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Abstract. In this work we introduce new approximate similarity re-
lations that are shown to be key for policy (or control) synthesis over
general Markov decision processes. The models of interest are discrete-
time Markov decision processes, endowed with uncountably-infinite state
spaces and metric output (or observation) spaces. The new relations, un-
derpinned by the use of metrics, allow in particular for a useful trade-off
between deviations over probability distributions on states, and distances
between model outputs. We show that the new probabilistic similarity
relationscan be effectively employed over general Markov decision pro-
cesses for verification purposes, and specifically for control refinement
from abstract models.

1 Introduction

The formal verification of computer systems allows for the quantification of their
properties and for their correct functioning. Whilst verification has classically
focused on finite-state models, with the ever more ubiquitous embedding of dig-
ital components into physical systems richer models are needed, and correct
functioning can only be expressed over the combined behaviour of both a digi-
tal computer and its surrounding physical system. It is in particular of interest
to synthesise the part of the computer software that controls or interacts with
the physical system automatically, with low likelihood of malfunctioning. Quite
importantly, when computers interact with physical systems such as biological
processes, power networks, and smart-grids, stochastic models are key.

Systems with uncertainty and non-determinism can be naturally modelled
as Markov decision processes (MDP). In this work, we focus on general Markov
decision processes (gMDP) with uncountable state spaces as well as metric out-
put spaces. The characterisation of properties or the synthesis of policies over
such processes can in general not be attained analytically [3], so an alterna-
tive is the approximation of the original (concrete) models by simpler (abstract)
models that are prone to be analysed or algorithmically verified [11], such as
finite-state MDP [12]. Clearly, it is then key to provide formal guarantees on
this approximation step.

In this work we develop a new notion of approximate similarity relation to
assist in the computationally efficient controller synthesis of gMDP. The use



of similarity relations on finite-state probabilistic models has been broadly in-
vestigated, either via exact notions of probabilistic simulation and bisimulation
relations [16,20], or via approximate notions [9,10]. On the other hand, similar
notions over general, uncountable-state spaces have been only recently studied:
available relations either hinge on stability requirements on model outputs [15,23]
(established via martingale theory or contractivity analysis), or alternatively en-
force structural abstractions of a model [8] by exploiting continuity conditions
on its probability laws [1,2].

In this work, we want to quantify properties with a certified precision both in
the deviation of the probability laws for finite-time events (as in the classical no-
tion of probabilistic bisimulation) and of the output trajectories (as studied for
dynamical models). To this end, we generalise the exact probabilistic simulation
and bisimulation relations to allow for errors in the probability laws and devia-
tions over the output space (Sec. 4). A case study on smart buildings (Sec. 5) is
used to evaluate this new approximate similarity relations, which are specifically
tailored to perform control synthesis. The new approximate similarity relation
generalises notions of probabilistic simulation relations [16,20], and their approx-
imate versions [9,10]. Key to this work, we further show that a control strategy
for a gMDP can be obtained as a refinement of a strategy synthesised for an
abstract model, at the expense of bounded deviations in transition probabilities
and outputs as defined by their similarity relation.

In view of space, details on measurability properties and precise derivations
of proofs of the statements are relegated to an extended version [ARXIV], which
also contains a more detailed comparison with literature.

2 Verification of general Markov decision processes

2.1 Preliminaries and notations

For two sets A and B a relation R ⊂ A × B is a subset of their Cartesian
product that relates elements x ∈ A with elements y ∈ B, denoted as xRy. We
use the following notation for the mappings R(Ã) := {y : xRy, x ∈ Ã} and
R−1(B̃) := {x : xRy, y ∈ B̃} for Ã ⊆ A and B̃ ⊆ B. A relation over a set
defines a preorder if it is reflexive, ∀x ∈ A : xRx; and transitive, ∀x, y, z ∈ A : if
xRy and yRz then xRz. A relation R ⊆ A×A is an equivalence relation if it is
reflexive, transitive and symmetric, ∀x, y ∈ A : if xRy then yRx.

A measurable space is a pair (X,F) with sample space X and σ-algebra F
defined over X, which is equipped with a topology. As a specific instance of
F consider the Borel measurable space (X,B(X)). In this work, we restrict our
attention to Polish spaces and generally consider the Borel σ-field [6]. Recall
that a Polish space is a separable and completely metrisable topological space.
A simple example of such a space is the real line.

A probability measure P (·) for (X,F) is a non-negative map, P (·) : F →
[0, 1] such that P (X) = 1 and such that for all countable collections {Ai}∞i=1 of
pairwise disjoint sets in F , it holds that P (

⋃
iAi) =

∑
i P (Ai). Together with



the measurable space, such a probability measure P defines the probability space,
which is denoted as (X,F ,P) and has realisations x ∼ P. Let us further denote
the set of all probability measures for a given measurable pair (X,F) as P(X,F).
For a probability spacei (X,FX,P) and a measurable space (Y,FY), a (Y,FY)-
valued random variable is a function y : X → Y that is (FX,FY)-measurable,
and which induces the probability measure y∗P in P(Y,FY). For a given set X
a metric or distance function dX is a function dX : X× X→ R+

0 .

2.2 gMDP models - syntax and semantics

General Markov decision processes are related to control Markov processes [1]
and Markov decision processes [5,19], and are formalised as follows.

Definition 1 (Markov decision process (MDP)) A discrete-time MDP M
= (X, π,T,U) is defined over an uncountable state space X, and characterised by
T, a conditional stochastic kernel that assigns to each point x ∈ X and control
u ∈ U a probability measure T(· | x, u) over (X,B(X)). For any set A ∈ B(X),
Px,u(x(t + 1) ∈ A) = T(A |x(t) = x, u), where Px,u denotes the conditional
probability P(· | x, u). The initial probability distribution is π : B(X)→ [0, 1].

At every state the state transition depends non-deterministically on the
choice of u ∈ U. When chosen according to a distribution µu : B(U) → [0, 1],
we refer to the stochastic control input as µu. Moreover the transition kernel
is denoted as T(·|x, µu) =

∫
U T(·|x, u)µu(du) ∈ P(X,B(X)). Given a string of

inputs (possibly randomised) u(0), u(1), . . . , u(N), over a finite time horizon
{0, 1, . . . , N}, and an initial condition x0 (sampled from distribution π), the
state at the (t + 1)-st time instant, x(t + 1), is obtained as a realisation of the
controlled Borel-measurable stochastic kernel T (· | x(t), u(t)) – these semantics
induce paths (or executions) of the MDP.

Definition 2 (General Markov decision process (gMDP)) A discrete-time
gMDP M = (X, π,T,U, h,Y) is an MDP combined with a measurable output
mapping h : X→ Y.

The gMDP semantics are directly inherited from those of the MDP. Further, out-
put traces of gMDP are obtained as mappings of MDP paths, namely {y(t)}0:N :=
y(0), y(1), . . . , y(N), where y(t) = h

(
x(t)

)
. Denote the class of all gMDP with the

metric output space Y asMY. Note that gMDP can be regarded as a super-class
of the known labelled Markov processes (LMP) [8] as elucidated in [2].

Example 1. Consider a stochastic process defined as the solution of the stochastic
difference equation

M : x(t+ 1) = f(x(t), u(t)) + e(t), y(t) = h(x(t)) ∈ Y,

i The index X in FX distinguishes the given σ-algebra on X from that on Y, which is
denoted as FY. Whenever possible this index will be dropped.



with variables x(t), u(t), e(t), taking values in Rn, representing the state, control
input (external non-determinism), and noise terms respectively. The process is
initialised as x(0) ∼ π, and driven by e(t), a white noise sequence with zero-
mean normal distributions and variance Σe. This stochastic process, defined
as a dynamical model with dynamics characterised by the stochastic difference
equation above, is a gMDP characterised by a tuple (Rn, π,T,Rn, h,Y), where
the conditional transition kernel is defined as T(· | x, u) = N (·|f(x(t), u(t)), Σe),
a normal probability distribution with mean f(x(t), u(t)) and variance Σe. ut

A policy is a selection of control inputs based on the past history of states and
actions. We allow controls to be selected via universally measurable maps [5] from
the state to the control space, so that time-bounded properties such as safety can
be maximised [11]. When the selected controls are only dependent on the current
states and thus conditionally independent of history (or memoryless), the policy
is referred to as Markov. A Markov policy µ for a gMDP M = (X, π,T,U, h,Y)
is a sequence µ = (µ1, µ2, µ3, . . .) of universally measurable maps µt : X →
P(U,B(U)) t = 0, 1, 2, . . ., from the state space X to the set of controls. Recall
that a function f : Z1 → Z2 is universally measurable if the inverse image of
every Borel set is measurable with respect to every complete probability measure
on Z1 that measures all Borel subsets of Z1.

The execution {x(t), t ∈ [0, N ]} initialised by x0 ∈ X and controlled with
Markov policy µ is a stochastic process defined on the canonical sample space
Ω := XN+1 endowed with its product topology B(Ω). This stochastic process
has a probability measure P uniquely defined by the transition kernel T, policy
µ, and initial distribution π [5, Prop. 7.45].

Of interest to us are time-dependent properties such as those expressed as
specifications in a temporal logic of choice. This leads to problems where one
maximises the probability that a sequence of labelled sets is reached within
a time limit and in the right order. One can intuitively understand that in
general the optimal policy leading to the maximal probability is not a Markov
(memoryless) policy. We introduce the notion of a control strategy, and define
it as a broader, memory-dependent version of the Markov policy above. Such a
strategy for controlling a gMDP is formulated next as a Markov process that
takes the state of the gMDP as input.

Definition 3 (Control strategy) A control strategy C = (XC, xC0,X,TtC, htC)
for a gMDP M with state space X and control space U over the time hori-
zon t = 0, 1, 2, . . . , N is an inhomogenous Markov process with state space
XC; an initial state xC0; inputs x ∈ X; time-dependent, universally measur-
able kernels TtC, t = 0, 1, . . . , N ; and with universally measurable output maps
htC : XC → P(U,B(U)), t = 1, . . . , N , with elements µ ∈ P(U,B(U)). ut

Unlike a Markov policy, the control strategy is in general dependent on the his-
tory, as it has an internal state that can be used to remember relevant past
events. Note that the first control u(0) is selected by drawing xC(1) accord-
ing to T0

C( · |xC(0), x(0)), where xC(0) = xC0, and selecting u(0) from measure
µ0
C = h0C(xC(1)). This is then repeated at every time step, when the controller



selects a control u(t) by updating its internal state TtC( · |xC(t), x(t)) and then
selecting u(t) according to µtC = htC(xC(t+ 1)). The control strategy applied to
M can be both stochastic (it is a realisation of TtC(· |xC(t), x(t)) ), a function of
the initial state x(0), and of time.
The execution {(x(t), xC(t)), t ∈ [0, N ]} of a gMDP M controlled with strategy
C, is defined on the canonical sample space Ω := (X×XC)N+1 endowed with its
product topology B(Ω). This stochastic process is associated to a unique proba-
bility measure PC×M, since the stochastic kernels TtC and T are Borel measurable
and composed via universally measurable policies [5, Prop. 7.45].

2.3 gMDP verification and strategy refinement: The idea

We qualitatively anticipate the main result of this work. We intend to provide a
general framework to synthesise control policies over a formal abstraction M̃ of a
concrete complex model M, with the understanding that M̃ is much simpler to be
manipulated (analytically or computationally) than M is. We define a simulation
relation under which a policy C̃ for the abstract Markov process M̃ implies
the existence of a policy C for M, so that we can quantify differences in the
stochastic transition kernels and in the output trajectories for the two closed-loop
models. This allows us to derive bounds on the probability of satisfaction of a
specification for M×C from the satisfaction probability of modified specifications
for M̃ × C̃. This setup allows dealing with finite-horizon temporal properties,
including safety verification as a relevant instance.
The results in this paper are to be used in parallel with optimisation, both
for selecting the control refinement and for synthesising a policy on the abstract
model. It has been shown in [5] that stochastic optimal control, even for a system
on a “basic” state space, can lead to measurability issues: in order to avoid these
issues we follow [5,9] and the developed theory for Polish spaces and Borel (or
universally) measurable notions. Throughout the paper we will give as clarifying
examples Markov processes evolving, as in Example 1, over Euclidean spaces
which are a special instances of Polish spaces.

3 Exact (bi-)simulation relations based on lifting

In this section we define probabilistic simulation and bisimulation relations that
are, respectively, a preorder and an equivalence relation on MY. Before intro-
ducing these relations, we first extend Segala’s notion [20] of lifting to uncount-
able state spaces, which allows us to equate the transition kernels of two given
gMDPs. Thereafter, we leverage liftings to define (bi-)simulation relations over
MY, which characterise the similarity in the controllable behaviours of the two
gMDPs. Subsequently we show that these similarity relations also imply con-
troller refinement, i.e., within the similarity relation a control strategy for a
given gMDP can be refined to a controller for another gMDP. In the next sec-
tion, we show that this exact notion of similarity allows a more general notion
of approximate probabilistic simulation. The new notions of similarity relations
extend the known exact notions in [16], and the approximate notions of [9,10].



3.1 Lifting for general Markov decision processes

Consider two gMDP M1,M2 ∈MY mapping to a common output space Y with
metric dY. For M1 = (X1, π1,T1,U1, h1,Y) and M2 = (X2, π2,T2,U2, h2,Y) at
given state-action pairs x1 ∈ X1, u1 ∈ U1 and x2 ∈ X2, u2 ∈ U2, respectively,
we want to relate the corresponding transition kernels, namely the probability
measures T1(· | x1, u1) ∈ P(X1,B(X1)) and T2(· | x2, u2) ∈ P(X2,B(X2)).

Similar to the coupling of measures in P(X,F) [4,17], consider the coupling
of two arbitrary probability spaces (X1,F1,P1) and (X2,F2,P2) (cf. [21]). A
probability measure Pc defined on (X1 × X2,F) couples the two spaces if the
projections p1, p2, with x1 = p1(x1, x2) and x2 = p2(x1, x2), define respectively
an (X1,F1)- and an (X2,F2)-valued random variable, such that P1 = p1∗Pc
and P2 = p2∗Pc. For finite- or countably infinite-state stochastic processes a
closely-related concept has been introduced in [20] and referred to as lifting :
the transition probabilities are coupled using a weight function in a way that
respects a given relation over the combined state spaces. Rather than using
weight functions over a countable or finite domain [20], we introduce lifting as a
coupling of measures over Polish spaces.

Since we assume that the state spaces are Polish and have a corresponding
Borel σ-field for the given probability spaces (X1,B(X1),P1) and (X2,B(X2),P2)
with P1 := T1(· | x1, u1) and P2 := T2(· | x2, u2), the natural choice for the
σ-algebra becomes B(X1 × X2) = B(X1)⊗ B(X2)ii and the question of finding a
coupling can be reduced to finding a probability measure in P(X1×X2,B(X1×X2)).

Definition 4 (Lifting for general state spaces) Let X1,X2 be two sets with
associated measure spaces (X1,B(X1)) and (X2,B(X2)) and let the Borel mea-
surable set R ⊆ X1 × X2 be a relation. We denote by R̄ ⊆ P(X1,B(X1)) ×
P(X2,B(X2)) the corresponding lifted relation, so that ∆R̄Θ holds if there exists
a probability space (X1×X2,B(X1×X2),W) (equivalently, a lifting W) satisfying

1. for all X1 ∈ B(X1): W(X1 × X2) = ∆(X1);
2. for all X2 ∈ B(X2): W(X1 ×X2) = Θ(X2);
3. for the probability space (X1 × X2,B(X1 × X2),W) it holds that sRt with

probability 1, or equivalently that W (R) = 1.

Remark 1. We have implicitly required that the σ-algebra B(X1 × X2) contains
not only sets of the form X1×X2 and X1×X2, but also specifically the sets that
characterise the relation R. Since the spaces X1 and X2 have been assumed to be
Polish, it holds that every open (closed) set in X1×X2 belongs to B(X1)⊗B(X2) =
B(X1×X2) [6, Lemma 6.4.2]. As an example also consider the diagonal relation
Rdiag := {(x, x) : x ∈ X} over X×X, of importance for some examples introduced
later. This is a Borel measurable set [6, Theorem 6.5.7]. ut

3.2 Exact probabilistic (bi-)simulation relations via lifting

Similar to the alternating notions for probabilistic game structures in [24], we
provide a simulation that relates any input chosen for the abstract process with

ii B(X1)⊗ B(X2) denotes the product σ-algebra of B(X1) and B(X2).



one for the concrete process. We aim to compare the models behaviour with
respect to how they can be controlled, and thus allow for more elaborate handling
of the inputs than in the probabilistic simulation relations of [9,10,20], paving
the way to controller refinement. We introduce the notion of interface function
in order to connect the controllable behaviour of the two gMDP:

Uv : U1 × X1 × X2 → P(U2,B(U2)),

where we require that Uv is a Borel measurable function. This means that Uv
induces a Borel measurable stochastic kernel, denoted by Uv, over U2 given
U1×X1×X2. The notion of interface function is known in the context of correct-
by-design controller synthesis and of hierarchical controller refinement [13,22].
The lifting of the transition kernels for the chosen interface generates a stochastic
kernel WT conditioned on the inputs U1 and X1×X2. Let us trivially extend the
interface function to Uv(µ1, x1, x2) :=

∫
U1
Uv(u1, x1, x2)µ1(du1).

Definition 5 (Probabilistic simulation) Consider two gMDP Mi, i = 1, 2,
Mi = (Xi, πi,Ti,Ui, hi,Y). The gMDP M1 is stochastically simulated by M2 if
there exists an interface function Uv and relation R ⊆ X1 × X2 ∈ B(X1 × X2),
for which there exists a Borel measurable stochastic kernel WT( · |u1, x1, x2) on
X1 × X2 given U1 × X1 × X2, such that ∀(x1, x2) ∈ R :

1. h1(x1) = h2(x2);
2. ∀u1 ∈ U1, T1(·|x1, u1) R̄ T2(·|x1,Uv(u1, x1, x2)), with lifted probability mea-

sure WT( · |u1, x1, x2);
3. π1R̄π2.

The relationship between the two models is denoted as M1 �M2.

Definition 6 (Probabilistic bisimulation) Under the same conditions as above,
M1 is a probabilistic bisimulation of M2 if there exists a relation R ⊆ X1 × X2

such that M1 � M2 w.r.t. R and M2 � M1 w.r.t. the inverse relation R−1 ⊆
X2 ×X1. M1 and M2 are said to be probabilistically bisimilar, which is denoted
M1 ≈M2.

For every gMDP M: M � M and M ≈ M. This can be seen by consider-
ing the diagonal relation Rdiag = {(x1, x2) ∈ X × X | x1 = x2} and selecting
equal inputs for the associated interfaces. The resulting equal transition ker-
nels T(·|x, u)R̄diagT(·|x, u) are lifted by the measure WT(dx′1 × dx′2|u, x1, x2) =
δx′

1
(dx′2)T(dx′1|x1, u) where δ denotes the Dirac distribution.

Example 2 ( Lifting for diagonal relations). Consider the specific case of the
gMDP (M1) introduced in Ex. 1, and a slight variation of it (M2), both given
as stochastic dynamic processes as

M1 : x(t+ 1) = ax(t) + bu(t) + e(t) ∈ R, y(t) = h(x(t)) ∈ R,
M2 : x(t+ 1) = ax(t) + bu(t) + ẽ(t) + ũ(t) ∈ R, y(t) = h(x(t)) ∈ R,



with variables x(t), x(t+ 1), u(t), ũ(t), e(t), ẽ(t) and constants a, b taking values
in R, and with dynamics initialised with the same probability distribution at
t = 0 and driven by white noise sequences e(t), ẽ(t), both with zero-mean normal
distributions and with variance equal to 1 and 1.25, respectively. M1 �M2. For
every action u1 chosen for M1, select the control input pair (u2, ũ2) ∈ U2 = R2

as u2 = u1, and ũ2 according to the zero-mean normal distribution with variance
0.25, then the associated interface is Uv( · |u1, x1, x2) = δu1

(du2)N (dũ2|0, 0.25).
For this interface the stochastic dynamics of the two processes are equal, and
can be lifted with Rdiag, namely T1(·|x, u)R̄diagT2(·|x,Uv). ut

Remark 2. OverMY, the class of gMDP with a shared output space, the relation
� is a preorder, as it is reflexive (see Ex. 2) and transitive (see Cor. 6). Moreover
≈ is an equivalence relation as it is also symmetric (Cor. 6). ut

3.3 Controller refinement via probabilistic simulation relations

The ideas underlying the controller refinement are first discussed, after which it
is shown that the refined controller induces a strategy as per Def. 3. Finally the
equivalence of properties defined over the closed-loop gMDPs is shown.

Consider two gMDP Mi = (Xi, πi,Ti,U,hi,Y) i = 1, 2 with M1 �M2. Given
the entities Uv and WT associated to M1 � M2, the distribution of the next
state x′2 of M2 is given as T2(· | x2,Uv(u1, x1, x2)), and is equivalently defined
via the lifted measure as the marginal of WT(·|u1, x1, x2) on X2. Therefore, the
distribution of the combined next state (x′1, x

′
2), defined as WT( · |u1, x1, x2), can

be expressed as

WT(dx′1 × dx′2|u1, x1, x2) = WT(dx′1|x′2, u1, x1, x2)T2(dx′2|x2,Uv(u1, x1, x2)),

where WT(dx′1|x′2, u1, x1, x2) is referred to as the conditional probability given x′2
(c.f. [7, Corollary 3.1.2]). Similarly, the conditional measure for the initialisation
Wπ is denoted as Wπ(dx1(0)× dx2(0)) = Wπ(dx1(0)|x2(0))π2(dx2(0)).

Now suppose that we have a control strategy for M1, referred to as C1, and
we want to construct the refined control strategy C2 for M2, which is such that
events defined over the output space have equal probability. This refinement
procedure follows directly from the interface and the conditional probability
distributions, and is described in Algorithm 1. The above execution algorithm is
separated into the refined control strategy C2 and its gMDP M2. C2 is composed
of C1, the stochastic kernel WT, and the interface Uv, and it remembers the
previous state of M2.

Theorem 1 (Refined control strategy) Let gMDP M1 and M2 be related
as M1 �M2, and consider the control strategy C1 = (XC1

, xC10,X1,TtC1
, htC1

)
for M1 as given. Then there exists at least one refined control strategy C2 =
(XC2 , xC20,X2,TtC2

, htC2
) as defined in Def. 3, with

– state space XC2 := XC1 × X1 × X2, with elements xC2 = (xC1 , x1, x2);
– initial state xC20 := (xC10, 0, 0);



Algorithm 1: Refinement of control strategy C1 as C2

Given the interface function Uv, and the (conditional) stochastic kernels
WT(dx′1|x′2, u1, x1, x2) and Wπ(dx1(0)|x2(0)).

Initialise by drawing

– the initial state x2(0) from π2, and
– the initial state x1(0) from Wπ(· | x2(0)).

Run starting at t = 0,
1. given x1(t), select u1(t) according C1,
2. choose randomised input µ2t = Uv(u1(t), x1(t), x2(t)),

draw x2(t+ 1) from T2( · | x2(t), µ2t),
3. draw x1(t+ 1) from WT( · |x2(t+ 1), u1(t), x1(t), x2(t)),
4. set t := t+ 1, return.

– input variable x2 ∈ X2, namely the state variable of M2;
– time-dependent stochastic kernels TtC2

, defined as

T0
C2

(dxC2 |xC20, x2(0)) := T0
C1

(dxC1 |xC10, x1)Wπ(dx1|x2)δx2(0)(dx2) and

TtC2
(dx′C2

|xC2
(t), x2(t)) := TtC1

(dx′C1
|xC1

, x′1)

WT(dx′1|x′2, htC1
(xC1

), x2, x1)δx2(t)(dx
′
2) for t ∈ [1, N ];

– measurable output maps htC2
(xC1

, x̃1, x2) := Uv(htC1
(xC1

), x1, x2). ut

Both the time-dependent stochastic kernels TtC2
and the output maps htC2

, for
t ∈ [0, N ], are universally measurable, since Borel measurable maps are univer-
sally measurable and the latter are closed under composition [5, Chapter 7].

Since, by the above construction of C2, traces in the output spaces of the
closed loop systems C1 ×M1 and C2 ×M2 have equal distribution, it follows
that measurable events have equal probability, as stated next.

Theorem 2. If M1 � M2, then for all control strategies C1 there exists a
control strategy C2 such that, for all measurable events A ∈ B

(
YN+1

)
,

PC1×M1 ({y1(t)}0:N ∈ A) = PC2×M2 ({y2(t)}0:N ∈ A) ,

with respective output traces {y1(t)}0:N and {y2(t)}0:N of C1×M1 and C2×M2.

4 New approximate (bi-)simulation relations via lifting

The requirement on an exact simulation relation between two models is evidently
restrictive. This is also shown in the following example of gMDPs.

Example 3 (Models with a shared noise source).
Consider an output space Y := Rd, with a metric dY(x, y) := ‖x − y‖ (the
Euclidean norm), and two gMDP expressed as noisy dynamic processes:

M1 : x1(t+ 1) = f(x1(t), u1(t)) + e1(t), y1(t) = h(x1(t)),

M2 : x2(t+ 1) = f(x2(t), u2(t)) + e2(t), y2(t) = h(x2(t)),

where f and h are both globally Lipschitz. Namely, there is an 0 < L < 1
such that ‖f(x1, u) − f(x2, u)‖ ≤ L‖x1 − x2‖ for all x1, x2 ∈ Rn and for all



u, and in addition an 0 < H such that ‖h(x1) − h(x2)‖ ≤ H‖x1 − x2‖. Sup-
pose the probability distributions of the random variable e1 and of e2 can be
coupled with distribution Pe1×e2 ,and that there exists a value c ∈ R, such that
Pe1×e2 [‖e1 − e2‖ < c ] = 1. Then for every pair of states x1(t) and x2(t) of
M1 and M2 respectively, the difference between state transitions is bounded as
‖x1(t+ 1)− x2(t+ 1)‖ ≤ L‖x1(t)− x2(t)‖+ c with probability 1. Therefore, we
know that if ‖x1(0) − x2(0)‖ ≤ c

1−L , then for all t ≥ 0, ‖x1(t) − x2(t)‖ ≤ c
1−L ,

and ‖y1(t)− y2(t)‖ ≤ cH
1−L .

Even though the difference in the output of the two models is bounded with
probability 1, it is impossible to provide an approximation error using either
the method in [15] (hinging on stochastic stability assumptions), nor using (ap-
proximate) relations as in [9,10]: with the former approach, for the same input
sequence u(t) the output trajectories of M1 and M2 have bounded difference,
but do not converge to each other; with the latter approach, the relation defined
via a normed difference cannot satisfy the required notion of transitivity. ut

As mentioned before and highlighted in the previous Ex. 3, we are interested
in introducing a new approximate version of the notion of probabilistic simu-
lation relation, which allows for both δ-differences in the stochastic transition
kernels, and ε-differences in the output trajectories. For the former prerequisite,
we relax the requirements on the lifting in Def. 4.

Definition 7 (δ-lifting for general state spaces) Let X1,X2 be two sets with
associated measure spaces (X1,B(X1)), (X2,B(X2)), and let R ⊆ X1 × X2 be
a relation for which R ∈ B(X1 × X2). We denote by R̄δ ⊆ P(X1,B(X1)) ×
P(X2,B(X2)) the corresponding lifted relation (acting on ∆R̄δΘ), if there exists
a probability space (X1 × X2,B(X1 × X2),W) satisfying

1. for all X1 ∈ B(X1): W(X1 × X2) = ∆(X1);
2. for all X2 ∈ B(X2): W(X1 ×X2) = Θ(X2);
3. for the probability space (X1 × X2,B(X1 × X2),W) it holds that sRt with

probability at least 1− δ, or equivalently that W (R) ≥ 1− δ.

We leverage Definition 7 to introduce a new approximate similarity relation
that encompasses both approximation requirements, obtaining the following ε, δ-
approximate probabilistic simulation.

Definition 8 (ε, δ-approximate probabilistic simulation) Consider two gMDP
Mi = (Xi, πi,Ti,Ui, hi,Y), i = 1, 2, over a shared metric output space (Y,dY).
M1 is ε, δ-stochastically simulated by M2 if there exists an interface function Uv
and a relation R ⊆ X1×X2, for which there exists a Borel measurable stochastic
kernel WT( · |u1, x1, x2) on X1×X2 given U1×X1×X2, such that ∀(x1, x2) ∈ R :

1. dY (h1(x1), h2(x2)) ≤ ε;
2. ∀u1 ∈ U1, T1(·|x1, u1) R̄δ T2(·|x2,Uv(u1, x1, x2)), with lifted probability mea-

sure WT( · |u1, x1, x2);
3. π1R̄δπ2.

The simulation relation is denoted as M1 �δε M2.



Definition 9 (ε, δ-approximate probabilistic bisimulation) Under the same
conditions as before M1 is an ε, δ-probabilistic bisimulation of M2 if there ex-
ists a relation R ⊆ X1 × X2 such that M1 �δε M2 w.r.t. R and M1 �δε M2

w.r.t. R−1 ⊂ X2 ×X1. M1 and M2 are said to be ε, δ-probabilistically bisimilar,
denoted as M1 ≈δε M2.

In the next section we use the introduced similarity relations is to quantify the
probability of events of a gMDP via its abstraction and to refine controllers.

4.1 Controller refinement via approximate simulation relations

Consider two gMDP M1 and M2 for which M1 is the abstraction of the concrete
model M2. The following result is an approximate version of Theorem 2, and
provides the main result of this paper, i.e., approximate equivalence of properties
defined over the gMDP M1 and M2.

Theorem 3. If M1 �δε M2, then for all control strategies C1 there exists a
control strategy C2 such that for the output traces {y1(t)}

0:N
and {y2(t)}

0:N
of

C1 ×M1 and C2 ×M2, it holds that for all measurable events A ⊂ YN+1

PC1×M1

(
{y1(t)}

0:N
∈A−ε

)
− γ ≤ PC2×M2

({y2(t)}
0:N
∈A) ≤ PC1×M1

({y1(t)}
0:N
∈Aε) + γ,

with constant 1− γ := (1− δ)N+1, and with the ε-expansion of A defined as

Aε :=
{
{yε(t)}0:N |∃{y(t)}0:N ∈ A : maxt∈[0,N ] dY(yε(t), y(t)) ≤ ε

}
and similarly the ε-contraction defined as A−ε := {{y(t)}0:N |{{y(t)}0:N}ε ⊂ A}
where {{y(t)}0:N}ε is the point-wise ε-expansion of {y(t)}0:N .

Key to show this result is the existence of a refined control strategy C2, which
we detail next. Given a control strategy C1 over the time horizon t ∈ {0, . . . , N},
there is a control strategy C2 that refines C1 over M2. The control strategy is
conceptually given in Algorithm 2. Whilst the state (x1, x2) of C2 is in R, the
control refinement from C1 follows in the same way as for the exact case of Sec.
3.3. Hence, similar to the control refinement for exact probabilistic simulations,
the basic ingredients of C2 are the states x1 and x2, whose stochastic transition
to the pair (x′1, x

′
2) is governed firstly by a point distribution δx2(t)(dx

′
2) based

on the measured state x2(t) of M2; and, subsequently, by the lifted probability
measure WT(dx′1 | x′2, u1, x2, x1), conditioned on x′2.

On the other hand, whenever the state (x1, x2) leaves R the control chosen
by strategy C1 cannot be refined to M2 and fails. A new control strategy Crec,
referred to as recovery, can be used to control the residual trajectory of M2. The
choice is of no importance to the result in Theorem 3, as it bounds errors on
probabilistic events based on the event that the states stay in the relation.

Theorem 4 (Refined control strategy) Let gMDP M1 and M2, with M1 �δε
M2, and control strategy C1 = (XC1 , xC10,X1,TtC1

, htC1
) for M1 be given. Then

for every recovery control strategy Crec, a refined control strategy C2 =(XC2, xC20,
X2,TtC2

, htC2
) is obtained as an inhomogenous Markov process with two discrete

modes of operation, {refinement} and {recovery}, based on Algorithm 2.

By dividing the execution in Algorithm 2 into a control strategy and a gMDP
M2, we again obtain a refined control strategy with tuple (XC2 , xC20,X2,TtC2

, htC2
).



Algorithm 2: Refinement of C1 as C2

Given the interface function Uv, the (conditional) stochastic kernels WT(dx′1|x′2, u1, x1, x2)
and Wπ(dx1(0)|x2(0)), and the chosen recovery strategy Crec.

Initialise by drawing

– the initial state x2(0) from π2, and
– the initial state x1(0) from Wπ(· | x2(0)).

Run starting at t = 0, while t ≤ N
1. if (x1(t), x2(t)) ∈ R go to 2. else skip to 6.
2. given x1(t), select u1(t) from C1, {refine}
3. choose randomised input µ2t = Uv(u1(t), x1(t), x2(t)),

draw x2(t+ 1) from T2( · | x2(t), µ2t),
4. draw x1(t+ 1) from WT( · |x2(t+ 1), u1(t), x1(t), x2(t)),
5. set t := t+ 1, go to 1.

6. given x2(t), compute µt (from Crec), {recover}
7. draw x2(t+ 1) from T2( · | x2(t), µt),
8. set t := t+ 1, go to 6.

4.2 Examples and properties

Example 4 (Models with a shared noise source – continued from above).
Based on the relation R := {(x1, x2) : ‖x1 − x2‖ ≤ c

1−L} it can be shown that

M1 ≈0
ε M2 with ε = Hc

1−L , since, firstly, it holds that dY(h(x1), h(x2)) ≤ ε for all
(x1, x2) ∈ R, with dY = ‖h(x1)−h(x2)‖. Additionally, for all (x1, x2) ∈ R and for
any input u1 the selection u2 = u1 is such that T1(·|x1, u1)R̄0T2(·|x2, u1), note
that R̄0 is equal to R̄ (the lifted relation from R). The lifted stochastic kernel
is WT(dx′1 × dx′2|u1, x1, x2) :=

∫
ω
δf(x1,u1)+g1(ω)(dx

′
1)δf(x2,u)+g2(ω)(dx

′
2)Pω(dω),

this stochastic kernel is Borel measurable if f(x1, u1) + g1(ω) and f(x2, u) +
g2(ω) are assumed Borel measurable mappings. Note that the employed identity
interface is also Borel measurable. ut

Example 5 (Relationship to model with truncated noise).
Consider the stochastic dynamical process M1 : x(t + 1) = f(x(t), u(t)) + e(t)
with output mapping y(t) = h(x(t)), operating over the Euclidean state space
Rn, and driven by a white noise sequence e(t) ∈ Rn with distribution Pe. The
output space y ∈ Y ⊆ Rd is endowed with the Euclidean norm dY = ‖ · ‖.
Select a domain D ⊂ Rn so that, at any given time instant t, e(t) ∈ D with
probability 1 − δ. Then define a truncated white noise sequence ẽ(t), with dis-
tribution Pe (· | D). The resulting model M2 driven by ẽ(t) is M2 : x(t + 1) =
f(x(t), u(t)) + ẽ(t), with the same output mapping y(t) = h(x(t)). We show
that M2 is a 0, δ-approximate probabilistic bisimulation of M1, i.e. M1 ≈δ0 M2.
Select R := {(x1, x2) for x1, x2 ∈ Rn|x1 = x2}, and choose as interface the
identity function, i.e., Uv(u1, x1, x2) = u1. Denote t1(e) = f(x1, u1) + e and
t2(ẽ) = f(x2, u1) + ẽ, then a lifting measure depending on x1, x2 ∈ R and u1, is

WT(dx′1 × dx′2|u1, x1, x2) :=
∫
e∈D δx′

1
(dx′2)δt1(e)(dx

′
1)Pe(de) (1)

+
∫
e∈Rn\D δt1(e)(dx

′
1)Pe(de)

∫
ẽ
δt2(ẽ)(dx

′
2)Pe(dẽ|D). ut



Example 6 (Relationship between noiseless and truncated-noise models).
Continuing with Ex. 5, consider the model with truncated noise M2 as defined
before. In what sense is M2 approximated by its noiseless version M3, namely
M3 : x(t + 1) = f(x(t), u(t)), with y(t) = h(x(t))? Under requirements on the
Lipschitz continuity ‖f(x1, u) − f(x2, y)‖ ≤ L‖x1 − x2‖ 0 < L < 1, ‖h(x1) −
h(x2)‖ ≤ H‖x1 − x2‖, and on the boundedness of D and of c = maxd∈D ‖d‖,
Ex. 3 can be leveraged by concluding that M2 ≈0

ε M3, with ε = Hc
1−L . iii ut

In the Ex. 5 and 6 we have that M1 is approximated by M2, which is subse-
quently approximated by M3. The following theorem and corollary attains a
quantitative answer on the question whether M1 is approximated by M3.

Theorem 5 (Transitivity of �δε). Consider three gMDP Mi, i = 1, 2, 3, de-
fined by tuples (Xi, πi,Ti,Ui, hi,Y), with shared output space.

If M1 �δaεa M2 and M2 �δbεb M3, then M1 �δa+δbεa+εb
M3.

Next, as a corollary of this theorem, we discuss further transitivity properties
for simulation and bisimulation relations.

Corollary 6 (Transitivity properties) Following Theorem 5, it holds that

– if M1 ≈δaεa M2 and M2 ≈δbεb M3, then M1 ≈δa+δbεa+εb
M3, and

– if M1 �M2 and M2 �M3, then M1 �M3, and
– if M1 ≈M2 and M2 ≈M3, then M1 ≈M3.

Example 7 (Combination of Examples 5 and 6 via Corollary 6).
For the models in Examples 5 and 6 we can conclude that M1 ≈δε M3. This
means that a stochastic system as in M1 in Ex. 5 can be approximated via its
deterministic counterpart, and that the approximation error can be expressed
via the probability (i.e. amount of truncation cf. Ex. 5) and the output error
(i.e. Ex. 6). This allows for explicit trading off between output deviation and
deviation in probability. ut

5 Case study: Energy management in smart buildings

We are interested in developing advanced solutions for the energy management of
smart buildings. We consider a simple building that is divided in two connected
zones, each with a radiator affecting the heat exchange in that zone by controlling
the water temperature in a boiler. A model of the temperature dynamics in
an office building with two zones to heat [14] assumes that the temperature
fluctuations in the two zones and the ambient temperature dynamics can be
modelled via M as a Gaussian process:

M : x(t+ 1) = Ax(t) +Bu(t) + Fe(t), y(t) = [ 1 0 0
0 1 0 ]x(t), (2)

iii Alternatively, if M2 with non-deterministic input ẽ ∈ D is an εa- alternating bisim-
ulation [22] of M3 then M2 ≈0

εa M3.



with stable dynamics characterised by matrices

A =
[
0.8725 0.0625 0.0375
0.0625 0.8775 0.0250

0 0 0.9900

]
, B =

[
0.0650 0
0 0.60
0 0

]
, F =

[
0.05 −0.02 0
−0.02 0.05 0

0 0 0.1

]
,

where x1,2(t) are the temperatures in zone 1 and 2, respectively; x3(t) is the
deviation of the ambient temperature from its mean; and u(t) ∈ R2 is the control
input. The state variables are initiated as x(0) = [16 14 -5]T . The disturbance
e(t) is a sequence of independent and identically distributed standard normal
distributions, for all t ∈ R+. This stochastic process can be written as a gMDP
as detailed in Example 1. For the model abstraction, we select the controllable
dynamics of the mean of the state variables, and consequently omit the ambient
temperature:

M̃ :

{
x̃(t+ 1) = Ãx̃(t) + B̃ũ(t) ∈ R2, with Ã := [ 0.8725 0.0625

0.0625 0.8775 ],

ỹ(t) = [ 1 0
0 1 ]x̃(t), B̃ := [ 0.0650 0

0 0.60 ].
(3)

We then obtain that, as intuitive, M̃ �δε M.
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Fig. 1: Figure of trade-off between the
output error ε and the probability error
δ for the δ,ε-approximate probabilistic
simulation M̃ �δε M. We have selected
the pair (ε, δ) = (0.16, 0.073) as an ideal
trade-off.

In order to compute specific values of ε and δ, we select the relation R :=
{(x̃, x) ∈ R2 × R3 |

√
(x̃1 − x1)2 + (x̃2 − x2)2 ≤ ε} and the interface function

Uv(ũ, x̃, x) = ũ+ B̃−1(Ãx̃− Āx), with Ā = [ 0.8725 0.0625 0.0375
0.0625 0.8775 0.0250 ]. A stochastic ker-

nel WT for the lifting is WT(dx̃′ × dx′ | ũ, x̃, x) =
∫
e
δf̃ (dx̃′) δf(e)(dx

′)N (de | 0, I),

with f̃ = Ãx̃+ B̃ũ and f(e) = Ax + BUv(ũ, x̃, x) + Fe. The lower bound on
WT(R | ũ, x̃, x) ≤ 1 − δ has been computed and traded off against the output
deviation in Fig. 1.

We are interested in the goal, expressed for the model M, of increasing the
likelihood of reaching the target set T = [20.5, 21]2 and staying there thereafter.
For the abstract model we have developed a strategy, as in[14], satisfying by
construction the property expressed in LTL-like notation with the formula ϕ =
♦�T and shrunken to ϕ−ε (as per Theorem 3). This strategy is synthesised as a
correct-by-construction controller using PESSOA [18], where the discrete-time
dynamics are further discretised over state and action spaces: we have selected
a state quantisation of 0.05 over the range [15, 25]

2
, and an input quantisation

of 0.05 over the set [10, 30]
2
. It can be observed that the controller regulates the

abstract model M̃ to eventually remain within the target region, as shown in Fig.
2. We now want to verify that indeed, when refined to the concrete stochastic
model, this strategy implies the reaching and staying in the safe set up to some
probabilistic error. The refined strategy is obtained from this control strategy



as discussed in Section 4.1, and recovers from exits out of the relation R by
resetting the abstract states in the relation. A simulation study is given in Fig.2:
as predicted, the behaviour of the controlled concrete model M stays close to that
of M̃. Over a time horizon of 200 steps the output error exceeds the level ε = 0.16
only a few (four) times. Indeed, the probability that the concrete state leaves
the relation with the abstract model (≤ δ, with δ = 0.073) leads, over N time
steps, to a bound on the probability that it does not satisfy the LTL property:
Theorem 3 ensures that this probability is provably less than 1− (1−δ)N ≈ Nδ.
In practice, whenever state exits the relation, then the controller recovers by
resetting the state of the abstract model and re-applying the strategy again, and
thanks to the ε-contraction ϕ−ε of the concrete specification, M will abide by ϕ
with a high confidence.
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Fig. 2: Refined control for deterministic model applied to M. The figure (above
left) evaluates the accuracy of the approximation, and gives with red circles the
instances in which the relation is left. The plot (below right) gives the ambient
temperature. The plots on the right give the temperature inside the rooms. The
(very small) blue crosses give the actual temperature in the rooms (x1, x2) and
cover the deterministic simulation of (x̃1, x̃2) drawn in black.

6 Conclusions

In this work we have discussed new approximate similarity relations for general
control Markov processes, and shown that they can be effectively employed for
abstraction-based verification and controller refinement. The new relations in
particular allow for a useful trade-off over deviations between probability distri-
butions on the states and distances between model outputs.

Alongside practical applications of the developed notions, current research
efforts focus on further generalisation of Theorem 3 to specific quantitative prop-
erties expressed via temporal logics. We are moreover interested in expanding
on the properties of the similarity relations.
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