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Abstract. We present a data-driven verification approach that deter-
mines whether or not a given chemical reaction network (CRN) satisfies
a given property, expressed as a formula in a modal logic. Our approach
consists of three phases, integrating formal verification over models with
learning from data. First, we consider a parametric set of possible models
based on a known stoichiometry and classify them against the property
of interest. Secondly, we utilise Bayesian inference to update a prob-
ability distribution of the parameters within a parametric model with
data gathered from the underlying CRN. In the third and final stage, we
combine the results of both steps to compute the probability that the
underlying CRN satisfies the given property. We apply the new approach
to a case study and compare it to Bayesian statistical model checking.

1 Introduction

Constructing complete models of biological systems with a high degree of ac-
curacy is a prevalent problem in systems and synthetic biology. Attaining full
knowledge of many existing biological systems is impossible, making their anal-
ysis, prediction, and the designing of novel biological devices an encumbrance.
In this work, we integrate the use of probabilistic model-based analysis tech-
niques with a data-based approach via Bayesian inference. Chemical Reaction
Networks (CRNs) [22] provide a convenient formalism for describing various bi-
ological processes as a system of well-mixed reactive species in a volume of fixed
size. This methodology allows for the construction of an accurate model from
the data to verify that the underlying data-generating system satisfies a given
formal property. Thus, by verifying the properties of the model, we can assert
quantatively whether the underlying data generating system satisfies a given
property of interest. We leverage model analysis by means of formal verification,
namely quantitative model checking [6]. The end result is the computation of
a probability, based on the collected data, that the underlying system satisfies
a given formal specification. If the obtained probability is closer to either one
or zero, we can confidently draw an assertion on the satisfaction of the prop-
erty over the underlying biological system. On the other hand, with a moderate
probability value, a decision on the experimental setup or on the models needs
to be made: we can either collect more data from the experiments, or propose
alternative models and start the procedure once more. The proposed approach
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is different from statistical model checking (SMC) [1], in that standard SMC
procedures require target systems with fully known models: these are also in
general too large for conventional probabilistic model checkers (PMC) [6]. Al-
ternative SMC procedures can also work with unknown models, provided that
one is able to produce fully observable traces. Our work instead targets partially
known systems that produce noisy observations at discrete points in time, which
are commonplace in biology: these systems are captured by a parametric model
class with imperfect knowledge of rates within a known stoichiometry. The new
approach comprises of three phases. First, we propose a parametric model of a
given, partially known biological system, and perform parameter synthesis [20]
to determine a set of parameters over the parametric models that relates to
models verifying the given property. This is performed via PRISM [20,21]. The
second phase, executed in parallel with the first, uses Bayesian inference to infer
posterior distributions over the likely values of the parameters, based on data
collected from the underlying partially known and discretely observed system.
In the third phase, we combine the outputs from the two phases to compute
the probability that the model satisfies the desired property, which results in
an assertion on the satisfaction of the property over the underlying biological
system.

Related Work CRNs have been utilised to model biological systems both de-
terministically [3] and stochastically [67] via the chemical master equation [30].
We use continuous-time Markov chains [42] to model CRNs. Both probabilistic
model checking approaches [5, 44] and statistical model checking approaches [1]
have been applied in many areas within biology [45, 46, 70] with tools such as
PRISM [47], providing crucial support to perform procedures for continuous-time
Markov chains such as parameter synthesis [18,20,38]. Bayesian inference [16,19]
techniques have long been applied to biological systems [49]. In particular, we fo-
cus on inferring the kinetic parameters of the CRNs [17,60,66]. Exact inference
is difficult due to the intractability of the likelihood function. Sampling tech-
niques such as particle Markov chain Monte Carlo [33, 34] and likelihood-free
methods [52, 58] such as approximate Bayesian computation [63, 65] have been
utilised to circumvent intractable likelihoods. Inferring parameters and formally
verifying properties using statistical model checking for deterministic models is
considered in [36]. Computing probability estimates using data produced by an
underlying stochastic system, driven by external inputs to satisfy a given prop-
erty, is considered in [37]. The integration of the parameter synthesis problem
and Bayesian inference is considered for discrete-time Markov chains in [54] with
the extension to actions for Markov decision processes in [55]. In [54], the authors
consider exact parameter inference for a discrete state, discrete time system that
consists of a handful of states with fully observed, continuous data. In our work,
the data considered are discretely observed data points produced by a single sim-
ulation from a continuous-time Markov chain given the true parameters, which
is then perturbed by noise and we pursue likelihood free inference in the form
of approximate Bayesian Computation [11, 61]. Our approach is then compared
to a Bayesian approach to statistical model checking [41,71].
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The problem of learning and designing continuous-time Markov chains sub-
ject to the satisfaction of properties is considered in [14] meanwhile the model
checking problem is reformulated to a sequential Bayesian computation of the
likelihood of an auxiliary observation process in [51]. Directly related work is
presented in [13]; a Bayesian statistical algorithm was developed that defines a
Gaussian Process (GP) [57] over the parameter space based on a few observations
of true evaluations of the satisfaction function. The authors build upon the idea
presented in [14] and define the satisfaction function as a smooth function of the
uncertain parameters of a given CTMC, where this smooth function can be ap-
proximated by a GP. This GP allows one to predict the value of the satisfaction
probability at every value of the uncertain parameters from individual model
simulations at a finite number of distinct parameter values. This model check-
ing approach is incorporated in to the parameter synthesis problem considered
in [15] which builds upon the parameter synthesis problem defined in [21], but
differs with the incorporation of the model checking approach presented in [13]
and an active learning step being introduce to adaptively refine the synthesis.
Model construction and selection via Bayesian design is presented in [7, 8, 69].

The rest of the paper is as follows. In Section 2, we cover the necessary
background material required for our framework. In Section 3, we introduce our
framework, covering parameter synthesis, Bayesian inference and the probability
calculation techniques required. In Section 4, we consider the application of this
framework to a case study and compare our framework to Bayesian statistical
model checking [71]. We conclude with a discussion of our work and possible
extensions.

2 Background

2.1 Parametric Continuous-Time Markov Chains

We work with discrete-state, continuous-time Markov chains [42].

Definition 1 (Continuous-time Markov Chain).
A continuous-time Markov chain (CTMC)M is a tuple (S,R, AP, L), where;

– S is a finite, non-empty set of states,
– s0 is the initial state of the CTMC,
– R : S × S → R≥0 is the transition rate matrix, where R(s, s′) is the rate of

transitioning from state s to state s′,
– L : S → 2AP is a labelling function mapping each state, s ∈ S, to the set
L(s) ⊆ AP of atomic propositions AP , that hold true in s.

The transition rate matrix R governs the dynamics of the overall model. A
transition between states s and s′ can only occur if R(s, s′) > 0 and s 6= s′,
in which case, the probability of triggering the transition within a time t is
1 − e−tR(s,s′). If s = s′, R(s, s) = −E(s) = −

∑
s′∈S R(s, s′), where E(s) is

defined as the exit rate from s. The time spent in state s before a transition is
triggered is exponentially distributed by the exit rate, E(s). We define a sample
trajectory or path of a CTMC as follows.
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Definition 2 (Path of a CTMC).
Let M = (S,R, AP, L) be a CTMC. A path ω of M is a sequence of states

and times ω = s0t0s1t1 . . . , where for all i = 0, 1, 2, . . . , n,, si ∈ S and ti ∈ R≥0,
is the time spent in state si.

Parametric continuous-time Markov chains (pCTMCs) extend the notion
of CTMCs by allowing transition rates to depend on a vector of model pa-
rameters, θ = (θ1, θ2, ..., θk). The domain of each parameter θk is given by a
closed real interval describing the range of possible values, [θ⊥k , θ

>
k ]. The pa-

rameter space Θ is defined as the Cartesian product of the individual intervals,
Θ =×k̃∈{1,...,k}[θ

⊥
k̃
, θ>
k̃

], so that Θ is a hyperrectangular set.

Definition 3 (Parametric CTMC).
Let Θ be a set of model parameters. A parametric Continuous-time Markov

Chain (pCTMC) over θ is a tuple (S,Rθ, AP, L), where:

– S, s0, AP and L are as in Definition 1, and
– θ = (θ1, . . . , θk) is the vector of parameters, taking values in a compact

hyperrectangle Θ ⊂ Rk≥0,
– Rθ : S × S → R[θ] is the parametric rate matrix, where R[θ] denotes a set

of polynomials over the reals R with variables θk, θ ∈ Θ.

Given a pCTMC and a parameter space Θ, we denote with MΘ the set
{Mθ|θ ∈ Θ} where Mθ = (S,Rθ, AP, L) is the instantiated CTMC obtained
by replacing the parameters in R with their valuation in θ. We restrict the rates
to be polynomials, which are sufficient to describe a wide class of biological
systems [29].

2.2 Properties - Continuous Stochastic Logic

We aim to verify properties over pCTMCs. To achieve this, we employ the time-
bounded fragment of continuous stochastic logic (CSL) [4, 44].

Definition 4. Let φ be a CSL formula interpreted over states s ∈ S of a pCTMC
Mθ, and ϕ be a formula over its paths. The syntax of CSL is given by

φ := true | a | ¬φ | φ ∧ φ | φ ∨ φ | P∼p[ϕ]

ϕ := Xφ | φU [t,t′]φ | φUφ,

where a ∈ AP , ∼ ∈ {<,≤,≥, >}, p ∈ [0, 1], and t, t′ ∈ R≥0.

P∼p[ϕ] holds if the probability of the path formula ϕ being satisfied from a given
state meets ∼ p. Path formulas are defined by combining state formulas through
temporal operators: Xφ is true if φ holds in the next state, φ1U

Iφ2 is true if
φ2 holds at all time points t ∈ I and φ1 holds for all time points t′ < t. We
now define a satisfaction function to capture how the satisfaction probability of
a given property relates to the parameters and the initial state.
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Definition 5 (Satisfaction Function). Let φ be a CSL formula, Mθ be a
pCTMC over a space Θ, s ∈ S, s0 is the initial state, and PathMθ (s0) is the set
of all paths generated by Mθ with initial state s0. Denote by Λφ : θ → [0, 1] the
satisfaction function such that Λφ(θ) = Prob

(
{ω ∈ PathMθ (s0) |= ϕ} |ω(0) = s0

)
∼

p.

That is, Λφ(θ) is the probability that a pCMTC Mθ satisfies a property φ,
Mθ |= φ.

2.3 Stochastic modelling of Chemical Reaction Networks

Semantics for continuous-time Markov chains include states that describe the
number of molecules of each species and transitions which correspond to reac-
tions that consume and produce molecules. These reactions are typically param-
eterised by a set of kinetic parameters that dictate the dynamics of the overall
network and it is these parametric CRNs that we will turn our focus towards:

Definition 6 (Parametric Chemical Reaction Network ). A parametric
Chemical Reaction Network (pCRN) C is a tuple (M,X,W,R,υ) where

– M = {m1, . . . ,mn} is the set of n species;
– X = (X1, ..., Xn) is a vector where each Xi represents the number of molecules

of each species i ∈ {1, ..., n}. X ∈W , with W ⊆ NN the state space;
– R = {r1, . . . , rk} is the set of chemical reactions, each of the form rj =

(vj , αj), with vj the stoichiometry vector of size n and αj = αj(X, υj) is the
propensity or rate function.

– υ = (υ1, . . . , υk) is the vector of (kinetic) parameters, taking values in a
compact hyper-rectangle Υ ⊂ Rk.

Each reaction j of the pCRN can be represented as

rj : uj,1m1 + . . .+ uj,nmn
αj−→ u′j,1m1 + . . .+ u′j,nmn, (1)

where uj,i (u′j,i) is the amount of species mi consumed (produced) by reac-
tion rj . The stoichiometric vector vj is defined by vj = u′j − uj , where uj =
(uj,1, . . . , uj,n) and u′j = (u′j,1, . . . , u

′
j,n).

A pCRN can be modelled as a pCTMC if we consider each state of the
pCTMC to be a unique combination of the number of molecules. That is, if we
denote X(ti) as the number of molecules of each species at a given time, ti, then
the corresponding state of the pCTMC at time ti is si = X(ti). In fact, pCTMC
semantics can be derived such that the transitions in the pCTMC correspond to
reactions that consume and produce molecules, by defining the rate matrix as:

R(si, sj) =
∑

j∈ζ(si,sj)

αj(si, υj) =
∑

j∈ζ(si,sj)

υjgj(si), (2)

where ζ(si, sj) denotes all the reactions changing state si into sj and αj is the
propensity or rate function defined earlier and the propensity, αj , often takes
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the form αj(si, υj) = υjgj(si), where gj(si) is the combinatorial factor that is
determined by the number of molecules in the current state, si and the type of
reaction j. It is clear to see that this new pCTMC is governed by the kinetic
rate parameters, υ, thus, Mυ is the pCTMC that models the pCRN and for
the rest of this paper, with a slight abuse in notation, we will let Mθ be the
pCTMC that represents a pCRN where θ are the kinetic rate parameters. Now
the vector of kinetic parameters is defined as θ = (θ1, . . . , θk), where θ ∈ Θ and
Θ ⊂ Rk.

2.4 Bayesian Inference

When constructing mathematical models to describe real applications, statistical
inference is performed to estimate the model parameters from the observed data.
Bayesian inference [16] is performed by working either with or without a para-
metric model and experimental data, utilising the experimental data available to
approximate the parameters in a given model and to quantify any uncertainties
associated with the approximations. It is of particular interest to the biological
community to constrain any uncertainty within the model parameters (or indeed
the model itself) by using the observed data of biological systems. Moreover,
when one is working with obstreperous stochastic models, noisy observations
may add another layer of uncertainty. A plethora of literature is focused on the
problem of Bayesian inference in stochastic biochemical models [60, 65, 67], let
alone stochastic models [19]. Bayesian methods have been used extensively in
the life sciences for parameter estimation, model selection and even the design
of experiments [26,49,50,59,63,64].

Given a set of observations or data, D, and a model governed by θ, the task
of Bayesian inference is to learn the true parameter values given the data and
some existing prior knowledge. This is expressed through Bayes’ theorem:

p(θ|D) =
p(D | θ)p(θ)

p(D)
. (3)

Here p(θ|D) represents the posterior distribution, which is the probability den-
sity function for the parameter vector, θ, given the data, D; p(θ) is the prior
probability distribution which is the probability density of the parameter vector
before considering the data; p(D|θ) is the likelihood of observing the data given
a parameter combination; and p(D) is the evidence, that is, the probability of
observing the data over all possible parameter valuations. Assumptions about
the parameters are encoded in the prior meanwhile assumptions about the model
itself are encoded into the likelihood. The evidence acts as a normalisation con-
stant and ensures the posterior distribution is a proper probability distribution.
To estimate the posterior probability distribution, we will utilize Monte Carlo
techniques.
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3 Bayesian Verification

The main problem we address in this work is as follows. Consider a real-life,
data generating biological system S, where we denote the data generated by the
system as D and we are interested in verifying a property of interest, say φ. Can
we use this obtained data and the existing knowledge of the model to formally
verify a given property over this system, S?

Here on, we will be considering this problem using chemical reaction networks
to describe biological systems. We assume that we have sufficient knowledge to
propose a parametric model for the underlying system, which in this case is a
pCTMC denoted by Mθ. We define the property of interest, φ, in CSL and
we also assume that we are able to obtain data, D, from the underlying sys-
tem. There are three aspects to the Bayesian Verification framework: parameter
synthesis [20, 21], Bayesian inference [16, 19, 52] and a probability or credibility
interval calculation [16]. We shall discuss the data we work with and these meth-
ods in detail later. Given a model class Mθ and a property of interest, φ, we
first synthesise a set of parameter valuations Θφ ⊆ Θ. If we were to choose a
vector of parameters θ′ such that θ′ ∈ Θφ, then the paths or traces generated
from the induced pCTMC,Mθ′ would satisfy the property of interest with some
probability, which we denote as Mθ′ |= φ. We learn the parameters of interest
by inferring them from the data via Bayesian inference, to provide us with a
posterior distribution, p(θ|D). Once we have this posterior distribution and a
synthesised set of parameter regions, Θφ we integrate the posterior probability
distribution over these regions to obtain a probability on whether the underly-
ing data generating system satisfies the property or not. The full procedure is
illustrated in Figure 1.

Property, φ
Model Class

(pCTMC) Mθ

Generate data, D from
System, S

Parameter Synthesis
Θφ = {θ ∈ Θ :Mθ |= φ} ⊆ Θ

Bayesian Inference,
p(θ|D)

Probability
Calculation

C = P (S |= φ|D) =
∫
Θφ

p(θ|D)dθ

Fig. 1: Bayesian Verification Framework.
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3.1 Parameter Synthesis

Given a parametric model class Mθ and a property φ defined in CSL, we syn-
thesise parameter regions that satisfy φ using the approach introduced in [21].
We will focus on the threshold synthesis problem. Note that solutions to the
threshold synthesis problem may sometimes lead to parameter points that are
left undecided, that is, parameter points that either do or do not satisfy the
property with a given probability bound, ∼ p. Let us define this problem for-
mally.

Definition 7 (Threshold Synthesis). LetMθ be a pCTMC over a parameter
space Θ, φ a CSL formula, ∼ p a threshold where p ∈ [0, 1], ∼∈ {≤, <,>,≥}
and E > 0 be a volume tolerance. The threshold synthesis problem is finding a
partition {T ,U ,F} of Θ such that:

1. ∀θ ∈ T . Λφ(θ) ∼ p; and
2. ∀θ ∈ F . Λφ(θ) � p; and
3. vol(U)/vol(Θ) ≤ E

where vol(A) is the volume of A.

The goal of parameter synthesis is to synthesise the set of all possible valua-
tions for which the model class Mθ satisfies the property φ:

Θφ = {θ ∈ Θ : Mθ |= φ}. (4)

We define the region Θφ ⊆ Θ as the feasible set of parameters. Parametric
model checking capabilities of the tool introduced in [21] is leveraged to perform
parameter synthesis over the CTMC constructed from a given pCRN.

3.2 Bayesian Inference for Parametric CTMC

In this section, we discuss the application of Bayesian inference for paramet-
ric CTMCs to infer unknown model parameters. Inferring parameters from
pCTMCs is a widely studied problem in the realms of biology [17, 28, 34, 35,
60, 63, 65–67]. The focus of our work here will be on performing inference over
noisy time series data that has been observed a finite number of times at discrete
points in time.

Partially observed data Let us consider the case where the data D consists of
Q observations of the CRN state vector at discrete points in time, t̃1, t̃2, . . . , t̃Q.
Let D = [Y(t̃1),Y(t̃2), . . . ,Y(t̃Q)], where Y(t̃i) ∈ RN represents an observation
of the molecule count sample X(t̃i), which has a corresponding state si in the
pCTMC. It is common to incorporate uncertainty in these observations with the
use of additive noise [60,67],

Y(t̃i) = OX(t̃i) + ξ, (5)
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where O is a O× n matrix, RO×n and ξ is a O× 1 vector of independent Gaus-
sian random variables. The observation vectors Y(t̃i), are O × 1 vectors where
O ≤ n, which reflects the fact that only a sub-set of chemical species of X(ti)
are observed. For this work, O = I, where I is an n×n identity matrix, recalling
that n is the number of different chemical species. Due to both the nature of data
we are working with and the intractability of the chemical master equation [30]
that determines the likelihood, we turn away from working with the analytical
likelihood to consider likelihood free methods [52, 65]. Two popular classes of
likelihood-free inference methods available are pseudo-marginal Markov chain
Monte Carlo [2] and Approximate Bayesian Computation (ABC) [11,61]. In our
work, we utilise ABC to infer parameters of our model. Not only do ABC meth-
ods allow working with highly complicated models with intractable likelihoods
to be investigated, but also ABC methods are very intuitive and easy to imple-
ment - it has proven to be an invaluable tool in the life sciences [9, 11, 48, 63].
To deploy ABC methods, we need to be able to simulate trajectories from a
given model of interest, which in our case is a pCTMC, and require a discrep-
ancy metric, ρ(D, X̃), where X̃ = (X̃(t̃1), . . . , X̃(t̃M )) is the vector of simulated
data generated through the model that consists of M reactions. This discrep-
ancy metric provides a measure of distance between that of the experimental
data and the simulated data and this simulated data will form the basis of our
Bayesian inference technique. After calculating ρ(D, X̃), we accept the traces
where ρ(D, X̃) ≤ ε, where ε is the discrepancy threshold. This leads to a modi-
fication of the original Bayes theorem

p(θ|ρ(D, X̃) ≤ ε) =
p(ρ(D, X̃) ≤ ε | θ)p(θ)

p(ρ(D, X̃) ≤ ε)
. (6)

For the prior probability distribution, p(θ), we will assume a uniform prior over
the possible parameter set, θ. By being able to produce simulations from the
model, we are able to perform inference for the parameters of interest, subject
to data D. The discrepancy threshold ε determines the level of approximation -
as ε→ 0, p(θ | ρ(D, X̃) ≤ ε)→ p(θ|D). In practice, Equation (6) can be treated
as an exact posterior under the assumption of model and observation error when
ε→ 0 [68]. Picking an appropriate discrepancy metric is a challenge in itself [61]
as the choice in discrepancy metric can lead to bias. The discrepancy metric
used in our work is defined by

ρ(D, X̃) =

[
Q∑
i=1

(Y(t̃i)− X̃(t̃i))
2

]1/2

, (7)

Clearly for any ε > 0, ABC methods produce biased results and this bias
should be considered in any subsequent results we obtain, especially for any
Monte Carlo estimate. In order to estimate integrals such as the expected mean
and covariance, which is necessary for the posterior probability distribution, we
must be able to generate samples, θ(i) from the posterior. A summary of dif-
ferent methods available to obtain these samples can be found in [65] along
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with a detailed discussion on every method. We will be focusing on the ap-
proximate Bayesian computation sequential Monte Carlo (ABCSeq) approach
[10, 62, 63]. The idea behind the ABCSeq approach is to use sequential impor-
tance resampling to propogate m samples, called particles, through a sequence
of R + 1 ABC posterior distributions defined through a sequence of discrep-
ancy thresholds, ε0, ε1, . . . , εR, with εr > εr+1, for r = 0, 1, . . . , R − 1, for a
number of R thresholds and ε0 = ∞. The method is presented in Algorithm 1.

Algorithm 1 ABCSeq Algorithm
1: Initialize threshold sequence ε0 > · · · > εR
2: Set r = 0
3: for i = 1, . . . ,m do

4: Simulate θ
(0)
i ∼ p(θ) and X̃ ∼ p(X̃|θ(0)i ) until ρ(D, X̃) < ε1

5: wi = 1/m
6: end for
7: for r = 1, . . . , R− 1 do
8: for i = 1, . . . ,m do
9: while ρ(D, X̃) > εr do

10: Pick θ∗i from the previously sampled θ
(r−1)
i with corresponding probabilities w

(r−1)
i ,

draw θ
(r)
i ∼ Kr(θ

(r)
i |θ

∗
i ) and X̃ ∼ p(X̃|θ(r)

i )

11: end while
12: Compute new weights as

w
(r)
i ∝

p(θ
(r)
i )∑m

i=0 w
(r−1)
i Kr(θ

(r)
i |θ

(r−1)
i )

13: Normalize w
(r)
i subject to

∑m
i=0 w

(r)
i

14: end for
15: end for
16: return final particles, θ(R−1)

In Algorithm 1, Kr(·|·) is a conditional density that serves as a transition
kernel to move sampled parameters and then appropriately weight the accepted
values, which are the parameter valuations which produce trajectories sufficiently
close to the data. In the context of real-valued parameters, which we consider
here, Kr(θ

∗|θ) is taken to be a multivariate normal distribution centred near
θ. There are many adaptive schemes to increase the accuracy and the speed of
ABCSeq [12, 24], which vary from the choice of kernel [25], Kr(·|·) to adapt-
ing the discrepancy threshold [56]. We implement the proposed kernel densi-
ties presented in [12] and chose an adaptive discrepancy threshold such that
εr+1 = median(ρr), where ρr is the vector of all accepted distances for each
particle, calculated in line 9 of Algorithm 1. However, a larger number of par-
ticles, m, is required than the desired number of independent samples from the
ABC posterior with discrepancy threshold ε. For our implementation, we set a
maximum number of iterations in the loop in line 3 of Algorithm 1 to avoid
infinite loops, and we return the particles of the previous sampled parameters if
this were to be the case.
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3.3 Probability Computation

In the final phase of our approach, a probability estimate is computed corre-
sponding to the satisfaction of a CSL specification formula φ by a system of
interest such that S |= φ. To calculate the probability that the system satisfies
the specified property, we require two inputs - the posterior distribution over the
whole set of kinetic parameters, θ, discussed in Section 3.2, and the feasible set
of parameters that have been calculated in Sec. 3.1:

Definition 8. Given a CSL specification φ and observed data D from the system
S, the probability that S |= φ is given by

C = P (S |= φ | D) =

∫
Θφ

p(θ | D)dθ, (8)

where Θφ denotes the feasible set of parameters. We estimate this integral with
the use of Markov chain Monte Carlo (MCMC) methods focusing on the slice
sampling technique [53].

4 Results

Experimental Setup All experiments have been run on an Intel(R) Xeon(R)
CPU E5-1660 v3 @ 3.00GHz, 16 cores with 16GB memory. We work with par-
tially observed data of the type discussed in Section 3.2. Data is of the form
Y(t̃i) = X(t̃i) +ξ, where in the case of noisy observations, the additive noise for
each observation j will be given by, ξj ∼ N (0, σ) and σ = 2. The data generating
system, S will in fact be a pCTMC with a chosen combination of parameters,
of which we consider two. The first combination, θφ ∈ Θφ, have been chosen
such that Mθφ |= φ, that is, the pCTMC model Mθφ , governed by θφ, satisfies
the property of interest. The second combination we choose are the parameters
given by θ¬φ ∈ Θ \ Θφ, such that Mθ¬φ 6|= φ. We will consider the scenario
where we have both noisy and noiseless observations. To summarise, we have
instances where we observe either 10 or 20 data points per species, which can be
either noisy or noiseless and working with data that has been produced by either
Mθφ or Mθ¬φ . To ensure the inference does not depend on the initialisation of
the ABCSeq technique, we ran 10 independent batches with 1000 particles each
and calculated the corresponding weighted means and variance of the batches
to derive the inferred mean and credibility intervals. The ABCSeq method pro-
duces sampled particles from the posterior probability distribution, which we
use to calculate the mean, µ and the covariance, Σ, of the kinetic parameters.
We assume the parameters are independent of each other, thus the nondiagonal
elements of the covariance matrix are equal to 0. The inferred parameters θ̃ is
thus described by a multivariate normal distribution θ̃ ∼ N (µ,Σ).

The Bayesian statistical model checking method [41] approach collects sam-
ple trajectories from the system, and then determines whether the trajectories
satisfy a given property and applies statistical techniques, such as calculation of
credibility intervals and hypothesis testing, to decide whether the system satisfies
the property or not with a degree of probability.
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4.1 Case Study: Finite-state SIR Model

We take into account the stochastic epidemic model [43], known alternatively
as the SIR model. Epidemiological models of this type behave largely in the
same way as CRNs [21]. The model describes the epidemic dynamics of three
types, the susceptible group (S), the infected group (I), and recovered group
of individuals (R). The epidemic dynamics can be described with mass action
kinetics:

S + I
ki−→ I + I, I

kr−→ R. (9)

Whenever a susceptible individual S encounters an infected individual I, the
susceptible individual becomes infected with the rate ki and infected individuals
recover at rate kr. Letting S, I and R represent chemical species instead of groups
of individuals, this epidemiological model is the same as a CRN. From now on
we treat the SIR model as a CRN. This CRN is governed by the parameters θ =
(ki, kr), where each state of the CTMC describes the combination of the number
of molecules for each species. The problem we consider is as follows. We assume
that initially there are 95 molecules of species S, 5 molecules of species I and
0 molecules of species R, thus, the initial state is s0 = (S0, I0, R0) = (95, 5, 0).
We wish to verify the following property, φ = P>0.1[(I > 0)U [100,150](I = 0)],
i.e. whether, with a probability greater than 0.1, the chemical species I dies out
strictly within the interval of t = 100 and t = 150 seconds. The data is produced
by both Mθφ and Mθ¬φ , where θφ = (0.002, 0.05) and θ¬φ = (0.002, 0.18).

Fig. 2: Synthesised Parameter regions are shown here. The feasible set of pa-
rameters, T , is shown in yellow (lighter colour), meanwhile the infeasible set of
parameters, F , is shown in blue (darker colour) Θ¬φ, with the undecided areas
(if any) shown in white, the set U .
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In the first phase of our method, we synthesise the feasible set of param-
eters, Θφ. For the parameter synthesis technique used in our work [20, 21],
we define parameter bounds and we confine our parameters to the set Θ =
[k⊥i , k

>
i ]× [k⊥r , k

>
r ] = [5×10−5, 0.003]× [0.005, 0.2]. The results of the parameter

synthesis is shown in Figure 2 and took a total of 3096 seconds (51.6 minutes)
to compute. The second phase of our approach involves learning the kinetic pa-
rameters from data, D, via the ABCSeq method introduced in Section 3.2. To
showcase the accuracy of our method, we consider different data scenarios. We
take into account observed data where the observations are either distorted or
not by additive noise, and the aforementioned two cases but with additional
observed data points. A full list of different data scenarios and corresponding
inferred parameters can be seen in Table 1. As expected, if we observe more,
noiseless data points then our inferred parameters converge to the true param-
eters, θφ or θ¬φ. The accuracy decreases drastically for data produced by the
model Mθ¬φ . This is due to the largely uninfomative observations as the sam-
ples reach steady state. To increase accuracy, more observations should be taken
during the transient period of the model.

Bayesian SMC requires multiple simulated trajectories over a given model
Mθ to determine whether Mθ |= φ. The issue with Bayesian SMC is that it
considers a single instance of parameters, θ0 and produces multiple simulations
and statistically verifies whether the property is satisfied or not. When inferring
parameters, we compute a probability distribution over the set of inferred pa-
rameters. If this distribution were to have a high variance, one would need to
sample many parameters from the posterior distribution to sufficiently cover the
space of the parameter probability distribution and then produce simulations for
Bayesian SMC to evaluate each instantiation of the parameters. Meanwhile in
our approach, we would only need to integrate the posterior distribution p(θ|D)
over the feasible parameter set Θφ to obtain a probability whether this property
is satisfied or not. Bayesian SMC is illustrated in Figure 3. For both Bayesian
SMC and our method, we first had to infer the parameters to obtain a posterior
probability distribution, which in this case, is a bivariate normal distribution.
For Bayesian SMC, we sampled 100 independent evaluations of the parameters,
and produced 1000 simulations for each evaluation to determine the probability
that the model, Mθ, satisfies the property of interest. The sampled parame-
ters are represented by the points represented by circles in Figure 3, meanwhile
the 95% credibility interval for the inferred parameters are represented by the
black ellipses. The computation time for the Bayesian SMC approach was 756
seconds (12.6 minutes). With our approach, we simply need to integrate the
bivariate normal distribution over the feasible parameter regions over the pa-
rameter regions to obtain the values in Table 1, and we do this numerically via
slice sampling [53]. Both our technique and Bayesian SMC are in agreement, but
for the Bayesian SMC approach we would require a larger number of sampled
parameters to verify whether or not the entire posterior probability distribution
lies in these feasible regions. Despite the fact that the parameter synthesis for
the whole region takes longer to compute, the exhaustive parameter synthesis
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technique provides us a picture of the whole parameter space which is useful for
further experiments and can be done entirely offline. For our multivariate slice
sampler, we heuristically chose the number of samples to be 10000 and the scale
estimates for each parameter, νi was chosen to be νi = 2, with the initial value
of the slice equal to the mean of the inferred posterior probability distribution.
For further details on multivariate slice sampling (which leads to the credibility
calculation given in Table 1), see [53]. For convergence results with statistical
guarantees, we refer the reader to [23] meanwhile if interested in obtaining an
upper bound on the probability calculated, we refer to [40]. Both the inference
and Bayesian SMC techniques break down if simulating traces for CRNs is costly.
Fortunately, there is ongoing research on approximation techniques that sacrifice
the accuracy of Gillespie’s algorithm for speed (such as the classical tau-leaping
method [31]). For alternative approximation techniques, see [39, 65] for more
details.

Fig. 3: Bayesian statistical model checking is performed over the inferred param-
eters for the case with 10 noisy observations on the left figure and for the case
with 20 noiseless observations on the right figure. Dark blue (left figure) and
green points (right figure) represent the probability values of 1 meanwhile the
purple (left figure) and red points (right figure) represent probability values of
0. The parameters chosen to produce the data are represented by the cyan and
orange triangles. The black elliptical lines represent the 95% credibility intervals
of the inferred posterior distribution. The yellow (or blue) points represent the
parameter valuation regions that satisfy (T ) (or don’t satisfy, F) the property.

5 Conclusions and Further Work

We have presented a data-driven approach for the verification of CRNs modelled
as pCTMCs. The framework proposed integrates Bayesian inference and formal
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verification and proves to be a viable alternative to Bayesian SMC methods.
We demonstrate how to infer parameters using noisy and discretely observed
data using ABC and with the inferred posterior probability distribution of the
parameters at hand, we calculate the probability that the underlying data gen-
erating system satisfies a property by integrating over the synthesised feasible
parameter regions. Thus, given data from an underlying system, we can quanti-
tatively assert whether properties of the underlying system are satisfied or not.
Our method differs from that of typical Bayesian SMC as we calculate a single
probability value with respect to the entire posterior distribution, meanwhile
with Bayesian SMC, we would have to sample a sufficient amount of parameter
values to cover the posterior distribution, thereon generate traces to determine
whether a property is satisfied or not. Future work consists of integrating both
learning and verification further as is done in [15] to improve the scalability of
the parameter synthesis, working with different model classes such as stochastic
differential equations [27,32] and models with actions, as is done in [55].

Inferred Parameters
Data True

par.
Mean Std. Dev. Prob. Comp.

Time (s)
10 Obs.
with
Noise

θφ µki = 0.0027 σki = 4.7 ×
10−5

1 11791

µkr = 0.0451 σkr = 0.0012
θ¬φ µki = 0.0006 σki = 8.7 ×

10−5
0 75

µkr = 0.1676 σkr = 0.0063
20 Obs.
with
Noise

θφ µki = 0.0022 σki = 0.0001
0.9901

10840

µkr = 0.0468 σkr = 0.0036
θ¬φ µki = 0.0015 σki = 0.0002 0 3256

µkr = 0.1620 σkr = 0.0104
10 Obs
without
Noise

θφ µki = 0.0019 σki = 8.8 ×
10−5 0.9969

7585

µkr = 0.0549 σkr = 0.00514
θ¬φ µki = 0.0015 σki = 0.0001 0 3802

µkr = 0.1565 σkr = 0.0074
20 Obs.
without
Noise

θφ µki = 0.0021 σki = 7.3 ×
10−5

1 15587

µkr = 0.0487 σkr = 0.0020
θ¬φ µki = 0.0017 σki = 0.0001 0 5194

µkr = 0.1630 σkr = 0.0084
Table 1: We have four different data scenarios to produce the data. Data within
each of these datasets is produced given a combination of parameters that satisfy
the property of interest, θφ = (0.002, 0.05) and those that do not satisfy the
property of interest θ¬φ = (0.002, 0.18), (with or without additive noise σ = 2).
We integrate the corresponding posterior distribution to give us the probability
in column 5.
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