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Abstract: This work investigates the problem of determining switching conditions
for the production of the lantibiotic subtilin by Bacillus subtilis. These conditions
are synthesized as the outcome of an optimal control problem based on a
survival analysis interpretation. The problem is built upon the general modeling
framework of stochastic hybrid systems, by translating the survival analysis into
a probabilistic optimal safety verification procedure.
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1. INTRODUCTION

The investigation of the stress response network of
Bacillus subtilis ATCC 6633 offers a detailed ex-
planation of how the bacterium reacts to compet-
itive environmental conditions, among the many
options, by producing the antibiotic subtilin in
order to directly suppress other cells while get-
ting immunized (T. Msadek 1999). The mecha-
nisms of this generation are fairly well under-
stood and described by a genetic and protein
pathway that involves some non-deterministic in-
terplay between its quantities. In particular, the
presence of switching modes exhibits the acti-
vation/deactivation of certain genes and the in-
crease/decrease in production of the correspond-
ing proteins.
The concept of optimum is common and shared
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between engineering and biological systems. Be-
fore its employment, though, it is necessary to
answer some fundamental questions: optimality
with respect to what? And at what level? The
biology literature offers numerous examples where
optimality appears to regulate a certain behavior,
or to explain the properties of a particular entity.
(R. Rosen 1967) presents probably the first attempt,
rather qualitative in nature but nevertheless very
stimulating, to systematically frame the concept
of optimality in biology. More recently, (D. Segre et

al. 2002) employs a similar take in the context of
metabolic networks, while (J. Weibull 1995, D. Wolf

et al. 2005) look at dynamical game theory as a
means to think about optimality in the context
of evolution. On the other hand, many notable
instances from the same domain caution that the
abuse of this notion may yield to incorrect con-
clusions. However, according to the general tenets
of evolution, it is indisputable to claim that a bio-
logical structure is “optimal” (at least locally and
temporarily) because it has survived evolution un-
der the pressure of natural selection. In our study,
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this translates into postulating that the function-
ing of the pathway follows certain criteria and
levels of optimality. In this context optimality is
intended as a measure of personal fitness or, in the
particular instance, of own survival. In particular,
one would expect that the activation/deactivation
switches in the network happen “optimally” in the
above sense.
In this work, we look at a recently developed dy-
namical model for the genetic network describing
the biosynthesis of the lantibiotic subtilin (J. Hu

et al. 2004) and propose a few improvements and
modifications to the model to bring it in line
with newer evidence reported in the literature
(H. Tjalsma et al. 2004, T. Stein 2005). We obtain
a system that presents partially decoupled high-
level dynamics (those dealing with the population
size and the nutrient level) and low-level ones
(those describing the mechanism of production of
subtilin by a single cell). The high-level model is
non-linear and deterministic, while the low-level
one is hybrid and stochastic. The model, while
somewhat simplistic and limited in scope, has to
be intended as a framework for the methodological
procedure presented in this work.
The system in its entirety can be interpreted
as a stochastic hybrid system (SHS) (J. Hu et

al. 2004, A. Abate et al. 2006). This allows one to
study the survival of the single B. subtilis cell
as a probabilistic, decentralized safety specifica-
tion problem. It is “probabilistic” because of the
certainly stochastic dynamics. It is naturally “de-
centralized” because each entity, while optimizing
for its own fitness (which depends on global in-
formation), does not communicate with the com-
petitors, nor has knowledge of their actions. Fur-
thermore, the solution of the problem may not be
globally optimal.
Using recently developed techniques for proba-
bilistic verification in a stochastic hybrid sys-
tems setting (A. Abate et al. 2006), we reinter-
pret the above probabilistic safety problem as a
(stochastic) optimal control one, where the con-
trols are functions of the state-space that encode
the switches in the network. Finally, the solution
of this stochastic and decentralized optimal con-
trol problem yields the location and the struc-
ture of the switching behaviors under study. This
methodological approach may shed light on the
strategies employed by the organisms to improve
their chances of survival when it is possible to
codify such a condition into a cost function. In
general, we argue that a genetic network function
can be viewed as an optimization problem where
the objective is to maximize the probability of
survival of the individual. Moreover, this approach
suggests that it is according to this survival inter-
pretation, rather than other ad hoc characteriza-
tions, that the thresholds in the system should be
specified and determined.

2. A MODEL FOR ANTIBIOTIC SYNTHESIS

Resorting to a schematization proposed in (J. Hu

et al. 2004), based on a wealth of recent research
(S. Banerjee and Hansen 1988, K. Entian and de Vos

1996, P. Kiesau et al. 1997, T. Msadek 1999, T. Stein

et al. 2002, T. Stein 2005), it is possible to abstract
the biosynthesis network into a five-dimensional
model (see figure 1, taken from (J. Hu et al. 2004)).
The model, which for the sake of simplicity dis-
regards some of the components in the otherwise
complex subtilin biosynthesis pathway, as well as
some behavior only tangentially of interest at this
level, encompasses two “global” variables (popu-
lation and nutrient level) and three “local” ones
(the concentration of the sigma factor SigH and
of the two proteins SpaRK and SpaS). In order
to prune away details that may be uninteresting
at this level, the presence of the peptide SpaS is
equated to represent the actual antibiotic subtilin.
Furthermore, for the sake of simplicity (and, as it
shall be seen in the following, of computation),
given the symmetric and repetitive structure of
the dynamics of SpaRK and SpaS in their depen-
dence on, respectively, SigH and SpaRK, in the
current case study we shall disregard the evolution
of SpaRK and just hypothesize a direct influence
of SigH on SpaS, without much change in the final
behaviors (cfr. also trajectory plots in (J. Hu et al.

2004)).
Ideally, a model that keeps track of each of the
dynamics of a variable set of species in a certain
environment may yield extremely precise results.
However, this approach is discarded because of
its sheer impracticality and of the difficulty in
its dynamical analysis. Hence, it is preferred to
introduce a model that decouples high-level from
low-level dynamics (see figure 2). The higher level,
which encompasses the first two global variables,
is deterministic and based on average dynamics.
The lower one, involving the last three local coor-
dinates, describes cellular processes and is made
up of stochastic and switching dynamics. The
reader may notice that the model is endowed with
a decentralized structure (see figure 2).

We shall denote with [SigH] and [SpaS] the con-
centration of the respective species, and with
[SpaS] the corresponding averaged value through-
out the whole environment. In the following, a
modification of the model in (J. Hu et al. 2004) is
described.
Let us start from the lower-level relations. The
level of the sigma factor follows a controlled
switching behavior:

d[SigH]
dt

=
{
−λ1[SigH] if production is OFF

−λ1[SigH] + k3 if production is ON.

In (J. Hu et al. 2004) the conditions determining the
ON/OFF status depended on a fixed, arbitrary
threshold on the food level. In (P. Kouretas et al.
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Fig. 1. The subtilin biosynthesis pathway.
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Fig. 2. The decentralized structure of the model
under study.

2006), an identification scheme is employed to find
out parameters of the system, and could in prin-
ciple be applied to compute this threshold. The
underlying hypothesis is again that the threshold
is a constant level on any of the model coordinates.
Notice further that, since all the models built so
far are time-invariant, no threshold dependence
on the growth phase of the species is taken into
account (T. Stein 2005). Both approaches rule out
the possibility of having a more complex depen-
dence on the state space, which is indeed what this
work aims at finding. Assuming fictitiously that
the production can be controlled, it is instructive
to write out the above dynamical relations as

d[SigH]
dt

= −λ1[SigH] + k3u. (1)

The essential assumption is that the control u =
f(D,X, [SigH], [SpaS]) : D → {0, 1}, where D =
[0, DM ] × [0, XM ] × R2

+ ⊂ R4 is a general binary
function of the variables of the model.
The concentration of the protein SpaS depends on
one of the two possible states of a switch S1 as:

d[SpaS]
dt

=
{
−λ3[SpaS] if S1is OFF

−λ3[SpaS] + k5 if S1is ON.
(2)

S1 = {OFF, ON} is assumed to be a Markov
Chain, whose transition probability matrix is:

P1 =
[

1− b0 b0

b1 1− b1

]
, (3)

where b0, b1 depend directly on [SigH] according to
(J. Hu et al. 2004) b0([SigH]) = e−∆Grk/RT [SigH]

1+e−∆Grk/RT [SigH]
,

b1([SigH]) = 1− b0([SigH]). The quantity ∆Grk

represents the Gibbs free energy of the molecu-
lar configuration, R is a gas constant and T the
environment temperature in Kelvin. Intuitively,
SigH promotes the production of SpaS by increas-
ing the likelihood of S1 to be in the ON state.
The above choice for the transition probabilities
makes S1 reversible, which helps in its analysis in
that the steady state corresponds to the vector
[πOFF , πON ]T = [b1, b0]T .
The dynamics of the population is modeled by a
logistic equation as follows:

dD

dt
= rD

(
1− D

D∞

)
. (4)

The quantity D∞ is the carrying capacity, which
turns out to be the stable equilibrium point for
the dynamical system. We a priori define it to
be D∞ = X

XM
DM , where DM and XM represent

the maxima for the population and the food levels
in the environment. As intuitive, the steady state
dynamically depends on the relative quantity of
food in the environment.
The food dynamics are taken to be:

dX

dt
= −k1DX + k2[SpaS]. (5)

The above dynamical relation says that the food
gets consumed at a rate proportional to its present
level and the population density, while the average
production of subtilin decreases this rate because
of its indirect negative influence on the population
level. This average quantity is introduced to be the
following:

[SpaS] =
D

DM

(
1− X

XM

)
k5

λ3
b0h(X), (6)

where b0 = b0([SigH]) and [SigH] = k3
λ1

, and
h(X) is the Heaviside step function over the food
level, i.e. it is equal to 1 if X > 0, and to 0 if
X = 0. The above relation stresses a dependence
on the “competition” in the environment (first
two terms), and on the steady-state dynamics for
[SpaS], which in turn depends on the steady state
of SigH (last terms, taken from eqns. (1-2)).
From the dynamical relations in (4-5) and eqn.
(6), the steady state of the high level variables
is going to be either [Deq, Xeq]T = [0, β]T , β ∈
[0, XM ], or [Deq, Xeq]T = [αDM , αXM ]T , where
α ≤ k2k3k5

k2k3k5+k1λ1λ3DM XM
≤ 1. While the first

equilibrium is unstable, the second is stable for
any combination of the model parameters.

529



The above set of dependencies and dynamical
relations can be formally reframed as a SHS
(A. Abate et al. 2006). In order to exploit some
results from this literature, from now on we shall
work in discrete time, assuming that the above
dynamical relations have been properly approxi-
mated. Notice that the probabilistic terms in the
model are concentrated on the switching structure
of S1. The hybrid state space is made up of a
discrete component θ (the state of S1), and a
continuous one (the vector x ∈ D)—it will be
denoted S = {OFF, ON} × D. The dynamics of
SigH depends on a binary function that depends,
according to eqn. (1), on a general feedback con-
tribution of the (continuous component of the)
state space. The objective will then be that of
synthesizing this function according to certain
optimality criteria that will be made explicit in
the following. The shape of the outcome will then
dictate whether the dynamics of SigH will present
a threshold (as suggested in the literature) or,
more generally, what vector field will describe it.
A control profile along a certain interval of time,
i.e. a sequence of mappings µ = (µ0, µ1, . . .) of the
form in (1), shall be named a strategy, or a policy.
The binary control space, denoted U = {0, 1}, is
in this case discrete and finite.
A solution of the above SHS model is a stochastic
process with two components s(k) = (θ, x)(k), k ≥
k0 which, given an initial condition at time k0

(possibly sampled from an initial probability dis-
tribution), continuously evolves in either of the
two discrete modes until a jumping condition is
verified (which reduces to sampling, along the
evolution of the trajectory, from the inhomoge-
neous probability distribution of the MC S1).
Once a transition is triggered, the discrete state
changes mode, while the continuous state remains
unchanged (in the hybrid systems parlance, it is
said the “reset” is the identity), and the evolution
continues from the unaltered conditions in the
new mode. By construction, the solution of the
model is a controlled stochastic process. Further-
more, given the structure of the policy and its
sole dependence on the current state at each time,
once a strategy is selected the process is simply
Markovian. For more details, especially on the
probabilistic structures and properties embedded
in the model, please refer to (A. Abate et al. 2006).
Along with the general SHS interpretation, the
model can be also though as being a piecewise-
deterministic Markov process, as in (M.H.A. Davis

1993, P. Kouretas et al. 2006).

3. SURVIVAL ANALYSIS AS
PROBABILISTIC SAFETY VERIFICATION

The literature on antibiotic synthesis as a stress
response for B. subtilis suggests that the produc-

tion activation or de-activation follows some sort
of “switching” profile (T. Stein et al. 2002, T. Stein

2005). In other words, it is believed that there
exist certain thresholds that are function either
of the species concentration, or of the food or the
population level, that are characteristic of these
switches. A wealth of research has been spent,
assuming a special structure for these functions,
on automatically identifying these thresholds from
the data (P. Kouretas et al. 2006).
As described in the preceding section, in this
work we take a rather different perspective. The
presence of the thresholds will not be a-priori
postulated, but possibly obtained with regards to
a certain survival property. It is intuitive to think
that a species activates or halts the “production
pipeline” for the antibiotic with the main objec-
tive of maximizing its own survival likelihood.
Now, reinterpreting survival within the dynamic
model introduced in section 2, we can introduce
certain safety regions within the state space that
are associated with a survival status. Next, be-
cause a solution of the SHS is dependent on a
Markovian control, we aim at synthesizing these
thresholds from their dependence on certain safety
levels.
In general terms, in a stochastic setting a safety
analysis problem consists in evaluating the proba-
bility that the state of the system remains outside
a certain set deemed to be unsafe during a given
time horizon, starting from some set of initial
conditions.
According to this interpretation and associating a
safety set to a survival condition, we will say that
the single B-subtilis bacterium is safe if [SpaS] >
[SpaS], meaning that the subtilin production level
of the single species under study is higher than
the average subtilin present in the surrounding
environment. This condition encodes in a higher
likelihood for the species to kill other bacteria,
rather than being killed by their antibiotic. Equiv-
alently, exploiting the expression in equation (6),
we define the safe region A to be the set of points

A =

{
s ∈ S : [SpaS] >

D

DM

(
1−

X

XM

)
k5

λ3
b0h(X)

}
.

The objective of the study then becomes that of
modeling antibiotic production via safety analysis
in a SHS framework. In the following section 4,
we formally set up the problem and recall results
in the literature to work it out.

4. SAFETY VERIFICATION FOR SHS

Let us recall the SHS model introduced in section
2. The variables into play are the population level
D, the nutrient level X, the concentrations of the
sigma factor SigH and of the peptide SpaS. Let us
consider an arbitrary finite time horizon N.
For a given initial state s0 ∈ S and a Markov
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policy µ (sequence of N binary control functions
u ∈ U), a safety analysis problem consists in
determining the probability that the execution
associated with µ and initialization s0 will stay
within the set A during the time horizon [0, N ]:

pµ
s0

(A) := Pµ
s0

(s(k) ∈ A for all k ∈ [0, N ]). (7)

The set of initial conditions that guarantees a
safety level ε, when the control policy µ is as-
signed, Sµ(ε) = {s ∈ S : pµ

s (A) ≥ ε}, is then
referred to as probabilistic safe set with safety level
ε. Analogously, S∗(ε), obtained by maximizing
over the allowed controls, is called maximal prob-
abilistic safe set. Finally, a policy µ∗ is maximally
safe if pµ∗

s (A) = maxµ pµ
s (A), ∀s ∈ A.

Let 1C : S → {0, 1} denote the indicator function
of a set C ∈ S. Observe that

N∏
k=0

1A(sk) =

{
1, if sk ∈ A for all k ∈ [0, N ]
0, otherwise,

where sk ∈ S, k ∈ [0, N ]. Then, interpreting this
set of N + 1 points sk as a realization of s(·),

pµ
s0 (A) = P µ

s0

(
N∏

k=0

1A(s(k)) = 1

)
= Eµ

s0

[
N∏

k=0

1A(s(k))

]
.

The quantity pµ
s0

(A) can be computed through
a backward iterative procedure. For the sake of
notation, let us introduce a stochastic kernel Ts :
B(S) × S × U → [0, 1] on S given S × U , which
assigns to each s = (θ, x) ∈ S, u ∈ U , a probabil-
ity measure on the Borel space B(S) according to
the dynamics of the SHS. This mapping is proba-
bilistic because of the presence of the MC S1. For
each k ∈ [0, N ], define the map V µ

k : S → [0, 1] as
follows, ∀s ∈ S:

V µ
k (s) := 1A(s)

∫
SN−k

N∏
l=k+1

1A(sl) · (8)

·
N−1∏

h=k+1

Ts(dsh+1|sh, µh(sh))Ts(dsk+1|s, µk(s)).

Then, V µ
k (s) = Eµ

[∏N
l=k 1A(s(l))| s(k) = s

]
de-

notes the probability of remaining inside A during
the (residual) time horizon [k,N ] starting from a
specific s ∈ S at time k, under policy µ. It follows
that pµ

s (A) = V µ
0 (s). It can be shown through

some algebraic manipulation that the terms V µ
k (s)

can be inductively expressed in terms of V µ
k+1(s),

with initialization V µ
N (s) = 1A(s) (A. Abate et al.

2006).
As argued above, it is natural to set up an op-
timal control problem. In the following theorem
(A. Abate et al. 2006), we describe an algorithm to
compute maxµ pµ

s (A) and ensure the existence of
a maximally safe policy µ∗.

Theorem 1. Define the maps V ∗
k : S → [0, 1],

k = 0, 1, . . . , N , by the backward recursion:

V ∗
k (s)=max

u∈U
1A(s)

∫
S

V ∗
k+1(sk+1)Ts(dsk+1|s, u),

initialized with V ∗
N (s) = 1A(s), and with s ∈ S.

Then, V ∗
0 (s) = maxµ pµ

s (A) for all s ∈ S. More-
over, there exists a maximally safe policy µ∗ =
(µ∗0, . . . , µ

∗
N−1), with µ∗k : S → U , k ∈ [0, N − 1],

given ∀s ∈ S, by

µ∗k(s) = arg max
u∈U

1A(s)
∫
S

V ∗
k+1(sk+1)Ts(dsk+1|s, u).

Having set up the above mathematical machinery,
we are now ready to apply it to the problem under
study. The result obtained in Thm. 1 is practi-
cally implemented via a dynamic programming
algorithm. This procedure, along with the opti-
mal safety level pµ∗

s (A) associated to any point
in the state space, yields also the optimal state-
dependent, time-varying policies µ∗. This second
output is really the focus of our attention, as it
shall represent the synthesized control functions
for the relation (1), to be interpreted as the acti-
vation thresholds for the production of subtilin.

5. NUMERICAL RESULTS

In this section we report the outcomes of the
simulations for the above experimental setup. The
parameters have been chosen to be the following:
r = 0.8, k1 = 2, k2 = 4, k3 = 2.5, k5 = 0.8, λ1 =
0.5, λ3 = 0.2,∆Grk/RT = 1.1. The discrete time
horizon has been set to N = 40.
In Fig. 3, the plots of the maximal probabilistic
safe level sets, with safety level ε = 1, are shown
for different time samples. The colors have been
added only to enhance the perspective. All the
points in the plots above the curves are con-
sidered to be “almost surely” safe. Notice that,
as expected, the safe set shrinks as we proceed
backwards in time (this in fact translates to a
longer safety requirement for the trajectories of
the system). For the sake of visualization, we
plotted the results corresponding to a fixed value
of the sigma factor [SigH] = 1. All the plots refer
to the discrete state being in the OFF mode.
Fig. 4 represents couples of plots referring to

maximal probabilistic safe sets and corresponding
optimal actions. More precisely, the green plots
(second and fourth row) represent the regions
in the state space that are associated with a
switching action, and are to be matched with the
safety level sets plotted directly above them. It
is interesting to realize that the optimal control
functions, associated with the activation thresh-
olds, have a characteristic “onion layer” shape,
varying along time. It can be thus claimed that
the optimal actions single out switching surfaces
corresponding to certain safety levels. These sur-
faces have profiles that match the variation in
safety probability (or, according to our interpre-
tation, in survival likelihood) for the species, as
appears by comparing the control plots with the
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Fig. 3. Maximal probabilistic safety level set cor-
responding to ε = 1, backwards in time.

Fig. 4. Maximal probabilistic safety level sets and
optimal switching control, backwards in time.

safety level sets. In general, these surfaces are
not hyper-rectangular, as the previous research
efforts that sought to identify thresholds related to
them assumed. Instead, they are rather nonlinear
functions of the state space, showing a manifest
but non-explicit dependence with the change in
safety level of the single species.
It would be consequently instructive to under-
stand what is the critical safety level that cor-
responds to the activation of the production of
subtilin Our computations hint at showing that,
for the particular case under study, the level is a
safety probability value close to one. More accu-
rate testing needs to be performed on this aspect.

6. CONCLUSIONS AND FUTURE WORK

This methodological study suggests to interpret
the problem of identifying production thresholds
in the subtilin pathway as an outcome of a survival
study. The adopted modeling framework is that of
stochastic hybrid systems. Survival is encoded in

a fitness function and interpreted as a (probabilis-
tic) safety problem. Verification techniques based
on optimal control (A. Abate et al. 2006) are then
used to mathematically translate and compute
this quantity, which also yields the desired activa-
tion thresholds. We argue that the functioning of a
genetic network can be viewed as an optimization
problem where the objective for the individual
is to maximize its probability of survival. The
dependence of the outcome of the technique on the
choice of the fitness function is currently studied.
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