
Unbounded-Time Analysis of Guarded LTI Systems
with Inputs by Abstract Acceleration?

Dario Cattaruzza, Alessandro Abate, Peter Schrammel, and Daniel Kroening

Department of Computer Science University of Oxford

Abstract. Linear Time Invariant (LTI) systems are ubiquitous in software sys-
tems and control applications. Unbounded-time reachability analysis that can
cope with industrial-scale models with thousands of variables is needed. To tackle
this general problem, we use abstract acceleration, a method for unbounded-
time polyhedral reachability analysis for linear systems. Existing variants of the
method are restricted to closed systems, i.e., dynamical models without inputs or
non-determinism. In this paper, we present an extension of abstract acceleration
to linear loops with inputs, which correspond to discrete-time LTI control sys-
tems, and further study the interaction with guard conditions. The new method
relies on a relaxation of the solution of the linear dynamical equation that leads
to a precise over-approximation of the set of reachable states, which are evalu-
ated using support functions. In order to increase scalability, we use floating-point
computations and ensure soundness by interval arithmetic. Our experiments show
that performance increases by several orders of magnitude over alternative ap-
proaches in the literature. In turn, this tremendous gain allows us to improve on
precision by computing more expensive abstractions. We outperform state-of-the-
art tools for unbounded-time analysis of LTI system with inputs in speed as well
as in precision.

1 Introduction

Linear loops are an ubiquitous programming template. Linear loops iterate over con-
tinuous variables, which are updated with a linear transformation. Linear loops may be
guarded, i.e., terminate if a given linear condition holds. Inputs from the environment
can be modelled by means of non-deterministic choices within the loop. These features
make linear loops expressive enough to capture the dynamics of many hybrid dynami-
cal models. The usage of such models in safety-critical embedded systems makes linear
loops a fundamental target for formal methods.

Many high-level requirements for embedded control systems can be modelled as
safety properties: the problem is deciding reachability of certain “bad states”, in which
the system exhibits unsafe behaviour. Bad states may, in linear loops, be encompassed
by guard assertions.

Reachability in linear programs, however, is a formidable challenge for automatic
analysers: the problem is undecidable despite the restriction to linear transformations
(i.e., linear dynamics) and linear guards. Broadly, there are two principal approaches

? This research was supported by Oxford Instruments PLC, by the ARTEMIS Joint Undertaking
under grant agreement number 295311 (VeTeSS), by the ERC project 280053 (CPROVER),
by the EC IAPP project 324432 (AMBI), and by the John Fell OUP Research Fund.

to safety problems. The first approach is to attempt to infer a loop invariant, i.e., an
inductive set of states that includes all reachable states. If the computed invariant is
disjoint from the set of bad states, this proves that the latter are unreachable and hence
that the loop is safe. However, analysers frequently struggle to obtain an invariant that
is precise enough with acceptable computational cost. The problem is evidently exacer-
bated by the presence of non-determinism in the loop, which corresponds to the case of
open systems. Prominent representatives of this analysis approach include Passel [30],
Sting [7], and abstract interpreters such as Astrée [2] and InterProc [28].

The second approach is to surrender exhaustive analysis over the infinite time hori-
zon, and to restrict the exploration to system dynamics up to some given finite time
bound. Bounded-time reachability is decidable, and decision procedures for the result-
ing satisfiability problem have made much progress in the past decade. The precision
related to the bounded analysis is offset by the price of uncertainty: behaviours beyond
the given time bound are not considered, and may thus violate a safety requirement.
Representatives are STRONG [11] and SpaceEx [16].

The goal of this paper is to push the frontiers of unbounded-time reachability anal-
ysis: we aim at devising a method that is able to reason soundly about unbounded tra-
jectories. We present a new approach for performing abstract acceleration. Abstract
acceleration [21, 22, 29] captures the effect of an arbitrary number of loop iterations
with a single, non-iterative transfer function that is applied to the entry state of the loop
(i.e., to the set of initial conditions of the linear dynamics). The key contribution of
this paper is to lift the restriction of [29] to closed systems, and thus to allow for the
presence of non-determinism.

We summarise next the contributions of this work:

1. We present a new technique to include inputs (non-determinism) in the abstract
acceleration of general linear loops, thus overcoming its greatest limitation.

2. We introduce the use of support functions in complex spaces, in order to increase
the precision of previous abstract acceleration methods.

3. By extending abstract acceleration and combining it with the use of support func-
tions, we produce a time-unbounded reachability analysis that overcomes the main
barrier of state-of-the-art techniques and tools for linear hybrid systems with inputs.

4. We employ floating point computations associated to bounded error quantification,
to significantly increase the speed and scalability of previous abstract acceleration
techniques, while retaining soundness.

Related work We review contributions within the two main perspectives in reachability
analysis of hybrid systems, dealing respectively with bounded- and unbounded-time
problems.

The first approach deals with bounded-time horizons: set-based simulation meth-
ods generalise guaranteed integration [32] from enclosing intervals to relational do-
mains. They use precise abstractions with low computational cost to over-approximate
sets of reachable states up to a given time horizon. Early tools used polyhedral sets
(HyTech [26], PHAVer [15]), polyhedral flow-pipes [5], ellipsoids [3] and zonotopes [19].
A breakthrough has been achieved by [20, 23], with the representation of convex sets
using template polyhedra and support functions. This method is implemented in the
tool SpaceEx [16], which can handle dynamical systems with hundreds of variables.

It performs computations using floating-point numbers: this is a deliberate choice to
boost performance, which, although quite reasonable, is implemented in a way that is
unsound and that does not provide genuine formal guarantees. Other approaches use
specialised constraint solvers (HySAT [14], iSAT [12]), or SMT encodings [6, 24] for
bounded model checking of hybrid automata.

The second approach, epitomised in static analysis methods [25], explores unboun-
ded-time horizons. It employs conservative over-approximations to achieve complete-
ness and decidability over infinite time horizons. Early work in this area has used imple-
mentations of abstract interpretation and widening [8], which are still the foundations
of most modern tools. The work in [25] uses abstract interpretation with convex poly-
hedra over piecewise-constant differential inclusions. [10] employs optimisation-based
(max-strategy iteration) with linear templates for hybrid systems with linear dynamics.
Relational abstractions [33] use ad-hoc “loop summarisation” of flow relations, whilst
abstract acceleration focuses on linear relations analysis [21, 22], which is common in
program analysis. Abstract acceleration has been extended from its original version to
encompass inputs over reactive systems [35] but restricted to subclasses of linear loops,
and later to general linear loops but without inputs [29]. This paper lifts these limitations
by presenting abstract acceleration for general linear loops with inputs.

2 Preliminaries

Abstract acceleration [21, 22] is a key technique for the verification of programs with
loops. The state of the art for this technique has reached the level where we can perform
abstract acceleration of general linear loops without inputs [29], and of some subclasses
of linear loops with inputs [34, 35], to an acceptable degree of precision. We develop
an abstract acceleration technique for general linear loops with bounded inputs, whilst
improving the precision and ease of computation, in order to overcome the negative
effects caused on the over-approximation by the presence of bounded non-determinism.

2.1 Model Syntax

We are interested in loops expressed in the form:

while(Gx ≤ h) x := Ax + Bu,

where x ∈ Rp are the state variables, ψ := Gx ≤ h is a linear constraint on the states
(with G ∈ Rr×p and h ∈ Rr), u ∈ Rq is a non-deterministic input, and A ∈ Rp×p

and B ∈ Rp×q are linear transformations characterising the dynamics of the system.
In particular, the special instance where ψ = > (i.e., “while true”) represents a time-
unbounded loop with no guards, for which the discovery of a suitable invariant (when
existing) is paramount. As evident at a semantical level (see next), this syntax can be
interpreted as the dynamics of a discrete-time LTI model with inputs, under the presence
of a guard set which, for ease of notation, we denote as G = {x | Gx ≤ h}.

2.2 Model Semantics

The traces of the model starting from an initial set X0 ⊆ Rp, with inputs restricted to
U ⊆ Rq, are sequences x0

u0
−→ x1

u1
−→ x2

u2
−→ . . ., where x0 ∈ X0 and ∀n ≥ 0, xn+1 =

τ(xn,un), where

τ(xn,un) =
(
Axn + Bun | Gxn ≤ h ∧ un ∈ U

)
. (1)

We extend the notation above to convex sets of initial conditions and inputs (X0 and
U), and write τ(X0,U) to denote the set of states {x | x0 ∈ X0 ∧ u ∈ U ∧ x = τ(x0,u)}
reached from X0 by τ in one step. We furthermore write τn(X0,U) to denote the set of
states reached from X0 via τ in n steps (n-reach set), i.e. for n ≥ 1

τn(X0,U) = {xn | x0 ∈ X0 ∧ ∀k ∈ [0, n − 1] : uk ∈ U ∧ xk+1 = τ(xk,uk)} . (2)

Since the transformations A and B are linear and vector sums preserve convexity, the
sets Xn = τn(X0,U) are also convex. We define the n-reach tube X̂n = τ̂n(X0,U) =⋃

k∈[0,n] τ
k(X0,U) as the union of the reachable sets over n iterations. Moreover, X̂ =⋃

n≥0 τ
n(X0,U) extends the previous notion over an unbounded time horizon.

2.3 Abstract Acceleration

Abstract Acceleration [22] is a method to over-approximate the reach tube of linear
systems over any given time interval, including the infinite time horizon. [29] discusses
this abstraction technique for systems without inputs, where an abstract matrix An is
synthesised to encompass the combined dynamics generating all reach sets up to the nth

iteration. The abstract matrixAn over-approximates the set of matrices
⋃

k∈[0,n] Ak. The
reach tube τ̂n(X0) (tailoring the notation above to a system without inputs) can then be
over-approximated via the abstract matrix multiplication AnX0 [29]. We will employ
the notationA (rather thanA∞) to represent this notion over an infinite time horizon.

In this paper we extend this approach to systems with inputs, so that

τ̂n(X0,U) ⊆ AnX0 ⊕ B
nU, (3)

where A⊕ B represents the Minkowski sum of two sets, namely {a + b | a ∈ A∧ b ∈ B},
whereas the abstract matrixBn over-approximates the set of matrices

⋃
k∈[0,n](I−Ak)(I−

A)−1B, where I is a properly-sized identity matrix – this second approximation will be
discussed in detail in Section 3.

2.4 Support Functions

There exist many abstract domains (namely, over-approximations) to encompass sets of
states that are suitable for systems with linear dynamics, of which by far the most pop-
ular is that of convex polyhedra [9]. Rectangular abstractions are easy to process [36],
but the over-approximations may be too conservative, which results in an even larger
problem in the presence of non-deterministic inputs.

Abstract acceleration requires two abstract domains: the first to abstract the model
dynamics – the original approach for abstract acceleration [29] uses logahedra [27] –
and the second to represent spatial sets (convex polyhedra in [29]). In [29] the estima-
tion of the number of loop iterations (time steps) leverages abstractions of initial sets as
hypercubes, which is a source of imprecision that our method will not exhibit.

In this work, we use support functions [18, 31] for the abstract domains. Support
functions have proven to be one of the most successful abstractions for the representa-
tion of reachability sets for dynamical and hybrid linear systems. A general assertion
Cx ≤ d (of which the guard Gx ≤ h is just an example) entails a set of states that is
a convex polyhedron, where each row in C is a direction orthogonal to a face in the
polyhedron, and the corresponding value in d is the distance of that face to the origin.

Support functions represent a set by defining the distance of its convex hull with
respect to a number of given directions. More specifically, the distance from the origin
to the hyperplane that is orthogonal to the given direction and that touches its convex
hull at its farthest. Finitely sampled support functions are template polyhedra in which
the directions are not fixed, which helps avoiding wrapping effects [20]. The larger the
number of directions provided, the more precisely represented the set will be. In more
detail, given a direction v ∈ Rp, the support function of a non-empty set X ⊆ Rp in the
direction of v is defined as

ρX : Rp → R, ρX(v) = sup{< x, v >: x ∈ X} .

where < x, v > is the dot product of the two vectors.
Support functions do not exclusively apply to convex polyhedra, but in fact to any

set X ⊆ Rp represented by a general assertion θ(X). We will restrict ourselves to the use
of convex polyhedra, in which case the support function definition translates to solving
the linear program

ρX(v) = max{< x, v >| Cx ≤ d} . (4)

Several properties of support functions allow us to reduce operational complexity.
The most significant are [18]:

ρkX(v) = ρX(kv) = kρX(v) : k ≥ 0 ρAX(v) = ρX(AT v) : A ∈ Rp×p

ρX1⊕X2 (v) = ρX1 (v) + ρX2 (v) ρX(v1 + v2) ≤ ρX(v1) + ρX(v2)
ρconv(X1∪X2)(v) = max{ρX1 (v), ρX2 (v)} ρX1∩X2 (v) ≤ min{ρX1 (v), ρX2 (v)}

As can be seen by their structure, some of these properties reduce complexity to lower-
order polynomial or even to constant time, by exchanging matrix-matrix multiplications
(O(p3)) into matrix-vector (O(p2)), or into scalar multiplications.

3 Abstract Acceleration with Inputs

3.1 Overview of the Algorithm

Our algorithm takes as input the set of initial states X0, the set of bounded inputs U,
and the dynamics of a linear loop characterised by G, h, A, and B; and returns as out-
put an over-approximation X̂] of the reach tube X̂ (or corresponding quantities for the
bounded-horizon case). We over- and under-approximate the number of loop iterations
n that are required to first intersect and completely go beyond the guard set G, respec-
tively, by means of the reach sets computed with the model dynamics: we denote these
two quantities by n and n. In the following we employ the notations u for intersection
of polyhedra, and t for the convex hull conv(X1 ∪ X2).

If n or n are unbounded, we compute the abstract matrices A and B (as defined
shortly), and return the quantity

X̂] = X0 t (A(X0 uG) ⊕ BU) uG (5)

as the resulting reach tube, where again G = {x | Gx ≤ h}. Otherwise, in the finite case,
we compute the abstract matricesAn andAn−n and set

X̂]
n = X0 t

((
An(X0 uG) ⊕ BnU

)
uG

)
t

((
An−n(Xn uG) ⊕ (Bn−nU)

)
uG

)
. (6)

In this formula, the abstract matricesAn andBn are obtained as an over-approximation
of sets of matrices, as described in Section 3.3.

3.2 Abstract Acceleration without Guards

With reference to (3), we now detail the abstract acceleration with inputs. Unfolding (2)
we obtain

xn = Anx0 + An−1Bu0 + An−2Bu1 + ... + Bun−1 = Anx0 +
∑

k∈[1,n]

An−k Buk−1.

Let us now consider the following over-approximation for τ on sets:

τ](X0,U) = A(X0 ∩G) ⊕ BU. (7)

Then the reach set (as said, we ignore the presence of the guard set G for the time being)
can be computed as

Xn = AnX0 ⊕ An−1BU + An−2BU ⊕ ... ⊕ BU = AnX0 ⊕
∑

k∈[0,n−1] Ak BU.

What is left to do is to further simplify the sum
∑

k∈[0,n−1] Ak BU. We can exploit the
following simple results from linear algebra.

Lemma 1. If I − A is invertible, then
∑n−1

k=0 Ak = (I − An)(I − A)−1. If furthermore
limn→∞ An = 0, then limn→∞

∑n
k=0 Ak = (I − A)−1.

It is evident that there are some restrictions on the nature of matrix A: since we need
to calculate the inverse (I − A)−1, A must not include the eigenvalue 1, i.e. 1 < σ(A),
where σ(A) is the spectrum (the set of all the eigenvalues) of matrix A. In order to
overcome this problem, we introduce the eigen-decomposition of A = SJS−1, and
setting trivially I = SIS−1, by the distributive and transitive property we obtain

(I − An)(I − A)−1 = S(I − Jn)(I − J)−1S−1.

While this does not directly eliminate the problem of the inverse for eigenvalues equal
to 1, it allows us to set

n−1∑
k=0

λk =

{
n λ = 1

1−λn

1−λ λ , 1 ⇒ (I − An)(I − A)−1 = S diag
(

n λi = 1
1−λn

i
1−λi

λi , 1

)
S−1. (8)

−40 −20 0 20 40
−40

−20

0

20

40

u′c

0, 0

U′b

U′d

U′

λ1

λ
2

Fig. 1. Relaxation of an input set in a
complex subspace making it invariant
to matrix rotations. The dashed orange
line is the red circle translated onto the
origin.

In the case of Jordan blocks of size > 1, the entries in the kth upper diagonal of the block
are filled with the value: −1k

k+1
1−λn

(1−λ)k+1 +
∑k

j=1
−1k− j

k− j

(
n

j−1

)
λn− j−1

(1−λ)k− j .
This result can be only directly applied under restricted conditions, for instance

whenever ∀k > 0 : uk = uk−1. In order to generalise it (in particular to non-constant
inputs), we will over-approximate BU over the eigenspace by a spheral enclosure with
centre u′c and radius U′b. To this end, we first rewrite

U′J = S−1BU = {u′c} ⊕ U′d , with u′c[i] =
1
2

(ρU′J (vi) + ρU′J (−vi)), vi[j] =

{
1 j = i
0 j , i

We then over-approximate U′d via U′b, by the maximum radius in the directions of the
complex eigenvalues and non-singular Jordan blocks, as portrayed in Figure 1:

U′b ⊇ U′d : ∀i, j, ρU′b (v) =

{
max(ρU′d (v′)) if λi = λ∗j ∧ |v

′| = |v| ∧ (v′[j] , 0 ∨ v′[i] , 0)
ρU′d (v) otherwise

Since the description of U′b is no longer polyhedral, we will also create an image Ab
of A that describes non-polyhedral faces in the directions of the complex eigenvectors
(λbi = |λi|).

Returning to our original equation for the n-reach set, we obtain1

Xn ⊆ AnX0 ⊕ (I − An)(I − A)−1BUc ⊕ (I − An
b)(I − Ab)−1BUb, with Uc = {uc} (9)

Shifting the attention from reach sets to tubes, we can now over-approximate the
reach tube by abstract acceleration of the three summands in (9), as follows.

Theorem 1. The abstract acceleration τ]n(X0,U) =def A
nX0 ⊕ B

n
cUc ⊕ B

n
bUb is an

over-approximation of the n-reach tube, namely X̂n ⊆ τ
]n(X0,U).

We will discuss in the next section how to compute the abstract matrices An, Bn
c ,

and Bn
b, with focus in particular onAn.

1 Note that ∀U′b ,U
′
c ,U

′
d ; ∃Ub ,Uc ,Ud : U′b = S−1BUb so that U′c = S−1BUc and U′d = S−1BUd.

Hence, this inclusion is also valid in the original state space.

3.3 Computation of Abstract Matrices

We define the abstract matrixAn as an over-approximation of the union of the powers of
matrix Ak:An ⊇

⋃
k∈[0,n] Ak. Next we explain how to compute such an abstract matrix.

For simplicity, we first describe this computation for matrices A with real eigenvalues,
whereas the extension to the complex case will be addressed in Section 3.5. Similar
to [29], we first have to compute the Jordan normal form of A. Let A = SJS−1 where
J is the normal Jordan form of A, and S is made up by the corresponding eigenvectors.
We can then easily compute An = SJnS−1, where

Jn =

Jn

1
. . .

Jn
r

 , with Jn
s =

λn

s

(
n
1

)
λn−1

s . . .
(

n
ps−1

)
λ

n−ps+1
s

λn
s

(
n
1

)
λn−1

s

...
...

. . .
...
λn

s

for s ∈ [1, r]. (10)

The abstract matrix An is computed as an abstraction over a vector m of non-constant
entries of Jn. The vector m is obtained by a transformation ϕ such that Jn = ϕ(m). If
Jn is diagonal [29], then m equals the vector of powers of eigenvalues (λn

0, . . . , λ
n
r). An

interval abstraction can thus be simply obtained by computing the intervals [min{λ0
s , λ

n
s},

max{λ0
s , λ

n
s}], s ∈ [1, r]. We observe that the spectrum of the interval matrix σ(An)

(defined as intuitively) is an over-approximation of
⋃

k∈[0,n] σ(Ak).
In the case of the sth Jordan block J s with geometric non-trivial multiplicity ps

(λi = λi−1 = . . .), observe that the first row of Jn
s contains all (possibly) distinct entries

of Jn
s . Hence, in general, the vector section ms is the concatenation of the (transposed)

first row vectors
(
λn

s ,
(

n
1

)
λn−1

s , . . . ,
(

n
ps−1

)
λ

n−ps+1
s

)T
of Jn

s .
Since the transformation ϕ transforms the vector m into the shape of (10) of Jn, it

is called a matrix shape [29]. We then define the abstract matrix as

An = {S ϕ(m) S−1
| Φm ≤ f } , (11)

where the constraint Φm ≤ f is synthesised from intervals associated to the indi-
vidual eigenvalues and to their combinations. More precisely, we compute polyhe-
dral relations: for any pair of eigenvalues (or binomials) within J, we find an over-
approximation of the convex hull containing the points ∪{mk | 1≤k≤n} ⊆ {m | Φm≤ f }
with component-wise exponentiation mk.

As an improvement over [29], the rows in Φ and f are synthesised by discovering
support functions in these sets. The freedom of directions provided by these support
functions results in an improvement over the logahedral abstractions used in previous
papers (see Figure 2).

An additional drawback of [29] is that calculating the exact Jordan form of any ma-
trix is computationally expensive and hard to achieve for large-dimensional matrices.
We will instead use numerical algorithms in order to get an approximation of the Jordan
normal form and account for numerical errors. In particular, if we examine the nature of
(5)–(6), we find out that the numerical operations are not iterative, therefore the errors
do not accumulate with time. We use properties of eigenvalues to relax f by finding
the maximum error in the calculations that can be determined by computing the norm

0 5 10 15 20 25 30 35

0

50

100

150

200

250

n = 1

n = 2
n = 3

n = 4

n = 5

λn
1

λ
n 2

Fig. 2. Polyhedral faces from an
R2 subspace, where (λn

1, λ
n
2) so that

λ1=2, λ2=3, 1≤n≤5. Bold purple lines
represent supports found by this paper.
The dotted grey and dashed red poly-
topes show logahedral approximations
(box and octagon) used in [29]. Note
the scales (sloped dashed lines are
parallel to the x=y line, and dashed red
polytope hides two small sides yiedling
an octagon).

δmax = |A − SJestS−1
|. The constraints Φm < f are then computed by considering the

ranges of eigenvalues λs ± δmax (represented in Fig. 2 as the diameter of the blue dots).
The outward relaxation of the support functions (f), which follows a principle similar
to that introduced in [17], reduces the tightness of the over-approximation, but ensures
the soundness of the abstract matrix An obtained. One can still use exact arithmetic
with a noticeable improvement over previous work; however, for larger-scale systems
the option of using floating point arithmetic, while taking into account errors and metic-
ulously setting rounding modes, provides a 100-fold plus improvement that can make a
difference towards rendering verification practically feasible.

The abstract matrices Bn
c and Bn

d (see Theorem 1), as well as Bn, are defined sim-
ilarly but using a similar assertion for the eigenvalues based on the transformations
described in (8).

3.4 Abstract Acceleration with Guards: Estimation of the number of Iterations

The most important task remaining is how to calculate the number of iterations dealing
with the presence of the guard set G.

Given a convex polyhedral guard expressed as the assertion {x | Gx ≤ h}, we define
Gi as the ith row of G and hi as the corresponding element of h. We denote the normal
vector to the ith face of the guard as gi = GT

i . The distance of the guard to the origin is
thus γi = hi

|gi |
.

Given a convex set X, we may now describe its position with respect to each face
of the guard through the use of its support function alongside the normal vector of the
hyperplane (for clarity, we assume the origin to be inside set X):

ρX(gi) ≤ γi, inside the hyperplane,
−ρX(−gi) ≥ γi, outside the hyperplane.

From the inequalities above we can determine up to which number of iterations ni the
reach tube remains inside the corresponding hyperplane, and starting from which itera-
tion ni the corresponding reach set goes beyond the guard:

ρX0 (Ani gi) + ρU′ ((I − Ani)gi) ≤ γi, (12)

ρX0 (−Ani gi) + ρU′ ((Ani − I)gi) ≤ −γi.

In order for a reach set to be inside the guard it must therefore be inside all of its faces,
and we can ensure it is fully outside of the guard set when it is fully beyond any of
them.Thus, we have n = min{ ni }, and n = min{ ni }.

Computing the maximum ni such that (12) is satisfied is not easy, because the un-
known ni occurs in the exponent of the equation. However, if gi was an eigenvector v j

of A, we would have that Ani v j = λ
ni

j v j, which turns a p-dimensional problem into a
1-dimensional problem. However, since it is unlikely that the guards will be aligned to
the eigenvectors, thus, we will use our support function properties to under- and over-
approximate the number of iterations.

Let gi =
∑p

j=1 ai jv j + res(gi), where v j are eigenvectors of A, and res(gi) is the
component of gi that lies outside the eigenspace of A. Notice that this residual com-
ponent will disappear during our calculations and is therefore not relevant. For sim-
plicity we assume that all ai jv j are positive, extending the procedure for the general
case through the development of the complex case in the Extended version. Then
An gi =

∑p
j=1 λ

n
jai jv j + Anres(gi) where λ j is the corresponding eigenvalue of v j. Since

res(gi) is orthogonal to the eigenspace of A, then for n > 0 : Anres(gi) = 0, thus

∀n > 0 : An gi =
∑p

j=1 λ
n
jai jv j. (13)

This way we can bound the first summand in (12) by ρX0 (An gi) ≤
∑p

j=1 λ
n
jai jρX0 (v j).

Using the support function properties detailed in Section 2.4, we obtain for (12):

ρX0 (An gi) + ρU′ ((I − An)gi) ≤
∑p

j=1 λ
n
jai jρX0 (v j) + (λn

jai j − 1)ρU′ (−v j) − ρU′ (−res(gi)) ≤ γi

In order to solve for n we transfer the constant terms to one side, taking into account
that

∑p
j=1 −ρU′ (−v j) − ρU′ (−res(gi)) = −ρU′ (−gi), as∑p

j=1 λ
n
jai j(ρX0 (v j) + ρU′ (−v j)) ≤ γi + ρU′ (−gi).

To separate the divergent element of the dynamics from the convergent one, let us define
bi j = ai j(ρX0 (v j) + ρU′ (−v j)) and λm = max(λ j) for all j ∈ [1, p]. Replacing, we obtain

λn
m
∑p

j=1 bi j

(
λ j

λm

)n
≤ γi + ρU′ (−gi) ,

which allows to finally formulate an iteration scheme for approximating n.

Proposition 1. An iterative under-approximation of the number of iterations n can be
computed by starting with ni = 0 and iterating over

ni ≥ logλm

(
γi + ρU′ (−gi)

)
− logλm

(∑p
j=1 bi j

(
λ j

λm

)ni)
,

substituting the value of ni on the right-hand side and repeating a given number of times
or up to convergence.

In the case of ni we must invert the eigenvectors and approximate from above, starting
at a sufficiently large number (e.g. ni = 1015), thus

ni ≤ logλm

(
γi − ρU′ (gi)

)
− logλm

(∑p
j=1 ci j

(
λ j

λm

)ni)
.

where ci j = ai j(ρX0 (−v j) − ρU′ (v j)). If the initial ni is not large enough, we simply
double the exponent until the left hand side yields a smaller number than the one chosen
originally.

3.5 Abstract Matrices for Complex Eigenvalues

To deal with complex numbers in eigenvalues and eigenvectors, [29] employs the real
Jordan form for conjugate eigenvalues λ = reiθ and λ∗ = re−iθ (θ ∈ [0, π]), so that(

λ 0
0 λ∗

)
is replaced by r

(
cos θ − sin θ
sin θ cos θ

)
.

Although this equivalence will be of use once we evaluate the progression of the system,
calculating powers under this notations is often more difficult than handling directly the
original matrices with complex values.

In Section 3.3, in the case of real eigenvalues we have abstracted the entries in the
power matrix Jn

s by ranges of eigenvalues [min{λ0
s , λ

n
s} ,max{λ0

s , λ
n
s}]. In the complex

case we can do something similar by rewriting eigenvalues into polar form λs = rseiθs

and abstracting by [min{r0
s , r

n
s } , max{r0

s , r
n
s }]e

i[0 , min(θs,2π)].
What is left to do is to evaluate the effect of complex numbers on support func-

tions: to the best of the authors’ knowledge, there is no definition in the literature for
support functions on complex numbers. We will therefore extend the manipulations for
the real case directly to the complex one. For reasons of restricted space, please refer to
extended version [4].

4 Case Study

We have selected a known benchmark to illustrate the discussed procedure: the room
temperature control problem [13]. The temperature (variable temp) of a room is con-
trolled to a user-defined set point (set), which can be changed at any time through a
heating (heat) element, and is affected by ambient temperature (amb) that is out of the
control of the system.

We formalise the description of such a system both via a linear loop and via hybrid
dynamics. To begin with, observe that since such a system may be software controlled,
we assume that part of the system is coded, and further assume that it is possible to
discretise the physical environment for simulation. A pseudo-code fragment for the
temperature control problem follows:

temp=5+read(35);

heat=read(1);

while(temp<400 && heat<300)

{

amb=5+read(35);

set=read(300);

temp=.97 temp + .02 amb + .1 heat;

heat=heat + .05(set-temp);

}

We use the read function to represent non-deterministic values between 0 and the max-
imum given as argument. Alternatively, this loop corresponds to the following hybrid
dynamical model:[

temp
heat

]
k+1

=

[
0.97 0.1
−0.05 1

] [
temp
heat

]
k

+

[
0.02 0

0 0.05

] [
amb
set

]
k
,

with initial condition
[

temp
heat

]
0
∈

[
[5 40]
[0 1]

]
,

non-deterministic inputs
[

amb
set

]
k
∈

[
[5 40]
[0 300]

]
,

and guard set G =

{[
temp
heat

]
:
[

1 0
0 1

] [
temp
heat

]
<

[
400
300

]}
.

In this model the variables are continuous and take values over the real line, whereas
within the code they are represented as long double precision floating point values, with
precision of ±10−19, moreover the error of the approximate Jordan form computation
results in δmax < 10−17. Henceforth we focus on the latter description, as in the main
text of this work. The eigen-decomposition of the dynamics is (the values are rounded
to 3 decimal places):

A = S JS −1 ⊆

[
0.798 0.173

0 0.577

] [
0.985 ± 10−16 0.069 ± 10−17

−0.069 ± 10−17 0.985 ± 10−16

] [
1.253 −0.376

0 1.732

]
.

The discussed over-approximations of the reach-sets indicate that the temperature vari-
able intersects the guard at iteration n = 32. Considering the pseudo-eigenvalue matrix
(described in the extended version for the case of complex eigenvalues) along these
iterations, we use Equation (11) to find that the corresponding complex pair remains
within the following boundaries:

A32 =

[
r i
−i r

]
0.4144 < r < 0.985
0.0691 < i < 0.7651
0.1082 < r + i < 1.247
0.9159 < i − r < 0.9389

B32 =

[
r i
−i r

]
1 < r < 13.41
0 < i < 17.98
1 < r + i < 29.44

6.145 < i − r < 6.514

The reach tube is calculated by multiplying these abstract matrices with the initial
sets of states and inputs, as described in Equation (3), by the following inequalities:

X̂#
32 = A32

[
[5 40]
[0 1]

]
+ B32

[
[5 40]
[0 300]

]
=

[
temp
heat

]
−24.76 < temp < 394.5
−30.21 < heat < 253
−40.85 < temp + heat < 616.6
−86.31 < temp − heat < 843.8

The negative values represent the lack of restriction in the code on the lower side and
correspond to system cooling (negative heating). The set is displayed in Figure 3, where
for the sake of clarity we display only 8 directions of the 16 constraints. This results
in a rather tight over-approximation that is not much looser than the convex hull of all
reach sets obtained by [16] using the given directions. In Figure 3, we can see the initial
set in black colour, the collection of reach sets in white, the convex hull of all reach sets
in dark blue (as computed by [16]), and finally the abstractly accelerated set in light
yellow (dashed lines). The outer lines represent the guards.

0 100 200 300 400

0

100

200

300
heat = 300

temp

he
at

Fig. 3. The abstractly accelerated tube
(yellow, dashed boundary), represent-
ing an over-approximation of the ther-
mostat reach tube (dark blue). The
set of initial conditions is shown in
black, whereas successive reach sets
are shown in white. The guards and the
reach set that crosses them are close to
the boundary in red.

characteristics improved analysis time [sec]
name type dim inputs bounds IProc Sti IProc Sti J+I
parabola i1 ¬s,¬c,g 2 1 80 +25 +28 0.007 237 0.049
parabola i2 ¬s,¬c,g 2 1 80 +24 +35 0.008 289 0.072
cubic i1 ¬s,¬c,g 3 1 120 +44 +50 0.015 704 0.097
cubic i2 ¬s,¬c,g 3 1 120 +35 +55 0.018 699 0.124
oscillator i0 s,c,¬g 2 0 56 +24 +24 0.004 0.990 0.021
oscillator i1 s,c,¬g 2 0 56 +24 +24 0.004 1.060 0.024
inv pendulum s,c,¬g 4 0 16 +8 +8 0.009 0.920 0.012
convoyCar2 i0 s,c,¬g 3 2 12 +9 +9 0.007 0.160 0.043
convoyCar3 i0 s,c,¬g 6 2 24 +15 +15 0.010 0.235 0.513
convoyCar3 i1 s,c,¬g 6 2 24 +15 +15 0.024 0.237 0.901
convoyCar3 i2 s,c,¬g 6 2 24 +15 +15 0.663 0.271 1.416
convoyCar3 i3 s,c,¬g 6 2 24 +15 +15 0.122 0.283 2.103

type: s – stable loop, c – complex eigenvalues, g – loops with guard; dim: system dimension
(variables); bounds: nb. of half-planes defining the polyhedral set;

IProc is [28]; Sti is [7]; J+I is this work;
improved: number of bounds newly detected by J+I over the existing tools (IProc, Sti)

Table 1. Experimental comparison of unbounded-time analysis tools with inputs

5 Implementation and Experimental Results

The algorithm has been implemented in C++ using the eigen-algebra package (v3.2),
with double precision floating-point arithmetic, and has been tested on a 1.6 GHz core 2
duo computer.

Comparison with other unbounded-time approaches. In a first experiment we have
benchmarked our implementation against the tools InterProc [28] and Sting [7]. We
have tested these tools on different scenarios, including guarded/unguarded, stable/unstable
and complex/real loops with inputs (details in Table 1).2 It is important to note that in
many instances, InterProc and Sting are unable to infer finite bounds at all.

2 The benchmarks are available from https://drive.google.com/file/d/

0B22MA57MHHBKX2c3S05pT0d1OHc.

https://drive.google.com/file/d/0B22MA57MHHBKX2c3S05pT0d1OHc
https://drive.google.com/file/d/0B22MA57MHHBKX2c3S05pT0d1OHc

characteristics improved analysis time (sec)
name type dim bounds tighter looser J (jcf) mpfr+(jcf) mpfr ld
parabola i1 ¬s,¬c,g 3 80 +4(5%) 0(0%) 2.51 (2.49) 0.16 (0.06) 0.097 0.007
parabola i2 ¬s,¬c,g 3 80 +4(5%) 0(0%) 2.51 (2.49) 0.26 (0.06) 0.101 0.008
cubic i1 ¬s,¬c,g 4 120 0(0%) 0(0%) 2.47 (2.39) 0.27 (0.20) 0.110 0.013
cubic i2 ¬s,¬c,g 4 120 0(0%) 0(0%) 2.49 (2.39) 0.32 (0.20) 0.124 0.014
oscillator i0 s,c,¬g 2 56 0(0%) -1(2%) 2.53 (2.52) 0.12 (0.06) 0.063 0.007
oscillator i1 s,c,¬g 2 56 0(0%) -1(2%) 2.53 (2.52) 0.12 (0.06) 0.078 0.008
inv pendulum s,c,¬g 4 12 +8(50%) 0(0%) 65.78 (65.24) 0.24 (0.13) 0.103 0.012
convoyCar2 i0 s,c,¬g 5 12 +9(45%) 0(0%) 5.46 (4.69) 3.58 (0.22) 0.258 0.005
convoyCar3 i0 s,c,¬g 8 24 +10(31%) -2(6%) 24.62 (11.98) 3.11 (1.01) 0.552 0.051
convoyCar3 i1 s,c,¬g 8 24 +10(31%) -2(6%) 23.92 (11.98) 4.94 (1.01) 0.890 0.121
convoyCar3 i2 s,c,¬g 8 24 +10(31%) -2(6%) 1717.00 (11.98) 6.81 (1.01) 1.190 0.234
convoyCar3 i3 s,c,¬g 8 24 +10(31%) -2(6%) 1569.00 (11.98) 8.67 (1.01) 1.520 0.377

type: s – stable loop, c – complex eigenvalues, g – loops with guard; dim: system dimension
(including fixed inputs); bounds: nb. of half-planes defining the polyhedral set; improved:
number of bounds (and percentage) that were tighter (better) or looser (worse) than [29];

J is [29]; mpfr+ is this paper using 1024bit mantissas (e < 10−152); mpfr uses a 256bit mantissa
(e < 10−44); ld uses a 64bit mantissa (e < 10−11); here e is the accumulated error of the

dynamical system; jcf: time taken to compute Jordan form
Table 2. Experimental comparison with previous work

Table 2 shows the comparison of our implementation using different levels of pre-
cision (long double, 256 bit, and 1024 bit floating point precision) with the original
abstract acceleration for linear loops without inputs (J) [29] (where inputs are fixed to
constants). This shows that our implementation gives tighter over-approximations on
most benchmarks (column ‘improved’). Whilst on a limited number of instances the
current implementation is less precise (Fig. 2 gives a hint why this is happening), the
overall increased precision is owed to lifting the limitation on directions caused by the
use of logahedral abstractions.

At the same time, our implementation is faster – even when used with 1024 bit float-
ing point precision – than the original abstract acceleration (using rationals). The fact
that many bounds have improved with the new approach, while speed has increased by
several orders of magnitude, provides evidence of the advantages of the new approach.

The speed-up is due to the faster Jordan form computation, which takes between
2 and 65 seconds for [29] (using the ATLAS package), whereas our implementation
requires at most one second. For the last two benchmarks, the polyhedral computa-
tions blow up in [29], whereas our support function approach shows only moderately
increasing runtimes. The increase of speed is owed to multiple factors, as detailed in
Table 3. The difference of using long double precision floating points vs arbitrary pre-
cision arithmetic is negligible as all results in the given examples match exactly to 9
decimal places. Note that, as explained above, soundness can be ensured by correct
rounding in the floating point computations.

Comparison with bounded-time approaches. In a third experiment, we compare our
method with the LGG algorithm [23] used by SpaceEx [16]. In order to set up a fair
comparison we have provided the implementation of the native algorithm in [23]. We
have run both methods on the convoyCar example [29] with inputs, which presents an

unguarded, scalable, stable loop with complex dynamics, and focused on octahedral
abstractions. For convex reach sets, the approximations computed by abstract accelera-
tion are quite tight in comparison to those computed by the LGG algorithm. However,
storing finite disjunctions of convex polyhedra, the LGG algorithm is able to generate
non-convex reach tubes, which are arguably more proper in case of oscillating or spi-
ralling dynamics. Still, in many applications abstract acceleration can provide a tight
over-approximation of the convex hull of those non-convex reach sets.

Table 4 shows the results of this comparison. For simplicity, we present only the
projection of the bounds along the variables of interest. As expected, the LGG algo-
rithm performs better in terms of tightness, but its runtime increases with the number
of iterations. Our implementation of LGG using Convex Polyhedra with octagonal tem-
plates is slower than the abstractly accelerated version even for small time horizons (our
implementation of LGG requires ∼4 ms for each iteration on a 6-dimensional problem
with octagonal abstraction). This can be improved by the use of zonotopes, or by careful
selection of the directions along the eigenvectors, but this comes at a cost on precision.
Even when finding combinations that outperform our approach, this will only allow the
time horizon of the LGG approach to be slightly extended before matching the analy-
sis time from abstract acceleration, and the reachable states will still remain unknown
beyond the extended time horizon.

The evident advantage of abstract acceleration is its speed over finite horizons with-
out much precision loss, and of course the ability to prove properties for unbounded-
time horizons.

Scalability. Finally, in terms of scalability, we have an expected O(n3) complexity
worst-case bound (from the matrix multiplications in equation 3). We have parame-
terised the number of cars in the convoyCar example [29] (also seen in Table 2), and
experimented with up to 33 cars (each car after the first requires 3 variables, so that for
example (33−1)×3 = 96 variables), and have adjusted the initial states/inputs sets. We
report an average of 10 runs for each configuration. These results demonstrate that our
method scales to industrial-size problems.

of variables 3 6 12 24 48 96
runtime 4 ms 31 ms 62 ms 477 ms 5.4 s 56 s

6 Conclusions and Future Work

We have presented an extension of the Abstract Acceleration paradigm to guarded LTI
systems (linear loops) with inputs, overcoming the limitations of existing work deal-
ing with closed systems. We have decisively shown the new approach to over-compete

Optimization Speed-up
Eigen vs. ATLAS (http://eigen.tuxfamily.org/index.php?title=Benchmark) 2–10
Support functions vs. generators for abstract matrix synthesis 2–40
long double vs. multiple precision arithmetic 5–200
Total 20–80000

Table 3. Performance improvements by feature

this paper LGG
name 100 iterations unbounded 100 iterations 200 iterations 300 iterations
run time 5 ms 5 ms 50 ms 140 ms 195 ms
car acceleration [-0.895 1.34] [-1.038 1.34] [-0.802 1.31] [-0.968 1.31] [-0.968 1.31]
car speed [-1.342 5.27] [-4.059 5.27] [-1.331 4.98] [-3.651 4.98] [-3.677 4.98]
car position [42.66 83.8] [42.66 90.3] [43.32 95.5] [43.32 95.5] [43.32 95.6]
Table 4. Comparison on convoyCar2 benchmark, between this work and the LGG algorithm [23]

state-of-the-art tools for unbounded-time reachability analysis in both precision and
scalability. The new approach is capable of handling general unbounded-time safety
analysis for large scale open systems with reasonable precision and fast computation
times. Conditionals inside loops and nested loops are out of the scope of this paper.

Work to be done is extending the approach to non-linear dynamics, which we be-
lieve can be explored via hybridisation techniques [1], and to formalise the framework
for general hybrid models with multiple guards and location-dependent dynamics, with
the aim to accelerate transitions across guards rather than integrate individual accelera-
tions on either side of the guards.

References

1. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems.
Acta Informatica 43(7), 451–476 (2007)

2. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: A static analyzer for large safety-critical software. In: PLDI. pp. 196–207. ACM (2003)

3. Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential inclusions
using ellipsoidal approximations. In: HSCC. pp. 73–88. LNCS, Springer (2000)

4. Cattaruzza, D., Abate, A., Schrammel, P., Kroening, D.: Unbounded-time analysis of
guarded lti systems with inputs by abstract acceleration (extended version). Tech. rep., Uni-
versity of Oxford (2015), http://arxiv.org/abs/1506.05607

5. Chutinan, A., Krogh, B.H.: Computing polyhedral approximations to flow pipes for dynamic
systems. In: CDC. pp. 2089–2094. IEEE Computer Society (1998)

6. Cimatti, A., Mover, S., Tonetta, S.: SMT-based verification of hybrid systems. In: AAAI
Conference on Artificial Intelligence. AAAI Press (2012)

7. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using non-
linear constraint solving. In: CAV. pp. 420–432. Springer (2003)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL. pp. 238–252 (1977)

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: POPL. pp. 84–97. ACM (1978)

10. Dang, T., Gawlitza, T.M.: Template-based unbounded time verification of affine hybrid au-
tomata. In: APLAS. pp. 34–49. LNCS, Springer (2011)

11. Deng, Y., Rajhans, A., Julius, A.A.: STRONG: A trajectory-based verification toolbox for
hybrid systems. In: Quantitative Evaluation of Systems. LNCS, vol. 8054, pp. 165–168.
Springer (2013)

12. Eggers, A., Fränzle, M., Herde, C.: SAT Modulo ODE: A direct SAT approach to hybrid
systems. In: ATVA. LNCS, vol. 5311, pp. 171–185. Springer (2008)

13. Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verification. In: HSCC. pp. 326–
341. Springer (2004)

http://arxiv.org/abs/1506.05607

14. Fränzle, M., Herde, C.: HySAT: An efficient proof engine for bounded model checking of
hybrid systems. Formal Methods in System Design 30(3), 179–198 (2007)

15. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: HSCC.
LNCS, vol. 3414, pp. 258–273. Springer (2005)

16. Frehse, G., Guernic, C.L., Donzé, A., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T.,
Maler, O.: SpaceEx: Scalable verification of hybrid systems. In: CAV. LNCS, vol. 6806, pp.
379–395. Springer (2011)

17. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiability over the
reals. In: Automated Reasoning, pp. 286–300. Springer (2012)

18. Ghosh, P.K., Kumar, K.V.: Support function representation of convex bodies, its applica-
tion in geometric computing, and some related representations. Computer Vision and Image
Understanding 72, 379–403 (1998)

19. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: HSCC. LNCS, vol.
3414, pp. 291–305. Springer (2005)

20. Girard, A., Guernic, C.L., Maler, O.: Efficient computation of reachable sets of linear time-
invariant systems with inputs. In: HSCC. LNCS, vol. 3927, pp. 257–271. Springer (2006)

21. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear relation analy-
sis. In: SAS. pp. 144–160. LNCS, Springer (2006)

22. Gonnord, L., Schrammel, P.: Abstract acceleration in linear relation analysis. Science of
Computer Programming 93(Part B), 125–153 (2014)

23. Guernic, C.L., Girard, A.: Reachability analysis of hybrid systems using support functions.
In: CAV. LNCS, vol. 5643, pp. 540–554. Springer (2009)

24. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: CAV.
LNCS, vol. 5123, pp. 190–203. Springer (2008)

25. Halbwachs, N., Raymond, P., Proy, Y.E.: Verification of linear hybrid systems by means of
convex approximations. In: SAS. LNCS, vol. 864, pp. 223–237. Springer (1994)

26. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: A model checker for hybrid systems.
Journal on Software Tools for Technology Transfer 1(1-2), 110–122 (1997)

27. Howe, J.M., King, A.: Logahedra: A new weakly relational domain. In: ATVA, pp. 306–320.
Springer (2009)

28. Jeannet, B.: Interproc analyzer for recursive programs with numerical variables (2010),
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

29. Jeannet, B., Schrammel, P., Sankaranarayanan, S.: Abstract acceleration of general linear
loops. In: POPL. pp. 529–540. ACM (2014)

30. Johnson, T.T., Mitra, S.: Passel: A verification tool for parameterized networks of hybrid
automata (2012), https://publish.illinois.edu/passel-tool/

31. Le Guernic, C.: Reachability analysis of hybrid systems with linear continuous dynamics.
Univerit Joseph Fourier (2009)

32. Löhner, R.: Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und
Anwendungen. Ph.D. thesis, Universität Karlsruhe (1988)

33. Sankaranarayanan, S., Tiwari, A.: Relational abstractions for continuous and hybrid systems.
In: CAV. LNCS, vol. 6806, pp. 686–702. Springer (2011)

34. Schrammel, P., Jeannet, B.: Extending abstract acceleration to data-flow programs with nu-
merical inputs. In: Numerical and Symbolic Abstract Domains. ENTCS, vol. 267, pp. 101–
114. Elsevier (2010)

35. Schrammel, P., Jeannet, B.: Applying abstract acceleration to (co-)reachability analysis of
reactive programs. Journal of Symbolic Computation 47(12), 1512–1532 (2012)

36. Stursberg, O., Krogh, B.H.: Efficient representation and computation of reachable sets for
hybrid systems. In: HSCC. LNCS, vol. 2623, pp. 482–497. Springer (2003)

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
https://publish.illinois.edu/passel-tool/

	Unbounded-Time Analysis of Guarded LTI Systems with Inputs by Abstract Acceleration

