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Abstract: In this paper we describe a two-step scheme for approximate model checking of
discrete time stochastic hybrid systems. In the first step, the stochastic hybrid system is
approximated by a finite state Markov chain. In the second step, the Markov chain is model
checked for the desired property. In particular, we consider the probabilistic invariance property
and show that, under certain regularity conditions, the invariance probability computed using
the approximating Markov chain converges to the invariance probability of the original stochastic
hybrid system, as the grid used in the approximation gets finer. A bound on the convergence
rate is also provided.

1. INTRODUCTION

Stochastic hybrid systems allow one to model the inter-
action between continuous dynamics, discrete dynamics
and probabilistic uncertainty. Because of their versatility,
stochastic hybrid systems have emerged as a powerful
framework for capturing the intricacies of complex sys-
tems. Various classes of stochastic hybrid models have
been introduced and numerous case studies in the litera-
ture have illustrated their potential in diverse application
domains such as control of telecommunication networks,
air traffic, manufacturing, biology and finance (see Blom
and J. Lygeros (Eds.) [2006], Cassandras and J. Lygeros
(Eds.) [2006] for an overview). Motivated by this, consid-
erable research effort has been devoted to the development
of modelling, analysis and control methods for stochastic
hybrid systems. Part of the research in this area has
been driven by computer scientists, in the area of formal
methods. Different approaches have originated in the en-
gineering literature, in particular in the area of automatic
control. Each of the approaches has its own advantages
and disadvantages and has been applied successfully to
several application areas. However, synergies still need to
be deeply explored and fully exploited in order to address
the challenges posed by real-life, large scale applications.

In particular, the development of computational tools
is crucial for the application to practical problems of
the theoretical results that have emerged in the area of
stochastic hybrid systems. Ideally such tools should be
based on solid theoretical foundations, to quantify for
instance the level of approximation introduced during
the computation process and, at the same time, should
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be versatile and efficient enough to be used on realistic
applications.

Many of the computational tools proposed in the area of
stochastic hybrid systems are based on numerical tech-
niques. These involve either imposing a grid on the state
space, thus turning an infinite state problem into an ap-
proximate finite state one (see, e.g., Abate et al. [2007],
Prandini and Hu [2006]), or carrying out Monte-Carlo
simulations to obtain empirical estimates of quantities
such as expected values of reach probabilities (Lecchini
et al. [2006]). Even though computational tools based
on numerical methods typically come with explicit ap-
proximation guarantees, their computational requirements
often limit their applicability to practical problems. To
address a wider range of problems, one would ideally
like to combine numerical approximation with symbolic
computation techniques such as model-checking methods
that can be used to test a wider range of properties and
that have been optimized for computational efficiency.

Model checking methods are model-based verification
techniques that provide the means to algorithmically check
whether the model of a system satisfies different kinds of
properties related to its evolution in time and expressed in
an appropriate temporal logic (Baier and Katoen [2008],
Clarke et al. [1999]). In particular, probabilistic model
checking has been introduced quite recently as an auto-
mated technique for verifying properties specified in terms
of probability that a certain condition is satisfied. The
adopted stochastic models are discrete and continuous
time Markov chains and the properties are specified in
terms of some probabilistic logic like Probabilistic Compu-
tation Tree Logic (PCTL, Hansson and Jonsson [1994]). A
detailed overview is provided in Baier and Katoen [2008].
During the last decade, effective and efficient probabilis-



tic model-checking algorithms for Markov chains have
been developed and implemented in software tools such
as PRISM (Hinton et al. [2006]) and MRMC (Katoen
et al. [2009]). Model checking for stochastic systems with
a hybrid state space is a rather unexplored field.

The aim of the present paper is to take a first step
toward the automatic verification of complex properties
for stochastic hybrid systems by combining numerical
computation based on gridding and finite approximation
with model checking tools developed to test temporal logic
properties for finite state Markov chains. The idea is as
simple as follows. Given a stochastic hybrid system, we use
numerical tools to generate a finite state Markov chain,
together with guarantees on the level of approximation
introduced in the process. The properties of the Markov
chain are then encoded in PCTL and analyzed using a
model checker. Guarantees on the probability that the
original stochastic hybrid system satisfies the property
of interest are provided. Scalability of the approach can
be further enhanced by constructing first an approximate
abstraction of the stochastic hybrid system as in Julius
and Pappas [2009], and then performing the proposed
automatic verification procedure on the simpler abstracted
model.

Results in this paper are confined to discrete time stochas-
tic hybrid systems and the finite time invariance prop-
erty. Theoretical and practical challenges related to the
extension and the application of the approximate model
checking approach are discussed in the conclusions.

2. STOCHASTIC HYBRID SYSTEM MODEL

We consider a discrete time stochastic hybrid system
(DTSHS) as defined in Abate et al. [2008] but without
control inputs. The state of a DTSHS comprises a discrete
and a continuous component. The discrete component
takes values in a finite set Q; the elements of Q will be
referred to as ‘modes’. The continuous component of the
state in each mode q ∈ Q lies in a Euclidean space R

n(q),
whose dimension n(q) is determined by a bounded map
n : Q → N. The hybrid state space is then given by the
disjoint union of the Euclidean spaces associated to each
mode, that is S =

⋃

q∈Q{q} × R
n(q). Let B(S) denote

the σ-algebra generated by the subsets of S of the form
∪q∈Q{q}×Aq, where Aq ∈ B(Rn(q)) is a Borel set in R

n(q).
S can be endowed with a metric that is equivalent to the
usual Euclidean metric when restricted to each component
R

n(q), making (S,B(S)) a Borel space (Davis [1993]).

The continuous state of a DTSHS evolves according to a
probabilistic law specific to the current mode. A discrete
transition from one mode to a different one may occur
according to another probabilistic law; such a transition
will cause a modification of the probabilistic law governing
the continuous state dynamics. Furthermore, such a mode
transition induces a probabilistic reset of the continuous
state to a value in the Euclidean space associated with the
new mode. Definitions 1 and 2 formalize this description.

Definition 1. (DTSHS). A discrete time stochastic hybrid
system is a collection H = (Q, n, Init, Tx, Tq, R), where

• Q = {q1, q2, . . . , qm} with m ∈ N, represents the
discrete state space;

• n : Q → N assigns to each discrete state q ∈ Q the
dimension of the continuous state space R

n(q);
• Init : B(S) → [0, 1] is a probability measure on S for

the initialization of the solution process;
• Tx : B(Rn(·)) × S → [0, 1] is a conditional stochastic

kernel on R
n(·) given S. It assigns to each s =

(q, x) ∈ S a probability measure, Tx(·|s), on the Borel
space (Rn(q),B(Rn(q))). The function Tx(A|(q, ·)) is
assumed to be Borel measurable, for all q ∈ Q and all
A ∈ B(Rn(q));

• Tq : Q×S → [0, 1] is a conditional discrete stochastic
kernel on Q given S, which assigns to each s ∈ S a
probability distribution, Tq(·|s), over Q;

• R : B(Rn(·))×S×Q → [0, 1] is a conditional stochastic
kernel on R

n(·) given S × Q, that assigns to each
s ∈ S and q′ ∈ Q, a probability measure, R(·|s, q′),

on the Borel space (Rn(q′),B(Rn(q′))). The function
R(A|(q, ·), q′) is assumed to be Borel measurable for

all q, q′ ∈ Q and all A ∈ B(Rn(q′)).

We consider the evolution of the DTSHS over a finite time
horizon [0, N ] and define its semantics algorithmically.

Definition 2. (Execution of a DTSHS). Consider a DT-
SHS H = (Q, n, Init, Tx, Tq, R) and a time horizon [0, N ].
A stochastic process {s(k) = (q(k),x(k)), k ∈ [0, N ]} with
values in S = ∪q∈Q{q} × R

n(q) is an execution of H if
its sample paths {sk = (qk, xk), k ∈ [0, N ]} are obtained
according to the following algorithm:

set k = 0;
extract (qk, xk) ∈ S from Init(·);
while k < N do

extract qk+1 ∈ Q from Tq(· |(qk, xk));
if qk+1 = qk, then

extract xk+1 ∈ R
n(qk+1) from Tx(· |(qk, xk));

else
extract xk+1 ∈ R

n(qk+1) from R(· |(qk, xk), qk+1);
k → k + 1;

end.

Interestingly, a DTSHS H = (Q, n, Init, Tx, Tq, R) defines
a Markov process with state space S and transition prob-
ability kernel Ts : B(S) × S → [0, 1] given by

Ts({q
′} × Aq′ |s) =

{

Tx(Aq′ |s)Tq(q
′|s), q′ = q

R(Aq′ |s, q′)Tq(q
′|s), q′ 6= q,

(1)

for all s = (q, x) ∈ S, q′ ∈ Q, and Aq′ ∈ B(Rn(q′)).

Thus, the execution {s(k), k ∈ [0, N ]} is a stochastic
process defined on the canonical sample space Ω = SN+1,
endowed with the σ−algebra, B(Ω), generated by the prod-
uct topology, and with a probability measure P uniquely
defined by the transition kernel Ts and the initial measure
Init [Bertsekas and Shreve, 1996, Proposition 7.45]. In the
sequel, we shall use the notation Ps0

for the probability
measure associated with the deterministic initial condition
s0 ∈ S, i.e., Init(·) = δs0

(·).

3. PROBABILISTIC INVARIANCE PROBLEM

Consider a compact Borel set A ∈ B(S), representing a
‘safe’ set. The probability that the execution associated
with the initial condition s0 ∈ S will remain within A
during the time horizon [0, N ] is defined as



ps0
(A) = Ps0

{s(k) ∈ A for all k ∈ [0, N ]}. (2)

If ps0
(A) ≥ ǫ, ǫ ∈ (0, 1], we say that the system initialized

at s0 is safe with an ǫ probabilistic guarantee. For a given
ǫ ∈ (0, 1], we can define as the probabilistic safe set with
safety level ǫ the set

S(ǫ) = {s0 ∈ S : ps0
(A) ≥ ǫ} (3)

of those initial conditions s0 that are safe with an ǫ prob-
abilistic guarantee. Our goal is setting up a computation
procedure to determine S(ǫ).

Let 1C : S → {0, 1} denote the indicator function of set
C ⊆ S: 1C(s) = 1, if s ∈ C, and 1C(s) = 0, if s 6∈ C.
Then, it is easily seen that ps0

(A) in (2) can be expressed

as ps0
(A) = Es0

[

∏N
k=0 1A(s(k))

]

, where Es0
denotes the

expectation with respect to the probability measure Ps0
.

Define the functions Vk : S → [0, 1], k = 0, 1, . . . , N , such
that Vk(s) represents the probability that an execution
of the DTSHS remains within the safe set A over the
residual time horizon [k, N ], starting from s at time k.

Then, V0(s) = Es[
∏N

l=0 1A(s(l))], s ∈ S, evaluated at
s = s0 returns the quantity of interest ps0

(A), and the
probabilistic safe set with safety level ǫ defined in (3) can
be expressed as S(ǫ) = {s0 ∈ S : V0(s0) ≥ ǫ}.

According to the dynamic programming terminology, we
call Vk(s) the value function at time k. The following result
states that the value functions can be determined through
a backward recursive procedure.

Proposition 1. (Abate et al. [2008], Lemma 1). The value
functions Vk : S → [0, 1], k = 0, 1 . . . , N − 1, can be
computed through the following backward recursion:

Vk(s) = 1A(s)

∫

S

Vk+1(sk+1)Ts(dsk+1|s), s ∈ S, (4)

initialized with VN (s) = 1A(s), s ∈ S.

Since an explicit analytic solution to the recursion in
equation (4) is generally impossible to find, the computa-
tional aspects to the problem are of key importance to its
implementation. In Section 4 we design an approximation
scheme for the numerical solution of the stochastic invari-
ance problem. To this purpose, it is important to note
that the value function Vk : S → [0, 1] satisfies Vk(s) = 0,
s ∈ S \ A, for any k ∈ [0, N ]. As a consequence, the
recursive equation (4) in Proposition 1 can be restricted
to the compact set A:

Vk(s) =

∫

A

Vk+1(sk+1)Ts(dsk+1|s), s ∈ A, k < N,

(5)
VN (s) = 1, s ∈ A.

The advantage of confining computations to the compact
set A is that we can adopt a finite discretization of the
continuous state component in the numerical scheme that
approximates the quantity of interest. Moreover, under
suitable regularity conditions on the transition kernels of
H, the Vk functions can be shown to be Lipschitz continu-
ous over A. This property (valid only within A, given the
discontinuity when passing from a safe state within A to
an unsafe state outside A) is used for determining bounds
on the approximate numerical solution.

4. APPROXIMATE MODEL CHECKING

In this section, we describe a computational procedure
to determine a conservative approximation of the safe set
S(ǫ) defined in (3) of a DTSHS. This procedure involves
two steps: 1. building an approximating finite state Markov
chain for the DTSHS, and 2. applying the model checking
algorithm for verifying the logical specification of the
probabilistic invariance property for the Markov chain.

4.1 Approximating Markov chain

Let the safe set A ∈ B(S) be given by A = ∪q∈Q{q} × Aq

with Aq ∈ B(Rn(q)). The size of the continuous state
space within A is measured by λ = maxq∈Q L(Aq), where
L(Aq) < ∞ denotes the finite Lebesgue measure of the

set Aq ⊂ R
n(q). Assume for simplicity that Aq 6= ∅ for

all q ∈ Q. Since A is compact, we can introduce a finite
partition of each compact set Aq ⊂ R

n(q), q ∈ Q, by taking
Aq = ∪

mq

i=1Aq,i, where Aq,i, i = 1, . . . , mq, are pairwise

disjoint Borel sets Aq,i ∈ B(Rn(q)), with Aq,i ∩ Aq,j = ∅,
∀i 6= j. Denote with δq,i the diameter of the set Aq,i, that
is δq,i = sup{‖x − x′‖ : x, x′ ∈ Aq,i}, and define the grid
size parameter by δ = maxi=1,...,mq,q∈Q δq,i.

The collection of sets G = {Gq,i = {q} × Aq,i, i =
1, . . . , mq, q ∈ Q} represents a partition of the safe set
A. For each element Gq,i of the partition, we select
a representative point (q, vq,i) ∈ Gq,i. The set Aδ =
{(q, vq,i), i = 1, . . . , mq, q ∈ Q} is the discretized version
of the safe set A. We denote with ξ : A → Aδ the map
that associates to s ∈ Gq,i ⊂ A the corresponding discrete
state (q, vq,i) ∈ Aδ, and with Ξ : Aδ → G the set-valued
map that associates to (q, vq,i) ∈ Aδ the set Gq,i to which
(q, vq,i) belongs.

The state space of the stochastic automaton that approx-
imates the original DTSHS is defined as Zδ = Aδ ∪ {φ},
where φ is a discrete state representing the set of all states
in the hybrid state space S that are outside the safe set
A. Notice that the compactness assumption on A ensures
that the set Zδ is finite.

The transition probability function Tδ : Zδ × Zδ → [0, 1]
is defined as follows:

Tδ(z
′|z) =























Ts(Ξ(z′)|z), z′ ∈ Aδ and z ∈ Aδ

1 −
∑

z̄∈Aδ

Ts(Ξ(z̄)|z), z′ = φ and z ∈ Aδ

1, z′ = z = φ

0, z′ ∈ Aδ and z = φ,

(6)

and satisfies
∑

z′∈Zδ
Tδ(z

′|z) = 1, for all z ∈ Zδ. Note
that φ is an absorbing state and the probability that the
stochastic automaton evolves from a safe state z ∈ Aδ to
a safe state z′ ∈ Aδ is defined as the probability that the
original DTSHS will enter the safe set Ξ(z′) ⊂ A in one
time step starting from z.

The execution during the time horizon [0, N ] of the
stochastic finite automaton associated with the initial
condition z0 ∈ Zδ is a discrete time Markov chain
(DTMC) {z(k), k ∈ [0, N ]} defined on the probability

space (ZN+1
δ , σ(ZN+1

δ ), Pδ,z0
), where σ(ZN+1

δ ) is the σ-



algebra associated to ZN+1
δ , and the probability measure

Pδ,z0
is uniquely defined by the initial condition z0 and the

transition probability function Tδ.

4.2 Finite state Markov chain model checking

Let us consider a stochastic automaton with state space
Z and transition probability function T : Z × Z →
[0, 1]. The execution of the automaton associated with
some initial condition z̄ ∈ Z is a DTMC whose sample
paths z0, z1, z2, . . . , satisfy z0 = z̄ and T (zi+1|zi) > 0,
i = 0, 1, . . . . The model checking approach to probabilistic
verification consists in specifying the property of interest
in terms of a probabilistic temporal logic formula, and
in computing the set of initial conditions such that the
corresponding DTMC executions satisfy that formula.

Logical specification of probabilistic invariance: Ac-
cording to the PCTL, the probabilistic invariance property
for a DTMC with safe set D ⊂ Z can be expressed by the
formula

P≥ǫ

(

2
≤NΦD

)

, (7)

which holds in the state z̄ whenever the DTMC execution
associated with the initial condition z̄ satisfies the sub-
formula 2

≤N ΦD with probability at least equal to ǫ ∈
[0, 1]. The state formula ΦD characterizes the safe set D,
i.e., ΦD holds in state z if and only if z ∈ D. A sample
path of the DTMC satisfies the path formula 2

≤NΦD if
its first N states all belong to D, i.e. they are all safe. The
symbol 2 should be read as “always”. Similarly, the path
formula 3Φ asserts that at some point a state satisfying
formula Φ is reached. Let D̄ be the complement of D in
Z, i.e., the set of unsafe states. Then, ΦD̄ = ¬ΦD with
¬ denoting logical negation. A path z0, z1, . . . satisfies
3ΦD̄ if some of its states are unsafe. 3ΦD̄ thus expresses
a reachability specification over the unsafe set D̄. The
duality between probabilistic invariance and probabilistic
reachability (see Abate et al. [2008]) can be expressed as:

P≥ǫ

(

2
≤NΦD

)

≡ P≤1−ǫ

(

3
≤NΦD̄

)

. (8)

More complex properties can be stated in a similar manner
via logical specifications. For instance, assume that we
are interested in the reachability of a desired set C via
some set B of admissible states within the bounded time
horizon [0, N ], with probability at least ǫ. This is expressed
by the formula: P≥ǫ

(

ΦB U≤NΦC

)

involving the so-called

bounded-until operator (U≤N ). Intuitively, a path satisfies
ΦB U≤NΦC if it reaches a desired state (in C) within [0, N ]
while all states prior to this state are admissible (in B).
Then, 3

≤NΦ can be defined as trueU≤NΦ, and, based on
(8), the probabilistic invariance property can be expressed
in terms of the bounded-until operator as

P≥ǫ

(

2
≤NΦD

)

≡ P≤1−ǫ

(

trueU≤N¬ΦD

)

.

The validity of a formula in a state is formally defined
by means of a satisfaction relation, denoted by |=. For
instance, z̄ |= P≥ǫ

(

2
≤NΦD

)

denotes a state z̄ satisfying
formula (7).

Model-checking algorithm: The inputs to the model-
checking algorithm for PCTL over DTMCs are a stochastic
automaton with finite state space Z and transition proba-
bility function T : Z ×Z → [0, 1], and a PCTL formula Φ.
The states of the DTMC are assumed to be labeled with

sets of atomic propositions. The output is the set of states
satisfying formula Φ: Sat(Φ) = {z ∈ Z | z |= Φ}. PCTL
model checking is carried out by recursively computing
the set Sat(Φ). This is done by means of a bottom-up
recursive algorithm over the parse tree of Φ. Each node of
this tree is labeled with a sub-formula of Φ, the root node is
labeled with Φ, and the leaves are either labeled with true

or some atomic proposition a. Starting from the leaves of
the tree, the set of states satisfying each sub-formula is
computed recursively moving upwards towards the root.
For most of the operators in the logic, such as negation
and conjunction, this step is straightforward. The main
difficulty is represented by the sub-formulas involving the
P∼ǫ(·) operator, ∼ being a binary comparison operator
such as <, ≤, >, ≥. We concentrate on the problem of
checking the formula P∼ǫ

(

ΦU≤N Ψ
)

with N < ∞.

Let πk(z) denote the probability that the DTMC exe-
cution of the stochastic automaton starting from z at
time k reaches a Ψ-state within the residual time hori-
zon [k, N ] via paths of all Φ-states. The set of states
Sat

(

P∼ǫ

(

ΦU≤N Ψ
) )

can then be expressed in terms of

π0(·) as: Sat
(

P∼ǫ

(

ΦU≤N Ψ
) )

= {z ∈ Z : π0(z) ∼ ǫ}.
We next show how the probability π0(z), z ∈ Z, can be
expressed and computed in terms of the transient probabil-
ities of a suitably defined DTMC. Given a PCTL formula
Υ, consider the transition probability function T [Υ] : Z ×
Z → [0, 1] defined as:

T [Υ](z′|z) =















T (z′|z), z |= ¬Υ

1, z |= Υ and z′ = z

0, otherwise.

Clearly, this modified transition probability function
makes all the states satisfying Υ absorbing. For model-
checking formula P∼ǫ

(

ΦU≤N Ψ
)

, one can then make all
¬(Φ∨Ψ)-states and all Ψ-states absorbing by considering
T [Υ](·|·) with Υ = ¬Φ ∨ Ψ, since ¬Φ ∨ Ψ = ¬(Φ ∨ Ψ) ∨
Ψ. The ¬(Φ ∨ Ψ)-states are defined as absorbing since
Φ U≤N Ψ is violated as soon as some state is visited that
neither satisfies Φ nor Ψ; whereas the Ψ-states are defined
as absorbing since, once a Ψ-state is reached (along a Φ-
path) in at most N steps, then Φ U≤N Ψ holds, regardless
of which states will be visited later on.

As a result of this construction, for any z ∈ Z, the
probability π0(z) can be computed as the probability that
the DTMC with transition probability function T [¬Φ ∨
Ψ](·|·) starting from z at time 0 will be within Sat(Ψ)
at time N . The probability distribution at time k of this
DTMC can be expressed as Πk

z = ez · P[¬Φ ∨ Ψ]k, where
ez is a row probability vector whose elements are all equal
to 0 except for a single one corresponding to state z, and
P[¬Φ ∨ Ψ] is the one-step transition probability matrix
obtained by appropriately arranging in different columns
the sequences {T [¬Φ ∨ Ψ](z′|z), z ∈ Z} corresponding to
the different z′ ∈ Z. Finally, the probability of interest
π0(z) can be computed as π0(z) = ΠN

z · eΨ = ez · P[¬Φ ∨
Ψ]N ·eΨ, where eΨ is a column vector that characterizes
Sat(Ψ), i.e., each element of eΨ takes values in {0, 1} and
is equal to 1 if it corresponds to z |= Ψ, and 0 otherwise.

The complexity of model checking the PCTL formula
P∼ǫ

(

ΦU≤N Ψ
)

then mainly depends on the size of the
one-step transition probability matrix P[¬Φ ∨ Ψ]. Deter-



mining the set of states that satisfy P∼ǫ

(

ΦU≤N Ψ
)

in fact

amounts to computing P[¬Φ∨Ψ]N ·eΨ. In order to exploit
the possible sparsity of P[¬Φ∨Ψ], i.e. the presence of many
zero elements in such a matrix, the product P[¬Φ∨Ψ]N ·eΨ

is typically computed in an iterative fashion: P[¬Φ ∨
Ψ]·(. . . (P[¬Φ ∨ Ψ]·eΨ)).

Approximation of the probabilistic safe set: The
probabilistic safe set S(ǫ) in (3) can be approximated
through the following procedure.

Algorithm 1. (probabilistic safe set approximation).

(1) select η > 0 such that η
2 ∈ (0, 1 − ǫ);

(2) construct the approximating Markov chain with grid
size δ according to the procedure in Section 4.1;

(3) use the model checker to compute Zδ(ǫ + η
2 ) =

{

z0 ∈

Zδ : z0 |= P≤1−(ǫ+η
2
)

(

true U≤N ¬ΦAδ

)}

;

(4) define the approximating safe set as

Ŝη(ǫ) =
{

s0 ∈ S : ξ(s0) ∈ Zδ(ǫ +
η

2
)
}

.

We next show that δ can be chosen so as to guarantee a
certain quality of the approximated safe set.

5. ANALYSIS OF THE APPROXIMATION RESULT

Consider an initial condition s0 ∈ A for the DTSHS. Let
z0 = ξ(s0) ∈ Aδ be the discrete state corresponding to s0.
We show that, under certain regularity conditions on the
DTSHS, the probability

pδ,z0
(Aδ) = Pδ,z0

{z(k) ∈ Aδ for all k ∈ [0, N ]} (9)

computed on the approximating Markov chain initialized
at z0 = ξ(s0) converges to the invariance probability of
interest ps0

(A) of the DTSHS initialized at s0 ∈ A, as
the grid size parameter δ tends to zero. We also provide
an expression for the rate of convergence. The proof is
inspired by Abate et al. [2007], Bertsekas [1975].

Suppose that the stochastic kernels Tx and R on the
continuous component of the hybrid state admit density
tx and r, and that tx and r, as well as the stochastic kernel
Tq, satisfy the following Lipschitz condition.

Assumption 1.

(1) |Tq(q̄|(q, x)) − Tq(q̄|(q, x′))| ≤ h1‖x − x′‖, for all
(q, x), (q, x′) ∈ A, and q̄ ∈ Q,

(2) |tx(x̄|(q, x)) − tx(x̄|(q, x′))| ≤ h2‖x − x′‖, for all
(q, x), (q, x′), (q, x̄) ∈ A,

(3) |r(x̄|(q, x), q̄) − r(x̄|(q, x′), q̄)| ≤ h3‖x − x′‖, for all
(q, x), (q, x′), (q̄, x̄) ∈ A, and q̄ 6= q ∈ Q,

where h1, h2, and h3 are suitable finite Lipschitz constants.

Theorem 1. Under Assumption 1, the value function Vk :
S → [0, 1] satisfies the Lipschitz condition over A:

|Vk((q, x)) − Vk((q, x′))| ≤ K‖x − x′‖, ∀ (q, x), (q, x′) ∈ A,

for any k ∈ [0, N ]. The constant K is given by K = mh1 +
λ
(

h2 + (m − 1)h3

)

, where m is the cardinality of Q and
λ is the Lebesgue measure of the continuous state space
within A.

The proof is omitted due to space limitations.

Theorem 2. Under Assumption 1, the invariance probabil-
ity ps0

(A) for the DTSHS initialized at s0 ∈ A satisfies
∣

∣ps0
(A) − pδ,z0

(Aδ)
∣

∣ ≤ γδ,

where pδ,z0
(Aδ) is the invariance probability for the ap-

proximating Markov chain with grid size δ initialized at
the discrete state z0 = ξ(s0) ∈ Aδ, and γ = NK.

Proof: Fix δ > 0 and consider the stochastic automaton
on Zδ = Aδ ∪ {φ} with transition probability Tδ : Zδ ×
Zδ → [0, 1] defined in (6). Given that φ is an absorbing
state, the invariance probability pδ,z0

(Aδ) in (9) of the
approximating Markov chain can be computed as

pδ,z0
(Aδ) = Pδ,z0

{z(N) ∈ Aδ}.

Let Vδ,k : Zδ → [0, 1], for all k ∈ [0, N ], represent the
conditional probability that a Markov chain execution of
the automaton that takes the value z at time k will be
within the safe set Aδ at time N . Clearly, the invariance
probability of interest can be computed as pδ,z0

(Aδ) =
Vδ,0(z0). Moreover, Vδ,N (z) = 1Aδ

(z), z ∈ Zδ, and, for
k ∈ [0, N − 1], Vδ,k : Zδ → [0, 1] satisfies the recursive
equation Vδ,k(z) =

∑

z′∈Zδ
Tδ(z

′|z)Vδ,k+1(z
′). Given that

Vδ,k(φ) = 0, k ∈ [0, N ], we have that

Vδ,k(z) =
∑

z′∈Aδ

Tδ(z
′|z)Vδ,k+1(z

′), z ∈ Aδ, k < N,

(10)
Vδ,N (z) = 1, z ∈ Aδ,

which is the discretized version of (5).

Let us introduce the piecewise constant function V̂k(s) =
Vδ,k(ξ(s)), s ∈ A. We next prove by induction on k that

|Vk(s) − V̂k(s)| ≤ (N − k)Kδ, (11)

holds for any k = 0, 1, . . . , N . The claim then follows
by setting k = 0 in equation (11) and recalling that
ps0

(A) = V0(s0) and pδ,z0
(Aδ) = Vδ,0(ξ(s0)).

Since VN (s) = V̂N (s) = 1, s ∈ A, then, equation (11)
trivially holds for k = N . Let us suppose by induction
hypothesis that

∣

∣Vk+1(s) − V̂k+1(s)
∣

∣ ≤ (N − k − 1)Kδ,
s ∈ A, for k + 1 < N . Observe that

|Vk(s) − V̂k(s)| = |Vk(s) − V̂k(ξ(s))| ≤ |Vk(s) − Vk(ξ(s))|

+ |Vk(ξ(s)) − V̂k(ξ(s))|, s ∈ A. (12)

By Theorem 1, it is easily seen that the first term in the
right hand-side of this equation is bounded by

|Vk(s) − Vk(ξ(s))| ≤ Kδ, s ∈ A.

For the second term, by the backward recursions (5) and
(10), and the definition of the approximating Markov chain
transition probability function (6), we get

|Vk(ξ(s)) − V̂k(ξ(s))|

=
∣

∣

∣

∫

A

Vk+1(w)Ts(dw|ξ(s)) −
∑

z∈Aδ

Tδ(z|ξ(s))V̂k+1(z)
∣

∣

∣

=
∣

∣

∣

∫

A

Vk+1(w)Ts(dw|ξ(s)) −

∫

A

V̂k+1(w)Ts(dw|ξ(s))
∣

∣

∣

≤

∫

A

∣

∣Vk+1(w) − V̂k+1(w)
∣

∣Ts(dw|ξ(s))

≤ (N − k − 1)Kδ, s ∈ A,

where the last inequality follows from the induction hy-
pothesis. By plugging these two bounds into equation (12),
the proof of (11) is completed.

Note that the quality of the approximation improves as the
grid size δ decreases. The rate of convergence is linear in δ
and depends on the Lipschitz constants h1, h2, and h3 in



Assumption 1 through the K constant defined in Theorem
1. This is not surprising because the value function V0 over
the set A is approximated by a piecewise constant function
through the discretization process, and we expect such
a piecewise constant approximation to be more accurate
for a smoother V0 function. As the time horizon length
N grows, the approximation error propagates. This is
taken into account by the constant γ in Theorem 2, which
grows linearly with N . Though the bound in Theorem
2 is conservative, it holds uniformly over A. This allows
one to approximate the probabilistic safe set S(ǫ) defined
in (3) by model checking the invariance property of the
approximating finite state Markov chain.

Theorem 3. Under Assumption 1, for any ǫ ∈ (0, 1), the

safe set approximation Ŝη(ǫ) obtained through Algorithm

1 with δ ≤ η
2γ

satisfies S(ǫ + η) ⊆ Ŝη(ǫ) ⊆ S(ǫ).

Proof: By Theorem 2 and γδ ≤ η
2 , we have that

|ps0
(A) − pδ,z0

(Aδ)| ≤ γδ ≤
η

2
, z0 = ξ(s0), s0 ∈ A. (13)

Let s0 ∈ Ŝη(ǫ). Then, by construction, z0 = ξ(s0) ∈
Zδ(ǫ + η

2 ) and, hence, z0 |= P≤1−(ǫ+η
2
)

(

true U≤N ¬ΦAδ

)

.

Since P≤1−(ǫ+η
2
)

(

true U≤N ¬ΦAδ

)

is equivalent to the

probabilistic invariance formula P≥ǫ+η
2

(

2
≤NΦAδ

)

, this

implies that pδ,z0
(Aδ) ≥ ǫ+ η

2 . This bound combined with

(13) leads to ps0
(A) ≥ ǫ; hence, Ŝη(ǫ) ⊆ S(ǫ). Suppose

now that s0 ∈ S(ǫ + η). Then, ps0
(A) ≥ ǫ + η and, by

(13), pδ,z0
(Aδ) ≥ ǫ + η

2 with z0 = ξ(s0). This implies that
z0 = ξ(s0) ∈ Zδ(ǫ + η

2 ), and, by the last step in Algorithm

1, that s0 ∈ Ŝη(ǫ). Hence, S(ǫ + η) ⊆ Ŝη(ǫ).

Theorem 3 is easy to interpret based on Theorem 2. It
simply states that, in order to guarantee a certain safety
level ǫ ∈ (0, 1) for the original DTSHS, we have to require
a higher safety level ǫ + η

2 for the approximating Markov
chain so as to compensate for the approximation error η

2
introduced by the gridding procedure. Note that η can be
made arbitrarily small at the cost of decreasing the grid
size parameter δ. However, the gap between the two sets
S(ǫ+η) and S(ǫ) (measured e.g. by maxq∈Q L(∆Xq) with
∆Xq = {x ∈ Aq : (q, x) ∈ S(ǫ) \ S(ǫ + η)}) may still be
arbitrarily large if ps0

(A) defining S(ǫ) happens to be flat
around those values of s0 mapping into ǫ.

6. CONCLUDING REMARKS

In this paper, we showed how the probabilistic invariance
of discrete time stochastic hybrid systems can be studied
by building an approximating discrete time Markov chain,
which can be analyzed using model checking methods.
An efficient implementation of the construction of the
approximating Markov chain which works seamlessly with
the highly optimized model checking tools has to be con-
ceived for an effective application of the method. On
the theoretical front, several challenges have to be ad-
dressed, among them developing similar procedures that
work with a wider range of properties and for continu-
ous time stochastic hybrid systems. Work in the former
direction has been performed in Ramponi et al. [2010] by
developing a dynamic programming approach to encode
PCTL properties through ‘value functions’. For the latter,

a numerical scheme has been introduced in Prandini and
Hu [2006] for reachability analysis of a class of continuous
time stochastic hybrid systems; however, results are only
asymptotic.
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