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ABSTRACT
Residential homes represent approximately 22 % of global energy
use and a large proportion of this is due to space heating. The
thermal efficiency of a building is typically evaluated manually
via surveys, or via intrusive measurements requiring homes to be
vacated for prolonged periods, which can result in great inconve-
nience and expense. More recently, non-intrusive methods have
been developed to infer the thermal efficiency of a home which
reduces the time and cost of identifying where interventions, such
as installing insulation, will have the greatest impact in reducing
heating energy usage and carbon emissions. The insight into ther-
mal energy efficiency can also be used as a tool to help support
those who are identified as fuel poor. However, none of the current
non-intrusive methods take advantage of the half-hourly smart-
meter readings that are presently available. This paper proposes a
novel algorithm, SMITE, that detects the time periods of the day
where the heating of a home is on for an extended length of time
and uses this selected data to infer the heating loss coefficient (HLC)
and the heating power loss coefficient (HPLC) of the home. The
SMITE method is evaluated on 7 homes where the HLC has been
inferred by a co-heating test and compared to a state-of-the-art non-
intrusive algorithm for inferring HLC, Deconstruct. Our method
shows a significant improvement when there is gas heating, with
the mean absolute percentage error (MAPE) between the inferred
and the co-heating HLC value reducing from 32.6 % for the Decon-
struct method to 12.0 % for the SMITE method. This paper also
discusses the merits of using the HPLC (instead of the HLC) as an
industry standard for evaluating thermal efficiency.
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•Hardware→ Temperature monitoring; Energy metering; •
Computing methodologies→ Machine learning approaches.
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1 INTRODUCTION
Residential homes represent approximately 22 % of global energy
consumption, contributing 12% of total greenhouse gas emission
[14, 16]. This is particularly true in colder climates like the United
Kingdom, where 65% of energy use associated with residential
homes is due to space heating [3]. Hence, reducing the amount of
energy required to heat homes has a significant role in reducing
carbon emissions and in mitigating climate change [15]. Whilst
reducing global emissions, the UK government and energy compa-
nies also have a duty to protect vulnerable consumers who are in
fuel poverty; this is defined as those who cannot keep their home
warm at a reasonable cost, as per the UK Warm Homes and Energy
Conservation Act. As such, developing efficient means to analyse
the thermal efficiency of homes is important for both governments
and energy providers.

The Energy Performance Certificate (EPC), which evaluates the
thermal efficiency of a home by conducting a survey of the physical
features, has been shown to be inadequate at estimating energy
efficiency by independent investigations [18, 33]. To address this,
metrics to evaluate the thermal efficiency of a home have been pro-
posed which are based on recording the external temperature and
power required to keep the internal temperature of the home at a
fixed internal temperature. The heating loss coefficient (HLC) is one
such metric, found in co-heating tests to evaluate the thermal effi-
ciency of homes [2, 27, 28]. However, to control for external factors
a co-heating test requires the home to be vacated for days or weeks
at a time and a constant internal temperature to be maintained by
temporary electric heaters. With 25 million homes in the UK alone,
any such intrusive method to evaluate the thermal properties of a
home will take significant person-hours and incur notable financial
costs [31]. Adaptations have been made to the co-heating test to
allow the native heating system to be used, instead of installing
temporary electric heaters [10], and alternative approaches to infer
HLC have been developed, such as the P-STAR and the ISABELE
methods [30, 32]. However, whilst these approaches can show im-
proved performance or reduced testing time, they are still intrusive.
The evaluation of the thermal efficiency of homes has also been
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explored using different metrics, such as U-values, which measure
the thermal transmittance through a surface. The QUB method is
proposed to quickly calculate the U-values of the building elements
in-situ [21]. However, it has been shown that the uncertainty in
U-value measurements, and uncertainty in how they translate to
the actual thermal efficiency of a home, make them an unreliable
metric to use [19].

As such, to achieve a large-scale roll-out of HLC evaluation, there
is a need for non-intrusive methods to evaluate the thermal effi-
ciency of homes nationwide, and globally. Original non-intrusive
approaches rely on annual predictions of heating fuel and weather,
however we are now in a scenario where we have more information
thanks to the advent and widespread use of smart meters [11]. An
alternative metric to HLC, which can be inferred non-intrusively, is
the heating power loss coefficient (HPLC). The HPLC compounds
the efficiency of the heating system with the HLC factor. The De-
construct approach finds this metric using daily smart meter and
weather data [6]. This is shown to be effective but has several draw-
backs. In particular, it is affected by how long the heating is on
during the day. By not separating the length of time the heating is
on from the efficiency, the inferred HPLC will vary with the length
of time the heating is on. To address this, the Deconstruct approach
makes the assumption of a linear relationship between external
and internal temperature to infer the average internal temperature
for the day [20]. However, as the relationship between internal
and external temperature is not known for each home, a national
average has to be taken, meaning that each house is treated as if it
is the average home and useful information is thus lost. An accurate
inference of this parameter for each home, or a method removing
this assumption from the model, is required.

To address this need, we propose SMITE, a non-intrusive model
to predict HPLC requiring only smart meter and weather data (par-
ticularly, external temperature and solar irradiance). Using a hidden
Markov model, the periods when the heating is on and the home
is in a thermal steady state (referred to as heating-on periods) are
identified from half-hourly smart-meter readings. This removes the
need to infer the internal temperature, one of the biggest sources of
uncertainty in existing approaches. If the heating system efficiency
is known, the HLC can also be inferred. This new approach allows
a closer replication of co-heating tests, and additionally can be per-
formed retroactively and are magnitudes cheaper to conduct [18].
The HLC and HPLC measure the thermal efficiency of the home
directly, unlike alternative methods that are based on surveys, or
methods that try to infer the in-situ thermal efficiency from an-
other property, such as the U-values of the walls. As the HLC and
HPLC measure actual thermal performance, they are the best suited
metric to inform policies to reduce carbon emission, and to identify
interventions that could lead to the greatest reduction in carbon
emissions associated with energy used to heat homes. This paper
presents an algorithm that significantly improves the accuracy that
the HPLC and HLC can be non-intrusively inferred - enabling large
scale recordings of HPLC or HLC.

To benchmark the performance of the SMITE method, the in-
ferred HLC is compared with the Deconstruct approach on a dataset
of 7 homes. The dataset contains a year of smart-meter readings
for each home and the HLC has been inferred by a co-heating test
that is used as the ground truth [4, 23, 29]. The SMITE method

shows a significant improvement when there is gas heating, with
the mean absolute percentage error (MAPE) between the inferred
and the true HLC value reducing from 32.6 % for the Deconstruct
method to 12.0 % for the SMITE method. Similarly a MAPE of 38.9 %
for the Deconstruct method and 21.3 % is recorded for the SMITE
method when the gas and electricity smart-meter readings are com-
bined (to mimic the scenario where a home has electric heating).
The results for the SMITE method also show a strong correlation
with the measured HLC, with a Pearson‘s correlation coefficient
of 0.91 on gas smart-meter data and 0.70 on gas and electricity
smart-meter data indicating this is a viable replacement method
for intrusive, expensive evaluations. Furthermore, the real values
fall within one standard deviation of the HLC values inferred by
the SMITE method for the gas smart-meter data, large misclassi-
fications will lead to engagement with the wrong households for
energy-saving interventions, hence it is important that the chosen
method has a minimal number of large errors. An experiment is
also presented to show the failings of using an approach based on
daily data, and how it confounds behaviour of the residents with
the thermal efficiency of the home. There is a need for improved
solutions to this problem that work in the real world, as shown by
the BEIS competition to evaluate the thermal performance of homes
using smart-meter readings [8]. To achieve this we are collaborating
with a UK energy supplier to industrialise this approach.

The rest of the paper is formatted as follows. Section 2 introduces
the modulated heat flow model for a residential home. Section 3
outlines the algorithm implemented to identify the relevant data
and infer the HLC and HPLC. The dataset is described in Section 4
and Section 5 presents the results achieved. The impact of this work,
potential interventions to reduce carbon emissions and benefits
of HPLC over HLC are discussed in Section 6 followed by the
conclusions in Section 7.

2 MODELS
This section introduces the models used to explain how heat energy
flows in and out of a home, and the thermal equilibrium state that
needs to be identified to infer HLC.We discuss the practicalities and
limitations of thermal modelling in the non-intrusive setting, which
leads to the definition of HPLC and how it is inferred. Furthermore,
a model is defined to identify the periods when the home is in
thermal equilibrium from the smart-meter readings. Comparisons
with traditional co-heating tests are made throughout this section
to emphasise how it replicates the environment required to conduct
a co-heating test, whilst extending it to a non-intrusive situation
where occupants are present and there is no control over how the
home is being used or heated.

2.1 Thermal Model
The HLC [W/K] of a home is a value used to characterise the steady
state thermal performance of the building envelope. It is the power
required to keep the home at a constant internal temperature, given
a lower external temperature. The HLC is inferred through the data
obtained from a home and measures how the difference between
internal and external temperature, Δ𝑇 = 𝑇𝑒𝑥 −𝑇𝑖𝑛 [K], causes the
average heat flow into the house i.e. the average heating power
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used, 𝑄 𝑓 𝑎 [kW], to change [27, 28], given by the equation

𝑄 𝑓 𝑎 = 𝐻𝐿𝐶 Δ𝑇 . (1)

This equation concerns a sealed building where the only factors
affecting the internal temperature are the external temperature and
internal heat sources and the only transfer of heat is through the
fabric of the building. In practise, we must also consider ventilation
losses, 𝑄𝑣𝑒 , and also additional sources of heat energy, such as
external weather factors providing the home with additional heat
energy, 𝑄𝑤𝑒 .

The above terms alone would suffice if the home is unoccupied,
however, as the SMITE method is non-intrusive, an occupied home
has two additional factors to be considered: (i) heat from the occu-
pants𝑄𝑜 , and (ii) power supplied for tasks other than direct heating
which may have a heating effect, 𝑄𝑏 (e.g. cooking, running electri-
cal devices etc). Hence, the total flow of heat energy 𝑄ℎ into the
home is given by

𝑄ℎ = 𝑄 𝑓 𝑎 +𝑄𝑣𝑒 +𝑄𝑤𝑒 +𝑄𝑜 +𝑄𝑏 . (2)

In this heat flow equation, the term representing the heat flow
through the fabric of the building 𝑄 𝑓 𝑎 follows from the initial
definition of the co-heating test in Equation (1). The term 𝑄 𝑓 𝑎 is of
interest in this work, as it contains the HLC term that we aim to
infer. Hence, for the rest of the terms the goal is to either account
for them by correctly modelling them, or find a scenario where
their contribution is negligible [6]. The first term considered is the
ventilation heat flow,

𝑄𝑣𝑒 = 𝑐𝑎𝑖𝑟 𝜌𝑎𝑖𝑟𝑉𝑎𝑖𝑟Δ𝑇, (3)

which denotes the transfer of heat energy via the flow of air moving
freely between the external and internal environment. In co-heating
tests this is accounted for with experiments that track the air move-
ment (e.g., by a tracer gas test or a blowerdoor test) [2]. This heat
flow can be modelled as in Equation (3), with 𝑐𝑎𝑖𝑟 as the specific
heat capacity of air, 𝜌𝑎𝑖𝑟 as the density of air, and𝑉𝑎𝑖𝑟 as the volume
of air that flows between the external and internal environment.

The other factor which effects the internal temperature regard-
less of if the home is occupied is the external weather factor, 𝑄𝑤𝑒 .
For simplicity the only weather contribution considered is the heat
flow from solar irradiance,

𝑄𝑤𝑒 = 𝐴𝑠𝑜𝑙 𝐼𝑠𝑜𝑙 , (4)

defined as the amount of solar irradiance, 𝐼𝑠𝑜𝑙 [𝑊 /𝑚2], incident
on the effective aperture of the house 𝐴𝑠𝑜𝑙 [𝑚2] [13]. Prior stud-
ies have shown that other high-level weather factors (i.e. regional
wind speed and direction) do not correlate with energy usage, con-
versely, models with hyper-local data for factors such as wind have
demonstrated an impact on internal temperature [7, 13]. With more
precise weather data, both regional and with a finer time granu-
larity, more complex ways in which the weather interact with the
internal temperature of a home can be modelled, however that is
outside the scope of this paper.

There are also the thermal contributions which are caused by
occupants. Each person in the home emits heat energy,

𝑄𝑜 = 0.06𝑁𝑜𝑐𝑐 , (5)

where each of the 𝑁𝑜𝑐𝑐 occupants contribute 0.06 kW of heat en-
ergy [5]. When the home is occupied, appliances will be used for

purposes other than heating and a proportion, 0 ≤ 𝜂𝑏 ≤ 1, of the
power used for other appliances, 𝑃𝑏 , will convert to heat energy,

𝑄𝑏 = 𝜂𝑏𝑃𝑏 . (6)

2.2 Thermal Equilibrium
To infer the HLC, only time periods where the home is in thermal
equilibrium are considered. When the home is not in thermal equi-
librium there is a difference between the heat energy flowing in
and out of the home, resulting in a change in internal temperature.
With current approaches the ability to infer the internal tempera-
ture from external weather data and smart-meter readings is limited
[20]. By restricting the model to only consider times when the home
is in thermal equilibrium the flow of heat energy provided by the
heating system is equal to the net flow of heat energy out of the
home, assuming the thermal mass of the building remains constant.
When the heat flows in and out are equal, the heat flow equations
for the home is given by:

𝜂ℎ𝑃ℎ = 𝑄ℎ, (7)

which means 𝑃ℎ , the power of the heating system to maintain
thermal equilibrium, is given by:

𝑃ℎ =
1
𝜂ℎ

(𝐻𝐿𝐶 Δ𝑇 + 𝑐𝑎𝑖𝑟 𝜌𝑎𝑖𝑟𝑉𝑎𝑖𝑟Δ𝑇 +𝐴𝑠𝑜𝑙 𝐼𝑠𝑜𝑙

+ 0.06𝑁𝑜𝑐𝑐 + 𝜂𝑏𝑃𝑏 ),
(8)

where 𝜂ℎ is the efficiency of the heating system.
The HLC is only supposed to account for the heat flow through

the fabric of the building. In the non-intrusive setting, if the ven-
tilation loss is unaffected by the behaviour of the residents, i.e. it
is due to a draft through window sealing rather than due to it be-
ing open/closed, then this cannot be separated from the heat flow
through the fabric. This type of ventilation heat loss from a prop-
erty, not due to resident behaviour, is of importance when labeling
the thermal efficiency of a home as without an intervention this
source of heat loss will remain.

Furthermore, to infer the HLC the heating system efficiency, 𝜂ℎ ,
must be known for the home or estimated based on manufacturer
guidelines of the typical heating system efficiency. As Equation (8)
shows, the HLC and heating system efficiency, 𝜂ℎ , are compounded
which means a non-intrusive method cannot separate the two val-
ues when only considering periods where the home has the heating
on and is in thermal equilibrium.

2.3 Heating Power Loss Coefficient (HPLC)
Since in general the heating system efficiency cannot be separated
from HLC, it makes sense to develop non-intrusive approaches to
infer the HPLC instead. The HPLC is defined as the rate of supplied
power loss to maintain the home at a constant internal temperature,
where the supplied power is the average energy consumption to
heat the home (i.e. energy input to the heating system).

With the less strict definition of HPLC compared to HLC, the
ventilation loss is split into its two sources: behavioural ventilation
loss, i.e. when heat is lost through open windows; and home ven-
tilation loss, i.e. when heat is lost through the frame of windows.
These two sources are separated by the volume of air lost by each
source: 𝑉𝑎𝑖𝑟𝑏 is the volume of air which leaves the house due to
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behavioural causes, whereas 𝑉𝑎𝑖𝑟𝑑 as the volume of air leaving due
to the structure of the home. The ventilation loss related to the
home is absorbed into the HPLC term as it cannot be separated
from the heat transfer through the fabric of the building. The HPLC
is then expressed as follows,

𝐻𝑃𝐿𝐶 =
1
𝜂ℎ

(𝐻𝐿𝐶 + 𝑐𝑎𝑖𝑟 𝜌𝑎𝑖𝑟𝑉𝑎𝑖𝑟𝑑 ), (9)

and its relation with the power supplied to the home is given by

𝑃ℎ = 𝐻𝑃𝐿𝐶 Δ𝑇 + 1
𝜂ℎ

(𝑐𝑎𝑖𝑟 𝜌𝑎𝑖𝑟𝑉𝑎𝑖𝑟𝑏Δ𝑇 +𝐴𝑠𝑜𝑙 𝐼𝑠𝑜𝑙

+ 0.06𝑁𝑜𝑐𝑐 + 𝜂𝑏𝑃𝑏 ) .
(10)

It can be assumed that when the building is in thermal equilibrium
there is no loss due to the behavioural ventilation.

2.4 Detection of Heating Periods
Co-heating tests are conducted with the heating continuously on.
To replicate the conditions required for a co-heating test non-
intrusively, the heating-on periods of the day need to be identified.
The heating-on periods of the day can be recorded by devices such
as smart thermostats, however they are yet to be adopted at a large
scale. As such, until smart thermostats or similar devices are widely
adopted, the heating-on periods of the day need to be inferred via
smart-meter readings and local weather data. The SMITE method
uses a hidden Markov model to identify these heating-on periods.

As space heating accounts for 65 % of energy consumption in
homes, it is assumed that energy consumption at any time 𝑡 can
be split into two modes: (i) when heating is off (ℎ (𝑡 )𝑜𝑛 = 0), and (ii)
when heating is on (ℎ (𝑡 )𝑜𝑛 = 1) [3]. The power used to heat the home
at time step t is denoted by 𝑃

(𝑡 )
ℎ

, and the power used for all other

appliances at time step t by 𝑃
(𝑡 )
𝑏

. The 𝜉 terms represent the noise
associated with each scenario and is assumed to follow a Gaussian
distribution. Then, 𝑃 (𝑡 )

𝑎𝑙𝑙
, the total power used by the home at time

𝑡 , can be expressed as a function of the heating mode,

P(𝑃 (𝑡 )
𝑎𝑙𝑙

|ℎ (𝑡 )𝑜𝑛 ) ∼
{
𝑃
(𝑡 )
𝑏

+ 𝜉1 if ℎ (𝑡 )𝑜𝑛 = 0,
𝑃
(𝑡 )
ℎ

+ 𝑃
(𝑡 )
𝑏

+ 𝜉2 if ℎ (𝑡 )𝑜𝑛 = 1.
(11)

The state of the heating system at any particular time 𝑡 is unknown,
however based on prior knowledge of how a heating system is
used and how it contributes to the power output, a model can be
constructed to infer when the heating is on or off. As per Equation
(11), the likelihood of the power recorded given each state of the
heating system can be inferred, P(𝑃 (𝑡 )

𝑎𝑙𝑙
|ℎ (𝑡 )𝑜𝑛 ). A temporal compo-

nent to heating systems makes them more likely to stay in the
same state (on or off) for consecutive half-hour periods, rather than
fluctuating between the two. This is encompassed by the transition
probabilities between the hidden states representing the probabil-
ity of the heating switching between on or off, as P(ℎ (𝑡 )𝑜𝑛 |ℎ (𝑡−1)𝑜𝑛 ).
This scenario can be appropriately modelled with a hidden Markov
model and the expression for the joint probability is given as

P(ℎ (1:𝑇 ) , 𝑃 (1:𝑇 )
𝑎𝑙𝑙

) =
∏
𝑡

P(𝑃 (𝑡 )
𝑎𝑙𝑙

|ℎ (𝑡 )𝑜𝑛 )P(ℎ
(𝑡 )
𝑜𝑛 |ℎ (𝑡−1)𝑜𝑛 ), (12)

where P(ℎ (𝑡 )𝑜𝑛 |ℎ (𝑡−1)𝑜𝑛 ) is defined by a transition matrix, and the
emission function P(𝑃 (𝑡 )

𝑎𝑙𝑙
|ℎ (𝑡 )𝑜𝑛 ) is defined in Equation (11). The

ℎ
(1)
𝑜𝑛 ℎ

(2)
𝑜𝑛

. . . ℎ
(𝑇−1)
𝑜𝑛 ℎ

(𝑇 )
𝑜𝑛

𝑃
(1)
𝑎𝑙𝑙

𝑃
(2)
𝑎𝑙𝑙

𝑃
(𝑇−1)
𝑎𝑙𝑙

𝑃
(𝑇 )
𝑎𝑙𝑙

1 : 𝑁 Sequences

Figure 1: The hidden Markov model used to identify the periods
when heating is on or off when the half-hourly average power is ob-
served. This is performed for all N sequences of consecutive smart-
meter readings that have passed through the filtering process. The
transition matrix between hidden states and the parameters of the
Gaussian distributions representing the emission probabilities are
learned via the Baum-Welch algorithm.

joint probability is taken across all time steps, 𝑡 ∈ 1...T, where T is
the number of time steps (T=48 for a day of half-hour periods). By
maximising the joint probability in Equation (12) it is possible to
find the most likely heating pattern for each day, identifying the
heating-on periods. The model is outlined in Figure 1.

3 THE SMITE METHOD
The goal is to construct a post-hoc experiment to infer HPLC (and
HLC when heating system efficiency is available) by extracting a
sample of data from the smart meter where the home is in thermal
equilibrium and the energy used to heat the home is known. To
infer the HPLC, a three-step method is proposed: (i) identify the
data points that have minimal factors affecting the internal temper-
ature (other than the heating system and external temperature); (ii)
identify the heating-on periods; and (iii) infer the HPLC and HLC
from the selected data points. The aim is to reduce the model to a
situation where the only parameter that needs to be inferred is the
HPLC, this process is outlined in Figure 2.

The intrusive data collection process in the co-heating test is
replaced by smart-meter readings and regional weather data, and
is a process that can be easily scaled across the country for energy
companies as it requires no additional hardware installations. A
smart meter records energy usage every 30 minutes compared to
being recorded every 40 minutes for a co-heating test. The similar
frequency of recording of the smart meter means that the granular-
ity of the data will not be a performance bottleneck when compared
to the co-heating test.

3.1 Identification of Usable Data
Sampling is performed to reduce noise and remove terms that can-
not be accurately monitored in a non-intrusive setting. With the
current limited ability to model the thermal effects of factors such
as solar irradiance these steps are taken to identify and remove
periods when these factors have a significant contribution to the
heat flow into the home.
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Figure 2: This flowchart outlines the steps of the SMITE method. The boxes in the upper right and left corners give required input data. A
check is performed on the smart-meter readings to infer if the home has gas or electric heating then the pre-filter removes days with high
solar irradiance and external temperatures outside the range of accepted values. The cleaned data is used to infer the heating-on periods.
The filters are applied again on the heating-on periods to ensure they do not coincide with a moment of high solar irradiance or external
temperature. The HPLC is then inferred on the remaining data. The reason the gradient is negative is due to the external temperature, not
temperature difference being plotted as shown in Equation (13).

3.1.1 Data Cleaning. The first step is to remove days with corrupt
data, missing data and outlier energy readings. These outlier days
are identified by calculating a Z-score to identify days where the
smart-meter readings are in excess of what is realistically expected
and days where 0 kWh of energy are recorded as it is either a faulty
reading or provides no information. If there is an hour or more of
consecutive readings that are missing, corrupt or outliers, the data
for the day is split into two sequences. However, if it is detected
that the heating-on period begins or ends immediately before or
after, it is discarded as there is no certainty that the full period is
accurately recorded. If there is a single missing weather observation
with recordings immediately before and after, the missing value is
inferred linearly.

3.1.2 Gas or Electric Heating Detection. After the data is cleaned
whether the source of heating energy is gas or electricity is identi-
fied. As 65 % of the energy usage of the average home is for heating,
the heating energy source can be identified with 100% accuracy on
the dataset used by identifying which source consumes the most
energy through the winter months.

3.1.3 Temperature Filter. To ensure there is sufficient difference be-
tween the external and internal temperature, days with an average
external temperature above 15°C (283.15 K) are removed. Further to
this, a filter to exclude extremely cold days is added, if the average
external temperature is below 0°C (273.15 K) it is also removed. This
avoids situations where the heating system is running at maximum
power for the duration of the heating-on period and the building
does not reach a thermal steady state.

3.1.4 Solar Irradiance Filter. All days with an average solar irra-
diance above 150 W/m2 are filtered out to reduce the heat energy
flow into the home from solar irradiance. This value is selected
based on empirical results on the dataset and may be altered for
different scenarios. Methods have been proposed to estimate the
effects of solar irradiance on the temperature of a home, however it
introduces modelling uncertainty which is unnecessary if there is
enough data after the filtering process to infer the thermal efficiency
of a home [12].

3.1.5 Repeated Filters. The temperature and solar irradiance fil-
ters are applied twice. First against the average for the whole day;
and again, on the average of the heating-on periods once they are
identified. This filters out the days with large sources of external
heat energy when detecting the heating-on periods and afterwards
to avoid scenarios where there are spikes in temperature or solar
irradiance during a heating-on period.

3.2 Detection of Periods when Heating is On
In order to detect the heating-on periods a hidden Markov model is
used, as outlined in Figure 1, with emissions affected by an additive
Gaussian distribution. The only observations required are the half-
hourly values of average power from the smart-meter readings.
The hidden binary state represents whether the heating is on or
off. Using the filtered data, each complete day (and the segments
of a day split around unusable data) is used as a sequence and the
Baum-Welch algorithm is applied across all sequences to maximise
the joint probability distribution in Equation (12) by finding the
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most likely parameters for the Gaussian emission distributions and
transition matrix [1].

Once the parameters are inferred, the Viterbi algorithm is applied
to find the most likely heating state for each time step of each day
[1]. All the identified sequences of at least two hours of consecutive
heating are extracted as a heating-on period. The first hour of
each heating-on period is ignored to allow the house time to reach
thermal equilibrium, and the average of the remaining power and
external temperature recordings in the heating-on period are used
to infer the HPLC.

Notice that as part of the steady state assumption, it is assumed
that the internal temperature is kept constant, which is true for
the heating-on periods after the first hour is omitted, however the
exact value is unknown. Under this assumption, the actual value of
the internal temperature does not particularly matter as it is a fixed
value which will only provide a constant shift, assuming the home
is always heated to the same temperature. The value of interest, the
HPLC, is not affected by this as it is inferred through the gradient
of the heating power against the external temperature.

3.3 Inference of the HPLC
After identifying the heating-on periods for a home, the average
power and external temperature for each period is found. The pro-
cess of finding these periods is outlined in Figure 2. By considering
Equation (10), it shows that the rate the average power used to heat
the house changes with the external temperature gives the HPLC,
if the other terms are accounted for.

It is assumed that there is the same number of occupants in the
home for all of the heating periods, this causes a constant shift in
the energy usage and as the gradient is the value of interest it can
be ignored. Note that across the data used in this study the average
power supplied to heat a home is 6.5kW, the contribution of heat
energy per occupant is < 1%. Similarly, power for other purposes
has been shown to not correlate with the external temperature and
can be treated as noise [7]. Furthermore, it is assumed that there is
no behavioural ventilation loss during heating-on periods as they
are assume to be identified by the outlier filter. Finally, the solar
filter ensures there is only a minimal contribution from the solar
irradiance and this is also absorbed into a noise term, meaning we
can express the relation between the heating power and external
temperature as

𝑃ℎ = −𝐻𝑃𝐿𝐶 𝑇𝑒𝑥 +𝐶𝑝 + 𝜉ℎ . (13)

To infer the HPLC, linear regression is used to find the expected
value of the HPLC and the variance is calculated from the external
temperature and heating power data points. Note the negative sign
in front of the HPLC as the external temperature is used instead of
the difference between internal and external temperature and 𝐶𝑝

represents constant contribution of other sources of heat energy.
Whilst the HPLC is the metric of interest in this paper, for com-

parisons against existing approaches the HLC is required. This is
calculated from the HPLC by multiplying it by the standard effi-
ciency of a boiler, 𝜂ℎ , of 0.85, which is the mean boiler efficiency
found in a Department of Energy and Climate Change study [24].

4 DATASET
To conduct this experiment the ideal dataset consists of homes
where the HLC has been inferred via a co-heating test on a vacated
house as a ground truth, the heating system efficiency is known
to infer the HPLC, half-hourly smart-meter recordings for gas and
electricity usage for at least a year whilst the home is occupied, and
half-hourly weather data, particularly external temperature and so-
lar irradiance. This presents a major difficulty for obtaining a large
scale dataset as each home in the dataset requires an expensive,
intrusive and time-consuming co-heating test prior to being occu-
pied and monitored for a year. One alternative is to use simulated
data, however modelling the thermal properties of a home is still
an open research challenge. As such, inferring the HLC or HPLC
on simulated data would only demonstrate the ability to fit to the
model used to generate data rather than correctly model the real
world scenario [26].

To address this challenge, the dataset selected for our exper-
iments is a subset of homes from the solid wall insulation field
trial originally conducted by the UK Energy Saving Trust and then
processed and anonymised by another study [4, 23, 25, 29]. This
data was collected with the intent to evaluate the effectiveness and
experience of customers who decided to install solid wall insulation,
however the study recorded the data required for our experiments.
For each home the HLC was measured after the installation of the
solid wall insulation along with half-hourly smart-meter readings
of gas and electricity usage for an extended time period after. Unfor-
tunately, HPLC or the heating system efficiency were not reported
hence the HLC must be used to evaluate the performance of the
SMITE method. Furthermore, the relevant weather data for each
home is available as an anonymised location of each home was
provided and the data could be collected from the nearest weather
station provided by the Met Office [22].

To ensure that each home in the subset has the data required
to infer the HLC it must have enough days recorded after filtering
out the corrupted data and be within 15km of the nearest weather
station in the Met Office dataset. From the solid wall dataset 14
homes have sufficient data and, when combined with the Met Office
dataset, 7 of these homes are within the required proximity of
a weather station. The 7 homes fitting the requirements use gas
heating. Whilst our experiments show the feasibility of the SMITE
method on the available data, there is a pressing need for publicly
available large-scale datasets to enable research into evaluating the
thermal efficiency of homes.

5 EXPERIMENTS
To evaluate the SMITE method it is implemented on the 7 homes
selected from the solid wall insulation field trial dataset and com-
pared to the ground truth HLC calculated by a co-heating test
[4, 23, 25, 29]. For comparison, the Deconstruct method is also im-
plemented and the two are compared across a number of metrics.

5.1 Experimental Setup
The SMITE method is implemented as described in Section 3 and
the co-heating inferred HLC values are used as the ground truth.
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Gas meter readings Gas and electric combined
meter readings

Co-heating Deconstruct SMITE Deconstruct SMITE
HLC [W/K] 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

house 1 304 10.1 252 28.0 264 45.4 271 41.1 186 43.5
house 2 223 6.3 244 14.6 248 31.2 258 14.7 235 34.2
house 3 198 11.7 501 33.8 177 59.7 517 35.4 195 64.9
house 4 351 6.3 436 40.2 387 42.6 433 63.8 524 47.2
house 5 214 7.1 235 30.8 211 45.1 302 37.9 239 71.4
house 6 189 7.4 209 37.8 148 51.2 205 40.5 218 70.9
house 7 189 6.6 195 31.0 219 64.2 206 32.3 240 90.1

Table 1: The mean and standard deviation of the HLC values inferred from the Deconstruct and SMITE approaches are presented alongside
the HLC values inferred for each home from the co-heating tests (ground truth). The standard deviation was not provided for the co-heating
tests, instead it has been inferred based on the known uncertainty of co-heating tests [17].

Gas heating Gas and electric combined
meter readings

Deconstruct SMITE Deconstruct SMITE
% Diff Z-score % Diff Z-score % Diff Z-score % Diff Z-score

house 1 -17.1 -1.86 -13.4 -0.90 -11.0 -0.81 -38.9 -2.72
house 2 9.4 1.44 11.4 0.81 15.6 2.38 5.5 0.36
house 3 53.0 8.97 -10.5 -0.35 160.8 9.00 -1.7 -0.05
house 4 24.3 2.12 10.2 0.84 23.2 1.28 49.2 3.66
house 5 10.0 0.69 -1.3 -0.06 41.4 2.34 11.6 0.35
house 6 10.9 0.55 -21.7 -0.80 9.0 0.42 15.5 0.41
house 7 3.2 0.20 15.7 0.46 8.8 0.52 26.8 0.56
Average 27.7 1.73 -1.3 0.00 35.4 2.16 9.7 0.37

Average of
absolute values 32.6 2.26 12.0 0.60 38.9 2.39 21.3 1.15

Table 2: The table shows the percentage difference between the non-intrusive methods and the ground truth, and the Z-score gives howmany
standard deviations away the ground truth is from the mean of the inferred value for each non-intrusive method. The average of absolute
values gives the average magnitude of the percentage differences (MAPE) and Z-scores for each method in each setting. The SMITE approach
shows a significant reduction across all measurements. The average without taking the absolute of each value shows that there is less bias in
the SMITE method, whilst the Deconstruct method over-predicts.

The standard deviation values for the co-heating test are not re-
ported and are hence inferred based on the known uncertainty in
co-heating HLC measurements [17].

For the Deconstruct method the only parameter changed is the
solar irradiance filter from 50 W/m2 to 150 W/m2 as this minimised
the MAPE of the Deconstruct method on this dataset. The SMITE
method uses the same filters as Deconstruct to find the viable days.
Then the heating-on periods are found using the proposed detection
algorithm and the filters are re-applied.

As all the 7 homes in the dataset have gas heating, the experi-
ments are set up to show that the approach works when metering of
the gas usage is recorded. Another scenario is constructed, adding
the gas and electricity smart-meter readings together, as the com-
bined meter readings are what would be expected when a home
only has electric utilities and no supply of gas. The purpose of this is
to demonstrate that the SMITE method works in a scenario similar
to what is expected in a home that has electric heating.

As previously discussed, the HPLC is the HLC multiplied by
the heating system efficiency. Hence without any insight into each

house an assumption has to be made on the heating system effi-
ciency to infer the HLC from the HPLC.

5.2 Evaluation Metrics
To evaluate the performance of the SMITE method a selection of
metrics are used to demonstrate how accurately it can infer the
HLC of a home, compared to the ground truth. As a benchmark,
the Deconstruct method is implemented and a comparison of the
results shows the significant performance improvement that the
SMITE method provides. A number of metrics are implemented
to compare the approaches. The mean absolute percentage error
(MAPE) calculates the absolute error as a percentage of the real
HLC, measuring how accurate the predictions are and is given by,

MAPE =
1
𝑁

𝑁∑
𝑛=1

������H
(𝑛)
𝑟𝑒𝑎𝑙

− H(𝑛)
𝑝𝑟𝑒𝑑

H(𝑛)
𝑟𝑒𝑎𝑙

������ ,
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where the HLC value inferred through the co-heating test for house
n is 𝐻 (𝑛)

𝑟𝑒𝑎𝑙
, and 𝐻 (𝑛)

𝑝𝑟𝑒𝑑
refers to the HLC value inferred through the

SMITE or Deconstruct method. The Z-score is used to measure
how the uncertainty of the prediction captures the ground truth,
measuring how many standard deviations away the ground truth
HLC is from the predicted HLC. The 𝜎 term denotes the standard
deviation inferred through linear regression for home n with the
SMITE or Deconstruct method,

Z-score =
𝐻

(𝑛)
𝑝𝑟𝑒𝑑

− 𝐻
(𝑛)
𝑟𝑒𝑎𝑙

𝜎
(𝑛)
𝐻𝑝𝑟𝑒𝑑

.

Also, the Pearson‘s correlation coefficient (PCC) is used to measure
how the predicted values correlate with the ground truth,

𝜌

(
H𝑟𝑒𝑎𝑙 ,H𝑝𝑟𝑒𝑑

)
=

cov
(
H𝑟𝑒𝑎𝑙 ,H𝑝𝑟𝑒𝑑

)
𝜎H𝑟𝑒𝑎𝑙

𝜎H𝑝𝑟𝑒𝑑

,

where The bold H𝑟𝑒𝑎𝑙 and H𝑝𝑟𝑒𝑑 represent the vector of all the
HLC values inferred via the method in question. whilst the 𝜎 with
a bold subscript represents the standard deviation across the vector
of HLC values. The ‘cov’ function finds the covariance between the
two vectors.

5.3 Evaluation
The SMITE method shows a significant performance improvement
compared to the Deconstruct method when using gas smart-meter
data and the combined gas and electricity smart-meter readings
to infer the HLC as shown in Table 2. The accuracy across all set-
tings makes the SMITE method the state-of-the-art non-intrusive
approach. Additionally, It can be seen in Table 1 that the SMITE
method also has a larger variance than the Deconstruct method.
This is expected as the SMITE method uses the average of shorter
periods of data and whilst there is more variance in the data it re-
moves a modelling bias that is present in the Deconstruct approach.

First we consider the setting where gas smart-meter readings
are used. There is a significant gain in accuracy as the MAPE de-
creases from 32.6% for the Deconstruct method to 12.0% for the
SMITE method. This performance increase should be expected as
by identifying the heating-on periods the data used to infer the HLC
is more similar to the data collected in a co-heating test. Further-
more, the reduction in Z-score when moving from the Deconstruct
method to the SMITE method shows that the predicted values and
the uncertainty inferred through the SMITE method better capture
the true value. For the SMITE method the ground truth HLC is
within 1 standard deviation of the inferred HLC for all homes. The
consistency of the accurate predictions is valuable in this setting
as incorrect predictions may result in costly interventions for the
wrong homes. On the point of reducing cost, the SMITE method is
shown to have a strong correlation with the intrusive co-heating
test, with a PCC of 0.91 compared to a PCC of 0.35 for the Decon-
struct method, meaning the SMITE method is a viable replacement
for a co-heating test as it achieves similar results whilst bringing
the benefits of being non-intrusive.

In the setting with combined energy recording, a slight drop in
performance is expected, as there are two sources of energy usage
combined making it more difficult to separate out the energy used

for heating. There is again a significant improvement in accuracy
when moving from the Deconstruct method to the SMITE method
with MAPE of 38.9% and 21.3% respectively. There is also a similar
decrease in Z-score, from 2.39 to 1.15 and the PCC increases from
0.31 for the Deconstruct method to 0.70 for the SMITE method. This
shows that the SMITE method improves on the current approaches
to infer HLC non-intrusively in all settings and as algorithms to dis-
aggregate heating energy usage from other uses of energy improve
we can expect the performance to be in line with what is achieved
in the gas-only setting.

Considering the average, rather than the average of absolute
values, highlights how the SMITE method removes a modelling
error and source of bias, by using half-hourly rather than daily data.
The average percentage difference is 27.7% for the Deconstruct
method compared to -1.3% the SMITE method. This is most likely
caused by the fact that using daily data rather than half-hourly
confounds the duration of heating with the HLC, an issue discussed
further in Section 6.3, causing an over-estimate of the HLC. By
removing this source of bias with the SMITE approach the predicted
HLC values are more accurate and inferences made over large
samples of homes are more likely to be accurate compared to the
Deconstruct method.

To gain insight into the results we consider the HLC inferred
for a few individual houses. There is a large performance drop
for Houses 1, 4 and 7 when switching to the combined gas and
electricity smart-meter readings. This can partly be attributed to all
three houses having high electricity usage of other appliances. By
improving heating energy disaggregation, this source of inaccuracy
can be reduced. Considering the SMITE method for house 3 where
the HLC is inferred from gas data two potential issues arise: (i) the
reduction in MAPE when in the setting with the combined gas and
electricity usage data indicates there may be a source of electric
heating as well as gas heating in this house, which is currently
unaccounted for; (ii) The gas data has systematic noise, indicating
the presence of another system using gas energy, perhaps with
improved disaggregation the performance on this house could be
improved. Finally, looking at the Deconstruct approach on house 3,
this is where there is the biggest failure caused by not separating
the duration of heating from the thermal efficiency of a home. The
following section addresses this point and demonstrates how it
is correctly handled by SMITE by considering half-hourly smart-
meter readings instead of daily.

6 DISCUSSION
Following the successful experimental results, three concepts are
discussed: (i) The merits of using HPLC instead of HLC and what is
the most appropriate metric for evaluating the thermal efficiency of
a home given the limitation of a non-intrusive setting; (ii) detecting
when heating is used and what further insights into the home
this can give to guide energy usage related policy; and (iii) the
shortcomings of approaches using daily energy usage and how
considering only daily data causes multiple factors to be mixed up.

6.1 Non-Intrusive Thermal Efficiency Metrics
In this paper the metric used for comparisons across methods is
HLC as this was the only relevant metric labelled in the dataset
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Figure 3: The Plots demonstrate how the length of time heating is on affects the HPLC inferred with the daily approach. The top row shows
their respective heating patterns for a 24 hour period whilst the bottom row shows the average power and external temperature for each
period recorded by each method. The inferred HPLC remains consistent for the half-hour approach, However, the daily approach confounds
heating usage behaviour with the homes thermal efficiency. Note that the HPLC for the Deconstruct approach is scaled by a factor to attempt
to account for the internal temperature, hence the value does not match the gradient.

used. To infer the HLC it requires an assumption to be made about
the efficiency of the heating system. However, a more appropriate
metric may be HPLC as it alleviates the requirement of this as-
sumption and measures the compounded value of HLC and heating
system efficiency instead, resulting in a more accurate evaluation
when performing non-intrusive inference of the thermal efficiency
of homes.

In the absence of sensors recording real-time data in the home,
such as smart meters or smart thermostats, measuring the HLC of a
house with an intrusive thermal efficiency measurement is required
- such as a co-heating test. When the HLC is measured, specific
procedures can be taken to ensure that only the efficiency of the
building material are measured. However, with the advent of smart
meters this creates a significant paradigm shift in how the thermal
properties of a house can be measured and hence it may make
sense to change the metric that is used. The HPLC may be a more
appropriate metric to track in this new data-rich scenario. Whilst
the HPLC compounds the HLC with heat loss through ventilation
and heating system efficiency, it can be inferred through cheap non-
intrusive techniques, which means it can be deployed at a scale that
is not feasible for HLC.

Finding the HPLC instead of HLC could identify which homes
are currently the most inefficient at heating, and where the biggest
impact from heating efficiency interventions could bemade. In some
cases, it may be more important to replace a heating system than to
provide insulation. As any intervention would require engagement
with the homeowner, the heating system efficiency can bemeasured,
and then the HLC can be inferred with this new information.

6.2 Detection of Periods when Heating is On
In the process of finding the HLC, the SMITE method detects peri-
ods when the heating is on. When evaluating which homes require
intervention, this information may also prove useful as studies
have shown that presenting consumers with insights into their
energy behaviour can have a significant impact on their energy
usage [9, 34]. Homes with a high HPLC and extended heating pe-
riods may be identified as those that could financially benefit the
most from energy saving interventions, thus making such inter-
ventions more financially viable. On the other side, homes with a
high HPLC but short heating periods may be flagged as households
potentially in fuel poverty, as the short heating periods may be
due to financial constraints and the house may not be sufficiently
heated. Furthermore, as mentioned in Section 3.1.3, this method
can be extended to detect periods when the heating system is at full
capacity for extended periods of time, which can suggest that a ther-
mal equilibrium is never reached. This may prove to be useful when
identifying households in fuel poverty with an inefficient heating
system. Whilst the metrics from this paper alone will not suffice for
these decisions, they can be a valuable tool when combined with
wider socioeconomic factors.

6.3 Issues with Daily Energy Usage
Amajor issue with the daily approach is that it confounds the length
of time the heating is on with the thermal efficiency of the home
(HPLC). Generally speaking, the heating is on for longer intervals
when the weather is colder. As expected, if the heating is on for
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longer periods of the day, the average heating energy usage for the
day is greater and if the length of time the heating is on is correlated
with the external weather, this has an effect on the inferred HPLC
value. By not separating the length of time the heating is on and the
efficiency, the predicted HPLC will vary with the time heating is on,
a behavioural factor, which should not be affecting the HPLC. This
is a short-coming addressed by taking the half-hourly smart-meter
readings in the SMITE method.

To illustrate the point, a synthetic dataset is created. External
temperature values are taken from the Met Office dataset and the
energy usage when heating is on is generated by using Equation
(13). The plots in Figure 3 demonstrate the point, as the heating
schedule changes, the daily approach infers varying HPLC values,
whilst the half-hourly approach consistently infers it correctly.

7 CONCLUSIONS
In this paper, an improved approach to infer theHLCnon-intrusively,
using only smart-meter readings and local weather data, is proposed.
To evaluate the new SMITE method, a dataset of 7 homes is used.
Using the HLC inferred through a co-heating test as the ground
truth, the SMITE method achieves a MAPE of 12.0 % on the gas data
with the ground truth HLC falling within one standard deviation
of the predicted HLC for all homes. This is compared to a MAPE
of 32.6 % for an existing alternative approach (Deconstruct). In the
setting with combined gas and electricity smart-meter readings the
SMITE method achieves a MAPE of 21.3 % whilst the Deconstruct
method attains a MAPE of 38.9 %. With the roll-out of smart meters
and the ease of access to weather data, the SMITE method can be
used at large scale and low cost. We are working with a UK energy
supplier to implement the proposed solution, to provide feedback
to their customers about the thermal efficiency of their home.

The SMITE framework proposed is flexible, making future im-
provements to the model very easy. It can be adapted to account
for additional information from sensors i.e. occupancy detection,
localised solar irradiance measurements using solar panel readings,
or internal temperature readings from smart thermostats. Further-
more, as the underlying models improve (cf. thermal equilibrium
detection), specific components of the algorithm can be replaced
with state-of-the-art ones, thanks to its modular structure.
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