
Computational Approaches to Reachability
Analysis of Stochastic Hybrid Systems

Alessandro Abate1, Saurabh Amin1, Maria Prandini2,
John Lygeros3, and Shankar Sastry1

1 University of California, at Berkeley - Berkeley, CA, USA
{aabate,saurabh,sastry}@eecs.berkeley.edu

2 Politecnico di Milano - Milano, Italy
prandini@elet.polimi.it

3 ETH Zurich - Zurich, Switzerland
lygeros@control.ee.ethz.ch

Abstract. This work investigates some of the computational issues
involved in the solution of probabilistic reachability problems for discrete-
time, controlled stochastic hybrid systems. It is first argued that, under
rather weak continuity assumptions on the stochastic kernels that char-
acterize the dynamics of the system, the numerical solution of a dis-
cretized version of the probabilistic reachability problem is guaranteed
to converge to the optimal one, as the discretization level decreases. With
reference to a benchmark problem, it is then discussed how some of the
structural properties of the hybrid system under study can be exploited
to solve the probabilistic reachability problem more efficiently. Possible
techniques that can increase the scale-up potential of the proposed nu-
merical approximation scheme are suggested.

1 Introduction

This paper addresses the problem of determining the control policy that maxi-
mizes the probability that a stochastic system will remain within a safe set over
some look-ahead time horizon (finite-time probabilistic reachability problem).
We focus on the discrete time controlled stochastic hybrid system (DTSHS)
model introduced in [1], and consider the case when the control input to be
applied at a certain time is selected based only on the value of the state at
that same time (Markov policy). Following the approach in [1,2], the stochastic
reachability problem of interest can be formulated as a finite-horizon optimal
control problem with a multiplicative cost function to be maximized. This op-
timal control problem, in turn, can be solved by dynamic programming (DP).
This requires to introduce a cost-to-go function and to determine the value of
the control input maximizing the cost-to-go function along the reference time
horizon for all values of the state within the safe set. Since an analytic solution
to the DP equation is generally hard to find, the computational aspects of the
problem are of key importance to its actual implementation. This is the main
motivation of the present work.
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There are two approaches to the problem: the first is to resort to a numerical
approximation scheme relying on the discretization of the continuous state and
control input spaces (gridding approach). Alternatively, one can introduce a fam-
ily of finitely parameterized functions, and then look for the cost-to-go function
within that family (neuro-dynamic programming approach [9]).

Here, we study a gridding procedure for the numerical solution to the DP
equation of the stochastic reachability problem. We assess the convergence of
the numerical solution to the actual solution as the grid size goes to zero, and
derive explicit bounds on the level of approximation introduced for a given small
but nonzero grid size. The study is inspired by the reference work [3], discussing
discretization procedures for the numerical solution to DP in the additive cost
case and for stochastic –non hybrid– systems: we extend this approach to a
hybrid system setting with multiplicative cost and general disturbances. A nu-
merical approximation scheme was proposed in [6] for estimating the probability
of remaining within a safe set for a certain class of autonomous, continuous
time stochastic hybrid systems. The discretization process in that case involved
gridding the system both in time and in space. Convergence of the estimate to
the true probability as the grid size goes to zero was proven, but no bounds
were provided for assessing the quality of the estimates derived for a small but
nonzero grid size.

Furthermore, we reinterpret some ideas proposed in [4] and [5] within the
hybrid systems framework to suggest that structural properties of the problem,
such as its decentralized nature, may be exploited to obtain a more compact state
representation and efficient implementation of the computations involved in the
solution to DP. This feature may partly mitigate the curse of dimensionality
that affects DP as well as other approaches proposed in the literature to address
the reachability problem [8].

The rest of the paper is organized as follows. We first briefly recall the DTSHS
model of [1] in Section 2 and describe the DP algorithm to solve the probabilistic
reachability problem in Section 3. Section 4 proposes a numerical approximation
scheme for solving the DP algorithm. Based on some regularity assumptions on
the stochastic kernels that characterize the system dynamics, convergence of the
numerical scheme and explicit bounds assessing the quality of the approximated
solution to DP are shown in Section 5. Section 6 illustrates the convergence
properties and scaling issues of the proposed numerical approximation scheme
with reference to a multi-room heating benchmark. Possible extensions regard-
ing efficient representations and computation of solutions are finally outlined in
Section 7.

2 Stochastic Hybrid System Model

In this section we briefly recall the discrete time stochastic hybrid system
(DTSHS) model first introduced in [1].

Definition 1. A discrete time stochastic hybrid system (DTSHS) is a tuple
H = (Q, n, A, Tx, Tq, R), where
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– Q := {q1, q2, . . . , qm}, for some m ∈ N, represents the discrete state space;
– n : Q → N assigns to each discrete state value q ∈ Q the dimension of

the continuous state space R
n(q). The hybrid state space is then given by

S := ∪q∈Q{q} × R
n(q);

– A is a compact Borel space representing the control space;
– Tx : B(Rn(·))×S×A → [0, 1] is a Borel-measurable stochastic kernel on R

n(·)

given S × A, which assigns to each s = (q, x) ∈ S and a ∈ A a probability
measure on the Borel space (Rn(q), B(Rn(q))): Tx(dx|(q, x), a)

– Tq : Q × S × A → [0, 1] is a discrete stochastic kernel on Q given S × A,
which assigns to each s ∈ S and a ∈ A, a probability distribution over Q:
Tq(q|(q, x), a);

– R : B(Rn(·)) × S × A × Q → [0, 1] is a Borel-measurable stochastic kernel
on R

n(·) given S × A × Q, that assigns to each s = (q, x) ∈ S, a ∈ A,
and q′ ∈ Q, a probability measure on the Borel space (Rn(q′), B(Rn(q′))):
R(dx|(q, x), a, q′). ��

The system initialization at time k = 0 is specified through some probability
measure π : B(S) → [0, 1] on the Borel space (S, B(S)), where B(S) is the
σ-field generated by the subsets of S of the form ∪q{q} × Bq, with Bq denoting
a Borel set in R

n(q). With reference to the time horizon [0, N ], we next define
the notion of Markov policy.

Definition 2. Consider a DTSHS H = (Q, n, A, Tx, Tq, R). A Markov policy
for H is a sequence μ = (μ0, μ1, . . . , μN−1) of universally measurable maps μk :
S → A, k = 0, 1, . . . , N − 1. We denote the set of Markov policies as Mm. ��

For conciseness sake, we can introduce the Borel-measurable stochastic kernel
Ts : B(S)×S×A → [0, 1] on S given S×A, which assigns to each s = (q, x), s′ =
(q′, x′) ∈ S, a ∈ A a probability measure on the Borel space (S, B(S)) as follows:

Ts(ds′ |s, a) =

{
Tx(dx′|(q, x), a)Tq(q′|s, a), if q′ = q

R(dx′|(q, x), a, q′)Tq(q′|s, a), if q′ �= q.
(1)

Definition 3. An execution for a DTSHS H = (Q, n, A, Tx, Tq, R) associated
with a policy μ = (μ0, μ1, . . . , μN−1) ∈ Mm and an initial distribution π is a
stochastic process {s(k), k ∈ [0, N ]} with values in S whose sample paths are
obtained according to the following algorithm:
extract from S a value s0 for s(0) according to π;

for k = 0 to N − 1

set ak = μk(sk);

extract from S a value sk+1 for s(k + 1) according to Ts(· |sk, ak);

end ��
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A DTSHS H can then be described as a controlled Markov process with state
space S, control space A, and controlled transition probability function Ts :
B(S) × S × A → [0, 1] defined in (1). Thus, the execution {s(k), k ∈ [0, N ]}
associated with μ ∈ Mm and π is a time inhomogeneous stochastic process
defined on the canonical sample space Ω = SN+1, endowed with its product
topology B(Ω), with probability measure Pμ

π uniquely defined by the initial
probability measure π on (S, B(S)) and one-step transition kernels T μk

s (ds′|s) :=
Ts(ds′|s, μk(s)), k = 0, 1, . . . , N − 1. When π is concentrated at {s}, s ∈ S, that
is π(ds) = δs(ds), we shall write simply Pμ

s .

3 Probabilistic Reachability Problem

Given a stochastic hybrid system H, a Borel compact set D ∈ B(S), and a
Markov policy μ ∈ Mm, let

pμ
π(D) := Pμ

π (s(k) ∈ D for all k ∈ [0, N ])

denote the probability that the execution of H associated with policy μ and
with the initial state distribution π will stay within set D over the time horizon
[0, N ]. If π is concentrated at {s}, s ∈ S, we use the notation pμ

s (D). If set D
represents a safe set for H, by computing pμ

s (D), we shall evaluate the safety level
for system H when it starts from s ∈ D and is subject to policy μ. The objective
is to determine the Markov policy that maximizes the probability pμ

π(D).
Let 1C : S → {0, 1} denote the indicator function of a set C ⊆ S: 1C(s) = 1,

if s ∈ C, and 0, if s �∈ C. Observe that

N∏
k=0

1D(sk) =

{
1, if sk ∈ D for all k ∈ [0, N ]
0, otherwise,

where sk ∈ S, k ∈ [0, N ]. Then,

pμ
π(D) = Pμ

π

(
N∏

k=0

1D(s(k)) = 1

)
= Eμ

π

[
N∏

k=0

1D(s(k))

]
. (2)

One can then introduce functions V μ
k : S → [0, 1], k = 0, 1, . . . , N , associated

with a Markov policy μ:

V μ
k (s) := 1D(s)

∫
SN−k

N∏
l=k+1

1D(sl)
N−1∏

h=k+1

Ts(dsh+1|sh, μh(sh))Ts(dsk+1|s, μk(s)),

s ∈ S, where Ts is the controlled transition function of the embedded controlled
Markov process, and

∫
S0(. . . ) = 1. These functions are known as cost-to-go

functions because they satisfy V μ
k (s) = Eμ

π [
∏N

h=k 1D(s(h))|s(k) = s] for any
s ∈ S within the support of the distribution of s(k). Thus, V μ

k (s) returns the
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value of the probability of remaining within D over the (residual) time horizon
[k, N ] starting from s at time k, under policy μ ∈ Mm applied from π.

For any policy μ ∈ Mm, the cost-to-go functions V μ
k : S → [0, 1], k =

0, 1 . . . , N , can be computed by the backward recursion:

V μ
k (s) = 1D(s)

∫
S

V μ
k+1(sk+1)Ts(dsk+1|s, μk(s)), s ∈ S, (3)

initialized with V μ
N (s) = 1D(s), s ∈ S, [1].

From equation (2) we have that

pμ
π(D) =

∫
S

Eμ
π

[ N∏
k=0

1D(s(k))| s(0) = s
]
π(ds) =

∫
S

V μ
0 (s)π(ds). (4)

Moreover, given that μ ∈ Mm and that the execution associated with a Markov
policy is a Markov process, it is easily seen that Eμ

π [
∏N

k=0 1D(s(k))| s(0) = s] =
pμ

s (D); hence, pμ
π(D) =

∫
S Pμ

s (D)π(ds).

Definition 4. Let H = (Q, n, A, Tx, Tq, R) be a DTSHS and D ∈ B(S) a safe
set. A Markov policy μ∗ is maximally safe if pμ∗

s (D) = supμ∈Mm
pμ

s (D), ∀s ∈ D.
��

In view of (4), a maximally safe Markov policy in fact maximizes Pμ
π (D) for any

initial state distribution π. The following theorem was shown in [1]:

Theorem 1. Define functions V ∗
k : S → [0, 1], k = 0, 1, . . . , N , by the following

dynamic programming algorithm:

V ∗
k (s) = sup

a∈A
1D(s)

∫
S

V ∗
k+1(sk+1)Ts(dsk+1|s, a), s ∈ S, (5)

initialized with V ∗
N (s) = 1D(s), s ∈ S.

Then, V ∗
0 (s) = supμ∈Mm

Pμ
s (D) for all s ∈ S. Moreover, if Uk(s, λ) = {a ∈

A|1D(s)
∫
S V ∗

k+1(sk+1)Ts(dsk+1|s, a) ≥ λ} is compact for all s ∈ S, λ ∈ R,
k ∈ [0, N − 1], then there exists a maximally safe policy μ∗ = (μ∗

0, . . . , μ
∗
N−1),

with μ∗
k : S → A, k ∈ [0, N − 1], given by

μ∗
k(s) = arg sup

a∈A
1D(s)

∫
S

V ∗
k+1(sk+1)Ts(dsk+1|s, a), ∀s ∈ S, (6)

and V μ∗

k (s) = V ∗
k (s), s ∈ S, k = 0, 1, . . . , N .

In the sequel, we consider the case when

Assumption 1. The control space A is a finite set. ��

Under this assumption, the compactness condition in Theorem 1 for the existence
of a maximally safe Markov policy is not required. The results illustrated next
can be extended to the case when A is a compact uncountable set in an Euclidean
space following a similar line of reasoning.
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4 Numerical Approximation Scheme

In this section we describe a numerical scheme for determining an approximately
maximally safe policy based on the characterization of a maximally safe policy
given in Theorem 1.

For the purpose of numerical approximation, it is important to note that
the DP algorithm (5) as well as the optimal argument in equation (6) can be
restricted to the compact set D of the state space as follows:

V ∗
k (s) = max

a∈A

∫
D

V ∗
k+1(sk+1)Ts(dsk+1|s, a), s ∈ D, (7)

initialized with V ∗
N (s) = 1, s ∈ D, and

μ∗
k(s) = arg max

a∈A

∫
D

V ∗
k+1(sk+1)Ts(dsk+1|s, a), ∀s ∈ D. (8)

This is quite intuitive, since for values of the state outside D the cost-to-go
function is identically zero for any μ and the optimal policy μ∗ : S → A can be
set arbitrarily. Thus, we just have to consider the values for the state within the
compact set D. The advantage of restricting the state space to the compact set
D is that we can adopt a finite discretization in the numerical approximation
scheme for solving the dynamic programming algorithm and determining the op-
timal policy μ∗. Moreover, under suitable regularity conditions on the transition
kernels defining the DTSHS, the optimal cost-to-go functions can be shown to
be Lipschitz continuous over D in the continuous state component. This prop-
erty (valid only within D, given the discontinuity when passing from a safe state
within D to an unsafe state outside D) is used for determining bounds to the
numerical approximated solution.

4.1 Discretization Procedure

State discretization. As discussed before, we can restrict computations to the
compact safe set D. Thus we only need to discretize D. The set D ⊂ S is given
by D = ∪q∈Q{q} × Xq. The size of the continuous state space within D is
measured by λ := maxq∈Q L(Xq), where L(Xq) denotes the Lebesgue measure
of the set Xq ⊂ R

n(q). For simplicity, we assume that the compact set Xq is not
empty, for all q ∈ Q. Let us introduce a partition of cardinality mq of the set
Xq ⊂ R

n(q), q ∈ Q: Xq = ∪mq

i=1X
q
i , where Xq

i , i = 1, . . . , mq, are pairwise disjoint
Borel sets Xq

i ∈ B(Rn(q)), Xq
i ∩ Xq

j = ∅, ∀i �= j. For any q and i, pick a hybrid
state value vq

i ∈ {q} × Xq
i . The set of all discrete values for the hybrid state

is G := {vq
i , i = 1, . . . , mq, q ∈ Q}. Notice that the compactness assumption on

D ensures the finiteness of the cardinality of G. Denote with dq
i the diameter of

the set Xq
i , dq

i = sup{‖x − x′‖ : x, x′ ∈ Xq
i }. Then, Δ := maxi=1,...,mq,q∈Q dq

i

represents the grid size parameter.
Note that, differently from [3] where the system dynamics is described through

a difference nonlinear equation affected by a stochastic disturbance taking value
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in a finite set, we do not have any disturbance input appearing explicitly. The
definition of the dynamics of the system via stochastic kernels incorporates both
the disturbance effect and the deterministic contribution to the system evolution
(see the example in Section 6). As a consequence, by discretizing the state space,
we implicitly define a discretization of the disturbance space.

Dynamic Programming approximation. With reference to the finite state
grid G, we introduce a discretized version of the dynamic programming algo-
rithm (7). For k = 0, 1, . . . , N −1, compute the approximated optimal cost-to-go
functions as follows

V̂ ∗
k (vq

i ) = max
a∈A

∫
D

V̂ ∗
k+1(s)Ts(ds|vq

i , a), if vq
i ∈ G (9)

V̂ ∗
k (s) = V̂ ∗

k (vq
i ), if s ∈ {q} × Xq

i , for some i ∈ {1, . . . , mq}, q ∈ Q,

with V̂ ∗
N (s) = 1, s ∈ D.

Note that due to the piecewise constant approximation of the optimal cost-
to-go function and to the definition of Ts in Eqn. (1), the integral in equation
(9) can be rewritten as

V̂ ∗
k (vq

i ) = max
a∈A

{ ∑
j=1,...,mq

V̂ ∗
k+1(v

q
j )Tq(q|vq

i , a)
∫

Xq
j

Tx(dx|vq
i , a)

+
∑

j = 1, . . . , mq̄,
q̄ �= q ∈ Q

V̂ ∗
k+1(v

q̄
j )Tq(q̄|vq

i , a)
∫

X q̄
j

R(dx|vq
i , a, q̄)

}
,

which explicitly shows that (9) consists of a computation on the finite grid G.
Based on the approximated optimal cost-to-go V̂ ∗

k , we define a Markov policy
μ̂∗ = (μ̂∗

0, . . . , μ̂
∗
N−1), μ̂∗

k : S → A, k ∈ [0, N − 1], as follows:

μ̂∗
k(vq

i ) = arg max
a∈A

∫
D

V̂ ∗
k+1(s)Ts(ds|vq

i , a), if vq
i ∈ G,

μ̂∗
k(s) = μ̂∗(vq

i ), if s ∈ {q} × Xq
i , for some i ∈ {1, . . . , mq}, q ∈ Q. (10)

As for any other policy, μ̂∗ can be arbitrarily selected outside D.
The performance of such policy μ̂∗ is given by the corresponding values for the

cost-to-go functions V μ̂∗

k , k = 0, 1, . . . , N , that can be computed by the recursion
in (3). In particular, V μ̂∗

0 (s), s ∈ D, provides the value of the probability that
the system will remain within D in the time horizon [0, N ] starting from s ∈ D
under policy μ̂∗.

In the following section, we shall show that, under proper assumptions, the
performance of policy μ̂∗ tends to the one of a maximally safe policy, as the grid
size parameter Δ goes to zero.
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5 Convergence Analysis

We suppose that the stochastic kernels Tx and R on the continuous component
of the hybrid state in Definition 1 of the DTSHS admit density tx and r. We
further assume that tx and r as well as the stochastic kernel Tq satisfy the
following Lipschitz condition.

Assumption 2

1. |Tq(q̄|s, a) − Tq(q̄|s′, a)| ≤ k1‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ D,
a ∈ A, and q̄ ∈ Q,

2. |tx(x̄|s, a) − tx(x̄|s′, a)| ≤ k2‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ D,
a ∈ A, and (q, x̄) ∈ D,

3. |r(x̄|s, a, q̄) − r(x̄|s′, a, q̄)| ≤ k3‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ D,
a ∈ A, (q̄, x̄) ∈ D, and q̄ �= q,

where k1, k2 and k3 are suitable Lipschitz constants. ��

Based on this assumption, we can prove that the optimal cost-to-go functions
satisfy some Lipschitz condition over D. This property will be fundamental in
proving the convergence result. Due to space limitations, proofs are omitted.

Theorem 2. Under Assumption 2 the optimal cost-to-go functions satisfy the
following Lipschitz condition over D:

|V ∗
k (s) − V ∗

k (s′)| ≤ K‖x − x′‖, ∀ s = (q, x), s′ = (q, x′) ∈ D, (11)

for any k ∈ [0, N ]. The constant K is given by K = mk1 + λ
(
k2 + (m − 1)k3

)
.

Based on Theorem 2, the following convergence result can be proven.

Theorem 3. UnderAssumption 2, there exist positive constants γk, k=0, . . . , N,
such that the solutions V̂ ∗

k to the approximated dynamic programming equations
(9) and the cost-to-go functions of the corresponding Markov policy μ̂∗ defined
in (10) satisfy: ∣∣V ∗

k (s) − V̂ ∗
k (s)

∣∣ ≤ γkΔ, s ∈ D,∣∣V ∗
k (s) − V μ̂∗

k (s)
∣∣ ≤ νkΔ, s ∈ D.

where γk = γk+1 + K, k = 1, 2 . . . , N − 1, initialized with γN = 0, νk = γk +
γk+1 + K + νk+1, k = 1, 2 . . . , N − 1, initialized with νN = 0, and K = mk1 +
λ
(
k2 + (m − 1)k3

)
.

From this theorem it follows that the quality of the approximation by the nu-
merical procedure described in equations (9) and (10) improves as the grid size
parameter Δ decreases. The rate of convergence is linear in Δ with a constant
that depends on the Lipschitz constants k1, k2, and k3 in Assumption 2 through
the K constant defined in Theorem 2. This is not surprising because we are using
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a piecewise constant approximation of the optimal cost-to-go function and we
expect that the optimal cost-to-go function is smoother as k1, k2, and k3 are
smaller. As the time horizon grows, the approximation error propagates. This is
taken into account by the constants γk and νk in Theorem 3 that grow linearly
as k decreases from N to 0, where N is the length of the time-horizon.

6 Computational Study

In this section we present the results of a computational study for a multi-room
heating benchmark inspired by [1,7]. We numerically analyze the convergence of
quantities computed by the discretization scheme proposed in Section 4.1. We
also propose possible improvements in the implementation when the underlying
structure of the DTSHS can be exploited to implement the DP algorithm in a
computationally efficient manner.

The benchmark in [7] deals with the problem of regulating temperature in a
house with n rooms via m heaters. In this report we focus on m = 1, the single
heater case. The state of the system can be described as a hybrid state with
discrete state component described by the position and status of the heater.
The continuous state component can be described by the average temperature
in each of the rooms. Let Δt be the time step and N be the total number of
time intervals. Let xi(k) denote the average temperature in room i at time k,
xa the ambient temperature and hi a boolean vector of size equal to the number
of rooms with components equal to 1 if the heater is present and in the “on”
status in the corresponding room, and 0 otherwise. The average temperature in
room i is governed by the following linear stochastic difference equation:

xi(k + 1) = xi(k) +
(
bi(xa − xi(k)) +

∑
i�=j

ai,j(xj(k) − xi(k)) + cihi

)
Δt + ni(k) (12)

where, ai,j , bi, ci are constants and {ni(k), k = 0, . . . , N} is a sequence of i.i.d
Gaussian random variables with zero mean and variance ν2. For i �= j, E[ninT

j ] =
0. The heater is controlled by a thermostat that is prone to delay and failures in
switching the heater between one room to another and between the “on” and “off”
status: the effect of these control actions on the discrete state transitions is speci-
fied by a finite-state, finite-action, controlled Markov chain which is independent
of the continuous state, that is, Tq : Q × Q × A → [0, 1]. One can easily check
that the number of possible discrete states is n + 1 and the maximum number of
available control actions is n(n + 1) + 1. We define the compact safe set to be

D = ∪q∈{1,...,(n+1)} ∪i∈{1,...,n} {q} × {i} × [xq
li, x

q
ui],

where xq
ui and xq

ui specify the lower and upper limits for the desired temperature
in room i for discrete state q. For simplicity, these are assumed to be independent
of i and q. We now describe the discretization procedure as follows: we adopt
a uniform partitioning of the set [xq

li, x
q
ui] into m disjoint intervals each of size

κ = (xq
ui −xq

li)/m. Therefore, [xq
li, x

q
ui] = [xq

li, x
q
li +κ)∪ . . .∪ [xq

li +(m−1)κ, xq
ui].

The value of the temperature in room i for the discrete state q is defined by
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eq
rii

= xq
li + (ri − 1)κ, where ri ∈ {1, . . . , m}. Define r = [r1, . . . , rn]T . We

pick vq
r = (q, [eq

r11, . . . , e
q
rnn]T ) as hybrid state value. Thus, the set of all dis-

crete values for the hybrid state is G = {vq
r , r = [r1, . . . , rn]T ; ri = 1, . . . , m; i =

1, . . . , n; q = 1, . . . , (n + 1)}. Let N (·; η, σ2) denote the probability measure over
(R, B(R)) associated with a Gaussian density function with mean η and vari-
ance σ2. Then the stochastic kernel Ts(ds′|vq

r , a) that is used in the discretized
dynamic programming equations (9) can be defined as follows:

Ts(ds′|vq
r , a) = Tx(dx′|vq

r , a)Tq(q′|q, a),

for vq
r ∈ G, a ∈ A, and s′ ∈ S. Here, Tx(·|vq

r , a) = N (·; μq
r, ν

2In), In being the
identity matrix of size n, μq

r = [μq
r1

, . . . , μq
rn

]T and μq
ri

= eq
ri

+
(
bi(xa − eq

ri
) +∑

i�=j ai,j(eq
rj

−eq
ri

)+cihi

)
Δt. It is easy to check that Tx(dx′|vq

r , a) and Tq(q′|q, a)
satisfy the Assumption 2.

6.1 Convergence Properties

We first analyze the convergence properties of the discretization scheme for the
case when n = 2 (two rooms). The number of modes is 3 and maximum number
of allowable control actions is 7, as shown in Figure 1(a). The computations are
performed for the safe set D = ∪q∈{1,2,3} ∪i∈{1,2} {q} × {i} × [17.5, 22]oC. The
size of time interval is Δt = 1/15 and the number of intervals is N = 60. The
parameters values in equation (12) are: xa = 6, b1 = b2 = 0.25, a12 = a21 =
0.33, c1 = 12, c2 = 14 and ν2 = 0.9. All the parameters should be interpreted
in appropriate units. For each control action by the thermostat that elicits a
transition between two different modes of the heater, the transition happens
with probability 0.8. The remaining 0.2 probability is divided evenly between
the “do nothing” transition that models the delay and the transition to the
third, non-recommended mode that models a faulty behavior.

Fig. 1. (a) Maximum available control actions for n = 2. (b) Maximum available
control actions for n = 3. (c) Reduced number of available control actions for n = 3.
The discrete states are assigned numbers clockwise starting from the top-left state.

The computations of the solutions V̂ ∗
0 to the approximated DP equations in

(9) were performed for four discretization levels: m ∈ {9, 18, 36, 45}. Inspired
by [1], we define the approximately maximal probabilistic safe sets Ŝ∗(ε) with
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Fig. 2. Maximal probabilistic safe sets corresponding to safety levels:
0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.96 and 0.97 for the case n = 2 and initial dis-
crete state “off’. In going from left-to-right and top-to-bottom, the plots correspond
to discretization levels of 9, 18, 36 and 45 respectively.

safety level (1 − ε) as Ŝ∗(ε) = {s ∈ S : V̂ ∗
0 (s) ≥ (1 − ε)}. Figure 2 shows the

approximately maximal safe sets when the initial discrete state is “off”, and
corresponding to different safety levels. As expected, the maximal safe sets get
smaller as the required safety level increases. Furthermore, as the discretization
level decreases, the maximal safe sets tend to graphically converge: this visually
confirms the numerical convergence of the proposed discretization scheme.

The optimal control actions for the case when the initial discrete state is
“off” are plotted in Figure 3 for the four discretization levels and k = 1.
The optimal actions at finer resolution were obtained from that of coarser res-
olution by nearest neighbor interpolation. It can be noticed that the regions
of optimal recommended actions become more well-formed and again visually
converge as the discretization step decreases.

6.2 Scaling to Higher Dimensions

We now present the results from the three-room, one heater benchmark case. For
this case, the number of continuous states is n = 3, the number of discrete states
is 4 and maximum number of allowable actions is 13, as shown in Figure 1(b).
The safe set is specified to be D = ∪q∈{1,2,3,4} ∪i∈{1,2,3} {q}× {i}× [17.5, 22]oC.
The size of time interval is Δt = 1/15 and the number of intervals is N = 60.
The parameters values in equation (12) are: a12 = a21 = 0.80, a13 = a31 = 0.60,
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Fig. 3. Maximally safe actions for the case n = 2, initial discrete state “off” and k = 1.
In going from left-to-right and top-to-bottom, the plots correspond to discretization
levels of 9, 18, 36 and 45 respectively. The colors black, white and grey respectively stand
for “do nothing”, “switch heater to room 1” and “switch heater to room 2” actions.

Fig. 4. Maximal probabilistic safe sets corresponding to a safety level of 0.95 for the
case when n = 3 and initial discrete state is “off’. Available control actions are shown
in Figure 1(b). In going from left to right and top to bottom, the plots correspond to
k = 60, 55, 50, 40, 20 and 1.
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Fig. 5. Maximal probabilistic safe sets corresponding to the safety level 0.95 for the
case n = 3 and initial discrete state “off’. The reduced set of available control actions
is shown in Figure 1(c). In going from left-to-right, the plots correspond to k = 55, 50
and 45. The safe set for k = 60 is same as the corresponding safe set in Figure 4.

a23 = a32 = 0.70, xa = 6, b = [0.30, 0.20, 0.30]T , c = [12.00, 14.00, 12.00]T

and ν2 = 0.33. Similar to the two-room case, the effect of control actions is
described by a controlled Markov chain. The exact details are omitted due to
space limitations. The computation of the DP algorithm was performed for the
discretization level m = 18. Figure 4 shows the maximal safe sets corresponding
to the safety level 1 − ε = 0.95, at different times. As expected, as the number
of steps-to-go increases, the size of the safe sets also decreases. It is of interest
to compare the effect of number of available control actions on the size of the
maximal safe set. In order to study this, we performed the DP computations
for the three-room, one heater example for the reduced set of actions shown
in Figure 1(c). The resulting maximal safe sets corresponding to safety level
1 − ε = 0.95 are shown in Figure 5. We observe that the maximal safe set is
becomes very small and eventually decreases to the empty set as the number of
steps-to-go increases.

We finally notice an important structural property of the benchmark, namely
the conditional independence of the continuous stochastic kernel: Tx(x̄|vq

r , a) =
Tx(x̄1|vq

r , a)× . . . ×Tx(x̄n|vq
r , a). This enables us to efficiently compute the state

transition probabilities.

7 Possible Extensions and Future Work

The above discretization schemes can be directly extended to the case of
uncountable, but compact control space (see Assumption 1) in a similar way.
We shall include the details of this in a future work.

Even in the presence of the conditional independence property of the con-
tinuous transitions kernel, increasing the problem size further will make the
computation of approximate cost-to-go value functions prohibitively expensive.
This motivates the study of more efficient approaches to solve the DP algo-
rithm in hybrid state space; the literature suggests some methods to attack this
problem. One technique exploits some decentralization in the structure of the
state-space in order to distribute the computations: the HS structure naturally
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yields itself to this distributed approach according to the topology of the under-
lying graph consisting of the modes and the edges of the HS. In [4], an approach
to asynchronously perform in parallel the computations with proven convergence
is suggested. A second more recent approach is to solve large-scale Markov Deci-
sion Processes (MDPs) by approximating the optimal value function by a linear
combination of basis functions and finding the associated optimal weights by lin-
ear programming [5]. The authors are currently investigating and experimenting
these methods that leverage on the structure of the DP to achieve computation-
ally attractive performances for the proposed schemes, to be further tested on
the benchmark [7] and compared to other approaches in the literature.

References

1. Amin, S., Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Reachability analysis for
controlled discrete time stochastic hybrid systems. In J. Hespanha and A. Tiwari,
eds.: Hybrid Systems: Computation and Control. Lecture Notes in Computer Science
3927. Springer Verlag, pp. 49-63 (April 2006).

2. Abate, A., Amin, S., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic Reachability
for Safety and Regulation of Controlled Discrete-Time Stochastic Hybrid Systems. In
the Proceedings of the 45th IEEE Conference on Decision and Control, San Diego,
CA, pp. 258-263 (December 2006).

3. Bertsekas, D.: Convergence of Discretization Procedures in Dynamic Programming.
IEEE Transactions on Automatic Control, vol. 20, 3, pp. 415-419 (June 1975).

4. Bertsekas, D.: Distributed Dynamic Programming. IEEE Transactions on Automatic
Control, vol. 27, 3, pp. 610-616 (June 1982).

5. Kveton, B., Hauskrecht, M., Guestrin, C.,: Solving factored MDPs with Hybrid State
and Action Variables. Journal of Artificial Intelligence Research, vol. 27, pp. 1-49
(September 2006).

6. Prandini, M., and Hu, J.: Stochastic reachability: Theoretical foundations and nu-
merical approximation. In C. Cassandras and J. Lygeros, eds.: Stochastic Hybrid
Systems. Taylor & Francis Group/CRC Press (2006).

7. Fehnker, A., Ivancic F.: Benchmarks for Hybrid Systems Verifications. In R. Alur
and G.J. Pappas, eds.: Hybrid Systems: Computation and Control. Lecture Notes
in Computer Science 2993. Springer Verlag, pp. 326-341 (April 2004).

8. Mitchell, I., Templeton J.: A Toolbox of Hamilton-Jacobi Solvers for Analysis of
Nondeterministic Continuous and Hybrid Systems. In M. Morari and R. Tiele, eds.:
Hybrid Systems: Computation and Control. Lecture Notes in Computer Science
3414. Springer Verlag, pp. 480-494 (March 2005).

9. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA (1996).


	Introduction
	Stochastic Hybrid System Model
	Probabilistic Reachability Problem
	Numerical Approximation Scheme
	Discretization Procedure

	Convergence Analysis
	Computational Study
	Convergence Properties
	Scaling to Higher Dimensions

	Possible Extensions and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


