ φ ⇐⇒ proj−1
Σn

�

projΣn(w)
�

⊆ φ.

In particular, it appears that bounded languages are exactly those that are both
safety and co-safety languages [PP04, Proposition 3.10, Chapter III], that is they
are clopen subsets of Σω. The grammar of BLTL is given as follows:

Φ ::= σ ∈ Σ | ¬Φ | Φ1 ∧Φ2 | XΦ, (2.16)

so that it still allows for negations to be applied on all the levels, but U is absent
from the syntax. On the other hand, (2.15) implies that Φ1U

nΦ2 belongs to BLTL
for finite n ∈ N0. Any BLTL formula allows to be expressed as a bounded-horizon
version of the DFA [TA13, Section 3.4] that accepts only those runs that visit the set
of final states in at most n steps, where n is specified a priori, in the definition of
the automaton. For applications of BLTL see e.g. [JCL+09].

2.6. Automata model checking

To state the main result of this section, we need to introduce the composition
between an lcdt-MP and a transition system defined over the same alphabet, as
formalised next.
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Definition 6 (Composition of model and specification). Given an lcdt-MP (D,Σ,L)
with D = (X , U ,K,T) and a transition system T = (Q, qs,Σ, t), their composition is
a cdt-MP D̂ =D ‖ T = (X̂ , U , K̂, T̂), where X̂ := X ×Q, K̂(x ,q) := Kx for any x ∈ X
and q ∈Q and

T̂(A× B|x , q, u) := 1B (t(q,L(x))) ·T(A|x , u).

Let us further discuss this notion of composition. Consider an lcdt-MP (D,Σ,L)
with D= (X , U ,K,T) and a transition system T = (Q, qs,Σ, t), and let D̂ :=D ‖ T .
A more intuitive expression for the kernel T̂ can be given in the following way:
given the current joint state (xk, qk) and control action uk, the new state is

¨

xk+1 ∼ T(xk, uk),
qk+1 = t(qk,L(xk)).

The dynamics of the composed model should be understood as follows: the x-
coordinate of the new state evolves according to the law T of the original cdt-MP
D, and its label L(x) is used as an input to the transition system, which produces
the q-coordinate. Let Ĥ := (X̂×U)ω denote the history space of D̂, and further let Π̂
be the class of all policies for D̂ that give rise to strategic measures P̂π̂

α̂
for any π̂ ∈ Π̂

and α̂ ∈ P (X̂ ). We further let (x̂n)n∈N0
= (xn,qn)n∈N0

, (un)n∈N0
and (ĥn)n∈N0

denote
the state, action and information processes on the sample space Ĥ, respectively.

As anticipated above, the main result of this section is as follows. For any lcdt-
MP (D,Σ,L) and for any automaton A= (T ,Acc), which may for example express
an LTL formula Φ, it holds that M∗(x;A) = M̂∗((x , qs); H ‖ Acc), where M̂∗ is the
optimal utility functional over the composed cdt-MP D̂ := D ‖ T . To obtain this
result, we first need to establish a policy equivalence between optimal utilities over
D and D̂. More precisely, we connect classes Π and Π̂ as follows. The former
class can be treated as a subclass of the latter, where policies do not depend on
q-coordinates of ĥn ∈ Ĥn, so we let i : Π→ Π̂ denote the corresponding embedding
map. Conversely, we introduce a projection map p : Π̂→ Π by the formula

(pπ̂)n(x0, u0, x1, u1, . . . , xn) := π̂n(x0, q0, u0, x1, q1, u1, . . . , xn, qn),

where q0 = qs and qk+1 = t(qk,L(xk)), for all 0≤ k < n.

Lemma 1. For any α ∈ P (X ), and any policies π ∈ Π and π̂ ∈ Π̂, it holds that

Pπα(Lω(h) ∈ L(A)) = P̂iπ
α⊗δqs

(H ‖ Acc), P̂π̂α⊗δqs
(H ‖ Acc) = Ppπ̂

α (Lω(h) ∈ L(A)).

Proof. Let us introduce a map β : H → Ĥ as β := idH ‖ (tω ◦ Lω), so that given
a path h ∈ H this map returns a path ĥ = β(h) ∈ Ĥ which has the same x- and
u-coordinates, and the q-coordinates of which are obtained using the automaton
transition map. As a result, for any α ∈ P (X ) and any π ∈ Π it holds that

Pπα(Lω(h) ∈ L(A)) = Pπα((tω ◦ Lω)(h) ∈ Acc) = (β∗P
π
α)(H ‖ Acc).

Applying definitions of maps i and p immediately yields the desired result.
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Before we apply Lemma 1 to characterize the optimal utility of D via that of D̂,
let us recall that DFA and DBA are not closed under negations10, that is if we are
able to express an LTL formula Φ as a DFA or DBA A, there may not exist such an
expression for ¬Φ. Due to this reason, in the next theorem we explicitly formulate
both the maximization and the minimization problems, which allow us to apply the
results both in cases of events expressed as DFA and DBA, and in cases when the
complement of the event can be expressed in these automata classes. As above, let
A = (T ,Acc) be some automaton over an alphabet Σ, (D,Σ,L) be any lcdt-MP
and let D̂=D ‖ T .

Theorem 1. The following equalities hold true:

M∗(α;A) = M̂∗(α⊗δqs ; H ‖ Acc), M∗(α;A) = M̂∗(α⊗δqs ; H ‖ Acc).

Proof. The proof follows directly from Lemma 1 and Lemma 9 (cf. Section A.2).

Let us discuss the importance of the result in Theorem 1. Suppose we are given
an lcdt-MP (D,Σ,L) where Σ and L are used to distinguish the sets of interest,
and a property expressed as a DFA or a DBA A over the alphabet Σ. Such an expres-
sion may encode the LTL formula Φ for the desired property. Instead of having to
compute the maximal probability M∗(α;A) directly, we can focus on an equivalent
problem over D̂ := D ‖ T , and focus on the property ♦F in the case when A is a
DFA, or on the property �♦F when A is a DBA. We refer to the former property
as reachability and to the latter as repeated reachability. The rest of the article is
focused on the solution of both problems, so the coming results are applicable to
classes of properties expressed as DFA and DBA, thanks to Theorem 1.

2.7. Further comments on models and problem formulation

The exposition of the model in this work is rather standard and is similar to that
in [HLL96, Section 2.2]. However the presented model class is more general: for
example we allow for a feasibility set K that is analytic, and for universally mea-
surable policies. It can be shown that whenever the initial distribution α ∈ P (X ) is
fixed, for a large class of performance criteria including all expected bounded utility
cases it is sufficient to consider only analytically measurable deterministic policies
depending exclusively on the history of state coordinates [Bla76]. Moreover, one
can sufficiently deal with Borel measurable policies, provided they do exist. How-
ever, if one is interested in finding a policy that is optimal or ε-optimal for any initial
distribution, it is more convenient to deal with the class of universally measurable
policies: the latter is rich enough to assure the existence of policies for many in-
teresting problems – see e.g. the discussion in [BS78, Section 1.2]. This class also
possesses some nice closure properties in contrast to the class of analytically mea-
surable policies: e.g. the composition of two universally measurable functions is

10 Recall that here DFAs are interpreted over infinite words: when interpreted over finite words they
are closed under negations.
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again universally measurable, but the composition of analytically measurable func-
tions may not be analytically measurable. Such closure properties are important to
ensure the appropriate measurability of the performance criterion with respect to
the initial state. More details on this topic can be found in [SB79].

It is worth mentioning that there is an alternative approach to sequential de-
cision making in a stochastic environment, which is known as gambling [DS65].
While we cannot cover all the details on gambling models, we emphasise that this
difference with the cdt-MP is mainly conceptual: if the current state is x , instead
of first making a choice of a control action u and drawing a new state according
to the distribution T(x , u), in gambling the agent is allowed to choose the distri-
bution of the new state directly, from the set of available gambles Γx

11. The set
Γ ⊆ X ×P (X ) is called the gambling house. On a methodological level, the differ-
ence between the cdt-MP and gambling is that the latter extensively uses stopping
time-like methods to derive most of the results, whereas the former is more fo-
cused on techniques based on dynamic programming. Finally, differences between
cdt-MP and gambling models can also be established on technical points, such as
measurability properties of the strategies they deal with. First of all, initially the
research on gambling theory has been done in the framework of finitely-additive
probability measures [DS65]. Later, gambling models have also been considered in
the σ-additive framework, which made it possible to compare them with cdt-MP:
for example, [Bla76] showed the equivalence between some classes of cdt-MP and
gambling models – this result also holds for the cdt-MP models that we consider
in the present paper. Further gambling models have been used more recently, e.g.
in [MPS91] and [MS96b].

Research on gambling has broadly looked into the optimization of probabilities
of given events. For example, [MPS91] has obtained results for safety properties
(that are clearly also applicable to reachability analysis), and [MPS91, MS96b] has
characterized the repeated reachability property. Due to this reason, although we do
not use the gambling framework explicitly, sometimes we recall the results obtained
in this area. For example, using the cdt-MP framework for reachability properties
seems more beneficial, however we mostly employ results of gambling for the re-
peated reachability property. Another important point is that [MS96a, Chapter 6]
proposes an idea to optimize the probabilities of events, which is alternative to the
one we convey in Section 2.3. More precisely, it is shown that in the case of a count-
able state space the functional M∗ possesses some useful properties of the capacities
[Del81]. In particular, [MS96a, Theorem (1.2), Chapter 6] claims that for any state
x ∈ X and any event A∈B(H) it holds that

M∗(x; A) = inf {M∗(x; B) : B is open and B ⊇ A} . (2.17)

Furthermore, M∗ for open events can be obtained by means of stopping times – see

11 Note that in cdt-MP the choice of the distribution of the successor state is “labelled” by actions,
whereas in gambling models such choice is unlabelled. One may think of this being similar to internal
and external non-determinism in probabilistic automata [SL95], however there is no semantic difference
between cdt-MP and gambling models, and in both cases non-determinism can be considered both as
an internal one or as an external one.
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[MS96a, Chapter 6] for more details. This result may be extensible to the more
general case we deal with, where X is uncountable and one is interested only in
events that can be described using some finite alphabet Σ. Unfortunately (2.17)
does not provide a direct and explicit way to compute quantities of interest, or to
derive optimal policies, so we do not pursue such direction here, preferring instead
more explicit methods based on LTL formulae and automata theory.

The problem of optimizing the probability of a given event (or a property) is a
problem that often appears in computer science, see e.g. a wide range of examples
described in [BK08, Section 10.6]. Using LTL and automata theory for finite state-
space cdt-MP has a long history, part of which can be consulted in [BK08, Section
10.8]. However, extensions to the general state-space case have only appeared re-
cently: [AKM11] has provided an extension to the uncontrolled case (where trivially
U = {u} is a singleton), whereas [KSL13] and [TMKA13] worked out the controlled
case12. In particular, the latter contribution is a basis for Section 2 and 3 of the
current manuscript.

3. Reachability

3.1. Reachability problem: characterization

As Theorem 1 showed, optimizing probabilities over a cdt-MP for a large class
of events of interest can be reduced to either a reachability problem, or to a re-
peated reachability one. This section is focused on the reachability problem. For
this purpose it is more convenient to consider a slightly more general setup, called
the constrained reachability problem [BK08, Section 10.1.1].13 To satisfy the con-
strained reachability property, the path of a cdt-MP does not only have to reach
a given goal set, but also to stay within some safe set before hitting the goal one.
In terms of the LTL grammar, we are going to deal with the property SUnG and a
finite-time context, where S is a safe set and G is a goal set. The (unconstrained)
reachability problem corresponds to the special case ♦nG = trueUnG (and likewise
for the infinite-horizon case).

More precisely, consider a cdt-MP D = (X , U ,K,T) and let G ∈ B(X ) be the
set of goal states, and S ∈ B(X ) be the set of safe states. Define D := Sc \ G to be
the corresponding set of unsafe (or dangerous) states. For any initial distribution α,
any policy π ∈ Π, and any time horizon n ∈ N̄0 we are thus interested in the value
of Mπ(α, SUnG). It is more convenient to focus on the initial distribution supported
on single points and thus consider a function Mπ(·, SUnG) : X → [0,1], extending
the results to arbitrary initial distributions at a later stage. Clearly, Mπ(·; SUnG) ∈

12 The difference between the approaches in these two works is that [KSL13] has allowed for Markov
policies only, but clearly the policies over the composed system may depend on the state of the transition
system: the map p can map Markov policies to history-dependent ones. To cope with this issue, extended
Markov policies have been proposed in [KSL13], namely policies that can depend also on an additional
historical variable – the state of the transition system, which is a deterministic function of the cdt-MP
state history.

13 The constrained reachability problem is also known as the reach-avoid problem [SL10].
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bU (X ) for any π ∈ Π and n ∈ N̄0. Moreover, the sequence (Mπ(x; SUnG))n∈N0
is

non-decreasing in n and furthermore for any fixed x ∈ X

Mπ(x; SUG) = lim
n→∞

Mπ(x; SUnG). (3.1)

Obviously, the unconstrained reachability defined in Section 2.6 is a special instance
of constrained reachability in case the safe set is the whole state space, i.e. S = X .14

Note that the solution of the problem is partially known:

Mπ(x; SUnG) =

¨

1, if x ∈ G,

0, if x ∈ D
(3.2)

and, as a result, the constrained reachability problem needs to be solved only for
states in S \ G. On the other hand, without loss of generality we can assume that
sets S and G are disjoint: this follows from the fact that Mπ(x; SUnG) =Mπ(x; (S \
G)UnG). Below this assumption is often made for the sake of notation; this also
allows us to highlight that the dynamics of cdt-MP over the set S are of the highest
importance for the solution of the problem, in contrast to the dynamics of the states
in the set G. As we have mentioned above, we consider both the maximization and
the minimization problems for constrained reachability, namely both M∗(x; SUnG)
and M∗(x; SUnG).

It is known that the DP principles allow decomposing the general optimization
problem into smaller and simpler subproblems [Bel57]. In the literature there have
been several results developing DP characterizations of the constrained reachabil-
ity problem. One of the main differences in these studies has been the choice of
the structural representation of the value function M(·; SUnG). For example, the
work in [APLS08] has considered the max cost representation for unconstrained
reachability, as

Mπ(x; XUnG) = Pπx

�

max
k≤n

1G(xk)
�

, (3.3)

and using the dual safety problem, an alternative multiplicative cost representation

Mπ(x; XUnG) = 1−Pπx

�

n
∏

k=0

1Gc (xk)

�

. (3.4)

These results have been extended in [SL10], which has dealt with the general con-
strained reachability problem in the form of a sum-multiplicative cost

Mπ(x; SUnG) = Pπx





n
∑

k=0

 

k−1
∏

j=0

1S\G(x j)

!

1G(xk)



 . (3.5)

14 As a side note, constrained reachability can be also obtained from the unconstrained one by changing
the dynamics of the cdt-MP on the set D [TMKA13, Section 3.1].
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Later, [CCL11] suggested a cost formulation using the notion of a first hitting time
as

Mπ(x; SUnG) = Pπx

�n∧τG∧τD
∑

k=0

1G(xk)

�

, (3.6)

where τA := inf{k ≥ 0 : xk ∈ A} is the first hitting time of the set A ∈ B(X ),
and where ∧ denotes the min operator. As we have mentioned in Section 2.3, the
TC performance criterion allows for a rich theory of DP in a general setting. The
aforementioned studies in [APLS08], [SL10] and [CCL11] have recovered only a
subset of these results for the reachability problem, sometimes requiring restrictive
assumptions on the structure of the model. Here we show that the reachability
problem has an equivalent TC formulation, which allows us proving general results
for this performance criterion.

In general it may not be possible to characterize the constrained reachability
problem as a TC criterion over the original cdt-MP D. The key idea is to consider
an auxiliary cdt-MP D̂, constructed from the original one by adding a new Boolean
variable (taking value in the set {qs, q f }) that represents whether the path of D has
left the safe set S or not. To our knowledge, the first time such construction has
been explicitly used in [TMKA13].15 For the sake of consistency, here we introduce
a new cdt-MP using the notion of the composition between the transition system
and the original cdt-MP.

qs q fS
D, G

Figure 4: Transition system for the TC formulation of constrained reachability

Let us consider a transition system T = (Q, qs,Σ, t) as in Figure 4 with a state
space Q = {qs, q f }, an alphabet Σ= (D, G, S), and a transition function given by

t(qs, S) = qs, t(qs, {D, G}) = q f , t(q f ,Σ) = q f .

We extend D to a lcdt-MP (D,Σ,L) trivially by letting L(x) = S for all x ∈ S
(the label of the states in the complement being irrelevant), and denote by D̂ :=
(D,Σ,L) ‖ T = (X̂ , U , K̂, T̂ ) the composed cdt-MP. We also let the corresponding
canonical probability space and related state, action and information processes to
be defined as in Section 2.6. Let us explicitly write down the relation between
operators T̂ and T, as they are further needed below:

T̂u f̂ (x , q) = 1{q = q f }Tu f̂ (x , q f )

+ 1{q = qs}
�

1S(x)T
u f̂ (x , qs) + 1Sc (x)Tu f̂ (x , q f )

�

,
(3.7)

which holds for any f̂ ∈ bU (X̂ ), x ∈ X , u ∈ U , and q ∈ Q. In particular, of special
interest are functions f̂ : X̂ → R that are zero off qs, namely f̂ (·, q f ) ≡ 0: they can

15 In [DAT13] a similar construction was used to formulate the reachability problem as a final cost
problem.
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be always represented in the form

f̂ (x , q) = 1{q = qs} · f (x) (3.8)

for some f : X → R. For functions as in (3.8), equation (3.7) simplifies as

T̂u f̂ (x , q) = 1{q = qs}Tu f̂ (x , qs) = 1{q = qs}Tu f (x) (3.9)

so that T̂u preserves the property of being zero off qs.
Let c : X̂ → {0,1} be a cost function c(x , q) := 1{q = qs} · 1G(x) that is zero off

qs, and define the corresponding TC utility for any n ∈ N̄0 as follows:

Ĵn :=
n
∑

k=0

c(xk,qk), (3.10)

where x and q are the components of the state process as in Section 2.6. The
corresponding maximization and minimization problems are given by

M̂∗(x , q; Ĵn) = sup
π̂∈Π̂

P̂π(x ,q)

�

Ĵn

�

, M̂∗(x , q; Ĵn) = inf
π̂∈Π̂

P̂π(x ,q)

�

Ĵn

�

. (3.11)

In order to show the equivalence between the optimal constrained reachability prob-
lem over the cdt-MP D and the formulation in (3.11) over the cdt-MP D̂, we apply
the technique from Section 2.6. Let us denote by i : Π→ Π̂ the obvious embedding
map, and let the projection map p̂ : Π̂→ Π be given by

(p̂π̂)n(x0, u0, . . . , xn−1, un−1, xn) := π̂n(x0, qs, u0, . . . , xn−1, qs, un−1, xn, qs). (3.12)

Note that p̂ is different from the projection map p discussed in Section 2.6: in partic-
ular, later we use the fact that p̂(Π̂M ) ⊆ ΠM , whereas p does not necessarily preserve
the Markovian property of a policy. The following equivalence holds true:

Lemma 2. For any n ∈ N̄0, π ∈ Π and π̂ ∈ Π̂, it holds that

M̂π̂(x , qs; Ĵn) =Mp̂π̂(x; SUnG), Mπ(x; SUnG) = M̂iπ(x , qs; Ĵn). (3.13)

Proof. We prove this theorem by induction. First of all, both equalities in (3.13)
clearly hold true for n = 0 as in this case all functions are simply 1G(x). Further-
more, with focus on the first equality, we have that

M̂π̂(x , qs; Ĵn+1)− M̂π̂(x , qs; Ĵn) = P̂π̂(x ,qs) [c (xn+1,qn+1)] .

As c(xn+1,qn+1) is a Bernoulli random variable supported on {0,1}, we obtain that

P̂π̂(x ,qs) [c (xn+1,qn+1)] = P̂π̂(x ,qs) (c (xn+1,qn+1) = 1)

= P̂π̂(x ,qs) ({xk ∈ S, k ≤ n} , {xn+1 ∈ G} , {qk = qs, k ≤ n+ 1}) .

On the other hand, the increment in n of the function Mp̂π̂ is

Mp̂π̂(x; SUn+1G)−Mp̂π̂(x; SUnG) = Pp̂π̂
x ({xk ∈ S, k ≤ n} , {xn+1 ∈ G}) .
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The fact that these probabilities are equal follows immediately from their integral
expressions in (2.6) and from the definition of the projection map p̂. By induction
we obtain the first part in (3.13) for n<∞, and the case n=∞ follows by taking
the limit. Finally, the proof of the second part of (3.13) is obtained the same way,
mutatis mutandis.

Lemma 2 leads to several important results that allow us to develop a DP frame-
work for constrained reachability. First of all, it clearly implies that both optimiza-
tion problems are equivalent in the following sense:

Theorem 2. For all n ∈ N̄0 and x ∈ X we have M̂∗(x , q f ; Ĵn) = M̂∗(x , q f ; Ĵn) = 0
and

M∗(x; SUnG) = M̂∗(x , qs; Ĵn), M∗(x; SUnG) = M̂∗(x , qs; Ĵn). (3.14)

Proof. To prove the first part, one has to notice that if q0 = q f , then qn = q f for all
n ∈ N0, hence M̂π̂(x , q f ; Ĵn) = 0 for all n ∈ N0, x ∈ X , and π̂ ∈ Π̂. Furthermore,
(3.14) is an immediate consequence of Lemma 2 and Lemma 9 in the Appendix.

As we have mentioned above, Theorem 2 allows us to extrapolate the rich theory
developed for the TC criterion to the case of the constrained reachability problem.
However, most of the results for TC are developed for the minimization case [BS78,
HLL96], considering either positive or negative costs c. As such, we can directly
derive the results for the minimization problem since M∗(x; SUnG) = M̂∗(x , qs; Ĵn),
however for the maximal constrained reachability we shall interpret

M∗(x; SUnG) = −M̂∗(x , qs;−Ĵn),

thus characterizing both optimization problems as a minimization of some TC. Note
that for the minimization of constrained reachability we use a positive cost c, thus
falling into the setting of the positive DP [Bla76] corresponding to [BS78, Assump-
tion (P), Chapter 9]. On the other hand, for the maximization of constrained reacha-
bility a negative cost−c is used, hence leading to the case of the negative DP [Str66]
corresponding to [BS78, Assumption (N), Chapter 9]. This difference is not always
important and only matters in the case n =∞, however we show below that we
need to distinguish the two cases to prove the convergence of bounded-horizon
functions to the unbounded-horizon ones, as well as the existence of optimal poli-
cies.

Let us proceed with the application of Lemma 2 and Theorem 2 to the charac-
terization of the optimal constrained reachability problems. The next result shows
that it is sufficient to deal with Markov policies.

Proposition 2. For any n ∈ N̄0 and any policy π ∈ Π, there exists a Markov policy
π′ ∈ ΠM such that Mπ(·; SUnG) =Mπ′(·; SUnG), and as a consequence

M∗(x; SUnG) = sup
π∈ΠM

Mπ(x; SUnG), M∗(x; SUnG) = inf
π∈ΠM

Mπ(x; SUnG). (3.15)

25



Proof. Fix any state x ∈ X and any policy π ∈ Π. It follows from Lemma 2 that
Mπ(x; SUnG) = M̂iπ(x , qs; Ĵn). On the other hand, [BS78, Proposition 8.1] assures
the existence of a Markov policy π̂′ ∈ Π̂M satisfying M̂iπ(x , qs; Ĵn) = M̂π̂′(x , qs; Ĵn).
From the definition of the projection map p̂ it follows that π′ := p̂π̂′ ∈ ΠM and as a
result

Mπ′(x; SUnG) = M̂π̂′(x , qs; Ĵn) = M̂iπ(x , qs; Ĵn) =Mπ(x; SUnG),

as desired. In order to obtain (3.15) we only have to apply Lemma 9.

The results above, obtained for deterministic initial conditions, can be extended
to the case of general initial distributions: we show that a value function over an
initial distribution α ∈ P (X ) can be obtained by integrating value functions over
deterministic initial conditions. Although this result is obvious whenever the policy
is fixed, it is not trivial to be shown for optimal value functions. We show a proof
for the case of the minimization problem on the unbounded time horizon, however
similar results can be obtained for the unbounded-time maximization case, as well
as for both bounded-horizon problems.

Proposition 3. For any distribution α ∈ P (X ) it holds that

M∗(α; SUG) =

∫

X

M∗(x; SUG) α(dx). (3.16)

Proof. From [BS78, Propositions 9.2, 9.3, 9.5] it follows that

M̂∗(α̂; Ĵ∞) =

∫

X̂

M̂∗(x , q; Ĵ∞)α̂(dx × dq)

for any distribution α̂ ∈ P (X̂ ). As a result, for any α ∈ P (X ) it holds that

M∗(α; SUG) = inf
π∈Π

∫

X̂

M̂iπ(x , q; Ĵ∞)(α⊗δqs)(dx × dq)

≥
∫

X̂

M̂∗(x , q; Ĵ∞)(α⊗δqs)(dx × dq)

=

∫

X

M̂∗(x , qs; Ĵ∞)α(dx) =

∫

X

M∗(x; SUG) α(dx).

The converse inequality we get as follows:
∫

X

M∗(x; SUG) α(dx) =

∫

X

M̂∗(x , qs; Ĵ∞)α(dx)

=

∫

X̂

M̂∗(x , q; Ĵ∞)(α⊗δqs)(dx × dq)

= inf
π̂∈Π̂

∫

X̂

M̂π̂(x , q; Ĵ∞)(α⊗δqs)(dx × dq)

= inf
π̂∈Π̂

∫

X

Mp̂π̂(x; SUG)α(dx)≥M∗(α; SUG).
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Since both inequalities hold true, we obtain the desired result.

Although in general one cannot switch the order of a minimization and an inte-
gral, Proposition 3 shows this can be done in the case of (3.16). As a consequence,
for the sake of simplicity we can deal directly with deterministic initial distributions:
the value function for general ones can be obtained by integrating with respect to
the initial distribution of interest.

We are ready to formulate one of the most relevant outcomes of Theorem 2:
a DP procedure for the constrained reachability problem over a general class of
policies. For this purpose we introduce the following DP operators:

R∗ f (x) = 1G(x) + 1S(x) ·T∗ f (x), f ∈ bA ∗(X ),
R∗ f (x) = 1G(x) + 1S(x) ·T∗ f (x), f ∈ bA∗(X ).

From the properties of operators T∗ and T∗, it follows that R∗ maps bA ∗(X ) into
itself and R∗ maps bA∗(X ) into itself.

Theorem 3. It holds that M∗(·; SU0G) =M∗(·; SU0G) = 1G(·), and for any n ∈ N̄0

M∗(·; SUn+1G) = R∗ [M∗(·; SUnG)] , M∗(·; SUn+1G) = R∗ [M∗(·; SUnG)] .

Moreover, M∗(·; SUG) and M∗(·; SUG) are the least non-negative fixpoints of the cor-
responding operators, that is if there exists a non-negative function f ∈ bA ∗(X ) (or
f ∈ bA∗(X )) that satisfies the inequality f ≥ R∗[ f ] (or f ≥ R∗[ f ]), then it holds
that f (·)≥M∗(·; SUG) (or f (·)≥M∗(·; SUG)).

Proof. We provide an explicit proof for the minimization problem, and appeal to
duality for the maximization case.

First of all, the fact that M∗(·; SU0G) = 1G(·) follows immediately from the
definition of constrained reachability. Furthermore, for any n ∈ N̄0 by Theorem 2
we have that M∗(x; SUnG) = M̂∗(x , qs; Ĵn). The DP recursion for the TC is given in
[BS78, Proposition 8.2, Proposition 9.8], and applied here yields the following:

M∗(x; SUn+1G) = M̂∗(x , qs; Ĵn+1) = inf
u∈Kx

�

c(x , qs) + T̂u
�

M̂∗(x , qs; Ĵn)
��

= inf
u∈Kx

�

1G(x) + 1S(x)T
u
�

M̂∗(x , qs; Ĵn)
��

= 1G(x) + 1S(x)T∗ [M∗(x; SUnG)] = R∗ [M∗(x; SUnG)] .

This results in both the DP recursion (n <∞) and in the fixpoint equation (for
n=∞).

Consider now a non-negative function f ∈ bA∗(X ) satisfying f ≥ R∗[ f ], and
define a new function f̂ : X̂ → [0,∞) by the formula f̂ (x , q) := 1{q = qs} · f (x).
Clearly, the function f̂ is zero off qs, so that we obtain:

inf
u∈Kx

�

c(x , q) + T̂u f̂ (x , q)
�

= 1{q = qs} ·R∗ f (x)≤ 1{q = qs} · f (x) = f̂ (x , q).

As a result, [BS78, Proposition 9.10 (P)] implies that M̂∗(·; J∞)≤ f̂ (·) and thus

M∗(x; SUG) = M̂∗(x , qs; Ĵ∞)≤ f̂ (x , qs) = f (x),

so M∗(·; SUG) is the least fixpoint in the class of non-negative bA∗ functions.

27



In view of Theorem 3 we can compute the value of the bounded horizon optimal
constrained reachability problems backward-recursively, starting from the indicator
function 1G . The computation of the fixpoint problem is more intricate and is ad-
dressed below in Section 3.2. Due to this reason, it is worth discussing the relation
between the solution of the constrained reachability problem on the bounded time
horizon, and that on the unbounded time horizon. In particular, an interesting ques-
tion is whether the latter can be in general obtained as the limit of the former, as
the time index n goes to infinity. This is one of the anticipated cases where the dif-
ference between the maximization and minimization problems becomes important:
the answer is positive in the first case and is negative in the second.

Proposition 4. For every state x ∈ X it holds that

M∗(x; SUG) = lim
n→∞

M∗(x; SUnG). (3.17)

Furthermore, for any x ∈ X there exists a limit

f∗(x) := lim
n→∞

M∗(x; SUnG)≤M∗(x; SUG). (3.18)

Moreover, M∗(·; SUG) = f∗(·) if and only if f∗ is a fixpoint of the DP operator R∗.

Proof. We start with the maximization case: recall that it corresponds to Assump-
tion (N) of [BS78, Chapter 9] since M∗(x; SUnG) = −M̂∗(x , qs;−Ĵn) for any x ∈ X .
It follows from [BS78, Section 9.5] that the sequence (M̂∗(x , q;−Ĵn))n∈N has a limit
for any x ∈ X and q ∈ Q. Furthermore, [BS78, Proposition 9.14] implies that this
limit is M̂∗(x , q;−Ĵ∞), which leads to (3.17).

For the minimization case we satisfy Assumption (P) of [BS78, Chapter 9]. The
discussion in [BS78, Section 9.5] implies the existence of the point-wise limit for
the sequence (M̂∗(x , q; Ĵn))n∈N: we denote this limit by f̂∗. Furthermore, it follows
from [BS78, Proposition 9.16] that f̂∗(·)≤ M̂∗(·; Ĵ∞), and that the equality holds if
and only if f̂∗ is a fixpoint of the corresponding DP operator, i.e.

f̂∗(x , q) = c(x , q) + T̂∗ f̂∗(x , q). (3.19)

For the constrained reachability case, we now obviously have the existence of the
limit

f∗(x) := lim
n→∞

M∗(x; SUnG) = 1{q = qs} f̂∗(x , q).

Clearly, f∗(·) ≥ M∗(·; SUG). Furthermore, if f∗ is a fixpoint of R∗, then f̂∗ satis-
fies (3.19), thus f̂∗(·) = M̂(·; Ĵ∞) and f∗(·) = M∗(·; SUG). Conversely, if f∗(·) =
M∗(·; SUG) then by Theorem 3 it has to be a fixpoint of the DP operator R∗.

The following example shows that the inequality in (3.18) can be strict.16

16 The example is obtained by modifying [BS78, Example 1].
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Example 1. Let X = N0 and let U = {1/n}n∈N ∪ {−1}. Define admissible controls as
follows: K0 = {1/n}n∈N and Kx = −1 for x 6= 0. The dynamics is deterministic and is
given by the following update law:

xn+1 = xn + 1/un.

Define G := {1} to be the goal set, and let the safe set be its complement S := X \ G.
Let us focus on the case when x0 = 0. If we would like to minimize the probability of
reaching G over some finite horizon n ∈ N, one of the optimal strategies is to choose
u0 =

1
n+1 . Then x1 = n+1, x2 = n and xn = 2, so that G is not reached. As a result, for

any finite n ∈ N0 we have that M∗(0; SUnG) = 0. However, regardless of the chosen
control action u0, the set G is reached by the path of the process in at most 1

u0
steps.

Thus,
M∗(·; SUG) = 1 6= lim

n→∞
M∗(0; SUnG).

So far we have developed DP over the value functions for the constrained reach-
ability problem. The main tool we have used is a TC reformulation of the original
performance criterion, which makes it possible to apply the rich theory that has
been developed for the TC problem. Following similar lines as in the proofs of the
theorems above, one can reformulate for the constrained reachability problem al-
most any result developed for the TC criterion. While in this paper we do not have a
focus on the existence of optimal strategies, one can easily tailor a number of results
from [BS78], as we overview next. Recall that Assumption (P) in [BS78, Chapter
9] corresponds to the minimization problem, whereas Assumption (N) corresponds
to the maximization one.

(P) [BS78, Proposition 9.12] and its corollary provide necessary and sufficient
conditions for the optimality of stationary policies, together with results to
compute such policies. Moreover, [BS78, Propositions 9.17, 9.18] and their
corollaries provide various sufficient conditions for the existence of optimal
stationary policies, for their Borel measurability, and for the equality in (3.18).

(N) [BS78, Proposition 9.13] gives necessary and sufficient conditions for the op-
timality of stationary policies. However, it does not give a way to construct
a policy (such as the one available for (P)). This is almost the only result on
the optimality of policies under Assumption (N).

3.2. Reachability problem: computation

The TC formulation of the constrained reachability problem not only leads to
results for the characterization of its solution [DAT13], but also connects to compu-
tational methods [DPR12]: both aspects are worth further investigation in future
work. Alternatively, numerical methods with precise bounds on the error can be de-
veloped directly for the constrained reachability problem as in [TMKA13, Section
4]. The latter methods are based on a partitioning of the state and action spaces
X and U in order to approximate the original lcdt-MP by a finite one. As we dis-
cussed, finite-space models are prone to be automatically verified by means of a
model checker of choice. Provided certain kinds of continuity assumptions on the
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kernel T, such methods assure that a bounded-horizon value function can be found
with any given precision if the partition is fine enough. In the present context we
are interested in extending these results to the unbounded time horizon case.

Let us recall the classical theory for the DC performance criterion. If its discount-
ing factor satisfies γ < 1, one falls into the setting of discounted problems for which
the corresponding DP operator is contractive on some function space. Such a prop-
erty has nice consequences: the unbounded-horizon value function is the unique
fixpoint of this operator, and it can also be efficiently approximated by means of
the bounded-horizon value functions, as it follows from the contraction mapping
theorem.17 This approach is clearly interesting to us because of the computational
techniques developed for the bounded time horizon case. Unfortunately, the DC
formulation of the constrained reachability problem (3.10) has a discounting factor
γ = 1, so the contractivity of the DP operators R∗ and R∗ cannot be established
using classical techniques. Due to this reason, we come up with new sufficient con-
ditions for the DP operators associated to the constrained reachability problem to
be contractive: the approach is based on the following result, which is similar to
that in [HL89, Proposition A.2].

Lemma 3. Let A be any set, and let (F ,ρ) be a metric space where F is any class of
bounded functions f : A→ R and ρ is a sup-norm. Consider an arbitrary operator
G :F →F that satisfies the following two properties:

1. if f , g ∈ F such that f ≤ g, then G f ≤Gg,

2. there exists β ∈ [0,1) such that if f ∈ F and c ≥ 0 then G( f + c)≤G f + β c.

Then G is a contraction on F with a modulus β .

Proof. Let f , g ∈ F be arbitrary, then f ≤ g +ρ( f , g) and thus

G f ≤Gg + βρ( f , g) =⇒ G f −Gg ≤ βρ( f , g).

By a symmetric argument, we obtain that

G f −Gg ≤ βρ( f , g) =⇒ |G f −Gg| ≤ βρ( f , g) =⇒ ρ(G f ,Gg)≤ βρ( f , g),

so that G is a contraction with a modulus β .

The DP operators for the constrained reachability problem are rarely contractive
over the whole state space X , so it is worth restricting attention to the safe set S
exclusively. This also emphasizes the leading role of the set S in the solution of the
problem (in contrast to the goal set G), as we discussed before: we have already
mentioned that the solution of the constrained reachability problem is trivial outside

17 The contraction mapping theorem is alternatively known as Banach’s Fixed Point Theorem [HL89,
Proposition A.1].
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of the safe set (3.2), so we can work with the restriction of value functions to the
set S. Consider the “truncated” transition operator:

ST
u f (x) :=

∫

S

f (x ′)T(dx ′|x , u),

which clearly maps the space U (S) into itself. Furthermore, let us define

ST
∗ f (x) := sup

u∈Kx

ST
u f (x), ST∗ f (x) := inf

u∈Kx
ST

u f (x).

Note that the operator ST
∗ (ST∗) maps the space bA ∗(S) (bA∗(S)) into itself. More-

over, for f ∈ bA∗(X ) it holds that f |S ∈ bA∗(S), which follows immediately from
the definition of lower-semianalytic functions and Borel measurability of S; clearly,
the same applies to the restrictions of functions in bA ∗(X ). In particular, if we
define

Wn(x) :=M∗(x; SUnG)|S , wn(x) :=M∗(x; SUnG)|S
for any x ∈ X and n ∈ N0, then for these functions it holds that Wn ∈ bA ∗(S) and
wn ∈ bA∗(S). Thus, we can rewrite the DP over the safe set S as follows:

Wn+1 = SR
∗ [Wn] , wn+1 = SR∗ [wn]

for any n ∈ N̄0, where W0 = w0 = 0, and the truncated DP operators are given by

SR
∗ f (x) := sup

u∈Kx

[T(G|x , u) + ST
u f (x)] , f ∈ bA ∗(S),

SR∗ f (x) := inf
u∈Kx

[T(G|x , u) + ST
u f (x)] , f ∈ bA∗(S).

Clearly, these operators map their domains into themselves, so that they can be
applied recursively. Note also that in case G = ;, we have SR

u = ST
u.

In order to formulate the main result on the contractivity of the DP operators, we
are only left to introduce a very important special case of constrained reachability:
safety [APLS08]. This can be characterized by the LTL formula �nS and thus

Mπ(x;�nS) = 1−Mπ(x; SUnSc)

for all x ∈ X and any n ∈ N̄0. We are interested in the restriction of the safety
problem to the safe set S itself, the main focus being the characterization of con-
tractivity.18 We further denote

Vn(x) :=M∗(x;�nS)|S , vn(x) :=M∗(x;�nS)|S .

The DP for safety over S is hence given by

Vn+1 = ST
∗ [Vn] , vn+1 = ST∗ [vn] , n ∈ N̄0.

18 Clearly, Vπn (x; S) = 0 for any x ∈ Sc , so the safety problem is trivial outside the safe set.
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with V0 = v0 = 1. Clearly, we have that 0≤ Vn ≤ 1 for all n ∈ N̄0. Let us define

βn(S) := sup
x∈S

Vn(x) = sup
x∈X

M∗(x;�nS) ∈ [0,1],

m(S) := inf{n ∈ N0 : βn(S)< 1} ∈ N̄0,

and note that both βn and m are monotonic functions of S with respect to set inclu-
sion. We are now ready to provide sufficient conditions for contractivity.

Theorem 4. If m := m(S)<∞, then operators (SR∗)m and (SR∗)m are contractions
with modulus β := βm(S) on the spaces bA ∗(S) and bA∗(S) respectively. In particu-
lar, each of them has a unique fixpoint, and for any n ∈ N0 the following inequalities
hold true:

ρ(W∞, Wmn)≤ βn, ρ(w∞, wmn)≤ βn. (3.20)

Finally, as a special case (ST∗)m and (ST∗)m are contractions and V∞ = v∞ = 0.

Proof. We are going to apply Lemma 3 in order to establish the contractivity prop-
erty. Let us consider the case of SR

∗ first, so in Lemma 3 we put F = bA ∗(S).
The condition (1) of the lemma is obviously satisfied for SR

∗ and hence for (SR∗)n

regardless of n ∈ N0. Furthermore, for any two functions f , g ∈ bA ∗(S) we have
that

SR
∗( f (x) + g(x)) = sup

u∈Kx

[T(G|x , u) + ST
u f (x) + ST

u g(x)]

≤ sup
u∈Kx

[T(G|x , u) + ST
u f (x)] + sup

u∈Kx

ST
u g(x)

= SR
∗ f (x) + ST

∗g(x).

As a result, for any f ∈ bA ∗(S) and any c ≥ 0 it holds that

SR
∗( f + c)≤ SR

∗ f + c · V1,

and further by induction for any n ∈ N

(SR
∗)n( f + c)≤ (SR∗)n f + c · Vn.

In particular, for the case n= m we obtain the following:

(SR
∗)m( f + c)≤ (SR∗)m f + c · Vm ≤ (SR∗)n f + c · β .

Hence, (SR∗)m satisfies all the assumptions of Lemma 3 and thus is a contraction
on bA ∗(S). The contractivity of (SR∗)m can be shown by a similar argument, with
the only difference being the inequality

SR∗( f + g)≤ SR∗ f + ST∗g,

rather than the one with ST
∗g, and with conditions on contractivity that are stated

in terms of functions vn rather than Vn.
After the contractivity of the operators is established, the uniqueness of the so-

lutions of fixpoint equations and the bounds in (3.20) follow immediately from the
contraction mapping theorem [HL89, Proposition A.1]. Finally, the statement for
operators ST

∗ and ST∗ follows directly if one considers the special case G = ; when
the two coincide.
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Theorem 4 shows that in the case of contractive operators the unbounded-
horizon value function can be approximated by n-bounded horizon ones with any
precision level that is a function of the modulus β and on the horizon n. However,
there are some questions left: what are the cases in which the contractivity condi-
tions are violated, and what would be a solution for such cases? Let us first address
the former question. For example, whenever the conditions of Theorem 4 are met,
the equality holds in (3.18). As a result, Example 1 does not admit contractive op-
erators since the equality does not hold there. Some other important examples can
be given using the notion of absorbing set.

Definition 7 (Absorbing set). The set A ∈ B(X ) is called strongly absorbing if
T(A|x , u) = 1 for all x ∈ A and u ∈ Kx . The set A ∈ B(X ) is called weakly ab-
sorbing if there exists a randomized selector µ ∈ U (U |X ) such that for all x ∈ A it
holds that µ(Kx |x) = 1 and that

∫

Kx

T(A|x , u)µ(du|x) = 1. (3.21)

We say that the set A∈B(X ) is simple if it does not have non-empty weakly absorbing
subsets.

The following notation is extensively used below: for any A∈B(X ) we define

KA := {(x , u) ∈K : T(A|x , u) = 1},

and analogously KA
x , x ∈ A. Note in particular that if the sets A, B ∈B(X ) are such

that B ⊆ A, then T(B|x , u) = 1 for some (x , u) ∈ K implies that T(A|x , u) = 1, and
as a result we obtain that KB ⊆ KA. The next theorem establishes some important
results on the connection between weakly and strongly absorbing sets, and on their
structure.

Proposition 5. Let A∈B(X ). It holds that

i. if A is strongly absorbing, then it is weakly absorbing,

ii. if A is weakly absorbing, then the randomized selector µ in (3.21) can be equiv-
alently replaced by a deterministic selector f ∈ U (X )/B(U).

Proof. To prove i. we use the fact that T(A|x ,k(x)) = 1 for any x ∈ A (recall that
k : X → U). Hence, the kernel µ as per (3.21) can be chosen to be a deterministic
selector, as µ= δk.

With focus on ii. let us fix some arbitrary x ∈ A and show that there exists
u ∈ Kx such that T(A|x , u) = 1. Note that if u /∈ KA

x (cf. notations above), then 1−
T (A|x , u)> 0, where it is crucial that the inequality is strict. To reach a contradiction
we further suppose that for a µ as in (3.21) it holds that µ(Kx \KA

x |x)> 0. Then:

0=

∫

Kx

(1−T(A|x , u))µ(du|x)≥
∫

Kx\KA
x

(1−T(A|x , u))µ(du|x)> 0,
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which obviously cannot be true. As a result, we obtain that µ(KA
x |x) = 1 and in

particularKA
x 6= ; for any x ∈ A. Hence, it holds that T∗1A(x) = supu∈Kx

T(A|x , u) =
1. The existence of a universally measurable selector u from KA

x thus follows from
[BS78, Proposition 7.50 (b)] and the fact that T(A|·) ∈ bB(K) ⊆ bA ∗(K).

Part i. of Proposition 5 justifies the use of the adjectives “weak” and “strong”
in Definition 7. Furthermore, in the uncontrolled case (where trivially U = {u}),
the notion of weak and strong sets coincide with that of an absorbing set [MT93].
Intuitively, a strongly absorbing set remains absorbing under any possible control
action, whereas for a weakly absorbing set there has to exist a control policy that
makes this set absorbing. Moreover, thanks to part ii. of Proposition 5, it is sufficient
to consider non-randomized controls in order to establish weak absorbance.

As promised, absorbing sets can be used to provide examples when the con-
tractivity of truncated DP operators is violated, and in particular when the fixpoint
equations do not have unique solutions. Note that in the case of unconstrained
reachability G = Sc , it holds that the operators SR

∗ and SR∗ always admit the trivial
fixpoint 1. However, if S is not simple (that is, if it admits absorbing subsets), then
the optimal value functions are different than 1. For example, if a trajectory starts
in an absorbing subset of S then it never reaches the goal set. More precisely:

Proposition 6. If a set S has a non-empty strongly (weakly) absorbing subset A⊆ S,
then M∗(x; SUSc) = 0 (M∗(·; SUSc) = 0) for all x ∈ A. In particular, W∞(x) = 0
(w∞(x) = 0) for all x ∈ A, and (SR∗)n ((SR∗)n) is not a contraction for any n ∈ N0.

Proof. Let A be a strongly absorbing set and fix a point x ∈ A. Then Pπx (xn ∈ A) = 1
for all n ∈ N0 regardless of the policy π ∈ Π. As a result, Pπx (xn ∈ Sc) = 0 for all
n ∈ N0, so

Mπ(x; SUSc)≤
∞
∑

n=0

Pπx (xn ∈ Sc) = 0

for any policy π ∈ Π. Thus, we obtain that M∗(x; SUSc) = 0 for any x ∈ A. Clearly,
it follows immediately that W∞(x) = 0 for all x ∈ A. Suppose now that (SR∗)n is
contractive for some n. In such a case the solution of the fixpoint equation would
be unique and hence it would imply that W∞ ≡ 1, which is clearly not the case.

Let now A be a weakly absorbing set and consider a stationary policy π ∈ ΠS
with

π0(x) := 1A(x) ·µ(x) + 1Ac (x) ·δk(x),

with µ as in (3.21). The policy π uses the choice of the action suggested by µwhen-
ever x ∈ A, and chooses some auxiliary action k(x) otherwise. From the definition
of µ it follows that Pπx (xn ∈ A) = 1 and hence Pπx (xn ∈ Sc) = 0 for all x ∈ A, so

M∗(·; SUSc)≤Mπ(x; SUSc)≤
∞
∑

n=0

Pπx (xn ∈ Sc) = 0.

As for SR∗, one can now show that (SR∗)n is not a contraction for any n ∈ N0.
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In general the presence of absorbing sets is not the only reason that may violate
contractivity. For example, it is easy to see that the set S in Example 1 does not
have weakly absorbing subsets, and still the contractivity does not hold. However,
the following assumption allows to characterize precisely the relationship between
absorbing sets and contractivity.

Assumption 1. The cdt-MP D is continuous and the set S is compact.

We are going to show that, under Assumption 1, the case m(S) <∞ precisely
coincides with the case when S does not admit weakly absorbing sets. In order to
prove this fact some preparation is required: let us define for all n ∈ N0 the sets

Sn := {M∗(·,�nS) = 1}= {x ∈ X : M∗(x ,�nS) = 1} .

Note that for any x ∈ S andπ ∈ Π the sequence (Mπ(x;�nS))n∈N0
is non-increasing,

as is the sequence (M∗(x;�nS))n∈N0
. As a result, we obtain that the sequence of sets

(Sn)n∈N0
is non-increasing as well: Sn+1 ⊆ Sn for all n ∈ N0. Let us further denote

by S∞ :=
⋂∞

n=0 Sn the limit of this sequence. We introduce the following auxiliary
lemmas.

Lemma 4. The set S∞ is such that {M∗(·;�S) = 1} ⊆ S∞. In particular, if S′ ⊆ S is
a weakly absorbing subset of S, then S′ ⊆ S∞.

Proof. Let us fix any x such that M∗(x;�S) = 1. By Proposition 4 we have that

lim
n→∞

M∗(x;�nS)≥M∗(x;�S) = 1.

Since (M∗(x;�nS))n∈N0
is a non-increasing sequence, it follows that M∗(x;�nS) =

1 and hence x ∈ Sn for all n ∈ N0. As a result, x ∈ S∞ and thus {M∗(·;�S) = 1} ⊆
S∞. Now, if S′ ⊆ S is weakly absorbing, then S′ ⊆ {M∗(·;�S) = 1} by Proposition
6.

Lemma 5. Under Assumption 1 it holds that M∗(·;�nS) ∈ bC ∗(X ) for all n ∈ N0.

Proof. If n = 0 then M∗(x;�0S) = 1S(·) ∈ bC ∗(X ) since S is a closed set being
a compact subset of a metrizable space. Also, if M∗(·;�nS) ∈ bC ∗(X ), then by
continuity of the kernel T we have that TM∗(·;�nS) ∈ bC ∗(K) and T∗M∗(·;�nS) ∈
bC ∗(X ) as it follows from [BS78, Proposition 7.31] and [BS78, Proposition 7.33]
respectively. Finally, M∗(·;�n+1S) = 1S(·) ·T∗M∗(·;�nS) ∈ bC ∗(X ) by Lemma 11
in the Appendix.

Lemma 6. Under Assumption 1, sets Sn and KSn
x are compact for all x ∈ X , n ∈ N0.

Proof. Since Sn = {M∗(·;�nS) ≥ 1} and M∗(·;�nS) is an upper semi-continuous
function by Lemma 5, we obtain that Sn is a closed set. It is also compact as a closed
subset of a compact set S. Furthermore, it holds that T1Sn

∈ bC ∗(K) since the set
Sn is closed. Hence, KSn = {T1Sn

≥ 1} is a closed subset of K, which implies that
KSn(x) is a closed subset of U for any x ∈ X , and is compact since U is compact.
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Lemma 7. Under Assumption 1, Sn+1 = {x ∈ S :KSn(x) 6= ;} for any n ∈ N0, that is

Sn+1 = {x ∈ S : ∃u ∈Kx s.t. T(Sn|x , u) = 1}. (3.22)

Moreover, S∞ is weakly absorbing and satisfies the formula S∞ = {M(·;�S) = 1}.

Proof. Let us first prove (3.22) for n <∞. We first show that if KSn(x) 6= ; for
some x ∈ S, then x ∈ Sn+1. Indeed, let u′ be an arbitrary element of KSn(x). We
have:

M∗(x;�n+1S) = sup
u∈Kx

∫

X

M∗(x ′;�nS)T(dx ′|x , u)≥
∫

Sn

M∗(x ′;�nS)T(dx ′|x , u′) = 1,

so that KSn(x) 6= ; for x ∈ S implies x ∈ Sn+1. Showing the converse implication
is more technical. Let us pick x ∈ S arbitrarily. Since TM∗(·;�nS) ∈ bC ∗(K) as a
function of x and u, it follows that TM∗(·;�nS) ∈ bC ∗(Kx) as a function of u, and
thus the maximum in

M∗(x;�n+1S) = sup
u∈Kx

TM∗(x , u;�nS)

is attained at some u′′ ∈Kx as the latter set is compact. As a result,
∫

S

1 T(dx ′|x , u′′) = T(S|x , u′′)≤ 1=M∗(x;�n+1S) =

∫

S

M∗(x ′;�nS)T(dx ′|x , u′′),

and subtracting the right-hand side from the left-hand side yields
∫

S

�

1−M∗(x ′;�nS)
�

T(dx ′|x , u′′)≤ 0. (3.23)

Note that the integrand in (3.23) is non-negative, so

T({1−M∗(·;�nS) = 0}|x , u′′) = T(Sn|x , u′′) = 1,

since otherwise the integral would be strictly positive. Thus, (3.22) is proved.
With focus on S∞, the case when S∞ is empty is trivial, so let us assume S∞ 6= ;.

For any x ∈ S∞ it follows that x ∈ Sn 6= ; for all n ∈ N0 and henceKSn(x) 6= ; for all
n ∈ N0. Indeed, in case KSn(x) = ; we would obtain that x /∈ Sn+1 thanks to (3.22)
which contradicts with the fact that x ∈ S∞. Then K∞(x) :=

⋂∞
n=0K

Sn(x) 6= ;
since (KSn(x))n∈N0

is a non-increasing sequence of non-empty compact sets. For
any u′ ∈K∞(x) and any n ∈ N0 it holds that T(Sn|x , u′) = 1 so that

T(S∞|x , u′) = T

�∞
⋂

n=0

Sn|x , u′
�

= lim
n→∞

T(Sn|x , u′) = 1

and so x ∈ S∞ implies that KS∞(x) 6= ;. As a result, we obtain that for all x ∈ S∞

T∗1S∞(x) = sup
u∈Kx

T(S∞|x , u) = 1.
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The set S∞ is compact as an intersection of compact sets, so thatT(S∞|·) ∈ bC ∗(K),
and thus by [BS78, Proposition 7.33] there exists a selector f :B(X )/B(U) such
that f (x) ∈ Kx for all x ∈ X and T(S∞|x , f (x)) = 1 for all x ∈ S∞. Hence, S∞ is
a weakly absorbing subset and thus S∞ ⊆ {M∗(·;�S) = 1}. Combining the latter
statement with the result of Lemma 4, we obtain that S∞ = {M∗(·;�S) = 1}.

Lemma 7 shows that when the cdt-MP D is continuous, any compact set S
admits a largest weakly absorbing subset S∞ (which clearly may be empty). We
are now able to show that this is equivalent to the contractivity condition.

Theorem 5. Under Assumption 1, the following statements are equivalent:

i. it holds that m(S)<∞ (contractivity);

ii. the operator ST
∗ has a unique fixpoint (uniqueness);

iii. it holds that M∗(·;�S) = 0 (triviality);

iv. it holds that S∞ = ; (simplicity).

Proof. The fact that i. =⇒ ii. has been proven in Theorem 4. Also, ST
∗ f = f al-

ways has a solution f = 0, so the uniqueness of a fixpoint of ST
∗ implies V∞ = 0 and

thus ii. =⇒ iii. If M∗(·;�S) = 0, then by Lemma 7 we have S∞ = {M∗(·;�S) =
1} = ;, so iii. =⇒ iv. Finally, if m(S) =∞ then supx∈X M

∗(x;�nS) = 1 for all
n ∈ N0. By Lemma 5 each of the functions M∗(·;�nS) is u.s.c. and thus it attains
its maximum over a compact set S, so that m(S) =∞ implies Sn 6= ; for all n ∈ N0.
Moreover, from Lemma 6 it follows that each Sn is compact and hence (Sn)n∈N0

is a
non-increasing sequence of non-empty compact sets. As a result, the latter sequence
has a non-empty intersection S∞ and hence S∞ = ; necessarily implies m(S)<∞,
hence iv. =⇒ i.

We have obtained a precise characterization of the contractivity condition m(S)<
∞ in terms of presence or absence of weakly absorbing subsets of the safe set. In
particular, if both Assumption 1 and the condition S∞ = ; are satisfied, then regard-
less of the set G we are able to approximate M∗(x; SUG) and M∗(x; SUG) by their
bounded horizon counterparts. Moreover, Theorem 5 also justifies the following
intuitive statement: if one wants to keep the path of the process inside a set with
some non-zero probability, there has to be an “attractor” within such set, which in
our case appears to be the largest weak absorbing subset of S, that is S∞. If such
attractor is absent, no matter what control policy is chosen, the path will leave the
desired set almost surely. The “if and only if” nature of Theorem 5 also implies that
for the maximal safety problem such condition is necessary. However, it still may be
the case that S∞ 6= ; but SR∗ is a contraction. Although such cases are interesting
to study, this goes beyond the scope of the current paper: we are now interested in
techniques that allow us to reduce the unbounded horizon problem to the bounded
horizon one in the situation where S∞ 6= ;. These results are particularly powerful
under the following assumption.
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Assumption 2. Stationary policies are sufficient for the solution of the constrained
reachability problem on the unbounded time horizon, that is for any x ∈ X :

M∗(x; SUG) = sup
π∈ΠS

Mπ(x; SUG), M∗(x; SUG) = inf
π∈ΠS

Mπ(x; SUG).

Before we provide the main result, the following technical lemma is needed.

Lemma 8. Let Assumption 2 hold true, and let C ∈ B(X ) be any subset of S. Then
∀x ∈ X

|M∗(x; SUG)−M∗(x; (S \ C)UG)| ≤ χ∗(C) := sup
π∈ΠS

sup
y∈C

Mπ(y; SUG),

|M∗(x; SUG)−M∗(x; (S \ C)UG)| ≤ χ∗(C) := inf
π∈ΠS

sup
y∈C

Mπ(y; SUG).

Proof. For any π ∈ ΠS let us denote χπ(C) := supy∈C M
π(y; SUG). Let us fix an

arbitrary policy π ∈ ΠS and an arbitrary state x ∈ X . Clearly, S \ C ⊆ S further
implies that Mπ(x; SUG)≥Mπ(x; (S \ C)UG) . On the other hand, obviously

Mπ(·; SUG)−Mπ(·; (S \ C)UG)≤ χπ(C)

which together with Lemma 10 immediately yields the desired result.

Let us discuss how Lemma 8 can be useful. Suppose that Assumption 1 holds
true and that for the original problem we have that S∞ 6= ;, so that m(S) =∞,
and hence we cannot apply Theorem 4 to compute the optimal value functions. If
we find a set C ⊇ S∞ such that m(S\C)<∞, then we can solve the unconstrained
problem with truncated safe set S \ C . Also, since C contains S∞ we can expect
that χ∗(C) and χ∗(C) are close enough to zero, which would make the bounds
in Lemma 8 useful. To further elaborate this idea we need the notion of a locally
excessive function.

Definition 8 (Locally excessive function). A non-negative function g ∈ bB(X ) is
called locally µ-excessive for a randomized selector µ ∈ U (U |X ), if for any x ∈ {g ≤
1} it holds that Tµg(x) ≤ g(x). If in addition A∞ ⊆ {g = 0} and {g ≤ 1} ⊆ A for
some A ∈ B(X ), and {g < ε} is an open set for all ε > 0, we say that g is locally
µ-excessive on A.

A non-negative function g ∈ bB(X ) is called locally uniformly excessive if for any
x ∈ {g ≤ 1} and u ∈Kx it holds that (Tg)(x , u)≤ g(x). If in addition A∞ ⊆ {g = 0}
and {g ≤ 1} ⊆ A for some A∈B(X ), and {g < ε} is an open set for all ε > 0, we say
that g is locally uniformly excessive on A.

The next results allows characterising, via simple sets, the solution of reachabil-
ity problems.

Theorem 6. Let Assumptions 1 and 2 hold true. Suppose that g∗ is locally uniformly
excessive on S, and that g∗ is locally π′0-excessive for some π′ ∈ ΠS . For any ε ∈ (0, 1]
it holds that the following inequalities are valid:

χ∗({g∗ < ε})≤ ε χ∗({g∗ < ε})≤ ε

and that sets S \ {g∗ < ε}, S \ {g∗ < ε} are simple.
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Proof. We start with the case of the maximization. For any policy π ∈ ΠS we have
that

Mπ(x; XU{g∗ > 1})≤ g∗(x)

whenever x ∈ {g∗ ≤ 1}, as it follows from [TA14, Lemma 3]. Furthermore, since
{g∗ ≤ 1} ⊆ S and G ⊆ Sc , it holds that G ⊆ {g∗ > 1}. As a result,

Mπ(·; SUG)≤Mπ(·; XU{g∗ > 1}).

Combining both inequalities, we obtain that

sup
y∈{g∗<ε}

Mπ(y; SUG)≤ ε,

and thus after maximizing over all stationary policies we obtain that χ∗({g∗ < ε})≤
ε.

For the case of the minimization we similarly have

sup
y∈{g∗<ε})

Mπ′(y; SUG)≤ ε,

and since χ∗(C) ≤ supy∈C M
π′(y; SUG) for any set C ∈ B(X ), we immediately

obtain that χ∗({g∗ < ε})≤ ε for all ε ≤ 1, as desired.
Finally, the simplicity of sets S \ {g∗ < ε} and S \ {g∗ < ε} follows from the

fact that that they are compact simple sets. Indeed, we have compactness thanks
to the fact that S is compact and sets {g∗ < ε}, {g∗ < ε} are open. Moreover,
the simplicity follows from the definition of functions locally excessive on S which
implies that S∞ ⊆ {g∗ < ε} and S∞ ⊆ {g∗ < ε}.

3.3. Comments on the reachability problem
Let us mention how the DP formulation has been developed for the (un)constrained

reachability problem in the cdt-MP setting. To our knowledge, the first work with
this goal has been [APLS08], which has considered a class of models called con-
trolled discrete-time Stochastic Hybrid Systems (cdt-SHS), namely a class of cdt-
MP with a state space comprised of a collection of Borel subsets of Rn. It has treated
the unconstrained reachability property ♦nG = trueUnG and the dual safety one
�nS = ¬♦nSc , and has proposed their characterization using a maximal cost (3.3)
for the first problem, and a multiplicative cost (3.4) for the second. Within this for-
mulations, the DP recursion has been derived for the bounded time horizon n<∞,
while restricting the attention to Markov policies. [SL10] has addressed a more gen-
eral19 constrained reachability problem SUnG within a similar setting: cdt-SHS

19 Although constrained reachability includes the unconstrained one as a special case, the latter can be
used to solve the former if one just slightly modifies dynamic by making the set of unsafe sets D = X \(S∪
G) absorbing. Indeed, in such case ♦nG is equivalent to SUnG since G is never reached by a trajectory
that has visited D at least once [TMKA13, Proposition 1]. In particular, one immediately obtains [SL10,
Theorem 8] by applying [APLS08, Theorem 1] over a modified model. Similarly, rendering the set D
absorbing allows one to recast a related terminal hitting-time reach-avoid problem [SL10, Section 4] as
a special case of a terminal cost problem [HLL96, Section 3].
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models, Markov policies, and bounded time horizons: a new sum-multiplicative
cost (3.5) has been proposed, leading to the DP scheme in [SL10, Theorem 8]. In
contrast to these studies, here we have proposed a TC formulation, which has al-
lowed dealing with non-Markovian policies, and to show that Markov policies are
sufficient. In particular, one obtains [APLS08, Theorems 1, 2] and [SL10, Theorem
8] as special cases of Theorem 3. At the same time, the TC formulation has also
led to simpler proofs, which mostly rely on known results for the TC performance
criterion [BS78, Chapters 8,9].

The case of the unbounded time horizon problem has received some attention
already in [SL10, Section 3.3] and [AAP+06, Section V]. There it was suggested
to use the convergence of the bounded-horizon values to the unbounded-horizon
one, which led to considering the fixpoint equations. Although we have shown in
Theorem 3 that fixpoint equations are indeed valid, they can not be obtained using
limiting arguments as the latter may fail as shown in Example 1. An alternative
approach via a hitting time formulation (3.6) has been proposed in [CCL11], and
the fixpoint equation for the maximal constrained reachability has been obtained
in [CCL11, Theorem 2.10 (i)]. However, one of the assumptions of this theorem
required the first hitting time of the complement of the safe set (call it τSc ) to
be almost surely finite for any Markov policy. As a result, in the case of uncon-
strained reachability this result requires to be properly adapted. Finally, [KSL13,
Theorem 2] has shown the convergence of the maximal bounded-horizon uncon-
strained reachability to the unbounded-horizon one, and has showed that the latter
satisfies the fixpoint equation. In contrast to the aforementioned contributions, The-
orem 3 does not pose any limitations and establishes fixpoint equations for both the
maximization and the minimization problems in generality, without for example re-
quiring any continuity assumptions that are often imposed otherwise (cf. [KSL13,
Assumption 1] or [CCL11, Assumption 2.9]). In addition, Proposition 4 provides a
complete characterization of the convergence of bounded-horizon problems to the
unbounded-horizon ones, and is further supported by Example 1.

The approximation of the unbounded-horizon reachability problem with bounded-
horizon counterparts is an extension to the controlled case of the result in [TA14].
This extension requires no additional assumptions and (weak) continuity of the ker-
nel T is sufficient to establish important results such as Theorems 5 and 6. At the
same time, in the proofs we have extensively used continuity assumption, and so
the equivalence in Theorem 5 may fail to hold without such assumptions – see e.g.
[TA14, Appendix]. In particular, we acknowledge that [TMKA13, Proposition 2]
is not correct: although uniqueness of fixpoint indeed yields trivial constant solu-
tions for the maximal and minimal unconstrained reachability in the general case,
without continuity assumptions it may happen that the solution is trivial but yet
there are multiple fixpoints. In emphasizing the role of absorbing sets, it is crucial
to use the connection between m(S) and the contractivity of powers of the opera-
tors SR∗ and SR∗ in Theorem 4. In particular, as a special case we obtain [KSL13,
Proposition 1], which has obtained conditions for the contractivity in the special
case m(S) = 1. The characterization of the absorbing sets, as well as finding an
appropriate µ-excessive function, is an interesting and important problem. For ex-
ample, there seems to be a connection between weakly absorbing sets (such as S∞)
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and maximal controlled invariant sets in non-stochastic systems [RMT13]. Another
related concept is that of the maximal end component (MEC) [BK08, Section 10.6],
which is used to solve both the reachability and repeated reachability problems in
the case of finite-state cdt-MP. Such techniques are extremely powerful and allow
for the full solution of those problems, but unfortunately the discrete structure of
the finite state and control spaces is crucial, and most of the nice properties MEC
has are lost in the more general case of uncountable state spaces.

An alternative approach to the computation of the unbounded-horizon maxi-
mal reachability is in [KSL13, Proposition 3], where it is proposed to recast the
original fixpoint equation as a linear constrained optimization over the infinite-
dimensional space bU (X ), and to apply numerical methods for its solution. How-
ever, the uniqueness of the solution of this problem has not been addressed yet.
Other possible alternatives are the theory of Poisson’s equations [HLL99, Chapter
7] and the theory of transient cdt-MP [HLL99, Section 9.6], both of which should
be applied over the truncated operator ST

∗. Another interesting way to approach
this problem is to impose the ψ-irreducibility on the model and to tailor the re-
sults in [FS02, Chapter 10] developed for the AC performance criterion. All those
extensions, however, are out of the scope of the present contribution.

4. Repeated reachability

4.1. Repeated reachability: characterization

It follows from Theorem 1 that model-checking a cdt-MP against any property
expressed as a DRA can be reduced to solving the Rabin-like conditions �♦F ′ ∧
(¬�♦F ′′) over the composition of the cdt-MP with the underlying transition sys-
tem of the DRA. This result applies in particular to allω-regular languages and LTL
formulae. Unfortunately, we cannot provide a theory that is as comprehensive as
for the reachability case (namely, for DFA or safe LTL specifications), as it has been
presented in Section 3, and only focus on some partial results. In particular, we
focus only on the case of the Büchi acceptance condition �♦F , which is also easier
to characterize by means of its dual property ♦�S, known as persistence. As men-
tioned in Section 2.7, we show how results developed in the setting of gambling
theory apply to the cdt-MP case discussed here. Neither the repeated reachability
problem nor its dual admit useful bounded-horizon counterparts, so below we omit
the symbol∞ in ♦ and �.

Given a cdt-MP D = (X , U ,K,T), let S ∈ B(X ) be the set of goal states. A
gambling analogue of D is given by G= (X , Γ ), where the gambling house defined
by

Γ := projX×P (X ) (Gr(T)∩ (K×P (X )))

is an analytical subset of X × P (X ) [BS78, Section 7.6]. It further follows from
the equivalence between the cdt-MP and gambling models [Bla76], that we can
now invoke results in [MPS91, MS96b] to characterize the value of the repeated
reachability problem. In accordance with the mentioned work we call a function
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f ∈ bU (X ) excessive20 if T∗ f ≤ f , deficient if (− f ) is excessive, and invariant if its
both deficient and excessive. Clearly, invariant functions are precisely the fixpoints
of the operator T∗.

The next result provides a characterization of the maximal persistence probabil-
ity M∗(·;♦�S) and emphasizes its connection with the maximal safety probability
M∗(·;�S).

Theorem 7. For any set S ∈B(X ) it holds that M∗(·;♦�S) ∈ bA ∗(X ). It is also an
invariant function, and for any excessive function f ∈ bA (X ) satisfying the inequality
f (·) ≥ T∗ [M∗(·;�S)] it holds that f (·) ≥ M∗(·;♦�S). Moreover, the following DP-
like recursions hold true:

M∗(x;♦�S) = lim
n→∞

(T∗)nM∗(x;�S), (4.1)

where the limit is non-increasing point-wise, for all x ∈ X .

Proof. The result follows immediately from the equivalence of the cdt-MP and the
gambling models [TA13], where in the latter setting the statement of the theorem
is implied by [MPS91, Theorem 1.2] and [MS96b, Theorem 4.5, Corollary 5.5].

Note that Theorem 7 connects the maximal safety probability M∗(·;�S) and the
maximal persistence probability M∗(·;♦�S). As a result, we can use results on the
former function obtained in Section 3 to derive properties of the latter one.

Proposition 7. For any S ∈B(X ): M∗(·;�S) = 0 if and only if M∗(·;♦�S) = 0.

Proof. Note that (4.1) immediately implies that M∗(·;�S) = 0 is sufficient to claim
that M∗(·;♦�S) = 0. On the other hand, since M∗(·;♦�S) ≥M∗(·;�S), thanks to
Theorem 7 we obtain the converse implication.

4.2. Repeated reachability: computation

Although the recursions in (4.1) already suggest a possible computational proce-
dure for characterising the value of the maximal probability of persistenceM∗(·;♦�S),
the scheme requires an infinite number of iterations that are initialized at the maxi-
mal safety probability M∗(·;�S), which in turn has to be computed in advance. For
the latter quantity we have already discussed non-trivial issues in Section 3: as such,
the result of Theorem 7, resorting to finite-horizon approximate computations, is
not in general practically applicable. As an alternative, we propose tailoring the
technique developed in Theorem 6 to the problem at hand.

Theorem 8. Let Assumption 1 hold true and further assume stationary policies are
sufficient, that is for all x ∈ X assume that

M∗ (x;♦�S) = sup
π∈ΠS

Mπ (x;♦�S) .

20 Note that excessive functions are similar to locally uniformly excessive ones, as in Definition 8.

42



Suppose that g is a locally π′0-excessive function on S for some stationary policy π′ ∈
ΠS . Let E ∈B(X ) be any open set such that infx∈E M

∗(x;♦�S) = 0, E∩{g ≤ 1}= ;,
Ec is a compact set, and (Ec)∞ = S∞. Then for all x ∈ X and ε ∈ (0, 1] it holds that

|M∗ (x;♦�S)−M∗ (x; AεUBε)| ≤max
�

ε, sup
x∈E

M∗(x;♦�S)
�

, (4.2)

where Bε := {g ≤ ε} and Aε = (Bε ∪ E)c .

Proof. For any fixed stationary policy we are in the setting of [TA12, Theorem 5],
so we are only left with applying Lemma 10.

Note that provided the requirements of Theorem 8 are met, it is possible to
evaluate M∗ (x;♦�S) with precise error bounds. Indeed, in such case the set Aε is
compact and simple, hence by Theorem 5 we obtain that m(Aε)<∞ and thus the
maximal constrained reachability probability M∗ (x; AεUBε) can be approximated
by the bounded-horizon probabilities. Moreover, the set E here has to be understood
as a set where the probability of interest M∗ (x;♦�S) is very small, so if one is able
to tune E, then the right-hand side in (4.2) can match any given precision. Clearly,
the assumptions in Theorem 8 are rather restrictive, and apply only to systems for
which the set S serves as a sort of dynamical attractor.

4.3. Comments on the repeated reachability problem

We have mentioned that the characterization in Theorem 7 is taken from the lit-
erature on gambling: indeed we have not been able to find similar results obtained
for the cdt-MP framework. It is interesting to see that the function M∗ (x;♦�S)
satisfies a fixpoint equation, similarly to the uncontrolled case [TA12]. The con-
nection between the solution of this problem and the value of the maximal safety
probability M∗ (x;�S) appears to be useful in characterizing simple instances, as
we have encountered in Proposition 7.

There is range of literature in gambling on utilities with the form J := limsupn→∞ c(xn)
and J := lim infn→∞ c(xn), which turn out to be repeated reachability specifica-
tions in the case the cost is an indicator function, namely c(x) = 1S(x). For the
lim sup criterion, conditions on sufficiency of stationary policies have been obtained
in [Sud69] and [Hil79], while for the lim inf case in [Sud83]. A number of results
valid for these criteria are summarized in [MS96a, Section 4], in particular [MS96a,
Theorem 9.1, Chapter 4] provides a procedure to find M∗ (x;�S) using the transfi-
nite induction algorithm over all countable ordinals, rather than a simple recursion
like in (4.1). Although this book only focuses on the case when the state space
is countable, some of those results seem to allow for extensions to general Borel
state spaces – more research is needed towards this goal. Unfortunately however,
they do not seem to lead to practical computational procedures. To the best of our
knowledge the result of Theorem 8 is novel, and is an extension of a version for
uncontrolled processes in [TA12], where the focus was on studying the stability
properties of the absorbing sets. Alternatively, it may be worth invoking some re-
sults obtained for recurrence [MT93]: however, such results are only strong when
obtained under assumption of ψ-irreducibility of the transition kernel T [FS02,
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Chapter 10], which are often restrictive and lead to results that are rarely compu-
tational. The AC criterion also seems to be related to the lim sup and lim inf criteria
in general, and to the repeated reachability property in particular, however much
more research is needed to formally clarify the precise relationship.

To summarize, on the one hand there are many results in gambling related to
the repeated reachability problem, however they do not seem to lead to practically
useful computational methods. On the other hand, in the cdt-MP setting such
criteria have not received much attention, and although some related methods for
other criteria [FS02]may be useful, such relationship is by no means direct or clear.
The current contribution only makes an initial step towards numerical procedures
for repeated reachability properties over cdt-MP, and much more research on the
topic is needed.

5. Case study

In this section the theory developed above is applied to the example presented
in Section 2.2, dealing with the control of a power network model. The parameters
are chosen as follows: the upper bound for the energy is M = 2 and the reserve
rate is c = 0.93. The consumption of the power plant is assumed to be deterministic
with a fixed p = 0.7, and the minimal load is fixed to be vmin = 0.8. The renewable
generators are assumed to produce power, the value of which follows a truncated
Gaussian distribution with parameters µ = 0.1,σ = 0.03 for the first subnetwork,
and µ = 0.05,σ = 0.01 for the second one, both with support over the interval
[0,2]. Similarly, the energy demand follows the same type of distribution, with
parameters µ = 0.2,σ = 0.05 for the first subnetwork, and µ = 0.4,σ = 0.07
for the second one. As a result of this choice of parameters, in practice in the
first subnetwork there is less power demand and the renewable generation is more
substantial. It is thus expected that the share of the nuclear power plant energy
will be higher for the second network: below this intuition is compared with the
outputs of the numerical computations.

Let us first resort to the qualitative analysis of the two tasks formulated as au-
tomata specifications on Figures 2 and 3. We start by noticing that the cdt-MP we
are dealing with is continuous as per Definition 1, so that in particular Theorem 5
can be applied.

With focus on the safety problem (first specification), let the safe set be the
square S = [0.2, 1.5]2 ⊂ [0, M]2. Clearly, this set is simple in the sense of Definition
7, thus by Theorem 5 the maximal safety probability over the infinite time horizon
is equal to 0 over this set. As a consequence, let us now consider a finite horizon
n= 100 to perform the corresponding computations. The value function is depicted
on Figure 5: one can see that even over a relatively long horizon of 100 steps, the
safety probability remains equal to 1 over most of the safety set S. Even though the
iterations for the safety value function eventually converge to 0 for the infinite time
horizon problem, such a convergence is clearly slow. Regarding the optimal policy,
we have selected the one at step n/2 = 50 as a representative, of which one can
see on Figure 6 its u1-component, namely the fraction of the nuclear plant energy
used for the first subnetwork. In particular, whenever the energy level in the first
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subnetwork is low the one in the second high, namely u1 = 1, which confirms the
intuition that in such a situation all the nuclear power has to be used to maintain the
first subnetwork. Conversely, u1 = 0 meaning u2 = 1 over the set where the energy
level is high in the first subnetwork and low in the second. In addition, the set
{u1 = 0} is larger than {u1 = 1} confirming our intuition that the second network
is more fragile (it can rely less on renewable production) and thus requires more
energy from the nuclear plant. Finally, Figure 7 which presents the v-component
of the policy (total nuclear energy production), and provides a justification for the
intuitive idea that for low (high) energy levels v is necessarily high (low).

For the reach-avoid task expressed as the DFA on Figure 3 we can provide a
similar analysis. Here we choose the safe set to be S := [0.2, 2]2 and the goal sets
G1 := (1.8, 2] × [0.2, 1.8], G2 := [0.2,1.8] × (1.8, 2], and finally G := (1.8,2]2.
Again, due to simplicity of set S we obtain that the finite-horizon computations
converge exponentially fast to the infinite-horizon value by Theorems 1 and 4. In
view of this, as in the case of safety we compute the value function for the finite
horizon n = 100. The value function on Figure 8 has some intuitive properties: it
is equal to 1 on the goal set G, it is equal to 0 over the unsafe set, and is positive
elsewhere. The optimal choice of the v-component of the policy is always v = 1,
as the goal is to maximize the energy level in the two subnetworks: due to this
reason, we do not present the trivial plots for the component v. The behaviour
of the u1-component is instead more interesting: we present it at the time step
n/2 = 50 on Figure 9. One can see that over the safe set, when the energy level
in the first subnetwork is high and in the second is low (close to the set G1), the
controller increases the energy level in the first subnetwork (u1 ≈ 1). At the same
time, after reaching the set G1 the controller pursues the new goal of maximizing the
energy level in the second subnetwork and thus keeps u2 ∈ [0,0.3]. Symmetrically,
a converse situation holds close to and over the set G2. Note that on Figure 9 the
value of −1 for the policy represents the points where the value does not depend
on the control action chosen, which is the case over the goal and the unsafe set.

6. Conclusions

This paper has considered an optimal control synthesis problem, where the
probability of a given event is either maximized or minimized over a controlled
discrete-time Markov process (cdt-MP) model. Using methods from formal lan-
guages and automata theory we have proposed a characterization of the events of
interest using formulae in linear temporal modal logic (LTL) or derived from de-
terministic automata. We have extended results known for finite-state cdt-MP to
general state-space models, and have shown that the original optimal control prob-
lems can be reduced to either of two fundamental ones: reachability or repeated
reachability. For the former problem, we have provided a full characterization of the
dynamic programming (DP) algorithm, and developed a theory of approximation
for the unbounded-time problem using computable bounded-horizon counterparts.
More restrictive results have been attained for the repeated reachability problem:
we have provided a partial characterization od this specification, and proposed a
computational technique that can be useful for a class of stable models. We have
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further discussed some issues related to the repeated reachability problem: provid-
ing a complete answer to them is a promising direction for future research.
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Appendix A.

A.1. Background and notations
A sufficient mathematical background for this paper is encompassed by the fol-

lowing sources: measure theory [Fol99, Chapters 1-3], topology21 [Fol99, Chapter
4], and basic probability theory [Fol99, Chapter 10]. Below we summarize facts
about Borel spaces that are extensively used in the manuscript: most of those we
need are covered together with proofs in [BS78, Chapter 7], whereas a more de-
tailed exposition is given in [Par67] and [Sri98].

Given an arbitrary set X we denote by 2X its powerset, that is the collection of
all subsets of X . A complement of A⊆ X is denoted by Ac = X \ A. A class F ⊆ 2X

is called an algebra if it contains the empty set and is closed under finite unions
and taking the complement. An algebra F is called a σ-algebra if in addition it is
closed under countable unions. For any class of sets C ⊆ 2X we denote by σ(C )
the smallest σ-algebra that contains C ; in that case we say that σ(C ) is generated
by C . In particular, if X is given a topology thenB(X ) denotes the Borel σ-algebra
of X : the one generated by the class of all open subsets of X . Elements ofB(X ) are
sometimes referred to as Borel sets. Any topological space by default is assumed to
be endowed with its Borelσ-algebra. A topological space X is said to be a (standard)
Borel space if it is homeomorphic to a Borel subset of a complete separable metric
space. As an example, the set of real numbers R here is always assumed to be
endowed with a usual Euclidian topology, so that R is a Borel space; all subsets of
R are assumed to be given their inherited subset topologies. As another example,
any countable (finite or infinite) set is assumed to be endowed with the discrete
topology, which makes it a Borel space.

The set of natural numbers is denoted by N, and we further write N0 := N∪{0}
and N̄0 := N0 ∪ {∞}. When dealing with∞ we adopt the following convention:
∞ + 1 = ∞. For any set X we may use the notation Xω instead of XN0 . If Y
is any other set, we further use the following shorthand notation: Xω ‖ Yω :=
(X × Y )ω. Moreover, if D ⊆ Yω we further denote X ‖ D := proj−1

Yω(D) where
projYω : Xω ‖ Yω → Yω is an obvious projection map. The latter notation also
extends to maps: if Z is some other set and f : Z → Xω, g : Z → Yω are some
maps, then h := f ‖ g : Z → Xω ‖ Yω is the unique map such that projXω ◦ h = f
and such that projYω ◦ h = g. For any set X the identity map on X is given by
idX (x) = x for all x ∈ X . For f : X → Y its graph is denoted by

Gr( f ) := {(x , f (x)) : x ∈ X } ⊆ X × Y.

All Cartesian products of topological spaces are assumed to be endowed with
the corresponding product topologies. In particular, if (Xk)k∈N is a collection of
Borel spaces, and I ⊆ N then B(

∏

k∈I Xk) =
⊗

k∈IB(Xk), i.e. a Borel σ-algebra
of a countable product of Borel spaces coincides with the product of their Borel
σ-algebras.

21 For the readers with a background in computer science [PP04, Section 2, Chapter III] may serve as
an alternative reference for the introduction to topology.
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Given two measurable spaces (X ,X ) and (Y,Y ) the map f : X → Y is said to be
measurable if f −1(Y ) ⊆X ; in that case we write f ∈ X /Y . If (Y,Y ) = (R,B(R))
we simplify the notation and write f ∈ X rather than f ∈ X /B(R). If F is any
class of functions f : X → R we use bF to denote a subclass of bounded functions
in F . The class of all bounded functions bRX is assumed to be given a sup-metric
ρ( f , g) := supx∈X | f (x)− g(x)| which is inherited to all its subclasses. For any two
functions f , g ∈ RX we write { f ≤ g} := {x ∈ X : f (x) ≤ g(x)} and similarly
for { f ≥ g} and { f = g}. We further write f ≤ g if and only if { f ≤ g} = X .
An important example of functions is given by an indicator function, which for any
A⊆ X is given by

1A(x) :=

¨

1, if x ∈ A,

0, if x /∈ A.

For any Borel space X the collection of all probability measures on (X ,B(X )) is
denoted by P (X ). We always assume the latter to be endowed with a topology of
weak convergence, which makesP (X ) a Borel space as well and thus it can be given
the Borel σ-algebra B(P (X )). Given any A ∈ B(X ) we define an evaluation map
eA :P (X )→ [0, 1] as eA(p) := p(A) for any p ∈ P (X ). It appears thatB(P (X )) is
the smallest σ-algebra with respect to which all evaluation maps are measurable.
Given a probability measure p ∈ P (X ) we denote the p-completion of B(X ) by
Bp(X ) [BS78]. The universal σ-algebra of a Borel space X is defined as U (X ) :=
⋂

p∈P (X )Bp(X ). For any p ∈ P (X ) and f ∈ bU (X ) we can define the Lebesgue

integral
∫

X f dp which we also write simply as p[ f ]. If Y is another Borel space,
and g ∈ U (X )/B(Y )-measurable (i.e. pre-image of every Y -Borel set is universally
measurable in X ), then any probability measure p ∈ P (X ) is pushed by g to g∗p ∈
P (Y ) where the pushforward of the measure is defined by (g∗p)(A) = p(g−1(A))
for any A∈B(Y ).

For any two sets X and Y the natural projection from their product onto X is
denoted by projX : X × Y → X viz. projX (x , y) = x for any x ∈ X and y ∈ Y .
Furthermore, for any D ⊆ X × Y the x-section of D is defined by

Dx := {y ∈ Y : (x , y ∈ D)}

for any x ∈ X . If X is a Borel space, a set A⊆ X is said to be analytic if there exists
B ∈ B(X ×R) such that A= projX (B). The collection of all analytic subsets of X is
denoted by S (X ). Although it contains the empty set and is closed under countable
unions and intersections, it is not closed under taking the complement, so it is not
a σ-algebra. The analytical σ-algebra of X is denoted by A (X ) := σ(S (X )). It
further follows for any Borel space X that

B(X ) ⊆ S (X ) ⊆A (X ) ⊆U (X ).

Given two Borel spaces X and Y we say that a map f : X → Y is Borel (analyt-
ically, universally) measurable if f ∈ B(X )/B(Y ) (if f ∈ A (X )/B(Y ), if f ∈
U (X )/B(Y )). By a stochastic kernel we mean any map of the form P : X →P (Y ).
For any such kernel we write P(A|x) for any x ∈ X and A ∈ B(Y ) instead of
a more cumbersome version P(x)(A). Moreover, we write P ∈ U (Y |X ) instead
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of P ∈ U (X )/B(P (Y )) and similarly for A (Y |X ) and B(Y |X ). It follows that
P ∈ B(Y |X ) (A (Y |X ), U (Y |X )) if and only if P(A|·) is a Borel (analytically, uni-
versally) measurable function for any A ∈ B(Y ) [Kal97, Lemma 1.37]. The Dirac
probability measure at x ∈ X is denoted by δx . Furthermore, for any map f : X → Y
we assign the correspondent kernel δ f such that δ f (x) := δ{ f (x)}. It follows from
[CS13] that f is Borel (analytically, universally) measurable as a map if and only if
δ f is as a kernel.

A function f : X → R is said to be lower semi-analytic if { f < c} ∈ S (X ) for any
c ∈ R, and upper semi-analytic if − f is lower semi-analytic. The collection of all
lower (upper) semi-analytic functions is denoted by A∗(X ) (A ∗(X )). A function
f : X → R is said to be lower semi-continuous if { f ≤ c} is closed in X for any
c ∈ R, and upper semi-continuous if − f is lower semi-continuous. The collection
of all lower (upper) semi-continuous functions is denoted by C∗(X ) (C ∗(X )). The
following hierarchy holds for the function classes:

C ∗(X ), C∗(X ) ⊆B(X ) ⊆A ∗(X ), A∗(X ) ⊆A (X ) ⊆U (X ).

A kernel P ∈ B(Y |X ) is called continuous if P : X → P (Y ) is a continuous map.
Alternatively, the continuity of the kernel can be characterized as follows: a kernel
P ∈B(Y |X ) is continuous if and only if

∫

Y f dP ∈ bC ∗(X ) for any f ∈ bC ∗(Y ).
If (X ,ρX ) and (Y,ρY ) are metric space, a map f : X → Y is called a contraction

if there exists a constant β ∈ [0, 1) such that ρY ( f (x ′), f (x ′′)) ≤ β ·ρX (x ′, x ′′) for
all points x ′, x ′′ ∈ X . The constant β is also called a modulus of a contraction f .

A.2. Auxiliary results
Lemma 9. Let Y , Y ′ be arbitrary sets and let g : Y → R and g ′ : Y ′ → R be some
functions. Suppose that there exist maps a : Y → Y ′ and a′ : Y ′→ Y such that

g(y) = g ′(a(y)), g ′(y ′) = g(a′(y ′)), ∀y ∈ Y, y ′ ∈ Y ′

Then: infy∈Y g(y) = infy ′∈Y ′ g ′(y ′) and supy∈Y g(y) = supy ′∈Y ′ g ′(y ′).

Proof. The following sequences of inequalities

inf
y∈Y

g(y) = inf
y∈Y

g ′(a(y))≥ inf
y ′∈Y ′

g ′(y ′) = inf
y ′∈Y ′

g(a′(y ′))≥ inf
y∈Y

g(y)

sup
y∈Y

g(y) = sup
y∈Y

g ′(a(y))≤ sup
y ′∈Y ′

g ′(y ′) = sup
y ′∈Y ′

g(a′(y ′))≤ sup
y∈Y

g(y)

yield the desired result.

The next lemma shows that point-wise bounds also hold for the optimal values.

Lemma 10. Let Y be an arbitrary set and consider any two function f , g : Y → R. If
| f (y)− g(y)| ≤ ε for all y ∈ Y then | supy∈Y f (y)− supy∈Y g(y)| ≤ ε.

Proof. The proof is given in [HL89, Appendix A.3].

Lemma 11. If Y is a Borel space, the set S is closed in Y and the function f ∈ bC ∗(X )
is such that f ≥ 0, then it holds that 1S · f ∈ bC ∗(X ).

Proof. Notice that for any c ≤ 0 it holds that {1S · f ≥ c}= X , whereas for c > 0 we
obtain {1S · f ≥ c}= S ∩ { f ≥ c} which is a closed set as well.
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(a) Safety value function plotted in 3d
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(b) Safety value function plotted in 2d

Figure 5: Safety value function over a finite time horizon of 100 steps.
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(a) Optimal safety policy, component u plotted in 3d
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Figure 6: Optimal safety policy, component u at time step 50.
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(a) Optimal safety policy, component v plotted in 3d
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(b) Optimal safety policy, component v plotted in 2d

Figure 7: Optimal safety policy, component v at time step 50.
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(a) DFA value function plotted in 3d
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(b) DFA value function plotted in 2d

Figure 8: DFA value function over a finite time horizon of 100 steps.
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(a) Optimal DFA policy, component u plotted in 3d
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Figure 9: Optimal DFA policy, component u at time step 50.
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