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Abstract. Stochastic switched systems are a class of continuous-time dynami-
cal models with probabilistic evolution over a continuous domain and control-
dependent discrete dynamics over a finite set of locations (modes). As such, they
represent a subclass of general stochastic hybrid systems. While the literature has
witnessed recent progress in the dynamical analysis and controller synthesis for
the stability of stochastic switched systems, more complex and challenging objec-
tives related to the verification of and the synthesis for logic specifications (prop-
erties expressed as formulas in linear temporal logic or as automata on infinite
strings) have not been formally investigated as of yet. This paper addresses these
complex objectives by constructively deriving approximately equivalent (bisim-
ilar) symbolic models of stochastic switched systems. More precisely, a finite
symbolic model that is approximately bisimilar to a stochastic switched system is
constructed under some dynamical stability assumptions on the concrete model.
This allows formally synthesizing controllers (switching signals) valid for the
concrete system over the finite symbolic model, by means of mature techniques
in the literature.

1 Introduction
Stochastic hybrid systems are general dynamical systems comprising continuous and
discrete dynamics interleaved with probabilistic noise and stochastic events [7]. Be-
cause of their versatility and generality they carry great promise in many safety crit-
ical applications [7], including power networks, automotive and financial engineer-
ing, air traffic control, biology, telecommunications, and embedded systems. Stochastic
switched systems are a relevant class of stochastic hybrid systems: they consist of a fi-
nite set of modes of operation (locations), each of which is associated to a probabilistic
dynamical behavior; further, their discrete dynamics, in the form of location changes,
are governed by a deterministic control signal. However unlike general stochastic hy-
brid systems they do not present probabilistic discrete dynamics (random switch of
locations), nor continuous resets upon location change.

It is known [18, 21] that switched systems can be endowed with global dynamics
that are not characteristic of the behavior of any of their modes: for instance, global
instability can arise by proper choice of the discrete switches between a set of stable
dynamical locations. This is one of the many features that makes switched systems theo-
retically interesting. With focus on stochastic switched systems, despite recent progress
on basic dynamical analysis focused on stability properties [9], there are no notable
results in terms of more complex objectives, such as those dealing with verification or
(controller) synthesis for logical specifications. Specifications of interest are expressed
as formulas in linear temporal logic or via automata on infinite strings, and as such they
are not amenable to classical approaches from the literature on stochastic processes.

A promising direction to investigate these general properties is the use of symbolic
models. Symbolic models are abstract descriptions of the original dynamics, where each



abstract state (or symbol) corresponds to an aggregate of states in the concrete system.
When a finite symbolic model is obtained and formally put in relationship with the orig-
inal system, one can leverage mature techniques for controller synthesis over the dis-
crete model [12, 20, 30] to automatically synthesize controllers for the original system.
Towards this goal, a relevant approach is the construction of finite-state symbolic mod-
els that are bisimilar to the original system. Unfortunately, the class of continuous (time
and space) dynamical systems admitting exactly bisimilar finite-state symbolic models
is quite restrictive [4, 17, 25] and in particular it covers exclusively non-probabilistic
models. Therefore, rather than requiring systems equivalence, one can resort to approx-
imate bisimulation relations [14], which introduce a metric between the trajectories of
the abstract and the concrete models, and require boundedness in time of this distance.

The construction of approximately bisimilar symbolic models has been recently
studied for non-probabilistic continuous control systems, possibly endowed with non-
determinism [19, 26, 27], as well as for non-probabilistic switched systems [15], but
stochastic systems, particularly when endowed with switched dynamics, have only been
partially explored. With focus on stochastic systems, few existing results deal with ab-
stractions of discrete-time processes [2, 3, 6], whereas results for continuous-time mod-
els are limited to probabilistic rectangular hybrid automata [28] and stochastic dynam-
ical systems under some contractivity assumptions [1]. In summary to the best of our
knowledge, there is no comprehensive work on the construction of finite bisimilar ab-
stractions for continuous-time stochastic systems with control actions or with switched
dynamics. A recent result [31] by the authors investigates this goal over stochastic sys-
tems with no discrete dynamics.

The main contribution of this work consists in showing the existence and the con-
struction of approximate bisimilar symbolic models for incrementally stable stochastic
switched systems. Incremental stability is a stability assumption applied to the stochas-
tic switched systems under study: it can be characterized in terms of a so-called Lya-
punov function (which we shall see can either be a single global function or a set of
location-dependent ones). It is an extension of a similar notion developed for non-
probabilistic switched systems [15] in the sense that the results for non-probabilistic
switched systems represent a special case of the results in this paper when the con-
tinuous dynamics are degenerate (they present no noise). The results are illustrated
over the synthesis of controllers (location switching signals) for two examples. First,
we consider a room temperature control problem (admitting a global – or common –
Lyapunov function) that is subject to a constraint expressed by a finite automaton, and
show a switched controller synthesis for the temperature regulation toward a desired
level. The second example illustrates the use of multiple Lyapunov functions (one per
location). The proof of the statements in this work are provided in the Appendix.

2 Stochastic Switched Systems
2.1 Notation

The identity map on a set A is denoted by 1A. If A is a subset of B, we denote
by ıA : A ↪→ B or simply by ı the natural inclusion map taking any a ∈ A to
ı(a) = a ∈ B. The symbols N, N0, Z, R, R+ and R+

0 denote the set of natural, non-
negative integer, integer, real, positive, and nonnegative real numbers, respectively. The
symbols In, 0n, and 0n×m denote the identity matrix, zero vector, and zero matrix in
Rn×n, Rn, and Rn×m, respectively. Given a vector x ∈ Rn, we denote by xi the i–th el-
ement of x, and by ‖x‖ the infinity norm of x, namely, ‖x‖ = max{|x1|, |x2|, ..., |xn|},
where |xi| denotes the absolute value of xi. Given a matrix M = {mij} ∈ Rn×m,
we denote by ‖M‖ the infinity norm of M , namely, ‖M‖ = max1≤i≤n

∑m
j=1 |mij |,



and by ‖M‖F the Frobenius norm of M , namely, ‖M‖F =
√

Tr (MMT ), where
Tr(P ) =

∑n
i=1 pii for any P = {pij} ∈ Rn×n. Notations λmin(A) and λmax(A) stand

for the minimum and maximum eigenvalues of matirx A, respectively.
The closed ball centered at x ∈ Rn with radius ε is defined by

Bε(x) = {y ∈ Rn | ‖x− y‖ ≤ ε}. A set B ⊆ Rn is called a box if B =
∏n
i=1[ci, di],

where ci, di ∈ R with ci < di for each i ∈ {1, . . . , n}. The span of a boxB is defined as
span(B) = min {|di − ci| | i = 1, . . . , n}. For a box B and η ≤ span(B), define the
η-approximation [B]η = {b ∈ B | bi = kiη for some ki ∈ Z, i = 1, . . . , n}. Note that
[B]η 6= ∅ for any η ≤ span(B). Geometrically, for any η ∈ R+ with η ≤ span(B)
and λ ≥ η the collection of sets {Bλ(p)}p∈[B]η is a finite covering of B, i.e.,
B ⊆

⋃
p∈[B]η

Bλ(p). By defining [Rn]η = {a ∈ Rn | ai = kiη, ki ∈ Z, i = 1, · · · , n},
the set

⋃
p∈[Rn]η Bλ(p) is a countable covering of Rn for any η ∈ R+ and λ ≥

η. We extend the notions of span and approximation to finite unions of boxes
as follows. Let A =

⋃M
j=1Aj , where each Aj is a box. Define span(A) =

min {span(Aj) | j = 1, . . . ,M}, and for any η ≤ span(A), define [A]η =
⋃M
j=1[Aj ]η .

Given a set X , a function d : X ×X → R+
0 is a metric on X if for any x, y, z ∈

X , the following three conditions are satisfied: i) d(x, y) = 0 if and only if x = y;
ii) d(x, y) = d(y, x); and iii) (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z). A
continuous function γ : R+

0 → R+
0 , is said to belong to classK if it is strictly increasing

and γ(0) = 0; γ is said to belong to class K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A
continuous function β : R+

0 × R+
0 → R+

0 is said to belong to classKL if, for each fixed
s, the map β(r, s) belongs to class K∞ with respect to r and, for each fixed nonzero
r, the map β(r, s) is decreasing with respect to s and β(r, s) → 0 as s→∞. We
identify a relation R ⊆ A×B with the map R : A→ 2B defined by b ∈ R(a) iff
(a, b) ∈ R. Given a relation R ⊆ A×B, R−1 denotes the inverse relation defined by
R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}.

2.2 Stochastic switched systems model

Let (Ω,F ,P) be a probability space endowed with a filtration F = (Fs)s≥0 satisfying
the usual conditions of completeness and right-continuity [16, p. 48]. Let (Ws)s≥0 be a
q-dimensional F-Brownian motion [24].

Definition 1. A stochastic switched system is a tuple Σ = (Rn,P,P, F,G), where

– Rn is the continuous state space;
– P = {1, · · · ,m} is a finite set of modes, or locations;
– P is a subset of S(R+

0 ,P), which denotes the set of piecewise constant functions
(by convention continuous from the right) from R+

0 to P, and characterized by a
finite number of discontinuities on every bounded interval in R+

0 ;
– F = {f1, · · · , fm} such that, for all p ∈ P, fp : Rn → Rn is a continuous function

satisfying the following Lipschitz assumption: there exists a constant L ∈ R+ such
that, for all x, x′ ∈ Rn: ‖fp(x)− fp(x′)‖ ≤ L‖x− x′‖;

– G = {g1, · · · , gm} such that for all p ∈ P, gp : Rn → Rn×q is a continuous
function satisfying the following Lipschitz assumption: there exists a constant Z ∈
R+ such that for all x, x′ ∈ Rn: ‖gp(x)− gp(x′)‖ ≤ Z‖x− x′‖.
Let us discuss the semantics of model Σ. For any given p ∈ P, we denote by Σp the

subsystem of Σ defined by the stochastic differential equation

d ξ = fp(ξ) d t+ gp(ξ) dWt, (1)



where fp is known as the drift, gp as the diffusion, and again Wt is Brownian motion.
A solution process of Σp exists and is uniquely determined owing to the assumptions
on fp and on gp [24, Theorem 5.2.1, p. 68].

For the global model Σ, a continuous-time stochastic process ξ : Ω × R+
0 → Rn is

said to be a solution process of Σ if there exists a switching signal υ ∈ P satisfying

d ξ = fυ(ξ) d t+ gυ(ξ) dWt, (2)

P-almost surely (P-a.s.) at each time t ∈ R+
0 when υ is constant. Let us emphasize

that υ is a piecewise constant function defined over R+
0 and taking values in P, which

simply dictates in which location the solution process ξ is at any time t ∈ R+
0 . Notice

that the mode changes are deterministic in that they are fully encompassed by a given
function υ in P and that, whenever a location is changed (discontinuity in υ), the value
of the process ξ is not reset on Rn – thus ξ is a continuous function of time.

We further write ξaυ(t) to denote the value of the solution process at time t ∈ R+
0

under the switching signal υ from initial condition ξaυ(0) = a P-a.s., in which a is a
random variable that is measurable in F0. Note that in general the stochastic switched
system Σ may start from a random initial condition.

Finally, note that a solution process of Σp is also a solution process of Σ corre-
sponding to the constant switching signal υ(t) = p, for all t ∈ R+

0 . We also use ξap(t)
to denote the value of the solution process of Σp at time t ∈ R+

0 from the initial condi-
tion ξap(0) = a P-a.s.

3 Notions of Incremental Stability
This section introduces some stability notions for stochastic switched systems, which
generalize the concepts of incremental global asymptotic stability (δ-GAS) [5] for dy-
namical systems and of incremental global uniform asymptotic stability (δ-GUAS) [15]
for non-probabilistic switched systems. The main results presented in this work rely on
the stability assumptions discussed in this section.

Definition 2. The stochastic subsystem Σp is incrementally globally asymptotically
stable in the qth mean (δ-GAS-Mq), where q ∈ N, if there exists a KL function βp
such that for any t ∈ R+

0 , and any Rn-valued random variables a and a′ that are
measurable in F0, the following condition is satisfied:

E [‖ξap(t)− ξa′p(t)‖q] ≤ βp
(
E
[∥∥a− a′∥∥q] , t) . (3)

Intuitively, the notion requires (a higher moment of) the distance between trajecto-
ries to be bounded and decreasing in time. It can be easily checked that a δ-GAS-Mq

stochastic subsystem Σp is δ-GAS [5] in the absence of any noise. Further, note that
when fp(0n) = 0n and gp(0n) = 0n×q (drift and diffusion terms vanish at the origin),
then δ-GAS-Mq implies GAS-Mq [9], which means that all the trajectories of Σp con-
verge in the qth mean to the (constant) trajectory ξ0np(t) = 0n (the origin). We extend
the notion of δ-GAS-Mq to stochastic switched systems as follows.

Definition 3. A stochastic switched system Σ = (Rn,P,P, F,G) is incrementally
globally uniformly asymptotically stable in the qth mean (δ-GUAS-Mq), where q ∈ N,
if there exists a KL function β such that for any t ∈ R+

0 , any Rn-valued random vari-
ables a and a′ that are measurable inF0, and any switching signal υ ∈ P , the following
condition is satisfied:

E [‖ξaυ(t)− ξa′υ(t)‖q] ≤ β
(
E
[∥∥a− a′∥∥q] , t) . (4)



Essentially Definition 3 extends Definition 2 uniformly over any possible switching
signal υ. As expected, the notion generalizes known ones in the literature: it can be
easily seen that a δ-GUAS-Mq stochastic switched system Σ is δ-GUAS [15] in the
absence of any noise and that, whenever fp(0n) = 0n and gp(0n) = 0n×q for all
p ∈ P, then δ-GUAS-Mq implies GUAS-Mq [9].

For non-probabilistic systems the δ-GAS property can be characterized by scalar
functions defined over the state space, known as Lyapunov functions [5]. Along these
lines, we describe δ-GAS-Mq in terms of the existence of incremental Lyapunov func-
tions.

Definition 4. Define the diagonal set ∆ as: ∆ = {(x, x) | x ∈ Rn}. Consider a
stochastic subsystemΣp and a continuous function Vp : Rn×Rn → R+

0 that is smooth
on {Rn × Rn}\∆. Function Vp is called an incremental global asymptotic stability
(δ-GAS-Mq) Lyapunov function in the qth mean for Σp, where q ∈ N, if there exist K∞
functions αp, αp, and a constant κp ∈ R+, such that

(i) αp (resp. αp) is a convex (resp. concave) function;
(ii) for any x, x′ ∈ Rn, αp

(
‖x− x′‖q

)
≤ Vp(x, x′) ≤ αp

(
‖x− x′‖q

)
;

(iii) for any x, x′ ∈ Rn, such that x 6= x′,

LVp(x, x′) := [∂xVp ∂x′Vp]

[
fp(x)
fp(x

′)

]
+

1

2
Tr
([

gp(x)
gp(x

′)

] [
gTp (x) g

T
p (x

′)
] [

∂x,xVp ∂x,x′Vp
∂x′,xVp ∂x′,x′Vp

])
≤ −κpVp(x, x′).

The operator L is the infinitesimal generator associated to the stochastic subsystem (1)
[24, Section 7.3], which characterizes the derivative of the expected value of functions
of the process with respect to time. For non-probabilistic systems, L allows computing
the conventional function derivative with respect to time. The symbols ∂x and ∂x,x′
denote first- and second-order partial derivatives with respect to x and x′, respectively.

While condition (i) is not required in the context of non-probabilistic systems [5],
the following theorem clarifies why such a condition is necessary for a stochastic sub-
system, and describes δ-GAS-Mq in terms of existence of a δ-GAS-Mq Lyapunov func-
tion.

Theorem 1. A stochastic subsystem Σp is δ-GAS-Mq if it admits a δ-GAS-Mq Lya-
punov function.

As qualitatively stated in the Introduction, it is known that a non-probabilistic
switched system, whose subsystems are all δ-GAS, may exhibit some unstable be-
haviors under fast switching signals [15]. The same occurrence can affect stochastic
switched systems endowed with δ-GAS-Mq subsystems. The δ-GUAS property of non-
probabilistic switched systems can be established by using a common (or global) Lya-
punov function, or alternatively via multiple functions that are mode dependent [15].
This leads to the following extensions for δ-GUAS-Mq of stochastic switched systems.

Assume that for any p ∈ P, the stochastic subsystem Σp admits a δ-GAS-Mq Lya-
punov function Vp, satisfying conditions (i)-(iii) in Definition 4 with K∞ functions αp,
αp, and a constant κp ∈ R+. Let us introduce functions α and α and constant κ for
use in the rest of the paper. Let the K∞ functions α, α, and the constant κ be defied as
α = min {α1, · · · , αm}, α = max {α1, · · · , αm}, and κ = min {κ1, · · · , κm}. First
we show a result based on the existence of a common Lyapunov function, characterized
by functions α = α1 = · · · = αm and α = α1 = · · · = αm, and parameter κ.



Theorem 2. Consider a stochastic switched system Σ = (Rn,P,P, F,G). If there ex-
ists a function V that is a common δ-GAS-Mq Lyapunov function for all the subsystems
{Σ1, · · · , Σm}, then Σ is δ-GUAS-Mq .

The condition conservatively requires the existence of a single function V that is
valid for all the subsystems Σp. When this common δ-GAS-Mq Lyapunov function V
fails to exist, the δ-GUAS-Mq property ofΣ can still be established by resorting to mul-
tiple δ-GAS-Mq Lyapunov functions (one per mode) over a restricted set of switching
signals. More precisely, from Definition 1 let Sτd

(
R+

0 ,P
)

denote the set of switching
signals υ with dwell time τd ∈ R+

0 , meaning that υ ∈ S
(
R+

0 ,P
)

has dwell time τd if the
switching times t1, t2, · · · (occurring at the discontinuity points of υ) satisfy t1 > τd
and ti − ti−1 ≥ τd, for all i ≥ 2. We now show a result based on multiple Lyapunov
functions.

Theorem 3. Let τd ∈ R+
0 , and consider a stochastic switched system Στd =

(Rn,P,Pτd , F,G) with Pτd ⊆ Sτd
(
R+

0 ,P
)
. Assume that for any p ∈ P, there ex-

ists a δ-GAS-Mq Lyapunov function Vp for subsystem Στd,p and that in addition there
exits a constant µ ≥ 1 such that

∀x, x′ ∈ Rn, ∀p, p′ ∈ P, Vp(x, x
′) ≤ µVp′(x, x′). (5)

If τd > logµ/κ, then Στd is δ-GUAS-Mq .

The above result can be practically interpreted as the following fact: global sta-
bility is preserved under subsystem stability and enough time spent in each location.
Theorems 1, 2 and 3 provide sufficient conditions for certain stability properties, how-
ever they all hinge on finding proper Lyapunov functions. We look next into special
instances where these functions are known explicitly or can be easily computed based
on the model dynamics. The first result provides a sufficient condition for a particular
function Vp to be a δ-GAS-Mq Lyapunov function for a stochastic subsystem Σp, when
q = 1, 2 (first or second mean).

Lemma 1. Consider a stochastic subsystem Σp. Let Pp ∈ Rn×n be a symmetric posi-
tive definite matrix, and the function Vp : Rn × Rn → R+

0 be defined as follows:

Vp(x, x
′) :=

(
Ṽ (x, x′)

)q/2
=

(
1

q

(
x− x′

)T
Pp
(
x− x′

))q/2
, (6)

and satisfy

(x− x′)TPp(fp(x)− fp(x′))+
1

2

∥∥∥√Pp (gp(x)− gp(x′))∥∥∥2
F
≤ −κp

(
Vp(x, x

′)
)2/q

, (7)

or, if fp is differentiable, satisfy

(x− x′)TPp∂xfp(z)(x− x′)+
1

2

∥∥∥√Pp (gp(x)− gp(x′))∥∥∥2
F
≤ −κp

(
Vp(x, x

′)
)2/q

, (8)

for all x, x′, z in Rn, and for some constant κp ∈ R+. Then Vp is a δ-GAS-Mq Lyapunov
function for Σp, when q ∈ {1, 2}.

The next result provides a condition that is equivalent to (7) or to (8) for affine
stochastic subsystems Σp (that is, for subsystems with affine drift and diffusion terms)
in the form of a linear matrix inequality (LMI), which can be easily solved numerically.



Corollary 1. Consider a stochastic subsystem Σp, where for any x ∈ Rn fp(x) :=
Apx + bp for some Ap ∈ Rn×n, bp ∈ Rn, and gp(x) := [σ1px σ2px · · · σqpx] for
some σip ∈ Rn×n. Then, function Vp in (6) is a δ-GAS-Mq Lyapunov function for Σp if
there exists a positive constant κ̂p ∈ R+ satisfying the following LMI:

PpAp +ATp Pp +

q∑
i=1

σTipPpσip ≺ −κ̂pPp. (9)

Notice that Corollary 1 allows obtaining tighter upper bounds for the inequalities
(3) - (4) for any p ∈ P, by selecting appropriate matrices Pp satisfying the LMI in (9).

4 Symbolic Models and Approximate Equivalence Relations
We employ the notion of system to provide an alternative description of stochastic
switched systems that can be later directly related to their symbolic models.

Definition 5. A system S is a tuple S = (X,X0, U,−→, Y,H), where X is a set of
states, X0 ⊆ X is a set of initial states, U is a set of inputs, −→⊆ X × U × X is a
transition relation, Y is a set of outputs, and H : X → Y is an output map.

We write x
u- x′ if (x, u, x′) ∈−→. If x

u- x′, we call state x′ a u-successor,
or simply a successor, of state x. For technical reasons, we assume that for each x ∈ X
and u ∈ U , there is some u-successor of x – let us remark that this is always the case
for the considered systems later in this paper.

A system S is said to be

– metric, if the output set Y is equipped with a metric d : Y × Y → R+
0 ;

– finite, if X is a finite set;
– deterministic, if for any state x ∈ X and any input u, there exists exactly one
u-successor.

For a system S = (X,X0, U,−→, Y,H) and given any state x0 ∈
X0, a finite state run generated from x0 is a finite sequence of transitions:
x0

u0- x1
u1- x2

u2- · · · un−2- xn−1
un−1- xn, such that xi

ui- xi+1

for all 0 ≤ i < n. A finite state run can be trivially extended to an infinite state run as
well.

We recall the notion of approximate (bi)simulation relation, introduced in [14],
which is useful when analyzing or synthesizing controllers for deterministic systems.

Definition 6. Let Sa = (Xa, Xa0, Ua,
a

- , Ya, Ha) and Sb =

(Xb, Xb0, Ub,
b
- , Yb, Hb) be metric systems with the same output sets Ya = Yb

and metric d. For ε ∈ R+
0 , a relation R ⊆ Xa ×Xb is said to be an ε-approximate

simulation relation from Sa to Sb if the following three conditions are satisfied:

(i) for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with (xa0, xb0) ∈ R;
(ii) for every (xa, xb) ∈ R we have d(Ha(xa), Hb(xb)) ≤ ε;

(iii) for every (xa, xb) ∈ R we have that xa
ua

a
- x′a in Sa implies the existence of

xb
ub

b
- x′b in Sb satisfying (x′a, x

′
b) ∈ R.



A relation R ⊆ Xa ×Xb is said to be an ε-approximate bisimulation relation between
Sa and Sb if R is an ε-approximate simulation relation from Sa to Sb and R−1 is an
ε-approximate simulation relation from Sb to Sa.

System Sa is ε-approximately simulated by Sb, or Sb ε-approximately simulates Sa,
denoted by Sa �εS Sb, if there exists an ε-approximate simulation relation from Sa to
Sb. System Sa is ε-approximate bisimilar to Sb, denoted by Sa ∼=εS Sb, if there exists an
ε-approximate bisimulation relation R between Sa and Sb.

Note that when ε = 0, the condition (ii) in the above definition is changed to
(xa, xb) ∈ R if and only if Ha(xa) = Hb(xb), and R becomes an exact simulation
relation, as introduced in [23]. Similarly, when ε = 0 and whenever applicable, R
translates into an exact bisimulation relation.

5 Symbolic Models for Stochastic Switched Systems
This section contains the main contributions of this work. We show that for any stochas-
tic switched systemΣ (resp.Στd as in Theorem 3), admitting a common (resp. multiple)
δ-GAS-Mq Lyapunov function(s), and for any precision level ε ∈ R+, we can construct
a finite system that is ε-approximate bisimilar to Σ (resp. Στd ). In order to do so, we
use systems as an abstract representation of stochastic switched systems, capturing all
the information contained in them. More precisely, given a stochastic switched system
Σ = (Rn,P,P, F,G), we define an associated metric system

S(Σ) = (X,X0, U, - , Y,H),

where:

– X is the set of all Rn-valued random variables defined on (Ω,F ,P);
– X0 is the set of all Rn-valued random variables that are measurable over the triv-

ial sigma-algebra F0, i.e., the system starts from a deterministic initial condition,
which is equivalently a random variable with a Dirac probability distribution;

– U = P× R+;
– x

p,τ- x′ if x and x′ are measurable in Ft and Ft+τ , respectively, for some
t ∈ R+

0 , and there exists a solution process ξ : Ω × R+
0 → Rn of Σ satisfying

ξ(t) = x and ξxp(τ) = x′ P-a.s.;
– Y is the set of all Rn-valued random variables defined on (Ω,F ,P);
– H = 1X .

We assume that the output set Y is equipped with the natural metric d(y, y′) =
E
[
‖y − y′‖q

]
, for any y, y′ ∈ Y and some q ∈ N. Let us remark that the set of states of

S(Σ) is uncountable and that S(Σ) is a deterministic system in the sense of Definition
5, since (cf. Subsection 2.2) its solution process is uniquely determined.

In subsequent developments, we will work with a sub-system of S(Σ) obtained
by restricting the transitions of S(Σ) over times of the form iτ , with i ∈ N0

and where τ is a given sampling time. This can be seen as a time discretization
or a sampling of S(Σ). This restriction is practically motivated by the fact that
the switching in the original model Σ has to be controlled by a digital platform
with a given clock period (τ ). More precisely, given a stochastic switched system
Σ = (Rn,P,P, F,G) and a sampling time τ ∈ R+, we define the associated sys-
tem Sτ (Σ) =

(
Xτ , Xτ0, Uτ ,

τ
- , Yτ , Hτ

)
, where Xτ = X , Xτ0 = X0, Uτ = P,

Yτ = Y , Hτ = H , and



– xτ
p

τ
- x′τ if xτ and x′τ are measurable, respectively, in Fkτ and F(k+1)τ for

some k ∈ N0, and there exists a solution process ξ : Ω×R+
0 → Rn ofΣ satisfying

ξ(kτ) = xτ and ξxτp(τ) = x′τ P-a.s..

Note that a finite state run x0
u0

τ
- x1

u1

τ
- ...

uN−1

τ
- xN , of Sτ (Σ), where ui ∈ P

and xi = ξxi−1ui−1
(τ) for i = 1, · · · , N , captures the trajectory of the stochastic

switched system Σ at times t = 0, τ, · · · , Nτ , started from the deterministic initial
condition x0 and resulting from a switching signal υ obtained by the concatenation of
the locations ui

(
i.e. υ(t) = ui−1 for any t ∈ [(i− 1)τ, i τ [

)
, for i = 1, · · · , N .

Before introducing the symbolic model for the stochastic switched system, we pro-
ceed with the following lemma, which provides an upper bound on the distance (in the
1st mean) between the solution processes of Σp and a corresponding non-probabilistic
system obtained by disregarding the diffusion term (gp).

Lemma 2. [31] Consider a stochastic subsystem Σp such that gp(0n) = 0n×q . Sup-
pose that the function Vp in (6) satisfies (7) or (8) for Σp. For any x ∈ Rn and any
p ∈ P, we have

E
[∥∥ξxp(t)− ξxp(t)∥∥] ≤ hp(t, gp)e−κpt,

where κp is the same constant introduced in (7) or (8), ξxp is the solution of the

ordinary differential equation (ODE) ξ̇xp(t) = fp
(
ξxp(t)

)
starting from the initial

condition x, and the nonnegative valued function hp tends to zero as t → 0 or as
supx {‖gp(x)‖} → 0. Moreover, for gp not identically equal to zero, hp tends to +∞
as t→ +∞ with at most a linear rate.

Similarly as done above, the following result shows that for a linear affine subsystem
Σp (that is, with affine drift and linear diffusion terms) function hp(t, gp) has an explicit
form.

Corollary 2. [31] Consider a stochastic subsystem Σp, where for any x ∈ Rn
fp(x) := Apx + bp, for some Ap ∈ Rn×n, bp ∈ Rn, and gp(x) :=
[σ1px σ2px · · · σqpx], for some σip ∈ Rn×n. If the dynamics of Σp are restricted
to a compact subset Dp ⊂ Rn, then we obtain

hp(t, gp) =√√√√nλmax

(∑q
i=1 σ

T
ip
Ppσip

)
λmin (Pp)

·

√√√√∫ t

0

(
‖eAps‖ sup

x∈Dp
{‖x‖}+

∫ s

0

‖eAprbp‖ dr

)2

dse−κpt.

For later use, we introduce function h(t, G) = max {h1(t, g1), · · · , hm(t, gm)} for all
t ∈ R+

0 .
In order to show the main results, we raise the following supplementary assumption

on the δ-GAS-Mq Lyapunov functions Vp: for all p ∈ P, there exists aK∞ and concave
function γ̂p such that

|Vp(x, y)− Vp(x, z)| ≤ γ̂p (‖y − z‖) , (10)

for any x, y, z ∈ Rn. This assumption is not restrictive, provided we are interested in
the dynamics of Σ on a compact subset D ⊂ Rn, which is often the case in practice.



For all x, y, z ∈ D, by applying the mean value theorem to the function y → Vp(x, y),
one gets

|Vp(x, y)− Vp(x, z)| ≤ γ̂p (‖y − z‖) , where γ̂p(r) =

(
max

(x,y)∈D\∆

∥∥∥∥∂Vp(x, y)∂y

∥∥∥∥) r.
In particular, for the δ-GAS-M1 Lyapunov function Vp defined in (6), we obtain γ̂p(r) =
λmax(Pp)√
λmin(Pp)

r [29, Proposition 10.5]. For later use, let us define the K∞ function γ̂ such

that γ̂ = max {γ̂1, · · · , γ̂m}. (Note that, for the case of a common Lyapunov function,
we have: γ̂ = γ̂1 = · · · = γ̂m.) We proceed presenting the main results of this work.

5.1 Common Lyapunov function

We first show a results based on the existence of a common δ-GAS-Mq Lyapunov
function for subsystems Σ1, · · · , Σm. Consider a stochastic switched system Σ =
(Rn,P,P, F,G), and a pair q = (τ, η) of quantization parameters, where τ is the sam-
pling time and η is the state space quantization. Given Σ and q, consider the following
system:

Sq(Σ) = (Xq, Xq0, Uq,
q
- , Yq, Hq), (11)

where Xq = [Rn]η , Xq0 = [Rn]η , Uq = P, and

– xq
p

q
- x′q if

∥∥∥ξxqp(τ)− x
′
q

∥∥∥ ≤ η, where ξ̇xqp(t) = fp

(
ξxqp(t)

)
;

– Yq is the set of all Rn-valued random variables defined on (Ω,F ,P);
– Hq = ı : Xq ↪→ Yq.

In order to relate models, the output set Yq is taken to be that of the stochastic
switched system Sτ (Σ). Therefore, in the definition ofHq, the inclusion map ı is meant,
with a slight abuse of notation, as a mapping from a deterministic grid point to a random
variable with a Dirac probability distribution centered at the grid point. As argued in
[29], there is no loss of generality to alternatively assume that Yq = Xq and Hq = 1Xq .

The transition relation of Sq(Σ) is well defined in the sense that for every xq ∈
[Rn]η and every p ∈ P there always exists x′q ∈ [Rn]η such that xq

p

q
- x′q. This

can be seen since by definition of [Rn]η , for any x̂ ∈ Rn there always exists a state
x̂′ ∈ [Rn]η such that ‖x̂ − x̂′‖ ≤ η. Hence, for ξxqp(τ) there always exists a state

x′q ∈ [Rn]η satisfying
∥∥∥ξxqp(τ)− x

′
q

∥∥∥ ≤ η.
We can now present one of the main results of the paper, which relates the existence

of a common δ-GAS-Mq Lyapunov function for the subsystems Σ1, · · · , Σm to the
construction of a finite symbolic model that is approximately bisimilar to the original
system.
Theorem 4. Let Σ = (Rn,P,P, F,G) be a stochastic switched system admitting
a common δ-GAS-Mq Lyapunov function V , as defined in Lemma 1, for subsystems
Σ1, · · · , Σm, when q ∈ {1, 2}. Moreover, assume that V satisfies (10) for some K∞
function γ̂. For any ε ∈ R+, and any double q = (τ, η) of quantization parameters
satisfying

α (ηq) ≤ α(ε), (12)

e−κτα(ε) + γ̂
(
h(τ,G)e−κτ + η

)
≤ α(ε), (13)

we have that Sq(Σ) ∼=εS Sτ (Σ).



Recall that Sτ (Σ) denotes an alternative (sampled) representation of the model Σ.
It can be readily seen that when we are interested in the dynamics of Σ on a compact
subsetD ⊂ Rn and for a given precision ε, there always exists a sufficiently large value
of τ and a small value of η such that η ≤ span(D) and the conditions in (12) and (13)
are satisfied. For a given fixed sampling time τ , the precision ε is lower bounded by:

ε > α−1

(
γ̂
(
h(τ,G)e−κτ

)
1− e−κτ

)
. (14)

One can easily verify that the lower bound on ε in (14) goes to zero as τ goes to infinity.
Furthermore, one can try to minimize the lower bound on ε in (14) by appropriately
choosing matrices Pp in (6), for any p ∈ P.

Note that the results in [15, Theorem 4.1] for non-probabilistic models are fully
recovered by the statement in Theorem 4 if the stochastic switched system Σ is not
affected by any noise, implying that hp(t, gp) is identically zero for all p ∈ P, and that
the δ-GAS-Mq common Lyapunov function simply reduces to being δ-GAS. As a side
remark, we are currently investigating the extension of Theorem 4 to the cases where
the common Lyapunov function V is not necessarily of the form of (6).

5.2 Multiple Lyapunov functions

If a common δ-GAS-Mq Lyapunov function does not exist, one can still attempt com-
puting approximately bisimilar symbolic models by seeking location-dependent Lya-
punov functions and by restricting the set of switching signals using a dwell time τd.
For simplicity and without loss of generality, we assume that τd is an integer multiple
of τ , i.e. that there exists N ∈ N such that τd = Nτ .

Given a stochastic switched system Στd = (Rn,P,Pτd , F,G) and a sampling time
τ ∈ R+, we define the system

Sτ (Στd) = (Xτ , Xτ0, Uτ ,
τ
- , Yτ , Hτ ),

where:

– Xτ = X × P × {1, · · · , N − 1}, where X is the set of all Rn-valued random
variables defined on the probability space (Ω,F ,P);

– Xτ0 = X0 × P × {0}, where X0 is the set of all Rn-valued random variables
that are measurable with respect to the trivial sigma-algebra F0, i.e., the stochastic
switched system starts from a deterministic initial condition;

– Uτ = P;
– (xτ , p, i)

p

τ
- (x′τ , p

′, i′) if xτ and x′τ are measurable, respectively, in Fkτ and

F(k+1)τ for some k ∈ N0, and there exists a solution process ξ : Ω×R+
0 → Rn of

Σ satisfying ξ(kτ) = xτ and ξxτp(τ) = x′τ P-a.s. and one of the following holds:
• i < N − 1, p′ = p, and i′ = i + 1: switching is not allowed because the time

elapsed since the latest switch is strictly smaller than the dwell time;
• i = N−1, p′ = p, and i′ = N−1: switching is allowed but no location switch

occurs;
• i = N − 1, p′ 6= p, and i′ = 0: switching is allowed and a location switch

occurs.
– Yτ = X is the set of all Rn-valued random variables defined on (Ω,F ,P);
– Hτ is the map taking (xτ , p, i) ∈ X × P× {1, · · · , N − 1} to xτ ∈ X .



We assume that the output set Yτ is equipped with the natural metric d(y, y′) =
E
[
‖y − y′‖q

]
, for any y, y′ ∈ Yτ and some q ∈ N. One can readily verify that the

output trajectories of Sτ (Στd) are the output trajectories of Sτ (Σ) corresponding to
switching signals with dwell time τd = Nτ .

Consider a stochastic switched system Στd = (Rn,P,Pτd , F,G) and a pair q =
(τ, η) of quantization parameters, where τ is the sampling time and η is the state space
quantization. Given Στd and q, consider the following system:

Sq (Στd) = (Xq, Xq0, Uq,
q
- , Yq, Hq), (15)

where Xq = [Rn]η × P× {0, · · · , N − 1}, Xq0 = [Rn]η × P× {0}, Uq = P, and

– (xq, p, i)
p

q
-
(
x′q, p

′, i′
)

if
∥∥∥ξxqp(τ)− x

′
q

∥∥∥ ≤ η, where ξ̇xqp(t) = fp

(
ξxqp(t)

)
and one of the following holds:
• i < N − 1, p′ = p, and i′ = i+ 1;
• i = N − 1, p′ = p, and i′ = N − 1;
• i = N − 1, p′ 6= p, and i′ = 0.

– Yq = X is the set of all Rn-valued random variables defined on (Ω,F ,P);
– Hq is the map taking (xq, p, i) ∈ [Rn]η×P×{1, · · · , N − 1} to a random variable

with a Dirac probability distribution centered at xq.

Similar to what we showed in the case of a common Lyapunov function, the
transition relation of system Sq (Στd) is well defined in the sense that for every
(xq, p, i) ∈ [Rn]η × P × {0, · · · , N − 1} there always exists

(
x′q, p

′, i′
)
∈ [Rn]η ×

P× {0, · · · , N − 1} such that (xq, p, i)
p

q
-
(
x′q, p

′, i′
)
.

We present the second main result of the paper, which relates the existence of mul-
tiple Lyapunov functions for a stochastic switched system to that of a symbolic model.

Theorem 5. Consider τd ∈ R+
0 , and a stochastic switched system Στd =

(Rn,P,Pτd , F,G) such that τd = Nτ , for some N ∈ N. Let us assume that for all
p ∈ P, there exists a δ-GAS-Mq Lyapunov function Vp for subsystem Στd,p, as defined
in Lemma 1, when q ∈ {1, 2}. Moreover, assume that (5) and (10) hold for some µ ≥ 1
and concave K∞ functions γ̂1, · · · , γ̂m. If τd > logµ/κ, for any ε ∈ R+, and any pair
q = (τ, η) of quantization parameters satisfying

α (ηq) ≤ α(ε), (16)

γ̂
(
h(τ,G)e−κτ + η

)
≤

1
µ
− e−κτd

1− e−κτd

(
1− e−κτ

)
α(ε), (17)

we have that Sq (Στd)
∼=εS Sτ (Στd).

It can be readily seen that when we are interested in the dynamics of Στd on a
compact subset D ⊂ Rn and for a precision ε, there always exists sufficiently large
value of τ and small value of η such that η ≤ span(D) and the conditions in (16) and
(17) are satisfied. For a given fixed sampling time τ , the precision ε is lower bounded
by:

ε ≥ α−1

(
γ̂
(
h(τ,G)e−κτ

)
1− e−κτ

· 1− e−κτd
1
µ
− e−κτd

)
. (18)

The properties of the bound in (18) are analogous to those of the case of a com-
mon Lyapunov function. Similarly, Theorem 5 subsumes [15, Theorem 4.2] over non-
probabilistic models.



Symbolic models are prone to be easily model checked or employed towards con-
troller synthesis. It is of interest to understand how abstract controllers can be used over
the concrete models. The next proposition elucidates how a controller Scont synthesized
to solve a simulation game over Sq(Σ) (resp. Sq(Στd)) can be refined to a controller for
Sτ (Σ) (resp. Sτ (Στd)). A detailed description of the feedback composition (denoted
by ‖) and of its properties for metric systems can be found in [29].

Proposition 1. [29] Consider a stochastic switched system Σ (resp. Στd),
and a specification described by a deterministic system Sspec =(
Xspec, Xspec0, Uspec,

spec
- , Yspec, Hspec

)
, where Xspec is a finite subset of

Rn, Xspec0 ⊆ Xspec, Uspec = {uspec},
spec
- ⊆ Xspec × Uspec × Xspec, Yspec is

the set of all Rn-valued random variables defined on the probability space (Ω,F ,P),
and Hspec = ı : Xspec ↪→ Yspec. Assume that Sτ (Σ) ∼=εS Sq(Σ) and Scont is
synthesized to solve exactly a simulation game for Sq(·) and a specification Sspec:
Scont ‖ Sq �0

S Sspec (resp. Scont ‖ Sq
∼=0
S Sspec). Then, using S′cont = Scont ‖ Sq as

a controller for Sτ (·), we obtain: S′cont ‖ Sτ �εS Sspec (resp. S′cont ‖ Sτ ∼=εS Sspec).

Remark 1 (Relationship with notions in the literature). The approximate bisimulation
notion in Definition 6 is structurally different than the probabilistic version discussed
for finite state, discrete-time labeled Markov chains in [11], which can also be extended
to continuous-space processes as in [10]. The notion in this work can be instead re-
lated to the approximate probabilistic bisimulation notion discussed in [1], which lower
bounds the probability that the Euclidean distance between abstract and concrete mod-
els remains close over a given time horizon: both notions hinge on distances over tra-
jectories, rather than over transition probabilities as in [10, 11]. As a first step in this
direction, the authors are working on establishing a probabilistic approximate bisimu-
lation relation between Sτ (Σ) (resp. Sτ (Στd)) and Sq(Σ) (resp. Sq (Στd)) point-wise
in time [31, Lemma 5.8]: this result is sufficient to work with LTL specifications that
need to be satisfied at a single time instance, such as next (©) and reach (♦).

6 Case Study
We experimentally demonstrate the effectiveness of the results. In the example below,
the computation of the abstractions Sq(Σ) has been performed via the software tool
Pessoa [22] on a laptop with CPU 2GHz Intel Core i7. Controllers enforcing the spec-
ification were found by using standard algorithms from game theory [20, 30], as imple-
mented in Pessoa. The terms W i

t , i = 1, 2, denote the standard Brownian motion.
Σ is a simple thermal model of a two-room building, borrowed from [8, 13], affected

by noise and described by the following stochastic differential equations:{
d ξ1 = (α21 (ξ2 − ξ1) + αe1 (Te − ξ1) + αf (Tf − ξ1) (p− 1)) d t+ σ1ξ1 dW

1
t ,

d ξ2 = (α12 (ξ1 − ξ2) + αe2 (Te − ξ2)) d t+ σ2ξ2 dW
2
t ,

(19)
where ξ1 and ξ2 denote the temperature in each room, Te = 10 (degrees Celsius) is the
external temperature and Tf = 50 is the temperature of a heater that can be switched off
(p = 1) or on (p = 2): these two operations correspond to the locations P of the model,
whereas the state space is R2. The drifts fp and diffusion terms gp, p = 1, 2, can be sim-
ply written out of (19) and are affine. The parameters of the drifts are chosen based on
the ones in [13] as follows: α21 = α12 = 5×10−2, αe1 = 5×10−3, αe2 = 3.3×10−3,
and αf = 8.3× 10−3. The noise parameters σ1 = 0.001, and σ2 = 0.001 are chosen to



be similar to those in [8]. We work on the subset D = [20, 22]× [20, 22] ⊂ R2 of the
state space of Σ. Within D one can conservatively overapproximate the multiplicative
noises in (19) as additive noises with variance between 0.02 and 0.022.

It can be readily verified that the function V (x1, x2) =
√

(x1 − x2)T (x1 − x2) is
a common δ-GAS-M1 Lyapunov function for Σ, satisfying the LMI condition (9) with
Pp = I2, and κ̂p = 0.0083, for p ∈ {1, 2}.

For a given sampling time τ = 20 time units, using inequality (14) the precision
ε is lower bounded by the quantity 1.09. While one can reduce this lower bound by
increasing the sampling time, as discussed later the empirical bound computed in the
experiments is significantly lower than the theoretical bound ε = 1.09. For a selected
precision ε = 1.1, the discretization parameter η for Sq(Σ), computed from Theorem
4, equals to 0.003. This has lead to a symbolic system Sq(Σ) with a resulting number of
states equal to 895122. The CPU time employed to compute the abstraction amounted
to 506.32 seconds.

Consider the objective to design a controller (switching policy) forcing the first
moment of the trajectories of Σ to stay within D. This objective can be encoded via
the LTL specification 2D. Furthermore, to add an additional discrete component to the
problem, we assume that the heater has to stay in the off mode (p = 1) at most one time
slot every two slots. A time slot is an interval of the form [kτ, (k + 1)τ [, with k ∈ N
and where τ is the sampling time. Possible switching policies are for instance:

|12|12|12|12|12|12|12| · · · , |21|21|21|21|21|21|21| · · · , |12|21|22|12|12|21|22| · · · ,

where 2 denotes a slot where the heater is on (p = 2) and 1 denotes a slot where
heater is off (p = 1). This constraint on the switching policies can be represented
by the finite system (labeled automaton) in Figure 1, where the allowed initial states
are distinguished as targets of a sourceless arrow. The CPU time for synthesizing the
controller amounted to 21.14 seconds. In Figure 2, we show several realizations of
closed-loop trajectory ξx0υ stemming from initial condition x0 = (21, 21) (left panel),
as well as the corresponding evolution of switching signal υ (right panel), where the
finite system is initialized in state q1. Furthermore, in Figure 2 (middle panels), we show
the average value over 100 experiments of the distance in time of the solution process
ξx0υ to the set D, namely ‖ξx0υ(t)‖D, where the point-to-set distance is defined as
‖x‖D = infd∈D ‖x − d‖. Notice that the average distance is significantly lower than
the precision ε = 1.1, as expected since the conditions based on Lyapunov functions
can lead to conservative bounds. (As discussed in Corollary 1, bounds can be improved
by seeking optimized Lyapunov functions.)

q1

1

q2

2

Fig. 1: Finite system describing the constraint over the switching policies. The lower part of the
states are labeled with the outputs (2 and 1) denoting whether heater is on (p = 2) or off (p = 1).

A second example using multiple Lyapunov functions is provided in the Appendix.

7 Conclusions and Future Work
This work has shown that any stochastic switched system Σ (resp. Στd ), admitting a
common (multiple) δ-GAS-Mq Lyapunov function(s), as in (6), and evolving within a
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Fig. 2: Several realizations of the closed-loop trajectory ξx0υ with initial condition x0 = (21, 21)
(left panel). Average values (over 100 experiments) of the distance of the solution process ξx0υ
to the set D, in different vertical scales (middle panels). Evolution of the synthesized switching
signal υ (right panel), where the finite system initialized from state q1.

compact set of states, admits a finite approximately bisimilar symbolic model Sq(Σ)
(Sq(Στd)). The constructed symbolic model can be used to synthesize controllers en-
forcing complex logic specifications, expressed via linear temporal logic or as automata
on infinite strings.

The main limitation of the design methodology developed in this paper lies in the
cardinality of the set of states of the computed symbolic model, which relates to the
continuous dimension of the concrete system: the authors are currently investigating
several different techniques to address this limitation. Furthermore, the authors are cur-
rently working toward extensions of the results over general stochastic hybrid systems.

References
1. A. Abate. A contractivity approach for probabilistic bisimulations of diffusion processes. in

Proceedings of 48th IEEE Conference on Decision and Control, pages 2230–2235, Decem-
ber 2009.

2. A. Abate, S. Amin, M. Prandini, J. Lygeros, and S. Sastry. Computational approaches to
reachability analysis of stochastic hybrid systems. In Proceedings of the 10th International
Conference on Hybrid Systems: Computation and Control, HSCC’07, pages 4–17, Berlin,
Heidelberg, 2007. Springer-Verlag.

3. A. Abate, A. D’Innocenzo, and M. D. Di Benedetto. Approximate abstractions of stochastic
hybrid systems. IEEE Transactions on Automatic Control, 56(11):2688–2694, Nov 2011.

4. R. Alur, T. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstractions of hybrid
systems. Proceedings of the IEEE, 88(7):971–984, July 2000.

5. D. Angeli. A Lyapunov approach to incremental stability properties. IEEE Transactions on
Automatic Control, 47(3):410–21, March 2002.

6. S. I. Azuma and G. J. Pappas. Discrete abstraction of stochastic nonlinear systems: a bisim-
ulation function approach. in Proceedings of American Control Conference (ACC), pages
1035–1040, June 2010.

7. H. A. P. Blom and J. Lygeros. Stochastic Hybrid Systems: Theory and Safety Critical
Applications, volume 337 of Lecture Notes in Control and Information Sciences (LNCIS).
Springer-Verlag, 2006.



8. D. S. Callaway. Tapping the energy storage potential in electric loades to deliver load follow-
ing and regulation, with application to wind energy. Energy Conversion and Management,
50:1389–1400, May 2009.

9. D. Chatterjee and D. Liberzon. Stability analysis of deterministic and stochastic switched
systems via a comparison principle and multiple Lyapunov functions. SIAM Journal on
Control and Optimization, 45(1):174–206, March 2006.

10. J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labeled Markov processes.
Information and Computation, 179(2):163–193, Dec. 2002.

11. J. Desharnais, F. Laviolette, and M. Tracol. Approximate analysis of probabilistic processes:
logic, simulation and games. In Proceedings of the International Conference on Quantitative
Evaluation of SysTems (QEST 08), pages 264–273, Sept. 2008.

12. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In Proceedings
of the 32nd Annual Symposium on Foundations of Computer Science, SFCS ’91, pages 368–
377, Washington, DC, USA, 1991. IEEE Computer Society.

13. A. Girard. Low-complexity switching controllers for safety using symbolic models. in
Proceedings of 4th IFAC Conference on Analysis and Design of Hybrid Systems, pages 82–
87, 2012.

14. A. Girard and G. J. Pappas. Approximation metrics for discrete and continuous systems.
IEEE Transactions on Automatic Control, 25(5):782–798, May 2007.

15. A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic models for incremen-
tally stable switched systems. IEEE Transactions on Automatic Control, 55(1):116–126,
January 2009.

16. I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, volume 113 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 2nd edition, 1991.

17. G. Lafferriere, G. J. Pappas, , and S. Sastry. O-minimal hybrid systems. Mathematics of
Control, Signals, and Systems, 13(1):1–21, March 2000.

18. D. Liberzon. Switching in Systems and Control. Systems & Control: Foundations & Appli-
cations. Birkhäuser, 2003.
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8 Appendix
Proof (of Theorem 1). The proof is a consequence of the application of Gronwall’s
inequality and of Ito’s lemma [24, p. 80 and 123]. Assume that there exists a δ-GAS-
Mq Lyapunov function in the sense of Definition 4. For any t ∈ R+

0 , and any Rn-valued
random variables a and a′ that are measurable in F0, we obtain

E [Vp(ξap(t), ξa′p(t))] = E

[
Vp(a, a

′) +

∫ t

0

LVp(ξap(s), ξa′p(s))ds
]

≤ E
[
Vp(a, a

′) +

∫ t

0

(−κpVp(ξap(s), ξa′p(s))) ds
]

≤ −κp
∫ t

0

E [Vp(ξap(s), ξa′p(s))] ds+E
[
Vp(a, a

′)
]
,

which, by virtue of Gronwall’s inequality, leads to

E [Vp(ξap(t), ξa′p(t))] ≤ E[Vp(a, a′)]e−κpt.

Hence, using property (ii) in Definition 4, we have

αp (E [‖ξap(t)− ξa′p(t)‖q]) ≤ E
[
αp (‖ξap(t)− ξa′p(t)‖

q)
]
≤ E [Vp (ξap(t), ξa′p(t))]

≤ E
[
Vp(a, a

′)
]
e−κpt ≤ E

[
αp
(∥∥a− a′∥∥q)] e−κpt ≤ αp (E [∥∥a− a′∥∥q]) e−κpt,

where the first and last inequalities follow from property (i) and Jensen’s inequality [24,
p. 310]. Since αp ∈ K∞, we obtain

E [‖ξap(t)− ξa′p(t)‖q] ≤ α−1
p

(
αp
(
E
[
‖a− a′‖q

])
e−κpt

)
.

Therefore, by introducing function βp as

βp (r, s) := α−1
p

(
αp (r) e

−κps) ,
condition (3) is satisfied. Hence, the stochastic subsystem Σp is δ-GAS-Mq . ut

Proof (of Theorem 2). The proof is a consequence of the application of Gronwall’s
inequality and of Ito’s lemma [24, p. 80 and 123]. For any Rn-valued random variables
a and a′ that are measurable in F0, any switching signal υ ∈ P , and for all t ∈ R+

0
where υ is continuous, we have

LV (ξaυ(t), ξa′υ(t)) ≤ −κV (ξaυ(t), ξa′υ(t)).

By using continuity of V and for all t ∈ R+
0 , one gets

E [V (ξaυ(t), ξa′υ(t))] ≤ E
[
V (a, a′) +

∫ t

0

(−κV (ξaυ(s), ξa′υ(s))) ds

]
≤ −κ

∫ t

0

E [V (ξaυ(s), ξa′υ(s))] ds+E
[
V (a, a′)

]
,

which, by virtue of Gronwall’s inequality, leads to

E [V (ξaυ(t), ξa′υ(t))] ≤ E[V (a, a′)]e−κt.



Since here K∞ functions α and α are convex and concave, respectively, and using
Jensen’s inequality, we have

α (E [‖ξaυ(t)− ξa′υ(t)‖q]) ≤ E [α (‖ξaυ(t)− ξa′υ(t)‖q)] ≤ E [V (ξaυ(t), ξa′υ(t))]

≤ E
[
V (a, a′)

]
e−κt ≤ E

[
α
(∥∥a− a′∥∥q)] e−κt ≤ α (E [∥∥a− a′∥∥q]) e−κt.

Since α ∈ K∞, we obtain

E [‖ξaυ(t)− ξa′υ(t)‖q] ≤ α−1
(
α (E [‖a− a′‖q]) e−κt

)
,

for all t ∈ R+
0 . Then condition (4) holds with the function β(r, s) = α−1 (α(r)e−κs).

ut
Proof (of Theorem 3). The proof was inspired by the proof of Theorem 2.8 in [15]. We
show the result for the case that switching signals have infinite number of discontinuities
(switching times). A proof for the case of finite discontinuities can be written in a similar
way. Let a and a′ be any Rn-valued random variables that are measurable in F0, υ ∈
Pτd , t0 = 0, and let pi+1 ∈ P denotes the value of the switching signal on the open
interval (ti, ti+1), for i ∈ N0. Using (iii) in Definition 4 for all i ∈ N0 and t ∈
(ti, ti+1), one gets

LVpi+1 (ξaυ(t), ξa′υ(t)) ≤ −κVpi+1 (ξaυ(t), ξa′υ(t)) .

Similar to the proof of Theorem 2, for all i ∈ N0 and t ∈ [ti, ti+1], we have

E
[
Vpi+1

(ξaυ(t), ξa′υ(t))
]
≤ E

[
Vpi+1

(ξaυ(ti), ξa′υ(ti))
]
e−κ(t−ti). (20)

Particularly, for t = ti+1 and from (5), it can be checked that for all i ∈ N0:

E
[
Vpi+2(ξaυ(ti+1), ξa′υ(ti+1))

]
≤ µe−κ(ti+1−ti)E

[
Vpi+1(ξaυ(ti), ξa′υ(ti))

]
.

Using this inequality, we prove by induction that for all i ∈ N0

E
[
Vpi+1(ξaυ(ti), ξa′υ(ti))

]
≤ µie−κtiE [Vp1(a, a

′)] . (21)

From (20) and (21), for all i ∈ N0 and t ∈ [ti, ti+1], one obtains

E
[
Vpi+1

(ξaυ(t), ξa′υ(t))
]
≤ µie−κtE [Vp1(a, a

′)] .

Since the switching signal υ has dwell time τd, then ti ≥ iτd and hence for all t ∈
[ti, ti+1], t ≥ iτd. Since µ ≥ 1, then for all i ∈ N0 and t ∈ [ti, ti+1], one has

µi = ei log µ ≤ e(log µ/τd)t.

Therefore, for all i ∈ N0 and t ∈ [ti, ti+1], we get

E
[
Vpi+1

(ξaυ(t), ξa′υ(t))
]
≤ e((log µ/τd)−κ)tE [Vp1(a, a

′)] .

Using functions α, α and Jensen’s inequality, and for all t ∈ R+
0 , where t ∈ [ti, ti+1]

for some i ∈ N0, we have

α (E [‖ξaυ(t)− ξa′υ(t)‖q]) ≤ αpi+1
(E [‖ξaυ(t)− ξa′υ(t)‖q]) ≤ E

[
αpi+1

(‖ξaυ(t)− ξa′υ(t)‖q)
]

≤ E
[
Vpi+1(ξaυ(t), ξa′υ(t))

]
≤ e((log µ/τd)−κ)tE

[
Vp1(a, a

′)
]
≤ e((log µ/τd)−κ)tE

[
αp1

(
‖a− a′‖q

)]
≤ e((log µ/τd)−κ)tαp1

(
E
[
‖a− a′‖q

])
≤ e((log µ/τd)−κ)tα

(
E
[∥∥a− a′∥∥q]) .



Therefore, for all t ∈ R+
0

E [‖ξaυ(t)− ξa′υ(t)‖q] ≤ α−1
(
e((log µ/τd)−κ)tα (E [‖a− a′‖q])

)
.

Then condition (4) holds with the function β(r, s) = α−1
(
α(r)e((log µ/τd)−κ)s

)
which

is a KL function because by assumption logµ/τd − κ < 0. The same inequality can
be shown for switching signals with a finite number of discontinuities. Therefore, the
stochastic switched system Στd is δ-GUAS-Mq . ut
Proof (of Lemma 1). It is not difficult to check that the function Vp in (6) satisfies
properties (i) and (ii) of Definition 4 with functions αp(y) := 1

q (λmin (Pp))
q/2

y and

αp(y) :=
1
q (nλmax (Pp))

q/2
y. It then suffices to verify property (iii). We verify prop-

erty (iii) for the case that fp is differentiable and using condition (8). The proof, using
condition (7), is completely similar by just removing the inequality in the proof includ-
ing derivative of fp. By the definition of Vp in (6), for any x, x′ ∈ Rn such that x 6= x′,
and for q ∈ {1, 2}, one has

∂xVp = −∂x′Vp = (x− x′)TPp
(
Ṽ (x, x′)

)q/2−1

,

∂x,xVp = ∂x′,x′Vp = −∂x,x′Vp

= Pp
(
Ṽ (x, x′)

)q/2−1

+
q − 2

q
Pp(x− x′)(x− x′)TPp

(
Ṽ (x, x′)

)q/2−2

.

Therefore, following the definition of L, and for any x, x′, z ∈ Rn such that x 6= x′,
one obtains:

LVp(x, x′)

= (x− x′)TPp
(
Ṽ (x, x′)

)q/2−1 (
fp(x)− fp(x′)

)
+

1

2
Tr
([

gp(x)
gp(x

′)

] [
gTp (x) g

T
p (x

′)
] [

∂x,xVp −∂x,xVp
−∂x,xVp ∂x,xVp

])
= (x− x′)TPp

(
Ṽ (x, x′)

)q/2−1 (
fp(x)− fp(x′)

)
+

1

2
Tr
((
gp(x)− gp(x′)

) (
gTp (x)− gTp (x′)

)
∂x,xVp

)
= (x− x′)TPp

(
Ṽ (x, x′)

)q/2−1 (
fp(x)− fp(x′)

)
+

1

2

∥∥∥√Pp (gp(x)− gp(x′))∥∥∥2
F

(
Ṽ (x, x′)

)q/2−1

+
q − 2

q

∥∥∥(x− x′)TPp (gp(x)− gp(x′))∥∥∥2
F

(
Ṽ (x, x′)

)q/2−2

≤ (x− x′)TPp
(
Ṽ (x, x′)

)q/2−1 (
fp(x)− fp(x′)

)
+

1

2

∥∥∥√Pp (gp(x)− gp(x′))∥∥∥2
F

(
Ṽ (x, x′)

)q/2−1

≤
(
(x− x′)TPp∂xfp(z)(x− x′) +

1

2

∥∥∥√Pp (gp(x)− gp(x′))∥∥∥2
F

)(
Ṽ (x, x′)

)q/2−1

(22)

≤ −κpVp(x, x′).



In (22), z ∈ Rn where the mean value theorem is applied to the differentiable function
x 7→ fp(x) at points x, x′. ut

Proof (of Corollary 1). The corollary is a particular case of Lemma 1. It suffices to show
that for affine dynamics the LMI (9) yields the condition in (8). First it is straightforward
to observe that∥∥∥√Pp (gp(x)− gp(x′))∥∥∥2

F
= Tr

((
gp(x)− gp(x′)

)T
Pp
(
gp(x)− gp(x′)

))
=
(
x− x′

)T q∑
i=1

σTipPpσip(x− x
′),

and that

(x− x′)TPp∂xfp(z)(x− x′) =
1

2
(x− x′)T

(
PpAp +ATp Pp

)
(x− x′),

for any x, x′, z ∈ Rn. Now suppose there exists κ̂p ∈ R+ such that (9) holds. It can be
readily verified that the desired assertion of (8) is verified by choosing κp = κ̂p/2. ut

Proof (of Theorem 4). We start by proving Sτ (Σ) �εS Sq(Σ). Consider the relation
R ⊆ Xτ × Xq defined by (xτ , xq) ∈ R if and only if E [V (Hτ (xτ ), Hq(xq))] =
E [V (xτ , xq)] ≤ α(ε). Since Xτ0 ⊆

⋃
p∈[Rn]η Bη(p), for every xτ0 ∈ Xτ0 there al-

ways exists xq0 ∈ Xq0 such that

E [‖xτ0 − xq0‖] = ‖xτ0 − xq0‖ ≤ η.

Then,

E [V (xτ0, xq0)] = V (xτ0, xq0) ≤ α (‖xτ0 − xq0‖q) ≤ α (ηq) ≤ α(ε),

because of (12) and since α is a K∞ function. Hence, (xτ0, xq0) ∈ R and condition (i)
in Definition 6 is satisfied. Now consider any (xτ , xq) ∈ R. Condition (ii) in Definition
6 is satisfied because

E [‖xτ − xq‖q] ≤ α−1 (E [V (xτ , xq)]) ≤ ε. (23)

We used the convexity assumption of α and the Jensen inequality [24] to show the
inequalities in (23). Let us now show that condition (iii) in Definition 6 holds. Con-
sider the transition xτ

p

τ
- x′τ = ξxτp(τ) in Sτ (Σ). Since V is a common Lyapunov

function for Σ, we have

E
[
V (x′τ , ξxqp(τ))

]
≤ E [V (xτ , xq)] e

−κτ ≤ α(ε)e−κτ . (24)

Since Rn ⊆
⋃
p∈[Rn]η Bη(p), there exists x′q ∈ Xq such that∥∥∥ξxqp(τ)− x

′
q

∥∥∥ ≤ η, (25)

which, by the definition of Sq(Σ), implies the existence of xq
p

q
- x′q in Sq(Σ).

Using Lemma 2, the concavity of γ̂, the Jensen inequality [24], the inequalities (10),



(13), (24), (25), and triangle inequality, we obtain

E
[
V (x′τ , x

′
q)
]
= E

[
V (x′τ , ξxqp(τ)) + V (x′τ , x

′
q)− V (x′τ , ξxqp(τ))

]
= E

[
V (x′τ , ξxqp(τ))

]
+ E

[
V (x′τ , x

′
q)− V (x′τ , ξxqp(τ))

]
≤ α(ε)e−κτ + E

[
γ̂
(∥∥ξxqp(τ)− x′q∥∥)]

≤ α(ε)e−κτ + γ̂
(
E
[∥∥∥ξxqp(τ)− ξxqp(τ) + ξxqp(τ)− x

′
q

∥∥∥])
≤ α(ε)e−κτ + γ̂

(
E
[∥∥∥ξxqp(τ)− ξxqp(τ)∥∥∥]+ ∥∥∥ξxqp(τ)− x′q∥∥∥)

≤ α(ε)e−κτ + γ̂
(
h(τ,G)e−κτ + η

)
≤ α(ε).

Therefore, we conclude that
(
x′τ , x

′
q

)
∈ R and that condition (iii) in Definition 6

holds. In a similar way, we can prove that Sq(Σ) �εS Sτ (Σ) implying that R is an
ε-approximate bisimulation relation between Sq(Σ) and Sτ (Σ). ut
Proof (of Theorem 5). The proof was inspired by the proof of Theorem 4.2 in [15]
for non-probabilistic switched systems. We start by proving Sτ (Στd) �εS Sq (Στd).
Consider the relation R ⊆ Xτ × Xq defined by (xτ , p1, i1, xq, p2, i2) ∈ R if and
only if p1 = p2 = p, i1 = i2 = i, and E [Vp (Hτ (xτ , p1, i1), Hq(xq, p2, i2))] =
E [Vp (xτ , xq)] ≤ δi, where δ0, · · · , δN are given recursively by

δ0 = α(ε), δi+1 = e−κτδi + γ̂
(
h(τ,G)e−κτ + η

)
.

One can easily verify that

δi =e−iκτα(ε) + γ̂
(
h(τ,G)e−κτ + η

) 1− e−iκτ

1− e−κτ

=
γ̂ (h(τ,G)e−κτ + η)

1− e−κτ
+ e−iκτ

(
α(ε)− γ̂ (h(τ,G)e−κτ + η)

1− e−κτ

)
. (26)

Since µ ≥ 1, and from (17), one has

γ̂
(
h(τ,G)e−κτ + η

)
≤ (1− e−κτ )α(ε).

It follows from (26) that δ0 ≥ δ1 ≥ · · · ≥ δN−1 ≥ δN . From (17), and since τd = Nτ ,
we get

δN =e−κτdα(ε) + γ̂
(
h(τ,G)e−κτ + η

) 1− e−κτd

1− e−κτ

≤e−κτdα(ε) +
(
1

µ
− e−κτd

)
α(ε) =

α(ε)

µ
. (27)

We can now prove that R is an ε-approximate simulation relation from Sτ (Στd) to
Sq (Στd). Since X0 ⊆

⋃
p∈[Rn]η Bη(p), for every (xτ0, p, 0) ∈ Xτ0 there always exists

(xq0, p, 0) ∈ Xq0 such that ‖xτ0 − xq0‖ ≤ η. Then,

E [Vp(Hτ (xτ0, p, 0), Hq(xq0, p, 0)] = Vp(xτ0, xq0) ≤ αp (‖xτ0 − xq0‖q)
≤ α (‖xτ0 − xq0‖q) ≤ α (ηq) ≤ α(ε),

because of (16) and since α is a K∞ function. Hence, Vp(xτ0, xq0) ≤ δ0 and
(xτ0, p, 0, xq0, p, 0) ∈ R and condition (i) in Definition 6 is satisfied. Now consider



any (xτ , p, i, xq, p, i) ∈ R. Using the convexity assumption of αp, and since it is a K∞
function, and the Jensen inequality [24], We have:

α (E [‖Hτ (xτ , p, i)−Hq(xq, p, i)‖q]) = α (E [‖xτ − xq‖q]) ≤ αp (E [‖xτ − xq‖q])
≤ E

[
αp (‖xτ − xq‖q)

]
≤ E [Vp(xτ , xq)] ≤ δi ≤ δ0.

Therefore, we obtain

E [‖xτ − xq‖q] ≤ α−1 (δ0) ≤ ε, (28)

because of α ∈ K∞. Hence, condition (ii) in Definition 6 is satisfied. Let
us now show that condition (iii) in Definition 6 holds. Consider the transition
(xτ , p, i)

p

τ
- (x′τ , p

′, i′) in Sτ (Στd), where x′τ = ξxτp(τ). Since Vp is a δ-GAS-
Mq Lyapunov function for subsystem Σp, we have

E
[
Vp(x

′
τ , ξxqp(τ))

]
≤ E [Vp(xτ , xq)] e

−κτ ≤ e−κτδi. (29)

Since Rn ⊆
⋃
p∈[Rn]η Bη(p), there exists x′q ∈ [Rn]η such that∥∥∥ξxqp(τ)− x

′
q

∥∥∥ ≤ η. (30)

Using Lemma 2, theK∞ function γ̂, the concavity of γ̂p, the Jensen inequality [24], the
inequalities (10), (29), (30), and triangle inequality, we obtain

E
[
Vp(x

′
τ , x
′
q)
]
= E

[
Vp(x

′
τ , ξxqp(τ)) + Vp(x

′
τ , x
′
q)− Vp(x′τ , ξxqp(τ))

]
= E

[
Vp(x

′
τ , ξxqp(τ))

]
+ E

[
Vp(x

′
τ , x
′
q)− Vp(x′τ , ξxqp(τ))

]
≤ e−κτδi + E

[
γ̂p
(∥∥ξxqp(τ)− x′q∥∥)]

≤ e−κτδi + γ̂p
(
E
[∥∥ξxqp(τ)− x′q∥∥])

≤ e−κτδi + γ̂
(
E
[∥∥∥ξxqp(τ)− ξxqp(τ) + ξxqp(τ)− x

′
q

∥∥∥])
≤ e−κτδi + γ̂

(
E
[∥∥∥ξxqp(τ)− ξxqp(τ)∥∥∥]+ ∥∥∥ξxqp(τ)− x′q∥∥∥)

≤ e−κτδi + γ̂
(
h(τ,G)e−κτ + η

)
= δi+1. (31)

We now examine three separate cases:

– If i < N − 1, then p′ = p, and i′ = i+1; since, from (31), E
[
Vp(x

′
τ , x
′
q)
]
≤ δi+1,

we conclude that (x′τ , p, i+ 1, x′q, p, i+ 1) ∈ R;
– If i = N − 1, and p′ = p, then i′ = N − 1; from (31), E

[
Vp(x

′
τ , x
′
q)
]
≤ δN ≤

δN−1, we conclude that (x′τ , p,N − 1, x′q, p,N − 1) ∈ R;
– If i = N − 1, and p′ 6= p, then i′ = 0; from (27) and (31), E

[
Vp(x

′
τ , x
′
q)
]
≤ δN ≤

δ0/µ. From (5), it follows that E
[
Vp′(x

′
τ , x
′
q)
]
≤ µE

[
Vp(x

′
τ , x
′
q)
]
≤ δ0. Hence,

(x′τ , p
′, 0, x′q, p

′, 0) ∈ R.

Therefore, we conclude that condition (iii) in Definition 6 holds. In a similar way, we
can prove that Sq (Στd) �εS Sτ (Στd) implying thatR is an ε-approximate bisimulation
relation between Sq(Στd) and Sτ (Στd). ut
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Fig. 3: Several realizations of the closed-loop trajectory ξx0υ with initial condition
x0 = (−4,−3.8) (left panel). Average values (over 100 experiments) in time of the distance
between solution process ξx0υ and set W = D\Z, in different vertical scales (middle panel).
Evolution of the synthesized switching signal υ (right panel).

Case study with multiple Lyapunov functions: Consider the following stochastic
switched system borrowed from [15] and additionally affected by noise:

Σ :

{[
d ξ1
d ξ2

]
=

([
−0.25 p
p− 3 −0.25

]
+ (−1)p

[
0.25
3− p

])
d t+

[
0.02ξ1 dW

1
t

0.02ξ2 dW
2
t

]
, (32)

where p = 1, 2. A noise-free version of the Σ is endowed with stable subsystems,
however it can globally exhibit unstable behaviors for some switching signals [15].
Similarly, Σ does not admit a common δ-GAS-Mq Lyapunov function. We’re left with
the option of seeking for multiple Lyapunov functions. It can be indeed shown that
each subsystem Σp has a δ-GAS-M1 Lyapunov function of the form Vp(x1, x2) =√
(x1 − x2)TPp(x1 − x2), with

P1 =

[
2 0
0 1

]
, P2 =

[
1 0
0 2

]
.

By definition, these δ-GAS-M1 Lyapunov functions have the following characteristics:
α(r) = r, α(r) = 2r, κ = 0.2498. Furthermore, the assumptions of Theorem 3 hold
by choosing a parameter µ =

√
2 and a dwell time τd = 2 > logµ/κ. In conclusion,

the stochastic switched system Σ is δ-GUAS-M1.
Let us work within the set D = [−6, 6] × [−4, 4] of the state space of Σ. For a

sampling time τ = 0.5, using the inequality (18) the precision ε is lower bounded by
1.07. For a precision ε = 1.2, the discretization parameter η for Sq(Σ), obtained from
Theorem 5, is equal to 0.024. The resulting number of states in Sq(Σ) is 167835. The
CPU time needed for computing the abstraction has amounted to 94.03 seconds.

Now, consider the objective to design a controller (switching policy) forcing the first
moment of the trajectories of Σ to stay within D while always avoiding the set Z =
[−1.5, 1.5]× [−1, 1]. This corresponds to the following LTL specification: 2 (D\Z).



The CPU time needed for synthesizing the controller has amounted to 11.81 seconds.
Figure 3 displays several realizations of the closed-loop trajectory of ξx0υ , stemming
from the deterministic initial condition x0 = (−4,−3.8) (left panel), as well as the
corresponding evolution of the switching signal υ (right panel). Furthermore, Figure 3
(middle panel) shows the average value (over 100 experiments) of the distance in time
between the solution process ξx0υ and the set D\Z, namely ‖ξx0υ(t)‖D\Z . Notice that
the empirical average distance is significantly lower than the theoretical precision ε =
1.2 (as discussed, theoretical bounds can be improved by seeking optimized Lyapunov
functions).


