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Abstract. We present an approach that simultaneously infers model6

parameters while statistically verifying properties of interest to chem-7

ical reaction networks, which we observe through data and model as8

parametrised continuous-time Markov Chains. The new approach si-9

multaneously integrates learning models from data, done by likelihood-10

free Bayesian inference, specifically Approximate Bayesian Computation,11

with formal verification over models, done by statistically model checking12

logical specifications expressed in CSL. The approach generates a prob-13

ability (or credibility calculation) on whether the underlying chemical14

reaction network satisfies the CSL property of interest.15

1 Introduction16

Contribution We introduce a framework that integrates Bayesian inference17

and formal verification that additionally employs supervised machine learning,18

which allows for the model-based probabilistic verification of data-generating19

stochastic biological systems. The methodology perform data-driven inference of20

accurate models, which can contribute to the verification of whether or not the21

underlying stochastic system satisfies a given formal property of interest. Verifi-22

cation entails the estimation of the probability that models of the system satisfy23

a formal specification. Our framework accommodates partially known systems24

that might only generate finite, noisy observations. These systems are captured25

by parametric models, with uncertain rates within a known stoichiometry.26

Related Work Bayesian inference techniques [10,11] have been applied exten-27

sively to biological systems [41,48]. Exact inference is in general difficult due to28

the intractability of the likelihood function, which has led to to likelihood-free29

methods such as Approximate Bayesian Computation (ABC) [43,47]. [21] com-30

putes the probability that an underlying stochastic system satisfies a given prop-31

erty using data produced by the system and leveraging system’s models. Along32

this line of work, the integration of verification of parameterised discrete-time33

Markov chains and Bayesian inference is considered in [37], with an extension34

to Markov decision processes in [38]. Both [37, 38] work with small finite-state35

models with fully observable traces, which allows the posterior probability distri-36

bution to be calculated analytically and parameters to be synthesised symboli-37

cally. On the contrary, here we work with partially observed data and stochastic38
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models with intractable likelihoods, and must rely on likelihood-free methods39

and statistical parameter synthesis procedures. Building on previous work [35],40

which allowed for the likelhood-free Bayesian Verification of systems, the follow-41

ing framework is applicable to a wider variety of stochastic models.42

Both probabilistic and statistical model checking have been applied to bio-43

logical models [30, 31, 50], with tools for parameter synthesis [12, 13]. Although44

the parameter synthesis approach in [12] rigorously calculates the satisfaction45

probability over the whole parameter space, this suffers from scalability issues. A46

Bayesian approach to statistical model checking is considered in [26] and partly47

inspires this work. Parametric verification has been considered from a statisti-48

cal approach underpinned by Gaussian Processes: smoothed Model checking [6]49

provides an estimate of the satisfaction probability with uncertainty estimates,50

and has been used for parameter estimation from Boolean observations [8] and51

for parameter synthesis [9]. [3] proposes a methodology that, given a reachabil-52

ity specification, computes a related probability distribution on the parameter53

space, and an automaton-based adaptation of the ABC method is introduced54

to estimate it. Using the ABC method for model selection has been researched55

extensively in [2, 46].56

Approach Our framework is as follows (Section 3). Given a property of interest,57

a class of parametrised models and data from the underlying system, we simul-58

taneously infer parameters and perform model-based statistical model checking.59

We then use a supervised machine learning method to determine regions of the60

parameter space that relates to models verifying the given property of interest.61

We integrate the generated posterior over these parameter synthesis regions,62

to quantify a probability (or credible calculation) on whether or not the sys-63

tem satisfies the given property. We apply this framework to Chemical Reaction64

Networks (CRNs) [22, 48] (Section 4), which can be modelled by parametrised65

continuous-time Markov Chains [27], which represent the data-generating biolog-66

ical system (CRN). We argue that the alternative use of CRN data for black-box67

statistical model checking would be infeasible.68

2 Background69

2.1 Parametric Continuous-Time Markov Chains70

Although our methodology can be applied to a number of stochastic models, in71

view of the applications of interest we work with discrete-state, continuous-time72

Markov chains [27].73

Definition 1 (Continuous-time Markov Chain). A continuous-time Markov74

chain (CTMC) M is a tuple (S,R,AP,L), where;75

– S is a finite, non-empty set of states,76

– s0 is the initial state of the CTMC,77

– R : S × S → R≥0 is the transition rate matrix, where R(s, s′) is the rate of78

transitioning from state s to state s′,79
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– L : S → 2AP is a labelling function mapping each state, s ∈ S, to the set80

L(s) ⊆ AP of atomic propositions AP , that hold true in s.81

For the models in this paper, we assume s0 is unique and deterministically given.82

The transition rate matrix R governs the dynamics of the overall model.83

Definition 2 (Path of a CTMC). Let M = (S,R,AP,L) be a CTMC.84

An infinite path of a CTMC M is a non-empty sequence s0t0s1t1 . . . where85

R(si, si+1) > 0 and ti ∈ R>0 for all i ≥ 0. A finite path is a sequence s0t0s1t1 . . .86

sk−1tk−1sk such that sk is absorbing. The value ti represents the amount of time87

spent in the state si before jumping to the next state in the chain, namely state88

si+1. We denote by ω(i) the ith state of path ω, namely si, and ω@(t) = si the89

state occupied at time t. We denote by PathM(s) the set of all (infinite or finite)90

paths of the CTMC M starting in state s. A trace of a CTMC is the mapping91

of a path through the labelling function L.92

Parametric CTMCs extend the notion of CTMCs by allowing transition rates93

to depend on a vector of model parameters, θ ∈ Rk. The domain of each param-94

eter θi is given by a closed bounded real interval describing the range of possible95

values, [θ⊥i , θ
>
i ]. The parameter space Θ is defined as the Cartesian product of96

the individual intervals, Θ =×i∈{1,...,k}[θ
⊥
i , θ

>
i ], so that Θ is a hyper-rectangle.97

Definition 3 (Parametric CTMC). Let Θ be a parameter space. A paramet-98

ric Continuous-time Markov Chain (pCTMC) over θ is a tuple (S,Rθ, AP, L):99

– S, s0, AP and L are as in Definition 1, and100

– θ = (θ1, . . . , θk) is the vector of parameters, taking values in a compact101

hyperrectangle Θ ⊂ Rk≥0,102

– Rθ : S×S → R[θ] is the parametric rate matrix, where R[θ] denotes a set of103

polynomials over R+ with variables θk, θ ∈ Θ.104

Given a pCTMC and a parameter space Θ, we denote with MΘ the set105

{Mθ, θ ∈ Θ} whereMθ = (S,Rθ, AP, L) is the instantiated CTMC obtained by106

replacing the parameters in R with their valuation in θ. So a standard CTMC107

is induced by selecting a specific parameter θ ∈ Θ: the sampled paths of an108

instantiated pCTMC Mθ are denoted by ωθ and are defined similarly to ω.109

In this paper we work with Chemical Reaction Networks (CRNs), which have110

dynamics that can be modelled by CTMCs.111

Definition 4 (Chemical Reaction Network). A Chemical Reaction Network112

(CRN) C is a tuple (M,X,W,R,υ), where113

– M = {m1, . . . ,mn} is the set of n species,114

– X = (X1, ..., Xn) is a vector where each Xi represents the number of molecules115

of each species i. X ∈W , with W ⊆ NN the state space,116

– R = {r1, . . . , rk} is the set of chemical reactions, each of the form rj =117

(vj , αj), with vj the stoichiometry vector of size n and αj = αj(X, υj) is the118

propensity or rate function,119
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– υ = (υ1, . . . , υk) is the vector of (kinetic) parameters, taking values in a120

compact hyperrectangle Υ ⊂ Rk.121

Each reaction j of the CRN is represented as rj :
∑n
i=1 uj,imi

αj−→
∑n
i=1 u

′
j,imi,122

where uj,i (u′j,i) is the amount of species mi consumed (produced) by reaction rj .123

CRNs are used to model many biological processes and at the cellular level, can124

be modelled by CTMCs if we consider each state of the pCTMC to be a unique125

combination of the number of molecules, taking some initial molecule count X0126

to be the initial state of the pCTMC, s0 = X0. Parametrising the reaction rates127

within a CRN results in a parametric CRN (pCRN), which can be modelled as128

a pCTMC. For the rest of this paper, with a slight abuse in notation, we will let129

Mθ be the pCTMC that represents a pCRN, where θ are the kinetic rates.130

2.2 Properties - Continuous Stochastic Logic131

We wish to verify properties over CRNs and their pCTMC models. We employ132

a time-bounded fragment of continuous stochastic logic (CSL) [1, 30].133

Definition 5. Let φ be a CSL formula interpreted over states s ∈ S of a
parametrised model Mθ, and ϕ be a formula over its paths. Its syntax is

φ := true | a | ¬φ | φ ∧ φ | φ ∨ φ | P∼ζ [ϕ]

ϕ := X [t,t′]φ | φ1U
[t,t′]φ2 ,

where a ∈ AP , ∼ ∈ {<,≤,≥, >}, ζ ∈ [0, 1], and t, t′ ∈ R≥0.134

P∼ζ [ϕ] holds if the probability of the path formula ϕ being satisfied from a given135

state meets ∼ ζ. Path formulas are defined by combining state formulas through136

temporal operators: XIφ is true if φ holds in the next state whenever the next137

state of the Markov chain is reached at time τ ∈ I = [t, t′], while φ1U
Iφ2 is true138

if φ2 is satisfied at some τ ∈ I and φ1 holds at all preceding time instants [30].139

We define a satisfaction function to capture how the satisfaction probability140

of a given property over a model paths relates to its parameters and initial state.141

Definition 6 (Satisfaction Function). Let φ be a CSL formula, Mθ be a142

parametrised model over a space Θ, s0 is the initial state, and PathMθ (s0) is143

the set of all paths generated byMθ with initial state s0. Denote by Λφ : θ → [0, 1]144

the satisfaction function such that145

Λφ(θ) = P
(
{ω ∈ PathMθ (s0) |= ϕ} |ω(0) = s0

)
, (1)

where a path ω |= ϕ if its associated trace satisfies the path formula ϕ corre-146

sponding to the CSL formula φ. That is, Λφ(θ) is the probability that the set147

of paths from a given pCMTC Mθ satisfies a property ϕ. If Λφ(θ) ∼ ζ, then we148

say that Mθ |= φ.149
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2.3 Bayesian Inference150

Given a set of observations or data, yobs, a parametrised stochastic or determin-151

istic model,Mθ, and prior information, the task of Bayesian inference is to learn152

the true parameter by means of its probability distribution. Prior beliefs about153

the model parameters, expressed through a probability distribution π(θ), are up-154

dated via yobs, where assumptions on the model are encoded into the likelihood155

function p(yobs|θ). Using Bayes’ theorem, the posterior distribution is obtained156

as π(θ|yobs) = p(yobs|θ)π(θ)/π(yobs). When likelihood functions are intractable157

one can resort to likelihood-free methods, such as Approximate Bayesian Com-158

putation (ABC) [43], to approximate this posterior as πABC(θ|yobs) ≈ π(θ|yobs).159

Approximate Bayesian Computation ABC methods [43] produce an ap-160

proximation to the posterior probability distribution when the likelihood p(y|θ)161

is intractable. The likelihood is approximated by matching simulated data y ∼162

p(y|θ) with the observed data yobs, according to some function of the distance163

‖y − yobs‖ or correspondingly over summary statistics of the simulated and ob-164

served data, namely ‖s− sobs‖.165

Ideally, the observations yobs are directly mapped to the variables of the166

model, which is endowed with sufficient statistics y. However, in many real world167

settings, model variables cannot be fully observed and outputs y are perturbed168

by noise due to measurement error. Since it is in general hard to identify a169

finite-dimensional set of sufficient statistics, it is common and computationally170

advantageous to use (insufficient) summary statistics s = S(y), where function171

S performs a simplification of the signals y (e.g., averaging, smoothing, or sam-172

pling), which ideally are so that π(θ|yobs) = π(θ|sobs) [39].173

The procedure generates samples θ∗ ∼ π(θ), each of which is handled as174

follows: generating simulated data y ∼ p(y|θ), the proposed sample θ∗ is accepted175

if ‖y − yobs‖ ≤ h for some h ≥ 0, h ∈ R+, and rejected if ‖y − yobs‖ > h. This176

procedure is equivalent to drawing a sample (θ, y) from the joint distribution177

πABC(θ, y|yobs) ∝ Kh(‖y − yobs‖)p(y|θ)π(θ), (2)

where Kh(u) is a standard smoothing kernel function [42], which depends on a178

predetermined distance h and on u = ‖y−yobs‖. A standard choice we use for the179

smoothing kernel function is the indicator function, where Kh(‖y − yobs‖) = 1180

if ‖y − yobs‖ ≤ h, and Kh(‖y − yobs‖) = 0 otherwise. Accordingly, the ABC181

approximation to the true posterior distribution is182

πABC(θ|yobs) =

∫
πABC(θ, y|yobs)dy. (3)

As h→ 0, the samples from the true posterior distribution are obtained [43]:

lim
h→0

πABC(θ|yobs) ∝
∫
δyobs(y)p(y|θ)π(θ)dy = p(yobs|θ)π(θ),
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where δyobs(y) is the Dirac delta measure, where δx(A) = 1 if x ∈ A and δx(A) =183

0 otherwise. In practice, it is highly unlikely that y ≈ yobs can be generated from184

p(y|θ), thus a non-trivial value scale parameter h is needed. Furthermore, the185

full datasets yobs and y are often replaced by summary statistics sobs and s,186

respectively, leading to sampling from the posterior distribution πABC(θ|sobs).187

The ABC approximation to π(θ|sobs) is given by188

πABC(θ|sobs) ∝
∫
Kh(‖s− sobs‖)p(y|θ)π(θ)dy, (4)

where, by slight abuse of notation, Kh(‖s− sobs‖) is defined as above.189

Approximate Bayesian Computation - Sequential Monte Carlo The190

major issue with standard ABC is that if the prior π(θ) differs from the poste-191

rior distribution, p(θ|yobs), then the acceptance rates, namely the rates at which192

sampled parameters are accepted, will be low, thus resulting in more proposed193

parameters and associated simulations, which leads to an increase in computa-194

tional burden. Approximate Bayesian Computation - Sequential Monte Carlo195

(ABCSMC) [46] techniques are developed to mitigate this issue. ABCSMC al-196

gorithms [45, 46] (cf. Appendix A) are designed to overcome this burden by197

constructing a sequence of slowly-changing intermediate distributions, fm(θ),198

m = 0, . . . ,M , where f0(θ) = π(θ) is the initial sampling distribution and199

fM (θ) = f(θ) is the target distribution of interest, namely the approximated200

posterior, πABC(θ|sobs). A population of particles or samples from generation201

m, θ
(i)
m , where i = 1, . . . , N is the number of particles, are propagated between202

these distributions sequentially, so that these intermediary distributions act as203

an importance sampling scheme [43], which is a technique used to sample from204

a distribution that over-weights specific regions of interest. This technique at-205

tempts to bridge the gap between the prior π(θ) and the (unknown) posterior206

π(θ|sobs). In the ABCSMC framework, a natural choice for the sequence of in-207

termediary distributions is208

fm(θ) = πhmABC(θ, s|sobs) ∝ Khm(‖s− sobs‖)p(y|θ)π(θ), (5)

where m = 0, . . . ,M and hm is a monotonically decreasing sequence, namely209

such that hm > hm+1 ≥ 0. As above, Khm is the standard smoothing kernel,210

which now depends on the distance hm. We expect that limhm→0 π
hm
ABC(θ|sobs) =211

π(θ|sobs) [43], and that, the more samples N are generated, the more accurate212

the approximated quantity will become.213

A key part of the ABCSMC scheme is the generation of samples θ∗ and214

the setting of weights (which is typical for other importance sampling schemes).215

Sample θ∗ is initially (m = 0) taken from the prior and subsequently (m > 0)216

sampled from the intermediary distributions fm−1(θ) through its corresponding217

weights (see below), as parameter θ
(j)
m−1. Afterwards, θ∗ is perturbed into θ∗∗ by a218

kernel, Fm(θ∗∗|θ∗). For the perturbed parameter, θ∗∗, a number of Bt simulations219

yb, and in turn sb, are generated from p(y|θ∗∗), and the quantity bt(θ
∗∗) =220
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b=1Khm(‖sb−sobs‖) is calculated. If bt(θ

∗∗) = 0, then θ∗∗ is discarded and we221

resample θ∗ again. Otherwise, the accepted θ∗∗ results in the pair {θ(i)
m , w

(i)
m },222

where the corresponding weights w
(i)
m are set to223

w(i)
m =


bt

(
θ(i)
m

)
, if m = 0

π
(
θ

(i)
m

)
bt

(
θ

(i)
m

)
∑N
j=1 w

(j)
m−1Fm

(
θ

(i)
m |θ(j)

m−1

) , if m > 0
(6)

and later normalised after calculating for each ith particle, i = 1, . . . , N . If Bt224

is large, the estimate of πABC(θ|sobs) is accurate, which implies the acceptance225

probability is accurate but at the cost of many Monte Carlo draws. However, if Bt226

is small, the acceptance probability is highly variable but cheaper to evaluate [5].227

The algorithm controls the transitioning between the intermediary distribu-
tions fm−1(θ) and fm(θ), by setting a user-inputted rate υ, at which the thresh-
olds hm reduce until the algorithm stops. Stopping rules for ABCSMC schemes
vary: here, we have opted for terminating the algorithm after a predetermined
number M of steps. The algorithm returns weighted samples,{

θ
(i)
M , w

(i)
M

}
∼ πhMABC(θ|sobs) ∝

∫
KhM (‖s− sobs‖)p(y|θ)π(θ)dy

2.4 Statistical Model Checking with the Massart Algorithm228

Statistical model checking (SMC) techniques are used to estimate the validity of229

quantitative properties of probabilistic systems by simulating traces from an ex-230

ecutable model of the system [32]. Unlike precise (up to numerics) probabilisitic231

model checking, SMC results are typically attained with statistical precision and232

can come, in particular, with confidence bounds (denoted below by δ) [14, 34].233

In this work, we require Monte Carlo simulations to estimate the probability of234

properties of interest with a user-defined degree of accuracy (below ε). This can235

be obtained via standard concentration inequalities, such as the Chernoff [14]236

or the Okamoto [36] bounds. We wish to estimate a probability Λ̂φ(θ) that ap-237

proximates the unknown Λφ(θ) within an absolute error ε and with a (1 − δ)238

confidence lower bound, namely239

P (|Λ̂φ(θ)− Λφ(θ)| > ε) ≤ δ. (7)

For instance, the Okamoto bound ensures that drawing n ≥ nO = d 1
2ε2 log 2

δ e240

simulations, results in an estimate Λ̂φ(θ) with a statistical guarantee as in (7),241

where δ = 2 exp
(
−2nε2

)
.242

In this work, we leverage the sharper Massart bounds [33]: we use the Se-243

quential Massart algorithm [24,25] (described below), which progressively defines244

confidence intervals of the estimated probability and then applies the Massart245

bounds [33]. Massart bounds depend on the unknown probability Λφ(θ) that246

we are estimating, which forces one to numerically evaluate with certainty an247
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interval in which Λφ(θ) evolves. Let us denote by C(Λφ(θ), I) the coverage of248

Λφ(θ) by a confidence interval I, i.e., the probability that Λφ(θ) ∈ I.249

Theorem 1 (Absolute-Error Massart Bound with Coverage [25]). Let250

Λ̂φ(θ) be the probability estimated from n Monte Carlo simulations, ε be a given251

error, Λ̂Lφ (θ) and Λ̂Uφ (θ) be the lower and upper bounds of a confidence interval252

I = [Λ̂Lφ (θ), Λ̂Uφ (θ)] and Ic be its complement within [0, 1]. The Massart bound is253

defined as254

P (|Λ̂φ(θ)− Λφ(θ)| > ε) ≤ 2 exp
(
−nε2ha(Λφ(θ), ε)

)
+ C(Λφ(θ), Ic), (8)

where ha(Λφ(θ), ε) =

{
9
2

1
(3Λφ(θ)+ε)(3(1−Λφ(θ))−ε) , if 0 < Λφ(θ) < 1/2

9
2

1
(3(1−Λφ(θ))+ε)(3Λφ(θ)+ε) , if 1/2 ≤ Λφ(θ) < 1.

Notice that the above theorem requires the true satisfaction probability Λφ(θ),255

which is not known. We can replace it with its estimate Λ̂φ(θ), which can be256

conservatively set to Λ̂φ(θ) = Λ̂Uφ (θ) if Λ̂Uφ (θ) < 1/2, Λ̂φ(θ) = Λ̂Lφ (θ) if Λ̂Lφ (θ) >257

1/2, and Λ̂φ(θ) = 1/2 if 1/2 ∈ I. The following sample-size result follows:258

Theorem 2 ( [25]). Let α be a coverage parameter chosen such that α < δ259

and C(Λφ(θ), Ic) < α. Under the conditions of Theorem 1, a Monte Carlo al-260

gorithm A that outputs an estimate Λ̂φ(θ) fulfils the condition in (7) if n >261

d 1
ha(Λφ(θ),ε)ε2 log 2

δ−αe.262

The Sequential Massart Algorithm requires three inputs: an error parameter263

ε and two confidence parameter δ and α. Initially, Λ̂Lφ (θ) = 0, Λ̂Uφ (θ) = 1,264

C(Λφ(θ), [0, 1]c) = 0, and Λ̂φ(θ) = 1/2, which results in the Okamoto-like bound265

with ha(1/2, ε) ≈ 2 when ε→ 0: the quantity nO = d 1
2ε2 log 2

δ e thus represents an266

upper-bound on the number of simulations required for the statistical guarantees.267

After each sampled trace, we update both a Monte Carlo estimator and a (1−α)-268

confidence interval for Λφ(θ). The updated confidence interval is then used in269

the Massart function to compute an updated required sample size n satisfying270

Theorem 2. This process is repeated until the calculated sample size is lower271

than or equal to the current number of simulated traces.272

2.5 Bayesian Verification273

In this work we extend the Bayesian Verification framework (cf. Fig. 1) intro-274

duced in [35], which addresses the following problem. Consider a data generating275

stochastic system S, namely a CRN, where we denote the generated data as yobs.276

We are interested in verifying a CSL property of interest φ over system S us-277

ing sampled observations of the underlying system, yobs, or a summary statistics278

sobs = S(yobs) thereof. We assume this goal cannot be reliably attained by means279

of statistical techniques directly applied on data yobs. We thus plan to integrate280

model-based techniques (formal verification) with the use of data (Bayesian in-281

ference).282
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CSL Property φ
Model Class

(pCTMC) Mθ

Data yobs from
System S

Sample Parameter
θ∗

Estimate Satisfaction Probability
Λ̂φ(θ∗) = P (Mθ∗ |= ϕ)

Bayesian Inference
πhMABC(θ∗|S(yobs))

Parameter Synthesis/Classification
Θφ = {θ ∈ Θ :Mθ |= φ}

= {θ ∈ Θ : Λ̂φ(θ) ∼ ζ} ⊆ Θ

Credibility Calculation
P (S |= φ|S(yobs)) =

∫
Θφ

πhMABC(θ|S(yobs))dθ

ABC(SMC)2 Algorithm

Fig. 1. Bayesian Verification via ABC(SMC)2.

Assume we have sufficient knowledge to propose a parametric model that283

adequately describes the underlying system,Mθ. We employ Bayesian inference284

to learn the posterior probability distribution of the model, namely π(θ|sobs)285

from (possibly scarce) data sobs. We also use this parametric model to formally286

verify the property of interest φ, as follows. We synthesise two complementary287

parameter regions, Θφ = {θ ∈ Θ :Mθ |= φ} and Θ¬φ = {θ ∈ Θ :Mθ 6|= φ}. We288

then integrate the inferred posterior probability distribution over Θφ to obtain289

the credibility calculation, which represents the probability that the underlying290

system S satisfies the property:291

C = P (S |= φ|sobs) =

∫
Θφ

π(θ|sobs)dθ, (9)

which, if needed, can be estimated as needed via Monte Carlo methods. A com-292

plementary result can be drawn over Θ¬φ. The full procedure and further details293

are presented in [35] and summarised in Appendix B.294

The limitations of the Bayesian Verification framework of [35] lie in the pa-295

rameter synthesis part. Parameter synthesis of pCTMCs is considered in the296

work of [12], and accelerated by means of GPU processing in [13]. This and re-297

lated probabilistic approaches to parameter synthesis are limited to finite-state298

systems that can be easily uniformised. In many practical applications they do299

not scale to realistic models. To address this limitation, we resort to statistical300

approaches (via SMC) for the parameter synthesis, similar to [9]. We formally301

integrate SMC techniques into the algorithm that perform Bayesian inference.302



10 Molyneux and Abate

More precisely, we utilise the simulations needed in the ABCSMC algorithm303

to perform SMC, which yields the estimation of the probability of satisfying the304

property of interest, Λ̂φ(θ). Whilst the ABCSMC algorithm rejects parts of the305

sampled parameters, we propose to retain these samples, and their correspond-306

ing simulations, to provide a classification of the parameter space. This is done307

by means of support vector machines. With these statistically-estimated param-308

eter regions, we complete the Bayesian Verification framework, as per (9). The309

new framework (detailed in the next section), which employs models to extract310

information from the observation data sobs, is now entirely based on simulations,311

which makes it usable with models of different size and structure.312

3 ABC(SMC)2: Approximate Bayesian Computation -313

Sequential Monte Carlo with Statistical Model Checking314

We address the scalability limitations of our previous work [35], and specifically315

the parameter synthesis part: in [35] the synthesis was calculated symbolically,316

which practically limited the applicability to CTMCs with small state spaces and317

a few parameters. We incorporate statistical model checking within the Bayesian318

inference framework and estimate parameter regions. We name the modified319

algorithm Approximate Bayesian Computation - Sequential Monte Carlo with320

Statistical Model Checking: ABC(SMC)2.321

In the ABCSMC scheme (Algorithm 2 in Appendix A), a total of Bt sim-322

ulations are performed for each sampled parameter θ∗∗, whether the sample is323

retained or not towards the approximate posterior πhMABC(θ|sobs): this leads to324

a considerable amount of wasted computational effort. We propose instead to325

statistically model check (SMC) each of the sampled parametrised models by326

means of the generated simulations, whilst parameter inference on the model is327

run (ABCSMC); we shall use the outcome of this algorithm for our Bayesian328

Verification framework, by classifying the parameter synthesis regions using sta-329

tistical approaches.330

At any of the M iterations, for each sampled point, θ∗∗ ∈ Θ, we estimate the331

probability, Λ̂φ(θ∗∗) ≈ Λφ(θ∗∗), with statistical guarantees, that an instantiated332

model Mθ∗∗ satisfies a given property of interest φ, namely P (Mθ∗∗ |= ϕ) =333

Λ̂φ(θ∗∗). We then proceed with the ABCSMC algorithm as normal, calculating334

whether the sampled parameter θ∗ contributes to the approximate posterior.335

In addition to producing samples {θ(i)
hM
, w

(i)
hM
}, which allows one to construct an336

approximation to the posterior distribution πhMABC(θ|sobs), the algorithm outputs337 {
θ∗∗, Λ̂φ (θ∗∗) , Λ̂Lφ (θ∗∗) , Λ̂Uφ (θ∗∗)

}
for all the sampled parameters θ∗∗ (whether338

accepted or not). These values are later used to train an SVM classifier to gen-339

erate the parameter synthesis regions. We shall then integrate the approximate340

posterior over the parameter synthesis regions, to obtain a credibility calculation.341
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3.1 ABC(SMC)2342

Recall that the output of the ABCSMC algorithm is a set of samples θ
(i)
M with343

their corresponding weights w
(i)
M , which satisfy the following:344

{θ(i)
M , w

(i)
M } ∼ π

hM
ABC(θ|sobs) ∝

∫
KhM (‖s− sobs‖) p(y|θ)π(θ)dy, (10)

where i = 1, . . . , N is the number of particles used to approximate the pos-345

terior. For each parameter θ∗∗, simulation data is generated from the model346

yb ∼ p(y|θ∗∗) to calculate sb = S(yb), for a total of Bt times. In ABCSMC, if347

the sample is rejected, all the information gathered from simulation is simply348

discarded, which is a waste of performed calculations.349

Instead, we propose using the corresponding simulations yb ∼ p(y|θ∗∗) to cal-350

culate sb and estimate Λφ(θ∗∗) ≈ Λ̂φ(θ∗∗). We utilise the sequential Massart algo-351

rithm [25] presented in the previous section for this SMC procedure. We replace352

the number of simulations for each sampled parameter, Bt, with the calculated353

minimum number of samples estimated in the sequential Massart algorithm [25],354

Bt = n ≤ nO, to calculate an estimated probability Λ̂φ(θ∗∗) with accuracy and355

confidence. We sample θ∗∗ a total of R times, whether or not these samples are356

accepted as samples from the posterior at any generation m. For these sampled357

parameters, θ(r), r = 1, . . . , R, we estimate the corresponding probabilities corre-358

sponding mean estimated probabilities Λ̂φ
(
θ(r)
)

and (1−δ) uncertainty bounds:359 {
θ(r), Λ̂φ

(
θ(r)
)
, Λ̂Lφ

(
θ(r)
)
, Λ̂Uφ

(
θ(r)
)}

, where r = 1, . . . , R. Here R depends on360

the acceptance rate of the sampled parameters θ(r), where R ≥ N×M , where N361

is the number of particles to sample and M is the total number of generations of362

the ABCSMC scheme. From this new algorithm, we obtain a set of weighted pa-363

rameter vectors from the final generation M , {θ(i)
M , w

(i)
M } ∼ π

hM
ABC(θ|sobs), where364

i = 1, . . . , N as well as R sampled parameters and their corresponding estimated365

probabilities
{
θ(r), Λ̂φ

(
θ(r)
)
, Λ̂Lφ

(
θ(r)
)
, Λ̂Uφ

(
θ(r)
)}R

r=1
.366

We present the ABC(SMC)2 scheme in Algorithm 1, with the MASSART367

function corresponding to the Absolute-Error Massart Algorithm presented in368

Appendix C. The ABC(SMC)2 algorithm takes as inputs a property of interest,369

φ, a prior probability distribution π(θ) an absolute-error tolerance ε as well as370

a coverage parameter α and confidence value δ. The output of the algorithm371

is a set of weighted parameter vectors
{
θ

(i)
M , w

(i)
M

}
∼ πhMABC(θ|sobs) and a set372

of parameter vectors with corresponding estimated probability of satisfying a373

property of interest,
{
θ(r), Λ̂φ(θ)(r), Λ̂Lφ (θ)(r), Λ̂Uφ (θ)(r)

}
, which will be utilised374

for approximate parameter synthesis, as is discussed in the next section.375

3.2 Approximate Parameter Synthesis via Statistical MC376

The aim of parameter synthesis is to partition the parameter space Θ accord-377

ing to the satisfaction of the CSL property φ. Unlike the PMC-based synthesis378

in [35] (recalled in Sec. 2.5), we utilise a statistical approach to classify the379
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Algorithm 1 ABC(SMC)2

Input:

– CSL specification φ
– Prior distribution π(θ) and data generating function p(y|θ)
– A kernel function Kh(u) and scale parameter h > 0 where u = ‖y − yobs‖
– N > 0, number of particles used to estimate posterior distributions
– Sequence of perturbation kernels Fm(θ|θ∗), m = 1, . . . ,M
– A quantile υ ∈ [0, 1] to control the rate of decrease of thresholds hm
– Summary statistic function s = S(y)
– Parameters for statistical MC: absolute-error value ε, confidence δ, coverage α

Output:

– Set of weighted parameter vectors
{
θ
(i)
M , w

(i)
M

}N
i=1

drawn from πABC(θ|sobs) ∝
∫
KhM (‖s −

sobs‖)p(s|θ)π(θ)ds

– Set of parameters with corresponding estimated mean, Λ̂φ

(
θ(r)

)
and (1−δ) confidence interval[

Λ̂Lφ

(
θ(r)

)
, Λ̂Uφ

(
θ(r)

)]
of estimated probability to satisfy φ, P

(
M

θ(r)
|= ϕ

)
= Λ̂φ

(
θ(r)

)
:{

θ(r), Λ̂φ

(
θ(r)

)
, Λ̂Lφ

(
θ(r)

)
, Λ̂Uφ

(
θ(r)

)}
1: Set r = 0
2: for m = 0, . . . ,M : do
3: for i = 0, . . . , N : do
4: if m = 0 then
5: Sample θ∗∗ ∼ π(θ)
6: else
7: Sample θ∗ from the previous population {θ(i)m−1} with weights {w(i)

m−1} and perturb the

particle to obtain θ∗∗ ∼ Fm(θ|θ∗)
8: end if.
9: if π(θ∗∗) = 0 then
10: goto line 3
11: end if

12: Calculate
({
Λ̂φ (θ∗∗) , [Λ̂Lφ (θ∗∗) , Λ̂Uφ (θ∗∗)

}
, Bt,

∑Bt
b=1Khm (‖sb − sobs‖), d̄

)
from the

modified Massart Algorithm: MASSART (ε, δ, α, hm, θ
∗∗, sobs)

13: Calculate bt(θ
∗∗) = 1

Bt

∑Bt
b=1Khm (‖sb − sobs‖)

14: Set
(
θ(r), Λ̂φ

(
θ(r)

)
, Λ̂Lφ

(
θ(r)

)
, Λ̂Uφ

(
θ(r)

))
=
(
θ∗∗, Λ̂φ(θ∗∗), Λ̂Lφ (θ∗∗), Λ̂Uφ (θ∗∗)

)
15: r ← r + 1
16: if bt(θ

∗∗) = 0 then
17: goto line 3
18: end if
19: Set θ(i)m = θ∗∗, d̄(i)m = d̄ = 1

Bt

∑Bt
b=1‖s

b − sobs‖ and calculate

20:

w
(i)
m =


bt
(
θ
(i)
m

)
, if m = 0

π
(
θ(i)m

)
bt
(
θ(i)m

)
∑N
j=1 w

(j)
m−1Fm

(
θ
(i)
m |θ(j)m−1

) , if m > 0

21: end for

22: Normalise weights: w(i)
m ← w(i)

m /
(∑N

i=1 w
(i)
m

)
23: Set hm+1 = (υ/N)

∑N
i=1 d̄

(i)
m

24: end for

25: return
{(
θ
(i)
M , w

(i)
M

)}N
i=1

,
{
θ(r), Λ̂φ

(
θ(r)

)
, Λ̂Lφ

(
θ(r)

)
, Λ̂Uφ

(
θ(r)

)}R
r=1
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parameter space, akin to [9]. So instead of employing the true satisfaction prob-380

ability Λφ(θ) ∼ ζ to determine Θφ (and its complement), we use Λ̂φ(θ(r)), a381

statistical approximation computed at each sampled parameter point θ(r). Evi-382

dently, recalling the confidence parameter δ, we should compute Λ̂φ(θ(r)) ∼ ζ±ε383

(where the sign ± depends on the direction of the inequality ∼).384

In practice we use the estimated lower Λ̂Lφ (θ(r)) and upper bounds Λ̂Uφ (θ(r)),385

such that Λφ(θ(r)) ∈
[
Λ̂Lφ (θ(r)), Λ̂Uφ (θ(r))

]
, to partition the parameter space as:386

– Θφ = {θ ∈ Θ : Λ̂Lφ (θ) > ζ}387

– Θ¬φ = {θ ∈ Θ : Λ̂Uφ (θ) < ζ}388

– ΘU = Θ\(Θφ ∪Θ¬φ)389

Notice that these formulas are a function of θ ∈ Θ. Since in the ABC(SMC)2 pro-390

cedure we generate a finite number of parameter samples θ(r), which are biased391

towards the sought posterior distribution, there might be areas of the parameter392

space Θ that are insufficiently covered. We thus resort to supervised learning393

techniques to globally classify parameter synthesis regions. We utilise support394

vector machines (SVMs) [15,44] as a supervised learning classification technique.395

We train the SVM classifier on the data produced from the ABC(SMC)2 algo-396

rithm, {θ(r), Λ̂φ(θ(r)), Λ̂Lφ (θ(r)), Λ̂Uφ (θ(r))} where r = 1, . . . , R . The SVM which397

is trained on this data then provides a non-linear classifying function, ξφ(θ),398

where ξφ(θ) = 1 if θ ∈ Θφ,−1 if θ ∈ Θ¬φ, and 0 if θ ∈ ΘU .399

4 Experiments400

Experimental Setup All experiments have been run on an Intel(R) Xeon(R)401

CPU E5-1660 v3 @ 3.00GHz, 16 cores with 16GB memory. ABC(SMC)2 is coded402

in C++, while Python is used for the SVM classifier. Parameter synthesis is done403

via GPU-accelerated PRISM [13] and is shown in Figure 5a.404

SIR System and Parameterised Model Towards an accessible explanation
of the ABC(SMC)2 algorithm, we consider the stochastic SIR epidemic model
[28], which has the same structure (stoichiometry over species counts) as CRNs
[13]. The model describes the dynamics of three epidemic types, a susceptible
group (S), an infected group (I), and a recovered group of individuals (R) - here
we let S, I and R evolve via the rules

S + I
ki−→ I + I, I

kr−→ R.

This is governed by the rate parameters θ = (ki, kr), and each state of the405

pCTMC describes the combination of the number of each type (S, I,R) (this406

equates to molecule/species counts in CRNs). The initial state of the pCTMC407

is s0 = (S0, I0, R0) = (95, 5, 0). We wish to verify the following property, φ =408

P>0.1((I > 0)U [100,150](I = 0)), i.e. whether, with a probability greater than 0.1,409

the infection dies out within a time interval between t = 100 and t = 150410

seconds. We confine our parameters to the set Θ = [k⊥i , k
>
i ] × [k⊥r , k

>
r ] =411

[5×10−5, 0.003]× [0.005, 0.2]. We generate observation data from the SIR model412
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(a) θφ samples. (b) θ¬φ samples. (c) θU samples.

(d) θφ posterior. (e) θ¬φ posterior. (f) θU posterior.

Fig. 2. Bayesian Verification results from ABC(SMC)2 for Case θφ (2a and
2d), Case θ¬φ(2b and 2e), and Case θU (2c and 2f). Sampled points

θ with estimated probabilities Λ̂φ(θ) (2a, 2b and 2c). Inferred pos-

terior πhMABC(θ|S(yobs)) and parameter regions (2d, 2e and 2f).

with three different parameter choices, corresponding to the CTMCsMθφ ,Mθ¬φ413

andMθU , where θφ = (0.002, 0.075), θ¬φ = (0.001, 0.15) and θU = (0.002, 0.125).414

From Figure 5a, we see that θφ ∈ Θφ, θ¬φ ∈ Θ¬φ, and finally θU is near the415

borderline. These models will correspond to three “true” underlying stochastic416

systems S, with associated observation data. For each instance, we work with417

observed data yobs that is sampled at a finite number of time steps. The ob-418

served data consists of only 5 simulated traces, observed at 10 time points. The419

summary statistics S(yobs) = sobs is the average of the 5 traces. It is worth em-420

phasising that with so few observation traces, black-box SMC (directly based on421

observation traces, not on model-generated simulations) would be hopeless.422

Application of ABC(SMC)2 Algorithm Our algorithm outputs samples

from the approximated posterior and their corresponding weights,
{
θ

(i)
M , w

(i)
M

}
∼

πhMABC(θ|sobs) where i = 1, . . . , N . By the strong law of large numbers, letting

θ̄M =
∑N
i=1 θ

(i)
M w

(i)
M , P

(
limN→∞

∑N
i=1 w

(i)
M θ

(i)
M − E[θ̄M ] = 0

)
= 1. Thus we as-

sume that the approximated posterior can be modelled by a multivariate Normal
distribution, πhMABC(θ|sobs) ≈ N (θ̄M , ΣM ), where the mean is given by θ̄M and
the elements of the empirical covariance matrix are defined as

ΣMjk =
1

1−
∑N
i=1(w

(i)
M )2

N∑
i=1

w
(i)
M

(
θ

(i)
M − θ̄M

)
j

(
θ

(i)
M − θ̄M

)
k
.
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We choose the number of samples to be N = 500; the number of sequential423

steps to be M = 20; the kernel function Kh(u) to be a simple indicator function,424

i.e. Kh(u) = 1 if u < h, Kh(u) = 0 otherwise; the rate at which the thresholds hm425

decrease to be υ = 0.5; and the summary statistic s = S(y) is chosen to be the426

sample mean of the simulations and of the observations. The perturbation kernel427

Fm(θ∗∗|θ∗) is chosen to be a multivariate Normal distribution, so that θ∗∗ ∼428

N (θ∗, 2Σm−1), where the covariance is twice the second moment computed over429

the accepted weights and particles at step m− 1, namely
{
θ

(i)
m−1, w

(i)
m−1

}
, where430

i = 1, . . . , N . For further details on alternative choices for threshold sequences,431

summary statistics and perturbation kernels, see [4,16,17,40,43]. We choose π(θ)432

to be a uniform prior over Θ.433

For the SMC component of the algorithm, we select the parameters (ε, δ, α) =434

(0.01, 0.05, 0.001), which results in a maximum number of necessary simulations435

that equals Bt ≤ nO = d 1
2ε2 log 2

δ e = 18445. A comparison of the parameter436

synthesis technique via PRISM or via SMC and SVM can be seen in Appendix437

D. At the conclusion of the ABC(SMC)2 algorithm, we train the classifier over438

half of the sampled parameters (denoted by θ(r), whether eventually accepted439

or rejected), and with the corresponding estimated probabilities and test it on440

the other half, which results in the SVM classifier accuracy in Table 1.441

Outcomes of ABC(SMC)2 Algorithm For the three case studies, the in-442

ferred mean θ̄M , covariance ΣM , total number of sampled parameters (θ(r),443

r = 1, . . . , R) and resulting credibility calculation are given in Table 1, with cor-444

responding runtimes in Table 3. Figures 2d, 2e and 2f plot the inferred posterior,445

showing the mean (denoted by ×) and 2 standard deviations from the mean (cor-446

responding ellipse around the mean), as well as the true parameter value (4).447

In Case θφ, we can assert , with a parameter synthesis based off a confidence of448

(1−δ) = 0.95 and absolute-error ε = 0.01, that the underlying stochastic system449

S does indeed satisfy the property of interest, as the credibility calculation gives450

P (S |= φ|S(yobs)) = 1. Case θ¬φ has a low probability of satisfying the property451

of interest (P (S |= φ|S(yobs)) = 0.0054), whereas for Case θU the inferred mean452

converges to the true mean that we would expect the estimated probability of453

satisfying the property to converge to, which is 0.5.454

Table 3, and Figure 3 suggest that simulation times are largely dependent on455

the estimated probabilities, Λ̂φ(θ): the closer the estimated probabilities are to456

0.5, the larger the number of simulations required, see Table 2. To improve the457

runtime of Case θU , we would need to reduce variance and improve the accuracy458

of the inferred parameters, for instance by increasing the number of observed459

data points yobs or with an alternative choice of either the summary statistics460

chosen or of the perturbation kernels [17].461

5 Future work462

We plan to leverage ongoing research on approximation techniques to speed463

up simulations for CRNs [7, 19, 22, 47], as our framework is reliant on simulta-464

neously learning and formally verifying by simulating models of interest. The465
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CRN simulations [49], ABCSMC [23] and the SMC [25] algorithm and thus, the466

ABC(SMC)2 scheme, can easily be parallelised. We plan to apply the framework467

to different model classes, such as stochastic differential equations [18, 20] and468

incorporating the Bayesian model selection problem [29,46].469

Table 1. Inferred posterior and Bayesian Verification Results.470

Sampled SVM Credibility
Case θ̄M ΣM Pars. θ∗∗ Accuracy Calculation

θφ

[
0.00215
0.07050

] [
1.46 · 10−8 4.24 · 10−7

4.24 · 10−7 1.97 · 10−5

]
10952 99.6% 1

θ¬φ

[
0.00072
0.14519

] [
2.47 · 10−8 3.41 · 10−6

3.41 · 10−6 9.22 · 10−4

]
10069 99.8% 0.0054

θU

[
0.00193
0.11337

] [
8.89 · 10−8 5.86 · 10−6

5.86 · 10−6 4.21 · 10−4

]
10807 98.7% 0.6784

471

Case Λ̂φ(θ) Total simulations

θφ 0.47254 18445

θ¬φ 0.00408719 2202

θU 0.100433 14775

Fig. 3 & Table 2. True parameter values with corresponding estimated
probabilities using SMC (15000 uniform samples), and
number of SMC simulations used in ABC(SMC)2 .

Table 3. Runtimes for algorithms.472

Times [seconds]
Case ABC(SMC)2 SVM Optimisation SVM Classification

θφ 64790 168 3.98
θ¬φ 8014 82 4.25
θU 35833 2166 5.12

473
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A Approximate Bayesian Computation - Sequential607

Monte Carlo (ABCSMC) Algorithm608

Algorithm 2 ABCSMC
Input:

– Prior π(θ) and data-generating likelihood function p(yobs|θ)
– A kernel function Kh(u) and scale parameter h > 0 where u = ‖y − yobs‖
– N > 0, number of particles used to estimate posterior distributions
– Sequence of perturbation kernels Fm(θ|θ∗), m = 1, . . . ,M
– A quantile υ ∈ [0, 1] to control the rate of decrease of hm
– Summary statistic function s = S(y)
– Bt > 0, number of simulations per sampled particle. For stochastic systems Bt > 1

Output:

– Set of weighted parameter vectors
{
θ
(i)
M , w

(i)
M

}N
i=1

drawn from πABC(θ|sobs) ∝
∫
KhM (‖s −

sobs‖)p(y|θ)π(θ)ds

1: for m = 0, . . . ,M : do
2: for i = 0, . . . , N : do
3: if m = 0 then
4: Generate θ∗∗ ∼ π(θ)
5: else
6: Generate θ∗ from the previous population {θ(i)m−1} with weights {w(i)

m−1} and perturb

the particle to obtain θ∗∗ ∼ Fm(θ|θ∗)
7: end if
8: if π(θ∗∗) = 0 then
9: goto line 3
10: end if
11: for b = 1, . . . , Bt : do
12: Generate yb ∼ p(y|θ∗∗)
13: Calculate sb = S(yb)
14: end for
15: Calculate bt(θ

∗∗) =
∑Bt
b=1Khm (‖sb − sobs‖)

16: if bt(θ
∗∗) = 0 then

17: goto line 3
18: end if
19: Set θ(i)m = θ∗∗, d̄(i)m = 1

Bt

∑Bt
b=1‖s

b − sobs‖ and calculate

20:

w
(i)
m =


bt
(
θ
(i)
m

)
, if t = 0

π
(
θ(i)m

)
bt
(
θ(i)m

)
∑N
j=1 w

(j)
m−1Fm

(
θ
(i)
m |θ(j)m−1

) , if t > 0

21: end for

22: Normalise weights: w(i)
m ← w(i)

m /
(∑N

i=1 w
(i)
m

)
23: Set hm+1 = (υ/N)

∑N
i=1 d̄

(i)
m

24: end for

25: return
{(
θ
(i)
M , w

(i)
M

)}N
i=1

609

610

B Bayesian Verification Framework611

There are 3 aspects to the Bayesian Verification framework. The Bayesian infer-612

ence, parameter synthesis and probability or credibility calculation. The infer-613
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CSL Property, φ
Model Class

(pCTMC) Mθ

Data, yobs from
System, S

Parameter Synthesis
Θφ = {θ ∈ Θ :Mθ |= φ} ⊆ Θ

Bayesian Inference,
πhMABC(θ|S(yobs))

Credibility Calculation
C = P (S |= φ|S(yobs)) =

∫
Θφ

πhMABC(θ|S(yobs))dθ

Fig. 4. Bayesian Verification Framework of [35].

ence technique we use has been covered in the main text and here we focus on614

the parameter synthesis and the probability calculation.615

B.1 Credibility Calculation616

In the final phase of the approach, a probability estimate is computed corre-617

sponding to the satisfaction of a CSL specification formula φ by a system of618

interest such that S |= φ, which we denote as the credibility. To calculate the619

credibility that the system satisfies the specified property, we integrate the pos-620

terior distribution π(θ|yobs) over the feasible set of parameters Θφ:621

Definition 7. Given a CSL specification φ and observed data yobs and sobs =622

S(yobs) from the system S, the probability that S |= φ is given by623

C = P (S |= φ|sobs) =

∫
Θφ

π(θ|sobs)dθ, (11)

where Θφ denotes the feasible set of parameters.624

C Absolute-Error Massart Algorithm625

Here we present the slightly modified Sequential Massart Algorithm with Abso-626

lute Error. The outputs of Algorithm 3 are Λ̂φ(θ), the total number of simulation627

undertaken Bt, the sum of the kernel smoothing functions
∑Bt
b=1Khm(‖sb−sobs‖)628

and the mean summary statistic produced from n simulations, d̄. The algorithm629

is slightly modified to consider the distance function that is crucial for the ABC-630

SMC aspect of the algorithm.631

D Parameter Synthesis: A Motivating Comparison632

The PRISM-based parameter synthesis technique dissects the parameter space633

into 14413 grid regions (cf. Figure 5b), which results in calculating the satisfac-634

tion probability at 57652 points.635
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Algorithm 3 Modified Absolute-Error Sequential Massart Algorithm
Input:

– Absolute-error value ε, a confidence parameter δ and coverage parameter α.
– Current distance threshold hm.
– Sampled parameter θ∗∗.
– True data sobs
– CSL specification φ

Output:

– Estimated probability Λ̂φ(θ∗∗) with corresponding bounds [ΛLφ (θ∗∗), ΛUφ (θ∗∗)].

– Sum of kernel smoothing functions
∑Bt
b=1Khm (‖sb − sobs‖).

– Mean summary statistic from Bt simulations d̄.

Set Initial number of successes, l = 0, and initial iteration k = 0.
Set Bt = nO, where nO = d 1

2ε2
log 2

δ e is the Okamoto bound and the initial confidence interval

I0 = [a0, b0] = [0, 1] in which Λφ(θ∗∗) belongs to.
while k < Bt do
k ← k + 1
Generate trace y(k) ∼ p(y|θ∗∗) and calculate sk = S(y(k)).

Calculate Khm (‖sk − sobs‖)
z(y(k)) = 1(y(k) |= φ)

l← l + z(y(k))
Ik = [ak, bk]← CONFINT(l, k, α)
if 1/2 ∈ Ik then
Bt = nO

else if bk < 1/2 then
Bt = d 2

ha(bk,ε)ε
2 log 2

δ−α e
else
Bt = d 2

ha(ak,ε)ε
2 log 2

δ−α e
end if
Bt ← min (Bt, nO)

end while
Calculate d̄ = (1/Bt)

∑Bt
b=1 s

b.

Calculate
∑Bt
b=1Khm (‖sb − sobs‖).

Set ak = Λ̂Lφ (θ∗∗), bk = Λ̂Uφ (θ∗∗).

return Λ̂φ(θ∗∗) = l/Bt,
∑Bt
b=1Khm (‖sb − sobs‖), d̄, [Λ̂Lφ (θ∗∗), Λ̂Uφ (θ∗∗)].
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(a) (b)

(c) (d)

Fig. 5. The set Θφ, is shown in yellow (lighter colour), meanwhile Θ¬φ, is
shown in blue (darker colour) Θ¬φ. The undecided areas, ΘU (if
any) are shown in magenta.
(5a) Parameter regions synthesised by GPU-Accelerated PRISM
[13]. (5b) Gridding scheme.
(5c) Parameter regions from SVM classification using 1000 samples
from a uniform distribution. (5d) Estimated probabilities Λφ(θ∗).

Instead, we consider sampling 1000 points from a Uniform distribution over636

the parameter space. We run the Massart algorithm at each point to obtain637

an estimated probability with corresponding (1 − δ) confidence bounds, where638

δ = 0.05. With these samples and probabilities, we classify parameter regions639

with an SVM, which results in Figure 5c,with corresponding estimated proba-640

bilities in Figure 5d. The runtimes presented in Table D suggest that we obtain641

a good approximation of the parameter synthesis region in half the time of the642

GPU-accelerated PRISM tool, which could be further improved if we parallelised643

the computation [25]. These considerations have led us to embed the statistical644

parameter synthesis in the parameter inference algorithm.645

Parameter synth Times [sec]

PRISM-GPU 3096
SVM & SMC 1653.8

646


