
Computation of the Transient in Max-Plus
Linear Systems via SMT-Solving

Alessandro Abate1, Alessandro Cimatti2, Andrea Micheli2, and Muhammad
Syifa’ul Mufid1

1 Department Computer Science, University of Oxford, UK
{alessandro.abate,muhammad.syifaul.mufid}@cs.ox.ac.uk

2 Fondazione Bruno Kessler, Italy
{cimatti,amicheli}@fbk.eu

Abstract. This paper proposes a new approach, grounded in Satisfi-
ability Modulo Theories (SMT), to study the transient of a Max-Plus
Linear (MPL) system, that is the number of steps leading to its peri-
odic regime. Differently from state-of-the-art techniques, our approach
allows the analysis of periodic behaviors for subsets of initial states, as
well as the characterization of sets of initial states exhibiting the same
specific periodic behavior and transient. Our experiments show that the
proposed technique dramatically outperforms state-of-the-art methods
based on max-plus algebra computations for systems of large dimensions.

1 Introduction

Max-Plus Linear (MPL) systems are a class of discrete-event systems (DES) that
are based on the max-plus algebra, an algebraic system using the two operations
of maximisation and addition. MPL systems are employed to model applications
with features of synchronization without concurrency, and as such are widely
used for applications in transportation networks [3], manufacturing [17] and
biological systems [7,12]. In MPL models, the states correspond to time instances
related to discrete events.

A fundamental and well-studied property of MPL systems is related to the
periodic behavior of its states: from an initial vector, the trajectories of an MPL
system are eventually periodic (in max-plus algebraic sense) starting from a
specific event index called the transient, and with a specific period called cyclicity
[3]. As explained in [17, Section 3.1], the transient is closely related to the notion
of cycle-time vector, which governs the asymptotic behaviour of MPL systems.

The computation of the transient is key to solve a number of fundamental
problems of MPL systems, such as reachability analysis [22] and bounded model
checking [23]: the transient plays a crucial role as the “completeness threshold”
[11] for those two problems. The computation of the transient is an interesting
problem, as it is not necessarily correlated to the dimension of the MPL system.
Thus, it is possible that the resulting transient is relatively large also for a small-
dimensional MPL system. There are several known upper bounds [9,21,24,26] for
the transient, which mostly computed via the corresponding precedence graph.

2 Alessandro Abate et al.

This paper has two specific contributions. The first is to provide a novel
procedure to compute the transient by means of Satisfiability Modulo Theory
(SMT) solving [6]. The main idea underpinning the new method is to transform
the problem instance into a formula in difference logic, and then passing the
formula into an SMT solver. , which outputs the transient. More precisely, in
order to check the validity of the formula, we check the unsatisfiability of its
negation. If the SMT solver reports “satisfied”, then the original formula admits
a counterexample, from which we can refine the formula. On the other hand, if
SMT solver reports “unsatisfied”, then from the formula we obtain the transient
and the corresponding cyclicity. The second contribution of this work is to pro-
vide a procedure to synthesize the subset of the state space of an MPL system
that corresponds to a specific transient/cyclicity pair. We show that one can
partition the state space into sets corresponding to different transient/cyclicity
pairs.

The rest of the paper is structured as follows. Section 2 describes the ba-
sics of MPL systems, including the key notion of cycle-time vector. In Section
3, we provide the formal definition of transient over MPL systems and also a
standard linear algebra procedure, based on matrix multiplication, to compute
the transient (cf. Algorithm 2), which is later used as a benchmark. Section
4 is divided into four parts. The first part provides the background on SMT
and including the underlying relevant theory. The translation of inequalities
over max-plus algebra to formulae in difference logic is explained in the second
part. In the third part, we provide SMT-based methods (cf. Algorithms 3 and
4) to compute the transient. The spatial synthesis problem is discussed in the
last part. The comparison of the performance of the novel algorithm against
the standard linear algebra procedure is presented in Section 5. The paper is
concluded with Section 6. The proofs of the propositions and theorems are pre-
sented in the Appendix. The developed code and generated data can be found
in https://es.fbk.eu/people/amicheli/resources/formats20/.

2 Preliminaries

2.1 Max-Plus Linear Systems

Max-plus algebra is a modification of linear algebra derived over the max-plus
semiring (Rmax,⊕,⊗) where Rmax := R∪{ε := −∞} and a⊕b := max{a, b}, a⊗
b := a + b, for all a, b ∈ Rmax. The zero and unit elements of Rmax are ε and
0, respectively. The max-plus algebraic operations can be extended to matrices
and vectors in a natural way. For A,B ∈ Rm×nmax , C ∈ Rn×pmax and α ∈ Rmax,

[α⊗A](i, j) = α+A(i, j),

[A⊕B](i, j) = A(i, j)⊕B(i, j),

[A⊗ C](i, j) =

n⊕
k=1

A(i, k)⊗ C(k, j).

https://es.fbk.eu/people/amicheli/resources/formats20/

Computation of Transient in MPL Systems via SMT-Solving 3

Given A ∈ Rn×nmax and t ∈ N, A⊗t denotes A⊗ . . .⊗A (t times). For t = 0, A⊗0 is
an n-dimensional max-plus identity matrix where all diagonal and non-diagonal
elements are 0 and ε, respectively.

Given V = {v1, . . . , vp} as a set of vectors in Rnmax, we use the same notation
to denote a matrix where all columns are in V i.e., V (·, i) = vi for 1 ≤ i ≤ p. A
vector v ∈ Rn is a max-plus linear combination of V if v = α1⊗v1⊕ . . .⊕αp⊗vp
for some scalars α1, . . . , αp ∈ R or equivalently there exists w ∈ Rp such that
V ⊗ w = v. The set of all max-plus linear combinations of V is called max-plus
cone1 and is denoted by cone(V) [8]. It is formally expressed as

cone(V) = {V ⊗ w | w ∈ Rp}. (1)

Furthermore, we denote as v1, . . . , vp the basis of cone(V). Notice that the max-
plus cone is closed under the operations ⊕ and ⊗: if v, w are in cone(V), then
so is α ⊗ v ⊕ β ⊗ w for α, β ∈ R. Max-plus cones are the analogues of vector
subspaces in classical linear algebra.

A dynamical system over the max-plus algebra is called a Max-Plus Linear
(MPL) system and is defined as

x(k + 1) = A⊗ x(k), k = 0, 1, . . . (2)

where A ∈ Rn×nmax is the system matrix, and vector x(k) = [x1(k) . . . xn(k)]>

encodes the state variables [3]. For example, x can be used to represent the
time stamps associated to the discrete events, while k corresponds to the events
counter. Hence, it is more convenient to consider Rn (instead of Rnmax) as the
state space. Applications of MPL systems are significantly found on systems
where the time variable is essential, such as transportation networks [17], schedul-
ing or [2] manufacturing [18] problems, or biological systems [7,12].

Definition 1 (Precedence Graph [3]). The precedence graph of A ∈ Rn×nmax ,
denoted by G(A), is a weighted directed graph with nodes 1, . . . , n and an edge
from j to i with weight A(i, j) for each A(i, j) 6= ε. �

Definition 2 (Regular Matrix [17]). A matrix A ∈ Rn×nmax is called regular if
A contains at least one finite element in each row.

Definition 3 (Irreducible Matrix [3]). A matrix A ∈ Rn×nmax is called irre-
ducible if G(A) is strongly connected. �

Recall that a directed graph is strongly connected if, for any two different
nodes i, j, there exists a path from i to j. The weight of a path p = i1i2 . . . ik is
equal to the sum of the edge weights in p. A circuit, namely a path that begins
and ends at the same node, is called critical if it has maximum average weight,
which is the weight divided by the length of the path [3].

Each irreducible matrix A ∈ Rn×nmax admits a unique max-plus eigenvalue λ ∈
R and a corresponding max-plus eigenspace E(A) = {x ∈ Rn | A⊗ x = λ⊗ x}2.

1 Unlike in [8,16], we require each max-plus cone to be a subset of Rn.
2 Because we regard Rn to be the state space of the MPL system (2), we only consider

eigenvectors with finite elements.

4 Alessandro Abate et al.

The scalar λ is equal to the average weight of critical circuits in G(A), and E(A)
can be computed from A+

λ =
⊕n

k=1((−λ)⊗A)⊗k. More specifically, E(A) is the
max-plus linear combination of the ith column of A+

λ , for i such that A+
λ (i, i) = 0

[3]. Thus, the eigenspace E(A) is a max-plus cone. A reducible matrix may have
multiple eigenvalues, where the maximum one equals to the average weight of
critical circuits of G(A).

2.2 Cycle-Time Vector

This section presents the definition of cycle-time vector of MPL systems. The
computation of the cycle-time vector is indeed important, as it can shed light on
the asymptotic behavior of MPL systems. In this section, we show its relationship
with the eigenspace and eigenvalue of the underlying state matrix. Furthermore,
as it will be clear in Section 3, the cycle-time vector can be used to determine
whether the states of an MPL system are eventually periodic.

Definition 4 (Cycle-Time Vector [17]). Consider a regular MPL system (2),
and assume that for all j ∈ {1, . . . , n} the quantity ηj , defined by

ηj = lim
k→+∞

(xj(k)/k),

exists. Then the vector χ = [η1 . . . ηn]> is called the the cycle-time vector of
the given sequence x(k) with respect to A. �

It has been shown in [17, Theorem 3.11] that if the cycle-time vector of A
exists for at least one initial vector then it exists for any initial vector. Instead
of computing the limit as in Definition 4, the cycle-time vector can be generated
using a procedure [15, Algorithm 31] that is summarized in Algorithm 1.

The algorithm starts by defining a matrix B, for which the element B(i, j)
is 0 if A(i, j) is finite, and otherwise B(i, j) = ε. Then, given an initial vector
x(0) ∈ Rn, we iterate (2) until there exist non-negative integers it, d such that
x(it)−x(it−d) = x(it−d)−x(it−2d) and B⊗v = v where v = x(it)−x(it−d).
As we mentioned before, the cycle-time vector is unique and is independent of
the chosen initial vector. In line 7 of Algorithm 1, we set the initial vector to a
zero-column vector.

Theorem 1 ([15]). Suppose we have a regular MPL system (2). For each x(0) ∈
Rn there exist natural numbers p, q such that x(k + q) = (q × χ) + x(k) for all
k ≥ p, where χ = [η1 . . . ηn]> is the cycle-time vector of A and the multiplication
q × χ is defined in the classical algebra.

By Theorem 1, the trajectories of a regular MPL system (2) starting from any
initial vector is governed by the corresponding cycle-time vector χ. In general,
the elements of χ may be different, as shown in [15, Example 1]. However, if
E(A) 6= ∅ then the elements of χ are all equal, as the next fact states (the proof
is in the Appendix).

Proposition 1. Suppose a regular MPL system (2) has maximum eigenalue λ.
The eigenspace E(A) is not empty iff χ = [λ . . . λ]T ∈ Rn.

Computation of Transient in MPL Systems via SMT-Solving 5

Algorithm 1 Computation of cycle-time vector of MPL systems

1: function CycleTimeVector(A)
2: n← Size(A) . dimension of A
3: B ←Matrix(n, n)
4: for 1 ≤ i ≤ n, 1 ≤ j ≤ n do
5: B(i, j) = (A(i, j) > ε) ? 0 : ε

6: M← EmptyVector()
7: x← Zeros(n, 1) . zero-column vector as initial vector
8: M.push back(x) . add a vector into M from the back
9: it← 0

10: while true do
11: it← it+ 1
12: M.push back(A⊗M[it− 1]) . M[i] is the (i+ 1)th element of M
13: d← 1 (from the back)
14: while (it− 2d > 0) do
15: v1 ←M[it]−M[it− d]
16: v2 ←M[it− d]−M [it− 2d]
17: v3 ← B ⊗ v1
18: d← d+ 1
19: if ((v1 == v2) ∧ (v1 == v3)) then
20: return 1

d
v1

3 Transient in Max-Plus-Linear Systems

The transient of MPL systems is related to the sequence of the powers of matrix
A, namely A⊗k for k ≥ 0.

Proposition 2 (Transient [3,17]). For an irreducible matrix A ∈ Rn×nmax and
its max-plus eigenvalue λ ∈ R, there exist k0, c ∈ N0, such that A⊗(k+c) =
(λ× c)⊗A⊗k for all k ≥ k0. The smallest such k0 and c are called the transient
and the cyclicity of A, respectively. �

For the rest of this paper, we denote the transient and the cyclicity of A
as tr(A) and cyc(A), respectively. While cyc(A) is related to critical circuits in
the precedence graph G(A) (see [3, Definition 3.94] for more details3), tr(A) is
unrelated to the dimension of A. Even for a small n, the transient of A ∈ Rn×nmax

can be large. Upper bounds of the transient have been discussed in [9,21,24,26].
By Proposition 2, each irreducible MPL system enjoys a periodic behaviour

with a rate λ: for each initial vector x(0) ∈ Rn we have x(k + cyc(A)) = (λ ×
cyc(A)) ⊗ x(k) for all k ≥ tr(A) where the vectors x(1),x(2) are computed
recursively by (2). As it will be clear in Theorem 2, a similar condition may be
found on reducible MPL systems: we denote the corresponding transient and
cyclicity as global, as per Proposition 2. The local transient and cyclicity for a
specific initial vector x ∈ Rn and for a set X ⊆ Rn is defined as follows.

Definition 5. Given A ∈ Rn×nmax with maximum eigenvalue λ and an initial
vector x ∈ Rn, the local transient and cyclicity of x(0) w.r.t. A are respectively

3 In this reference, one can find the cyclicity for reducible and irreducible matrices
using graph-theoretical approaches.

6 Alessandro Abate et al.

the smallest k0, c ∈ N0 such that x(k + c) = λc ⊗ x(k) for all k ≥ k0. We
denote those scalars as tr(A,x) and cyc(A,x), respectively. Furthermore, for X ⊆
Rn, tr(A,X) = max{tr(A,x(0)) | x(0) ∈ X} and cyc(A,X) = lcm{cyc(A,x(0)) |
x(0) ∈ X}, where lcm stands for the “least common multiple”. �

By definition, we have tr(A,Rn) = tr(A). For a max-plus cone X = cone(V),
we show that the local cyclicity and transient can be computed from the corre-
sponding bases, provided that tr(A, vi) exists for all 1 ≤ i ≤ p.

Proposition 3. Given a max-plus cone X = cone(V) where V = {v1, . . . , vp},
we have tr(A,X) = tr(A, V) = max{tr(A, v) | v ∈ V }, and cyc(A,X) =
cyc(A, V) = lcm{cyc(A, v) | v ∈ V }.

Definition 6. Suppose we have a regular matrix A ∈ Rn×nmax . The underlying
MPL system (2) is classified into three categories as follows:

i. never periodic: tr(A,x(0)) does not exist for all x(0) ∈ Rn,
ii. boundedly periodic: tr(A,x(0)) exists for all x(0) ∈ Rn and tr(A) exists,
iii. unboundedly periodic: tr(A,x(0)) exists for all x(0) ∈ Rn but tr(A) does not.

We call (2) periodic if it is either unboundedly periodic or boundedly periodic. �

We show that the periodic behavior of an MPL system is indeed related to
the eigenspace and cycle-time vector of its corresponding state matrix.

Theorem 2. Suppose we have a regular matrix A ∈ Rn×nmax with a maximum
eigenvalue λ and cycle-time vector χ. The following statements are equivalent.

a. The underlying MPL system (2) is periodic.
b. The corresponding cycle-time vector is χ = [λ . . . λ]> ∈ Rn.
c. The eigenspace E(A) is not empty.

Proposition 4. Suppose we have a regular matrix A ∈ Rn×nmax with maximum
eigenvalue λ and non-empty eigenspace E(A). If there exist i ∈ {1, . . . , n} and
natural numbers k′0, c

′ such that A⊗k+c
′
(·, i) = µc′⊗A⊗k(·, i) for all k ≥ k′0 with

µ < λ then (2) is unboundedly periodic.

We now will provide the procedure to compute the transient of MPL systems.
As per Proposition 2, the common method to obtain the (global) transient of
A ∈ Rn×nmax is by computing the power of the matrix A⊗0, A⊗1, . . . until we find
k0 ≥ 0 such that A⊗(k0+c) = λ⊗c ⊗ A⊗k0 where λ, c is respectively the max-
plus eigenvalue and cyclicity of A. Similarly, to find the transient of A w.r.t. a
max-plus cone X = cone(V) one needs to compute A⊗0 ⊗ V,A⊗1 ⊗ V,

Algorithm 2 illustrates the procedure to compute transient (and cyclicity)
for a max-plus cone cone(V) w.r.t. A ∈ Rn×nmax . While originally designed for
irreducible matrices, it also can be applied to find the transient of reducible
matrices (if any). For this reason, we assign a maximum bound as termination
condition. It is important to note that Algorithm 2 can also be used to compute
the local transient and cyclicity for a vector: that is, when V has only one

Computation of Transient in MPL Systems via SMT-Solving 7

column. The algorithm starts by computing the cycle-time vector χ of the state
matrix. If the entries of χ are not all the same then the transient for cone(V)
does not exist. In line 11, we perform equality checking w.r.t. a scalar between
A⊗it−m ⊗ V and A⊗it ⊗ V .

By Theorem 2 and Proposition 4, one can classify an MPL system (2) into a
category in Definition 6. As a result, determining the existence of global transient
is a decidable problem. For boundedly periodic MPL systems, computing the
global transient is also a decidable problem. This is because they ensure the
existence of a finite transient, meaning that Algorithm 2 eventually terminates.
However, Algorithm 2 is sound but does not necessarily terminate (in general)
for unboundedly periodic MPL systems.

Algorithm 2 Computation of cyclicity and transient of A w.r.t. cone(V)

1: function TransCone(A, V,N)
2: M← EmptyVector() . empty vector used to store
3: M.push back(V) A0 ⊗ V,A1 ⊗ V, . . .
4: it← 0 . number of iterations
5: χ← CycleTimeVector(A) . computed by Algorithm 1
6: if elements of χ are all equal then
7: while (it ≤ N) do
8: M.push back(A⊗M[it])
9: it← it+ 1

10: for 1 ≤ m < it do
11: if (M[it] = (λ×m)⊗M[it−m]) then
12: return 〈it−m,m〉
13: if (it > N) then
14: print “terminated after reaching maximum bound”

15: else
16: print “the transient does not exist”

Remark 1. The procedure in Algorithm 2 only employs matrix operations in
max-plus algebra. It can be improved by computing the cyclicity of the matrix
from the corresponding precedence graph. If the resulting cyclicity is c then the
range in line 10 of Algorithm 2 can be taken between 1 and c. �

Example 1. Suppose we have a regular and reducible MPL system x(k + 1) =
B ⊗ x(k), where

B =

 2 8 ε
10 5 ε
3 ε a

 , (3)

and where a ≥ 8. The corresponding eigenvalue for B is λ = 9 if 8 ≤ a ≤ 9;
λ = a otherwise. Taking the power of the matrix, we have

B⊗2 =

 18 13 ε
15 18 ε
a+ 3 11 2a

 , B⊗3 =

23 26 ε
28 23 ε
b a+ 11 3a

 , B⊗4 =

 36 31 ε
33 36 ε
a+ b 2a+ 11 4a

 ,
where b = max{21, 2a + 3}. One can check that, for a > 9, the matrix does
not admit an eigenvector over R3 (but it still has eigenvector over R3

max). As a
result, B is never periodic.

8 Alessandro Abate et al.

On the other hand, for 8 ≤ a ≤ 9, the corresponding E(B) is not empty.
Thus, B is periodic. Furthermore, for k ≥ 2, we have

[B⊗k+2](i, ·) =

{
18⊗ [B⊗k](·, i), if i ∈ {1, 2},
2a⊗ [B⊗k](·, i), if i = 3,

which shows that B is boundedly periodic with global transient tr(B) = 2 if and
only if a = 9. Thus, when 8 ≤ a < 9 B is unboundedly periodic. �

4 Computation of Transient of MPL Systems with SMT

This section describes a new procedure to compute the transient of MPL systems
by means of Satisfiability Modulo Theories (SMT). We first mention some basic
notions on SMT.

4.1 Background on SMT

Given a first-order formula ψ in a background theory T, the Satisfiability Modulo
Theory (SMT) problem consists in deciding whether there exists a model (i.e.
an assignment to the free variables in ψ) that satisfies ψ. For example, consider
the formula (x ≤ y) ∧ (x + 3 = z) ∨ (z ≥ y) within the theory of real numbers.
The formula is satisfiable and a valid model is {x := 5, y := 6, z := 8}.

An SMT solver implements algorithms for SMT problems. The most efficient
implementations of SMT solvers presently use the so-called “lazy approach”,
where a SAT solver is tightly integrated with a T-solver that is tasked to decide
conjunction of constraints in the theory T. The role of the SAT solver is to
enumerate the truth assignments to a Boolean abstraction of the first-order
formula. The Boolean abstraction has the same Boolean structure of the first-
order formula, but “replaces” the predicates containing T information with fresh
Boolean variables. For instance, the Boolean abstraction of (x ≤ y) ∧ ((x+ 3 =
z) ∨ (z ≥ y)) is a ∧ (b ∨ c), where a, b, c are fresh Boolean variables.

The T-solver is invoked when the SAT solver finds a satisfying assignment
for the Boolean abstraction: the satisfying assignment to Boolean abstraction
maps directly to a conjunction of T atoms, which the T-solver can handle. If the
conjunction is satisfiable also the original formula is satisfiable. Otherwise the
T-solver returns a conflict set which identifies a reason for the unsatisfiability.
Then, the negation of the conflict set is learned by the SAT solver in order to
prune the search.

SMT has grown into a very active research subject: it has a standardised
library and a collection of benchmarks developed by the SMT community [5], as
well as a yearly international competition for SMT solvers [4]. As a result, there
are several powerful SMT solvers, such as MathSAT5 [10], Yices 2.2 [14], and Z3
[13]. Applications of SMT solving arise on supervisory control of discrete-event
systems [25], verification of neural networks [19], optimization [20], and beyond.

SMT solvers can support different theories. A widely used theory is Linear
Real Arithmetic (LRA). A formula in LRA is an arbitrary Boolean combination,

Computation of Transient in MPL Systems via SMT-Solving 9

or universal (∀) and existential (∃) quantification, of atoms in the form
∑
i aixi ./

c where ./∈ {>,<,≥,≤, 6=,=}, every xi is a real variable, and every ai and c
are rational constants. Difference logic (RDL) is the subset of LRA in which all
atoms are restricted to the form xi − xj ./ c. Both theories are decidable [6,
Section 26.2.2.2].

4.2 From Max-Plus Algebra to Difference Logic

Before providing the main contribution, we show that the inequalities in max-
plus algebra can be expressed as a formula in difference logic. For the rest of this
paper, ∼ is either ≥ or >. We write ¬(a ∼ b) if it is not the case that a ∼ b.

Proposition 5. Given a1, . . . , ap, a, b ∈ Rmax, real-valued variables x1, . . . , xp,
and 1 ≤ j ≤ p, we have

p⊕
i=1

(xi + ai) ∼ a ≡
p∨
i=1

(xi + ai ∼ a), (4)

a ∼
p⊕
i=1

(xi + ai) ≡
p∧
i=1

(a ∼ xi + ai), (5)

p⊕
i=1

(xi + ai) ∼ xj + b ≡

true, if (aj ∼ b), (6)
p∨
i=1
i 6=j

(xi + ai ∼ xj + b), otherwise, (7)

xj + b ∼
p⊕
i=1

(xi + ai) ≡

p∧
i=1
i 6=j

(xj + b ∼ xi + ai), if (b ∼ aj), (8)

false, otherwise. (9)

Proposition 6 (Reduced Formula). Given real valued variables x1, . . . , xp
and a1, . . . , ap, b1, . . . , bp ∈ Rmax, the inequality

F ≡
p⊕
i=1

(xi + ai) ∼
p⊕
j=1

(xj + bj) (10)

is equivalent to

F ∗ ≡
⊕
i∈S1

(xi + ai) ∼
⊕
j∈S2

(xj + bj), (11)

where S1 = {1, . . . , p}\{1 ≤ k ≤ p | ak = ε or ¬(ak ∼ bk)} and S2 = {1, . . . , p}\
{1 ≤ k ≤ p | bk = ε or ak ∼ bk}, respectively.

Proposition 6 ensures that any inequality expression in max-plus algebra can
be reduced to a simpler one in which no a variable appears on both sides i.e.,
S1∩S2 = ∅. Notice that, it is possible that either S1 = ∅ or S2 = ∅. Furthermore,

10 Alessandro Abate et al.

S1 and S2 cannot be both empty if there exists at least one finite scalar in both
sides of (10). We call (11) as a non-trivial reduced formula if both S1 6= ∅ and
S2 6= ∅.

Proposition 7. Given a non-trivial reduced formula in (11), then

F ∗ ≡
∧
j∈S2

(∨
i∈S1

(xi − xj ∼ bj − ai)

)
≡
∨
i∈S1

 ∧
j∈S2

(xi − xj ∼ bj − ai)

 . (12)

If S1 = ∅ then F ∗ ≡ false. On the other hand, if S2 = ∅ then F ∗ ≡ true.

Proposition 7 shows that any non-trivial formula of (11) can be expressed as
a difference logic formula in disjunctive and conjunctive normal forms.

4.3 Procedure to Compute Transient of MPL Systems with SMT

We now will discuss the procedure to compute the transient of an MPL system
via SMT-solving. The idea behind the SMT-based procedure is to transform the
equality checking in line 11 of Algorithm 2 into a formula in difference logic.
Notice that the quantity M[it] in Algorithm 2 corresponds to A⊗it ⊗ V next,
and cone(V) can be expressed as matrix V . Thus, it can be equivalently written
as

(A⊗it ⊗ V)⊗ x = (λ×m)⊗ (A⊗it−m ⊗ V)⊗ x, ∀x ∈ Rp, (13)

where p is the number of columns of V . By denoting R = A⊗it ⊗ V and S =
(λ×m)⊗A⊗it−m ⊗ V , (13) can be expressed as

n∧
k=1

 p⊕
i=1

(xi + rki) ≥
p⊕
j=1

(xj + skj)

∧
 p⊕
i=1

(xi + ski) ≥
p⊕
j=1

(xj + rkj)

, (14)

where rki (resp. ski) is the element of R (resp. S) at row k and column i. For
simplicity, we denote (14) as EqFunc(R,S). By Proposition 7, each disjunct in
(14) can be expressed as a formula in difference logic.

Algorithm 3 summarizes the SMT-based version of Algorithm 2. If the cor-
responding eigenspace of the matrix is not empty, we set the value for transient
and cyclicity respectively to k0 = 0 and c = 1 (the smallest possible for both).
Then, we generate the corresponding difference logic formula F w.r.t. (13) in line
10. To check the validity of F , we use an SMT solver to check the unsatisfiability
of the negation. If it is not satisfiable then the original formula is valid, and then
we obtain the transient and cyclicity from the current value of k0 and c.

On the other hand, if it is satisfiable then there exists a counterexample fal-
sifying formula F . We express the counterexample from a satisfying assignment
of ¬F as a real-valued vector w ∈ Rp (line 15). Vector v = V ⊗ w corresponds
to the counterexample: its transient is greater than k0 or its cyclicity is greater
than c. The resulting transient and cyclicity of v become the updated value for

Computation of Transient in MPL Systems via SMT-Solving 11

(k0, c). This process is repeated until either the SMT solver reports “unsatisfi-
able” in line 12 or k0 + c exceeds the maximum bound N . (which corresponds
to the termination condition of Algorithm 2).

Unlike Algorithm 2, which only works on max-plus cones, Algorithm 3 can
be modified (into Algorithm 4) so that it can be applied on any set of initial
conditions X ⊆ Rn. Although (14) is can be translated exclusively to RDL, we
can extend X as an LRA formula. In line 9 of Algorithm 4, we generate a formula
F which corresponds to the equality checking between A⊗k0 and A⊗k0+c. If X →
F is valid then for all x(0) ∈ X we have tr(A,x(0)) ≤ k0 and cyc(A,x(0)) ≤ c.
Again, to check the validity of X → F , we check the unsatisfiability of its
negation.

Algorithm 3 Computation of transient and cyclicity of A w.r.t. cone(V) via SMT-
solving

1: function TransConeSMT(A, V,N)
2: χ← CycleTimeVector(A)
3: if elements of χ are all equal then
4: n← Row(A) . number of rows of A
5: p← Col(V) . number of columns of V
6: for i ∈ {1 · · · p} do
7: x[i]← MakeSMTRealVar() . symbolic variables

8: k0 ← 0, c← 1
9: while ((k0 + c) ≤ N) do

10: F ← EqFunc(A⊗k0+c ⊗ V, (λ× c)⊗A⊗k0 ⊗ V)
11: model← GetSMTModel(¬F)
12: if model = ⊥ then . formula is unsatisfiable
13: return 〈k0, c〉
14: else . formula is satisfiable
15: w ← 〈model(x[1]), · · ·model(x[p])〉 . vector in Rp

16: v ← V ⊗ w . vector in Rn

17: 〈k′0, c′〉 ← TransCone(A, A⊗k0 ⊗ v) . computed by Algorithm 2
18: k0 ← k0 + k′0
19: c← LCM(c, c′)

20: if ((k0 + c) > N) then
21: print “terminated after reaching maximum bound”

22: else
23: print “the transient does not exist”

4.4 A Synthesis Problem

In addition to computing the transient and cyclicity of A ∈ Rn×nmax w.r.t. a set of
initial conditions, we show that by means of difference logic and SMT, one can
synthesise sets of states corresponding to specific transient (and cylicity) defined
as follows

Sp,q(A) = {x ∈ Rn | tr(A, x) = p, cyc(A, x) = q}, (15)

Sp(A) = {x ∈ Rn | tr(A, x) = p}. (16)

On the one hand, the computation of (16) has been discussed in [1, Section 4.2]
by applying backward reachability analysis. On the other hand, to the best of

12 Alessandro Abate et al.

Algorithm 4 Computation of transient and cyclicity of A w.r.t. a set of initial
conditions X via SMT-solving

1: function TransSMT(A,X,N)
2: χ← CycleTimeVector(A)
3: if elements of χ are all equal then
4: n← Row(A) . number of rows of A
5: for i ∈ {1 · · ·n} do
6: x[i]← MakeSMTRealVar() . symbolic variables

7: k0 ← 0, c← 1
8: while (k0 + c) ≤ 1000 do
9: F ← EqFunc(A⊗k0+c, (λ× c)⊗A⊗k0)

10: model← GetSMTModel(X ∧ ¬F)
11: if model = ⊥ then . formula is unsatisfiable
12: return 〈k0, c〉
13: else . formula is satisfiable
14: v ← 〈model(x[1]), · · ·model(x[N])〉
15: 〈k′0, c′〉 ← TransCone(A, A⊗k0 ⊗ v)
16: k0 ← k0 + k′0
17: c← LCM(c, c′)

18: if ((k0 + c) > N) then
19: print “terminated after reaching maximum bound”

20: else
21: print “the transient does not exist”

the authors’ knowledge, there is no approach to generate (15). The following
proposition shows that both (15) and (16) can be computed symbolically by
expressing them as difference logic formulae: the set (15) (resp. (16)) is not
empty if and only if the corresponding formula (17) (resp. (18)) is satisfiable.

Proposition 8. Given A ∈ Rn×nmax with global cyclicity c and maximum eigen-
value λ, we have

Sp(A) =

EqFunc(A⊗p+c, λc⊗A⊗p), if p = 0,

EqFunc(A⊗p+c, λc⊗A⊗p)∧
¬EqFunc(A⊗p−1+c, λc⊗A⊗p−1),

if p > 0,
(17)

and

Sp,q(A) =

EqFunc(A⊗p+q, λq ⊗A⊗p)∧∧
d∈Div(q)−{q}

¬EqFunc(A⊗p+d, λd⊗A⊗p), if p = 0,

EqFunc(A⊗p+q, λq ⊗A⊗p) ∧ ¬EqFunc(A⊗p−1+q, λq ⊗A⊗p−1)∧∧
d∈Div(q)−{q}

¬EqFunc(A⊗p+d, λd⊗A⊗p), if p > 0,

(18)
where Div(q) is a set of divisors of q.

Computation of Transient in MPL Systems via SMT-Solving 13

As both (15) and (16) can be expressed as formulae in difference logic, the
problem of determining the emptiness of both sets is decidable. By definition,
for never periodic MPL system, Sp,q = Sp = ∅ for all p, q. Furthermore, for
irreducible MPL systems the emptiness of (15) and (16) is related to the global
transient and cyclicity of A.

Proposition 9. For an irreducible matrix A ∈ Rn×nmax with global transient k0
and cyclicity c we have S0(A) = E(A⊗c) and S0,1(A) = E(A). Furthermore,

i. Sp(A) 6= ∅ iff p ≤ k0,
ii. If p > k0 or q is not a divisor of c then Sp,q(A) = ∅,

iii. If Sp,q(A) is empty then so is Sp+1,q(A).

Example 2. Let us recall the 3× 3 MPL system in Example 1 with a = 8. From
the precedence graph G(B), the global cyclicity is c = 2. Leaving details aside,
for p ≥ 1, we have

EqFunc(Bp+2, 18⊗B⊗p) ≡
{

(x1 − x3 ≥ 6− p) ∨ (x2 − x3 ≥ 8− p), if p is odd,
(x1 − x3 ≥ 7− p) ∨ (x2 − x3 ≥ 7− p), if p is even.

Thus, by Proposition 8, for p ≥ 2 we have

Sp(B)=

{
{x ∈ R3|(6− p ≤ x1 − x3 < 8− p) ∧ (x2 − x3 < 8− p)}, if p is odd,
{x ∈ R3|(x1 − x3 < 7− p) ∧ (7− p ≤ x2 − x3 < 9− p)}, if p is even.

The illustration of the above sets is depicted in Figure 1. It is straightforward
to conclude that the global transient for B does not exist. �

-4

-2

2

4

6

8

-8 -6 -4 -2 2 4 6 8
x1

x2

S0(B) ∪
S1(B)

S2(B)

S4(B)

S6(B)

S8(B)

S10(B)

S12(B)

S3(B)

S5(B)

S7(B)S9(B)

S11(B)

Fig. 1: Plots of the synthesized sets projected on the plane x3 = 0.
The solid and dashed lines represent ≥ and >, respectively.

14 Alessandro Abate et al.

5 Computational Benchmarks

We compare the performance of Algorithms 2 and 4, to compute the transient of
MPL systems. The experiments for both procedures are implemented in Python.
For the SMT solver, we use Yices 2.2 [14]. The computational benchmark has
been implemented on an Intel R© Xeon R© CPU E5-1660 v3, 16 cores, 3.0GHz
each, and 16GB of RAM. For the experiments, we generate 1000 irreducible
matrices of dimension n, with m finite elements in each row, where the values of
the finite elements are rational numbers p

q with 1 ≤ p ≤ 100 and 1 ≤ q ≤ 5. The
locations of the finite elements are chosen randomly. We focus on irreducible
matrices to ensure the termination of the algorithms. Algorithm 2 is initialised
by setting V to be a max-plus identity matrix, while for Algorithm 4 the set
of initial conditions is expressed as X ≡ true. For all experiments, we choose
N = 10000 as the maximum bound. The benchmarks are stored at https://

es-static.fbk.eu/people/amicheli/resources/formats20/, where we have
chosen n ∈ {4, 6, 8, 10, 20, 30, 40} and three different values of m for each n.

0 100 200 300 400
k0+c

0

50

100

150

200

250

300

350

ru
nt

im
e

(s
)

cross-over point = 117
Experiments with (n,m) = (40, 20)

Alg. 2
Alg. 4

(a)

0 50 100 150 200 250 300 350
k0+c

0

50

100

150

200

250

300

ru
nt

im
e

(s
)

cross-over point = 144
Experiments with (n,m) = (40, 30)

Alg. 2
Alg. 4

(b)

0 100 200 300 400 500 600
k0+c

0

200

400

600

800

ru
nt

im
e

(s
)

cross-over point = 164
Experiments with (n,m) = (40, 40)

Alg. 2
Alg. 4

(c)

0 100 200 300 400 500 600
k0+c

0

200

400

600

800

ru
nt

im
e

(s
)

Experiments with n = 40
Alg. 2, (n,m) = (40, 20)
Alg. 4, (n,m) = (40, 20)
Alg. 2, (n,m) = (40, 30)
Alg. 4, (n,m) = (40, 30)
Alg. 2, (n,m) = (40, 40)
Alg. 4, (n,m) = (40, 40)

(d)

Fig. 2: The plots of running time of Algorithms 2 and 4 from 1000 experiments
with n = 40 and m ∈ {20, 30, 40}. A “cross-over point” is the smallest
value of k0 + c when Algorithm 4 is faster.

https://es-static.fbk.eu/people/amicheli/resources/formats20/
https://es-static.fbk.eu/people/amicheli/resources/formats20/

Computation of Transient in MPL Systems via SMT-Solving 15

Figure 2(a)-(c) illustrate the experiments for n = 40 andm ∈ {20, 30, 40} (the
experiments for other pairs (n,m) are presented in the Appendix). They show
the plots of the running times of Algorithm 2 (dashed lines) and of Algorithm 4
(solid lines) against the resulting transient k0 and cyclicity c - the scattered plots
(in black) correspond to the resulting k0 + c. If there are several experiments
with the same value of k0 + c then we display the average running time among
those experiments. It is evident that most of the experiments result in small
k0 + c.

With regards to the running time, the matrix-multiplication algorithm is
faster when the values of k0 + c are quite small. On the other hand, the larger
the value of k0 + c, the better the performance of the SMT-based algorithm is.
We argue that this is because in Algorithm 4 there may be a large increment
from the current guess of transient and cyclicity to the new ones. Whereas in
Algorithm 2, the next candidate of transient and cyclicity is increased by one at
each iteration.

As depicted in Figure 2(d), the number of finite elements m clearly affects
the running time of the algorithms. We recall that the running time of Algorithm
4 depends on the satisfaction checking of a difference logic formula in line 11.
The more are the finite elements, the more likely the formula is complex, and
therefore the slower is the associated running time. Interestingly, based on the
outcomes of the benchmarks which are presented in the Appendix, the finite
elements also affect the cross-over points, which tend to increase gradually as
the number of finite elements grows larger.

6 Conclusions and Future Work

In this paper, we have introduced a novel, SMT-based approach to compute the
transient of MPL systems: our technique encodes the problem as a sequence
of satisfiability queries over formulae in difference logic, which can be solved by
standard SMT solvers. We have also presented a procedure to partition the state-
space of MPL systems w.r.t. a given transient and cyclicity pair. The procedure
has been thoroughly tested on computational benchmarks and the results show
how the SMT-based algorithm is much faster that state-of-the-art techniques to
compute large values of transient and cyclicity. Furthermore, we highlight that
the SMT-based method can be applied to compute the transient for any initial
condition, as long as it is expressible as an LRA formula.

For future research, we are interested in exploring and developing SMT-based
procedures for the general model checking of MPL systems.

References

1. Adzkiya, D., De Schutter, B., Abate, A.: Backward reachability of autonomous
max-plus-linear systems. IFAC Proceedings Volumes 47(2), 117–122 (2014)

2. Alirezaei, M., van den Boom, T.J., Babuska, R.: Max-plus algebra for optimal
scheduling of multiple sheets in a printer. In: Proc. 31st American Control Con-
ference (ACC), 2012. pp. 1973–1978 (June 2012)

16 Alessandro Abate et al.

3. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and linearity:
an algebra for discrete event systems. John Wiley & Sons Ltd (1992)

4. Barrett, C., De Moura, L., Stump, A.: SMT-COMP: Satisfiability modulo theories
competition. In: Etessami, K., Rajamani, S.K. (eds.) Intl. Conf. on Computer
Aided Verification (CAV’05). LNCS, vol. 3576, pp. 20–23. Springer (2005)

5. Barrett, C., Stump, A., Tinelli, C.: The satisfiability modulo theories library
(2010), http://smtlib.cs.uiowa.edu

6. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook
of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185,
pp. 825–885. IOS Press (2009). https://doi.org/10.3233/978-1-58603-929-5-825,
https://doi.org/10.3233/978-1-58603-929-5-825

7. Brackley, C.A., Broomhead, D.S., Romano, M.C., Thiel, M.: A max-plus model
of ribosome dynamics during mRNA translation. Journal of Theoretical Biology
303, 128–140 (2012)

8. Butkovič, P., Schneider, H., et al.: Generators, extremals and bases of max cones.
Linear algebra and its applications 421(2-3), 394–406 (2007)

9. Charron-Bost, B., Függer, M., Nowak, T.: New transience bounds for max-plus
linear systems. Discrete Applied Mathematics 219, 83–99 (2017)

10. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MATHSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’13). LNCS, vol. 7795, pp.
93–107. Springer (2013)

11. Clarke, E., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and complex-
ity of bounded model checking. In: International Workshop on Verification, Model
Checking, and Abstract Interpretation. pp. 85–96. Springer (2004)

12. Comet, J.P.: Application of max-plus algebra to biological sequence comparisons.
Theoretical computer science 293(1), 189–217 (2003)

13. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’08). LNCS, vol. 4963, pp. 337–340. Springer (2008)

14. Dutertre, B.: Yices 2.2. In: Intl. Conf. on Computer Aided Verification (CAV’14).
LNCS, vol. 8559, pp. 737–744 (2014)

15. Fahim, K., van der Woude, J., et al.: On a generalization of power algorithms over
max-plus algebra. Discrete Event Dynamic Systems 27(1), 181–203 (2017)

16. Gaubert, S., Katz, R.D.: Minimal half-spaces and external representation of trop-
ical polyhedra. Journal of Algebraic Combinatorics 33(3), 325–348 (2011)

17. Heidergott, B., Olsder, G.J., Van der Woude, J.: Max Plus at work: modeling and
analysis of synchronized systems: a course on Max-Plus algebra and its applica-
tions. Princeton University Press (2014)

18. Imaev, A., Judd, R.P.: Hierarchial modeling of manufacturing systems using max-
plus algebra. In: Proc. American Control Conference, 2008. pp. 471–476 (June
2008)

19. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) Intl. Conf. on Computer Aided Verification (CAV’17). LNCS, vol. 10426,
pp. 97–117. Springer (2017)

20. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with smt solvers. In: ACM SIGPLAN Notices. vol. 49, pp. 607–618. ACM
(2014)

http://smtlib.cs.uiowa.edu
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.3233/978-1-58603-929-5-825

Computation of Transient in MPL Systems via SMT-Solving 17

21. Merlet, G., Nowak, T., Sergeev, S.: Weak csr expansions and transience bounds in
max-plus algebra. Linear Algebra and its Applications 461, 163–199 (2014)

22. Mufid, M.S., Adzkiya, D., Abate, A.: Symbolic reachability analysis of high dimen-
sional max-plus linear systems (2020), accepted in the International Workshop on
Discrete Event Systems (WODES)

23. Mufid, M.S., Adzkiya, D., Abate, A.: Bounded model checking of max-plus linear
systems via predicate abstractions. In: International Conference on Formal Mod-
eling and Analysis of Timed Systems. pp. 142–159. Springer (2019)

24. Nowak, T., Charron-Bost, B.: An overview of transience bounds in max-plus alge-
bra. Tropical and Idempotent Mathematics and Applications 616, 277–289 (2014)

25. Shoaei, M.R., Kovács, L., Lennartson, B.: Supervisory control of discrete-event
systems via ic3. In: Haifa Verification Conference. pp. 252–266. Springer (2014)

26. Soto Y Koelemeijer, G.: On the behaviour of classes of min-max-plus systems.
Ph.D. thesis, Delft University of Technology (2003)

18 Alessandro Abate et al.

A Appendix

A.1 Proof of Propositions and of Theorems

Proposition 1 Suppose a regular MPL system (2) has maximum eigenalue λ.
The eigenspace E(A) is not empty iff χ = [λ . . . λ]T ∈ Rn.

Proof. (⇒) Suppose E(A) 6= ∅. By taking x(0) ∈ E(A), we have x(k + 1) =
λ⊗ x(k) for k ≥ 0 which implies xj(k) = (λ× k) + xj(0) for j ∈ {1, . . . , n}. It is
straightforward that limk→+∞ xj(k)/k = λ for all j ∈ {1, . . . , n}.
(⇐) Suppose x(0) ∈ Rn. By Theorem 1, there exist p, q such that x(p + q) =
q×χ+x(p). Because χ = [λ . . . λ], it can be written as x(p+q) = (q×λ)⊗x(p).
Let

v =

q⊕
i=1

(λ× (q − i))⊗ x(p+ i− 1).

One could check that v ∈ Rn and A⊗ v = λ⊗ v. Thus, E(A) 6= ∅. �

Proposition 3 Given a max-plus cone X = cone(V) where V = {v1, . . . , vp},
we have tr(A,X) = tr(A, V) = max{tr(A, v) | v ∈ V } and cyc(A,X) = cyc(A, V) =
lcm{cyc(A, v) | v ∈ V }.

Proof. Suppose x ∈ X. It follows that there exist scalars α1, . . . , αp such that
x =

⊕p
i=1(αi⊗vi). Let k∗0 = max{tr(A, vi) | 1 ≤ i ≤ p} and c∗ = lcm{cyc(A, vi) |

1 ≤ i ≤ p}. Then, we obtain

A⊗(k
∗
0+c

∗) ⊗
p⊕
i=1

(αi ⊗ vi) =

p⊕
i=1

(
αi ⊗A⊗(k

∗
0+c

∗) ⊗ vi
)
,

=

p⊕
i=1

(
αi ⊗ λ⊗c

∗
⊗A⊗k

∗
0 ⊗ vi

)
,

= λ⊗c
∗
⊗A⊗k

∗
0 ⊗

p⊕
i=1

(αi ⊗ vi) ,

which shows that tr(A,x) ≤ k∗0 and cyc(A,x) ≤ c∗. Thus, tr(A,X) ≤ tr(A, V)
and cyc(A,X) ≤ cyc(A, V). On the other hand, because V ⊆ X, we have
tr(A, V) ≤ tr(A,X) and cyc(A, V) ≤ cyc(A,X). Hence, we can conclude that
tr(A, V) = tr(A,X) and cyc(A, V) = cyc(A,X). �

Theorem 2 Suppose we have a regular matrix A ∈ Rn×nmax with a maximum
eigenvalue λ and cycle-time vector χ. The following statements are equivalent:

a. The underlying MPL system (2) is periodic,
b. The corresponding cycle-time vector is χ = [λ . . . λ]> ∈ Rn,
c. The eigenspace E(A) is not empty.

Computation of Transient in MPL Systems via SMT-Solving 19

Proof. By Proposition 1, it is suffice to prove ((a)⇒ (c)) and (b)⇒ (a).
(a)⇒ (c). Suppose x(0) ∈ Rn. As A is periodic, there exist natual numbers k0, c
such that x(k + c) = λc⊗ x(k) for all k ≥ k0. One could check that

v =

c⊕
i=1

(λ× (c− i))⊗ x(k0 + i− 1).

is an eigenvector of A. ((b)⇒ (a)). By Theorem 1, for each x(0) ∈ Rn there exist
natural numbers p, q such that x(k + q) = (q × χ) + x(k) for all k ≥ p. Because
χ = [λ . . . λ], it can be written as x(k + q) = (q × λ) ⊗ x(k). This shows that
tr(A,x(0)) exists for all x(0) ∈ Rn. Therefore, (2) is periodic. �

Proposition 4 Suppose we have a regular matrix A ∈ Rn×nmax with maximum
eigenvalue λ and non-empty eigenspace E(A). If there exist i ∈ {1, . . . , n} and
natural numbers k′0, c

′ such that A⊗k+c
′
(·, i) = µc′⊗A⊗k(·, i) for all k ≥ k′0 with

µ < λ, then (2) is unboundedly periodic.

Proof. Because E(A) 6= ∅, by Theorem 2, the corresponding MPL system (2) is
periodic. However, as A⊗k+c

′
(·, i) = µc′ ⊗ A⊗k(·, i) where µ < λ for all k ≥ k′0,

it is deemed impossible to find k0, c such that A⊗k+c = λc ⊗ A⊗k for k ≥ k0.
Consequently, (2) is unboundedly periodic. �

Proposition 5 Given a1, . . . , ap, a, b ∈ Rmax, real-valued variables x1, . . . , xp,
and 1 ≤ j ≤ p. We have

p⊕
i=1

(xi + ai) ∼ a ≡
p∨
i=1

(xi + ai ∼ a), (4)

a ∼
p⊕
i=1

(xi + ai) ≡
p∧
i=1

(a ∼ xi + ai), (5)

p⊕
i=1

(xi + ai) ∼ xj + b ≡

true, if (aj ∼ b), (6)
p∨
i=1
i 6=j

(xi + ai ∼ xj + b), otherwise, (7)

xj + b ∼
p⊕
i=1

(xi + ai) ≡

p∧
i=1
i 6=j

(xj + b ∼ xi + ai), if (b ∼ aj), (8)

false, otherwise. (9)

Proof. The equation
⊕p

i=1(xi + ai) ∼ a is satisfied iff there exists 1 ≤ i ≤ p
such that xi + ai ∼ a. Similarly, a ∼

⊕p
i=1(xi + ai) holds iff a ∼ xi + ai for all

1 ≤ i ≤ p. Hence, we get (4) and (5). By applying (4), we have

p⊕
i=1

(xi + ai) ∼ xj + b ≡
p∨
i=1

(xi + ai ∼ xj + b) ≡ (aj ∼ b) ∨
p∨
i=1
i6=j

(xi + ai ∼ xj + b).

20 Alessandro Abate et al.

If it is true that aj ∼ b then we get (6), otherwise we get (7). The proof for
(8)-(9) is similar to that of (6)-(7). �

Proposition 6 (Reduced Formula) Given real-valued variables x1, . . . , xp and
a1, . . . , ap, b1, . . . , bp ∈ Rmax, the inequality

F ≡
p⊕
i=1

(xi + ai) ∼
p⊕
j=1

(xj + bj) (10)

is equivalent to

F ∗ ≡
⊕
i∈S1

(xi + ai) ∼
⊕
j∈S2

(xj + bj) (11)

where S1 = {1, . . . , p}\{1 ≤ k ≤ p | ak = ε or ¬(ak ∼ bk)} and S2 = {1, . . . , p}\
{1 ≤ k ≤ p | bk = ε or ak ∼ bk}, respectively.

Proof. Suppose we set initially S1 = S2 = {1, . . . , p}. By applying (4), (10) can
be expressed as

F ≡
∨
i∈S1

xi + ai ∼
⊕
j∈S2

(xj + bj)

 .

Indeed we can ignore any scalar k if ak = ε. Furthermore, for each l such that
¬(al ∼ bl), by (9), we have

F ≡ false ∨
∨

i∈S1−{l}

xi + ai∼
⊕
j∈S2

(xj + bj)

≡ ∨
i∈S1−{l}

xi + ai∼
⊕
j∈S2

(xj + bj)

 .

This shows that l can be removed from S1. Similarly, by (5), we have

F ≡
∧
j∈S2

(⊕
i∈S1

(xi + ai) ∼ xj + aj

)
.

Again we can ignore any scalar k when bk = ε. By (6), for each l ∈ S2 such that
al ∼ bl we have

F ≡ true ∧
∧

j∈S2−{l}

(⊕
i∈S1

(xi + ai)∼xj + aj

)
≡
∧

j∈S2−{l}

(⊕
i∈S1

(xi + ai)∼xj + aj

)
.

Hence l can be removed from S2. �

Proposition 7 Given the non-trivial reduced formula in (11) then

F ∗ ≡
∧
j∈S2

(∨
i∈S1

(xi − xj ∼ bj − ai)

)
≡
∨
i∈S1

 ∧
j∈S2

(xi − xj ∼ bj − ai)

 . (12)

If S1 = ∅ then F ∗ ≡ false. On the other hand, if S2 = ∅ then F ∗ ≡ true.

Computation of Transient in MPL Systems via SMT-Solving 21

Proof. By applying (5) on (11), we have

F ∗ ≡
∧
j∈S2

(⊕
i∈S1

(xi + ai) ∼ xj + bj

)
.

Furthermore, by applying (4) on each conjunct, the above formula can be written
as ∧

j∈S2

(∨
i∈S1

(xi + ai ∼ xj + bj)

)
which corresponds to a difference logic formula in conjunctive normal form. Sim-
ilarly, the disjunctive normal form of Proposition 7 can be obtained by applying
(4) and then (5) on (11).

Now, in case of S1 = ∅, one can write (11) as ε ∼
⊕

j∈S2
(xj + bj) under

a convention max ∅ = ε. Indeed, this formula does admit any solution. Thus,
F ∗ ≡ false. On the other hand, in case of S2 = ∅, we have

⊕
i∈S1

(xi + ai) ∼ ε
which is a valid formula. �

Proposition 8 Given A ∈ Rn×nmax with global cyclicity c and maximum eigen-
value λ, we have

Sp(A) =

EqFunc(A⊗p+c, λc⊗A⊗p), if p = 0,

EqFunc(A⊗p+c, λc⊗A⊗p)∧
¬EqFunc(A⊗p−1+c, λc⊗A⊗p−1),

if p > 0,
(17)

and

Sp,q(A) =

EqFunc(A⊗p+q, λq ⊗A⊗p)∧∧
d∈Div(q)−{q}

¬EqFunc(A⊗p+d, λd⊗A⊗p), if p = 0,

EqFunc(A⊗p+q, λq ⊗A⊗p) ∧ ¬EqFunc(A⊗p−1+q, λq ⊗A⊗p−1)∧∧
d∈Div(q)−{q}

¬EqFunc(A⊗p+d, λd⊗A⊗p), if p > 0,

(18)
where Div(q) is a set of divisors of q.

Proof. Notice that, the formula EqFunc(A⊗p+c, λc⊗A⊗p) corresponds to a peri-
odic behavior at bound p and p+c with cyclicity at most c. More precisely, if x(0)
satisfies EqFunc(A⊗p+c, λc ⊗ A⊗p) then x(p + c) = λc ⊗ x(p) or in other words
tr(A, x(0)) ≤ p. On the other hand, if x(0) satisfies ¬EqFunc(A⊗p−1+c, λc ⊗
A⊗p−1) then tr(A, x(0)) > p− 1.

Similarly, EqFunc(A⊗p+q, λq ⊗ A⊗p) ∧ ¬EqFunc(A⊗p−1+q, λq ⊗ A⊗p−1) cor-
responds to a periodic behavior with transient p and cyclicity at most q. The
remaining conjuncts guarantee that the cyclicity cannot be smaller than q. �

22 Alessandro Abate et al.

Proposition 9 For an irreducible matrixA ∈ Rn×nmax with global transient k0 and
global cyclicity c we have S0(A) = E(A⊗c) and S0,1(A) = E(A). Furthermore,

i. Sp(A) 6= ∅ iff p ≤ k0,
ii. If p > k0 or q is not a divisor of c then Sp,q(A) = ∅,
iii. If Sp,q(A) is empty then so is Sp+1,q(A).

Proof. Let us assume the eigenvalue for A is λ. Notice that, x(0) ∈ S0(A) if and
only if x(c) = (λ× c)⊗ x(0), or equivalently A⊗c ⊗ x(0) = (λ× c)⊗ x(0). This
shows that x(0) is an eigenvector of A⊗c. Thus, S0(A) = E(A⊗c). The proof for
S0,1(A) = E(A) can obtained similarly.

i. As the global transient for A is k0, it is by default that Sp(A) = ∅ for p > k0.
Suppose x(0) ∈ Rn such that tr(A,x(0)) = k0. It is straightforward that
x(p) ∈ Sp−k0(A) for p ≤ k0. This completes the proof.

ii. If p > k0 we have Sp(A) = ∅ which implies Sp,q = ∅. Suppose q is not a
divisor of c and Sp,q 6= ∅. Then there exists x(0) such that cyc(A,x(0)) =
lcm(c, q) > c. This contradicts the fact that c is the global cyclicity.

iii. The proof is from the fact that if x ∈ Sp+1,q(A) then A⊗ x ∈ Sp,q(A). �

A.2 Experiments

The following table summarizes the outcomes of the experiments for each pair
(n,m) w.r.t. the cross-over point and the maximum value of k0 + c (denoted by
N∗).

Table 1: The summary of the experiments.
(n,m) cross-over N∗ (n,m) cross-over N∗ (n,m) cross-over N∗

(4,2) 28 1013 (10,6) 52 659 (30,10) 99 455
(4,3) 37 349 (10,8) 45 285 (30,20) 103 698
(4,4) 42 126 (10,10) 47 733 (30,20) 127 328
(6,2) 31 5488 (20,12) 69 273 (40,20) 117 385
(6,4) 34 640 (20,16) 76 464 (40,30) 144 345
(6,6) 42 186 (20,20) 87 478 (40,40) 164 619
(8,4) 42 4208
(8,6) 45 220
(8,8) 46 320

The figures on the next pages illustrate the experiments for each pair (n,m).

Computation of Transient in MPL Systems via SMT-Solving 23

0 200 400 600 800 1000
k0+c

0

5

10

15

20

25
ru

nt
im

e
(s

)

cross-over point = 28
Experiments with (n,m) = (4, 2)

Alg. 2
Alg. 4

0 50 100 150 200 250 300 350
k0+c

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ru
nt

im
e

(s
)

cross-over point = 37
Experiments with (n,m) = (4, 3)

Alg. 2
Alg. 4

0 20 40 60 80 100 120
k0+c

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ru
nt

im
e

(s
)

cross-over point = 42
Experiments with (n,m) = (4, 4)

Alg. 2
Alg. 4

0 200 400 600 800 1000
k0+c

0

5

10

15

20

25

ru
nt

im
e

(s
)

Experiments with n = 4
Alg. 2, (n,m) = (4, 2)
Alg. 4, (n,m) = (4, 2)
Alg. 2, (n,m) = (4, 3)
Alg. 4, (n,m) = (4, 3)
Alg. 2, (n,m) = (4, 4)
Alg. 4, (n,m) = (4, 4)

0 1000 2000 3000 4000 5000
k0+c

0

250

500

750

1000

1250

1500

1750

ru
nt

im
e

(s
)

cross-over point = 31
Experiments with (n,m) = (6, 2)

Alg. 2
Alg. 4

0 100 200 300 400 500 600
k0+c

0

5

10

15

20

ru
nt

im
e

(s
)

cross-over point = 34
Experiments with (n,m) = (6, 4)

Alg. 2
Alg. 4

0 50 100 150
k0+c

0.0

0.5

1.0

1.5

2.0

2.5

ru
nt

im
e

(s
)

cross-over point = 43
Experiments with (n,m) = (6, 6)

Alg. 2
Alg. 4

0 1000 2000 3000 4000 5000
k0+c

0

250

500

750

1000

1250

1500

1750

ru
nt

im
e

(s
)

Experiments with n = 6
Alg. 2, (n,m) = (6, 2)
Alg. 4, (n,m) = (6, 2)
Alg. 2, (n,m) = (6, 4)
Alg. 4, (n,m) = (6, 4)
Alg. 2, (n,m) = (6, 6)
Alg. 4, (n,m) = (6, 6)

24 Alessandro Abate et al.

0 1000 2000 3000 4000
k0+c

0

200

400

600

800

1000

1200

1400
ru

nt
im

e
(s

)
cross-over point = 42

Experiments with (n,m) = (8, 4)
Alg. 2
Alg. 4

0 50 100 150 200
k0+c

0

1

2

3

4

5

ru
nt

im
e

(s
)

cross-over point = 45
Experiments with (n,m) = (8, 6)

Alg. 2
Alg. 4

0 50 100 150 200 250 300
k0+c

0

2

4

6

8

ru
nt

im
e

(s
)

cross-over point = 46
Experiments with (n,m) = (8, 8)

Alg. 2
Alg. 4

0 1000 2000 3000 4000
k0+c

0

200

400

600

800

1000

1200

1400

ru
nt

im
e

(s
)

Experiments with n = 8
Alg. 2, (n,m) = (8, 4)
Alg. 4, (n,m) = (8, 4)
Alg. 2, (n,m) = (8, 6)
Alg. 4, (n,m) = (8, 6)
Alg. 2, (n,m) = (8, 8)
Alg. 4, (n,m) = (8, 8)

0 100 200 300 400 500 600
k0+c

0

10

20

30

40

50

60

ru
nt

im
e

(s
)

cross-over point = 52
Experiments with (n,m) = (10, 6)

Alg. 2
Alg. 4

0 50 100 150 200 250 300
k0+c

0

2

4

6

8

10

12

ru
nt

im
e

(s
)

cross-over point = 45
Experiments with (n,m) = (10, 8)

Alg. 2
Alg. 4

0 200 400 600
k0+c

0

10

20

30

40

50

60

70

ru
nt

im
e

(s
)

cross-over point = 47
Experiments with (n,m) = (10, 10)

Alg. 2
Alg. 4

0 200 400 600
k0+c

0

10

20

30

40

50

60

70

ru
nt

im
e

(s
)

Experiments with n = 10
Alg. 2, (n,m) = (10, 6)
Alg. 4, (n,m) = (10, 6)
Alg. 2, (n,m) = (10, 8)
Alg. 4, (n,m) = (10, 8)
Alg. 2, (n,m) = (10, 10)
Alg. 4, (n,m) = (10, 10)

Computation of Transient in MPL Systems via SMT-Solving 25

0 50 100 150 200 250
k0+c

0

10

20

30

40
ru

nt
im

e
(s

)

cross-over point = 69
Experiments with (n,m) = (20, 12)

Alg. 2
Alg. 4

0 100 200 300 400
k0+c

0

20

40

60

80

100

120

ru
nt

im
e

(s
)

cross-over point = 76
Experiments with (n,m) = (20, 16)

Alg. 2
Alg. 4

0 100 200 300 400 500
k0+c

0

20

40

60

80

100

120

140

ru
nt

im
e

(s
)

cross-over point = 87
Experiments with (n,m) = (20, 20)

Alg. 2
Alg. 4

0 100 200 300 400 500
k0+c

0

20

40

60

80

100

120

140

ru
nt

im
e

(s
)

Experiments with n = 20
Alg. 2, (n,m) = (20, 12)
Alg. 4, (n,m) = (20, 12)
Alg. 2, (n,m) = (20, 16)
Alg. 4, (n,m) = (20, 16)
Alg. 2, (n,m) = (20, 20)
Alg. 4, (n,m) = (20, 20)

0 100 200 300 400
k0+c

0

50

100

150

200

250

ru
nt

im
e

(s
)

cross-over point = 99
Experiments with (n,m) = (30, 10)

Alg. 2
Alg. 4

0 100 200 300 400 500 600 700
k0+c

0

100

200

300

400

500

600

ru
nt

im
e

(s
)

cross-over point = 103
Experiments with (n,m) = (30, 20)

Alg. 2
Alg. 4

0 50 100 150 200 250 300
k0+c

0

25

50

75

100

125

150

ru
nt

im
e

(s
)

cross-over point = 127
Experiments with (n,m) = (30, 30)

Alg. 2
Alg. 4

0 100 200 300 400 500 600 700
k0+c

0

100

200

300

400

500

600

ru
nt

im
e

(s
)

Experiments with n = 30
Alg. 2, (n,m) = (30, 10)
Alg. 4, (n,m) = (30, 10)
Alg. 2, (n,m) = (30, 20)
Alg. 4, (n,m) = (30, 20)
Alg. 2, (n,m) = (30, 30)
Alg. 4, (n,m) = (30, 30)

	Computation of the Transient in Max-Plus Linear Systems via SMT-Solving

