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Abstract— This work is concerned with the problem of
characterizing and computing probabilistic bisimulations of dif-
fusion processes. A probabilistic bisimulation relation between
two such processes is defined through a bisimulation function,
which induces an approximation metric on the expectation of
the (squared norm of the) distance between the two processes.
We introduce sufficient conditions for the existence of a bisim-
ulation function, based on the use of contractivity analysis for
probabilistic systems. Furthermore, we show that the notion
of stochastic contractivity is related to a probabilistic version
of the concept of incremental stability. This relationship leads
to a procedure that constructs a discrete approximation of a
diffusion process. The procedure is based on the discretization
of space and time. Given a diffusion process, we raise sufficient
conditions for the existence of such an approximation, and show
that it is probabilistically bisimilar to the original process, up
to a certain approximation precision.

I. INTRODUCTION

In order to cope with the increasing complexity and scaling
of real-world engineering systems and with the intractability
of their corresponding mathematical models, a number of
studies have explored the development of techniques aimed
at relating or simplifying a model into a tractable one that is
in some sense equivalent to the first. Equivalence is usually
expressed with the notion of language correspondence, or
with that of bisimulation. Less stringent versions of the
notion of bisimulation (namely, the concept of simulation)
are also used to express the idea of “inclusion” between
the model dynamics. Furthermore, since frequently the exact
notion of bisimulation translates into rather conservative
requirements on the models under study (this is in particular
true for “dynamically rich” models, such as hybrid and
probabilistic ones), the concept of approximate bisimulation
has been introduced as a relaxed version of that of strict
bisimulation. This approximate concept requires the use of
proper metrics (or pseudo-metrics) on the system trajectories.

While the notion of bisimulation is quite well known in
computer science (in particular for the analysis of discrete
models such as automata or transition systems), the study of
exact or approximate bisimulation relations for deterministic,
continuous dynamical systems has a more recent history. A
few early results [1], [2] aimed at introducing exact notions,
and have been more recently generalized to deal with ap-
proximate versions [7]. This has allowed the investigation of
continuous- or discrete-time, nonlinear, controlled dynamical
[8], [17] and even switched models [9].
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With regards to probabilistic models, notions of similarity
or bisimilarity have been in use for discrete-space models
within the formal verification and the model checking com-
munity [4], [12]. It is of interest to extend the applicability
of these notions to continuous models – as argued above,
perhaps approximate notions would better fit the purpose.
Recently, the contribution in [10] has introduced a notion
of probabilistic bisimulation to set up an approximate corre-
spondence between pairs of continuous stochastic processes.
This result leverages the use of proper metrics on the
system realizations, as well as Lyapunov techniques. From a
different perspective but for similar discrete-time systems, [5]
defines an approximate relationship between two processes
by computing the distance between their distributions.

In this work, we set base from the concept of probabilistic
bisimulation introduced in [10]. We also draw inspiration
from the contribution in [8] and from that in [17], where for
deterministic systems the existence of approximate bisimu-
lations is shown and put in relationship with the concept of
stability (classical [19], and incremental [3]). We extend the
notion of incremental stability to a concept that holds on
probabilistic models, and formally relate this concept to the
notion of stochastic contractivity [15]. (This notion is the
probabilistic extension of similar studies for deterministic
models [13].) Under proper assumptions on the model, we
propose a constructive procedure to formally approximate a
diffusion process. The procedure performs a discretization of
space and time, and is formally underpinned by the theory of
weak approximations [11]. We show that this procedure in-
duces a probabilistic bimulation of the original diffusion, and
compute the relationship between the bisimulation precision
and an approximation parameter.

The contribution develops as follows. Section II deals with
the concept of stochastic contractivity. In Section III we show
that the notion of stochastic contractivity is related to a prob-
abilistic version of the concept of incremental stability. By
leveraging both concepts, in Section IV we raise conditions
on two diffusion processes to be probabilistically bisimilar,
and show how to find a bisimulation function. Furthermore,
this relationship leads to a procedure that attains a discrete
approximation of a diffusion process, as discussed in Section
V. We raise sufficient conditions for the existence of such an
approximation and show that it is probabilistically bisimilar
to the original system, up to a certain precision. Section VI
recapitulates the results and lists future extensions.



II. CONTRACTION THEORY FOR DIFFUSION PROCESSES

Let us consider a diffusion process, taking values in the
n-dimensional Euclidean space Rn and being characterized
by the following stochastic differential equation (SDE):

dx = f(x)dt+ σ(x)dW, (1)

where f : Rn → Rn is a vector field (which characterizes the
deterministic drift), σ : Rn → Rm is the diffusion matrix,
and W(t) a standard m-dimensional Wiener process [14].

Throughout this work, we assume that the following
structural properties are in order:

Assumption 1: For any pair x, y ∈ Rn, there exists finite
and positive constants K1,K2, such that:

1) Lipschitz continuity: ‖f(x)−f(y)‖+‖σ(x)−σ(y)‖ ≤
K1‖x− y‖;

2) Growth bound:‖f(x)‖2+‖σ(x)‖2 ≤ K2(1 + ‖x‖2). �

In Assumption 1, we have implicitly relied on the Eu-
clidean norm for vectors and matrices. It can be shown [14]
that by upholding Assumption 1 on the components of the
SDE (1), its solution process exists and is unique, for any
t ≥ t0 and any finite initial condition x0 ∈ Rn at initial time
t0 = 0. We shall denote such a solution process x(t, x0).1

The following definition is inspired by [16], which extends
earlier studies for deterministic models [13].

Definition 1 (Stochastic Contractivity): Consider the
SDE (1). Assume that the following conditions are valid:

1) f(·) is such that, for all x̃ ∈ Rn,∃Λ < ∞ :
λmax

(
∂f
∂x (x̃)

)
≤ Λ, where ∂f/∂x(x̃) is the symmetric

part of the Jacobian of f evaluated at x̃, and λmax(·) is
a function computing the maximum value among the
real parts of the eigenvalues of a matrix;

2) σ(·) is Lipschitz continuous, as per Assumption 1.1,
with finite and positive constant K1 : (K1)2 .= K.

Then the system in (1) is said to be stochastically contractive
(in the identity metric) if 2Λ +K < 0. �

Example 1 (Special Case: deterministic ODE): Let us
simplify the SDE (1) by considering σ(x) ≡ 0,∀x ∈ Rn.
This reduces (1) to a (deterministic) ordinary differential
equation (ODE), for which we raise Assumption 1.1.
Furthermore, let us assume that the first assertion in
Definition 1 is valid. Then, it can be shown [13] that if
Λ < 0 then any solution path of the ODE, which is finitely
bounded away from a second trajectory of the system,
converges exponentially to such a trajectory. In particular,
this convergence holds if the chosen trajectory is taken to
coincide with an equilibrium point of the vector field f(·).
This behavior should be evident in the simpler case of a
linear ODE, where f(x) = Ax, x ∈ Rn. �

Remark 1: Definition 1 can be extended to non-identity
and state-dependent metrics on the Euclidean space. Such

1Throughout the paper, stochastic processes will be denoted with bold
font, while points on the state space or sample values with regular typeset.

metrics scale non-uniformly the distance between points on
the space under study and can be particularly useful for
the study of nonlinear systems. In the following, we shall
consider only the identity metric.

It is also possible to introduce a definition of contractivity
over a strict subset C of the Euclidean space: in particular,
it can be of interest to determine, based on the structure
and properties of f(·) and σ(·), what is the domain of
contractivity C ⊆ Rn, that is what is the set of points for
which the conditions in Definition 1 are verified. �

III. PROBABILISTIC INCREMENTAL STABILITY

Contractivity is a property that can be used to study certain
stability properties of a system. In this Section we plan to
employ the definition of stochastic contractivity, introduced
in the previous Section, to show a probabilistic version of the
notion of incremental stability. This probabilistic extension is
inspired by the work in [3], where the concept of incremental
stability is introduced and its properties analyzed for deter-
ministic models. To the best of the author’s knowledge, the
concept of probabilistic incremental stability has been first
mentioned in [16]. In Example 2, we export the probabilistic
definition back to the deterministic models discussed in [3].

Let us first introduce some nomenclature: let R+
0 denote

the non-negative reals. Consider a continuous function α :
R+

0 → R+
0 ; α is said to belong to class K if it is strictly

increasing and if α(0) = 0. A continuous function β : R+
0 →

R+
0 is said to be in class K∞ if it belongs to class K and

moreover if β(x) → ∞ as x → ∞. A continuous function
γ : R+

0 × R+
0 → R+

0 is said to belong to class KL if, for
any fixed x ∈ R+

0 , the function γ(·, x) is in class K∞ and
if, for any fixed y ∈ R+

0 , the function γ(y, ·) is decreasing
and such that γ(y, t)→ 0, as t→∞.

Definition 2 (Probabilistic Incremental Stability): The
SDE (1) is said to be probabilistically incrementally stable
(in pth mean, p ∈ N) if there exists a KL function γ
such that for any t ∈ R+

0 , any x1, x2 ∈ Rn, the following
condition is satisfied:

Ex1,x2 [‖x(t, x1)− x(t, x2)‖p] ≤ γ(‖x1 − x2‖p, t). �

Equivalently, we will also state that a solution process of
the SDE in (1) is probabilistically incrementally stable (in
pth mean). Notice that the subscript in the expectation sign
above, as intuitive, highlights a conditional operation:

Ex1,x2 [‖x(t, x1)− x(t, x2)‖p] =
E [‖x(t, x1)− x(t, x2)‖p|x(0, x1) = x1,x(0, x2) = x2] .

Remark 2: Definition 2 characterizes a notion which is re-
lated to the presence of convergent dynamics. As customary
in the study of convergence of stochastic processes, various
characterizations of this notion can be given, depending on
the particular kind of convergence (for instance, in proba-
bility, in pth mean, or almost surely). Similarly, Definition 2
can be modified accordingly, for instance: the SDE (1) is said
to be probabilistically incrementally stable in probability if



there exists a function γ : R+
0 × R+

0 → [0, 1] such that,
for any fixed x ∈ R+

0 , γ(·, x) is in class K and if, for
any fixed y ∈ R+

0 , the function γ(y, ·) is decreasing and
such that γ(y, t) → 0, as t → ∞, and such that for any
ε > 0, any t ∈ R+

0 , any x1, x2 ∈ Rn, the following holds:
P (‖x(t, x1)− x(t, x2)‖ > ε) ≤ γ(‖x1 − x2‖, t).

In this work the selection of a notion based on the mean
value comes from its adaptability to the known deterministic
case (see the following Example 2), as well as to the concepts
that will be discussed later in this this work. �

Example 2 (Deterministic incremental stability, [3]):
Consider the deterministic ODE in (1), obtained by setting
σ(x) ≡ 0,∀x ∈ Rn. Let us uphold Assumption 1.1. System
(1) is said to be (globally) incrementally asymptotically
stable if there exists a KL function γ such that for any
t ∈ R+

0 , x1, x2 ∈ Rn, the following is satisfied:

‖x(t, x1)− x(t, x2)‖ ≤ γ(‖x1 − x2‖, t). �

As anticipated, the following result shows that stochastic
contractivity of a diffusion process is sufficient for its prob-
abilistic incremental stability (in mean square) to hold.

Theorem 1: If system (1) is stochastically contractive,
then its solution process is probabilistically incrementally
stable (in mean square). �

Let us conclude the Section by remarking that it is possible
to extend the notions developed here to the case of processes
initialized according to a general probabilistic law.

IV. PROBABILISTIC BISIMULATIONS OF DIFFUSION
PROCESSES

In this Section we recall the definition of probabilistic
bisimulation function for certain classes of stochastic pro-
cesses. We show that, given two diffusions, there exists a
probabilistic bisimulation function that applies to them if
a new system, composed by the two original diffusions,
is probabilistically incrementally stable. This allows one to
argue that a sufficient condition on the composed system for
the existence of a probabilistic bisimulation function (relating
its two components) is its stochastic contractivity.

Let us consider two diffusions S1, S2, along with their
observations, which are described by the following systems:

dxi = fi(xi)dt+ σi(xi)dWi;
yi(t) = gi(xi(t)), i = 1, 2. (2)

We assume that the systems have heterogeneous state dimen-
sions, but equal output size and noise dimension: namely,
xi ∈ Rni , σi(·) ∈ Rni×di , yi ∈ Rmi , where it is not
necessary that n1 is equal to n2, but where d1 = d2 =
d,m1 = m2 = m. Moreover, we assume that the observation
functions gi vanish at the origin, gi(0) = 0, and that they
are Lipschitz continuous. This allows to state that, for any
xi ∈ Rni ,∃ 0 ≤ ν <∞ : ‖gi(xi)‖ ≤ ν‖xi‖.

Consider now the following process on the Euclidean
space Rn1+n2 , which is composed by S1 and S2 (in parallel)
and observed on Rm as follows:

x̄ =
[
x1

x2

]
, W̄ =

[
W1

W2

]
, ȳ = [I − I]

[
y1

y2

]
, (3)

where we have denoted with I the m-dimensional unity
matrix. Its dynamics are generated by:

dx̄ = f(x̄)dt+ σ(x̄)dW̄, ȳ(t) = g(x̄(t)), (4)

where

f(x̄) .=
[
f1(x1)
f2(x2)

]
, σ(x̄) .=

(
σ1(x1) 0

0 σ2(x2)

)
,

g(x̄) .= [I − I]
[
g1(x1)
g2(x2)

]
= [g1(x1)− g2(x2)] .

Let us recall the following classical notion:

Definition 3 ((Super-) Martingale, [6]): A function χ :
Rn → R is called a martingale for the process x(t, x0), t ≥
0, solution of (1), if for any x(0) = x0 ∈ Rn, t ≥
0,Ex0 [χ(x(t, x0))] = χ(x0). The function χ is called a
supermartingale if Ex0 [χ(x(t, x0))] ≤ χ(x0). �

Let us now introduce the following definition, which
relates the behavior of systems S1 and S2 by bounding their
distance with a non-increasing function of time:

Definition 4 (Probabilistic Bisimulation Function, [10]):
A continuous function ψ : Rn1+n2 → R+

0 is called
a probabilistic bisimulation function for the diffusion
processes S1 and S2 in (2) if, considering the composed
process in (3)-(4), the following holds:

1) ∀x̄ ∈ Rn1+n2 , ψ(x̄) ≥ ‖g(x̄)‖2;
2) ∀x̄0 ∈ Rn1+n2 , ψ(x̄(t, x̄0)) is a supermartingale

started at x̄0.

If two processes S1, S2 admit a probabilistic bisimulation
function, then they are said to be probabilistically bisimilar
(with precision ψ(x̄0)). �

The next contribution of this work formally relates the
property of stochastic contractivity of each of the two diffu-
sions with the shared condition of probabilistic bisimilarity
between them. The contractivity is intended to hold for the
same metric (e.g., the identity one) for both processes.

Theorem 2: Consider two diffusion processes, solutions
of systems S1, S2 as in (2). If the composition of S1, S2, as
defined in (3)-(4), is stochastically contractive, then S1, S2

are probabilistically bisimilar.
When existing, a probabilistic bisimulation function has the
form ψ(x̄) = 2ν‖x̄‖2. �

Theorem 2 can be exploited to compute an upper bound
on the (mean square) distance between pairs of realizations
of S1 and of S2. More precisely, selecting a parameter δ > 0,
any two points x0

i ∈ Rni , and by resorting to the properties



of the bisimulation function (as described in Definition 4)
and to the Markov inequality [6], the following holds:

Px0
1,x

0
2

(
sup

0≤t<∞
‖ȳ
(
t, (x0

1, x
0
2)T
)
‖2 ≥ δ

)
= Px0

1,x
0
2

(
sup

0≤t<∞
‖y(t, x0

1)− y(t, x0
1)‖2 ≥ δ

)
≤ Px0

1,x
0
2

(
sup

0≤t<∞
ψ
(
x̄
(
t, (x0

1, x
0
2)T
))
≥ δ
)

≤ ψ
(

x0
1

−x0
2

)/
δ =

2ν
δ
‖x̄0‖2. (5)

A closer look to Theorem 1 and additional observations
on the notion of probabilistic incremental stability suggest
that the bound in (5) can be further elaborated, exploiting
the monotonically decreasing property in time of function
ψ. Given any x0

i ∈ Rni , i = 1, 2, 0 ≤ T < ∞, and fixing a
parameter δ > 0, the following holds:

Px0
1,x

0
2

(
supT≤t<∞ ‖ȳ

(
t, (x0

1, x
0
2)T
)
‖2 ≥ δ

)
≤ ψ

(
x̄
(
T, (x0

1, x
0
2)T
))
/δ ≤ 2ν

δ ‖x̄
0‖2e(2Λ+K)T .

As argued in [10], the bound in (5) suggests a number of
potential applications in formal verification problems.

Remark 3 (Connections with the Literature): The condi-
tion described in Theorem 2 for the existence of a proba-
bilistic bisimulation of two diffusion processes can be put
in relationship with the results in [10, Lemma 9]. There,
a class of stochastic hybrid systems, encompassing random
jumps between heterogeneous domains, is studied. The con-
tractivity condition on the systems dynamics in Theorem 2
subsumes the negative-definiteness condition in [10, (40)]
(which is indeed related to the classical notion of stability).
Furthermore, the scalar quantity 2ν in (5) establishes the
validity of the more complicated condition [10, (39)] on the
output maps.

The presented conditions have a few potential advantages.
First, the contractivity conditions are directly computable
on the system dynamics (in fact, as we argued above, it is
possible to characterize the portion of the state space where
such conditions are valid, and this region is–in a certain
sense–invariant). Second, the probabilistic bisimulation func-
tion is directly obtained. Third, the conditions are applicable
to nonlinear dynamics. (We further elaborate on potential
extensions to hybrid models in Section VI.) Finally, this
work allows composition of models with separate Wiener
processes, whereas [10] drives the system composition by a
unique noise process.

Notice also the relationship between the presented results
and the work in [8], which established the existence of
approximate bisimulation relations for stable linear determin-
istic models. Finally, let us stress the connections with the
results in [17], where the notion of incremental stability [3]
is used to compute approximate bisimulation relations for
nonlinear systems. We shall draw further comparisons with
the work in [17] in the next Section. �

V. COMPUTABLE PROBABILISTIC BISIMULATIONS OF A
DIFFUSION PROCESS

In this Section we propose a procedure to approximate
an n-dimensional diffusion process x(t, x0), solution of the
SDE (1) and initialized at x0, by a discrete-time, discrete-
state Markov chain (MC) {vk, k ≥ 0}, properly initialized
over the discretized state. The procedure follows [11], which
introduces general approximation techniques for stochastic
processes and discusses their convergence properties, though
not from the perspective of the theory of probabilistic bisim-
ulations.

We raise assumptions on a diffusion process and con-
ditions on a discretization procedure, which ensure that
a new continuous-time process, obtained by a piecewise-
constant interpolation of the MC approximation obtained
from the procedure, is a probabilistic bisimulation of the
original diffusion, with a given precision. We argue that if
the domain of definition of the diffusion process is bounded,
then the procedure is decidable, and it yields a MC approx-
imation with finite cardinality. The MC (or its continuous-
time interpolation) can be employed in verification problems,
according to the relationship established in (5).

A. Discretization Procedure

The discretization procedure that approximates the original
diffusion with a MC is characterized by a gridding parameter
δ > 0. Let us introduce a homogeneous grid over Rn of side
δ > 0, denoted with Znδ and defined as

Znδ = {(m1δ,m2δ, . . . ,mnδ)|(m1,m2, . . . ,mn) ∈ Zn}.

For any δ > 0, the time step for the MC is denoted with
∆tδ , and is taken so that ∆tδ = o(δ). The MC evolves on
Znδ and is referred to as {vk, k ≥ 0}. It is characterized by
a set of transition probabilities

pδ(z → z′) = Pδ(vk+1 = z′|vk = z),

which are selected to locally approximate the behavior of the
process x(·). For any point z ∈ Znδ , define its neighbors to
be the set of points

Nδ(z) = {z + (i1δ, i2δ, . . . , inδ)|(i1, i2, . . . , in) ∈ I},

where I ⊆ {−1, 0, 1}n\{(0, 0, . . . , 0)}. A trajectory of the
MC, located at point z, is allowed to evolve to any of
the points in Nδ(z) according to the following transition
probability:

pδ(z → z′) = πδ(z′|z), z′ ∈ Nδ(z) ∪ {z},

where πδ(z′|z) is an appropriate function of the drift f and
the diffusion term σ in (1), both evaluated at z. Assume now
that the MC is located at point z at some time k. Introduce

mδ(z) =
1

∆tδ
Eδ[vk+1 − vk|vk = z];

Vδ(z) =
1

∆tδ
Eδ[(vk+1 − vk)(vk+1 − vk)T |vk = z].



For any z, the set of neighbors Nδ(z) and the distributions
πδ(·|z) ought to be selected so that, as δ → 0,

mδ(z)→ f(x), Vδ(z)→ σ(x)σT (x),

for all x ∈ Rn and where, for δ > 0, z is the point in Znδ
that is closest to x. See Example V-C or [18] for an instance
of such a selection.

Given these choices, it can be shown that the process
{vk, k ≥ 0} is Markov. Now let {τk, k ≥ 0} be an
i.i.d. sequence of random variables that are independent of
{vk, k ≥ 0}, and which are exponentially distributed with
mean ∆tδ . Denote with v(t, z0), t ≥ 0, the continuous-time
process which is obtained by piecewise constant interpolation
of {vk, k ≥ 0}, with initial condition in z0 ∈ Zn. The
following result is proven in [11, Theorem 4.10]:

Proposition 1: Let us select any point x0 ∈ Rn. As
δ → 0, the process v(t, z0), which is the continuous-time
process interpolated from the discrete-time MC {vk, k ≥ 0}
and started from the point z0 ∈ Znδ closest to x0, converges
weakly to the process x(t, x0), solution of (1). �

B. Existence of a Probabilistic Bisimulation

The weak convergence in Proposition 1 is expressed in
terms of point-wise convergence of probability distributions.
This is an interesting result, however it is not enough to
establish a relationship of probabilistic bisimulation between
the original stochastic process x(t, x0) and the approximated
one v(t, z0). Next we show that, under proper conditions
on the diffusion process x(t, ·), for certain choices of
bisimulation precision ε > 0 it is possible to select a
parameter δ < ε that induces a MC approximation v(t, ·)
that is probabilistically bisimilar to the original diffusion,
with precision ε.

Theorem 3: Consider the diffusion process x(t, x0), so-
lution of (1) and started from x0 ∈ C, where C ⊂ Rn,
and assume it is stochastically contractive (i.e., assume that
it verifies the statements in Definition 1, in particular that
2Λ + K < 0). Then, given a value ε > 0 there exists
a parameter δ > 0 that induces a locally consistent MC
{vk, k ≥ 0} (starting from a point z0 ∈ Zn ∩ C closest to
x0), which approximates x(t, x0) on the uniform grid Zn∩C,
and such that v(t, z0) is probabilistically bisimilar to x(t, x0)
with precision ε, if the following holds:

nδ2 − Kη + 1
K + 2Λ

< ε,

where η = supzo∈Zn∩C ‖zo‖2. The precision of the proba-
bilistic bisimulation can be lower bounded by −Kη+1

K+2Λ . �

Corollary 1: Assume that the domain C where (1) is
considered is a bounded set. Then the space of the MC
abstraction obtained with the proposed procedure has finite
cardinality, and the approximation procedure is decidable. �

Remark 4: The result in Theorem 3 resembles a similar
solution proposed in [17] for the case of deterministic sys-
tems. There, incremental stability is used as the underlying

assumption on the system dynamics (in continuous time),
which allows the introduction of a procedure that obtains
a discrete-space, discrete-time MC. Notice that [17] also
allows the presence of a control input, which represents a
potential extension of the present work. �

C. Example: Finite Bisimulation of a 2D Diffusion

Let us consider a two-dimensional SDE, with linear drift
and diffusion terms, and one-dimensional noise: dx =
Axdt+ σxdW. Let us select the following parameters:

A =
[
−2 −1
1 −0.9

]
, σ = 0.1.

The dynamics are analyzed on a compact set C =
[−2, 2]2. On C, let us introduce grids of side δ ∈ D =
{0.020, 0.015, 0.010, 0.0075, 0.005}. The time discretization
for the approximate bisimulations is assumed to be ∆tδ =
ρδ2, δ ∈ D, whereas that for the diffusion is taken to be equal
to ρ(0.005)2. Let us consider a time horizon of T = 4.5 sec.
The parameters of the diffusion yield a contractivity index
of 2Λ + K = −1.7, which means that the precision of the
bisimulations will be, at best, approximately ε ≈ 0.64, as per
Theorem 3.

The choice of the neighboring points, as well as that of
the transition probabilities for the approximations, follows
[18]. We have run m = 100 tests, in each of which we inte-
grate the dynamics of the diffusion and of the approximate
bisimulations over the horizon [0, T ]. Figure 1 plots a single
realization of these processes, of which the diffusion starts
from x0 = [

√
3/2,
√

2]T . Furthermore, we have computed
for each of the m tests the squared distance, in time, between
the approximate bisimulation and the diffusion. Figure 2
plots the average in time, over the m experiments, of this
distance. Notice that the average distance is sensibly lower
than the computed theoretical bound in Theorem 3, which
draws to the search of refinements for it. �

VI. CONCLUSIONS

This work has drawn inspiration from recent results on
computable (approximate) bisimulations for deterministic
systems, and puts forward three main statements:

1) that, for certain classes of diffusion processes, the
concept of (stochastic) contractivity is related to a
notion of probabilistic incremental stability (in mean
square);

2) that both concepts can be useful in studying the
existence of probabilistic bisimulation relations for
diffusion processes;

3) and finally that under certain conditions it is possible
to construct a (finite) probabilistic bisimulation of a
diffusion process, given a certain precision, by se-
lecting a proper parameter for a spatial discretization,
and that the construction induces a locally consistent
approximation (with the structure of a Markov chain)
of the original process.
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Fig. 2. Average values of the squared distance between the approximated
process and the original diffusion, in time. The average is taken over m =
100 experiments. Different colors correspond to different discretization steps
(as in the legend).

The results are prone to be extended to classes of
continuous-time Stochastic Hybrid Systems, along directions
that have already been explored in [10]. In particular, the
discretization procedure described in Section V can be ex-
tended to a general class of switched and hybrid models
[18]. A few early results on stochastic contractivity for hybrid
models have been derived in [15]. The investigation of formal
verification procedures aided by the use of probabilistic
bisimulations is also an enticing next step. Furthermore, the
study of controlled models certainly represents an important
goal, for its relevance in practical applications. Finally, the
study of discrete-time, stochastic models appears to require a
qualitatively different approach, which may leverage adjacent
studies such as [5].
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