
Automated and Sound Synthesis1

of Lyapunov Functions with SMT Solvers2

Daniele Ahmed1,2, Andrea Peruffo1, and Alessandro Abate1
3

1 Department of Computer Science, University of Oxford, OX1 3QD Oxford, UK.4

name.surname@cs.ox.ac.uk5

2 Amazon Inc, London, UK.6

Abstract. In this paper we employ SMT solvers to soundly synthesise7

Lyapunov functions that assert the stability of a given dynamical model.8

The search for a Lyapunov function is framed as the satisfiability of a9

second-order logic formula, asking whether there exists a function satis-10

fying a desired specification (stability) for all possible initial conditions11

of the model. We synthesise Lyapunov functions for linear, non-linear12

(polynomial), and for parametric models. For non-linear models, the al-13

gorithm also determines a region of validity for the Lyapunov function.14

We exploit an inductive framework to synthesise Lyapunov functions,15

starting from parametric templates. The inductive framework comprises16

two elements: a “learner” proposes a Lyapunov function, and a “verifier”17

checks its validity - its lack is expressed via a counterexample (in prac-18

tice, a point over the state space), of further use by the learner. Whilst19

the verifier uses the SMT solver Z3, thus ensuring the overall soundness20

of the procedure, we examine two alternatives for the learner: a numer-21

ical approach based on the optimisation tool Gurobi, and a sound one22

based again on Z3. The overall technique is evaluated over a broad set23

of benchmarks, which show that this methodology not only scales to24

10-dimensional models within reasonable computational time, but also25

offers a novel soundness proof for the generated Lyapunov functions and26

their domains of validity.27

Keywords: Lyapunov functions, automated synthesis, inductive synthesis,28

counter-example guided synthesis29

1 Introduction30

Dynamical systems represent a major modelling framework in both theoretical31

and applied sciences: they describe how objects move by means of the laws32

governing their dynamics in time. Often they encompass a system of ordinary33

differential equations (ODE) with nontrivial solutions.34

This work aims at studying the stability property of general ODEs, without35

knowledge of their analytical solution. Stability analysis via Lyapunov functions36

is a known approach to assert such property. As such, the problem of constructing37

relevant Lyapunov functions for stability analysis has drawn much attention in38

the literature [1,2]. By and large, existing approaches leverage Linear Algebra or39

Convex Optimisation solutions, and are not automated nor numerically sound.40

Contributions We apply an inductive synthesis framework, known as Counter-41

Example Guided Inductive Synthesis (CEGIS) [3,4], to construct Lyapunov func-42

tions for linear, polynomial and parametric ODEs, and to constructively charac-43

terise their domain of validity. CEGIS, originally developed for program synthesis44

based on the satisfiability of second-order logical formulae, is employed in this45

work with templates Lyapunov functions and in conjunction with a Satisfiabil-46

ity Modulo Theory (SMT) solver [5]. Our results offer a formal guarantee of47

correctness in combination with a simple algorithmic implementation.48

The synthesis of a Lyapunov function V can be written as a second-order logic49

formula F := ∃V ∀x : ψ, where x represents the state variables and ψ represents50

requirements that V needs to satisfy in order to be a Lyapunov function.51

The CEGIS architecture is structured as a loop between two components, a52

“learner” and a “verifier”. The learner provides a candidate function V and the53

verifier checks the validity of ψ over the set of x; if the function is not valid, the54

verifier provides a counterexample, namely a point x̄ in the state space where the55

candidate function does not satisfy ψ. The learner incorporates the generated56

counterexample x̄, subsequently computes a new candidate function, and loops57

it back to the verifier.58

We exploit SMT solvers to (repeatedly) assert the validity of ψ, given V , over59

a domain in the space of x. Satisfiability Modulo Theory (SMT) is a powerful60

tool to assert the existence of such a function. An SMT problem is a decision61

problem – a problem that can be formulated as a yes/no question – for logical62

formulae within one or more theories, e.g. the theory of arithmetics over real63

numbers. The generation of simple counterexamples x̄ is a key new feature of64

our technique.65

Furthermore, in this work we provide two alternative CEGIS implementa-66

tions: 1) a numerical learner and an SMT-based verifier, 2) an SMT-based learner67

and verifier. The numerical generation of Lyapunov functions is based on the op-68

timisation tool Gurobi [6], whereas the SMT-based leverages Z3 [7].69

Related Work The construction of Lyapunov functions is recognisably an70

important yet hard problem, particularly for non-linear models, and has been71

the objective of classical studies [8,9,10]. A know constructive result has been72

introduced in [11], which additionally provides an estimate of the domain of at-73

traction. It has led to further work based on recursive procedures. Broadly, these74

approaches are numerical and based on the solution of optimisation problems.75

For instance, linear programming is exploited in [12] to iteratively search for76

stable matrices inside a predefined convex set, resulting in an approximate Lya-77

punov function for the given model. Alternative approximate methods include [1]78

ε-bounded numerical methods, techniques leveraging series expansion of a func-79

tion, the construction of functions from trajectory samples, and the framework80

2

of linear matrix inequalities. The approach in [13] uses sum-of-squares (SOS)81

polynomials to synthesise Lyapunov functions, however its scalability remains82

an issue. The work in [14] uses SOS decomposition to synthesise Lyapunov func-83

tions for (non-polynomial) non-linear systems: the algorithmic implementation84

is know as SOSTOOLS [15,16]. [17] focuses on an analytical result involving a85

summation over finite time interval, under a stability assumption. Recent devel-86

opments are in [18] and subsequent work. Surveys on this topic are in [1,2].87

In conclusion, existing constructive approaches either rely on complex can-88

didate functions (whether rational or polynomial), on semi-analytical results, or89

alternatively they involve state-space partitions (for which scalability with the90

state-space dimension is problematic) accompanied by correspondingly complex91

or large optimisation problems. These approximate methods evidently lack either92

numerical robustness, being bound by machine precision, or algorithmic sound-93

ness: they cannot provide formal certificates of reliability which, in safety-critical94

applications, can be an evident limit.95

In [19] Lyapunov functions are soundly found within a parametric frame-96

work, by constructing a system of linear inequality constraints over unknown97

coefficients. A twofold linear programming relaxation is made: it includes in-98

terval evaluation of the polynomial form and “Handelman representations” for99

positive polynomials. Simulations are used in [20] to generate constraints for a100

template Lyapunov function, which are then resolved via LP, resulting in can-101

didate solutions. Whilst the authors refer to traces as counterexamples, they do102

not employ the CEGIS framework, as in this work. When no counterexamples are103

found, [20] further uses dReal [21] and Mathematica [22] to verify the obtained104

candidate Lyapunov functions. The sound technique, which is not complete, is105

tested on low-dimensional models with non-linear dynamics.106

The cognate work in [23,24,25] is the first to employ a CEGIS-based ap-107

proach to synthesise Lyapunov functions. [23,24] focuses on such synthesis for108

switching control models - a more general setup that ours. [23] employs an SMT109

solver for the learner, and towards scalability solves an optimisation problem110

over LMI constraints for the verifier over a given domain (unlike our approach).111

As such, counterexamples are matrices, not points over the state space, and fur-112

thermore the use of LMI solvers does not in principle lead to sound outcomes.113

Along the above line, [24] expands this approach towards robust synthesis; [25]114

instead employs MPC within the learner to suggest template functions, which115

are later verified via semi-definite programming relaxations (again, possibly gen-116

erating counterexamples by solving optimisation problems over a given domain).117

Whilst inspired by this line of work, our contribution provides a simple (with118

interpretable counterexamples that are points over the state space) yet effective119

(scalable to at least 10-dimensional models) SAT-based CEGIS implementation,120

which automates the construction of Lyapunov functions and associated validity121

domains, which is is sound, and also applicable to parameterised models.122

The remainder of the paper is organised as follows. In Section 2 we present the123

SMT Z3 solver and the inductive synthesis (IS) framework. The implementation124

of CEGIS, for both linear and non-linear models, is explained in Section 3.125

3

Experiments and case studies are in Section 4. Finally, conclusions are drawn in126

Section 5.127

2 Formal Verification – Concepts and Techniques128

In this work we use Z3, an SMT solver, and the CEGIS architecture, to build129

and to verify Lyapunov functions.130

2.1 Satisfiability Modulo Theory131

A Satisfiability Modulo Theory problem is a decision problem formulated within132

a theory, e.g. first-order logic with equality [26]. The aim is to check whether a133

first-order logical formula within such theory, referred to as an SMT instance, is134

satisfied. For example, a formula can be the inequality 3x0 + x1 > 0 evaluated135

within the theory of linear inequalities. An SMT solver is a software that checks136

the satisfiability of an SMT instance, i.e. whether there exists an instantiation137

of the formula that evaluates to True. SMT solvers can be useful for function138

synthesis, namely to mechanically construct a function, given requirements on139

its output.140

2.2 The Z3 SMT Solver141

Z3 [7,27] is a powerful SMT solver that integrates SAT solvers, theory solvers for142

equalities and interpreted functions, satellite solvers for arithmetic, real, array,143

and other theories, and an abstract machine to handle quantifiers. Receiving an144

input formula, Z3 represents it as an abstract syntax tree and processes it with145

its SAT solver core, until it returns SAT if the formula is satisfiable, or UNSAT146

otherwise.147

Example 1 (Operation of Z3). Consider the formula a = b ∧ f(a) = f(b) in the148

theory of equality. To verify its satisfiability, Z3 constructs a syntax tree, with149

nodes for each variable (a, b) and formulae (a = b, f(a), f(b), f(a) = f(b)). Once150

the tree is built, Z3 merges a with b and f(a) with f(b) to represent the equality151

operation and, in order to verify the correctness of the assertion, applies the152

congruence rule
∧n−1

i=0 xi = yi ⇒ f(x0, . . . xn−1) = f(y0, . . . yn−1) to conclude153

that a = b⇒ f(a) = f(b). Finally, nodes a = b and f(a) = f(b) are merged and154

Z3 returns SAT. �155

Of particular interest for the synthesis of Lyapunov functions, is the ability of156

Z3 to solve polynomial constraints. Z3 stores and exactly manipulates algebraic157

real numbers that are roots of rational univariate polynomials: this is done for158

an algebraic real α, by storing a polynomial p(x) for which p(α) = 0 and two159

rationals l, u such that p(x) = 0 for x ∈ (l, u) if and only if x = α. In this work,160

Z3 has been used through its Python APIs, named Z3Py. An example of a simple161

assertion verification follows.162

4

Example 2 (Assertion in Z3). Consider the (valid) formula x ≥ 0⇒ 3x+ 1 > 0.163

The code using Z3Py results in:164

x = Real(‘x’)165

s = Solver()166

s.add(Implies(x >= 0, 3 * x + 1 > 0))167

print(s.check())168

which evaluates (as expected) to SAT. �169

2.3 Inductive Synthesis - CEGIS170

An approach to solve second-order logic problems, such as those characterising171

the synthesis of Lyapunov functions, is inductive synthesis (IS). IS infers general172

rules (or functions) from specific examples (observations), entailing the process of173

generalisation. Within the IS procedure, a synthesiser attempts the construction174

from a (usually small) subset of the original specifications. It then generalises to175

the complete specification by identifying patterns in the input data.176

An exemplar of IS is the CEGIS framework. Fig. 1 depicts the relation be-177

tween its two main components. It sets off with a given specification ψ over a178

set I for the synthesis. The synthesis engine (a component that will be also de-179

noted as learner) provides a candidate solution for ι, a subset of I, the space of180

possible inputs. This candidate solution is passed to a second component, called181

verifier, that acts as an oracle: either it approves the solution over the entire I,182

so that the process terminates, or it finds an instance x̄ (a counterexample in183

I) where the candidate solution does not comply with the specifications. The184

learner takes x̄ and adds it to ι, computing a new (more general) candidate solu-185

tion for the problem. This cycle is repeated. Note that this algorithm might not186

terminate, depending on the structure of I, or might take many cycles to find187

a proper solution: in those instances, tailored candidate solutions and insightful188

counterexamples are necessary. In this work, the IS is implemented using SMT-189

solvers. The verifier finds counterexamples x̄ by seeking a witness of the negated190

formula ¬ψ, namely trying to prove that a violation of the formula exists. The191

learner might employ SMT solvers to solve the system of constraints generated192

by the counterexamples, i.e. to find a valid instance of such constraints, however193

in general it does not need to be sound, as it is the verifier that guarantees194

the soundness of the proposed solution. Section 3.1 illustrates the two CEGIS195

components, the learner L and the verifier Z in relation to Lyapunov function196

synthesis.197

Example 3 (CEGIS Operation). Assume the task is the synthesis of a function
g(x) that satisfies the following formula F (g(x)):

∃ g(x) ∀x ∈ R : ψ, where ψ(g(x)) = g(x) + 1 > 0.

The learner L offers an initial (often näıve, random or default) candidate, e.g.
g(x) = x, and passes it to the verifier Z. The verifier checks the validity of

5

ψ(x) = x + 1 > 0, ∀x ∈ R, by searching an instance x̄ that might invalidate
the formula. Z finds that x̄ = −1 invalidates the formula, thus sends x̄ to L,
which incorporates this counterexample to synthesise a new g(x). The learner
now adds a constraint on the next candidate, as

C := g(x̄ = −1) + 1 > 0, ∀x ∈ R,

such that the new candidate solution satisfies the formula at x̄ = −1. The198

learner now proposes g(x) = x2, which satisfies C, and passes it to Z. The199

verifier searches for a counterexample to ψ(x2), but cannot find any. Thus, it200

exits the loop with an UNSAT answer, which proves that the synthesised function201

g(x) = x2 is valid ∀x ∈ R. �202

L Z
x̄

S
done

1

Fig. 1. CEGIS-based inductive synthesis. The iterative procedure loops between a
learner L and a verifier Z. L provides a candidate solution S to the verifier Z, which
asserts its validity or outputs a counterexample x̄. The learner provides a new solution
encompassing also x̄. The procedure stops once no counterexamples are found.

3 Automated and Sound Synthesis of Lyapunov203

Functions via CEGIS and SMT204

Consider a dynamical system ẋ = f(x), where f : Rn → Rn, and assume that205

point xe ∈ Rn is an equilibrium, namely such that f(xe) = 0 – without loss of206

generality, we assume that xe = 0. The goal is assessing the stability of such207

equilibrium point via the synthesis of a Lyapunov function V (x) : Rn → R. The208

stability of an equilibrium is a significant property to study, as it guarantees that209

trajectories starting by the equilibrium remain close to it at all times (how close210

can often be quantified, as done later in this work). If V (x) fulfils the following211

two conditions, ∀x ∈ D,212

V (x) > 0, V̇ (x) = ∇V (x) · f(x) ≤ 0, (1)

whereD is a domain of interest containing xe then the Lyapunov function ensures213

that for every initial point contained in D, the trajectories of the models do not214

escape D (with reference to notations introduced above, the condition in (1)215

6

represents the requirement ψ, and D denotes the set of inputs I). We use the216

following polynomial expression for the Lyapunov function217

V (x) =

c∑
l=1

(xl)T Pl x
l, (2)

where xl represents the element-wise exponentiation of vector x, i.e. element x(j)218

to the power l, ∀j = 1, . . . , n; Pl ∈ Rn×n is a weighting matrix associated with219

xl, and c is the order of the polynomial function. In order to obtain a proper220

Lyapunov function V (x), the synthesiser is asked to verify the specification ex-221

pressed by the formula222

F (V (x)) : ∀x ∈ D, V (x) > 0 ∧ V̇ (x) ≤ 0. (3)

This specification requires the Lyapunov function to be positive definite, and
not to increase along the trajectories of the model. For linear systems, unless
otherwise stated, we consider D = Rn \ {0} and c = 1, as it is known that
quadratic functions are sufficient to prove the stability of linear models over the
whole state space. Formula (3) keeps the elements of P uninterpreted, and thus
they are parameters to be found. Notice that the second-order formula

∃P ∈ Rn×n : ∀x ∈ D, V (x) > 0 ∧ V̇ (x) ≤ 0,

would return a boolean value, i.e. True or False: to obtain the synthesised V (x)223

function, we remove the existential quantifier.224

3.1 The CEGIS Architecture for Lyapunov Function Synthesis225

We introduce the CEGIS architecture to find Lyapunov functions. To better il-226

lustrate the methodology, we start by considering linear models (the non-linear227

case is further discussed in Section 3.2). As mentioned earlier, two components228

characterise the CEGIS approach: a learner and a verifier. The CEGIS architec-229

ture takes the system matrix A and it outputs a matrix P as the key component230

of the function V (x), verifying the conditions in Eq. (1). We denote by P̄i,231

i = 0, 1, 2, . . . the candidate matrices yet to be verified, i.e. the outputs of the232

learner. As anticipated earlier, referring to Eq. (2), we set c = 1 and D = Rn\{0}.233

Verifier The scope of a verifier is twofold: generate a counterexample to the234

validity of the candidate Lyapunov function, or certify its validity over a domain235

of interest. We implement the verifier in Z3.236

The methodology to assert the correctness of a Lyapunov function is as fol-237

lows. Assume the learner computes a candidate Lyapunov function V (x) and238

passes it to the verifier (in case of a linear function, the learner offers a matrix239

P̄i). The goal of the verifier is to assert the validity of formula F from (3) ac-240

cording to the specification ψ in (1). The check is performed by negating F : if241

there exists a vector x̄ that satisfies ¬F , it is a counterexample for F ; if it does242

7

not exist, formula F is valid and the candidate Lyapunov function is an actual243

Lyapunov function. The domain D is encoded as an additional formula. Assume,244

as an example, the domain is an hyper-sphere of radius one: D can be written245

formally as d: ||x||2 ≤ 1. The final formula thus results in ¬F ∧ d.246

A counterexample x̄ can satisfy either V (x̄) ≤ 0, V̇ (x̄) > 0, or both con-247

ditions. Reasoning on either condition, it is easy to show that if there exists a248

counterexample x̄ invalidating a matrix P̄ , then there exists an infinite number of249

counterexamples for this P̄ . Thus, particularly for high-dimensional models the250

generation of meaningful counterexamples is crucial to find a Lyapunov function251

quickly.252

Let us denote x̄i, i = 1, 2, . . . , the series of counterexamples provided by253

the verifier and P̄i the series of candidate Lyapunov function matrices provided254

by the learner. In this setting, the learner proposes the first default candidate255

matrix P̄0; the verifier will (possibly) provide a counterexample x̄0; the learner256

then includes x̄0 in the set of constraints (cf. Section 3.1) and offers a new257

candidate P̄1.258

In this work, we let Z3 generate counterexamples without any further goals.259

However, more generally counterexamples can be generated adding constraints,260

e.g. linear independence or orthogonality. Intuitively, more constraints might261

generate “better” candidates by the learner, albeit at an increase in computa-262

tional cost.263

As intuition suggests, if we were to work with models having a diagonal ma-264

trix A, then the synthesis of diagonal candidates P̄i and of a diagonal solution P265

would reduce the number of variables needed, thus speeding up the computation.266

As such, if A is not diagonal but diagonalisable, the algorithm pre-computes the267

system diagonalisation and feeds it to the CEGIS architecture returning a ma-268

trix P for the diagonal system, which is then converted to a solution for the269

original model.270

Learner A learner is the CEGIS component designated to suggest a candidate271

solution for the problem under consideration. Within our framework, a learner272

solves linear inequalities derived from F (V (x̄)) as per Eq. (3), while memorising273

the set of counterexamples {x̄i | ¬F (x̄i)} generated by the verifier. Whilst the274

verifier works over continuous domains, note that the learner only considers a275

finite number of points to synthesise the candidate Lyapunov function. At each276

iteration i, the learner is tasked to solve 2i linear inequalities: i inequalities for277

V ≥ 0 and i for V̇ ≤ 0 – this is two inequalities per counterexample, so a set of278

useful counterexamples is vital to achieve efficiency.279

We implement two learners, for comparison: 1) a numerical and 2) a Z3-280

based learner. However, our CEGIS architecture can in principle accommodate281

any learner. The first learner uses Gurobi [6], a fast, commercial optimisation282

solver for, among others, linear and quadratic programming problems, support-283

ing continuous variables. Notice that the synthesis is a linear program: variables284

pi,j , the entries of matrix P , appear linearly within the inequalities in F (V (x̄i)).285

Gurobi is thus expected to outperform an SMT solver in this specific task. How-286

8

ever these variables do not represent real numbers, but floating point numbers287

that are approximated at machine precision. The second learner instead em-288

ploys Z3, which is numerically sound and not affected by machine precision. Z3289

solves an SMT instance to synthesise V (x): it asserts the satisfiability of Eq. (3)290

F (V (x̄i)) for all collected counterexamples x̄i.291

As mentioned earlier, the number of inequalities to be solved depends on the292

number of counterexamples, which can grow to be quite large. Whilst the verifier293

ought to generate useful counterexamples, the learner is optimised to output a294

matrix P̄i that is easy to handle. From the comparison between a numerical295

learner (running on Gurobi) and a sound one (based on Z3), the compromise296

between speed and soundness results is evident (cf. Section 4). Z3 is sound, yet297

slower when compared to the numerical learner.298

3.2 Lyapunov Function Synthesis for Non-linear Models299

The problem of synthesizing Lyapunov functions and their region of validity for300

a general non-linear system ẋ = f(x(t)) is approached via linearisation or via301

direct computation.302

The linearisation approach consists of three steps for the learner: we first
linearise the f(x(t)), obtaining

˙̃x(t) = ALx̃(t),

where AL is the Jacobian of f(x(t)) evaluated at xe; we then compute matrix
P – and quadratic Lyapunov function V (x) = xTPx – on the linearised system;
finally, we find R, defined as the set in which the linear Lyapunov function
is valid. Next, we detail the synthesis of region R. Consider, without loss of
generality, an autonomous non-linear system with (at least one) equilibrium
point xe = 0. Assume the CEGIS procedure is successful, i.e. it finds a Lyapunov
function VL(x) = xTPx that guarantees the asymptotic stability of system ˙̃x =
ALx̃ around xe. We now compute the region where VL(x) guarantees stability
with the original system, i.e. ẋ = f(x). In view of the existence of VL(x) and by
definition of linearisation, there exists a neighbourhood of the origin B0 in which
the derivative of the Lyapunov function V̇ (x) is non-positive; formally such set
is defined as

B0 = {x ∈ Rn\{0} | V̇ (x) ≤ 0},

where V̇ (x) is computed on the original system, namely

V̇ (x) = ∇V (x) · f(x).

Let us define the boundary of B0 as ∂B0 = {x ∈ Rn\{0} | V̇ (x) = 0}. This set
may be composed by single points or regions of the state space: in this case, we
find r, the closest point to the equilibrium that belongs to ∂B0, as

r = min
x∈∂B0

∑
l

x(l)2.

9

We finally compute region R as a hyper-sphere of radius r,303

R = {x ∈ Rn\{0} | ‖x‖2 < r}, (4)

defining the region where the Lyapunov function is valid. Finally, region R is304

tested with the verifier: formula F (V (x)) from Eq. (3) is passed to Z3 with305

D = R. Our implementation uses a numerical optimisation technique to com-306

pute a value for r that is passed to Z3, as Z3 does not natively handle non-linear307

optimisation problems. With this selection, the region R represents a sound308

under-approximation of the maximal stability region. The linearisation method309

is used in view of its rapid and effective synthesis capability. However, it pro-310

duces a Lyapunov function that does not ensures global stability when one of311

the eigenvalues of AL is equal to zero. This is a well-known limitation of the312

linearisation, which suggests a more formal approach, called direct computation313

method.314

The direct computation method, as the name suggests, analytically computes
V (x) and V̇ (x) from a template V (x) as in Eq. (2). The learner is tasked with
resolving conditions ψ obtained by a light relaxation of the two inequalities in
(1), namely

V (x) ≥ 0, V̇ (x) = ∇V (x) · f(x) ≤ 0.

Note that the first inequality is not strict: this relaxation allows for a faster315

computation of a candidate. The verifier, on the other hand, produces coun-316

terexamples for V (x) > 0, thus retaining soundness of the overall procedure .317

The CEGIS framework allows the separation between synthesis and verification.318

So whilst the learner might propose candidates being completely independent319

from domain D, the verifier is responsible to assert or to find the domain of320

validity D. Our implementation establishes that at first the verifier checks the321

validity of V (x) on the whole state space D = Rn; if the computation is not suc-322

cessful – namely, the computational time is greater than a predefined timeout –323

the verifier checks its validity over a smaller region, e.g. D = [−1, 1]n, and so on.324

3.3 Lyapunov Function Synthesis for Parametric Models325

Parametric models represent a challenge for both sound and numerical solvers.326

Let us remark that both Gurobi and Z3 can not synthesise functions in the327

presence of uncertainty, whereas Z3 can provide counterexamples using one (or328

more) variables as fixed parameters, using the quantifier ForAll.329

Let us consider variable x, a parameter µ and a formula ψ(x, µ): Z3 can find330

a counterexample for all values of µ by validating ForAll(µ, ψ). If µ belongs331

to a range [l, u], Z3 can find a counterexample by checking ψ ∧ µ ≥ l ∧ µ ≤ u.332

This provides a counterexample (x̄, µ̄) for x and µ, respectively.333

The synthesis procedure is split into two steps, in view of the inability of334

Z3 and Gurobi to propose parametric solutions. The first step synthesises a335

candidate Lyapunov function solely using the constraint V (x) > 0, in which no336

parameter appears. The second step evaluates the constraint V̇ ≤ 0 to propose337

a parametric Lyapunov function exploiting the results from the first step. The338

following example details the procedure.339

10

Example 4. Consider a two-dimensional linear parametric system [19] and a can-
didate Lyapunov function{

ẋ = y

ẏ = −(2 + µ)x− y
, V (x, y) = p1x

2 + p2y
2.

Assume the first guess of the learner is invalid, i.e. the verifier finds a counterex-
ample for the validity of V (x, y). The counterexample (x̄, ȳ) is then sent to the
learner. The synthesis procedure is split into two steps: the first step entails the
synthesis solely accounting for V (x̄, ȳ) > 0. The learner is tasked to solve

V (x̄, ȳ) = p1x̄
2 + p2ȳ

2 > 0,

where p1, p2 are the variables of the inequality. The learner will propose values p̄1

and p̄2 satisfying the inequality. Two second step removes one of the synthesised
p̄i, e.g. p̄1, in order to re-synthesise it including the parameters found in V̇ . In
practical terms, the expression of V̇ is evaluated at x̄, ȳ and p̄2, as

V̇ = 2p1x̄ȳ − 2p̄2ȳ
2 − 2(µ+ 2)x̄ȳ ≤ 0 =⇒ p1 ≤ p̄2

(ȳ
x̄

+ 2 + µ
)
.

We choose the value p1 that satisfies the equality. The candidate Lyapunov340

function thus results in V (x, y) = p̄2

(
ȳ
x̄ + 2 + µ

)
· x2 + p̄2 · y2. This procedure341

holds as long as x̄ 6= 0: if this is not the case, we can either choose to synthesise342

a new value for p2 or simply maintain the numerical values obtained after the343

first step. In the latter case, once the candidate Lyapunov function is passed to344

the verifier, a new counterexample will be generated and the procedure can be345

repeated until a parametric Lyapunov function is found and verified. Another346

possible approach is based on the mixed-terms removal: p1 is synthesised so347

that the terms carrying x̄ȳ cancel out. Further, the choice of p1 satisfying the348

equality is arbitrary: we can add a negative constant to its value to solve the349

strict inequality instead. Finally, more than one parameter p̄i can be removed350

in the second step: this can spread the parametric coefficients among more than351

one pi. However, this is likely to increase the computational cost in view of the352

inequality being a function of more than one variable. �353

4 Case Studies and Experiments354

In this Section we outline a few experiments to challenge the validity of our355

approach. Our technique is coded in Python 2.7 [28], using external libraries as356

the numerical solver Gurobi and the SMT solver Z3 (cf. Section 2). Specifically,357

we compare two CEGIS architectures:358

1. Gurobi learner and Z3 verifier,359

2. Z3 learner and Z3 verifier,360

11

later denoted as Gurobi-CEGIS and Z3-CEGIS, respectively. Whilst Z3 is an effi-361

cient verifier, it carries the weight of exact representations. We therefore compare362

its use within the learner to that of a numerical solver such as Gurobi - recall363

that the learner does not need to be sound. A relevant feature of the synthesis364

procedure is its linearity in the entries of matrix P : we expect an efficient LP365

solver to outperform an SMT solver. As such, we study the expected tradeoff366

between speed and precision. As specified earlier, the initial candidate for the367

learner P̄0 is arbitrary: we challenge the procedure by setting P̄0 = −I, which368

does not satisfy the first positivity condition for Lyapunov functions, thus show-369

ing that even with an ill-suited initial guess the procedure can rapidly synthesise370

a valid Lyapunov function.371

We consider linear, non-linear and parametric ODEs with the origin as (one372

of) the equilibrium(a), and aim to obtain a Lyapunov function guaranteeing the373

stability of such equilibrium point. The procedure entails the following steps:374

a) a function f(x), x ∈ Rn, is fed as the input;375

b) a Lyapunov function V (x), as in Eq. (2), is computed;376

c) in the linearisation case, the stability region R in Eq. (4) for V (x) is found.377

Let us emphasise that Z3 is unable to handle non-polynomial terms, which rep-378

resents the only limitation of our approach. Unlike most of the literature, coun-379

terexamples are not limited to a finite set but searched over the whole Rn.380

Linear models are certainly an easier task than polynomial systems. The381

study with linear models focuses mainly on the scalability of the method, en-382

compassed by the average and maximum/minimum computational time, and the383

number of iterations performed. We generate N = 100 random linear models of384

dimension n ∈ [3, 10]. For each linear system, the entries of matrix A range385

within [−1000, 1000] ∈ R. For each test we set c = 1 (cf. Eq. (2)), namely we386

impose a quadratic structure to the Lyapunov function, and collect the num-387

ber of iterations of the procedure, i.e. the number of counterexamples needed388

to compute a valid Lyapunov function, and the total elapsed time. Recall that389

the initial synthesiser’s candidate is P̄0 = −I, which challenges the reliability390

of our method with a bad initial condition. A 180 seconds time out is set for391

every run. Results comparing the numerical learner using Gurobi and the sound392

learner using Z3 are reported in Table 1. The average values, as well as the min-393

imum and maximum value among the N random systems, are computed on the394

synthesis tests that have not timed out. The number of timed out procedures395

are also listed in the Table.396

With regards to non-linear and parametric models, we assess our approach397

over a suite of examples taken from related work on Lyapunov function synthesis398

[14], [15], [16], [19], which are reported in the following. The value c from Eq.399

(2) is set heuristically as ceil(d/2), where d is the order of the system, in view400

of the interpretation of Lyapunov functions as storage functions. Due to ease of401

implementation, only Z3-CEGIS performs the synthesis with c > 1 and in the402

case of parametric models. Results in terms of computational time and iterations403

are reported in Table 2. Experiments are run on a 4-core Dell laptop with Fedora404

30 and 8GB RAM.405

12

Example 5. Consider the model [14]

ẋ1 = −x2
1 − 4x3

2 − 6x3x4, ẋ4 = x1x3 + x3x6 − x3
4,

ẋ2 = −x1 − x2 + x3
5, ẋ5 = −2x3

2 − x5 + x6,
ẋ3 = x1x4 − x3 + x4x6, ẋ6 = −3x3x4 − x3

5 − x6.

Z3-CEGIS finds the Lyapunov function V (x) = 2x2
1 +4x4

2 +x2
3 +11x2

4 +2x4
5 +4x2

6,406

ensuring stability over the whole state space. �407

Example 6. Consider the model [19]{
ẋ = −x3 + y

ẏ = −x− y.

Gurobi-CEGIS finds the Lyapunov function V (x) = 5 · 10−5x2 + 5 · 10−5y2,408

whereas Z3-CEGIS finds V (x) = 0.5x2 + 0.5y2, both ensuring global stability.409

The linearised Gurobi-CEGIS finds V (x) = 3.2·10−3x2+3.2·10−3y2 also ensuring410

stability on the whole state space. �411

Example 7. Consider the system [16]
ẋ1 = −x3

1 − x1x
2
3,

ẋ2 = −x2 − x2
1x2,

ẋ3 = −x3 −
3x3

x2
3 + 1

+ 3x2
1x3.

Note that the term x2
3 + 1 is always non-negative, therefore we can consider412

V̇ (x) · (x2
3 + 1) ≤ 0. Gurobi-CEGIS finds the Lyapunov function V (x) = 32 ·413

10−4x2
1 +32 ·10−4x2

2 +8 ·10−4x2
3, whereas Z3-CEGIS finds V (x) = 3x2

1 +x2
2 +x2

3,414

both ensuring global stability. �415

Example 8. Consider the system [19]{
ẋ = −x− 1.5x2y3,

ẏ = −y3 + 0.5x3y2.

Z3-CEGIS finds V (x) = 1/3x2 + y2, valid on the whole R2. Gurobi-CEGIS416

returns an error, as it finds V (x) = 1.00066454641347x2 + 2.99933545358653y2
417

that is not a valid Lyapunov function. The correct solution, V (x) = x2 + 3y2,418

can not be attained in view of lack of convergence of the optimisation algorithm.419

On the other hand, the linearised Gurobi-CEGIS delivers V (x) = 32 · 10−4x2 +420

2 · 10−4y2 with a radius r = 1.25. �421

13

Example 9. Consider the system [19]:

ẋ1 = −x1 + x3
2 − 3x3x4, ẋ2 = −x1 − x3

2,
ẋ3 = x1x4 − x3, ẋ4 = x1x3 − x3

4.

Z3-CEGIS finds the Lyapunov function V (x) = 2x2
1 + x4

2 + 3201/1024x2
3 +422

2943/1024x2
4, ensuring global stability. �423

Example 10. Consider the parametric linear system [19]{
ẋ = y,

ẏ = −(2 + µ)x− y,

where µ ∈ (−2, 5]. Z3-CEGIS discovers the Lyapunov function V (x) = (µ +424

2)x2 + y2, ensuring stability on the whole state space. �425

Example 11. Consider the parametric system [19]{
ẋ = −(1 + µ1)x+ (4 + µ2)y,

ẏ = −(1 + µ3)x− µ4y
3,

where µi ∈ [0, 100] for i = 1, . . . 4. Z3-CEGIS discovers the Lyapunov function426

V (x) =
µ3 + 1

µ2 + 4
x2 + y2 that asserts stability on the whole state space. �427

As expected, Gurobi is faster than Z3 in terms of iterations and computa-428

tional time. The gap becomes larger with a high-dimensional system, as the SMT429

learner does not implement any optimisation techniques. The Z3-CEGIS synthe-430

sis is performed via an SMT call, which grows in complexity as the number of431

constraints, i.e. counterexamples, increases. Gurobi, on the other hand, using432

optimisation techniques converges faster to a candidate solution that is closer to433

the actual solution.434

Notice that the coefficients of the Lyapunov function synthesised by Gurobi435

are small in magnitude, as the linear programming problem can encompass the436

minimisation of coefficients in its setup. On the other hand those obtained from437

Z3 (rational fractions) are arguably more interpretable. A very interesting result438

comes from Example 8. Gurobi-CEGIS converges towards the correct Lyapunov439

function, yet it can not reach the exact numerical values in view of the algorith-440

mic precision. Gurobi numerical guidelines [6] suggest that, as a rule of thumb,441

the ratio of the largest to the smallest coefficient of the LP problem should442

be less than 109. In our setting, the coefficients are the counterexamples found443

by Z3, which might require high precision. In this case, the issue is (proba-444

bly) caused by a counterexample x̄ ' [−755145, 1/8], where the first element445

is actually represented as a (very long) ratio between two integers. The ratio446

between the two x̄ coefficient is in the order of 107. Roughly speaking, the coun-447

terexamples generated by Z3 depend on the complexity of the tested model: a448

high-order system might generate numerically ill-conditioned counterexamples,449

14

as this example shows. It is also significant how the numerical algorithm tries450

to converge to a correct solution. The first candidate Lyapunov function results451

V (x) = 1.07079661938449x2 +2.92920338061551y2 and it takes 99 counterexam-452

ples to reach the final value (cf. Example 8), until the procedure stops, resulting453

in an infeasible problem. Even enveloping the numerical values with the Python454

types Rational, Decimal, Fraction, or the function simplify do not help in455

this context, the limitation being Gurobi’s numerical precision.456

n Gurobi-CEGIS Z3-CEGIS

3
4
5
6
7
8
9
10

Iterations Time [sec] Oot

3 [3, 3] 0.48 [0.33, 0.77] –
3.10 [3, 4] 0.53 [0.36, 1.20] –
4.15 [4, 5] 1.33 [1.08, 1.97] –
6.99 [4, 10] 3.88 [2.41, 4.97] –
8.56 [4, 12] 12.64 [2.9, 62.3] –
9.14 [3, 13] 21.50 [3.9, 114.16] 1
15.72 [3, 32] 29.98 [3.87, 78.5] 2
18.45 [3,41] 40.63 [6.17, 46.65] 5

Iterations Time [sec] Oot

3.03 [3, 4] 0.49 [0.4, 0.70] –
5.93 [4, 7] 0.68 [0.54,1.07] –
7.38 [5, 12] 1.67 [1.10, 3.03] –
9.10 [6, 10] 7.48 [2.40, 54.44] –
12.88 [5, 17] 17.63 [5.41, 20.3] 1
16.2 [3, 25] 23.91 [4.05, 35.08] 1
22.47 [4, 35] 34.41 [5.67, 48.96] 5
27.25 [5, 47] 44.63 [6.32, 101.2] 7

Table 1. Comparison between Gurobi-CEGIS and Z3-CEGIS over n-dimensional lin-
ear models. The first values are the average performance on the N = 100 randomly
generated models, and within brackets the minimum and maximum values. Oot is the
number of runs (out of N) not finishing after 180 [sec].

Example # Gurobi-CEGIS Z3-CEGIS

5
6
7
8
9
10
11

Time [sec] Iterations

– –
0.32 2
0.37 4
0.16 2

– –
– –
– –

Time [sec] Iterations

18.38 4
1.27 5
0.60 3
0.27 2
9.26 3
0.14 3
0.23 3

Table 2. Comparison between Gurobi-CEGIS and Z3-CEGIS for non-linear models
(see Examples description in main text). The result for Gurobi-CEGIS in Example 8
is obtained via linearisation.

5 Conclusions and Future Work457

In this work, we have studied the problem of automated and sound synthesis458

of Lyapunov functions. We have exploited a CEGIS framework, equipped with459

15

a sound verifier (the Z3 SMT solver) and with either a numerical LP solver460

(Gurobi) or a sound (Z3) learner.461

We have provided a simple – yet effective – methodology to synthesise Lya-462

punov functions for linear, polynomial and parametric systems and shown ev-463

idence of scalability and reliability of our method using benchmarks from the464

literature. We have in particular synthesised quadratic Lyapunov functions for465

linear models and verified their validity on the whole state space. We have tack-466

led non-linear models following two approaches: either 1) the computation of467

Lyapunov functions over the linearised system and the synthesis of its validity468

region; or 2) the direct computation of a higher-order Lyapunov function.469

Future work includes the implementation of synthesis techniques for Gurobi-470

CEGIS for high-order and parametric models, together with the study of optimi-471

sation techniques for the synthesis in Z3-CEGIS: the tuning of the SMT solvers472

leaves much room, for example in order to provide insightful counterexamples473

or to additionally optimise an objective function. Further, we aim at embedding474

CEGIS with neural networks (simpler function approximators) to replace the475

learner, whilst maintaining the verification in the hands of an SMT solver.476

References477

1. P. Giesl and S. Hafstein, “Review on Computational Methods for Lyapunov Func-478

tions,” Discrete and Continuous Dynamical Systems-Series B, vol. 20, no. 8, pp.479

2291–2331, 2015.480

2. C. M. Kellett, “Classical converse theorems in lyapunov’s second method,” Discrete481

Continuous Dyn. Syst. Series B, vol. 20, no. 8, pp. 2333–2360, 2015.482

3. A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat, “Combinatorial483

sketching for finite programs,” ACM Sigplan Notices, vol. 41, no. 11, pp. 404–415,484

2006.485

4. C. David and D. Kroening, “Program Synthesis: Challenges and Opportunities,”486

Phil. Trans. R. Soc. A, vol. 375, no. 2104, p. 20150403, 2017.487

5. D. Kroening and O. Strichman, Decision Procedures: An Algorithmic Point of488

View, ser. Texts in Theoretical Computer Science. An EATCS Series. Springer489

Berlin Heidelberg, 2016.490

6. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2018. [Online].491

Available: http://www.gurobi.com492

7. L. De Moura and N. Bjørner, “Z3: An Efficient SMT solver,” in International493

conference on Tools and Algorithms for the Construction and Analysis of Systems.494

Springer, 2008, pp. 337–340.495

8. R. Kalman and J. Bertram, “Control system analysis and design via the second496

method of lyapunov: Part i continuous-time systems,” Trans. AMSE Series D J.497

Basic Eng., vol. 82, no. 2, pp. 371–393, 1960.498

9. N. N. Krasovskii, Stability of Motion: Applications of Lyapunov’s Second Method499

to Differential Systems and Equations With Delay. Stanford Univ. Press, 1963.500

10. J. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct Method With Applica-501

tions. Academic Press, 1961.502

11. V. I. Zubov, Methods of A. M. Lyapunov and Their Application. Noordhoff, 1964.503

16

12. R. Brayton and C. Tong, “Stability of Dynamical Systems: A Constructive Ap-504

proach,” IEEE Transactions on Circuits and Systems, vol. 26, no. 4, pp. 224–234,505

1979.506

13. P. A. Parrilo, “Structured Semidefinite Programs and Semialgebraic Geometry507

Methods in Robustness and Optimization,” Ph.D. dissertation, California Institute508

of Technology, 2000.509

14. A. Papachristodoulou and S. Prajna, “On the Construction of Lyapunov Func-510

tions using the Sum of Squares Decomposition,” in Proceedings of the 41st IEEE511

Conference on Decision and Control, 2002., vol. 3. IEEE, 2002, pp. 3482–3487.512

15. S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “SOSTOOLS: Sum of squares513

Optimization Toolbox for MATLAB–Users Guide,” Control and Dynamical Sys-514

tems, California Institute of Technology, Pasadena, CA, vol. 91125, 2004.515

16. A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. Par-516

rilo, “SOSTOOLS Version 3.03. Sum of Squares Optimization Toolbox for MAT-517

LAB,” 2018.518

17. R. Geiselhart, R. H. Gielen, M. Lazar, and F. R. Wirth, “An alternative converse519

lyapunov theorem for discrete-time systems,” Syst. Control Lett., vol. 70, pp. 49–520

59, 2014.521

18. S. F. Hafstein, “An algorithm for constructing lyapunov functions,” Electron. J.522

Differ. Equ. Monograph, vol. 8, 207.523

19. S. Sankaranarayanan, X. Chen, and E. Abraham, “Lyapunov Function Synthesis524

using Handelman Representations,” IFAC Proceedings Volumes, vol. 46, no. 23,525

pp. 576–581, 2013.526

20. J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, and N. Arechiga, “Simulation-527

guided Lyapunov Analysis for Hybrid Dynamical Systems,” in Proceedings of the528

17th international conference on Hybrid systems: computation and control. ACM,529

2014, pp. 133–142.530

21. S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT Solver for Nonlinear Theories531

over the Reals,” in International Conference on Automated Deduction. Springer,532

2013, pp. 208–214.533

22. Wolfram Research, Inc., “Mathematica, Version 12.0,” champaign, IL, 2019.534

23. H. Ravanbakhsh and S. Sankaranarayanan, “Counter-example guided synthesis of535

control lyapunov functions for switched systems,” in IEEE Control and Decision536

Conference (CDC), 2015, pp. 4232–4239.537

24. ——, “Robust controller synthesis of switched systems using counterexample538

guided framework,” in ACM/IEEE Conference on Embedded Software (EMSOFT),539

2016, pp. 8:1–8:10.540

25. ——, “Learning control lyapunov functions from counterexamples and demonstra-541

tions,” Autonomous Robots, pp. 1–33, 2018.542

26. E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of model check-543

ing. Springer, 2018, vol. 10.544

27. Microsoft Research, “The Z3 Theorem Prover,” https://github.com/Z3Prover/z3,545

accessed: 2018-07-25.546

28. Python Software Foundation, “Python Language Reference, version 2.7,”547

http://www.python.org.548

17

