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Abstract— This work puts forward a technique to generate
finite abstractions of nonautonomous Max-Plus-Linear (MPL)
models, a known class of discrete-event systems characterizing
the timing related to event counters. Nonautonomous models
embed an external input (namely a nondeterministic choice,
regarded as an exogenous control signal) in the dynamics.
Abstractions are characterized as finite-state Labeled Transition
Systems (LTS). LTS are obtained first by partitioning the state
space of the MPL model and by associating states of the
LTS to the introduced partitions, then by defining relations
among the states of the LTS, corresponding to the dynamical
(nonautonomous) transitions between the MPL state partitions,
and finally by labeling the LTS edges according to the one-step
timing properties related to the events of the original MPL
model. In order to establish formal equivalences, the finiteLTS
abstraction is proven either to simulate or to bisimulate the
original MPL model. The computational performance of the
abstraction procedure is tested on a numerical benchmark. The
approach enables the study of properties of the original MPL
model by verifying equivalent specifications over the finiteLTS
abstraction.

I. I NTRODUCTION

Max-Plus-Linear (MPL) systems are a class of discrete-
event models [1], [2] with a continuous state space charac-
terizing the timing of the underlying discrete events. MPL
models are predisposed to easily describe synchronization
between processes, under the assumption that timing events
are linearly dependent (within a proper algebra) from previ-
ous event occurrences and (when nonautonomous, cf. Section
II) from exogenous schedules. MPL models are widely em-
ployed in the formal study and scheduling of infrastructure
networks such as communication and railway systems [3],
or production and manufacturing lines [4], [5]. They can not
model concurrency and are equivalent to a subclass of Petri
nets, namely Timed-Event Graphs [6].

Classical dynamical analysis of MPL models is grounded
on their algebraic [7] or geometric features [8]. It allows
to derive conclusions on model properties, such as transient
times, periodic regimes or ultimate behavior. This work in-
vestigates an alternative analytical approach aimed at check-
ing whether trajectories of the MPL model verify dynamical
properties, which is based on finite-state abstractions. It
extends the recent contribution in [9], which focused on
autonomous (namely, deterministic) models by embedding
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a control input (that is, a nondeterministic choice) within
the dynamics (cf. Section II). Furthermore, it makes use of a
novel representation of the quantities into play (regions over
state and control spaces, as well as dynamics), which allows
for computationally agile operations.

With regards to the abstraction procedure (cf. Section III),
we put forward a new technique that generates a finite-
state Labeled Transition System (LTS) in a finite number of
steps. The technique embeds the one-step dynamics within
an “augmented space” [3], namely the cross product of
state and input spaces, and furthermore leverages a region
representation based on Difference-Bound Matrices (DBM)
[10]. This representation allows for computationally fast
operations on regions of the space, and thus for fast compu-
tation of the quantities of interest. The states of the LTS
are obtained by finite partitioning of the state space of
the MPL model, whereas relations between pairs of LTS
states are established by checking whether a trajectory of
the original MPL model is allowed to transition between
the corresponding partition regions, possibly according to
an input choice. Computationally, this characterization is
performed by forward-reachability analysis over a piece-wise
affine (PWA, i.e. linear plus constant, over regions of the
state space) representation of the MPL dynamics. Finally, the
labels of the LTS model are quantities defined in a number of
possible ways: they either designate the difference between
the timing of an event for any two variables of the original
model, or represent the time difference between consecutive
events of the MPL model. As argued later, this plurality
of definitions allows for flexibility in the use of the LTS
abstraction. We prove that in general the LTS abstraction
simulates a transition system alternatively expressing the
original MPL model, and raise sufficient conditions to estab-
lish a bisimulation relation between the abstract and concrete
models [11].

The computational aspects related to the abstraction proce-
dure have been of particular concern, and have brought 1) to
select DBM as a framework for representing regions of state
and control spaces; and 2) to employ a PWA representation
of the MPL dynamics. The overall performance of the
abstraction procedure is benchmarked on a case study in
Section IV.

By expressing general dynamical MPL properties as spec-
ifications in Linear Temporal Logic (LTL, a modal logic),
we argue that the LTS abstraction allows for the formal
verification of system properties by use of model checking
techniques. Moreover, it may lead to further computational
savings derived from the computation of simulation and
bisimulation relations of the LTS abstraction [11].



The abstraction technique developed in this work has been
implemented as a MATLAB software tool, “Verification via
biSimulations of MPL models” (VeriSiMPL, as in “very
simple”), which is freely available for download [12].

The article is structured as follows. Section II introduces
the MPL model framework, as well as additional theoretical
concepts required for the article. Section III unfolds the
abstraction procedure that derives an LTS from the MPL
model – it formally constructs states, transitions, and labels
of the LTS from the MPL dynamics. A running example
elucidates the concepts and visualizes the procedure through-
out the work. Section IV tests the abstraction technique on
a computational benchmark, while Section V offers a few
verification instances over the MPL model that can be studied
by using the abstract LTS.

II. M ODELS AND PRELIMINARIES

A. Nonautonomous Max-Plus-Linear Systems

DefineRε, ε and e respectively asR ∪ {ε}, −∞ and 0.
A vector with each component equal to0 (or −∞) is also
denoted bye (resp.,ε). For x, y ∈ Rε, we definex ⊕ y =
max{x, y} andx⊗ y = x+ y. For matricesA,B ∈ R

m×n
ε ,

C ∈ R
n×p
ε , then [A ⊕ B](i, j) = A(i, j) ⊕ B(i, j) and

[A⊗C](i, j) =
⊕n

k=1 A(i, k)⊗C(k, j). Notice the analogy
between⊕, ⊗ and+, × for matrix and vector operations in
standard algebra. Givenr ∈ R (orm ∈ N), the max-algebraic
power ofx ∈ R (resp.,A ∈ R

n×n
ε ) is denoted byx⊗r

(or
A⊗m

) and corresponds torx in conventional algebra (resp.,
A⊗· · ·⊗A, m times). Notice thatA⊗0

= En, whereEn is a
max-plus identity matrix, i.e.En(i, i) = e andEn(i, j) = ε,
for 1 ≤ i 6= j ≤ n.

A nonautonomous MPL model [3, Sec. 7.3] is defined as:

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k), (1)

whereA ∈ R
n×n
ε , B ∈ R

n×m
ε , x(k − 1) ∈ R

n, u(k) ∈
R

m, for k ∈ N. The independent variablek denotes an
increasing discrete-event counter, whereas the state variable
x defines the (continuous) timing related to the discrete
events. Furthermore, the state space is taken to beR

n, which
also implies that the state matrixA has to be row-finite.

Definition 1 (Regular (row-finite) matrix, [3, Sec. 1.2]):
A matrix is called regular (or row-finite) if it contains at
least one element different fromε in each row.

As suggested in [6, Sec. 2.5.4], a nonautonomous MPL
model (1) can be expressed as an augmented MPL model:

x(k) = Ā⊗ x̄(k − 1), (2)

whereĀ = [A B], x̄(k − 1) = [x(k − 1)T u(k)T ]T .
Example: Consider the modified two-dimensional MPL

model from [3, Sec. 0.1]:

x(k) =

[

2 5
3 3

]

⊗ x(k − 1)⊕

[

e ε
ε e

]

⊗ u(k). (3)

The augmented MPL model is simply

x(k) =

[

2 5 e ε
3 3 ε e

]

⊗ x̄(k − 1), (4)

wherex(k) ∈ R
2 and x̄(k − 1) ∈ R

4, for k ∈ N.

B. Piecewise-Affine Systems

This paragraph discusses the PWA system generated by
a nonautonomous MPL model: each nonautonomous MPL
model (1) can be expressed as a PWA system in the event
domain [13] by leveraging its representation as an augmented
MPL model. Each region, along with its affine dynamics, is
characterized bȳg = (ḡ1, . . . , ḡn) ∈ {1, . . . , n + m}n or,
more precisely, as:

R̄ḡ =

n
⋂

i=1

n+m
⋂

j=1

{x̄j − x̄ḡi ≤ Ā(i, ḡi)− Ā(i, j)}; (5)

xi(k) = x̄ḡi (k − 1) + Ā(i, ḡi), 1 ≤ i ≤ n. (6)

C. Difference-Bound Matrices

This section introduces the definition of a DBM [10,
Sec. 4.1] and of its canonical-form representation. The DBM
will be used in Section III to represent the regions, the set
of inputs, as well as the labels.

Definition 2 (Difference-Bound Matrix):A DBM in the
state spaceRn is the finite intersection of sets defined by
xi − xj ⊲⊳i,j αi,j , where⊲⊳i,j∈ {<,≤}, αi,j ∈ R ∪ {+∞},
for 1 ≤ i 6= j ≤ n.

Definition 2 can be customized over the augmented space
R

n+m of the MPL model. For each DBM, there exists
an equivalent and unique canonical-form representation [10,
Th. 2], which is a DBM with the tightest possible bounds [10,
Observation 1]. As intuitive, a DBM can be represented by
a matrixD (namely, a “potential graph” [14, Sec. 3]) with
elementsD(i, j) that are intervals relating the pair(xi, xj)
by the elementαi,j and by the operator⊲⊳i,j. The Floyd-
Warshall algorithm can be used over the potential graph to
compute the canonical-form representation [10, Sec. 4.1].

One advantage of the canonical-form representation is that
it is easy to compute orthogonal projections w.r.t. a subset
of its variables: this is simply performed by deleting the
rows and the columns corresponding to the complementary
variables [10, Sec. 4.1].

Definition 3 (Orthogonal projection):The orthogonal
projection w.r.t. state variables (input variables) is defined
as ΠX : R

n+m → R
n (ΠU : R

n+m → R
m), where

ΠX : [x1 . . . um]T 7→ [x1 . . . xn]
T (ΠU : [x1 . . . um]T 7→

[u1 . . . um]T ).
Notice that from (5) and (6), each region and correspond-

ing affine dynamics of the PWA system generated by a
nonautonomous MPL model can be characterized by a DBM
in R

n+m andR2n+m, respectively. The following holds.
Theorem 1:The image and the inverse image of a DBM

w.r.t. the affine dynamics (6) is a DBM.
Proof: The general procedure to compute the image and

the inverse image of a DBM w.r.t. affine dynamics involves:
1) computing the intersection of the given DBM with a
DBM generated by the expression of the affine dynamics;
then 2) calculating the canonical form of the intersection;
finally 3) projecting the canonical-form representation over
a subset of its variables. The claim follows by noticing that
the intersection of two DBM is a DBM, that the canonical



form of a DBM is a DBM and that the orthogonal projection
of a DBM is again a DBM.

D. Labeled Transition Systems

Definition 4 (Labeled Transition System, [11, Def. 2.1]):
An LTS (S,L, δ, I, AP ) consists of a setS of states, a set
L of labels, a transition relationδ ⊆ S×L×S, a setI ⊆ S
of initial states, and a setAP of atomic propositions.

Denote withP(S) the power set of a given setS. This
work considers a special class of LTS. To begin with, often
we will assume thatI = S and AP = R

n, where the
dimensions correspond to the size of the state of the MPL
model. Moreover the set of labels, customarily taken to be
discrete and finite, is here assumed to beL = P(AP ) — in
other words, the labels will be finite unions ofn-dimensional
vectors of real numbers or of real-valued intervals.

III. LTS A BSTRACTIONS

OF NONAUTONOMOUSMPL MODELS

Given a set of inputs, we abstract a nonautonomous MPL
model into a finite-state LTS. The states of the LTS are
obtained by partitioning the continuous state space, whereas
its transitions depend also on the set of input signals. The
labels of the LTS are defined in a few distinguished manners
and depend on the delay (timing) features of the MPL
model. Technically, the abstraction procedure makes use of
the augmented model, of its dynamics represented via PWA
equations, and of the DBM representation for regions over
the state, input and augmented spaces.

A. States: Partitioning Procedure

1) Partitioning via Autonomous Model:We use the par-
titioning procedure in [9, Sec. III-A2], presented in Algo-
rithm 1. The partitions are based on the underlying dynamics
of the autonomous part of the MPL model (notice that the al-
gorithm does not use matrixB), and each partitioning region
is a DBM, which allows exploiting specific computational
results (cf. Section II-C).

Example:Consider the autonomous version of (3). The
regions generated by the scheme in Algorithm 1 areR1 =
{x ∈ R

2 : x1−x2 < e}, R2 = {x ∈ R
2 : e < x1−x2 < 3},

R3 = {x ∈ R
2 : x1 − x2 = e}, R4 = {x ∈ R

2 : x1 − x2 >
3}, R5 = {x ∈ R

2 : x1 − x2 = 3}. The regions are shown
in Fig. 1.

In order to exploit additional steps of the partitioning
procedure and to streamline the whole process, we introduce
next an alternative approach to generate a partitioning of the
state space. We then argue that the partitioning generated
by the alternative approach is finer than that obtained from
Algorithm 1, which leads to conclude that Algorithm 1
is computationally more attractive than the alternative ap-
proach.

2) Partitioning via Nonautonomous Model:It is possible
to leverage the nonautonomous MPL model to obtain a
partition of the state space: this is achieved by computing
the orthogonal projection w.r.t. the state variables of each
region in the PWA system generated by the nonautonomous

Algorithm 1 : Generation of state-space partition via
autonomous model
input : A ∈ R

n×n
ε , a row-finite max-plus matrix

output: R, a collection of partitioning regions

R← ∅;1

foreach (f1, . . . , fn) ∈ (P({1, . . . , n}) \ ∅)n do2

Rf ← R
n;3

foreach 1 ≤ r ≤ n do4

foreach 1 ≤ i 6= j ≤ n do5

if i, j ∈ fr then6

Rf ← Rf ∩{xi−xj = A(r, j)−A(r, i)};7

else if i ∈ fr, j /∈ fr then8

Rf ← Rf ∩{xi−xj > A(r, j)−A(r, i)};9

end10

end11

end12

if Rf is not emptythen R← R ∪ {Rf};13

end14

x1

x2

R2

R1 R3

3

R4

R5

Fig. 1. Partition ofR2 for the model in (3), as generated by Algorithm 1

Function Refine(R′): Generation of state-space par-
titioning via refinement of state-space cover

input : R′, a cover ofRn where|R′| <∞
output: R, a partition ofRn

R← ∅;1

foreach R
′′ ∈ P(R′) do2

R← R ∪
{

⋂

R′′∈R′′ R′′ \
⋃

R′′∈R\R′′ R′′
}

;3

end4

remove the empty region fromR;5

MPL model, thereafter refining the projection as needed to
obtain a partition. The approach is detailed in Algorithm 3.

It can be guaranteed that the number of obtained parti-
tioning regions over the state space is finite and that each
partitioning region is a DBM inRn. However, we next argue



Algorithm 3 : Generation of state-space partition via
nonautonomous model

input : Ā ∈ R
n×(n+m)
ε , an augmented MPL model

output: R, a partition ofRn

R̄← regions of the PWA system generated byĀ;1

R← ∅;2

foreach R̄ ∈ R̄ do R← R ∪ {ΠX(R̄)};3

R← Refine(R);4

that the state-space partition obtained from Algorithm 3 is
in general finer (hence, more expensive) than that resulting
from Algorithm 1.

Let us characterize the orthogonal projection w.r.t. the state
variables ofR̄ḡ, which we denote byΠX(R̄ḡ), under two
special cases: 1) each inequality ofR̄ḡ contains at least one
state variable, i.e.̄g ∈ {1, . . . , n}n; and 2) each inequality
of R̄ḡ contains at least one input variable, i.e.ḡ ∈ {n +
1, . . . , n+m}n. The following two lemmas hold.

Lemma 1:For eachḡ ∈ {1, . . . , n}n,

ΠX(R̄ḡ) =
n
⋂

i=1

n
⋂

j=1

{xj−xḡi ≤ A(i, ḡi)−A(i, j)} = Rḡ.

Lemma 2:For eachḡ ∈ {n + 1, . . . , n + m}n, if R̄ḡ is
not empty, thenΠX(R̄ḡ) = R

n.
Lemma 1 implies that each region of the PWA system

generated by the autonomous MPL model [9, Algorithm 1] is
included in the orthogonal projection w.r.t. the state variables
of regions in the PWA system generated by the nonau-
tonomous MPL model (Algorithm 3 without refinement).
This leads directly to the following conclusion.

Proposition 1: The state space partition generated by Al-
gorithm 3 is finer than that obtained from Algorithm 1.

It is only for special instances that the two approaches lead
to equivalent outcomes, as argued in the following theorem.
In this case, Lemmas 1 and 2 can be used to show that the
projection of each region in the PWA system generated by
the nonautonomous MPL model is a finite union of regions
of the PWA system generated by its autonomous version.

Theorem 2:If there is at most one finite element in
each column of the matrixB, the partitions constructed by
Algorithm 3 coincide with those obtained by Algorithm 1.

B. Transitions: Forward Reachability

Next, we investigate a technique to determine the transition
relationsδ between two partitioning regions. At any given
event stepk, given a pair of partitioning regionsR andR′

and a set of inputsU ⊆ R
m, there exists a transition fromR

to R′ iff there exists anx(k− 1) ∈ R and au(k) ∈ U , such
that x(k) ∈ R′. Such a transition can be determined either
by the forward- or by the backward-reachability computation,
that is calculating eitherR′ ∩ {x(k) : x(k− 1) ∈ R, u(k) ∈
U}, or R ∩ {x(k − 1) : x(k) ∈ R′, u(k) ∈ U}, and by
checking the non-emptiness of the resulting set.

We assume that the set of inputsU ⊆ R
m is represented

via a DBM. Practically, this enables expressing upper or

Algorithm 4 : Computation of the transitions via forward-
reachability analysis

input : Ā ∈ R
n×(n+m)
ε , a row-finite augmented matrix;

R, a partition ofRn;
R̄, a cover ofRn+m where|R̄| <∞;
U , the input set

output: δ ⊆ R× R, a transition relation

δ ← ∅;1

foreach R,R′ ∈ R do2

if ∃R′′ ∈ I(R) s.t.R′′ ∩R′ is not emptythen3

δ ← δ ∪ {(R,R′)};4

end5

end6

lower bounds on the separation between input events (sched-
ules) (cf. Definition 2). If on the other hand there are no
constraints on input events, we defineU = R

m, which is
also a DBM.

We opt to focus on the forward-reachability approach,
since it is computationally more attractive than the backward
one: more precisely, the number of image computations in
the forward-reachability approach is in general less than
the number of inverse-image computations in the backward-
reachability approach.

Given a partitioning regionR ∈ R, we employ the PWA
representation over the augmented space to compute its
image:

I(R) =
{

Ā⊗ x̄ : x̄ ∈ R× U
}

,

whereR × U denotes the cross product of the setsR and
U . Since bothR andU are DBM, R × U is also a DBM
in the augmented space. Computing the image of this DBM
can be done by applying the procedure in Theorem 1, while
using the PWA representation of̄A. Algorithm 4 details the
complete approach.

The outcome of Algorithm 4 is in general a nondeter-
ministic transition system. Its relationship with the nonau-
tonomous MPL model is clear: the transition system obtained
by Algorithm 4 simulates a transition system alternatively
expressing the nonautonomous MPL model [11], whereas
in general the opposite direction does not hold. In order to
provide sufficient conditions to obtain a bisimulation relation
[11], we employ a backward-reachability analysis over the
augmented MPL model:

I−1(R′) =
{

x̄ ∈ R
n × U : Ā⊗ x̄ ∈ R′

}

. (7)

The general procedure for obtainingI−1(R′) is applying
the procedure in Theorem 1 by using the PWA representation
of Ā. Notice thatΠX(I−1(R′)) represents the set of states
that are able to transition intoR′ or, more formally{x ∈
R

n : ∃u ∈ U s.t.A ⊗ x ⊕ B ⊗ u ∈ R′}. This leads to the
following result.

Proposition 2: The transition system obtained by Algo-
rithm 4 bisimulates the nonautonomous MPL model if for
each pair(R,R′) ∈ δ, the following holds: for eachx ∈ R,



there exists an inputu ∈ U such thatA⊗ x⊕B ⊗ u ∈ R′.
Equivalently, for each(R,R′) ∈ δ, R ⊆ ΠX(I−1(R′)).

Example:We introduce an input setU equals toR2. We
are going to explicitly check the existence of a transition
from R4 to R3. First, we determine the PWA regions that
intersect withR4 × U = {x̄ ∈ R

4 : x1 − x2 > 3, 0 <
u1 − u2 < 3}: after performing the checking of emptiness
of intersections, we are left with the regions̄R(1,1), R̄(3,1),
and R̄(3,3). Thereafter, we determine whether the image of
R̄(1,1) ∩ (R4 × U), R̄(3,1) ∩ (R4 × U), and R̄(3,3) ∩ (R4 ×
U) intersect withR3: after computing the sets, we derive
that only the image ofR̄(3,1) ∩ (R4 × U) intersects with
R3. Thus, we conclude that there is a transition fromR4 to
R3. The overall transition system is shown in Fig. 2, where
transitions, for the moment, are defined with no labels. It can
be checked that the LTS only simulates the nonautonomous
MPL model: for instance, the pair(R2, R1) does not satisfy
the condition in Proposition 2.

C. Labels: Backward Reachability

We now introduce labels on the transition system, thus
obtaining a full LTS. Labels are quantities defined in two
different possible ways: they either characterize 1) the differ-
ence between the timing of an event for any two variables of
the original model, i.e.xi(k)−xj(k), where1 ≤ i < j ≤ n;
or 2) the time difference between consecutive events of the
MPL model, i.e.xi(k)− xi(k − 1), for 1 ≤ i ≤ n.

The first labeling characterizes the explicit representation
of partitioning regions and is associated to each state in the
LTS. Since each partitioning region is represented by a DBM
in its canonical-form representation (cf. Section II-C), the
bounds on the state labels are the tightest possible and the
representation is unique [10, Th. 2]. A label is a finite vector
of real-valued intervals.

The second labeling is associated to each transition in the
LTS. In order to calculate the labels of a transition, first we
employ a backward-reachability analysis (7) to the incoming
partitioning regions, which yields a finite union of DBM.
Then for each DBM, we collect information from its explicit
representation and its affine dynamics (2). Thus, it is a finite
union of vectors of real-valued intervals.

Example: We are going to determine the labels of the
transition fromR4 to R3. First we calculate(R4 × U) ∩
I−1(R3): after iterating through all PWA regions, we obtain
a region described by{x̄ ∈ R

4 : x1 − x2 > 3, x1 − u1 =
−3, x1 − u2 ≥ −3, x2 − u1 ≤ −5, 0 < u1 − u2 <
3} ⊆ R̄(3,1). The second label is obtained by using the
explicit representation of the region and its affine dynamics:
x1(k)− x1(k− 1) = u1− x1 = 3, andx2(k)−x2(k− 1) =
x1 − x2 + 3 > 6. Fig. 2 depicts the full LTS endowed with
the second labeling.

IV. COMPUTATIONAL BENCHMARK

In order to test the practical efficiency of the proposed
algorithms we compute the runtime needed to perform the
abstraction of an MPL system into an LTS, for an increasing
dimensionn of the MPL model. We also keep track of the

number of states and of transitions of the obtained LTS. We
assume that the control is a scalar, namely thatm = 1. For
any givenn, we generate matricesA with 2 finite elements
(in a max-plus sense) that are randomly placed in each
row, as well as matricesB as column vectors where all
the elements are finite. The finite elements are randomly
generated integers with value in between1 and 100. The
input space is selected asU = R.

The experiments have been run on MATLAB code, over
a dual-core AMD Opteron 2.8 GHz PC with8 GB of
memory. Over 10 independent experiments, Table I (dealing
with maximum and mean values) reports the time needed to
construct the LTS, broken down over the three successive
procedures for states, transitions, and label generation.The
number of states and of transitions in the LTS are also
computed.

Recall that the first step (generation of states) consists
of the partitioning of the state space (Algorithm 1) and
constructing the PWA system over the augmented space (cf.
Section II-B), whereas the second (generation of transitions)
uses the forward-reachability analysis. The generation of
labels is limited to computing (via backward reachability)
the labels over the transitions, since those over the states
can be derived from the first step and as such require no
extra computational overhead. The labeling procedure is
computationally heavier than the generation of transitions –
this is due to the computation step based on the backward
reachability, which as discussed in Section III is in general
more expensive than the forward reachability one.

The worst-case complexity of the abstraction procedure is
exponential w.r.t. the dimension of the MPL model [9], how-
ever the benchmark displays that this conservative estimation
in practice does not occur.

V. FORMAL VERIFICATION

OF NONAUTONOMOUSMPL MODELS

The obtained LTS model can be employed to verify certain
properties over the original MPL model. If the LTS bisim-
ulates the original MPL model, we can verify a number of
specifications, for instance those expressed in LTL logic [11].
Otherwise, if the LTS simulates the original MPL model, we
can verify at least safety properties.

To specify properties for trajectories of the MPL model,
we use Linear Temporal Logic (LTL) [11, Ch. 5]. LTL
formulas are recursively defined over a set of atomic propo-
sitions (AP ), by Boolean operators and temporal operators.
Boolean operators are¬ (negation),∧ (conjunction), and
∨ (disjunction), whereas temporal operators are© (next),
U (until), � (always), and♦ (eventually). A formulaφ,
which in general is (recursively) determined by application
of the above operators, is interpreted over traces (trajectories)
generated by the LTS. In particular it is of interest to check
if (the trajectories of) an LTS satisfies a given formula
(or “specification”) – this procedure is known as “model
checking”.

With focus on the verification over state labels, let us
consider a set of atomic propositions that corresponds to the



[

[3, 3]
[5, 5]
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Fig. 2. LTS endowed with the second labeling, for the MPL model in (3), whereU = R2 and statei representsRi, for i = 1, . . . , 5.

TABLE I

NUMERICAL BENCHMARK – {MEAN ; MAXIMAL } VALUES

size of generation of generation of generation of number of number of
MPL model states of LTS transitions of LTS labels of LTS states of LTS transitions of LTS

3 {0.35; 0.39} [sec] {0.36; 0.42} [sec] {0.63; 1.13} [sec] {14.20; 15} {70.80; 133}
4 {0.48; 0.54} [sec] {2.07; 3.42} [sec] {4.72; 7.80} [sec] {45.00; 65} {268.20; 429}
5 {0.85; 1.01} [sec] {18.55; 40.27} [sec] {64.64; 145.83} [sec] {120.20; 195} {1,434.20; 3,057}
6 {1.93; 2.67} [sec] ∼ {4.40; 11.62} [min] ∼ {22.53; 73.36} [min] {304.00; 513} {7.72; 22.37} ×10

3

7 {6.04; 8.63} [sec] ∼ {2.09; 5.58} [hr] ∼ {9.62; 23.56} [hr] {1.03; 1.76} ×10
3 {53.56; 107.96} ×10

3

collection of the partitioning regions defining the LTS. More
precisely, assume that the inverse image w.r.t. the labeling
function [11, Definition 2.1] of each atomic proposition
equals a union of partitioning regions. Thus the partition
leading to the LTS states is proposition preserving, which
implies that the labeling function for the abstract transition
system is well defined and that the simulation or the bisimu-
lation relations between the abstract and concrete model are
retained.

Example:In [3, Sec. 0.1], the autonomous version of (3) is
used to model a simple railway network with 2 stations. We
refer to the transition systems in Fig. 2, but where properties
are defined over the state labels. Suppose that there is a
requirement on the departure times at station 2 to be at
least 3 time steps before those at station 1, and at most the
same times as those at station 1. From Fig. 2, the safe set
is introduced asR2 ∪ R3 ∪ R5 and the corresponding LTL
formula is�(R2∨R3∨R5). Inspecting the LTS in Fig. 2, we
conclude that, every possible initial condition cannot avoid
the unsafe set.
Furthermore, if the safe set is defined asR1 ∪R2 ∪R3, the
LTL formula �(R1 ∨R2 ∨R3) is verified within the whole
{R1, R2, R3}. This allows to conclude that, as long as the
initial condition is in the safe set, the trajectory will always
reside there.
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