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Abstract

Stochastic switched systems are a relevant class of stochastic hybrid systems with probabilistic evolution over a continuous domain
and control-dependent discrete dynamics over a finite set of modes. In the past few years several different techniques have been
developed to assist in the stability analysis of stochastic switched systems. However, more complex and challenging objectives
related to the verification of and the controller synthesis for logic specifications have not been formally investigated for this class
of systems as of yet. With logic specifications we mean properties expressed as formulae in linear temporal logic or as automata
on infinite strings. This paper addresses these complex objectives by constructively deriving approximately equivalent (bisimilar)
symbolic models of stochastic switched systems. More precisely, this paper provides two different symbolic abstraction techniques:
one requires state space discretization, but the other one does not require any space discretization which can be potentially more
efficient than the first one when dealing with higher dimensional stochastic switched systems. Both techniques provide finite
symbolic models that are approximately bisimilar to stochastic switched systems under some stability assumptions on the concrete
model. This allows formally synthesizing controllers (switching signals) that are valid for the concrete system over the finite
symbolic model, by means of mature automata-theoretic techniques in the literature. The effectiveness of the results are illustrated
by synthesizing switching signals enforcing logic specifications for two case studies including temperature control of a six-room
building.
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1. Introduction

Stochastic hybrid systems are dynamical systems comprising
continuous and discrete dynamics interleaved with probabilistic
noise and stochastic events [7]. Because of their versatility and
generality, methods for analysis and design of stochastic hybrid
systems carry great promise in many safety critical applications
[7]. Examples of such applications include power networks, au-
tomotive, finance, air traffic control, biology, telecommunica-
tions, and embedded systems. Stochastic switched systems are
a relevant subclass of stochastic hybrid systems. They consist
of a finite (discrete) set of modes of operation, each of which is
associated to continuous probabilistic dynamics; further, their
discrete dynamics, in the form of mode changes, are governed
by a non-probabilistic control (switching) signal.

It is known [17] that switched systems can be endowed with
global behaviors that are not characteristic of the behavior of
any of their modes: for instance, global instability may arise
by proper choice over time of the discrete switches between
a set of stable modes. This is but one of the many features
that makes switched systems theoretically interesting. With fo-
cus on stochastic switched systems, despite recent progresses
on basic dynamical analysis focused on stability properties [9],
there are no notable results in the literature targeting more com-
plex objectives, such as those dealing with verification or (con-
troller) synthesis for logical specifications. Examples of those
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specifications include linear temporal logic or automata on in-
finite strings, and as such they are not amenable to classical
approaches for stochastic processes.

A promising direction to investigate these general properties
is the use of symbolic models. Symbolic models are abstract
descriptions of the original dynamics, where each abstract state
(or symbol) corresponds to an aggregate of states in the con-
crete system. When a finite symbolic model is obtained and is
formally put in relationship with the original system, one can
leverage automata-theoretic techniques for controller synthe-
sis over the finite model [19] to automatically synthesize con-
trollers for the original system. Towards this goal, a relevant ap-
proach is the construction of finite-state symbolic models that
are bisimilar to the original system. Unfortunately, the class
of continuous (-time and -space) dynamical systems admitting
exactly bisimilar finite-state symbolic models is quite restric-
tive [4, 16] and in particular it covers mostly non-probabilistic
models. The results in [8] provide a notion of exact stochastic
bisimulation for a class of stochastic hybrid systems, however,
[8] does not provide any abstraction algorithm, nor does it look
at the synthesis problem. Therefore, rather than requiring exact
bisimilarity, one can resort to approximate bisimulation rela-
tions [11], which introduce a metric between the trajectories of
the abstract and the concrete models, and require boundedness
in time of this distance.

The construction of approximately bisimilar symbolic mod-
els has been extensively studied for non-probabilistic control
systems, possibly affected by disturbances [18, 22, 23] and ref-
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erences therein, as well as for non-probabilistic switched sys-
tems [12]. However, stochastic systems, particularly when en-
dowed with hybrid dynamics, have only been scarcely explored.
With focus on these models, a few existing results deal with ab-
stractions of discrete-time stochastic processes [2, 3, 6]. Results
for continuous-time models cover probabilistic rectangular hy-
brid automata [24] and stochastic dynamical systems under
some contractivity assumptions [1]. Further, the results in [14]
only check the relationship between an uncountable abstraction
and a given class of stochastic hybrid systems via the notion
of stochastic (bi)simulation function. However, these results do
not provide any construction of approximations, nor do they
deal with finite abstractions, and moreover appear to be compu-
tationally tractable only in the case where no input is present.
The recent results in [28] and [27] investigate the construction
of finite bisimilar abstractions for continuous-time stochastic
control systems, without any hybrid dynamics, and randomly
switched stochastic systems, respectively, such that the discrete
dynamics in the latter systems are governed by a random un-
controlled signal. Finally, the recently proposed techniques in
[29] improve the ones in [28] by not requiring state-space dis-
cretization but only input set discretization. In summary, to
the best of our knowledge there is no comprehensive work on
the automatic construction of finite bisimilar abstractions for
continuous-time stochastic switched systems in which the dis-
crete dynamics are governed by a non-probabilistic control sig-
nal.

The main contributions of this work consist in showing
the existence and the construction of approximately bisimilar
symbolic models for incrementally stable stochastic switched
systems using two different techniques: one requires state
space discretization and the other one does not require any
space discretization. Note that all the techniques provided in
[18, 22, 23, 12, 2, 3, 6, 24, 1, 28, 27] are only based on the dis-
cretization of state sets. Therefore, they suffer severely from the
curse of dimensionality due to gridding those sets, which is es-
pecially irritating for models with high-dimensional state sets.
We also provide a simple criterion in which one can choose
between the two proposed approaches the most suitable one
(based on the size of the abstraction) for a given stochastic
switched system. Another advantage of the second proposed
approach here is that it allows one to construct symbolic mod-
els with probabilistic output values, resulting possibly in less
conservative symbolic abstractions in comparison with the first
proposed approach and the ones in [28, 27] allowing for non-
probabilistic output values only. Furthermore, the second pro-
posed approach here allows one to construct symbolic models
for any given precision ε and any given sampling time, but the
first proposed approach and the ones in [28, 27] may not be
applicable for a given sampling time.

Incremental stability is a property on which the main pro-
posed results of this paper rely. This type of stability requires
uniform asymptotic stability of every trajectory, rather than sta-
bility of an equilibrium point or a particular time-varying tra-
jectory. In this work, we show the description of incremen-
tal stability in terms of a so-called common Lyapunov function
or of multiple Lyapunov functions. The main results are illus-
trated by synthesizing controllers (switching signals) for two
examples. First, we consider a room temperature control prob-
lem (admitting a common Lyapunov function) for a six-room
building. We synthesize a switching signal regulating the tem-

perature toward a desired level which is not tractable using the
first proposed technique. The second example illustrates the use
of multiple Lyapunov functions (one per mode) using the first
proposed approach. A preliminary investigation on the con-
struction of bisimilar symbolic models for stochastic switched
systems using the first proposed approach (requiring state space
discretization) appeared in [26]. In this paper we present a de-
tailed and mature description of the results presented in [26],
including proofs, as well as proposing a second approach which
does not require any space discretization.

2. Stochastic Switched Systems

2.1. Notation

The symbols N, N0, Z, R, R+, and R+
0 denote the set of

natural, nonnegative integer, integer, real, positive, and non-
negative real numbers, respectively. The symbols In, 0n, and
0n×m denote the identity matrix, zero vector, and zero matrix
in Rn×n, Rn, and Rn×m, respectively. Given a set A, define
An+1 = A× An for any n ∈ N. Given a vector x ∈ Rn, we denote
by xi the i–th element of x, and by ‖x‖ the infinity norm of x,
namely, ‖x‖ = max{|x1|, |x2|, ..., |xn|}, where |xi| denotes the ab-
solute value of xi. Given a matrix P = {pi j} ∈ Rn×n, we denote
by Tr(P) =

∑n
i=1 pii the trace of P. The diagonal set ∆ ⊂ Rn×Rn

is defined as: ∆ = {(x, x) | x ∈ Rn}.
The closed ball centered at x ∈ Rn with radius ε is de-

fined by Bε(x) = {y ∈ Rn | ‖x − y‖ ≤ ε}. A set B ⊆ Rn is called
a box if B =

∏n
i=1[ci, di], where ci, di ∈ R with ci < di

for each i ∈ {1, . . . , n}. The span of a box B is defined as
span(B) = min {|di − ci| | i = 1, . . . , n}. By defining [Rn]η =
{a ∈ Rn | ai = kiη, ki ∈ Z, i = 1, . . . , n}, the set

⋃
p∈[Rn]η Bλ(p) is

a countable covering of Rn for any η ∈ R+ and λ ≥ η/2. For
a box B ⊆ Rn and η ≤ span(B), define the η-approximation
[B]η = [Rn]η ∩ B. Note that [B]η , ∅ for any η ≤ span(B).
Geometrically, for any η ∈ R+ with η ≤ span(B) and λ ≥ η,
the collection of sets {Bλ(p)}p∈[B]η is a finite covering of B,
i.e., B ⊆

⋃
p∈[B]η Bλ(p). We extend the notions of span and

of approximation to finite unions of boxes as follows. Let
A =

⋃M
j=1 A j, where each A j is a box. Define span(A) =

min {span(A j) | j = 1, . . . ,M}, and for any η ≤ span(A), define
[A]η =

⋃M
j=1[A j]η.

A continuous function γ : R+
0 → R+

0 , is said to belong to
class K if it is strictly increasing and γ(0) = 0; γ is said to
belong to class K∞ if γ ∈ K and γ(r) → ∞ as r → ∞.
A continuous function β : R+

0 × R
+
0 → R+

0 is said to belong
to class KL if, for each fixed s, the map β(r, s) belongs to
class K with respect to r and, for each fixed nonzero r, the
map β(r, s) is decreasing with respect to s and β(r, s) → 0
as s→ ∞. We identify a relation R ⊆ A × B with the map
R : A→ 2B defined by b ∈ R(a) iff (a, b) ∈ R. Given a re-
lation R ⊆ A × B, R−1 denotes the inverse relation defined by
R−1 = {(b, a) ∈ B × A : (a, b) ∈ R}.

2.2. Stochastic switched systems

Let (Ω,F ,P) be a probability space endowed with a fil-
tration F = (Ft)t≥0 satisfying the usual conditions of com-
pleteness and right-continuity [15, p. 48]. Let (Wt)t≥0 be a q̂-
dimensional F-adapted Brownian motion [21]. The class of
stochastic switched systems considered in this paper is formal-
ized as follows.
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Definition 2.1. A stochastic switched system Σ is a tuple Σ =

(Rn,P,P, F,G), where

• Rn is the state space;
• P = {1, . . . ,m} is a finite set of modes;
• P is a subset of the set of piecewise constant càdlàg (i.e.

right-continuous and with left limits) functions from R+
0

to P, and with a finite number of discontinuities on every
bounded interval in R+

0 (no Zeno behaviour);
• F = { f1, . . . , fm} is such that for any p ∈ P, fp : Rn → Rn

is globally Lipschitz continuous;

• G = {g1, . . . , gm} is such that for any p ∈ P, gp : Rn →

Rn×q̂ is globally Lipschitz continuous with Lipschitz con-
stant Zp ∈ R+

0 .

A continuous-time stochastic process ξ : Ω × R+
0 → Rn is

said to be a solution process of Σ if there exists a switching
signal υ ∈ P satisfying

d ξ = fυ(ξ) d t + gυ(ξ) d Wt, (2.1)

P-almost surely (P-a.s.), at each time t ∈ R+
0 whenever υ is

continuous. Let us emphasize that υ is a piecewise constant
function defined over R+

0 and taking values in P, which simply
dictates in which mode the solution process ξ is located, at any
time t ∈ R+

0 .
For any given p ∈ P, we denote by Σp the subsystem of Σ

defined by the stochastic differential equation (SDE)

d ξ = fp(ξ) d t + gp(ξ) d Wt, (2.2)

where fp is known as the drift and gp as the diffusion. Given
an initial condition which is a random variable, measurable in
F0, a solution process of Σp exists and is uniquely determined
owing to the assumptions on fp and on gp [21, Theorem 5.2.1,
p. 68].

We further write ξaυ(t) to denote the value of the solution pro-
cess of Σ at time t ∈ R+

0 under the switching signal υ from initial
condition ξaυ(0) = aP-a.s., in which a is a random variable that
is measurable in F0.

Finally, note that a solution process of Σp is also a solu-
tion process of Σ corresponding to the constant switching signal
υ(t) = p, for all t ∈ R+

0 . We also use ξap(t) to denote the value
of the solution process of Σp at time t ∈ R+

0 from the initial
condition ξap(0) = a P-a.s..

3. Notions of Incremental Stability

This section introduces some stability notions for stochastic
switched systems, which generalize the notions of incremen-
tal global asymptotic stability (δ-GAS) [5] for non-probabilistic
dynamical systems and of incremental global uniform asymp-
totic stability (δ-GUAS) [12] for non-probabilistic switched
systems. The main results presented in this work rely on the
stability assumptions discussed in this section.

Definition 3.1. The stochastic subsystem Σp is incrementally
globally asymptotically stable in the qth moment (δ-GAS-Mq),
where q ≥ 1, if there exists a KL function βp such that for any
t ∈ R+

0 and any Rn-valued random variables a and a′ that are
measurable in F0, the following condition is satisfied:

E
[∥∥∥ξap(t) − ξa′ p(t)

∥∥∥q]
≤ βp

(
E

[
‖a − a′‖q

]
, t
)
. (3.1)

It can be easily checked that a δ-GAS-Mq stochastic sub-
system Σp is δ-GAS [5] in the absence of any noise. Further,
note that when fp(0n) = 0n and gp(0n) = 0n×q̂ (drift and diffu-
sion terms vanish at the origin), then δ-GAS-Mq implies global
asymptotic stability in the qth moment (GAS-Mq) [9], which
means that all the trajectories of Σp converge in the qth moment
to the (constant) trajectory ξ0n p(t) = 0n (namely, the equilib-
rium point), for all t ∈ R+

0 . We extend the notion of δ-GAS-Mq
to stochastic switched systems as follows.

Definition 3.2. A stochastic switched system Σ is incrementally
globally uniformly asymptotically stable in the qth moment (δ-
GUAS-Mq), where q ≥ 1, if there exists a KL function β such
that for any t ∈ R+

0 , any Rn-valued random variables a and a′
that are measurable in F0, and any switching signal υ ∈ P, the
following condition is satisfied:

E
[
‖ξaυ(t) − ξa′υ(t)‖q

]
≤ β

(
E

[
‖a − a′‖q

]
, t
)
. (3.2)

Essentially, Definition 3.2 extends Definition 3.1 uniformly
over any possible switching signal υ ∈ P. As expected, this
notion generalizes known ones in the literature: it can be eas-
ily seen that a δ-GUAS-Mq stochastic switched system Σ is
δ-GUAS [12] in the absence of any noise and that, whenever
fp(0n) = 0n and gp(0n) = 0n×q̂ for all p ∈ P, then δ-GUAS-Mq
implies global uniform asymptotic stability in the qth moment
(GUAS-Mq) [9].

For non-probabilistic systems the δ-GAS property can be
characterized by δ-GAS Lyapunov functions [5]. Along these
lines, we describe δ-GAS-Mq in terms of the existence of some
incremental Lyapunov functions, defined as the following.

Definition 3.3. Consider a stochastic subsystem Σp and a con-
tinuous function Vp : Rn × Rn → R+

0 that is twice continuously
differentiable on {Rn × Rn}\∆. Function Vp is called a δ-GAS-
Mq Lyapunov function for Σp, where q ≥ 1, if there exist K∞
functions αp, αp and a constant κp ∈ R+, such that

(i) αp (resp. αp) is a convex (resp. concave) function;
(ii) for any x, x′ ∈ Rn,

αp
(
‖x − x′‖q

)
≤ Vp(x, x′) ≤ αp

(
‖x − x′‖q

)
;

(iii) for any x, x′ ∈ Rn, such that x , x′,

LVp(x, x′) :=
[
∂xVp ∂x′Vp

] [ fp(x)
fp(x′)

]
+

1
2

Tr
([

gp(x)
gp(x′)

] [
gT

p (x) gT
p (x′)

] [∂x,xVp ∂x,x′Vp

∂x′ ,xVp ∂x′ ,x′Vp

])
≤ −κpVp(x, x′).

The operator L is the infinitesimal generator associated to the
stochastic subsystem Σp, defined by the SDE in (2.2) [21, Sec-
tion 7.3]. The symbols ∂x and ∂x,x′ denote first- and second-
order partial derivatives with respect to x and x′, respectively.

The following theorem describes δ-GAS-Mq in terms of the
existence of a δ-GAS-Mq Lyapunov function.

Theorem 3.4. A stochastic subsystem Σp is δ-GAS-Mq if it ad-
mits a δ-GAS-Mq Lyapunov function.

PROOF. The proof is similar to the proof of Theorem 3.3 in
[28] and is omitted due to lack of space. One can easily show
that the function βp (r, s) := α−1

p

(
αp (r) e−κp s

)
satisfies condition

(3.1). 2

3



Let us now direct our attention from subsystems to the overall
switched model. As qualitatively stated in the introduction, it is
known that a non-probabilistic switched system, whose subsys-
tems are all δ-GAS, may exhibit some unstable behaviors under
fast switching signals [12] and, hence, may not be δ-GUAS. The
same phenomenon can happen for a stochastic switched system
endowed by δ-GAS-Mq subsystems. The δ-GUAS property of
non-probabilistic switched systems can be established by us-
ing a common Lyapunov function, or alternatively via multi-
ple Lyapunov functions that are mode-dependent [12]. This
leads to the following extensions for δ-GUAS-Mq property of
stochastic switched systems.

Assume that for any p ∈ P, the stochastic subsystem Σp ad-
mits a δ-GAS-Mq Lyapunov function Vp, satisfying conditions
(i)-(iii) in Definition 3.3 with K∞ functions αp, αp, and a con-
stant κp ∈ R+. Let us introduce the K∞ functions α and α and
the positive constant κ for use in the rest of the paper as the fol-
lowing: α = min

{
α1, . . . , αm

}
, α = max {α1, . . . , αm}, and κ =

min {κ1, . . . , κm}. We first show a result based on the existence
of a common Lyapunov function in which α = α1 = · · · = αm
and α = α1 = · · · = αm.

Theorem 3.5. Consider a stochastic switched system Σ. If
there exists a function V that is a common δ-GAS-Mq Lyapunov
function for all the subsystems {Σ1, . . . ,Σm}, then Σ is δ-GUAS-
Mq.

The proof of Theorem 3.5 is provided in the Appendix.
When a common δ-GAS-Mq Lyapunov function V fails to

exist, the δ-GUAS-Mq property of Σ can still be established
by resorting to multiple δ-GAS-Mq Lyapunov functions (one
per mode) over a restricted set of switching signals. More pre-
cisely, let Pτd be a subset of the set of switching signals υ with
dwell time τd ∈ R+

0 , where υ is said to have dwell time τd if the
switching times t1, t2, . . . (occurring at the discontinuity points
of υ) satisfy t1 > τd and ti − ti−1 ≥ τd, for all i ≥ 2. We now
show a stability result based on the existence of multiple Lya-
punov functions.

Theorem 3.6. Let τd ∈ R+
0 , and consider a stochastic switched

system Στd = (Rn,P,Pτd , F,G). Assume that for any p ∈ P,
there exists a δ-GAS-Mq Lyapunov function Vp for subsystem
Στd ,p and that in addition there exits a constant µ ≥ 1 such that

∀x, x′ ∈ Rn, ∀p, p′ ∈ P, Vp(x, x′) ≤ µVp′ (x, x′). (3.3)

If τd > log µ/κ, then Στd is δ-GUAS-Mq.

The proof of Theorem 3.6 is provided in the Appendix.
In order to show some of the main results of the paper in Sec-

tion 5, we need the following technical result, which provides
an upper bound on the distance (in the qth moment) between
the solution processes of Σp (resp. Στd ,p) and the correspond-
ing non-probabilistic subsystem Σp (resp. Στd ,p), obtained by
disregarding the diffusion term gp. From now on, we use the
notation ξxp to denote the trajectory of Σp (resp. Στd ,p) starting
from the initial condition x and satisfying the ordinary differen-
tial equation (ODE) ξ̇xp = fp

(
ξxp

)
.

Lemma 3.7. Consider a stochastic subsystem Σp (resp. Στd ,p)
such that fp(0n) = 0n and gp(0n) = 0n×q̂. Suppose q ≥ 2 and

there exists a δ-GAS-Mq Lyapunov function Vp for Σp (resp.
Στd ,p) such that its Hessian is a positive semidefinite matrix in
R2n×2n and ∂x,xVp(x, x′) ≤ Pp, ∀x, x′ ∈ Rn and some positive
semidefinite matrix Pp ∈ Rn×n. Then for any x ∈ Rn, we have
E

[∥∥∥ξxp(t) − ξxp(t)
∥∥∥q]
≤ hp

x (t), where

hp
x (t) =α−1

p

(
1
2

∥∥∥√
Pp

∥∥∥2
min{n, q̂}Z2

pe−κpt
∫ t

0

(
βp (‖x‖q , s)

) 2
q ds

)
,

Zp is the Lipschitz constant, introduced in Definition 2.1, and
βp is the KL function1 appearing in (3.1).

It can be readily seen that the nonnegative valued function hp
x

tends to zero as t → 0, t → +∞, or as Zp → 0 and is identically
zero if the diffusion term is identically zero (i.e. Zp = 0) which
is the case for Σp (resp. Στd ,p).

PROOF. The proof is similar to the proof of Lemma 3.7 in [28],
where one needs to eliminate all the terms γ(·) and is omitted
due to lack of space.

The interested readers are referred to the results in [28], pro-
viding a result in line with that of Lemma 3.7 for an (affine)
stochastic subsystem Σp (resp. Στd ,p) admitting a specific type
of δ-GAS-Mq Lyapunov functions. For later use, we introduce
function hx(t) = max

{
h1

x(t), . . . , hm
x (t)

}
for all t ∈ R+

0 .

4. Systems and Approximate Equivalence Notions

We employ the notion of system, introduced in [25], to pro-
vide (in Sec. 5) an alternative description of stochastic switched
systems that can be later directly related to their symbolic mod-
els.

Definition 4.1. A system S is a tuple S = (X, X0,U,−→,Y,H),
where X is a set of states (possibly infinite), X0 ⊆ X is a set
of initial states (possibly infinite), U is a set of inputs (possibly
infinite), −→⊆ X × U × X is a transition relation, Y is a set of
outputs, and H : X → Y is an output map.

We write x
u- x′ if (x, u, x′) ∈−→. If x

u- x′, we call
state x′ a u-successor, or simply a successor, of state x. For
technical reasons, we assume that for each x ∈ X, there is some
u-successor of x, for some u ∈ U – let us remark that this is
always the case for the considered systems later in this paper.

A system S is said to be

• metric, if the output set Y is equipped with a metric d :
Y × Y → R+

0 ;
• finite (or symbolic), if X and U are finite sets;
• deterministic, if for any state x ∈ X and any input u ∈ U,

there exists at most one u-successor.

For a system S = (X, X0,U,−→,Y,H), given any initial state
x0 ∈ X0, a finite state run generated from x0 is a finite sequence
of transitions:

x0
u0- x1

u1- x2
u2- · · ·

un−2- xn−1
un−1- xn, (4.1)

1Using a δ-GAS-Mq Lyapunov function Vp, one can always choose
βp(r, s) = α−1

p

(
αp (r) e−κp s

)
, as showed in Theorem 3.4.
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such that xi
ui- xi+1 for all 0 ≤ i < n. A finite state run can

be trivially extended to an infinite state run [25]. A finite output
run is a sequence {y0, y1, . . . , yn} such that there exists a finite
state run of the form (4.1) with yi = H(xi), for i = 1, . . . , n.
A finite output run can also be directly extended to an infinite
output run as well [25].

Now, we recall the notion of approximate (bi)simulation re-
lation, introduced in [11], which is useful when analyzing or
synthesizing controllers for deterministic systems.

Definition 4.2. Consider two metric systems
S a = (Xa, Xa0,Ua, a

- ,Ya,Ha) and S b =

(Xb, Xb0,Ub, b
- ,Yb,Hb) with the same output sets

Ya = Yb and metric d. For ε ∈ R+
0 , a relation R ⊆ Xa × Xb is

said to be an ε-approximate simulation relation from S a to S b

if for all (xa, xb) ∈ R the following two conditions are satisfied:

(i) d(Ha(xa),Hb(xb)) ≤ ε;

(ii) xa
ua

a
- x′a in S a implies the existence of xb

ub

b
- x′b in

S b satisfying (x′a, x
′
b) ∈ R.

A relation R ⊆ Xa × Xb is said to be an ε-approximate bisim-
ulation relation between S a and S b if R is an ε-approximate
simulation relation from S a to S b and R−1 is an ε-approximate
simulation relation from S b to S a.

System S a is ε-approximately simulated by S b, or S b ε-
approximately simulates S a, denoted by S a �

ε
S

S b, if there ex-
ists an ε-approximate simulation relation R from S a to S b such
that:

• ∀xa0 ∈ Xa0, ∃xb0 ∈ Xb0 with (xa0, xb0) ∈ R.

System S a is ε-approximately bisimilar to S b, denoted by
S a �

ε
S

S b, if there exists an ε-approximate bisimulation rela-
tion R between S a and S b such that:

• ∀xa0 ∈ Xa0, ∃xb0 ∈ Xb0 with (xa0, xb0) ∈ R;

• ∀xb0 ∈ Xb0, ∃xa0 ∈ Xa0 with (xa0, xb0) ∈ R.

5. Symbolic Models for Stochastic Switched Systems

The main results of this work are presented in this section.
We show that for any stochastic switched system Σ (resp. Στd ),
admitting a common (resp. multiple) δ-GAS-Mq Lyapunov
function(s), and for any precision level ε ∈ R+, one can con-
struct a finite system that is ε-approximately bisimilar to Σ
(resp. Στd ).

5.1. Describing stochastic switched systems as metric systems

In order to show the main results of the paper, we use sys-
tems as an abstract representation of stochastic switched sys-
tems, capturing all the information they contain at the sampling
times. More precisely, given a stochastic switched system Σ
and a sampling time τ, we define an associated metric system
S τ(Σ) = (Xτ, Xτ0,Uτ, τ

- ,Yτ,Hτ), where:

• Xτ is the set of all Rn-valued random variables defined on
the probability space (Ω,F ,P);

• Xτ0 ⊆ X0, where X0 is the set of all Rn-valued random
variables that are measurable over F0;

• Uτ = P;

• xτ
p

τ
- x′τ if xτ and x′τ are measurable, respectively, in

Fkτ and F(k+1)τ for some k ∈ N0, and there exists a solution
process ξ : Ω × R+

0 → Rn of Σ satisfying ξ(kτ) = xτ and
ξxτp(τ) = x′τ P-a.s.;

• Yτ = Xτ;
• Hτ(xτ) = xτ for any xτ ∈ Xτ.

We assume that the output set Yτ is equipped with the metric
d(y, y′) =

(
E

[
‖y − y′‖q

]) 1
q , for any y, y′ ∈ Yτ and some q ≥ 1.

Let us remark that the set of states of S τ(Σ) is uncountable and
that S τ(Σ) is a deterministic system in the sense of Definition
4.1, since (cf. Subsection 2.2) its solution process is uniquely
determined given an initial condition.

Note that a finite state run x0
p0

τ
- x1

p1

τ
- · · ·

pN−1

τ
- xN

of S τ(Σ), where pi−1 ∈ P and xi = ξxi−1 pi−1 (τ) P-a.s. for
i = 1, . . . ,N, captures the trajectory of the stochastic switched
system Σ at times t = 0, τ, . . . ,Nτ. This trajectory is started
from the initial condition x0 ∈ Xτ0 and resulting from a switch-
ing signal υ obtained by the concatenation of the modes pi−1(
i.e. υ(t) = pi−1 for any t ∈ [(i − 1)τ, i τ[

)
, for i = 1, . . . ,N.

Now we represent a stochastic switched system Στd with a
metric system where, without loss of generality, we assume
that τd is an integer multiple of τ, i.e. ∃N̂ ∈ N such that
τd = N̂τ. Given a stochastic switched system Στd and a sam-
pling time τ ∈ R+, we define the metric system S τ

(
Στd

)
=

(Xτ, Xτ0,Uτ, τ
- ,Yτ,Hτ), where:

• Xτ = X × P × {0, . . . , N̂ − 1}, where X is the set of all Rn-
valued random variables defined on the probability space
(Ω,F ,P);

• Xτ0 ⊆ X0 × P × {0, . . . , N̂ − 1}, where X0 is the set of all
Rn-valued random variables that are measurable over F0;

• Uτ = P;

• (xτ, p, i)
p

τ
- (

x′τ, p′, i′
)

if xτ and x′τ are measurable, re-
spectively, in Fkτ and F(k+1)τ for some k ∈ N0, and there
exists a solution process ξ : Ω × R+

0 → Rn of Στd satis-
fying ξ(kτ) = xτ and ξxτp(τ) = x′τ P-a.s. and one of the
following conditions hold:

– i < N̂ − 1, p′ = p, and i′ = i + 1: switching is
not allowed because the time elapsed since the latest
switch is strictly smaller than the dwell time;

– i = N̂ − 1, p′ = p, and i′ = N̂ − 1: switching is
allowed but no switch occurs;

– i = N̂ − 1, p′ , p, and i′ = 0: switching is allowed
and a switch occurs.

• Yτ = X;
• Hτ (xτ, p, i) = xτ for any (xτ, p, i) ∈ Xτ.

We assume that the output set Yτ is equipped with the metric
d(y, y′) = (E[‖y − y′‖q])

1
q , ∀y, y′ ∈ Yτ and for some q ≥ 1. One

can readily verify that the (in)finite output runs of S τ
(
Στd

)
are

the (in)finite output runs of S τ(Σ) corresponding to switching
signals with dwell time τd = N̂τ.
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In order to show the main results of this work, we assume
that for any δ-GAS-Mq Lyapunov functions Vp, there exists a
K∞ and concave function γ̂p such that

|Vp(x, y) − Vp(x, z)| ≤ γ̂p (‖y − z‖) , (5.1)

for any x, y, z ∈ Rn. This assumption is not restrictive at all,
provided the function Vp is limited to a compact subset of Rn ×
Rn. For all x, y, z ∈ D, where D is a compact subset of Rn, by
applying the mean value theorem to the function y → Vp(x, y),
one gets∣∣∣Vp(x, y) − Vp(x, z)

∣∣∣ ≤ γ̂p (‖y − z‖) , s.t. γ̂p(r) =

(
max

(x,y)∈D\∆

∥∥∥∥∥∥∂Vp(x, y)
∂y

∥∥∥∥∥∥
)

r.

For later use, let us define the K∞ function γ̂ such that γ̂ =
max

{̂
γ1, . . . , γ̂m

}
. (Note that, for the case of a common Lya-

punov function, we have: γ̂ = γ̂1 = · · · = γ̂m.) We proceed
presenting the main results of this work.

5.2. First approach

This subsection contains the first main results of the pa-
per which are based on the state space discretization. For
later use in this subsection, let us define the function hX(t) =
maxx∈X hx(t), for a set X ⊆ Rn.

5.2.1. Common Lyapunov function
We show the first result on finite abstractions based on the

existence of a common δ-GAS-Mq Lyapunov function for sub-
systems Σ1, . . . ,Σm. Consider a stochastic switched system Σ
and a pair q = (τ, η) of quantization parameters, where τ is the
sampling time and η is the state space quantization. Given Σ
and q, consider the following system:

S q(Σ) = (Xq, Xq0,Uq, q
- ,Yq,Hq), (5.2)

where Xq = [Rn]η, Xq0 = [Rn]η, Uq = P, Yq = Yτ, and

• xq
p

q
- x′q if there exists a x′q ∈ Xq such that∥∥∥∥ξxq p(τ) − x′q

∥∥∥∥ ≤ η;

• Hq(xq) = xq for any xq ∈ Xq.

In order to relate models, the output set Yq is taken to be
that of the system S τ(Σ). Therefore, Hq, with a slight abuse of
notation, is a mapping from a grid point to a random variable
with a Dirac probability distribution centered at the grid point.

We now present the first main result of the paper. In order to
show the next result, we assume that fp(0n) = 0n only if Σp is
not affine and that gp(0n) = 0n×q̂ for any p ∈ P.

Theorem 5.1. Let Σ be a stochastic switched system admitting
a common δ-GAS-Mq Lyapunov function V, of the form dis-
cussed in Lemma 3.7, for subsystems Σ1, . . . ,Σm. For Xτ0 = Rn,
any ε ∈ R+, and any double q = (τ, η) of quantization parame-
ters satisfying

α (ηq) ≤ α (εq) , (5.3)

e−κτα (εq) + γ̂

((
h[Xτ0]η (τ)

) 1
q

+ η

)
≤ α (εq) , (5.4)

we have that S q(Σ) �ε
S

S τ(Σ).

It can be readily seen that when we are interested in the dy-
namics of Σ on a compact D ⊂ Rn of the form of a finite union
of boxes, implying that Xτ0 = D, and for a given precision ε,
there always exists a sufficiently large value of τ and a small
value of η such that η ≤ span(D) and the conditions in (5.3)
and (5.4) are satisfied. For a given fixed sampling time τ, the
precision ε is lower bounded by:

ε >

α−1


γ̂

((
h[Xτ0]η (τ)

) 1
q

)
1 − e−κτ




1
q

. (5.5)

One can easily verify that the lower bound on ε in (5.5) goes
to zero as τ goes to infinity or as Zp → 0, for any p ∈ P, where
Zp is the Lipschitz constant introduced in Definition 2.1.

Note that S q(Σ) has a countable number of states and it is
finite if one is interested in the dynamics of Σ on a compact
D ⊂ Rn which is always the case in practice.

PROOF. We start by proving S τ(Σ) �ε
S

S q(Σ). Consider the re-
lation R ⊆ Xτ × Xq defined by

(
xτ, xq

)
∈ R if and only if

E
[
V

(
Hτ(xτ),Hq(xq)

)]
= E

[
V

(
xτ, xq

)]
≤ α (εq). Consider any(

xτ, xq

)
∈ R. Condition (i) in Definition 4.2 is satisfied because

(
E

[
‖xτ − xq‖

q
]) 1

q
≤

(
α−1

(
E

[
V(xτ, xq)

])) 1
q
≤ ε. (5.6)

We used the convexity assumption of α and the Jensen inequal-
ity [21] to show the inequalities in (5.6). Let us now show that
condition (ii) in Definition 4.2 holds. Consider the transition
xτ

p

τ
- x′τ = ξxτp(τ) P-a.s. in S τ(Σ). Since V is a common

Lyapunov function for Σ, we have

E
[
V(x′τ, ξxq p(τ))

]
≤ E

[
V(xτ, xq)

]
e−κτ ≤ α (εq) e−κτ. (5.7)

Since Rn ⊆
⋃

p∈[Rn]η Bη(p), there exists x′q ∈ Xq such that∥∥∥∥ξxq p(τ) − x′q
∥∥∥∥ ≤ η, (5.8)

which, by the definition of S q(Σ), implies the existence of
xq

p

q
- x′q in S q(Σ). Using Lemmas 3.7, the concavity of

γ̂, the Jensen inequality [21], the inequalities (5.1), (5.4), (5.7),
(5.8), and triangle inequality, we obtain

E
[
V(x′τ, x

′
q)
]

= E
[
V(x′τ, ξxq p(τ)) + V(x′τ, x

′
q) − V(x′τ, ξxq p(τ))

]
= E

[
V(x′τ, ξxq p(τ))

]
+ E

[
V(x′τ, x

′
q) − V(x′τ, ξxq p(τ))

]
≤ α (εq) e−κτ + E

[̂
γ
(∥∥∥ξxq p(τ) − x′q

∥∥∥)]
≤ α (εq) e−κτ + γ̂

(
E

[∥∥∥∥ξxq p(τ) − ξxq p(τ)
∥∥∥∥] +

∥∥∥∥ξxq p(τ) − x′q
∥∥∥∥)

≤ α (εq) e−κτ + γ̂

((
h[Xτ0]η (τ)

) 1
q

+ η

)
≤ α (εq) .

Therefore, we conclude that
(
x′τ, x

′
q

)
∈ R and that condition (ii)

in Definition 4.2 holds. Since Xτ0 ⊆
⋃

p∈[Rn]η Bη(p), for every
xτ0 ∈ Xτ0 there always exists xq0 ∈ Xq0 such that ‖xτ0−xq0‖ ≤ η.
Then,

E
[
V(xτ0, xq0)

]
= V(xτ0, xq0) ≤ α

(
‖xτ0 − xq0‖

q
)
≤ α (ηq) ≤ α (εq) ,
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because of (5.3) and since α is a K∞ function. Hence,(
xτ0, xq0

)
∈ R implying that S τ(Σ) �ε

S
S q(Σ). In a similar way,

we can prove that S q(Σ) �ε
S

S τ(Σ) by showing that R−1 is an
ε-approximate simulation relation from S q(Σ) to S τ(Σ). 2

Note that the results in [12, Theorem 4.1] for non-
probabilistic models are fully recovered by the statement in
Theorem 5.1 if the stochastic switched system Σ is not affected
by any noise, implying that hp

x (t) is identically zero for all p ∈ P
and all x ∈ Rn, and that the δ-GAS-Mq common Lyapunov
function simply reduces to being δ-GAS one.

5.2.2. Multiple Lyapunov functions
If a common δ-GAS-Mq Lyapunov function does not exist

or cannot be practically found, one can still attempt comput-
ing approximately bisimilar symbolic models by seeking mode-
dependent Lyapunov functions and by restricting the set of
switching signals using a condition on the dwell time τd = N̂τ
for some N̂ ∈ N.

Consider a stochastic switched system Στd and a pair q =
(τ, η) of quantization parameters, where τ is the sampling time
and η is the state space quantization. Given Στd and q, consider
the following system:

S q

(
Στd

)
= (Xq, Xq0,Uq, q

- ,Yq,Hq), (5.9)

where Xq = [Rn]η × P ×
{
0, . . . , N̂ − 1

}
, Xq0 = [Rn]η × P × {0},

Uq = P, Yq = Yτ, and

•
(
xq, p, i

) p

q
-

(
x′q, p′, i′

)
if there exists a x′q ∈ Xq such

that
∥∥∥∥ξxq p(τ) − x′q

∥∥∥∥ ≤ η and one of the following holds:

– i < N̂ − 1, p′ = p, and i′ = i + 1;
– i = N̂ − 1, p′ = p, and i′ = N̂ − 1;
– i = N̂ − 1, p′ , p, and i′ = 0.

• Hq(xq, p, i) = xq for any (xq, p, i) ∈ [Rn]η × P ×{
0, . . . , N̂ − 1

}
.

We present the second main result of this subsection, which
relates the existence of multiple Lyapunov functions for a
stochastic switched system to that of a symbolic model, based
on the state space discretization. In order to show the next re-
sult, we assume that fp(0n) = 0n only if Σp is not affine and that
gp(0n) = 0n×q̂ for any p ∈ P.

Theorem 5.2. Consider a stochastic switched system Στd . Let
us assume that for any p ∈ P, there exists a δ-GAS-Mq Lya-
punov function Vp, of the form explained in Lemma 3.7, for
subsystem Στd ,p. Moreover, assume that (3.3) holds for some
µ ≥ 1. If τd > log µ/κ, for Xτ0 = X0 × P ×

{
0, . . . , N̂

}
, where

X0 = Rn, any ε ∈ R+, and any pair q = (τ, η) of quantization
parameters satisfying

α (ηq) ≤ α (εq) , (5.10)

γ̂

((
h[X0]η (τ)

) 1
q

+ η

)
≤

1
µ
− e−κτd

1 − e−κτd

(
1 − e−κτ

)
α (εq) , (5.11)

we have that S q
(
Στd

)
�ε
S

S τ
(
Στd

)
.

It can be readily seen that when we are interested in the dy-
namics of Στd on a compact D ⊂ Rn of the form of a finite union
of boxes, implying that X0 = D, and for a precision ε, there al-
ways exists a sufficiently large value of τ and a small value of
η, such that η ≤ span(D) and the conditions in (5.10) and (5.11)
are satisfied. For a given fixed sampling time τ, the precision ε
is lower bounded by

ε ≥

α−1


γ̂

((
h[X0]η (τ)

) 1
q

)
1 − e−κτ

·
1 − e−κτd

1
µ
− e−κτd




1
q

. (5.12)

The properties of the bound in (5.12) are analogous to those of
the case of a common Lyapunov function.

Note that S q
(
Στd

)
has a countable number of states and it is

finite if one is interested in the dynamics of Στd on a compact
D ⊂ Rn which is always the case in practice.

PROOF. The proof was inspired by the proof of Theorem 4.2 in
[12] for non-probabilistic switched systems. We start by prov-
ing S τ

(
Στd

)
�ε
S

S q
(
Στd

)
. Consider the relation R ⊆ Xτ × Xq

defined by
(
xτ, p1, i1, xq, p2, i2

)
∈ R if and only if p1 = p2 =

p, i1 = i2 = i, and E
[
Vp

(
Hτ(xτ, p1, i1),Hq(xq, p2, i2)

)]
=

E
[
Vp

(
xτ, xq

)]
≤ δi, where δ0, . . . , δN̂ are given recursively by

δ0 = α (εq) , δi+1 = e−κτδi + γ̂

((
h[X0]η (τ)

) 1
q

+ η

)
.

One can easily verify that

δi =e−iκτα (εq) + γ̂

((
h[X0]η (τ)

) 1
q

+ η

)
1 − e−iκτ

1 − e−κτ

=

γ̂

((
h[X0]η (τ)

) 1
q

+ η

)
1 − e−κτ

+ e−iκτ

α (εq) −
γ̂

((
h[X0]η (τ)

) 1
q

+ η

)
1 − e−κτ

 .
(5.13)

Since µ ≥ 1, and from (5.11), one has

γ̂

((
h[X0]η (τ)

) 1
q

+ η

)
≤ (1 − e−κτ)α (εq) .

It follows from (5.13) that δ0 ≥ δ1 ≥ · · · ≥ δN̂−1 ≥ δN̂ . From
(5.11) and since τd = N̂τ, we get

δN̂ =e−κτdα (εq) + γ̂

((
h[X0]η (τ)

) 1
q

+ η

)
1 − e−κτd

1 − e−κτ

≤e−κτdα (εq) +

(
1
µ
− e−κτd

)
α (εq) =

α (εq)
µ

. (5.14)

We can now prove that R is an ε-approximate simu-
lation relation from S τ

(
Στd

)
to S q

(
Στd

)
. Consider any(

xτ, p, i, xq, p, i
)
∈ R. Using the convexity assumption of αp,

and since it is a K∞ function, and the Jensen inequality [21],
we have:

α
(
E

[
‖Hτ(xτ, p, i) − Hq(xq, p, i)‖q

])
= α

(
E

[
‖xτ − xq‖

q
])

≤ αp

(
E

[
‖xτ − xq‖

q
])
≤ E

[
αp

(
‖xτ − xq‖

q
)]
≤ E

[
Vp(xτ, xq)

]
≤ δi ≤ δ0.
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Therefore, we obtain
(
E

[
‖xτ − xq‖

q
]) 1

q
≤

(
α−1 (δ0)

) 1
q
≤ ε, because

of α ∈ K∞. Hence, condition (i) in Definition 4.2 is satisfied.
Let us now show that condition (ii) in Definition 4.2 holds. Con-
sider the transition (xτ, p, i)

p

τ
- (x′τ, p′, i′) in S τ

(
Στd

)
, where

x′τ = ξxτp(τ)P-a.s.. Since Vp is a δ-GAS-Mq Lyapunov function
for subsystem Σp, we have

E
[
Vp(x′τ, ξxq p(τ))

]
≤ E

[
Vp(xτ, xq)

]
e−κτ ≤ e−κτδi. (5.15)

Since Rn ⊆
⋃

p∈[Rn]η Bη(p), there exists x′q ∈ [Rn]η such that∥∥∥∥ξxq p(τ) − x′q
∥∥∥∥ ≤ η. (5.16)

Using Lemmas 3.7, the K∞ function γ̂, the concavity of γ̂p in
(5.1), the Jensen inequality [21], the inequalities (5.1), (5.15),
(5.16), and triangle inequality, we obtain

E
[
Vp(x′τ, x

′
q)
]

= E
[
Vp(x′τ, ξxq p(τ)) + Vp(x′τ, x

′
q) − Vp(x′τ, ξxq p(τ))

]
= E

[
Vp(x′τ, ξxq p(τ))

]
+ E

[
Vp(x′τ, x

′
q) − Vp(x′τ, ξxq p(τ))

]
≤ e−κτδi + E

[̂
γp

(∥∥∥ξxq p(τ) − x′q
∥∥∥)]

≤ e−κτδi + γ̂p

(
E

[∥∥∥ξxq p(τ) − x′q
∥∥∥])

≤ e−κτδi + γ̂
(
E

[∥∥∥∥ξxq p(τ) − ξxq p(τ)
∥∥∥∥] +

∥∥∥∥ξxq p(τ) − x′q
∥∥∥∥)

≤ e−κτδi + γ̂

((
h[X0]η (τ)

) 1
q

+ η

)
= δi+1. (5.17)

We now examine three separate cases:

• If i < N̂ − 1, then p′ = p, and i′ = i + 1; since, from
(5.17), E

[
Vp(x′τ, x

′
q)
]
≤ δi+1, we conclude that (x′τ, p, i +

1, x′q, p, i + 1) ∈ R;

• If i = N̂ − 1, and p′ = p, then i′ = N̂ − 1; from (5.17),
E

[
Vp(x′τ, x

′
q)
]
≤ δN̂ ≤ δN̂−1, we conclude that (x′τ, p, N̂ −

1, x′q, p, N̂ − 1) ∈ R;

• If i = N̂ − 1, and p′ , p, then i′ = 0; from (5.14) and
(5.17), E

[
Vp(x′τ, x

′
q)
]
≤ δN̂ ≤ δ0/µ. From (3.3), it fol-

lows that E
[
Vp′ (x′τ, x

′
q)
]
≤ µE

[
Vp(x′τ, x

′
q)
]
≤ δ0. Hence,

(x′τ, p′, 0, x′q, p′, 0) ∈ R.

Therefore, we conclude that condition (ii) in Definition 4.2
holds. Since X0 ⊆

⋃
p∈[Rn]η Bη(p), for every (xτ0, p, 0) ∈ Xτ0

there always exists
(
xq0, p, 0

)
∈ Xq0 such that ‖xτ0 − xq0‖ ≤ η.

Then,

E
[
Vp(Hτ(xτ0, p, 0),Hq(xq0, p, 0)

]
= Vp(xτ0, xq0)

≤ αp

(∥∥∥xτ0 − xq0

∥∥∥q)
≤ α

(
‖xτ0 − xq0‖

q
)
≤ α (ηq) ≤ α (εq) ,

because of (5.10) and since α is a K∞ function. Hence,
Vp(xτ0, xq0) ≤ δ0 and

(
xτ0, p, 0, xq0, p, 0

)
∈ R implying that

S τ(Στd ) �ε
S

S q(Στd ). In a similar way, we can prove that
S q

(
Στd

)
�ε
S

S τ
(
Στd

)
by showing that R−1 is an ε-approximate

simulation relation from S q(Στd ) to S τ(Στd ). 2

As before, Theorem 5.2 subsumes [12, Theorem 4.2] over
non-probabilistic models.

5.3. Second approach

This subsection contains the second main results of the pa-
per providing bisimilar symbolic models without any space dis-
cretization.

5.3.1. Common Lyapunov function
First, we show one of the main results of this subsection on

the construction of symbolic models based on the existence of a
common δ-GAS-Mq Lyapunov function. We proceed by intro-
ducing two fully symbolic systems for the concrete one Σ. Con-
sider a stochastic switched system Σ and a triple q = (τ,N, xs)
of parameters, where τ is the sampling time, N ∈ N is a tem-
poral horizon, and xs ∈ Rn is a source state. Given Σ and q,
consider the following systems:

S q(Σ) = (Xq, Xq0,Uq, q
- ,Yq,Hq),

S q(Σ) = (Xq, Xq0,Uq, q
- ,Yq,Hq),

where Xq = PN , Xq0 = Xq, Uq = P, Yq = Yτ, and

• xq
p

q
- x′q, where xq = (p1, p2, . . . , pN), if and only if

x′q = (p2, . . . , pN , p);

• Hq(xq) = ξxs xq
(Nτ)

(
Hq(xq) = ξxs xq

(Nτ)
)
.

Note that we have abused notation by identifying xq =
(p1, p2, . . . , pN) with a switching signal obtained by the con-
catenation of modes pi

(
i.e. xq(t) = pi for any t ∈ [(i − 1)τ, iτ[

)
for i = 1, . . . ,N. Notice that the proposed system S q(Σ)(
resp. S q(Σ)

)
is symbolic and deterministic in the sense of Def-

inition 4.1. Note that Hq and Hq are mappings from a non-
probabilistic point xq to the random variable ξxs xq

(Nτ) and
to the one with a Dirac probability distribution centered at
ξxs xq

(Nτ), respectively. One can readily verify that the transi-

tion relation of S q(Σ) (resp. S q(Σ)) admits a very compact rep-
resentation under the form of a shift operator and such symbolic
systems do not require any continuous space discretization.

Before providing the main results, we need the following
technical lemmas.

Lemma 5.3. Consider a stochastic switched system Σ, admit-
ting a common δ-GAS-Mq Lyapunov function V, and consider
its corresponding symbolic model S q(Σ). We have:

η ≤

(
α−1

(
e−κNτ max

p∈P
V

(
ξxs p(τ), xs

)))1/q

, (5.18)

where

η := max
p∈P,xq∈Xq

xq

p

q
- x′

q

∥∥∥∥ξHq(xq)p(τ) − Hq

(
x′q

)∥∥∥∥ . (5.19)

PROOF. The proof is similar to the one of Lemma 5.1 in [29]
and is omitted due to lack of space.

The next lemma provides a similar result as the one of
Lemma 5.3, but by using the symbolic model S q(Σ) rather than
S q(Σ).
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Lemma 5.4. Consider a stochastic switched system Σ, admit-
ting a common δ-GAS-Mq Lyapunov function V, and consider
its corresponding symbolic model S q(Σ). One has:

η̂ ≤

(
α−1

(
e−κNτ max

p∈P
E

[
V

(
ξxs p(τ), xs

)]))1/q

, (5.20)

where

η̂ := max
p∈P,xq∈Xq

xq

p

q
- x′

q

E

[∥∥∥∥ξHq(xq)p(τ) − Hq

(
x′q

)∥∥∥∥] . (5.21)

PROOF. The proof is similar to the one of Lemma 5.3 and can
be shown by using convexity of α and Jensen inequality [21].

We can now present the first main result of this subsection,
relating the existence of a common δ-GAS-Mq Lyapunov func-
tion to the construction of a bisimilar finite abstraction without
any continuous space discretization. In order to show the next
result, we assume that fp(0n) = 0n only if Σp is not affine and
gp(0n) = 0n×q̂ for any p ∈ P.

Theorem 5.5. Consider a stochastic switched system Σ admit-
ting a common δ-GAS-Mq Lyapunov function V, of the form of
the one explained in Lemma 3.7. Let η be given by (5.19). For
any ε ∈ R+ and any triple q = (τ,N, xs) of parameters satisfy-
ing

e−κτα (εq) + γ̂
((

hxs ((N + 1)τ)
) 1

q + η
)
≤ α (εq) , (5.22)

the relation

R =
{(

xτ, xq

)
∈ Xτ × Xq | E

[
V

(
xτ,Hq(xq)

)]
≤ α (εq)

}
is an ε-approximate bisimulation relation between S q(Σ) and
S τ(Σ).

PROOF. The proof is similar to the one of Theorem 5.1 and is
omitted due to lack of space.

Note that one can also use any over approximation of η such
as the one in (5.18) instead of η in condition (5.22). By choos-
ing N sufficiently large, one can enforce hxs ((N + 1)τ) and η to
be sufficiently small. Hence, it can be readily seen that for a
given precision ε, there always exists a large value of N, such
that the condition in (5.22) is satisfied.

Note that the results in [10] for non-probabilistic models are
fully recovered by the statement in Theorem 5.5 if Σ is not af-
fected by any noise.

The next theorem provides a result that is similar to the one
of Theorem 5.5, but by using the symbolic model S q(Σ).

Theorem 5.6. Consider a stochastic switched system Σ, admit-
ting a common δ-GAS-Mq Lyapunov function V. Let η̂ be given
by (5.21). For any ε ∈ R+ and any triple q = (τ,N, xs) of pa-
rameters satisfying

e−κτα (εq) + γ̂
(̂
η
)
≤ α (εq) , (5.23)

the relation

R =
{
(xτ, xq) ∈ Xτ × Xq | E

[
V(xτ,Hq(xq))

]
≤ α (εq)

}

is an ε-approximate bisimulation relation between S q(Σ) and
S τ(Σ).

PROOF. The proof is similar to the one of Theorem 5.1 and is
omitted due to lack of space.

Here, one can also use any over approximation of η̂ such as
the one in (5.20) instead of η̂ in condition (5.23). Finally, we
establish the results on the existence of symbolic model S q(Σ)
(resp. S q(Σ)) such that S q(Σ) �ε

S
S τ(Σ) (resp. S q(Σ) �ε

S
S τ(Σ)).

Theorem 5.7. Consider the result in Theorem 5.5. If we
choose:

Xτ0 = {x ∈ Rn | ‖x − Hq(xq0)‖ ≤
(
α−1

(
α (εq)

)) 1
q
, ∀xq0 ∈ Xq0},

then we have S q(Σ) �ε
S

S τ(Σ).

PROOF. We start by proving that S τ(Σ) �ε
S

S q(Σ). For ev-
ery xτ0 ∈ Xτ0, there always exists xq0 ∈ Xq0 such that ‖xτ0 −

Hq(xq0)‖ ≤
(
α−1

(
α (εq)

)) 1
q . Then,

E
[
V

(
xτ0,Hq(xq0)

)]
= V

(
xτ0,Hq(xq0)

)
≤ α

(∥∥∥xτ0 − Hq(xq0)
∥∥∥q)
≤ α (εq) ,

since α is a K∞ function. Hence,
(
xτ0, xq0

)
∈ R implying

that S τ(Σ) �ε
S

S q(Σ). In a similar way, we can show that
S q(Σ) �ε

S
S τ(Σ), equipped with the relation R−1, which com-

pletes the proof.

The next theorem provides a similar result as the one of The-
orem 5.7, but by using the symbolic model S q(Σ).

Theorem 5.8. Consider the results in Theorem 5.6. If we
choose:

Xτ0 = {a ∈ X0 |
(
E

[∥∥∥a − Hq(xq0)
∥∥∥q]) 1

q
≤

(
α−1

(
α (εq)

)) 1
q
, ∀xq0 ∈ Xq0},

then we have S q(Σ) �ε
S

S τ(Σ).

PROOF. The proof is similar to the one of Theorem 5.7.

5.3.2. Multiple Lyapunov functions
Here, we provide results on the construction of symbolic

models for Στd without any continuous space discretization.
Consider a stochastic switched system Στd and a triple q =

(τ,N, xs) of parameters. Given Στd and q, consider the following
systems:

S q(Στd ) = (Xq, Xq0,Uq, q
- ,Yq,Hq),

S q(Στd ) = (Xq, Xq0,Uq, q
- ,Yq,Hq),

consisting of: Xq = PN × {0, . . . , N̂ − 1}, Uq = P, Yq = Yτ, and

• – if N ≤ N̂ − 1: Xq0 = {(p, . . . , p,N) | ∀p ∈ P};

– if N > N̂ − 1:

Xq0 = {(
m1 times︷      ︸︸      ︷

p1, . . . , p1, . . . ,

mk times︷     ︸︸     ︷
pk, . . . , pk, i)| ∃k ∈

N s.t. m1, . . . ,mk−1 ≥ N̂, i = min{mk − 1, N̂ −
1}, p1, . . . , pk ∈ P};
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• (p1, p2, . . . , pN , i)
pN

q
- (p2, . . . , pN , p, i′) if one of the following

holds:

– i < N̂ − 1, p = pN , and i′ = i + 1;
– i = N̂ − 1, p = pN , and i′ = N̂ − 1;
– i = N̂ − 1, p , pN , and i′ = 0;

• Hq(xq, i) = ξxs xq
(Nτ)

(
Hq(xq, i) = ξxs xq

(Nτ)
)

for any (xq, i) ∈ Xq,
where xq = (p1, . . . , pN).

Notice that the proposed system S q(Στd )
(
resp. S q(Στd )

)
is

symbolic and deterministic in the sense of Definition 4.1. Note
that the set Xq0 is chosen in such a way that it respects the dwell
time of switching signals (i.e. being in each mode at least τd =

N̂τ seconds).
Before providing the second main result of this subsection,

we need the following technical results, similar to the ones in
Lemmas 5.3 and 5.4.

Lemma 5.9. Consider a stochastic switched system Στd , admit-
ting multiple δ-GAS-Mq Lyapunov functions Vp, and consider
its corresponding symbolic model S q(Στd ). Moreover, assume
that (3.3) holds for some µ ≥ 1. If τd > log µ/κ, then we have:

η ≤

(
α−1(e−(κ−log µ/τd )Nτ max

p,p′∈P
Vp′ (ξxs p(τ), xs))

)1/q

, (5.24)

where

η := max
(xq ,i)∈Xq

(xq ,i)
p

q
- (x′

q
,i′)

‖ξHq(xq ,i)p(τ) − Hq

(
x′q, i

′
)
‖. (5.25)

The proof is similar to the proof of Lemma 5.3.
The next lemma provides a similar result as the one of

Lemma 5.9, but by using the symbolic model S q(Στd ) rather
than S q(Στd ).

Lemma 5.10. Consider a stochastic switched system Στd , ad-
mitting multiple δ-GAS-Mq Lyapunov functions Vp, and con-
sider its corresponding symbolic model S q(Στd ). Moreover, as-
sume that (3.3) holds for some µ ≥ 1. If τd > log µ/κ, then we
have:

η̂ ≤(α−1(e−(κ−log µ/τd )Nτ max
p,p′∈P

E[Vp′
(
ξxs p(τ), xs

)
]))

1
q , (5.26)

where

η̂ := max
(xq ,i)∈Xq

(xq ,i)
p

q
- (x′

q
,i′)

E[‖ξHq(xq ,i)p(τ) − Hq

(
x′q, i

′
)
‖]. (5.27)

The proof is similar to the proof of Lemma 5.4.
Now, we present the second main result of this subsection,

relating the existence of multiple Lyapunov functions to that
of a bisimilar finite abstractions without any continuous space
discretization. In order to show the next result, we assume that
fp(0n) = 0n only if Στd ,p is not affine and gp(0n) = 0n×q̂ for any
p ∈ P.

Theorem 5.11. Consider a stochastic switched system Στd . Let
us assume that for any p ∈ P, there exists a δ-GAS-Mq Lya-
punov function Vp, of the form of the one explained in Lemma
3.7, for subsystem Στd ,p. Moreover, assume that (3.3) holds for

some µ ≥ 1. Let η be given by (5.25). If τd > log µ/κ, for any
ε ∈ R+, and any triple q = (τ,N, xs) of parameters satisfying

γ̂(
(
hxs ((N + 1)τ)

) 1
q + η) ≤

1
µ
− e−κτd

1 − e−κτd
(1 − e−κτ)α(εq), (5.28)

there exists an ε-approximate bisimulation relation R between
S q(Στd ) and S τ(Στd ) as the following:

(
xτ, p1, i1, xq, i2

)
∈ R,

where xq = (p1, . . . , pN), if and only if p1 = pN = p, i1 = i2 = i,
and

E[Vp(Hτ(xτ, p1, i1),Hq(xq, i2))] = E[Vp(xτ, ξxs xq
(Nτ))] ≤ δi,

where δ0, . . . , δN̂−1 are given recursively by δi+1 = e−κτδi +

γ̂
((

hxs ((N + 1)τ)
) 1

q + η
)

and δ0 = α (εq).

PROOF. The proof is similar to the one of Theorem 5.2 and is
omitted due to lack of space.

Note that one can use any over approximation of η such as
the one in (5.24) instead of η in condition (5.28). By choosing
N sufficiently large, one can enforce hxs ((N + 1)τ) and η to be
sufficiently small. Hence, it can be readily seen that for a given
precision ε, there always exists a large value of N, such that the
condition in (5.28) is satisfied.

The next theorem provides a result that is similar to the one
of Theorem 5.11, but by using the symbolic model S q(Στd ).

Theorem 5.12. Consider a stochastic switched system Στd . Let
us assume that for any p ∈ P, there exists a δ-GAS-Mq Lya-
punov function Vp for subsystem Στd ,p. Moreover, assume that
(3.3) holds for some µ ≥ 1. Let η̂ be given by (5.27). If
τd > log µ/κ, for any ε ∈ R+, and any triple q = (τ,N, xs)
of parameters satisfying

γ̂
(̂
η
)
≤

1
µ
− e−κτd

1 − e−κτd

(
1 − e−κτ

)
α (εq) , (5.29)

there exists an ε-approximate bisimulation relation R between
S q(Στd ) and S τ(Στd ) as the following:

(
xτ, p1, i1, xq, i2

)
∈ R,

where xq = (p1, . . . , pN), if and only if p1 = pN = p, i1 = i2 = i,
and

E[Vp(Hτ(xτ, p1, i1),Hq(xq, i2))] = E[Vp(xτ, ξxs xq
(Nτ))] ≤ δi,

where δ0, . . . , δN̂−1 are given recursively by δ0 = α (εq) , δi+1 =

e−κτδi + γ̂
(̂
η
)
.

PROOF. The proof is similar to the one of Theorem 5.2 and is
omitted due to lack of space.

Note that one can also use any over approximation of η̂ such
as the one in (5.26) instead of η̂ in condition (5.29). Finally,
we establish the results on the existence of symbolic model
S q(Στd ) (resp. S q(Στd )) such that S q(Στd ) �ε

S
S τ(Στd ) (resp.

S q(Στd ) �ε
S

S τ(Στd )).

Theorem 5.13. Consider the result in Theorem 5.11. If we
choose:

Xτ0 =
{
(x, p, i) | x ∈ Rn,

∥∥∥x − Hq(xq0, i)
∥∥∥ ≤ (

α−1
p (δi)

) 1
q
,

p = pN ,∀(p1, . . . , pN , i) ∈ Xq0
}
,

then we have S q(Στd ) �ε
S

S τ(Στd ).
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PROOF. We start by proving that S τ(Στd ) �ε
S

S q(Στd ). For ev-
ery (xτ0, p, i) ∈ Xτ0, there always exists

(
xq0, i

)
∈ Xq0, where

xq0 = (p1, . . . , pN), such that p = pN and
∥∥∥xτ0 − Hq(xq0, i)

∥∥∥ ≤(
α−1

p (δi)
) 1

q . Then,

E
[
Vp

(
xτ0,Hq(xq0, i)

)]
= Vp

(
xτ0,Hq(xq0, i)

)
≤ αp(‖xτ0 − Hq(xq0, i)‖

q) ≤ δi,

since αp is a K∞ function. Hence,
(
xτ0, p, i, xq0, i

)
∈ R imply-

ing that S τ(Στd ) �ε
S

S q(Στd ). In a similar way, we can show
that S q(Στd ) �ε

S
S τ(Στd ), equipped with the relation R−1, which

completes the proof.

The next theorem provides a similar result as the one of The-
orem 5.13, but by using the symbolic model S q(Σ).

Theorem 5.14. Consider the results in Theorem 5.12. If we
choose:

Xτ0 =
{
(a, p, i) | a ∈ X0,

(
E

[∥∥∥a − Hq(xq0, i)
∥∥∥q]) 1

q
≤

(
α−1

p (δi)
) 1

q
,

p = pN ,∀(p1, . . . , pN , i) ∈ Xq0
}
,

then we have S q(Στd ) �ε
S

S τ(Στd ).

PROOF. The proof is similar to the one of Theorem 5.13.

Remark 5.15. The symbolic model S q(Σ) (resp. S q(Στd )), com-
puted by using the parameter q provided in Theorem 5.6 (resp.
Theorem 5.12), has fewer (or at most equal number of) states
than the symbolic model S q(Σ) (resp. S q(Στd )), computed by
using the parameter q provided in Theorem 5.5 (resp. Theorem
5.11) while having the same precision. However, the symbolic
models S q(Σ) and S q(Στd ) have states with probabilistic out-
put values, rather than non-probabilistic ones which makes the
control synthesis over them more involved.

Remark 5.16. The control synthesis over S q(Σ) (resp. S q(Στd ))
is simple as the outputs are non-probabilistic points. For S q(Σ)
(resp. S q(Στd )) it is less intuitive and more involved. We refer
the interested readers to [29, Subsection 5.3] explaining how
one can synthesize controllers over finite metric systems with
random output values.

5.4. Comparison between the two proposed approaches
Note that given any precision ε and sampling time τ, one

can always use the results proposed in Theorems 5.7 and 5.13
to construct symbolic models S q(Σ) and S q(Στd ), respectively,
that are ε-approximately bisimilar to S τ(Σ) and S τ(Στd ), respec-
tively. However, the results proposed in Theorems 5.1 and 5.2
cannot be applied for any sampling time τ if the precision ε is
lower than the thresholds introduced in inequalities (5.5) and
(5.12), respectively (cf. the first case study). Furthermore,
while the results in Theorems 5.1 and 5.2 only provide sym-
bolic models with non-probabilistic output values, the ones in
Theorems 5.8 and 5.14 provide symbolic models with proba-
bilistic output values as well which can result in less conserva-
tive symbolic models (cf. Remark 5.15 and the first case study).

One can compare the results provided in Theorems 5.7 and
5.13 with the results provided in Theorems 5.1 and 5.2, respec-
tively, in terms of the sizes of the symbolic models. One can

readily verify that the precision of the symbolic model S q(Σ)
(resp. S q(Στd )) and the one S q(Σ) (resp. S q(Στd )) is approxi-
mately the same as long as the state space quantisation param-
eter η is equal to the parameter η in (5.19) (resp. in (5.25)), i.e.
η ≤

(
α−1

(
e−κNτη0

))1/q
(resp. η ≤

(
α−1

(
e−(κ−log µ/τd )Nτη̂0

))1/q
), where

η0 = maxp∈P V
(
ξxs p(τ), xs

)
(resp. η̂0 = maxp,p′∈P Vp′

(
ξxs p(τ), xs

)
).

The reason their precisions are approximately (not exactly) the
same is because we use (hxs ((N + 1)τ))1/q in conditions (5.22)
and (5.28) rather than (h[Xτ0]η (τ))1/q (resp. (h[X0]η (τ))1/q) that is
being used in condition(5.4) (resp.(5.11)). By assuming that
(hxs ((N + 1)τ))1/q and (h[Xτ0]η (τ))1/q (resp. (h[X0]η (τ))1/q) are
much smaller than η and η, respectively, or hxs ((N + 1)τ) ≈
h[Xτ0]η (τ) (resp. hxs ((N + 1)τ) ≈ h[X0]η (τ)), the precisions are the
same.

The number of states of the proposed symbolic models S q(Σ)
and S q(Στd ) are mN and mN × N̂, respectively. Assume that we
are interested in the dynamics of Σ (resp. Στd ) on a compact
set D ⊂ Rn. Since the set of states of the proposed symbolic
models S q(Σ) and S q(Στd ) are [D]η and [D]η × P × {0, . . . , N̂ −
1}, respectively, their sizes are

∣∣∣[D]η
∣∣∣ = K

ηn and K
ηn × m × N̂,

respectively, where K is a positive constant proportional to the
volume of D. Hence, it is more convenient to use the proposed
symbolic models S q(Σ) and S q(Στd ) rather than the ones S q(Σ)
and S q(Στd ), respectively, as long as:

mN ≤
K(

α−1 (
e−κNτη0

))n/q and mN−1 ≤
K(

α−1 (
e−(κ−log µ/τd )Nτη̂0

))n/q ,

respectively. Without loss of generality, one can assume that
α(r) = r for any r ∈ R+

0 . Hence, for sufficiently large value
of N, it is more convenient to use the proposed symbolic mod-
els S q(Σ) and S q(Στd ) in comparison with the ones S q(Σ) and
S q(Στd ), respectively, as long as:

me
−κτn

q ≤ 1, and me
−(κ−log µ/τd )τn

q ≤ 1, (5.30)

respectively.

6. Examples

6.1. Room temperature control (common Lyapunov function)
Consider the stochastic switched system Σ which is a simple

thermal model of a six-room building as depicted schematically
in Figure 1 and described by the following stochastic differen-
tial equations:

d ξ1 =
(
α21 (ξ2 − ξ1) + α31 (ξ3 − ξ1) + α51 (ξ5 − ξ1)
+ αe1 (Te − ξ1) + α f 1

(
T f 1 − ξ1

)
δp2

)
d t

+
(
σ1,1δp1 + (1 − δp1)σ1

)
ξ1 d W1

t ,

d ξ2 = (α12 (ξ1 − ξ2) + α42 (ξ4 − ξ2) + αe2 (Te − ξ2)) d t
+

(
σ2,1δp1 + (1 − δp1)σ2

)
ξ2 d W2

t ,

d ξ3 = (α13 (ξ1 − ξ3) + α43 (ξ4 − ξ3) + αe3 (Te − ξ3)) d t
+

(
σ3,1δp1 + (1 − δp1)σ3

)
ξ3 d W3

t ,

d ξ4 =
(
α24 (ξ2 − ξ4) + α34 (ξ3 − ξ4) + α64 (ξ6 − ξ4)
+ αe4 (Te − ξ4) + α f 4

(
T f 4 − ξ4

)
δp3

)
d t

+
(
σ4,1δp1 + (1 − δp1)σ4

)
ξ4 d W4

t ,

d ξ5 = (α15 (ξ1 − ξ5) + αe5 (Te − ξ5)) d t +
(
σ5,1δp1 + (1 − δp1)σ5

)
ξ5 d W5

t ,

d ξ6 = (α46 (ξ4 − ξ6) + αe6 (Te − ξ6)) d t +
(
σ6,1δp1 + (1 − δp1)σ6

)
ξ6 d W6

t ,

(6.1)

where the terms W i
t , i = 1, . . . , 6, denote the standard Brownian

motion and δpi = 1 if i = p and δpi = 0 otherwise.
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Figure 1: A schematic of the six-room building.

Note that ξi, i = 1, . . . , 6, denotes the temperature in each
room, Te = 10 (degrees Celsius) is the external temperature,
and T f 1 = T f 4 = 100 are the temperatures of two heaters2 that
both can be switched off (p = 1), 1st heater (T f 1) on and the
2nd one (T f 4) off (p = 2), or vice versa (p = 3). The drifts fp
and diffusion terms gp, p = 1, 2, 3, can be simply written out
of (6.1) and are affine and linear, respectively. The parameters
of the drifts are chosen as follows: α21 = α12 = α13 = α31 =
α42 = α24 = α34 = α43 = α15 = α51 = α46 = α64 = 5 × 10−2,
αe1 = αe4 = 5 × 10−3, αe2 = αe3 = αe5 = αe6 = 3.3 × 10−3, and
α f 1 = α f 4 = 3.6 × 10−3. The noise parameters are chosen as
σi,1 = 0.002 and σi = 0.003, for i = 1, . . . , 6.

It can be readily verified that the function V(x, x′) =√
(x − x′)T (x − x′) satisfies the LMI condition (9) in [26] with

q = 1, Pp = I6, and κ̂p = 0.0076, for any p ∈ {1, 2, 3}.
Hence, V is a common δ-GAS-M1 Lyapunov function for Σ,
satisfying conditions (i)-(iii) in Definition 3.3 with q = 1,
αp(r) = αp(r) = r, ∀r ∈ R+

0 , and κp = 0.0038, for any
p ∈ {1, 2, 3}. Using the results of Theorem 3.5, one gets that
function β(r, s) = e−κp sr satisfies property (3.2) for Σ.

For a source state3 xs = [18, 17.72, 17.72, 18, 17.46, 17.46]T ,
a given sampling time τ = 30 time units, and a selected pre-
cision ε = 1, the parameter N for S q(Σ), based on inequal-
ity (5.22) in Theorem 5.5, is obtained as 13 and one gets
η ≤ 0.1144, where η is given in (5.19). Therefore, the resulting
cardinality of the set of states for S q(Σ) is 313 = 1594323.

Now, consider that the objective is to design a control pol-
icy forcing the trajectories of Σ, starting from the initial con-
dition x0 = [11.7, 11.7, 11.7, 11.7, 11.7, 11.7]T , to reach the re-
gion D = [19 22]6 in finite time and remain there forever. This
objective can be encoded via the LTL specification 32D.

In Figure 2, we show several realizations of the trajectory
ξx0υ stemming from initial condition x0 (top panels), as well as
the corresponding evolution of synthesized switching signal υ
(bottom panel). Furthermore, in Figure 3, we show the average
value over 10000 experiments of the distance in time of the
solution process ξx0υ to the set D, namely

∥∥∥ξx0υ(t)
∥∥∥

D, where the
point-to-set distance is defined as ‖x‖D = infd∈D ‖x − d‖.
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Figure 2: A few realizations of the solution process ξx0υ (top panel) and the
corresponding evolution of the obtained switching signal υ (bottom panel).

2Here, we assume that at most one heater is on at each instant of time.
3Note that here we computed the source state as xs =

arg minx∈Rn maxp∈P V(ξxp(τ), x) in order to have the smallest upper bound for
η as in (5.18).

Figure 3: The average values (over 10000 experiments) of the distance of the
solution process ξx0υ to the set D in different vertical scales.

To compute exactly the size of the symbolic model, proposed
in Theorem 5.1, we consider the dynamics of Σ over the sub-
set W = [11.7 22]6 ⊂ R6. Note that using the sampling time
τ = 30, the results in Theorem 5.1 cannot be applied because
the precision ε has to be lower bounded by 2.7 as in inequality
(5.5). Using a bigger precision ε = 2.8 than the one here, the
same sampling time τ = 30 as the one here, and the inequalities
(5.3) and (5.4), we obtain the state space quantization param-
eter as η ≤ 0.02. Therefore, if one uses η = 0.02, the cardi-
nality of the state set of the symbolic model S q(Σ) is equal to(

22−11.7
0.02

)6
= 1.8657 × 1016 which is much higher than the one

of S q(Σ), i.e. 1594323, while having even larger precision.

Remark 6.1. By considering the dynamics of Σ over the set
W, at least 1 − 10−5 confidence level, and using Hoeffding’s
inequality [13], one can verify that the number of samples
should be at least 74152 to empirically compute the upper
bound of η̂ in (5.20). We compute η̂ ≤ 0.1208 when xs =

[18 17.72 17.72 18 17.46 17.46]T , N = 13, and τ = 30. Using
the results in Theorem 5.6 and the same parameters q as the
ones in S q(Σ), one obtains ε = 0.6 in (5.23). Therefore, S q(Σ),
with confidence at least 1 − 10−5, provides a less conservative
precision than S q(Σ), while having the same size as S q(Σ).

Remark 6.2. Another advantage of using the 2nd approach in
comparison with the 1st one is that one can construct only a
relevant part of the abstraction given an initial condition and
the specification which was the case in this example.

6.2. Multiple Lyapunov functions
Consider the following stochastic switched system borrowed

from [12] and additionally affected by noise:

Σ :
{

d ξ1 = (−0.25ξ1 + pξ2 + (−1)p0.25) d t + 0.01ξ1 d W1
t ,

d ξ2 = ((p − 3) ξ1 − 0.25ξ2 + (−1)p (3 − p)) d t + 0.01ξ2 d W2
t ,

where p = 1, 2. The noise-free version of Σ is endowed with
stable subsystems, however it can globally exhibit unstable be-
haviors for some switching signals [12]. Similarly, Σ does
not admit a common δ-GAS-Mq Lyapunov function. We are
left with the option of seeking for multiple Lyapunov func-
tions. It can be indeed shown that each subsystem Σp ad-
mits a δ-GAS-M1 Lyapunov function of the form Vp(x1, x2) =√

(x1 − x2)T Pp(x1 − x2), with P1 =

[
2 0
0 1

]
and P2 =

[
1 0
0 2

]
.

These δ-GAS-M1 Lyapunov functions have the following char-
acteristics: α(r) = r, α(r) = 2r, κ = 0.2498. Note that
V2

p(x1, x2) is also a δ-GAS-M2 Lyapunov function for Σp, where
p ∈ {1, 2}, satisfying the requirements in Lemma 3.7. Further-
more, the assumptions of Theorem 3.6 hold by choosing a pa-
rameter µ =

√
2 and a dwell time τd = 2 > log µ/κ. In conclu-

sion, the stochastic switched system Σ is δ-GUAS-M1.
Let us work within the set D = [−5, 5] × [−4, 4] of the state

space of Σ. For a sampling time τ = 0.5, using inequality (5.12)
the precision ε is lower bounded by 1.07. For a chosen preci-
sion ε = 1.2, the discretization parameter η of S q(Σ), obtained
from Theorem 5.2, is equal to 0.0083. The resulting number
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Figure 4: Several realizations of the closed-loop trajectory ξx0υ with initial con-
dition x0 = (−4,−3.8) (left panel). Average values (over 10000 experiments) in
time of the distance of solution process ξx0υ to the set W = D\Z, in different
vertical scales (middle panel). Evolution of the synthesized switching signal υ
(right panel).

of states in S q(Στd ) is 9310320, taking 3.4 MB memory space,
where the computation of the abstraction S q(Στd ) has been per-
formed via the software tool CoSyMA [20] on an iMac with
CPU 3.5GHz Intel Core i7. The CPU time needed for comput-
ing the abstraction has amounted to 22 seconds.

Consider the objective to design a controller (switching sig-
nal) forcing the first moment of the trajectories of Σ to stay
within D, while always avoiding the set Z = [−1.5, 1.5] ×
[−1, 1]. This corresponds to the following LTL specification:
2D ∧ 2¬Z. The CPU time needed for synthesizing the con-
troller has amounted to 12.46 seconds. Figure 4 displays sev-
eral realizations of the closed-loop trajectory of ξx0υ, stemming
from the initial condition x0 = (−4,−3.8) (left panel), as well
as the corresponding evolution of the switching signal υ (right
panel). Furthermore, Figure 4 (middle panels) shows the av-
erage value (over 10000 experiments) of the distance in time
of the solution process ξx0υ to the set D\Z, namely

∥∥∥ξx0υ(t)
∥∥∥

D\Z.
Notice that the empirical average distance is significantly lower
than the theoretical precision ε = 1.2.

Note that using the same sampling time τ = 0.5, the same
precision ε = 1.2, and the inequalities (5.28) in Theorem 5.11,
we obtain the temporal horizon as N = 22. Therefore, the car-
dinality of the state set of the symbolic model S q(Στd ) is equal
to 222 = 4194304 which is roughly half of the one of S q(Στd ),
i.e. 9310320.

7. Conclusions

This work has shown that any stochastic switched system Σ
(resp. Στd ), admitting a common (multiple) δ-GAS-Mq Lya-
punov function(s), and within a compact set of states, ad-
mits an approximately bisimilar symbolic model S q(Σ) (resp.
S q(Στd )) requiring a space discretization or S q(Σ)/S q(Σ) (resp.
S q(Στd )/S q(Στd )) without any space discretization. Further-
more, we have provided a simple criterion by which one can
choose between the two proposed abstraction approaches the
most suitable one (based on the size of the abstraction) for a
given stochastic switched system. The constructed symbolic
models can be used to synthesize controllers enforcing com-
plex logic specifications, expressed via linear temporal logic or
as automata on infinite strings.
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9. Appendix

PROOF (OF THEOREM 3.5). The proof is a consequence of
the application of Gronwall’s inequality and of Ito’s lemma [21,
p. 80 and 123]. For any Rn-valued random variables a and a′
that are measurable in F0, any switching signal υ ∈ P, and for
all t ∈ R+

0 where υ is continuous, we have LV (ξaυ(t), ξa′υ(t)) ≤
−κV(ξaυ(t), ξa′υ(t)). Using the continuity of V and of the solu-
tion process ξ, for all t ∈ R+

0 one gets

E
[
V(ξaυ(t), ξa′υ(t))

]
≤ E

[
V(a, a′) +

∫ t

0
(−κV(ξaυ(s), ξa′υ(s))) ds

]
≤ −κ

∫ t

0
E

[
V(ξaυ(s), ξa′υ(s))

]
ds +E

[
V(a, a′)

]
,

which, by virtue of Gronwall’s inequality, leads to

E
[
V(ξaυ(t), ξa′υ(t))

]
≤ E[V(a, a′)]e−κt.

Since the K∞ functions α and α are convex and concave, re-
spectively, using Jensen’s inequality we have

α
(
E

[
‖ξaυ(t) − ξa′υ(t)‖q

])
≤ E

[
α (‖ξaυ(t) − ξa′υ(t)‖q)

]
≤ E

[
V (ξaυ(t), ξa′υ(t))

]
≤ E

[
V(a, a′)

]
e−κt

≤ E
[
α
(
‖a − a′‖q

)]
e−κt ≤ α

(
E

[
‖a − a′‖q

])
e−κt.

Since α ∈ K∞, we obtain

E
[
‖ξaυ(t) − ξa′υ(t)‖q

]
≤ α−1 (

α
(
E

[
‖a − a′‖q

])
e−κt

)
,

for all t ∈ R+
0 . Then condition (3.2) holds with the function

β(r, s) := α−1 (α(r)e−κs). 2

PROOF (OF THEOREM 3.6). The proof is inspired by that of
Theorem 2.8 in [12] for the non-probabilistic case. We show the
result for the case that switching signals have infinite number
of discontinuities (switching times). A proof for the case of
finite discontinuities can be written in a similar way. Let a and
a′ be any Rn-valued random variables that are measurable in
F0, υ ∈ Pτd , t0 = 0, and let pi+1 ∈ P denote the value of the

switching signal on the open interval (ti, ti+1), for i ∈ N0. Using
(iii) in Definition 3.3 for all i ∈ N0 and t ∈ (ti, ti+1), one gets

LVpi+1 (ξaυ(t), ξa′υ(t)) ≤ −κVpi+1 (ξaυ(t), ξa′υ(t)) .

Similar to the proof of Theorem 3.5, for all i ∈ N0 and t ∈
[ti, ti+1], we have

E
[
Vpi+1 (ξaυ(t), ξa′υ(t))

]
≤ E

[
Vpi+1 (ξaυ(ti), ξa′υ(ti))

]
e−κ(t−ti). (9.1)

Particularly, for t = ti+1 and from (3.3), it can be checked that
for all i ∈ N0:

E
[
Vpi+2 (ξaυ(ti+1), ξa′υ(ti+1))

]
≤ µe−κ(ti+1−ti)E

[
Vpi+1 (ξaυ(ti), ξa′υ(ti))

]
.

Using this inequality, we prove by induction that for all i ∈ N0

E
[
Vpi+1 (ξaυ(ti), ξa′υ(ti))

]
≤ µie−κtiE

[
Vp1 (a, a′)

]
. (9.2)

From (9.1) and (9.2), for all i ∈ N0 and t ∈ [ti, ti+1], one obtains

E
[
Vpi+1 (ξaυ(t), ξa′υ(t))

]
≤ µie−κtE

[
Vp1 (a, a′)

]
.

Since the switching signal υ has dwell time τd, then ti ≥ iτd
and hence for all t ∈ [ti, ti+1], t ≥ iτd. Since µ ≥ 1, then for
all i ∈ N0 and t ∈ [ti, ti+1], one has µi = ei log µ ≤ e(log µ/τd)t.
Therefore, for all i ∈ N0 and t ∈ [ti, ti+1], we get

E
[
Vpi+1 (ξaυ(t), ξa′υ(t))

]
≤ e((log µ/τd)−κ)tE

[
Vp1 (a, a′)

]
.

Using functions α, α and Jensen’s inequality, and for all t ∈ R+
0 ,

where t ∈ [ti, ti+1] for some i ∈ N0, we have

α
(
E

[
‖ξaυ(t) − ξa′υ(t)‖q

])
≤ αpi+1

(
E

[
‖ξaυ(t) − ξa′υ(t)‖q

])
≤ E

[
αpi+1

(‖ξaυ(t) − ξa′υ(t)‖q)
]
≤ E

[
Vpi+1 (ξaυ(t), ξa′υ(t))

]
≤ e((log µ/τd)−κ)tE

[
Vp1 (a, a′)

]
≤ e((log µ/τd)−κ)tE

[
αp1 (‖a − a′‖q)

]
≤ e((log µ/τd)−κ)tαp1

(
E

[
‖a − a′‖q

])
≤ e((log µ/τd)−κ)tα

(
E

[
‖a − a′‖q

])
.

Therefore, for all t ∈ R+
0

E
[
‖ξaυ(t) − ξa′υ(t)‖q

]
≤ α−1

(
e((log µ/τd)−κ)tα

(
E

[
‖a − a′‖q

]))
.

Then condition (3.2) holds with the function β(r, s) :=
α−1

(
α(r)e((log µ/τd)−κ)s

)
which is a KL function since by as-

sumption log µ/τd − κ < 0. The same inequality holds for
switching signals with a finite number of discontinuities, hence
the stochastic switched system Στd is δ-GUAS-Mq. 2
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