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Abstract— This work puts forward a technique to generate a control input (that is, a nondeterministic choice) within
finite abstractions of nonautonomous Max-Plus-Linear (MPL)  the dynamics (cf. Section Il). Furthermore, it makes use of a
models, a known class of discrete-event systems charactarig novel representation of the quantities into play (regiover o

the timing related to event counters. Nonautonomous models . .
embed an external input (namely a nondeterministic choice, state and control spaces, as well as dynamics), which allows

regarded as an exogenous control signal) in the dynamics. for computationally agile operations. _
Abstractions are characterized as finite-state Labeled Trasition With regards to the abstraction procedure (cf. Section IlI)

Systems (LTS). LTS are obtained first by partitioning the stde  we put forward a new technique that generates a finite-
space of the MPL model and by associating states of the giate | apeled Transition System (LTS) in a finite number of

LTS to the introduced partitions, then by defining relations . . I
among the states of the LTS, corresponding to the dynamical steps. The technique embeds the one-step dynamics within

(nonautonomous) transitions between the MPL state partittns, an “augmented space” [3], namely the cross product of
and finally by labeling the LTS edges according to the one-spe  state and input spaces, and furthermore leverages a region
timing properties related to the events of the original MPL  representation based on Difference-Bound Matrices (DBM)
model. In order to establish formal equivalences, the finitd TS 114]  Thjs representation allows for computationally fast
abstraction is proven either to simulate or to bisimulate tre . .
original MPL model. The computational performance of the Op_erat'ons on reglo_n_s of thg space, and thus for fast compu-
abstraction procedure is tested on a numerical benchmark. fie ~ tation of the quantities of interest. The states of the LTS
approach enables the study of properties of the original MPL are obtained by finite partitioning of the state space of
model b_y verifying equivalent specifications over the finitd TS~ the MPL model, whereas relations between pairs of LTS
abstraction. states are established by checking whether a trajectory of
the original MPL model is allowed to transition between
the corresponding partition regions, possibly according t
Max-Plus-Linear (MPL) systems are a class of discretean input choice. Computationally, this characterizatisn i
event models [1], [2] with a continuous state space charaperformed by forward-reachability analysis over a piedsew
terizing the timing of the underlying discrete events. MPLaffine (PWA, i.e. linear plus constant, over regions of the
models are predisposed to easily describe synchronizatistate space) representation of the MPL dynamics. Finaly, t
between processes, under the assumption that timing eveliisels of the LTS model are quantities defined in a number of
are linearly dependent (within a proper algebra) from previpossible ways: they either designate the difference betwee
ous event occurrences and (when nonautonomous, cf. Sectihe timing of an event for any two variables of the original
II) from exogenous schedules. MPL models are widely emmodel, or represent the time difference between consecutiv
ployed in the formal study and scheduling of infrastructurevents of the MPL model. As argued later, this plurality
networks such as communication and railway systems [3)f definitions allows for flexibility in the use of the LTS
or production and manufacturing lines [4], [5]. They can notbstraction. We prove that in general the LTS abstraction
model concurrency and are equivalent to a subclass of Pedimulates a transition system alternatively expressirg th
nets, namely Timed-Event Graphs [6]. original MPL model, and raise sufficient conditions to estab
Classical dynamical analysis of MPL models is groundetish a bisimulation relation between the abstract and atecr
on their algebraic [7] or geometric features [8]. It allowsmodels [11].
to derive conclusions on model properties, such as transien The computational aspects related to the abstraction proce
times, periodic regimes or ultimate behavior. This work indure have been of particular concern, and have brought 1) to
vestigates an alternative analytical approach aimed atkehe select DBM as a framework for representing regions of state
ing whether trajectories of the MPL model verify dynamicaland control spaces; and 2) to employ a PWA representation
properties, which is based on finite-state abstractions. ¢f the MPL dynamics. The overall performance of the
extends the recent contribution in [9], which focused ombstraction procedure is benchmarked on a case study in
autonomous (namely, deterministic) models by embeddir@ection IV.
By expressing general dynamical MPL properties as spec-
This research is funded by the European Commission undeMt\eS  ifications in Linear Temporal Logic (LTL, a modal logic),
project, FP7-ICT-2009-5 257005, by the European Commisainder the .
NOE FP7-ICT-2009-5 257462, by the European Commissionruntigie W€ argue that the LTS abstraction allows for the formal
Curie grant MANTRAS PIRG-GA-2009-249295, and by NWO und&Nr  verification of system properties by use of model checking
grant 016.103.020. techniques. Moreover, it may lead to further computational
The authors are with the Delft Center for Systems and Con- . . . . .
trol, TU Delft — Delft University of Technology, The Netharids - Savings derived from the computation of simulation and
{d. adzki ya, b. deschut ter, a. abat e}@udel ft . nl bisimulation relations of the LTS abstraction [11].

|. INTRODUCTION



The abstraction technique developed in this work has be@ Piecewise-Affine Systems

implemented as a MATLAB software tool, “Verification via  1ig paragraph discusses the PWA system generated by

biSimulations of MPL models” (VeriSIMPL, as in “very , nonaitonomous MPL model: each nonautonomous MPL
simple”), which is freely available for download [12]. model (1) can be expressed as a PWA system in the event
The article is structured as follows. Section Il mtroduceﬁomain [13] by leveraging its representation as an augrdente

the MPL model framework, as well as additional theoreticg{,p| model. Each region, along with its affine dynamics, is
concepts required for the article. Section Il unfolds th%haracterizéd by = (41 Gn) € {1,...,n+m}" or ’

abstraction procedure that derives an LTS from the MP

. " ore precisely, as:
model — it formally constructs states, transitions, anctlab

of the LTS from the MPL dynamics. A running example _ nonam _ -
elucidates the concepts and visualizes the procedureghrou Ry = ﬂ ﬂ {z; — 25, < A(i,3:) — A6, 7)1 (5)
out the work. Section IV tests the abstraction technique on i=1j=1 _

a computational benchmark, while Section V offers a few  zi(k) = Zg,(k — 1) + A(4, g:), 1<i<n, (6)

verification instances over the MPL model that can be studieéj Difference-Bound Matrices
by using the abstract LTS. '
This section introduces the definition of a DBM [10,

Sec. 4.1] and of its canonical-form representation. The DBM

A. Nonautonomous Max-Plus-Linear Systems will be used in Section Il to represent the regions, the set
DefineR., ¢ and e respectively aR U {¢}, —co and0. of inputs, as well as the labels.

A vector with each component equal io(or —o0) is also Definition 2 (Difference-Bound Matrix)A DBM in the

Il. M ODELS AND PRELIMINARIES

denoted bye (resp.,e). Forz,y € R, we definex @y = state spac&” is the finite intersection of sets defined by
max{z,y} andz ® y = x + y. For matrices4, B € RI™>™ 2y — 2y Dy 5 0y g, Wheremi,je {<, S}, ;. €ERU {+OO},
C € RI*?, then[A @ B](i,j) = A(i,j) ® B(i,j) and for1 <i#j<n. O

[A®C](i,j) = Br_, A(i, k) ® C(k, j). Notice the analogy  Definition 2 can be customized over the augmented space
between®d, ® and+, x for matrix and vector operations in R*+" of the MPL model. For each DBM, there exists
standard algebra. Givenc R (or m € N), the max-algebraic an equivalent and unique canonical-form representation [1
power ofz € R (resp.,A € R?*™) is denoted byr®" (or Th. 2], which is a DBM with the tightest possible bounds [10,
A®™) and corresponds tar in conventional algebra (resp., Observation 1]. As intuitive, a DBM can be represented by
A®---®A, mtimes). Notice that®’ = E,,, whereE, isa a matrix D (namely, a “potential graph” [14, Sec. 3]) with
max-plus identity matrix, i.eE, (i,7) = e andE,(i,j) =&, elementsD(i, j) that are intervals relating the paie;, «;)
for1 <i#j<n. by the elementy; ; and by the operatass; ;. The Floyd-
A nonautonomous MPL model [3, Sec. 7.3] is defined asarshall algorithm can be used over the potential graph to
_ compute the canonical-form representation [10, Sec. 4.1].
2k) =A@k —1) & B@u(k), @) One advantage of the canonical-form representation is that
where A € RI*", B € RZ*™, x(k — 1) € R", u(k) € it is easy to compute orthogonal projections w.r.t. a subset
R™, for k& € N. The independent variable denotes an of its variables: this is simply performed by deleting the
increasing discrete-event counter, whereas the stateb¥ari rows and the columns corresponding to the complementary
x defines the (continuous) timing related to the discretgariables [10, Sec. 4.1].
events. Furthermore, the state space is taken ®"havhich Definition 3 (Orthogonal projection)The orthogonal
also implies that the state matrik has to be row-finite. projection w.r.t. state variables (input variables) is wied
Definition 1 (Regular (row-finite) matrix, [3, Sec. 1.2]): as 11y : R**™ — R» (I : R™™ —» R™), where
A matrix is called regular (or row-finite) if it contains at [y, . (21 um)T = (2. .2n]T (y (21 um]® —
least one element different fromin each row. O Jug . .oum] 7). [
As suggested in [6, Sec. 2.5.4], a nonautonomous MPL Notice that from (5) and (6), each region and correspond-
model (1) can be expressed as an augmented MPL modelyg affine dynamics of the PWA system generated by a
(k) =Aez(k—1), (2) honautonomous MPL model can be characterized by a DBM
in R**™ andR?"*+™ respectively. The following holds.
| \ . i Theorem 1:The image and the inverse image of a DBM
Example: Consider the modified two-dimensional MPL /¢ the affine dynamics (6) is a DBM. 0
model from [3, Sec. 0.1]: Proof: The general procedure to compute the image and
(k) = B g] ©ak—1)® [z Z] ® u(k). 3) the inverse image of a DBM w.r.t. affine dynamics involves:

where A = [A B], z(k — 1) = [z(k — 1)T u(k)T]7.

1) computing the intersection of the given DBM with a

The augmented MPL model is simply DBM generated by the expression of the affine dynamics;
9 5 then 2) calculating the canonical form of the intersection;
z(k) = {3 3 N E] @ z(k —1), (4) finally 3) projecting the canonical-form representatioreiov
g €

a subset of its variables. The claim follows by noticing that
wherex(k) € R? andz(k — 1) € R%, for k € N. 0O the intersection of two DBM is a DBM, that the canonical



form of a DBM is a DBM and that the orthogonal projection Algorithm 1: Generation of state-space partition via
of a DBM is again a DBM. O autonomous model

input : A € RI*", a row-finite max-plus matrix
output: R, a collection of partitioning regions

D. Labeled Transition Systems
Definition 4 (Labeled Transition System, [11, Def. 2.1]):

: R« 0;
An LTS (S,L,0,1,AP) consists of a sef of states, a set ! ' n
L of labels, a transition relatioh C S x L x S, asetl C S 2 fore;ch(_(fﬁﬁ.. - f) € (P({1,...,n})\ 0)" do
f )

of initial states, and a setP of atomic propositions. O
Denote withP(S) the power set of a given sét. This
work considers a special class of LTS. To begin with, oftery
we will assume that/ = S and AP = R", where the
dimensions correspond to the size of the state of the MPL
model. Moreover the set of labels, customarily taken to b&

foreachl <r <n do
foreach1 <i# j <n do
if 3,7 € f, then
Ry < Ryn{x;i—x; = A(r,j)—A(r, 1) };
else ifi € f,., j ¢ f, then
Ry < Ryn{x;i—x; > A(r,j)—A(r, 1) };

4

discrete and finite, is here assumed tolbe: P(AP) —in
other words, the labels will be finite unionswefdimensional

vectors of real numbers or of real-valued intervals. b

end
end
end

13 if Ry is not emptythen R <+ RU{R;};
14 end

IIl. LTS ABSTRACTIONS
OF NONAUTONOMOUSMPL MODELS

Given a set of inputs, we abstract a nonautonomous MPL
model into a finite-state LTS. The states of the LTS are
obtained by partitioning the continuous state space, velsere
its transitions depend also on the set of input signals. The
labels of the LTS are defined in a few distinguished manners
and depend on the delay (timing) features of the MPL
model. Technically, the abstraction procedure makes use of
the augmented model, of its dynamics represented via PWA
equations, and of the DBM representation for regions over
the state, input and augmented spaces. /0

Ry )

A. States: Partitioning Procedure S

1) Partitioning via Autonomous ModeMe use the par- A
titioning procedure in [9, Sec. IlI-A2], presented in Algo- S 74
rithm 1. The partitions are based on the underlying dynamics A A
of the autonomous part of the MPL model (notice that the al- R
gorithm does not use matri®), and each partitioning region 2
is a DBM, which allows exploiting specific computationalrig. 1. Partition ofR? for the model in (3), as generated by Algorithm 1
results (cf. Section II-C).

Example: Consider the autonomous version of (3). The
regions generated by the scheme in Algorithm 1 Bre=
{reR?:z—20<e}, Re={r €R?:e < —12 < 3},
Ry={zeR?:2;—as=¢}, Ra={z e R? : z1y — 9 > =
3} Rs{: {r e R?:zy — $2}: 3}. Tée regions are shown output: R, a partition ofR™
in Fig. 1. O 1R«

In order to exploit additional steps of the partitioning2 foreach R” € P(R’) do
procedure and to streamline the whole process, yve_mtroducg:e R+ RU {ﬂR”eR” R'\Upreripr R”};
next an alternative approach to generate a partitioningef t 4 end
state space. We then argue that the partitioning generatgdr'eemove the empty region from:;
by the alternative approach is finer than that obtained from '
Algorithm 1, which leads to conclude that Algorithm 1
is computationally more attractive than the alternative ap
proach. MPL model, thereafter refining the projection as needed to

2) Partitioning via Nonautonomous Modelt is possible obtain a partition. The approach is detailed in Algorithm 3.
to leverage the nonautonomous MPL model to obtain a
partition of the state space: this is achieved by computing It can be guaranteed that the number of obtained parti-
the orthogonal projection w.r.t. the state variables ofheadioning regions over the state space is finite and that each
region in the PWA system generated by the nonautonomopartitioning region is a DBM irR™. However, we next argue

Ry

Function Ref i ne( R’) : Generation of state-space par-
titioning via refinement of state-space cover

input : R’, a cover ofR™ where|R’| < oo




Algorithm 3: Generation of state-space partition via  Algorithm 4 : Computation of the transitions via forward-

nonautonomous model reachability analysis
input : A € RZ*™"™ an augmented MPL model input : A € RZ*(™*™) 3 row-finite augmented matrix;
output: R, a partition of R R, a partition ofR";

1 R < regions of the PWA system generated Ay R, a cover ofR"*™ where|R| < oc;

2 R« 0 U, the input set

3 foreach R € Rdo R+ RU{IIx(R)}; output: 6 C R x R, a transition relation

4 R+ Refine(R); 16« (0

2 foreach R, R’ € R do
3 if 3R” € Z(R) s.t. R” N R’ is not emptythen
that the state-space partition obtained from Algorithm 3 i¢ 6+ SU{(R, R}
in general finer (hence, more expensive) than that resulting end
from Algorithm 1. 6 end
Let us characterize the orthogonal projection w.r.t. théest
variables of R;, which we denote byl (R;), under two
special cases: 1) each inequality ®f contains at least one |ower bounds on the separation between input events (sched-

state variable, i.eg € {1,...,n}"; and 2) each inequality yles) (cf. Definition 2). If on the other hand there are no
of R; contains at least one input variable, i.€ {n + constraints on input events, we defiie= R™, which is
1,...,n+m}". The following two lemmas hold. also a DBM.

Lemma 1:For eachg € {1,...,n}", We opt to focus on the forward-reachability approach,

B n n since it is computationally more attractive than the baakiva
IIx (Ry) = ﬂ ﬂ{xj—:cgi < A(i,3;)—A(i,7)} = Rz. O one: more precisely, the number of image computations in

i=1j=1 o the forward-reachability approach is in general less than
Lemma 2:For eachg € {n +1,...,n+m}", if R;iS the number of inverse-image computations in the backward-
not empty, therdly (R;) = R™. O reachability approach.

Lemma 1 implies that each region of the PWA system Given a partitioning regior? € R, we employ the PWA
generated by the autonomous MPL model [9, Algorithm 1] isepresentation over the augmented space to compute its
included in the orthogonal projection w.r.t. the state alalés image:
of regions in the PWA system generated by the nonau- I(R) = {]1 RT:T € RX U},

tonomous MPL model (Algorithm 3 without refinement).
This leads directly to the following conclusion. where R x U denotes the cross product of the sétsand

Proposition 1: The state space partition generated by AlY/- Since bothiz and U are DBM, R x U is also a DBM
gorithm 3 is finer than that obtained from Algorithm 17 N the augmented space. Computing the image of this DBM
Itis only for special instances that the two approaches le&@" Pe done by applying the procedure in Theorem 1, while
to equivalent outcomes, as argued in the following theorerHSiNg the PWA representation af. Algorithm 4 details the
In this case, Lemmas 1 and 2 can be used to show that th@mplete approach. . o
projection of each region in the PWA system generated by The outcome of Algorithm 4 is in general a nondeter-
the nonautonomous MPL model is a finite union of region§1iNistic transition system. Its relationship with the nona
of the PWA system generated by its autonomous version, {0N0mous MPL m_odel is clear: the transition system obtgmed
Theorem 2:1f there is at most one finite element inBY Algorithm 4 simulates a transition system alternatively
each column of the matrisB, the partitions constructed by €XPressing the nonautonomous MPL model [11], whereas

Algorithm 3 coincide with those obtained by AlgorithnTL. in general the opposite direction does not hold. In order to
provide sufficient conditions to obtain a bisimulation tela

B. Transitions: Forward Reachability [11], we employ a backward-reachability analysis over the
Next, we investigate a technique to determine the tramsitictugmented MPL model:

relationsd between two partitioning regions. At any given —1/pH _ [~ n A o !

event stepk, given a pair of partitioning region® and R’ (&) = {x ERIxUAwzeR } ’ (7)

and a set of input&/ C R™, there exists a transition froi The general procedure for obtainidg ! (R’) is applying

to R’ iff there exists anc(k — 1) € R and au(k) € U, such the procedure in Theorem 1 by using the PWA representation

that z(k) € R'. Such a transition can be determined eitheof A. Notice thatllx(Z~*(R’)) represents the set of states

by the forward- or by the backward-reachability computatio that are able to transition int® or, more formally{z €

that is calculating eitheR' N{z(k) :2(k—1) e R, u(k) e R":Ju e U st A®xz® B®u € R'}. This leads to the

U}, or RN{z(k—1): x(k) € R, u(k) € U}, and by following result.

checking the non-emptiness of the resulting set. Proposition 2: The transition system obtained by Algo-
We assume that the set of inpufsC R™ is represented rithm 4 bisimulates the nonautonomous MPL model if for

via a DBM. Practically, this enables expressing upper cgach pair(R, R’) € ¢, the following holds: for each: € R,



there exists an input € U such thatA ® z & B®u € R’. number of states and of transitions of the obtained LTS. We
Equivalently, for eachR, R') € §, R Clix(Z~'(R’)). O assume that the control is a scalar, namely that 1. For

Example:We introduce an input séf equals toR,. We  any givenn, we generate matriced with 2 finite elements
are going to explicitly check the existence of a transitiorfin a max-plus sense) that are randomly placed in each
from R4 to Rs. First, we determine the PWA regions thatrow, as well as matrice$3 as column vectors where all
intersect withRy x U = {z € R* : 21 — 25 > 3, 0 < the elements are finite. The finite elements are randomly
u; — ue < 3}: after performing the checking of emptinessgenerated integers with value in betwekrand 100. The
of intersections, we are left with the regiofi%, 1), R(31), input space is selected &5= R.
and R(3 3). Thereafter, we determine whether the image of The experiments have been run on MATLAB code, over
Ry N (Ry xU), Ry N(Ry xU), and R33N (Ry x @ dual-core AMD Opteron 2.8 GHz PC with GB of
U) intersect with Rs: after computing the sets, we derivememory. Over 10 independent experiments, Table | (dealing
that only the image oﬂ?(g,,l) N (R4 x U) intersects with with maximum and mean values) reports the time needed to
R3. Thus, we conclude that there is a transition frénto  construct the LTS, broken down over the three successive
R3. The overall transition system is shown in Fig. 2, wher@rocedures for states, transitions, and label generafibe.
transitions, for the moment, are defined with no labels. it canumber of states and of transitions in the LTS are also
be checked that the LTS only simulates the nonautonomoosmputed.

MPL model: for instance, the paffi,, R1) does not satisfy ~ Recall that the first step (generation of states) consists
the condition in Proposition 2. [0 of the partitioning of the state space (Algorithm 1) and
constructing the PWA system over the augmented space (cf.
Section 1I-B), whereas the second (generation of trams)io

We now introduce labels on the transition system, thugses the forward-reachability analysis. The generation of
obtaining a full LTS. Labels are quantities defined in twdabels is limited to computing (via backward reachability)
different possible ways: they either characterize 1) tiffedi  the labels over the transitions, since those over the states
ence between the timing of an event for any two variables @fan be derived from the first step and as such require no
the original model, i.ez;(k) —z;(k), wherel <i < j <n; extra computational overhead. The labeling procedure is
or 2) the time difference between consecutive events of tttwmputationally heavier than the generation of transitien
MPL model, i.e.z;(k) — z;(k — 1), for 1 <i < n. this is due to the computation step based on the backward

The first labeling characterizes the explicit represenitati reachability, which as discussed in Section Il is in gehera
of partitioning regions and is associated to each statedn timore expensive than the forward reachability one.

LTS. Since each partitioning region is represented by a DBM The worst-case complexity of the abstraction procedure is
in its canonical-form representation (cf. Section II-d)et exponential w.r.t. the dimension of the MPL model [9], how-
bounds on the state labels are the tightest possible and #ager the benchmark displays that this conservative estmat
representation is unique [10, Th. 2]. A label is a finite vectoin practice does not occur.

of real-valued intervals.

The second labeling is associated to each transition in the
LTS. In order to calculate the labels of a transition, first we
employ a backward-reachability analysis (7) to the incamin The obtained LTS model can be employed to verify certain
partitioning regions, which yields a finite union of DBM. properties over the original MPL model. If the LTS bisim-
Then for each DBM, we collect information from its explicit ulates the original MPL model, we can verify a number of
representation and its affine dynamics (2). Thus, it is adfinitspecifications, for instance those expressed in LTL loglg.[1
union of vectors of real-valued intervals. Otherwise, if the LTS simulates the original MPL model, we

Example:We are going to determine the labels of thecan verify at least safety properties.
transition fromR, to Rs. First we calculateg( Ry, x U) N To specify properties for trajectories of the MPL model,
Z-1(R3): after iterating through all PWA regions, we obtainwe use Linear Temporal Logic (LTL) [11, Ch. 5]. LTL
a region described byz € R* : 21 — x5 > 3, 71 —u; = formulas are recursively defined over a set of atomic propo-
-3, x1 —ux > —3, mp —u; < =5, 0 < u; —uy < Sitions (AP), by Boolean operators and temporal operators.
3} C R(?,,l). The second label is obtained by using théBoolean operators are: (negation), A (conjunction), and
explicit representation of the region and its affine dynamic Vv (disjunction), whereas temporal operators ape(next),
21(k) —21(k—1) =u; —x; = 3, andxq(k) —x2(k—1) = U (until), O (always), and( (eventually). A formulag,
r1 — w2 + 3 > 6. Fig. 2 depicts the full LTS endowed with which in general is (recursively) determined by applicatio
the second labeling. O of the above operators, is interpreted over traces (ti@jes)
generated by the LTS. In particular it is of interest to check
if (the trajectories of) an LTS satisfies a given formula

In order to test the practical efficiency of the proposedor “specification”) — this procedure is known as “model
algorithms we compute the runtime needed to perform thehecking”.
abstraction of an MPL system into an LTS, for an increasing With focus on the verification over state labels, let us
dimensionn of the MPL model. We also keep track of theconsider a set of atomic propositions that correspondsgo th

C. Labels: Backward Reachability

V. FORMAL VERIFICATION
OF NONAUTONOMOUSMPL MODELS

IV. COMPUTATIONAL BENCHMARK
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Fig. 2. LTS endowed with the second labeling, for the MPL niad&3), whereU = R» and state: represents;, for: =1,...,5.

TABLE |
NUMERICAL BENCHMARK — {MEAN; MAXIMAL } VALUES

size of generation of generation of generation of number of number of
MPL model states of LTS transitions of LTS labels of LTS states of LTS transitions of LTS
3 {0.35; 0.39 [sec] {0.36; 0.42 [sec] {0.63; 1.13 [sec] {14.20; 15 {70.80; 133
4 {0.48; 0.54 [sec] {2.07; 3.4% [sec] {4.72; 7.8Q [sec] {45.00; 63 {268.20; 429
5 {0.85; 1.0% [sec] {18.55; 40.27 [sec] {64.64; 145.83 [sec] {120.20; 1953 {1,434.20; 3,05
6 {1.93; 2.6% [sec] | ~ {4.40; 11.62 [min] | ~ {22.53; 73.36 [min] {304.00; 513 {7.72; 22.3F x10°
7 {6.04; 8.63 [sec] ~ {2.09; 5.58 [hr] ~ {9.62; 23.56 [hr] | {1.03; 1.7 x10° | {53.56; 107.9§ x10°

collection of the partitioning regions defining the LTS. Mor [3] B. Heidergott, G. Olsder, and J. van der Woutltax Plus at Work—

precisely, assume that the inverse image W.r.t. the Ia@elin Modeling and Analysis of Synchronized Systems: A Course @&t M

. L . . Plus Algebra and Its Applications Princeton University Press, 2006.
function [11, Definition 2.1] of each atomic proposition [4] B. Roset, H. Nijmeijer, J. van Eekelen, E. Lefeber, andRdoda,

equals a union of partitioning regions. Thus the partition  “Event driven manufacturing systems as time domain cosysiems,”

leading to the LTS states is proposition preserving, which TSEFOC- 44th IEEE Conf. Decision and Contydbec. 2005, pp. 446~
implies that the labeling function for the abstract traosit 5] J. van Eekelen, E. Lefeber, and J. Rooda, “Coupling edentain and

system is well defined and that the simulation or the bisimu-  time domain models of manufacturing systems, Aroc. 45th IEEE
lation relations between the abstract and concrete model ay Contf. Decision and ContrpDec. 2006, pp. 6068-6073.
ined 6] F. Baccelli, G. Cohen, G. Olsder, and J.-P. Quadgatchronization
retained. ) ) and Linearity, An Algebra for Discrete Event Systemdohn Wiley
Example:ln [3, Sec. 0.1], the autonomous version of (3) is  and Sons, 1992. - o _
used to model a simple ra“way network with 2 stations. We[?] S. Gaubert and R. Katz, “Reachability and invariancebfgms in

i . . . max-plus algebra,” irPositive Systemser. Lecture Notes in Control
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