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Abstract. Quantitative analysis of Markov models typically proceeds through
numerical methods or simulation-based evaluation. Since the state space of the
models can often be large, exact or approximate state aggregation methods (such
as lumping or bisimulation reduction) have been proposed to improve the scala-
bility of the numerical schemes. However, none of the existing numerical tech-
niques provides general, explicit bounds on the approximation error, a problem
particularly relevant when the level of accuracy affects the soundness of verifica-
tion results. We propose a novel numerical approach that combines the strengths
of aggregation techniques (state-space reduction) with those of simulation-based
approaches (automatic updates that adapt to the process dynamics). The key ad-
vantage of our scheme is that it provides rigorous precision guarantees under
different measures. The new approach, which can be used in conjunction with
time uniformisation techniques, is evaluated on two models of chemical reac-
tion networks, a signalling pathway and a prokaryotic gene expression network:
it demonstrates marked improvement in accuracy without performance degrada-
tion, particularly when compared to known state-space truncation techniques.

1 Introduction

Markov models are widely used in many areas of science and engineering in order
to evaluate the probability of certain events of interest. Quantitative analysis of time-
bounded properties of Markov models typically proceeds through numerical analysis,
via solution of equations yielding the probability of the system residing in a given
state at a given time, or via simulation-based exploration of its execution paths. For
continuous-time Markov chains (CTMCs), a commonly employed method is uniformi-
sation (also known as Jensen’s method), which is based on the discretisation of the
original CTMC and on the numerical computation of transient probabilities (that is,
probability distributions over time). This can be combined with graph-theoretic tech-
niques for probabilistic model checking against temporal logic properties [4].

There are many situations where highly accurate probability estimates are neces-
sary, for example for reliability analysis in safety-critical systems or for predictive
modelling in scientific experiments, but this is difficult to achieve in practice because
of the state-space explosion problem. Imprecise values are known to lead to lack of
robustness, in the sense that the satisfaction of temporal logic formulae can be affected
by small changes to the formula bound or the probability distribution of the model.
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Simulation-based analysis does not suffer from this problem and additionally allows
dynamic adaptation of the sampling procedure, as e.g. in importance sampling, to the
current values of the transient probability distribution. However, this analysis provides
only weak precision guarantees in the form of confidence intervals. In order to enable
the handling of larger state spaces, two types of techniques have been introduced: state
aggregation and state-space truncation. State aggregation techniques build a reduced
state space using lumping [6] or bisimulation quotient [21], and have been proposed
both in exact [21] and approximate form [10], with the latter deemed more robust than
than the exact ones [11]. State-space truncation methods, e.g. fast adaptive uniformisa-
tion (FAU) [9,23], on the other hand, only consider the states whose probability mass is
not negligible, while clustering states where the probability is less than a given thresh-
old and computing the total probability lost. Unfortunately, though these methods allow
the user to specify a desired precision, none provide explicit and general error bounds
that can be used to quantify the accuracy of the numerical computation: more precisely,
these truncation methods provide a lower bound on the probability distributions in time,
and the total probability lost can be used to derive a (rather conservative) upper bound
on the (point-wise) approximation error as the sum of the lower bound and of the total
probability lost.

Key contributions We propose a novel adaptive aggregation method for Markov chains
that allows us to control its approximation error based on explicitly derived error bounds.
The method can be combined with numerical techniques such as uniformisation [9,23],
typically employed in quantitative verification of Markov chains. The method works
over a finite time interval by clustering the state space of a Markov chain sequentially
in time, where the quality of the current aggregation is quantified by a number of met-
rics. These metrics, in conjunction with user-specified precision requirements, drive the
process by automatically and adaptively reclustering its state space depending on the
explicit error bounds. In contrast to related simulation-based approaches in the litera-
ture [13,31] that employ the current probability distribution of the aggregated model to
selectively cluster the regions of the state space containing negligible probability mass,
our novel use of the derived error bounds allows far greater accuracy and flexibility as
it accounts also for the past history of the probability mass within specific clusters.

To the best of our knowledge, despite recent attempts [10, 11] the development and
use of explicit bounds on the error associated with a clustering procedure is new for the
simulation and analysis of Markov chains. The versatility of the method is further en-
hanced by employing a variety of different metrics to assess the approximation quality.
More specifically, we use the following to control the error: (1) the probability distribu-
tions in time (namely, the point-wise difference between concrete and abstract distribu-
tions), (2) the time-wise likelihood of events (L1 norm and total variation distance), as
well as (3) the probability of satisfying a temporal logic specification.

We implement our method in conjunction with uniformisation for the computation
of probability distributions of the process in time, as well as time-bounded probabili-
ties (a key procedure for probabilistic model checking against temporal logic specifi-
cations), and evaluate it on two case studies of chemical reaction networks. Compared
to fast adaptive uniformisation as implemented in PRISM [9], currently the best per-
forming technique in this setting, we demonstrate that our method yields a marked
improvement in numerical precision without degrading its performance.



Related work (Bio-)chemical reaction networks can be naturally analysed using dis-
crete stochastic models. Since the discrete state space of these models can be large
or even infinite, a number of numerical approaches have been proposed to alleviate
the associated state-space explosion problem. For biochemical models with large pop-
ulations of chemical components, fluid (mean-field) approximation techniques can be
applied [5] and extended to approximate higher-order moments [12]: these determin-
istic approximations lead to a set of ordinary differential equations. In [16], a hybrid
method is proposed that captures the dynamics using a discrete stochastic description
in the case of small populations and a moment-based deterministic description for large
populations. An alternative approach assumes that the transient probabilities can be
compactly approximated based on quasi product forms [3]. All the mentioned methods
do not provide explicit accuracy bounds of approximation.

A widely studied model reduction method for Markov models is state aggrega-
tion based on lumping [6] or (bi-)simulation equivalence [4], with the latter notion in
its exact [21] or approximate [10] form. In particular, approximate notions of equiva-
lence have led to new abstraction/refinement techniques for the numerical verification
of Markov models over finite [11] as well as uncountably-infinite state spaces [1,2,26].
Related to these techniques, [27] presents an algorithm to approximate probability dis-
tributions of a Markov process forward in time, which serves as an inspiration for our
adaptive scheme. From the perspective of simulations, adaptive aggregations are dis-
cussed in [13] but no precision error is given: our work differs by developing an adaptive
aggregation scheme, where a formal error analysis steers the adaptation.

An alternative method to deal with large/infinite state spaces is truncation, where
a lower bound on the transient probability distribution of the concrete model is com-
puted, and the total probability mass that is lost due to this truncation is quantified.
Such methods include finite state projections [24], sliding window abstractions [18],
or fast adaptive uniformisation (FAU) [9, 23]. Apart from truncating the state space by
neglecting states with insignificant probability mass, FAU dynamically adapts the uni-
formisation rate, thus significantly reducing the number of uniformisation steps [30].
The efficiency of the truncation techniques depends on the distribution of the signifi-
cant part of the probability mass over the states, and may result in poor accuracy if this
mass is spread out over a large number of states, or whenever the selected window of
states does not align with a property of interest.

Summarising, whilst a number of methods have been devised to study or to simulate
complex biochemical models, in most cases a rigorous error analysis is missing [13,22,
31], or the error analysis cannot be effectively used to obtain accurate bounds on the
probability distribution or on the likelihood of events of interest [17].

Structure of this article Section 2 introduces the sequential aggregation approach to
approximate the transient probability distribution (that is, the distribution over time)
of discrete-time Markov chains, and quantifies bounds on the introduced error accord-
ing to three different metrics. Section 3 applies the aggregation method for temporal
logic verification of Markov chains. In Section 4, we implement adaptive aggregation
for continuous-time Markov chain models of chemical reaction networks, in conjunc-
tion with known techniques such as uniformisation and threshold truncation. Finally,
Section 5 discusses experimental results.



2 Computation of the transient probability distribution

We first work with discrete-time labelled Markov chains (LMC), and in Section 4 we
show how to apply the obtained results to (labelled) continuous-time Markov chains.
Formally, an LMC is defined as a triple (S , P, L), where

– S = {s1, . . . , sn} is the finite state space of size n;
– P : S × S → [0, 1] is the transition probability matrix, which is such that ∀ j ∈ S :∑n

i=1 P ji =
∑n

i=1 P( j, i) = 1;
– L : S → 2Σ is a labelling function, where Σ is a finite alphabet built from a set of

atomic propositions.

Whenever clear from the context, we refer to the model simply as (S , P). The model is
initialised via distribution π0 : S → [0, 1],

∑
s∈S π0(s) = 1, and its transient probability

distribution at time step k ≥ 0 is

πk+1(s) =
∑
s′∈S

πk(s′)P(s′, s), (1)

or more concisely as πk+1 = πkP (where the πk’s are row vectors). We are interested in
providing a compact representation and an efficient computation of the vectors πk.

Sequential aggregations of the Markov chain

Consider the finite time interval of interest [0, 1, . . . ,N]. Divide this interval into a given
number (q) of sub-intervals, namely select N1,N2, . . . ,Nq :

∑q
i=1 Ni = N, and consider

the evolution of the model within the corresponding l-th interval [
∑l−1

i=0 Ni,
∑l

i=0 Ni], for
l = 1, . . . q, and where we have set N0 = 0.

We assume that a specific state-space aggregation is given, for each of the q sub-
intervals of time. Later, in Section 4, we show how such aggregations can be obtained
adaptively, based on a number of measures (such as the current value of the aggregated
transient probability distribution, or the accrued aggregation error in time). In partic-
ular, at the l-th step (where l = 1, . . . , q), the state space is partitioned (clustered) as
S = ∪

ml
i=1S l

i (consider that the cardinality index ml has been reasonably selected so that
ml << n), and denote the abstract (aggregated) state space simply as S l and its ele-
ments (the abstract states) with φi, i = 1, . . . ,ml. Introduce abstraction and refinement
maps as αl : S → S l and Al : S l → 2S , respectively – the first takes concrete points
into abstract ones, whereas the latter relates abstract states to concrete partitioning sets.
For any pair of indices i, j = 1, . . . ,ml, define the abstract transition matrix as

Pl(φ j, φi) �
1

| Al(φi) |

∑
s∈Al(φi)

∑
s′∈Al(φ j)

P(s′, s).

The intuition behind the aggregated matrix Pl is that it encompasses the average in-
coming probability from clusters S j to S i. The shape of this matrix is justified by the
structure of the update equation in (1). Given the aggregated Markov chain, we shall
work, for all s ∈ S l, with the following recursions:

πl
k+1(s) =

∑
s′∈S 1

πl
k(s′)Pl(s′, s).



The smaller, aggregated model (S l, Pl) serves as basis for an approximate computation
of the transient probability in time: we now calculate an explicit upper bound on the ap-
proximation error. In order to quantify this error, we define a function ε l : [1, . . . ,ml]2 →

[0, 1], as follows:

ε l( j, i) � max
s∈S l

i

∣∣∣∣∣∣∣ | S
l
i |

| S l
j |

P(S j, s) − Pl(φ j, φi)

∣∣∣∣∣∣∣ . (2)

Intuitively, this quantity accounts for the difference between the average incoming prob-
ability between a pair ( j, i) of partitioning sets, and the worst-case (rescaled) point-wise
incoming probability between those two sets. Introduce the terms ε l( j) :=

∑ml
i=1 ε

l( j, i).
Finally, define, for all s ∈ S , π̃l

k(s) = πl
k(αl(s))/ | Al(αl(s)) | as a (normalised)

piecewise constant approximation of the abstract functions πl
k. Functions π̃l

k, being de-
fined over the concrete state space S , will be employed for comparison with the original
distribution functions πk. Specifically, for the initial interval [N0,N1] (with l = 1), ap-
proximate the initial distribution π0 by π1

0 as: ∀s ∈ S 1, π1
0(s) =

∑
s′∈A1(s) π0(s′). Similarly,

we have that ∀s ∈ S , π̃1
0(s) = π1

0(α1(s))/ | A1(α1(s)) |.

Remark 1. Exact and approximate probabilistic bisimulations [10, 21] build a quotient
or a cover of the state space of the original model based on matching or approximating
the “outgoing probability” from concrete states – for example, exact probabilistic bisim-
ulation compares, for state pairs (s1, s2) within a partition, the “outgoing” probabilities
P(s1, B) and P(s2, B) over partitions B. On the other hand, in (2) we approximate the
“incoming probability”, as motivated by the approximation of the recursions in (1). ut

Explicit error bounds for the quality of the sequential aggregations

Let us consider the aggregated model (S 1, P1) (for l = 1) and, given the aggregated vec-
tor π1

0, the time-wise updates π1
k+1 = π1

k P1, k = N0, . . . ,N1−1. Introduce the interpolated
vectors π̃1

k+1(s), s ∈ S , defined as π̃1
k+1(s) = π1

k+1(α1(s))/ | A1(α1(s)) |. We are inter-
ested in a bound on the point-wise error defined over the concrete state space, namely
∀s ∈ S , k = N0, . . . ,N1,

∣∣∣πk(s) − π̃1
k(s)

∣∣∣, or equivalently a bound for
∣∣∣∣πk(s) − π1

k (α1(s))
|A1(α1(s))|

∣∣∣∣.
Such a point-wise bound directly allows for expressing a global error for the infinity
norm of the difference between the two distribution vectors, namely∥∥∥πk − π̃

1
k

∥∥∥
∞

= max
s∈S

∣∣∣πk(s) − π̃1
k(s)

∣∣∣ .
Beyond the first aggregation (l = 1), the next statement explicitly characterises such a
bound over the entire sequence of q re-aggregations and the time interval [0, 1, . . . ,N].

Proposition 1. Consider a sequential q-step aggregation strategy, characterised by
times Nl :

∑q
l=1 Nl = N, partitions S = ∪

ml
i=1S l

i, and matrices Pl. We obtain∣∣∣πN(s) − π̃q
N(s)

∣∣∣ ≤ c(s)N
∣∣∣π0(s) − π̃1

0(s)
∣∣∣

+

q∑
l=1

c(s)N−
∑l

i=0 Ni

 1
| Al(αl(s)) |

ml∑
j=1

ε l( j, αl(s))
Nl−1∑
k=0

πl∑l−1
i=0 Ni+k

( j) + γl
l−1(s)

 ,



where we have set c(s) = P(S , s), and where γl
l−1(s) =

∣∣∣∣∣π̃l−1∑l−1
i=0 Ni

(s) − π̃l∑l−1
i=0 Ni

(s)
∣∣∣∣∣ for

l = 1, . . . , q, with γ1
0(s) = 0, ∀s ∈ S .

Remark 2. A few comments on the structure of the error bounds are in order. The
overall error is composed of two main contributions, one depending on the error ac-
crued within single aggregation steps, and the other (γl

l−1(s)) depending on the q re-
aggregations (that is, an update from the current partition to the next).

The first term of the first contribution further depends on the point-wise error in

the distributions initialised at each aggregation, namely,
∣∣∣∣∣π∑l

i=0 Ni
(s) − π̃l∑l

i=0 Ni
(s)

∣∣∣∣∣: this

quantity, discounted by the Nl-th power of the factor c(s) (accounting for contractive or
expansive dynamics), builds up recursively to yield the global (over the q aggregation
steps) quantity c(s)N

∣∣∣π0(s) − π̃1
0(s)

∣∣∣. The second term of the first contribution, on the
other hand, accounts for the error due to the approximation of the transition probability
matrix (terms ε l), averaged over the accrued running distribution functions (factors πl).

The intuition on factor c(s) is the following: if the model is “contractive” (in a
certain probabilistic sense) towards a point s, the factor c(s) is likely to be greater than
one; on the other hand, if the distribution in time is “dispersed,” then it is likely that
c(s) < 1 over a large subset of the state space. The quantity c(s) = P(S , s) might be
decreased if we work on a subset of S : this might happen with a discrete-time chain
obtained from a corresponding continuous-time model via FAU [9, 23], or through the
interaction of the factor c(s), s ∈ S , with atomic propositions defined specifically over
subsets of the state space S . ut

Corollary 1. Consider the same setup as in Proposition 1. A bound for the quantity∥∥∥πN − π̃
q
N

∥∥∥
∞

can be obtained from that in Proposition 1 by straightforward adaptation
and setting c = maxs∈S c(s), and γl

l−1 = maxs∈S γ
l
l−1(s), l = 1, . . . , q.

In addition to point-wise errors, we seek a bound for the following global error,∥∥∥πk − π̃
1
k

∥∥∥
1 =

∑
s∈S

∣∣∣πk(s) − π̃1
k(s)

∣∣∣ , ∀k = 0, . . . ,N1,

and its further extension to successive aggregations and time steps k = N1 + 1, . . . ,N.
This L1-norm measure is related to the “total variation distance” over events in the
σ-algebra 2S at each time step k. This measure is commonly used in related litera-
ture [8, 29], and refers to differences in probability of events defined over sets in S
at a specific point in time k. The corresponding error bound is explicitly quantified as
follows.

Proposition 2. Consider a q-step sequential aggregation strategy characterised by the
times Nl :

∑q
l=1 Nl = N, partitions S = ∪

ml
i=1S l

i, and matrices Pl. We obtain

∥∥∥πN − π̃
q
N

∥∥∥
1 ≤

∥∥∥π0 − π̃
1
0

∥∥∥
1 +

q∑
l=1


ml∑
j=1

ε l( j)
Nl−1∑
k=0

πl∑l−1
i=0 Ni+k

( j) + Γl
l−1

 ,
where for l = 1, . . . , q, Γl

l−1 =

∥∥∥∥∥π̃l−1∑l−1
i=0 Ni
− π̃l∑l−1

i=0 Ni

∥∥∥∥∥
1
, and where we have set Γ1

0 = 0.



3 Aggregations for model checking of time-bounded specifications

In Section 2, we have introduced a sequential aggregation procedure to approximate
the computation of the transient probability distribution of a Markov chain. The derived
bounds allow for a comparison of aggregated and concrete models either point-wise, or
according to a global measure of the differences in the probability of events over the
state space, at a specific point in time. We now show how to employ the aggregation
method for quantitative verification against probabilistic temporal logics such as PCTL.
We focus on a bounded variant of the probabilistic safety (invariance) property, which
corresponds to time-bounded invariance for continuous-time Markov chains.

Consider the LMP (S , P, L). We focus on properties expressed over the atomic
propositions AP, namely the set of finite strings over the labels 2AP, and on how to
approximately compute the likelihood associated to such strings. In particular, consider
a step-bounded safety formula [4], namely P=?

(
G≤NΦ

)
, where N ∈ N, and Φ ∈ 2Σ ,

Sat(Φ) ⊆ S 3. This specification expresses the likelihood that a trajectory, initialised ac-
cording to a distribution (say, π0) over the state space S , resides within set Φ over the
time interval [0, 1, . . . ,N]. The specification of interest can be characterised as follows:
for any s ∈ S , k = 0, 1, . . . ,N − 1,

V0(s) = 1Φ(s)π0(s), Vk+1(s) = 1Φ(s)
∑
s′∈S

Vk(s′)P(s′, s),

so that P=?

(
G≤NΦ

)
=

∑
s∈S VN(s). It is well known that the computed quantity depends

on the choice of the initial distribution π0 (which can in particular be a point mass for a
distinguished initial state). As should be clear from the recursion above (use of indicator
functions 1Φ), it is sufficient to restrict the recursive updates to within the set of points
labelled by Φ.

As before, consider the global finite interval [0, 1, . . . ,N], and divide it via intervals
of duration N1,N2, . . . ,Nq :

∑q
i=1 Ni = N. Specifically, for the initial interval [N0,N1]

(corresponding to index q = 1), partition set Φ as Φ = ∪
m1
i=1Φ

1
i – notice that the partition

does not cross the boundaries of the setΦ. Thus S 1 = Φ1∪{a1} = {1, . . . ,m1, a1}, where
a1 is associated with the complement set S \ Φ. Introduce abstraction and refinement
maps as α1 : S → S 1 and A1 : S 1 → 2S , the abstract transition matrix P1, and function
ε1 : [1, . . . ,m1]2 → [0, 1] as

ε1( j, i) � max
s∈Φ1

i

∣∣∣∣∣∣∣ | Φ
1
i |

| Φ1
j |

P(Φ1
j , s) − P1(φ j, φi)

∣∣∣∣∣∣∣ .
Further, approximate π0 as: ∀s ∈ S 1, π1

0(s) =
∑

s′∈A1(s) π0(s′). Introduce, ∀s ∈ S 1, cost
functions Vi via the following recursions:

V1
0 (s) = 1Φ1 (s)π1

0(s), V1
k+1(s) = 1Φ1 (s)

∑
s′∈S 1

V1
k (s′)P1(s′, s),

and, ∀s ∈ S , Ṽ1
k (s) = V1

k (α1(s))/|A1(α1(s))|, as a (normalised) piecewise constant
approximation of the abstract functions V1

k , and in particular initialised as π̃1
0(s) =

3 For the sake of simplicity, we shall often loosely identify the set Sat(Φ) with label Φ.



π1
0(α1(s))/|A1(α1(s))|. We shall derive explicit bounds on the computation of the error:∣∣∣∣∣∣∣∑s∈Φ VN1 (s) −

∑
s∈Φ

Ṽ1
N1

(s)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
m1∑
i=1

∑
s∈Φi

(
VN1 (s) − Ṽ1

N1
(s)

)∣∣∣∣∣∣∣ ,
and extend them over successive aggregation and time steps k = N1 + 1, . . . ,N. Notice
that, in this instance, we are comparing two scalars, comprising the likelihoods associ-
ated with the specification of interest computed over the concrete and abstract models,
respectively. More precisely, in general we have:∣∣∣∣∣∣∣∑s∈Φi

VN1 (s) −
∑
s∈Φi

Ṽ1
N1

(s)

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∑s∈Φi

VN1 (s) −
∑
s∈Φi

V1
N1

(α1(s))

|A1(α1(s))|

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∑s∈Φi

VN1 (s) − V1
N1

(i)

∣∣∣∣∣∣∣ .
Proposition 3. Consider a q-step sequential aggregation strategy characterised by cor-
responding times Nl :

∑q
l=1 Nl = N, partitions Φ = ∪

ml
i=1Φ

l
i, and matrices Pl. We obtain:∣∣∣∣∣∣∣∑s∈Φ VN(s) −

∑
s∈Φ

Ṽq
N(s)

∣∣∣∣∣∣∣ ≤
q∑

l=1

ml∑
i=1

ε l(i)
Nl−1∑
k=0

V l∑l−1
i=0 Ni+k

(i).

Remark 3. We give some intuition regarding the structure of the bounds. The quantity
depends on a summation over q aggregation steps. It expresses the accrual of the error
incurred over the outgoing probability from the i-th partition (term ε l(i)), averaged over
the history of the cost function over that partition. Note the symmetry between the shape
of the bound and the recursive definition of the quantities of interest. ut

4 Quantitative analysis of chemical reaction networks

A chemical reaction network describes a biochemical system containing M chemical
species participating in a number of chemical reactions. The state of a model of the
system at time t ∈ R+ is the vector X(t) = (X1(t), X2(t), . . . , XM(t)), where Xi denotes
the number of molecules of the i-th species [15]. Whenever a single reaction occurs
the state changes based on the stoichiometry of the corresponding reaction. We use S
to denote the set of (discrete) states. Further, for s ∈ S , πt(s) denotes the probability
P(X(t) = s). Assuming finite volume and temperature, the model can be interpreted
as a continuous-time Markov chain (CTMC) C = (S ,R), where the rate matrix R(s, s′)
gives the rate of a transition from states s to s′, and π0 specifies the initial distribution
over S . The time evolution of the model is governed by the Chemical Master Equation
(CME) [15], namely d

dtπt = πt ·Q, where Q is the infinitesimal generator matrix, defined
as Q(s, s′) = R(s, s′) if s , s′, and as 1 −

∑
s′′,s R(s, s′′) otherwise. The exact solution

of the CME is in general intractable, which has led to a number of possible numerical
approximations [25]. We employ uniformisation [30], which in many cases outperforms
other methods and also provides an arbitrary, user-defined approximation precision.

Uniformisation is based on a time-discretisation of the CTMC. The distribution πt

is obtained as a sum (over index i) of terms giving the probability that i discrete re-
action steps occur up to time t: this is a Poisson random variable γi,λ·t = e−λ·t · (λ·t)i

i! ,



where the time delay is exponentially distributed with rate λ. More formally, πt =∑∞
i=0 γi,λ·t · π0 · Q̃i ≈

∑N
i=0 γi,λ·t · π0 · Q̃i, where Q̃ is the uniformised infinitesimal gen-

erator matrix defined using terms R(s,s′)
λ

, and where the uniformisation constant λ is
equal to the maximal exit rate

∑
s′′,s R(s, s′′). Although the sum is in general infinite,

for a given precision an upper bound N can be estimated using techniques in [14], which
also allow for efficient computation of the Poisson probabilities γi,λ·t.

For complex models with very large or possibly infinite state spaces, the above
numerical approximations are computationally infeasible, and are typically combined
with (dynamical) state-space truncation methods, such as finite state projection [24],
sliding window abstraction [18], or fast adaptive uniformisation [9,23] (FAU). The key
idea of these truncation methods is to restrict the analysis of the model to a subset of
states containing significant probability mass. One can easily compute the probability
lost at each uniformisation step and thus obtain the total probability lost by truncation.
As such, these truncation methods provide a lower bound on the quantities πt, and the
quantified probability lost can be used to derive a (rather conservative) upper bound on
the approximation error: the sum of the lower bound and the probability lost gives an
upper bound for the point-wise error. Moreover, a (pessimistic) bound on the L1-norm
over a general subset of the state space is obtained by multiplying the probability lost
by the number of states in the concrete subset.

Adaptive aggregation for CTMC models of chemical reaction networks

The aggregation methods in the previous sections can be directly applied to uniformised
CTMCs, such as those arising from chemical reaction networks. We now discuss how
the aggregation unfolds sequentially in time and how the derived error bounds can be
used for the aggregation method in this setting.

Recall from eq. (2) that the derivation of the error bounds for the aggregation proce-
dure requires a finite state space: for infinite-state CTMCs, the aggregation method can
be combined with state-space truncation (alongside time uniformisation), in order to
accelerate computations in cases where the set of significant states is still too large. On
the other hand, for finite-state CTMC models, adaptive aggregations can be regarded
as an orthogonal strategy to truncation, and can be directly applied in conjunction with
time uniformisation. In order to compare the precision and reduction capability of our
method to that of FAU, we thus assume that the population of each species is bounded,
which ensures fairness of experimental evaluation.

The key ingredient of the proposed aggregation method is a partitioning strategy
that controls and adapts the clustering of the state space over the given finite time in-
terval. Algorithm 1 summarises the scheme for transient probability calculation (the
adaptive aggregation for an invariant property as in Section 3 unfolds similarly). The
procedure starts with a given partition S 1 of the state space S (obtained by the proce-
dure initAggregation on line 2). It dynamically (and automatically) updates the current
partition when needed, thus providing new abstract state spaces S l over the l-th time
interval [

∑l−1
i=0 Ni,

∑l
i=0 Ni], where l = 2, . . . , q and q << N. The update of the current

l-th clustering is performed after Nl steps, that is, whenever the error accrual exceeds a
threshold ensuring the user-defined precision θ (function checkAggregation on line 6).
At the same time, the aggregation strategy aims to minimise the average size of the



Algorithm 1 Adaptive aggregation scheme for computation of transient probability
Require: Finite CTMC C = (S ,R), initial distribution π0, time t, and bound θ on L1-norm error
Ensure: globalError ≤ θ
1: (P,N)← uniformise (C, t) ; l← 1
2:

(
S l, Pl, πl

0, ε
l
)
← initAggregation (S , P, π0)

3: for (k ← 0; k ≤ N, k ← k + 1) do . perform N uniformisation steps
4: (globalError, AccumErrors)← computeErrors

(
πl

k, ε
l, k

)
5: πl

k+1(s) =
∑

s′∈S 1 π1
k(s′)Pl(s′, s) . update the probability distribution

6: if checkAggregation
(
ε l, πl

k+1, AccumErrors, θ
)

= false then
7: (S l+1, Pl+1, πl+1

k+1, ε
l+1)← Recluster

(
S l, Pl, πl

k+1, ε
l, AccumErrors

)
8: AccumErrors← 0; l← l + 1

abstract state space, defined as avg =
∑q

l=0 Nl · |S l|/N. We consider two adaptive strate-
gies, one time-local and the other history-dependent, both of which are driven by the
shape of the derived error bounds – in particular, the history-dependent strategy exactly
employs the calculated error bounds. Both strategies are parametrised by thresholds,
which ensure the required overall precision θ and account for the size of the concrete
state space as well as the number of uniformisation steps N.

The history-dependent strategy is based on the available history contributing to
the shape of the derived errors: for the l-th aggregation step and the given i-th clus-
ter of the current partition, it tracks the sum of the errors accumulated in the interval
[
∑l−1

i=0 Ni,
∑l−1

i=0 Ni + k] for k = 1, . . . ,Nl, according to the explicit bounds derived in Sec-
tion 2 (line 4 of Algorithm 1). At each step k, the obtained value (averaged over k steps)
reflects the (averaged) error accrual for each cluster (array AccumErrors) and is used
to drive the partitioning procedure.

The function checkAggregation determines (using AccumErrors) if the current
clustering meets the desired threshold, or if a refinement is desirable: during re-cluster-
ing, a locally coarser abstraction may as well be suggested by merging clusters. The
function Recluster provides the new clustering based on the error bounds, which are
functions of AccumErrors, of the local contributions ε l, and of the (history of the) dis-
tribution πl

k (or of the cost V l
k in the case of safety verification). In contrast to the adap-

tive method presented in [13] and based exclusively on local heuristics, our strategy
closely reflects the shape of the derived, history-dependent error bounds. Note that the
aggregation strategy applied to chemical reaction networks aligns well with the known
structure of the underlying CTMCs. In particular, the state-space clustering employs
the spatial locality of the distribution of transitions in the M-dimensional space [13,31]
(M is the number of chemical species), usually leading to relatively uniform probability
mass over adjacent states and thus to strategies that cluster neighbouring states.

A simpler re-clustering strategy (denoted in the experiments as local) employs at
each uniformisation step k only the product of the local error ε l with the probability
distribution πl

k (or with the cost function V l
k). In other words, a local re-clustering is

performed if the local error depending on ε lπl
k (respectively, on ε lV l

k) is above a given
threshold. This intuitive scheme is similar to the local heuristic employed in [13].

We will show that the history-based strategy is more flexible with respect to the
required precision and aggregation size. Our experiments confirm that, while based on



error bounds that over-estimate the actual empirical error incurred in the aggregation,
the history-based strategy tends to outperform the more intuitive and easier local strat-
egy, with respect to key performance metrics affecting the practical use of the adaptive
aggregation. This shows that the computed errors not only serve as a means to certify
the accuracy of approximation, but can also be used to effectively drive the aggrega-
tion procedure. In particular, the metrics we are interested in are: (1) the value of avg
representing the state-space reduction; (2) the accuracy of the empirical results of the
abstract model; (3) the total number of re-clusterings; and (4) the actual value of the
error bounds (compared to the empirical errors).

The number of re-clusterings (denoted by q) is crucial for the performance of the
overall scheme, since each re-clustering requires O(|S | + |P|) steps, which is similar to
performing a few uniformisation steps for the concrete model. As such, the number of
re-clusterings should be significantly smaller than the total number of uniformisation
steps. Therefore, in our experiments we use thresholds that favour fewer re-clusterings
over coarser abstractions. Finally, note that the adaptive aggregation scheme can be
combined with the adaptive uniformisation step as well as with dynamic state-space
truncation [9, 23, 30], which updates the uniformisation constant λ for different time
intervals, thus decreasing the number of overall uniformisation steps N.

Illustrative example We resort to a two-dimensional discrete Lotka-Volterra “predator-
prey” model [15] to illustrate the history-dependent aggregation strategy. The maximal
population of each species is bounded by 2000, thus the concrete model has 4M states.
The initial population is set to 200 predators and 400 preys.

Figure 1 displays the outcome of the adaptive procedure (top row) at three distinct
time steps and (bottom row) the current probability distribution of the concrete model.
For ease of visualisation, the top plots display for each point of the concrete model the
size of its corresponding cluster, where we have limited the maximal size to 100 states.
Note the close correspondence between the error bounds and the computed empirical
errors, and the limited number of re-clusterings needed (one in about 200 uniformisation
steps). Observe that the single-state clusters (red colour in the plots) tend to collect
where the current probability distribution peaks. The figure also illustrates a memory
effect due to the history-dependent error bounds employed by the aggregation.

5 Experimental evaluation on two case studies

We have developed a prototype implementation of the adaptive aggregation for the
quantitative analysis of chemical reaction networks modelled in PRISM [20]. We have
evaluated the scheme on two case studies in comparison with FAU [9] as implemented
in the explicit engine of PRISM. In order to ensure comparability between the two
schemes, which employ different data structures, rather than measuring execution time
we have focused on assessing performance based on measures that are independent
of implementation, and specifically focused on the metrics (1)-(4) introduced in Sec-
tion 4 (model reduction, empirical accuracy, number of re-clusterings, and formal error
bounds). For the same reason, we have not incorporated heuristics such as varying the
maximal cluster size, optimally selecting error thresholds, or use of advanced clustering
methods, which can be employed to further optimise the adaptive scheme.
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Fig. 1. Transient analysis of the Lotka-Volterra model using history-based adaptive aggregation.

We run all experiments on a MackBook Air
TM

with 1.8GHz Intel Core i5 and 4 GB
1600 MHz RAM. As expected, for comparable state space reductions (value avg), FAU
can be faster but in the same order of magnitude as our prototype, due to the overhead of
clustering and adaptive uniformisation not being fully integrated in our implementation.

Recall that FAU eliminates states with incoming probability lower than a defined
threshold, and as such leads to an under-approximation of the concrete probability dis-
tribution with no tailored error bounds: all we can say is that, point-wise, the concrete
transient probability distribution resides between this under-approximation and a value
obtained by adding the total probability lost, and similarly for the invariance likelihood.

Two-component signalling pathway [7] has analysed the robustness of the output
signal of an input-output signal response mechanisms introduced in [28]. It is a two-
component signalling pathway including the histidine kinase H, the response regula-
tor R, and their phosphorylated forms (Hp and Rp). In order to ensure a feasible analy-
sis, [7] has limited the state space by bounding the total populations over the intervals
25 ≤ H + Hp ≤ 35 and 25 ≤ R + Rp ≤ 35 (dimensionless quantities). Since this
truncation has a significant impact on the distribution of variable Rp (representing the
output signal), in this work we consider less conservative (but computationally more
expensive) bounds and employ the adaptive aggregation scheme, which allows for a
reduction in the size of the model while quantifying the precision of approximation by
means of the derived error bounds.

We first evaluate the adaptive aggregation scheme over the verification of an in-
variant property with associated small likelihood: in this scenario dynamic truncation
techniques such as FAU provide insufficient approximation precision. We compute the
probability that the population of Rp stays below the level 15 for t = 5 seconds (a
relevant time window due to the fast-scale phosphorylation). The results for the new,
less restrictive population bounds [5, 55] are reported in Figure 2. We present empirical
satisfaction probabilities (“Empirical”) and their formal bounds (“Bound”) computed
using Proposition 3 for the adaptive aggregation scheme, and lower bounds and proba-
bility lost for the FAU algorithm. For both schemes we report the obtained state-space



size avg. We can observe a clear relationship between the state-space reduction and the
precision of the analysis. For adaptive aggregations, the parametrisation of each strat-
egy is denoted by an index (1, 2, 3) representing the thresholds affecting the precision.
Note that the parameterization for the history-based aggregation, in contrast to the lo-
cal strategy, allows us to obtain the user-defined precision (e.g. in this experiment for
the history-dependent strategy index 1 denotes a restriction of the bounds to 5E-11,
whereas 2 to 5E-12, and 3 to 5E-14), since the aggregation employs exactly the errors.
The results also demonstrate that the history-based strategy significantly outperforms
the local strategy in all four key performance metrics.

Adaptive aggregation
Strategy avg Empirical Bound Re-clust.
Local 1 62K 9.55E-12 2.34E-8 65
Local 2 93K 6.32E-13 4.43E-10 81
Local 3 115K 4.54E-14 2.39E-11 97

History 1 54K 5.08E-16 4.68E-11 37
History 2 66K 4.71E-16 4.60E-12 19
History 3 90K 2.20E-16 4.26E-14 20

Fast adaptive uniformisation
Threshold avg Lower Prob. lost

1E-10 15K 0.0 2.68E-5
1E-12 25K 0.0 1.98E-6
1E-15 44K 0.0 1.20E-6
1E-20 91K 0.0 1.00E-6
1E-25 160K 2.12E-17 1.80E-6
1E-30 242K 2.15E-17 1.94E-6

Fig. 2. Statistics for the invariant property. Population bounds [5,55]: 1.2M states (less than those
in Fig. 3 due to the property of interest), 16489 steps. The satisfaction probability of the property
for the concrete model is equal to 2.15E-17.

Since the invariant property is associated with a small probability, we require ac-
curate error bounds. The data in Figure 2 shows that, for upper bounds of the adaptive
scheme that are at least 5 orders of magnitude better compared to those from FAU, the
adaptive aggregation method provides more than a twenty-fold reduction with respect
to the size of the concrete model, and about a three-fold improvement with respect
to the compression obtained via FAU. The results also demonstrate that different pa-
rameterisations of the aggregation strategy allow us to control the bounds, and via the
bounds also to improve the empirical results (which confirms the usefulness of the de-
rived bounds). However, decreasing the truncation threshold of FAU only improves the
lower bounds (from 0.0 to 2.15E-17), but the probability lost is not considerably im-
proved (it is even slightly worse for the very small thresholds, probably due to rounding
errors). Notice that, whilst the global errors are still much more conservative, FAU pro-
vides better state-space reduction when a lower bound around 2.15E-17 (which is very
close to the true probability) is required for the adaptive scheme.

Next, we employ this example to compare the computation of the L1 norm of the
probability distribution at time t = 5 seconds. The table in Fig. 3 depicts the results for
the L1 norm over the whole state space, whereas the table in Fig. 4 depicts the results
for the L1 norm over a certain subset of interest. The formal bounds for the adaptive
scheme (column “Empirical” in Fig. 3) have been computed using Proposition 2, whilst
the corresponding bounds for Fig. 4 (middle part) have been obtained as the sum of the
point-wise errors, defined in Proposition 1, over the subset of interest. The upper part of
the tables corresponds to the population bounds [25, 35] (as in [7]), whereas the lower
part to the less restrictive bounds [5, 55]. Compared to the local strategy, the history-



Population

[25, 35]

[5, 55]

Adaptive aggregation
Strategy avg Empirical Bound Re-clust.
History 1 70K 1.83E-4 2.56E-2 16
History 2 88K 2.69E-6 2.95E-4 17
History 1 453K 2.54E-4 4.73E-2 16
History 2 515K 4.16E-6 5.31E-4 24

Fast adaptive uniformisation
Threshold avg Prob. lost

1E-10 72K 1.26E-3
1E-14 105K 1.98E-6
1E-10 132K 1.65E-3
1E-18 493K 1.96E-6

Fig. 3. Statistics for the L1 norm of the error. Population bounds [25,35]: 116K states, 6924 uni-
formisation steps. Population bounds [5,55]: 2.5M states, 16489 uniformisation steps.

Pop.

[25, 35]

[5, 55]

Adaptive aggregation
Strategy avg Empirical Bound Re-clust.
Hist. 1 71K 2.92E-8 4.89E-4 18
Hist. 2 86K 5.80E-10 3.83E-6 8
Hist. 1 354K 2.79E-6 1.75E-3 13
Hist. 2 430K 1.10E-8 1.67E-5 19

Fast adaptive uniformisation
Threshold avg Empirical Bound

1E-12 93K 1.77E-9 2.18E-1
1E-14 105K 2.04E-11 2.77E-2
1E-16 388K 7.12E-13 6.02E-1
1E-20 597K 2.68E-14 5.71E-1

Fig. 4. Statistics for the L1 norm of the error computed over a set, characterised by the population
of at least one species that is equal to 0. Population bounds [25,35]: 116K states, 6924 uniformi-
sation steps - the set has 14K states and the probability distribution within the set at time t = 5 is
equal to 1.31E-8. Population bounds [5,55]: 2.5M states, 16489 uniformisation steps - the set has
307K states and the probability distribution within the set at time t = 5 is equal to 1.36E-8.

based aggregation again provides better performance, namely it requires significantly
(up to ten-times) smaller numbers of re-clusterings (“Re-clust.”): we thus present the
results only for the history-dependent strategy. We ensure the comparability of the two
outcomes by empirically selecting the threshold for FAU to obtain a truncated model
of size (avg) similar to that resulting from our technique. Note that, in the case of the
L1 norm over the state space, the probability lost reported by FAU provides the safe
bound on the L1 norm and is equal to the empirical error between the concrete and
truncated probability distributions. However, in the case of the L1 norm over a general
subset of the state space the probability lost has to be multiplied by the cardinality of
the subset to obtain the correct formal bounds. Such bounds are reported in Fig. 4 (right
part) as “Bound,” whereas the empirical error between the distribution over the subset
is depicted as “Empirical”.

Summarising Fig. 3 and Fig. 4, when requiring a tight bound for the smaller state
space (population [25, 35]), either approach does not lead to more than a two-fold reduc-
tion in the size of the space. This suggests a limit on the possible state-space reduction
resulting from the model dynamics. However, for the larger model (population [5, 55]),
up to a seven-fold reduction can be obtained using adaptive aggregation. We can see
that FAU outperforms the adaptive aggregation scheme in the case of the L1 norm error
over the whole state space (where it leads to a nineteen-fold reduction) but, in contrast
to our approach, is not able to provide useful bounds for a general L1 norm (especially
for the larger model).

Prokaryotic gene expression The second case study deals with a more complex model
for prokaryotic gene expression. The chemical reaction model has been introduced
in [19] and includes 12 species and 11 reactions. We bound the maximal population
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Adaptive aggregation
Strategy avg Empirical Bound Re-clust.
Hist. 1 127K 6.36E-7 1.77E-4 35
Hist. 2 207K 2.94E-9 3.77E-7 37
Hist. 1 287K 7.38E-6 2.83E-4 56
Hist. 2 428K 2.56E-8 4.26E-7 59

Fast adaptive uniformisation
Threshold avg Empirical Bound

1E-12 141K 2.55E-7 1.00E+0
1E-20 386K 7.24E-9 8.05E-1
1E-12 176K 1.49E-6 1.00E+0
1E-20 628K 3.35E-8 1.00E+0

Fig. 5. Statistics for the L1 norm of the error restricted to a set of interest, a strict subset of
the state space. Maximal population 10: 1.2M states, 33162 uniformisation steps - the set has
516K states and the probability distribution within the set at time t = 1000 is equal to 5.84E-3.
Maximal population 20: 4.4M states, 53988 uniformisation steps - the set has 1.8M states and the
probability distribution within the set at time t = 1000 is equal to 2.21E-2.

of particular species (left column in Fig. 5) to obtain a finite and tractable state space.
We focus our experiments exclusively on the history-dependent aggregation scheme.

In contrast with the previous case study that focused on events with very small likeli-
hood, we now discuss results for events with non-negligible likelihood. Figure 5 reports
basic statistics on the computation of the L1 norm over a certain subset of the state space
at time t = 1000 seconds. Providing useful error bounds on the L1 norm (computed
from the point-wise errors in Proposition 1), the adaptive aggregation leads to almost a
ten-fold state space reduction for the smaller model (1.2M vs 127K) and a fifteen-fold
reduction for the larger model (4.4M vs 287K). Due to the large cardinality of the subset
of interest, FAU fails to provide any informative formal bounds. Note that in this case
study the adaptive aggregation scheme also provides better empirical bounds than FAU.

Finally, we have evaluated both approaches on an invariant property (the population
of a species stays below the level 10, for 1000 seconds) with a significant satisfaction
probability (more than 15% and 20% on the small and large model, respectively). We
observe that this choice is favourable to FAU, since for invariant properties with high
likelihood the state space truncated via FAU is aligned with the property of interest,
and thus the lost probability mass is slightly smaller than the error introduced by the
state-space aggregations. In this scenario FAU yields better reductions than the adap-
tive aggregation scheme (especially for the larger model), while providing similar error
bounds, since it is able to successfully identify the relevant part of the state space. This
scenario advantageous to FAU is in contrast to that discussed in Figure 2, as well as to
the general case where for an arbitrary model it is not known how the probability mass
is distributed in relation to the states satisfying the property of interest.

6 Conclusions

We have proposed a novel adaptive aggregation algorithm for approximating the prob-
ability of an event in a Markov chain with rigorous precision guarantees. Our approach
provides error bounds that are in general orders of magnitude more accurate compared
to those from fast adaptive uniformisation, and significantly decreases the size of mod-
els without performance degradation. This has allowed us to efficiently analyse larger
and more complex models. Future work will include effective combinations of the adap-
tive aggregation with robustness analysis and parameter synthesis. We also plan to ap-
ply our approach to the verification and performance analysis of complex safety-critical
computer systems, where precision guarantees play a key role.
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