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Abstract. This work presents a model-based formal reliability analysis
of the electricity grid dynamics in the presence of a large population of
solar panels, under several scenarios of load demand and of renewables
penetration. The electric network is represented as a feedback intercon-
nection between the dynamics of the grid and those of a heterogeneous
population of solar panels that injects power into the network. Introduc-
ing a formal abstraction technique, we obtain a Markov model that allows
to quantitatively verify a reliability specification by means of probabilis-
tic model checking. This specification ensures that the network frequency
does not deviate from a reference level following a generation-loss inci-
dent. We further encode the population heterogeneity, the total load of
the network, and the penetration of solar sources as parameters of the
model, and present a procedure to automatically synthesise their values
in order to guarantee the reliable operation of the network.

Keywords: grid dynamics, solar panels, reliability analysis, formal ab-
stractions, quantitative model checking, probabilistic safety

1 Introduction

Academia, industry and general public alike have shown an increasing interest in
environmental conservation, sustainability issues and, in particular, in the grow-
ing presence of energy production by renewables. The installation and growth of
hydroelectric, wind and solar energy represents an ever growing trend [1–3]. In
this work we account for solar populations, with particular attention to house-
holds rooftop devices: such populations are naturally prone to heterogeneity, in
view of diverse panel sizes, makes and ages, of standing weather conditions, etc.
The main focus of this work is to provide the first formal analysis of renewable
energy integration, and to elucidate the relationship between the panels oper-
ation and the overall reliability of the electric network. The models we employ
are drawn from [4–6], which are based on a physical description of the behaviour
of solar devices [7, 8]. These models allow us to precisely forecast the grid dy-
namics in the presence of a heterogeneous PV population, and to quantify the
consequence of generation-loss incidents, under several scenarios of network load



2 Andrea Peruffo et al.

and of population dynamics. We particularly focus on incidents related to load-
shedding, an automated process that is set in place to mitigate the lack of balance
on the network, and to prevent potential subsequent blackouts.

Reliability is a critical aspect of power grids, particularly when investigat-
ing smart grids: network resilience is thus studied with several approaches, from
simulation-based tests to analytical methods. The work in [9] studies the relia-
bility of smart grids in terms of demand-response programs, renewable energy
sources, storage devices and electric vehicles: the authors focus on accommodat-
ing cybersecurity measures. A series of reliability indices are introduced in [10] to
quantify the performance of solar devices, considering variation of input power
and failure rates of critical components. [11] investigates via simulations potential
cascading failures, in order to assess the duration before a failure occurs and the
consequent recovery phase. The work in [12] draws a framework for future smart
grids and assess its reliability with a range of stochastic generation/consumption
patterns. Formal verification provides powerful tools to assess quantitative prop-
erties, such as reliability, on complex systems, such as the power grid. In [13]
the high-level reliability of power systems is tested via fault-tree analysis. The
work in [14] presents models of power grids with a significant penetration of solar
generation: these models are employed to investigate runtime control algorithms
for photovoltaic micro-generators, towards grid stability. Within the arsenal of
formal verification, formal abstractions are techniques to approximate complex
models by simpler ones that can be easily verified. Unlike the aforementioned
literature, we newly extend a formal abstraction procedure [15] to generate para-
metric models of populations of solar panels interconnected to the grid. We then
synthesise parameters corresponding to models that verify properties of interest,
related to the safe operation of the grid. In [16] a Markov model is constructed as
the aggregation of an inhomogeneous population of thermostatically controlled
loads (TCLs). As discussed in [17], the aggregation of population models intro-
duces two kinds of errors: the abstraction error (over a single device) and an
error related to the population heterogeneity. By means of a similar approach,
in this work we formally abstract the model of a heterogeneous population of
PV panels interconnected to the grid as a parametric, finite-state, discrete-time
Markov chain (dtMC). The proposed abstraction procedure can be refined to
improve its accuracy: the error decreases to zero as the number of generated
abstract states increases.

In practice, one is often not only interested in verifying a given model (e.g.,
via model checking algorithms), but rather in the harder problem of deriving
model parameters ensuring the validity of the property under consideration [18,
19]. In this paper, we perform parametric model checking, namely we check
whether a property (specifically, the reliability of the electric network) holds
under different values of the parameters: we consider the heterogeneity of the
solar population, the total load of the network, and the solar penetration level
as the tuneable parameters that can ensure a reliable integration of solar devices
in the grid dynamics. Among others, tools like PRISM [20], MODEST [21],
FAUST2 [22] and StocHy [23] can be used to perform parametric model check-
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ing and formal abstraction. This paper extends earlier results [4–6] by employing
techniques from formal verification and parameter synthesis: we tailor a formal
abstraction procedure to generate parametric Markov models, and tapping into
existing verification software, we formally synthesise model parameters verifying
the property of interest (network reliability). We consequently to provide cer-
tificates on the safe and reliable operation of the grid under diverse scenarios:
these certificates can be relevant for operators of large transmission networks or
of smart grids.

The remainder of the paper is organised as follows. Section 2 introduces the
solar panel behaviour, its description as a dynamical system, and the overall elec-
tric network model. Section 3 discusses the formal abstraction techniques, state
space partitioning, and computes the formal synthesis of parameters. Section
4 presents the generation-loss incident scenario and shows test results. Finally,
conclusions are drawn in Section 5.

2 Feedback Model of the Electricity Grid and of a
Population of Solar Panels

The qualitative description of a single panel operation and the modelling of a
population as a Markov model is reported in Section 2.1, whereas Section 2.2
presents the model for the electricity grid and describes the feedback connection
between grid and solar panels.

2.1 Model of Solar Panels as a Function of Grid Frequency

We start presenting the qualitative operations of a single photovoltaic panel,
which depend on the electricity grid frequency measurements [7, 8].

A panel-inverter is connected to the electric network and samples the fre-
quency f(k), k ∈ N, where k represents discrete time. According to this mea-
surement, the device can be either connected or disconnected. Regulations im-
pose such devices to be connected to the electricity grid exclusively when f(k)
belongs to a safe interval If (a neighbourhood of the nominal frequency f0 = 50
Hz) for a predefined amount of time τr. Whilst disconnection is instantaneous,
reconnection must wait for τr time instants, during which f(k) must vary within
If . Table 1 summarises the behaviour of a PV panel. This mechanism prevents
panels to inject power in a islanding network, namely when part of the grid is
disconnected from the rest of it, and also prevents chattering related to rapid
connection and disconnection. Note that, when considering a large population
of devices, If and τr are not homogeneous. In this work we assume that het-
erogeneous If and τr belong to known distributions, as suggested by industrial
experts, which more generally can be inferred from data on actual devices.

We now introduce a formal definition of a discrete-time Markov chain, which
is the model underpinning the system under consideration.

Definition 1 (dtMC). A discrete-time Markov chain is a tuple D = (S, s0, P )
where S is a finite set of states, s0 ∈ S is an initial state, and P : S ×S → [0, 1]
is a transition probability matrix, such that for all s ∈ S,

∑
s′∈S P (s, s′) = 1.
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State q(k) Frequency measurement Delay State q(k + 1)

OFF f(k) ∈ If τ(k) ≥ τr ON

ON f(k) ∈ If − ON

ON f(k) /∈ If − OFF

OFF f(k) ∈ If τ(k) < τr OFF

Table 1: Switching behaviour of a single PV panel. The network frequency is f(·),
τ(·) is the internal counter, τr the reconnection delay, and k the time index.

The heterogeneity in If and in τr allows us to develop a model of the pop-
ulation of solar devices: differences in disconnection and reconnection settings
translate into a time-varying Markov model. Formally, as depicted in Fig. 1, we
identify three operational states: (1). active (ON, for panels sampling f(k) ∈ If
and for which τ(k) ≥ τr); (2). inactive (OFF, for panels sampling f(k) /∈ If ); (3).
waiting for reconnection (WAIT, for panels sampling f(k) ∈ If but τ(k) < τr).

OFF ON

WAIT

b(k)

1− b(k)

b(k)ε(k)

a(k)

1− b(k) 1− a(k)

b(k)(1− ε(k))

1

Fig. 1: A (time-varying) Markov model for the aggregated dynamics of a hetero-
geneous population of solar panels.

The transitions probabilities a(k) and b(k) between the three states are time-
varying functions of f(k). They characterise a Markov chain model with the
following dynamics:{

x(k + 1) = (1− a(k))x(k) + b(k)ε(k)y(k)
y(k + 1) = b(k)(1− x(k)− ε(k)y(k)),

(1)

where x(k) and y(k) represent the probability (that is, the portion of panels) of
being in the ON and WAIT state at time k, respectively. A new quantity z(k),
the probability of being in the OFF state, can be obtained as 1−x(k)−y(k),∀ k.
The function ε(k) is a time-varying term accounting for the heterogeneity of τr.
Its form can be inferred from frequency values, as shown in [4]. The quantities
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a(k) and b(k) are functions of f(k) as

a(k) =


∫ f(k)

−∞
pdo(u)du if f(k) > f0∫ +∞

f(k)

pdu(u)du otherwise,

b(k) =


∫ ∞
f(k)

pro(u)du if f(k) > f0∫ f(k)

−∞
pru(u)du otherwise,

where pji , i = {u, o}, j = {d, r} are probability distributions describing the pop-
ulation heterogeneity over the intervals If : the superscript u and o indicate the
under-frequency (f(k) ≤ f0) and over-frequency (f(k) > f0) scenarios, respec-
tively, whereas the indices d and r refer to the disconnection and reconnection
distributions, respectively. Whilst a(·) and b(·) are functions of the frequency
signal f(k), to ease the notation we will denote them as a(k). Fig. 2 depicts
an example of the computation of a(k) in under-frequency and over-frequency.
These quantities affect the reconnection and disconnection of devices: a more
heterogeneous population corresponds to a(k) and b(k) with a higher variance,
while a homogeneous population shows smaller variance.

f0 ff(k)

pdo(f)
a(k)

f0 ff(k)

pdu(f)
a(k)

1

f0 ff(k)

pdo(f)
a(k)

f0 ff(k)

pdu(f)
a(k)

1

Fig. 2: Pictorial representation of a(k) in over-frequency, i.e. f(k) > f0 (right)
and in under-frequency, i.e. f(k) < f0 (left). The value of f(k) is indicated as a
red vertical line, which defines the upper or lower integration extrema in over-
and under-frequency, respectively. In general pu and po might not be symmetric
with respect to f0, nor belong to the same distribution family.

Assume, for simplicity, that pji , i ∈ {u, o}, j ∈ {d, r}, are shaped according

to a uniform distribution, i.e. pji ∈ U(µji , ς
j
i ), where µji is the average value and

ςji is the variance. The choice of a uniform distribution describes a population
of devices in which parameters belong to an admissible range, with no further
assumptions. Define the domain of pji as Λji = [λji,1, λ

j
i,2]. We now focus on

the under-frequency disconnection scenario: other settings (i.e. under-frequency
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reconnection and over-frequency disconnection/reconnection) allow for similar
conclusions. Since pdu ∈ U(µdu, ς

d
u), a(k) is a piecewise linear function, namely

a(k) =


0 f(k) < λdu,1

κf(k)− q f(k) ∈ Λdu
1 f(k) > λdu,2,

where κ, q ∈ R are constants defining the slope and intercept of the function a(k)
within its domain, as Fig. 3 depicts. An analysis of the effect of the parameter
values on the disconnection dynamics is in Appendix A.

κ
δ

λd
u,1 λd

u,2µd
u

1

0

λd
u,1 λd

u,2

1

(a) Probability distribution function of
pdu. κ represents the height, δ represents
the half-width of the domain Λd

u.

κ
δ

λd
u,1 λd

u,2µd
u

1

0

λd
u,1 λd

u,2

1

(b) Cumulative distribution function of
pdu. κ represents the slope of the linear
function confined within the domain Λd

u.

Fig. 3: Probability (left) and cumulative (right) distribution function of pdu, the
under-frequency disconnection scenario.

2.2 Frequency Dynamics and Feedback Model with Solar Energy

We briefly present the electricity grid model, derived from [24], as a second-
order transfer function, G(z,R), which depends on the amount of renewable
power R feeding the network. We denote the total load of the network as S:
notice that R ≤ S, where S = R holds in a network solely based on renewable
energy sources. The presence of renewables injecting power in the grid modifies
its inertia [25]: as discussed in [6], in this work we assume a linear relationship
between the amount of renewables in the grid and its inertia, which will appear
in the model parameters α1 and α2.

G(z,R) relates the solar power deviation, ∆PPV (k) (its input) to the fre-
quency deviation ∆f(k) (output) as

∆f(k) = G(z,R)[PPV (k)− PPV,0], (2)

where ∆f = f − f0, ∆PPV = PPV − PPV,0, and PPV,0 represents the initial
power produced by the solar panels. G(z,R) can be written as

G(z,R) =
β1z + β2

z2 + α1(R)z + α2(R)
.
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Here α1(R), α2(R), β1, β2 are parameters that are selected to render the transfer
function stable; in particular α1(R) and α2(R) linearly depend the amount of
renewable power in the network, as mentioned above.

Remark 1. The total power output of the solar population PPV (k) is propor-
tional to the portion of panels in the ON mode (x(k)), as PPV (k) ∼ P̄Nx(k),
where P̄ is assumed to be the deterministic power output of a single PV panel,
and N represents the total number of panels. The unpredictability of weather
conditions will be modelled as an additional noise. This relationship links the
network model in Eqn. (2) with the solar devices dynamics in Eqn. (1). ut

We couple in a feedback fashion the transfer function of the electric network
in Eqn. (2), expressed as a difference equation in the first line below, with the
(time-varying) Markov chain modelling the solar panels dynamics in Eqn. (1),
as:
∆f(k + 1) = α1∆f(k) + α2∆f(k − 1) + β1∆PPV (k) + β2∆PPV (k − 1) + ωf (k)

x(k + 1) = (1− a(k))x(k) + b(k)ε(k)y(k)

y(k + 1) = b(k)(1− x(k)− ε(k)y(k)),
(3)

where
PPV (k) = P̄Nx(k) + ωP (k).

Note, unlike Eqn. (2), the addition of the noise terms ωf ∈ N (0, σf ) and
ωP ∈ N (0, σP ). These quantities represent respectively the power unbalances
between generation and load that naturally occur in the electric network, and
the unpredictability of solar panels (their power output depends on characteris-
tics as weather conditions, occlusions, temperature). The term PPV (k) represents
the solar power injected in the grid at time k, and ∆PPV (k) = PPV (k)−PPV,0,
where PPV,0 is the value at the equilibrium. The dynamics of ∆PPV (k + 1) can
be computed substituting PPV (k) = ∆PPV (k) + PPV,0. Noise processes ωf (k)
and ωP (k), are made up by i.i.d. random variables, characterised by density
functions tf (·) and tP (·). ωf (·) and ωP (·) are independent of each other. Notice
that variables x and y evolve deterministically, however they represent expected
values for the temporal evolution of a Markov chain, and as such do not require
additional noise terms.

3 Formal Abstractions and Parameter Synthesis

In this section we generate a finite abstraction of the system in Eqn. (3), which
results in a dtMC, and later perform parametric model checking on the dtMC.

We first rename the variables delayed by one-step (i.e.∆f(k−1) and∆PPV (k−
1)) in order to obtain state variables that are coherent in time. We therefore in-
troduce two new state variables:

φ(k) = f(k − 1), s.t. ∆φ(k) = f(k − 1)− f0 = ∆f(k − 1),
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ξ(k) = PPV (k − 1), s.t. ∆ξ(k) = PPV (k − 1)− PPV,0 = ∆PPV (k − 1).

The model described in Eqn. (3) becomes

∆f(k + 1) = α1∆f(k) + α2∆φ(k) + β1∆PPV (k) + β2∆ξ(k) + ωf (k)
∆φ(k + 1) = ∆f(k)
x(k + 1) = (1− a(k))x(k) + b(k)ε(k)y(k)
y(k + 1) = b(k)(1− x(k)− ε(k)y(k))
PPV (k) = P̄Nx(k) + ωP (k)
ξ(k + 1) = PPV (k).

(4)

The state-space Q is thus composed of six continuous variables: x(k) and
y(k) belong to the interval X = [0, 1]; ∆f(k), ∆φ(k) belong to F = [fu, fo] =
[−0.8,+0.8] Hz, corresponding to network frequency in [49.2, 50.8] Hz (our mod-
eling framework is valid for values f ' f0); PPV (k) and ξ(k) range within P =
[0, P̄N ], i.e. between zero and the max power resulting from the sum of individ-
ual contributions. Define the global state vector as q = (∆f,∆φ, x, y, PPV , ξ) ∈
F2 × X2 × P2 = Q and introduce the noise vector ω = (ωf , ωP ).

The noise term ω(k) defines the transition probabilities of the discrete-space
Markov model in the formal abstraction procedure, as explained shortly. Con-
sider the equation PPV (k+ 1) = P̄Nx(k) +ωP (k) from the system of equations
in (4). The deterministic term P̄Nx(k) can be seen as the (time-varying) average
value of noise ωP (k) ∈ N (0, σP ), i.e. PPV (k+ 1) ∈ N (P̄Nx(k), σP ). Thus, tran-
sitions between states q and q′ are determined [15] via tω(·|q) = (tf (·|q), tP (·|q)),
the one-step transition density function of ω(k) conditional on point q, where
tf (·|q), tP (·|q) are the transition density of ωf and ωP conditional on point q,
respectively. The two densities tf and tP are decoupled, in view of the assumed
independence of the two noise processes.

3.1 Finite Abstractions via State-Space Partitioning

We now tailor to our setup a formal abstraction technique, first proposed in [15],
which is aimed at reducing a discrete-time, uncountable state-space Markov
process into a discrete-time, finite-state Markov chain M. The abstraction is
based on a state-space partitioning procedure.

To ease notation and understanding, consider a simpler system made of just
two variables x1 and x2, belonging to intervals [l1, u1] and [l2, u2] respectively,
and define the state vector q = (x1, x2) within domain Q. Choose νx, a dis-
cretisation step for both variables (for simplicity we use the same step, whilst in
principle we could select two different ν1, ν2 for x1 and x2, respectively), such
that u1 − l1 = N1νx and u2 − l2 = N2νx. In other words, divide intervals [l1, u1]
and [l2, u2] into N1 and N2 subintervals, so to obtain a (N1×N2)-rectangle grid.
Denote each rectangle as qi, i = 1, . . . N1 · N2. Fig. 4 displays an example of a
state-space partitioning procedure, where N1 = 3 and N2 = 2, and the associ-
ated computation of the abstracted Markov model. Each of the qi rectangles is
mapped into an abstract state si of a (N1 ×N2)-state Markov model.
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F1
. . . . . . Fn

2 f0
Fn+1

2
. . . . . . Fn+1

νf

0 1

X1 Xm+1

νx

x1

x2

q4 q5

q2 q3

q0 q1
x1

x2

1

(a) State-space partitioning: each
rectangle is mapped into a dtMC
state (region q4 marked unsafe).
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. . . . . . Fn

2 f0
Fn+1

2
. . . . . . Fn+1

νf

0 1

X1 Xm+1

νx

x1

x2

q4 q5

q2 q3

q0 q1
x1

x2

1

(b) Reference points of the grid.
State s4 is indicated with a cross for
visualisation purposes.
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X1 Xm+1
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q4 q5

q2 q3

q0 q1
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(c) Transition probabilities are com-
puted as the marginalised integral of
the kernel of the noise signal.

F1
. . . . . . Fn

2 f0
Fn+1

2
. . . . . . Fn+1

νf

0 1

X1 Xm+1

νx

x1

x2

q4 q5

q2 q3

q0 q1
x1

x2

1

(d) Resulting dtMC: abstract states
as partition of state space, transi-
tions as integral of noise signal.

Fig. 4: Construction of the Markov chain from a two-dimensional continuous-
state model, with N1 = 3 and N2 = 2.

νx
l1 u1q̄0 q̄1

1

Fig. 5: Computation of the transition probability P (s0, s1) in a one-dimensional
system: imagine variable x ∈ [l, u] partitioned into intervals qi, with reference
points q̄i. Each interval qi is mapped into the abstract state si. The transition
kernel density is centred at q̄0, the reference point of q0, thus P (s0, s1) is the
integral of such kernel density over q1 (region corresponding to s1). In a two-
dimensional system the integral is computed over a rectangle, whereas in higher
dimensions over a hyper-rectangle.
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Notice that in Fig. 4 we have introduced a “label” for state q4: unsafe. (Para-
metric) model checking employs labels to define specifications as objectives of
verification. In particular, parameter synthesis aims at minimising the reachabil-
ity probability of q4. Conversely, states qi, i 6= 4, are deemed safe, representing
ordinary operating conditions for the model. Subsequently we’ll refer to states
of the models as safe or unsafe. Whilst in this work we limit ourselves to the
study of safety/reachability properties, evidently in formal verification much
more complex specifications are allowed.

The transition probabilities among the generated abstract states are com-
puted as follows. Choose an arbitrary reference point q̄i within each rectangle qi,
e.g. its centre. This represents the point from which transition probabilities are
computed. Consider, as an example, the transition from region q0 to region q1,
that is, from state s0 to state s1. Imagine to centre the noise kernel over point
q̄0, as per Fig. 5. The transition probability between q0 and q1 is obtained as the
integral of the density of the noise kernel, centred at q̄0, over region q1 (the area
corresponding to s1).

Considering now the six-dimensional system in Eqn. (4), recall that each
variable belongs to the finite interval [li, ui], i = 1, . . . 6. Choose νi, a discretisa-
tion step for the six variables, such that ui − li = Niνi. In other words, divide
intervals [li, ui] into Ni subintervals, i = 1, . . . 6, so to obtain a NP -dimensional

hyper-rectangle grid, where NP =
∏6

1Ni. Index the hyper-rectangles qr =
(∆fr, ∆φr, xr, yr, ∆PPV,r, ∆ξr), r = 1, . . . NP . Define q̄r as the reference point
of the hyper-rectangle qr, e.g. its centre of mass. We therefore compute P (s, s′),
the transition probability from state s to state s′, corresponding to the transition
from region q to region q′, as

P (s, s′) =

∫
q′
tω(u|q̄)du . (5)

For reasons related to details of model checking algorithms (cf. below), whenever
a state is deemed unsafe (denoted as sU ), it is made absorbing (namely with a
self-loop probability equal to one). The verification goal of interest is safety
computation, namely the computation of the probability of remaining within a
safe region of the state-space: whenever the system enters the unsafe set, the
safety property is violated ever after (this corresponds to the impossibility of
leaving such set, as set above). The abstract Markov chainM is thus composed
of states s whose transitions are defined as per Eqn. (5).

The abstraction procedure applied to the model in (4) carries a discretisation
error: in the next section bounds for this error are calculated as a function of
the discretisation steps νf (for frequency-related variables) and νP (for power-
related variables). As argued in [15], a finer grid is expected to result in a smaller
abstraction error, however it generates a larger abstract finite state space.

3.2 Load-shedding as the Complement of a Safety Property

In this section we formally characterise load-shedding as the complement of
a safety property. Qualitatively, a safety property asserts that nothing unsafe



Reliability of Grid Dynamics with Heterogeneous Solar 11

happens during the dynamical evolution of a model. Deeming unsafe a load-
shedding scenario, the absence of load-shedding corresponds to a safety property
for the model in (4). As such, we compute the opposite, namely the probability
of an unsafe condition happening, as the complement of a safety property (the
earlier is also technically known as a reachability property [26]).

Consider the model in (4) with initial state q0 and select a discrete-time
horizon H. We assume the electric network activates the load-shedding proce-
dure whenever f(k) ≤ 49.2 Hz. Define the load-shedding set as L := {q =
(∆fr, ∆φr, xr, yr, ∆PPV,r, ∆ξr) | ∆fr ≤ −0.8 Hz}. The aim of the verification
procedure is the computation of the reachability probability of states q ∈ L,
formally

pq0(L) := Prob{q(i) ∈ L, i ∈ [1, H] | q0}. (6)

This reachability probability can be formally characterised via value functions
Vk : Q → [0, 1], k = 1, . . . H, which can be computed recursively as [26]

Vk(q) = 1L(q)

∫
Q
Vk+1(u)tω(u|q)du, with VH(q) = 1L(q), (7)

so the initial value function V1(q0) = pq0(L) is the quantity of interest. We utilise
a procedure presented in [26] to approximate the model in Eqn. (4). We therefore
define the discrete version of Eqn. (6), as

ps0(Ls) := Prob(s(i) ∈ Ls, i ∈ [1, H] | s0) = V s1 (s0),

where Ls := {f̄ ∈ F0} (consider it the dtMC-equivalent of L), V s1 (·) is the value
function computed over S similarly to Eqn. (7), and s0 represents the initial
state of the dtMC according to the procedure in Section 3.1.

If we now abstract the aggregated population of solar panels as a Markov
chain based on the procedure of Section 3, and compute the solution of Eqn.
(7) over the Markov chain ps0(Ls), then the overall approximation error can be
upper-bounded [26] as follows

|pq0(L)− ps0(Ls)| ≤ (H − 1)

[
η1
νf
σf

+ η2
νP
σP

]
,

where η1, η2 are constants (see [17]) obtained from the dynamics in Eqn. (4). This
error allows to translate the outcomes of the verification procedure (obtained
from the Markov model) over the concrete population model, and in particular
to compute the unknown quantity pq0(L). As mentioned above, νf and νP can
be tuned to reduce the abstraction error to a desired precision [26].

3.3 Parameter Synthesis: Guaranteeing Model Safety

Whilst the verification procedure describe in the previous section aims at check-
ing a property against a given concrete (non-parameterised) model, the parame-
ter synthesis problem studies which parameter values correspond to models that
verify the considered property. For a set Θ of n parameters θ1, ..., θn, we define
a parametric dtMC as follows:
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Definition 2 (p-dtMC). A parametric dtMC over the set Θ of parameters is
a tuple D(Θ) = (S, s0, P [Θ]), where S and s0 are as before, and P [Θ] : S ×S →
[0, 1] is the parametric probability transition matrix.

Definition 3 (Instance dtMC). For p-dtMC(Θ) and valuation θ̄, D(Θ)[θ̄] (or
simply D[θ̄]) is the instance dtMC of D(Θ) obtained by instantiating θi ∈ Θ with
θ̄(θi).

The formal abstraction technique described above defines a Markov chain
M[θ] depending on θ = (µji , ς

j
i , S,R), where µji and ςji are the mean and variance

of pji , i ∈ {u, o}, j ∈ {d, r}, and S and R are the total load the network and
penetration of renewable sources, respectively (recall that R ≤ S).

We define the synthesis region Θs as the set of instantiations, such that each
instance (or point) θ = (θ1, ..., θn) induces an instance p-dtMC[θ], for which the
safety property is satisfied. The aim is to find (at least an approximation of) the
synthesis region Θs. Notice that in general it is non-trivial to get the exact shape
of such a parametric region. As a consequence, we introduce a discretisation of
the parameter space and exhaustively search the satisfying parameter values
over the discretisation.

Define the range of parameters as Θrange. Given the parameter set Θ and
its range Θrange, we specify a discretization step δi ∈ R > 0 for each parameter
θi, (i = 1, . . . n), such that uθi − lθi = Qiδi, where the interval [lθi , u

θ
i ] repre-

sents the range of values that parameters θi can take. Namely, the range [lθi , u
θ
i ]

is divided into Qi intervals, thus partitioning Θrange into a grid of
∏n
i=1Qi

hyper-rectangles. We define for each of these hyper-rectangles a reference point
θ̄(i) = (θ̄1, ..., θ̄n) that induces an instance dtMC[θ̄(i)]: notice that this implicitly
means that instead of checking each point of the (continuous) region Θrange, we
exclusively evaluate the sample points θ̄(i).

Interestingly, there is no linear mapping between any of the parameters in θ =
(µji , ς

j
i , S,R) and the transition probability matrix P : varying such parameters

causes a shifting of the elements P (s, s′) rather than linearly influencing them,
as the following example shows.

Example 1. Recall the system in Eqn. (4), and consider, for simplicity, solely

x(k + 1) = (1− a(k)) · x(k) + b(k)ε(k)y(k),

in an under-frequency scenario. Let us analyse the effect of the distribution vari-
ance ςdu. Focus on the (1 − a(k)) term: it is a function of f(k), precisely of the

deviation of f(k) from f0, as a(k) =
∫ +∞
f(k)

pdu(u)du. Imagine the abstraction pro-

cedure to be coarse such that Λdu, the domain of pdu, is divided into three intervals.
According to this partitioning choice, the value of ςdu and the value of the fre-
quency f(k), the transition ON-to-OFF can take three values, as shown in Fig.
6: values being (0, 0.5, 1) or (0.25, 0.5, 0.75). Increasing the variance “spreads”
the values of a(k) within the partition intervals. Considering the mean value of
pdu, the domain Λdu shifts closer or away from f0 when the mean is increased or
decreased. Varying parameters θi changes in a non-linear way (the function is
indeed an integral) the transition probabilities. ut
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Fig. 6: If pdu is modeled with a small variance (left), transition probability assume
values (0, 0.5, 1), whereas a high variance (right) leads to (0.25, 0.5, 0.75).

4 Case Study: Reliability Analysis for the Grid Dynamics
in the Presence of Solar Energy Sources

In this section we translate the theory presented above and present results on
a reliability study for the model of the electric network with PV generation,
under different scenarios. We synthesise parameters θ = (µji , ς

j
i , S,R), i ∈ {u, o},

j ∈ {d, r}, using the Markov model resulting from the procedure illustrated in
Section 3.

Following the ENTSO-E guidance [24], we have tested an in-feed loss of 3
GW in global networks with respectively low demand (S = 220 GW) and high
demand (S = 440 GW) scenarios. The network model parameters in Eqn. (2)
are selected according to [24]. Power and frequency values are normalised (per
unit) relative to S and to 50 Hz. Power production of a single panel P̄ is set to
3 kW. The variance σP is set to 1% of P̄ . The variance σf is set to 0.05. Time
delays are modelled in accordance with [7, 8]: the minimum reconnection delay
is set to 20 seconds, the maximum to 40 seconds.

Parameter synthesis tests are implemented using MATLAB software. Given
the size of the state space, the discretisation steps νf (for frequency-related vari-
ables) and νP (for power-related variables) are set to 0.01 and 0.05 respectively.
The grid frequency is sampled at a rate of 0.2 s, consistently with the require-
ments introduced in [27]. The analysis is focused on a few seconds following an
incident: simulation time is set to 20 s. After this time interval, we reasonably
assume that the primary and secondary network control would kick in and would
stabilise the signal f(·) around its nominal value. The discrete time horizon is
thus composed of 100 steps: results of every scenario in the following section
carry an abstraction error of 0.1, as per Section 3.2. Parameters θ are synthe-
sised satisfying a maximum load-shedding probability formula, as ps0(Ls) ≤ ζ,
where ζ = 0.1: if θ satisfies this property, we include it in Θs.

4.1 Injection of Faults as Generation Losses

As anticipated above, Transmission Systems Operators are tasked with ensuring
the safe operation of the grid, and are thus interested in formal guarantees on
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its dynamics, and in reliable forecasting of potentially problematic situations,
such as issues related to frequency responses after a generation loss incident.
Renewables, and solar power in particular, reduce the total inertia of the power
network: this results in a network that is more prone to oscillations [5], and thus
to possibly higher frequency deviations.

We assume the initial condition to be f(0) = f0, with the population of
panels in active (ON) mode (x(0) = 1). A generation-loss incident is modelled
as a negative step injected into the power dynamics. Assuming that an incident
of magnitude M occurs at time k = k̄, the dynamics of f(k̄ + 1) become

∆f(k̄+ 1) = α1∆f(k̄) +α2∆φ(k̄) + β1(∆PPV (k̄)−M) + β2∆ξ(k̄) +ωf (k̄), (8)

and then evolve at time (k̄ + 2) as

∆f(k̄ + 2) = α1∆f(k̄ + 1) + α2∆φ(k̄ + 1) + β1(∆PPV (k̄ + 1)−M)+
+β2(∆ξ(k̄ + 1)−M) + ωf (k̄ + 1).

(9)

Equations (8) and (9) display two different deterministic drifts. Their abstraction
by discretisation leads to two different abstract Markov chainsM1 andM2, with
different transition matrices P1 and P2 but with the same state space. In our
tests we consider that k̄ = 0, namely we assume that the incident occurs at
the beginning of the time horizon when all quantities are at rest. This setup
results in a time-varying safety verification problem: given the initial probability
distribution vector π0, the dynamics evolve as

π1 = π0 · P1, πH = π1 · (P2)H−1,

where πH is a vector with the probabilities of being in each state after H steps.

4.2 Outcomes of the Parameter Synthesis Problem and Analysis

Our tests encompass several industrially relevant scenarios, in which we vary:
(1) the mean and variance of pji , i ∈ {u, o}, j ∈ {d, r}; (2) the total solar
penetration in the network R; and (3) the total load of the network S. Recall
from Eqn. (2) that solar penetration modifies the network transfer function. The
considered ranges for the parameters are summarised in Table 2. Solar penetra-
tion accounts for 10% – 40% of the network load, which well represents current
values for solar power contribution (e.g. Germany’s 2017 average production is
around 7%, reaching peaks of 60% in Summer [2]). In this work we consider a
single, heterogeneous population, namely every solar device belongs to a given
pji distribution. We might consider two (or more) populations, each with diverse
parameters: Appendix B discusses two modelling approaches to encompass this.

The threshold distributions for If are uniform, as discussed in Section 2.1:

the mean value µji ideally represents specific regulations on disconnection and

reconnection, whereas the variance ςji represents small manufacturing deviations
from the desired value. Finally, increasing variance of pd and pr reflects a more
heterogeneous population (in terms of If thresholds).
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Load Demand [GW] Renewable [% S] µd
u [Hz] (step: 0.05) ςdu [Hz2] (step: 0.25)

220, 440 10, 20, 30, 40 [49.5, 49.8] [1, 7.5] · 10−3

Table 2: Parameters range over set Θrange

Renewables µd
u [Hz]

R [% S] 49.5 49.55 49.6 49.65 49.7 49.75 49.8

10 sat sat 6 2.5 – – –

20 sat sat 4.5 1.5 – – –

30 sat sat 2.5 – – – –

40 sat 4.5 – – – – –

Table 3: Boundaries of synthesis region Θs with S = 220 GW. The table shows
the highest value of ςdu that satisfies the property; entries sat and − indicate
that all values and no values, respectively, satisfy the property.

Figures 7 and 8 depict the load-shedding probability in the presence of 20%
solar penetration, with a network load S = 220 GW and S = 440 GW, respec-
tively, where values of µdu range within [49.5, 49.8] Hz and those of ςdu are within
[1, 7.5] Hz2. A higher ςdu causes a higher number of panels to have disconnection
thresholds closer to f0, as per Fig. 6 in Section 3.3. Consequently, a greater por-
tion of the population is likely to disconnect under frequency deviations, causing
the network frequency to decrease. As intuitive, parameter S plays a major role
in the outcome of the verification. Table 3 shows the “boundary points” of Θs,
namely the largest values of ςdu for each µdu that satisfy the property. In a low de-
mand setting (S = 220 GW), the load-shedding probability is essentially binary
(values close to zero or to one), whereas in a high demand scenario (S = 440
GW) the load-shedding probability grows smoothly with µdu and ςdu, never reach-
ing the critical value ζ (thus for S = 440 GW, Θrange = Θs). A high-demand
network is thus more resilient to incidents, since it has a greater inertia, and an
incident has proportionally less impact: the maximum load-shedding probability
value is around 1.5%. The tests with a wider penetration of solar contributions
(10%, 30%, 40% of the total), as shown in Fig. 9, indicate that the load-shedding
probability increases when a larger population is connected to the grid: this is
intuitive, as more renewable energy renders the frequency response more oscil-
latory, and thus more likely to deviate from f0.

The abstraction procedure introduced in Section 3 carries an error of 0.1
with the tested νf and νP . Parameters in θ are synthesised accounting for a
maximum load-shedding probability (in the abstract Markov model) of ζ = 0.1.
As such, using parameters within the set Θs, the load-shedding probability on
the concrete model (as in Eqn. (3)) results to be pq0(L) ≤ 0.2 . As discussed, a
refinement of νf and νP allows reducing the error between the real and abstract
systems to match any desired precision [26].
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Fig. 7: Load-shedding probability
with S = 220 GW, R = 0.2S, µdu
and ςdu as per Table 2.

Fig. 8: Load-shedding probability
with S = 440 GW, R = 0.2S, µdu
and ςdu as per Table 2.

5 Conclusions and Future Work

In this work we have developed a formal approach to synthesise model parame-
ters, which represent the heterogeneity of a population of solar panels connected
to the electricity grid: this parameter synthesis yields models that verify a prop-
erty of interest. We have presented a formal parameter synthesis study of grid
reliability under significant energy generation from renewables. The focus of the
verification procedure has been on a safety property, describing the requirement
that the network frequency remains within given bounds over a finite time hori-
zon (absence of a load-shedding scenario) under a power generation loss. Trans-
mission Systems Operators can employ the presented technique to monitor the
distribution and characteristics of solar panels over the grid, and to assess its
reliability in the case of incidents.

Future work includes extensions to several populations of solar devices, using
different distribution of disconnection/reconnection thresholds, and modelling
the solar output as a stochastic equation depending on weather forecast.
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A Analysis of the Effect of Parameters on Stability

In this section we study the effect of parameters µji and ςji (strictly related to
constants κ, q), on the Markov chain model and on the associated probability
of load shedding. As previously stated, our interest lies on a generation-loss
incident scenario. The worst-case analysis is carried out considering the following
situation: the whole solar population is at risk of disconnection when the incident
occurs. We therefore envision that at time k, all panels are ON, i.e. x(k) = 1
and y(k) = 0. Noting that κf(k) + q ≤ 1 ∀k, the model in Equation (3) assumes
three separate modes as

f(k + 1) = α1f(k) + α2f(k − 1)β1x(k) + β2x(k − 1)

x(k + 1) =


x(k) f(k) > λdu,2

(1− κf(k)− q)x(k) f(k) ∈ Λdu
0 f(k) < λdu,1.

(10)

Substitute φ(k) = f(k)− f0 and χ(k) = x(k)−x0, and compute the equilibrium
points (denoted φ, χ) as

φ =
β1 + β2

1− α1 − α2
· χ, χ =


χ = χ f(k) > λdu,2

c1χ
2 + c2χ+ c3 f(k) ∈ Λdu

χ = −x0 f(k) < λdu,1,

where

c1 = −κ β1 + β2
1− α1 − α2

, c2 = −q − κx0
β1 + β2

1− α1 − α2
, c3 = −qx0.

Rewrite κ and q as a function of µdu and δdu (cf. Fig. 3) as

κ = − 1

2δdu
, q =

1

2δdu
(µdu + δdu).

Note that κ is negative because we consider the under-frequency scenario, i.e.
λdu,1 < µdu < λdu,2. Substitute κ and q, so the equilibrium point for f(k) ∈ Λdu
becomes

β1 + β2
1− α1 − α2

χ2 +

[
−δdu −

(
µdu −

β1 + β2
1− α1 − α2

x0

)]
χ− δdu − µdu = 0.

Replacing numerical values in the above equation and computing the Jacobian at
the equilibrium points, we obtain solutions χ1,2 that are located at |χ1| > 1 and
|χ2| ≤ 1: they characterise unstable and (locally) stable dynamics, respectively.
Unfortunately, solely the unstable equilibrium point can be modified by varying
parameters µdu or δdu. In other words, when the frequency signal enters the domain
Λdu of the distribution, the population of panels will disconnect, regardless of the
parameter values. Therefore, one can only reduce δdu, thus effectively reducing
the chance that the disconnection begins.
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B Models for Heterogeneous Populations of Solar Panels

In this section we analyse the difference between two approaches to describe a
heterogeneous population of solar panels. We focus on a population composed
by two clusters: let us define x1 and x2 as the probability of being ON of the
two clusters, respectively. Recall from Eqn. (1) the dynamics of x(k) and let us
consider solely x(k + 1) = a(k)x(k). We present two approaches to describe the
clusters, considering them independent of each other, namely

x1(k + 1) =

∫
A1

p1 · x1(k), x2(k + 1) =

∫
A2

p2 · x2(k), (11)

or by including them into a single variable xT as

xT (k + 1) =

[
c1

∫
A1

p1 + c2

∫
A2

p2

]
xT (k), (12)

where c1, c2 ∈ [0, 1] represent the contribution of the two populations, and c1 +
c2 = 1;

∫
A1
p1 and

∫
A2
p2 represent integrals over regions corresponding to x1

and x2, and where p1 and p2 represent the distribution concerning x1 and x2,
respectively. Considering Eqn. (11), let us define the weighted sum x̄ as

x̄(k) = c1x1(k) + c2x2(k), (13)

where c1 and c2 derive from Eqn. (12). The L1-norm of their difference defines
the aggregation error eA(k)

eA(k + 1) = |xT (k + 1)− x̄(k + 1)| =

=

∣∣∣∣[c1 ∫
A1

p1 + c2

∫
A2

p2

]
xT (k)− c1x1(k + 1)− c2x2(k + 1)

∣∣∣∣ .
To ease the notation, define c1

∫
A1
p1 := γ1 and c2

∫
A2
p2 := γ2. Substituting x1

and x2 from Eqn. (12), eA(k + 1) becomes

|γ1 (xT (k)− x1(k)) + γ2 (xT (k)− x2(k))| ≤ γ1 + γ2.

Notice that eA(k) = 0 if and only if x1(k) = xT (k) = x2(k). Recall that x1 and
x2 denote the active portion of cluster 1 and 2, respectively. If the two clusters
are non-coincident x1 and x2 assume the same value only when x1 = 1 = x2 or
x1 = 0 = x2, namely within the safe set on the unsafe set. Frequency values in
between the safe set and the unsafe set cause the two variables to have different
value, thus eA > 0. Analyse now the worst case scenario, i.e. when x1 = 0 and
x2 = 1, and the error eA takes its maximum value. If variable x1 = 0, given the
feedback nature of the interconnection between panels and network, and from
Eqn. (11), we must have

∫
A1
p1 = 0. In this case, the error becomes

eA(k + 1) = |γ2 (xT (k)− x2(k))| ≤ γ2 < 1.


